PHILIPS TDA5142T

INTEGRATED CIRCUITS
DATA SHEET
TDA5142T
Brushless DC motor drive circuit
Product specification
Supersedes data of March 1992
File under Integrated Circuits, IC11
Philips Semiconductors
June 1994
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
FEATURES
APPLICATIONS
• Full-wave commutation without position sensors
• High-power applications e.g.:
• Built-in start-up circuitry
– high-end hard disk drives
• Six outputs that can drive three external transistor pairs:
– automotive.
– output current 0.2 A (typ.)
GENERAL DESCRIPTION
– low saturation voltage
The TDA5142T is a bipolar integrated circuit used to drive
3-phase brushless DC motors in full-wave mode. The
device is sensorless (saving of 3 hall-sensors) using the
back-EMF sensing technique to sense the rotor position.
It includes a brake function and 6 pre-drivers able to
control FETs or bipolar external transistors. It is ideally
suited for high-power applications such as high-end hard
disk drives, automotive and other applications.
– built-in current limiter
• Thermal protection
• Tacho output without extra sensor
• Transconductance amplifier for an external
control transistor
• Motor brake facility.
QUICK REFERENCE DATA
Measured over full voltage and temperature range.
SYMBOL
PARAMETER
CONDITIONS
VP
supply voltage
VVMOT
input voltage to the output
driver stages
VO
driver output voltage
ILIM
current limiting
note 1
IO = 100 mA; lower transistor
MIN.
TYP.
MAX.
UNIT
4
−
18
V
3
−
18
V
−
−
0.35
V
IO = 100 mA; upper transistor
1.05
−
−
V
VVMOT = 14.5 V; RO = 47 Ω
150
200
250
mA
Note
1. An unstabilized supply can be used.
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
TDA5142T
June 1994
PINS
PIN POSITION
MATERIAL
CODE
24
SOL
plastic
SOT137-1
2
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
BLOCK DIAGRAM
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB
Fig.1 Block diagram.
June 1994
3
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
PINNING
SYMBOL
PIN
DESCRIPTION
OUT-NB
1
driver output B for driving the n-channel power FET or power NPN
OUT-PB
2
driver output B for driving the n-channel power FET or power PNP
GND1
3
ground (0 V) motor supply return for output stages
OUT-PC
4
driver output C for driving the n-channel power FET or power PNP
OUT-NC
5
driver output C for driving the n-channel power FET or power NPN
VMOT
6
input voltage for the output driver stages
TEST
7
test input/output
BRAKE
8
brake input
FG
9
frequency generator: output of the rotation speed detector stage
GND2
10
ground supply return for control circuits
VP
11
supply voltage
CAP-CD
12
external capacitor connection for adaptive communication delay timing
CAP-DC
13
external capacitor connection for adaptive communication delay timing copy
CAP-ST
14
external capacitor connection for start-up oscillator
CAP-TI
15
external capacitor connection for timing
+AMP IN
16
non-inverting input of the transconductance amplifier
−AMP IN
17
inverting input of the transconductance amplifier
AMP OUT
18
transconductance amplifier output (open collector)
COMP-A
19
comparator input corresponding to output A
COMP-B
20
comparator input corresponding to output B
COMP-C
21
comparator input corresponding to output C
MOT0
22
input from the star point of the motor coils
OUT-NA
23
driver output A for driving the n-channel power FET or power NPN
OUT-PA
24
driver output A for driving the n-channel power FET or power PNP
June 1994
4
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
FUNCTIONAL DESCRIPTION
The TDA5142T offers a sensorless three phase motor
drive function. It is unique in its combination of sensorless
motor drive and full-wave drive. The TDA5142T offers
protected outputs capable of driving external power FETs
or bipolar power transistors. It can easily be adapted for
different motors and applications. The TDA5142T offers
the following features:
• Sensorless commutation by using the motor EMF.
• Built-in start-up circuit.
• Optimum commutation, independent of motor type or
motor loading.
• Six output drivers.
• Maximum output current 0.25 A.
• Outputs protected by current limiting and thermal
protection.
• Low current consumption.
• Accurate frequency generator (FG) by using the
motor EMF.
• Brake function.
• Uncommitted operational transconductance amplifier
(OTA), with a high output current, for use as a control
amplifier or as a level shifter in a Switched Mode Power
Supply (SMPS) drive.
Fig.2 Pin configuration.
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
VP
supply voltage
VI
input voltage; all pins except
VMOT
VVMOT
VMOT input voltage
VO
output voltage
CONDITIONS
MIN.
MAX.
UNIT
4
18
V
−0.3
VP + 0.5
V
3
18
V
FG
GND
VP
V
AMP OUT
−
18
V
OUT-NA, OUT-NB and OUT-NC
−
VVMOT − 0.9
V
OUT-PA, OUT-PB and OUT-PC
0.2
−
V
VI < 18 V
VI
input voltage CAP-ST, CAP-TI,
CAP-CD and CAP-DC
−
2.5
V
Tstg
storage temperature
−55
+150
°C
Tamb
operating ambient temperature
0
+70
°C
Ptot
total power dissipation
see Fig.3
−
−
W
Ves
electrostatic handling
see Chapter “Handling”
−
500
V
June 1994
5
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
HANDLING
MLB777
3
Every pin withstands the ESD test according to
“MIL-STD-883C class 2”. Method 3015 (HBM 1500 Ω,
100 pF) 3 pulses + and 3 pulses − on each pin referenced
to ground.
P tot
(W)
2
1
0
50
0
50 70
100
150
T amb ( oC)
200
Fig.3 Power derating curve.
CHARACTERISTICS
VP = 14.5 V; Tamb = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply
VP
supply voltage
note 1
4
−
18
V
IP
supply current
note 2
−
5.2
6.25
mA
VVMOT
input voltage to the output driver
stages
see Fig.1
3
−
18
V
130
140
150
°C
−
TSD − 30
−
K
−0.5
−
VVMOT
V
−
0
µA
Thermal protection
TSD
local temperature at temperature
sensor causing shut-down
∆T
reduction in temperature before
switch-on
after shut-down
COMP-A, COMP-B, COMP-C and MOT0
VI
input voltage
II
input bias current
0.5 V < VI < VVMOT − 1.5 V −10
VCSW
comparator switching level
note 3
±20
±25
±30
mV
∆VCSW
variation in comparator switching
levels
−3
0
+3
mV
Vhys
comparator input hysteresis
−
75
−
µV
June 1994
6
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
SYMBOL
PARAMETER
TDA5142T
CONDITIONS
MIN.
TYP.
MAX.
UNIT
OUT-NA, OUT-NB, OUT-NC, OUT-PA, OUT-PB and OUT-PC
VO-n
VO-p
n-channel driver output voltage
p-channel driver output voltage
upper transistor;
IO = −100 mA
−1.05
−
−
V
lower transistor;
IO = 10 mA
−
−
0.35
V
upper transistor;
IO = −10 mA
−1.05
−
−
V
lower transistor;
IO = 100 mA
−
−
0.35
V
∆VOL
variation in saturation voltage
between lower transistors
IO = 100 mA
−
−
180
mV
∆VOH
variation in saturation voltage
between upper transistors
IO = −100 mA
−
−
180
mV
ILIM
current limiting
VVMOT = 14.5 V;
RO = 47 Ω
150
200
250
mA
input voltage
−0.3
−
VP − 1.7
V
differential mode voltage without
‘latch-up’
−
−
±VP
V
Ib
input bias current
−
−
650
nA
CI
input capacitance
−
4
−
pF
Voffset
input offset voltage
−
−
10
mV
+AMP IN and −AMP IN
VI
AMP OUT (open collector)
Isink
output sink current
Vsat
saturation voltage
VO
output voltage
SR
slew rate
Gtr
transfer gain
II = 40 mA
RL = 330 Ω; CL = 50 pF
40
−
−
mA
−
1.5
2.1
V
−0.5
−
+18
V
40
−
−
mA/µs
0.3
−
−
S
−
2.3
V
BRAKE
VBM
II
June 1994
brake-mode voltage
input current
enable brake mode;
4 V < VP < 18 V
normal mode;
4 V < VP < 18 V
2.7
−
brake mode
−
−20
−30
µA
normal mode
−
0
20
µA
7
V
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
SYMBOL
PARAMETER
TDA5142T
CONDITIONS
MIN.
TYP.
MAX.
UNIT
FG (push-pull)
−
0.4
V
VP − 0.3
−
V
−
0.5
−
µs
ratio of FG frequency and
commutation frequency
−
1
−
Isink
output sink current
1.5
2.0
2.5
µA
VOL
LOW level output voltage
IO = 1.6 mA
VOH
HIGH level output voltage
IO = −60 µA
tTHL
HIGH-to-LOW transition time
CL = 50 pF; RL = 10 kΩ
−
CAP-ST
Isource
output source current
−2.5
−2.0
−1.5
µA
VSWL
LOW level switching voltage
−
0.20
−
V
VSWH
HIGH level switching voltage
−
2.20
−
V
Isink
output sink current
−
28
−
µA
Isource
output source current
−
−57
−
µA
−
−5
−
µA
VSWL
LOW level switching voltage
−
50
−
mV
VSWM
MIDDLE level switching voltage
−
0.30
−
V
VSWH
HIGH level switching voltage
−
2.20
−
V
Isink
output sink current
10.6
16.2
22
µA
Isource
output source current
−5.3
−8.1
−11
µA
CAP-TI
0.2 V < VCAP-TI < 0.3 V
0.3 V < VCAP-TI < 2.2 V
CAP-CD
Isink/Isource ratio of sink to source current
1.85
2.05
2.25
VIL
LOW level input voltage
850
875
900
mV
VIH
HIGH level input voltage
2.3
−
2.5
V
Isink
output sink current
10.1
15.5
20.9
µA
Isource
output source current
−20.9
−15.5
−10.1
µA
CAP-DC
Isink/Isource ratio of sink to source current
0.9
1.025
1.15
VIL
LOW level input voltage
850
875
900
mV
VIH
HIGH level input voltage
2.3
−
2.5
V
Notes
1. An unstabilized supply can be used.
2. VVMOT = VP, all other inputs at 0 V; all outputs at VP; IO = 0 mA.
3. Switching levels with respect to driver outputs OUT-NA, OUT-NB, OUT-NC, OUT-PA, OUT-PB and OUT-PC.
June 1994
8
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
APPLICATION INFORMATION
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
(1) RX = RY > 8 (VMOT − 1.5)
Fig.4
June 1994
Application diagram without use of the operational transconductance amplifier (OTA) with bipolar
power transistors.
9
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
Fig.5
June 1994
Application diagram without use of the operational transconductance amplifier (OTA)
with MOSFETs.
10
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
The TDA5142T also contains an uncommitted
transconductance amplifier (OTA) that can be used as a
control amplifier. The output is capable of directly driving
an external power transistor.
Introduction (see Fig.6)
Full-wave driving of a three phase motor requires three
push-pull output stages. In each of the six possible states
two outputs are active, one sourcing (H) and one sinking
(L). The third output presents a high impedance (Z) to the
motor, which enables measurement of the motor
back-EMF in the corresponding motor coil by the EMF
comparator at each output. The commutation logic is
responsible for control of the output transistors and
selection of the correct EMF comparator. In Table 1 the
sequence of the six possible states of the external
connected output transistors has been depicted and the
corresponding output levels on the NA, PA, NB, PB, NC
and PC outputs of the TDA5142T.
The TDA5142T is designed for systems with low current
consumption: use of I2L logic, adaptive base drive for the
output transistors (patented).
Adjustments
The system has been designed in such a way that the
tolerances of the application components are not critical.
However, the approximate values of the following
components must still be determined:
• The start capacitor; this determines the frequency of the
start oscillator.
The zero-crossing in the motor EMF (detected by the
comparator selected by the commutation logic) is used to
calculate the correct moment for the next commutation,
that is, the change to the next output state. The delay is
calculated (depending on the motor loading) by the
adaptive commutation delay block.
• The two capacitors in the adaptive commutation delay
circuit; these are important in determining the optimum
moment for commutation, depending on the type and
loading of the motor.
• The timing capacitor; this provides the system with its
timing signals.
The output stages are also protected by a current limiting
circuit and by thermal protection.
The detected zero-crossings are used to provide speed
information. The information has been made available on
the FG output pin. This output provides an output signal
with a frequency equal to the commutation frequency.
THE START CAPACITOR (CAP-ST)
This capacitor determines the frequency of the start
oscillator. It is charged and discharged, with a current of
2 µA, from 0.05 to 2.2 V and back to 0.05 V. The time
taken to complete one cycle is given by:
tstart = (2.15 × C) s (with C in µF)
The system will only function when the EMF voltage from
the motor is present. Therefore, a start oscillator is
provided that will generate commutation pulses when no
zero-crossings in the motor voltage are available.
The start oscillator is reset by a commutation pulse and so
is only active when the system is in the start-up mode. A
pulse from the start oscillator will cause the outputs to
change to the next state (torque in the motor).
A timing function is incorporated into the device for internal
timing and for timing of the reverse rotation detection.
Table 1 Output states.
STATE
MOT1(1)
OUTNA(1)
OUTPA(1)
OUTNB(1)
MOT2(1)
OUTPB(1)
MOT3(1)
OUTNC(1)
OUTPC(1)
1
Z
L
H
L
H
H
H
L
L
2
H
L
L
L
H
H
Z
L
H
3
H
L
L
Z
L
H
L
H
H
4
Z
L
H
H
L
L
L
H
H
5
L
H
H
H
L
L
Z
L
H
6
L
H
H
Z
L
H
H
L
L
Note
1. H = HIGH state; L = LOW state; Z = high-impedance OFF-state.
June 1994
11
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
If the movement of the motor generates enough EMF the
TDA5142T will run the motor. If the amount of EMF
generated is insufficient, then the motor will move one step
only and will oscillate in its new position. The amplitude of
the oscillation must decrease sufficiently before the arrival
of the next start pulse, to prevent the pulse arriving during
the wrong phase of the oscillation. The oscillation of the
motor is given by:
1
f osc = ----------------------------------Kt × I × p
2π ----------------------J
where:
Kt = torque constant (N.m/A)
I = current (A)
p = number of magnetic pole-pairs
J = inertia J (kg.m2).
Example: J = 72 × 10−6 kg.m2, K = 25 × 10−3 N.m/A, p = 6
and I = 0.5 A; this gives fosc = 5 Hz. If the damping is high
then a start frequency of 2 Hz can be chosen or
t = 500 ms, thus C = 0.5/2 = 0.25 µF (choose 220 nF).
THE ADAPTIVE COMMUTATION DELAY (CAP-CD AND
CAP-DC)
In this circuit capacitor CAP-CD is charged during one
commutation period, with an interruption of the charging
current during the diode pulse. During the next
commutation period this capacitor (CAP-CD) is discharged
at twice the charging current. The charging current is
8.1 µA and the discharging current 16.2 µA; the voltage
range is from 0.9 to 2.2 V. The voltage must stay within
this range at the lowest commutation frequency of
interest, fC1:
–6
6231
8.1 × 10
C = -------------------------- = ------------- (C in nF)
f × 1.3
f C1
If the frequency is lower, then a constant commutation
delay after the zero-crossing is generated by the discharge
from 2.2 to 0.9 V at 20 µA;
maximum delay = (0.076 × C) ms (with C in nF)
Example: nominal commutation frequency = 900 Hz and
the lowest usable frequency = 400 Hz; so:
6231
CAP-CD = ------------- = 15.6 (choose 18 nF)
400
The other capacitor, CAP-DC, is used to repeat the same
delay by charging and discharging with 15.5 µA. The same
value can be chosen as for CAP-CD. Figure 7 illustrates
typical voltage waveforms.
June 1994
12
TDA5142T
Product specification
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBB
BBBBBB
BBBBBB
BBBBBB
BBB
BBBBBB
BBB
B
BB
BB
B
BB
BB
BB
BB
B
BBBBB
B
B
B
BBBB
BB
B
B
BB
BB
B
BB
BB
BB
BB
B
B
BB
BB
BB
BB
B
B
B
B
B
B
B
BB
BB
BB
BB
B
B
BB
B
B
BB
BB
BB
B
BBBB
B
BB
BB
BB
B
B
BB
B
B
BB
BB
BB
B
B
B
B
BBBB
B
B
B
B
BBBB
B
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBB
BBBBBB
BBBBBBBBBBBB
BBBBBB
BBBBBBBBBBBB
BBBBBB
BBBBBBBBBBBB
BBBBBB
B
BBBBBBBBBBBBB
BB
BBBBB
BB
B
BBBBBBBBB
BB
B
BBBBBB
BBBBBBBBB
BB
B
BBBBBB
BBBBBBBBB
BB
B
BBBBBB
BBBBBBBBBBBB BBB
BB
BB
BB
BB
B
B
BB
BB
BB
BB
BB
B B
BB
BB
BB
BB
BB
B
B
B
B
B
B
B
B
B
B
B
B
BBBBBB BBBBBB
B
BBBBBB BBBBBB
B
BB
BB
BB
BB
BB
B B
BB
BB
BB
BB
BB
B
BBBBBB BBBBBB
B
BB
BB
BB
BB
BB
B B
BB
BB
BB
BB
BB
B
BBBBBB BBBBBB
BB
BB
BB
BB
BB
BB
BB
BB
BB
B
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
B
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
B
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
B
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
B
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BB
BB
BB
BB
BB
BB
BB
BB
BB
B
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
B
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BBBBBBBBBBBBBBBBBBBB
B
BBBBBBBBBBB
BBBBBBBBB
BBBB
BBBBBBB
BBBBB
Philips Semiconductors
13
Fig.6 Typical application of the TDA5142T as a scanner driver, with use of OTA.
Brushless DC motor drive circuit
June 1994
BBBBBBBBBBBB
BBBBBBBB
BBBBBBBBBBBB
BBBBBBBB
BBBB
BBBBBBBB
BBBB
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
Fig.7 CAP-CD and CAP-DC typical voltage waveforms in normal running mode.
time is made too long, then the motor may run in the wrong
direction (with little torque).
THE TIMING CAPACITOR (CAP-TI)
Capacitor CAP-TI is used for timing the successive steps
within one commutation period; these steps include some
internal delays.
The capacitor is charged, with a current of 57 µA, from
0.2 to 0.3 V. Above this level it is charged, with a current of
5 µA, up to 2.2 V only if the selected motor EMF remains
in the wrong polarity (watchdog function). At the end, or, if
the motor voltage becomes positive, the capacitor is
discharged with a current of 28 µA. The watchdog time is
the time taken to charge the capacitor, with a current of
5 µA, from 0.3 to 2.2 V.
The most important function is the watchdog time in which
the motor EMF has to recover from a negative diode-pulse
back to a positive EMF voltage (or vice versa). A watchdog
timer is a guarding function that only becomes active when
the expected event does not occur within a predetermined
time.
To ensure that the internal delays are covered CAP-TI
must have a minimum value of 2 nF. For the watchdog
function a value for CAP-TI of 10 nF is recommended.
The EMF usually recovers within a short time if the motor
is running normally (<<ms). However, if the motor is
motionless or rotating in the reverse direction, then the
time can be longer (>>ms).
To ensure a good start-up and commutation, care must be
taken that no oscillations occur at the trailing edge of the
flyback pulse. Snubber networks at the outputs should be
critically damped.
A watchdog time must be chosen so that it is long enough
for a motor without EMF (still) and eddy currents that may
stretch the voltage in a motor winding; however, it must be
short enough to detect reverse rotation. If the watchdog
June 1994
Typical voltage waveforms are illustrated by Fig.8.
14
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
If the chosen value of CAP-TI is too small oscillations can occur in certain positions of a blocked rotor. If the chosen value is too large, then it
is possible that the motor may run in the reverse direction (synchronously with little torque).
Fig.8 Typical CAP-TI and VMOT1 voltage waveforms in normal running mode.
Other design aspects
THE OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
There are other design aspects concerning the application
of the TDA5142T besides the commutation function. They
are:
The OTA is an uncommitted amplifier with a high output
current (40 mA) that can be used as a control amplifier.
The common mode input range includes ground (GND)
and rises to VP − 1.7 V. The high sink current enables the
OTA to drive a power transistor directly in an analog
control amplifier.
• Generation of the tacho signal FG
• General purpose operational transconductance
amplifier (OTA)
Although the gain is not extremely high (0.3 S), care must
be taken with the stability of the circuit if the OTA is used
as a linear amplifier as no frequency compensation has
been provided.
• Possibilities of motor control
• Brake function
• Reliability.
The convention for the inputs (inverting or not) is the same
as for a normal operational amplifier: with a resistor (as
load) connected from the output (AMP OUT) to the positive
supply, a positive-going voltage is found when the
non-inverting input (+AMP IN) is positive with respect to
the inverting input (−AMP IN). Confusion is possible
because a ‘plus’ input causes less current, and so a
positive voltage.
FG SIGNAL
The FG signal is generated in the TDA5142T by using the
zero-crossing of the motor EMF from the three motor
windings and the commutation signal.
Output FG switches from HIGH-to-LOW on all zero
crossings and from LOW-to-HIGH on all commutations.
Output FG can source typically 75 µA and sink more
than 3 mA.
MOTOR CONTROL
Example: a 3-phase motor with 6 magnetic pole-pairs at
1500 rpm and with a full-wave drive has a commutation
frequency of 25 × 6 × 6 = 900 Hz, and generates a tacho
signal of 900 Hz.
June 1994
DC motors can be controlled in an analog manner using
the OTA.
For the analog control an external transistor is required.
The OTA can supply the base current for this transistor
and act as a control amplifier (see Fig.6).
15
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
BRAKE FUNCTION
• If the voltage on pin 8 is <2.3 V the motor brakes; in this
condition the external outputs are driven to a HIGH
voltage level.
• If pin 8 is floating or the voltage is >2.7 V the motor
runs normally.
RELIABILITY
It is necessary to protect high current circuits and the
output stages are protected in two ways:
• Current limiting of the ‘lower’ output transistors. The
‘upper’ output transistors use the same base current as
the conducting ‘lower’ transistor (+15%). This means
that the current to and from the output stages is limited.
• Thermal protection of the six output transistors is
achieved in such a way that the transistors are switched
off when the local temperature becomes too high.
June 1994
16
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
PACKAGE OUTLINE
15.6
15.2
handbook, full pagewidth
7.6
7.4
10.65
10.00
0.1 S
S
A
0.9 (4x)
0.4
24
13
2.45
2.25
1.1
1.0
0.3
0.1
2.65
2.35
0.32
0.23
pin 1
index
1
1.1
0.5
12
detail A
1.27
0.49
0.36
0.25 M
(24x)
Dimensions in mm.
Fig.9 Plastic small outline package; 24 leads; large body (SOT137-1; SO24L).
June 1994
17
0 to 8o
MBC235 - 1
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
applied to the substrate by screen printing, stencilling or
pressure-syringe dispensing before device placement.
SOLDERING
Plastic small-outline packages
Several techniques exist for reflowing; for example,
thermal conduction by heated belt, infrared, and
vapour-phase reflow. Dwell times vary between 50 and
300 s according to method. Typical reflow temperatures
range from 215 to 250 °C.
BY WAVE
During placement and before soldering, the component
must be fixed with a droplet of adhesive. After curing the
adhesive, the component can be soldered. The adhesive
can be applied by screen printing, pin transfer or syringe
dispensing.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 min at 45 °C.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder bath is
10 s, if allowed to cool to less than 150 °C within 6 s.
Typical dwell time is 4 s at 250 °C.
REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING
IRON OR PULSE-HEATED SOLDER TOOL)
Fix the component by first soldering two, diagonally
opposite, end pins. Apply the heating tool to the flat part of
the pin only. Contact time must be limited to 10 s at up to
300 °C. When using proper tools, all other pins can be
soldered in one operation within 2 to 5 s at between 270
and 320 °C. (Pulse-heated soldering is not recommended
for SO packages.)
A modified wave soldering technique is recommended
using two solder waves (dual-wave), in which a turbulent
wave with high upward pressure is followed by a smooth
laminar wave. Using a mildly-activated flux eliminates the
need for removal of corrosive residues in most
applications.
For pulse-heated solder tool (resistance) soldering of VSO
packages, solder is applied to the substrate by dipping or
by an extra thick tin/lead plating before package
placement.
BY SOLDER PASTE REFLOW
Reflow soldering requires the solder paste (a suspension
of fine solder particles, flux and binding agent) to be
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
June 1994
18
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5142T
NOTES
June 1994
19
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788 399
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,
CEP: 04552-903-SÃO PAULO-SP, Brazil.
P.O. Box 7383 (01064-970).
Tel. (011)821-2327, Fax. (011)829-1849
Canada: INTEGRATED CIRCUITS:
Tel. (800)234-7381, Fax. (708)296-8556
DISCRETE SEMICONDUCTORS: 601 Milner Ave,
SCARBOROUGH, ONTARIO, M1B 1M8,
Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,
Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex,
Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H.,
P.O. Box 10 63 23, 20043 HAMBURG,
Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
Hong Kong: PHILIPS HONG KONG Ltd., Components Div.,
6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T.,
Tel. (852)424 5121, Fax. (852)428 6729
India: Philips INDIA Ltd, Components Dept,
Shivsagar Estate, A Block ,
Dr. Annie Besant Rd. Worli, Bombay 400 018
Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950,
Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)640 000, Fax. (01)640 200
Italy: PHILIPS COMPONENTS S.r.l.,
Viale F. Testi, 327, 20162 MILANO,
Tel. (02)6752.3302, Fax. (02)6752 3300.
Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: Philips Components, 5900 Gateway East, Suite 200,
EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB
Tel. (040)783749, Fax. (040)788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Philips Semiconductors
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,
KARACHI 75600, Tel. (021)587 4641-49,
Fax. (021)577035/5874546.
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,
Apartado 300, 2795 LINDA-A-VELHA,
Tel. (01)14163160/4163333, Fax. (01)14163174/4163366.
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd., Components Division,
195-215 Main Road Martindale, 2092 JOHANNESBURG,
P.O. Box 7430 Johannesburg 2000,
Tel. (011)470-5911, Fax. (011)470-5494.
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,
TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong,
Bangkok 10260, THAILAND,
Tel. (662)398-0141, Fax. (662)398-3319.
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0 212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors Limited, P.O. Box 65,
Philips House, Torrington Place, LONDON, WC1E 7HD,
Tel. (071)436 41 44, Fax. (071)323 03 42
United States: INTEGRATED CIRCUITS:
811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. (800)234-7381, Fax. (708)296-8556
DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd.,
P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404,
Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BAF-1,
P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,
Telex 35000 phtcnl, Fax. +31-40-724825
SCD31
© Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the
prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation
or contract, is believed to be accurate and reliable and may be changed without
notice. No liability will be accepted by the publisher for any consequence of its
use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights.
Printed in The Netherlands
373061/1500/02/pp20
Document order number:
Date of release: June 1994
9397 735 80011