TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 D D D Direct Upgrades for the TL06x Low-Power BiFETs Low Power Consumption . . . 6.5 mW/Channel Typ On-Chip Offset-Voltage Trimming for Improved DC Performance (1.5 mV, TL031A) D D Higher Slew Rate and Bandwidth Without Increased Power Consumption Available in TSSOP for Small Form-Factor Designs description The TL03x series of JFET-input operational amplifiers offer improved dc and ac characteristics over the TL06x family of low-power BiFET operational amplifiers. On-chip zener trimming of offset voltage yields precision grades as low as 1.5 mV (TL031A) for greater accuracy in dc-coupled applications. Texas Instruments improved BiFET process and optimized designs also yield improved bandwidths and slew rates without increased power consumption. The TL03x devices are pin-compatible with the TL06x and can be used to upgrade existing circuits or for optimal performance in new designs. BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors without sacrificing the output drive associated with bipolar amplifiers. This higher input impedance makes the TL3x amplifiers better suited for interfacing with high-impedance sensors or very low-level ac signals. These devices also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption. The TL03x family has been optimized for micropower operation, while improving on the performance of the TL06x series. Designers requiring significantly faster ac response should consider the Excalibur TLE206x family of low-power BiFET operational amplifiers. Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input-voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required and loads should be terminated to a virtual-ground node at midsupply. Texas Instruments TLE2426 integrated virtual-ground generator is useful when operating BiFET amplifiers from single supplies. The TL03x devices are fully specified at ±15 V and ±5 V. For operation in low-voltage and/or single-supply systems, Texas Instruments LinCMOS families of operational amplifiers (TLC-prefix) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to slew rate, bandwidth requirements, and output loading. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1999, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL032x, TL032Ax D, JG, OR P PACKAGE (TOP VIEW) 1 8 2 7 3 6 4 5 NC VCC+ OUT OFFSET N2 1OUT 1IN– 1IN+ VCC – TL031M, TL031AM FK PACKAGE (TOP VIEW) 5 17 6 16 7 15 8 14 9 10 11 12 13 7 3 6 4 5 VCC+ 2OUT 2IN– 2IN+ NC 1OUT NC VCC+ NC NC VCC+ NC OUT NC NC 1IN– NC 1IN+ NC 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN– NC NC – No internal connection 2 1OUT 1IN– 1IN+ VCC+ 2IN+ 2IN– 2OUT POST OFFICE BOX 655303 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN– 4IN+ VCC– 3IN+ 3IN– 3OUT TL034M, TL034AM FK PACKAGE (TOP VIEW) NC VCC– NC 2IN+ NC 3 2 1 20 19 18 8 2 TL032M, TL032AM FK PACKAGE (TOP VIEW) NC OFFSET N1 NC NC NC 4 NC VCC– NC OFFSET N2 NC NC IN– NC IN+ NC 1 1IN– 1OUT NC 4OUT 4IN– OFFSET N1 IN– IN+ VCC– TL034x, TL034Ax D, J, N, OR PW PACKAGE (TOP VIEW) • DALLAS, TEXAS 75265 1IN+ NC VCC+ NC 2IN+ 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 2IN– 2OUT NC 3OUT 3IN– TL031x, TL031Ax D, JG, OR P PACKAGE (TOP VIEW) 4IN+ NC VCC– NC 3IN+ TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C –40°C to 85°C –55°C to 125°C VIOMAX AT 25°C SMALL OUTLINE† (D) CHIP CARRIER (FK) CERAMIC DIP (J) CERAMIC DIP (JG) PLASTIC DIP (N) PLASTIC DIP (P) TSSOP† (PW) CHIP FORM‡ (Y) 0.8 mV TL031ACD TL032ACD — — — — TL031ACP TL032ACP — 1.5 mV TL031CD TL032CD TL034ACD — — — TL034ACN TL031CP TL032CP — 4 mV TL034CD — — — TL034CN 0.8 mV TL031AID TL032AID — — — — TL031AIP TL032AIP — — 1.5 mV TL031ID TL032ID TL034AID — — — TL034AIN TL031IP TL032IP — — 4 mV TL034ID — — — TL034IN — — — 0.8 mV TL031AMD TL032AMD TL031AMFK TL032AMFK — TL031AMJG TL032AMJG — TL031AMP TL032AMP — — 1.5 mV TL031MD TL032MD TL034AMD TL031MFK TL032MFK TL034AMFK TL034AMJ TL031MJG TL032MJG TL034AMN TL031MP TL032MP — — TL031Y TL032Y TL034Y TL034CPW 4 mV TL034MD TL034MFK TL034MJ — TL034MN — — — † The D and PW packages are available taped and reeled and are indicated by adding an R suffix to device type (e.g., TL034CDR or TL034CPWR). ‡ Chip forms are tested at 25°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 symbol (each amplifier) IN– – IN+ + OUT equivalent schematic (each amplifier) VCC+ Q14 Q5 Q2 D1 Q3 R4 Q6 IN+ IN– Q11 OUT Q8 Q10 JF1 JF2 R7 Q17 R3 Q15 R6 C1 Q1 (see Note A) Q4 OFFSET N1 OFFSET N2 Q12 JF3 Q9 R8 Q7 R1 R2 Q16 R5 Q13 VCC– NOTE A: OFFSET N1 and OFFSET N2 are available only on the TL031. 4 JF4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL031Y chip information This chip, when properly assembled, has characteristics similar to the TL031C. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. These chips can be mounted with conductive epoxy or a gold-silicon preform. Bonding-Pad Assignments (5) (4) IN+ (6) (3) IN– OFFSET N1 OFFSET N2 (7) (3) (2) (1) VCC+ (7) + (6) OUT – (4) VCC– (5) 42 (1) (8) (2) Chip Thickness: 15 MIls Typical Bonding Pads: 4 × 4 Mils Minimum TJ(max) = 150°C Tolerances Are ±10%. All Dimensions Are in Mils. Pin (4) is Internally Connected to Backside of the Chip. 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL032Y chip information This chip, when properly assembled, has characteristics similar to the TL032C. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. These chips can be mounted with conductive epoxy or a gold-silicon preform. Bonding-Pad Assignments (7) (6) (5) (8) 1IN+ (3) (2) 1IN– 67 (4) 2OUT (7) VCC+ (8) + (1) 1OUT – + – (5) (6) 2IN+ 2IN– (4) VCC– (1) (2) (3) Chip Thickness: 15 Mils Typical Bonding Pads: 4 × 4 Mils Minimum TJ(max) = 150°C Tolerances Are ±10%. All Dimensions Are in Mils. Pin (4) is Internally Connected to Backside of Chip. 51 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL034Y chip information This chip, when properly assembled, has characteristics similar to the TL034C. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. These chips can be mounted with conductive epoxy or a gold-silicon preform. Bonding-Pad Assignments 1IN+ (13) (12) (11) (10) (9) (2) 1IN– 2OUT (14) (8) (3) 3IN+ (10) 3IN– 4OUT (7) (1) (2) (6) (3) (4) (7) (5) (6) (8) (9) 93 POST OFFICE BOX 655303 (1) 1OUT – + – + (5) (6) 2IN+ 2IN– (8) 3OUT – + (14) – (12) (13) 4IN+ 4IN– (11) VCC– (10) (5) + (7) (9) 66 VCC+ (4) • DALLAS, TEXAS 75265 Chip Thickness: 15 Mils Typical Bonding Pads: 4 × 4 Mils Minimum TJ(max) = 150°C Tolerances Are ±10%. All Dimensions Are in Mils. Pin (11) is Internally Connected to Backside of the Chip. 7 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V Supply voltage, VCC– (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –18 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 V Input voltage, VI (any input) (see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15 V Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA Output current, IO (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±40 mA Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA Total current out of VCC– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA Duration of short-circuit current at (or below) 25°C (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Storage temperature range,Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1 /16 inch) from case for 10 seconds: D, N, P, or PW package . . . . . . . . . 260°C Lead temperature 1,6 mm (1 /16 inch) from case for 60 seconds: J or JG package . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC–. 2. Differential voltages are at IN+ with respect to IN–. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. 4. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D 950 mW 7.6 mW/°C 608 mW 494 mW 190 mW FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW J 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW N 1150 mW 9.2 mW/°C 736 mW 598 mW 230 mW P 1100 mW 8.0 mW/°C 640 mW 520 mW 200 mW PW 700 mW 5.6 mW/°C 448 mW N/A N/A recommended operating conditions Supply voltage, VCC± Common mode input voltage, Common-mode voltage VIC VCC± = ±5 V VCC± = ±15 V Operating free-air temperature, TA 8 POST OFFICE BOX 655303 C SUFFIX I SUFFIX M SUFFIX MIN MAX MIN MAX MIN MAX ±5 ±15 ±5 ±15 ±5 ±15 –1.5 4 –1.5 4 –1.5 4 –11.5 14 –11.5 14 –11.5 14 0 70 –40 85 –55 125 • DALLAS, TEXAS 75265 UNIT V V °C TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL031C and TL031AC electrical characteristics at specified free-air temperature TL031C, TL031AC PARAMETER TL031C VIO Input offset voltage TL031AC αVIO Temperature coefficient of input offset voltage TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 0.54 0.5 TEST CONDITIONS 0 VO = 0, VIC = 0 0, RS = 50 Ω Full range† 3.5 4.5 25°C 0.41 Full range† 0.34 3.8 0.8 25°C to 70°C 71 7.1 59 5.9 TL031AC 25°C to 70°C 71 7.1 59 5.9 25°C 0.04 0.04 µV/°C 25 µV/mo IIO Input offset current VO = 0,, VIC = 0,, See Figure 5 25°C 1 100 1 100 70°C 9 200 12 200 IIB Input bias current VO = 0,, VIC = 0,, See Figure 5 25°C 2 200 2 200 70°C 50 400 80 400 VICR VOM+ VOM– AVD 25°C –1.5 to 4 Full range† –1.5 to .4 Common-mode input voltage range Maximum M i positive iti peak k out ut voltage swing output Maximum M i negative ti peak k out ut voltage swing output Large-signal L i l diff differential ti l voltage am amplification lification§ –3.4 to 5.4 pA V 3 4.3 13 14 0°C 3 4.2 13 14 70°C 3 4.3 13 14 25°C –3 –4.2 –12.5 –13.9 0°C –3 –4.1 –12.5 –13.9 70°C –3 –4.2 –12.5 –14 25°C 4 12 5 14.3 0°C 3 11.1 4 13.5 70°C 4 5 15.2 1012 Ω 4 pF RL = 10 kΩ RL = 10 kΩ ri Input resistance 25°C ci Input capacitance 25°C 5 CMRR Common-mode C d rejection ratio Supply-voltage Su ly voltage rejection ratio ( VCC±/∆V (∆V / VIO) –13.4 to 15.4 –11.5 to 14 13.3 1012 kSVR –11.5 to 14 pA 25°C RL = 10 kΩ VIC = VICRmin, i VO = 0, 0 RS = 50 Ω mV 1.8 TL031C Input offset voltage long-term drift‡ 1.5 2.5 2.8 UNIT 25°C 70 87 75 94 0°C 70 87 75 94 70°C 70 87 75 94 25°C 75 96 75 96 0°C 75 96 75 96 70°C 75 96 75 96 VO = 0, RS = 50 Ω V V V/mV dB dB † Full range is 0°C to 70°C. ‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL031C and TL031AC electrical characteristics at specified free-air temperature (continued) TL031C, TL031AC PARAMETER PD ICC Total power dissipation Supply current TEST CONDITIONS VO = 0, VO = 0, No load No load TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 1.9 2.5 6.5 8.4 0°C 1.8 2.5 6.3 8.4 70°C 1.9 2.5 6.3 8.4 25°C 192 250 217 280 0°C 184 250 211 280 70°C 189 250 210 280 UNIT mW µA TL031C and TL031AC operating characteristics at specified free-air temperature TL031C, TL031AC PARAMETER SR+ TEST CONDITIONS Positive P iti slew l rate t att unity gain† RL = 10 kΩ,, See Figure 1 SR– tr tf Negative N ti slew l rate t att unity gain† Rise time Fall time Overshoot factor TL031C Vn CL = 100 pF,, Equivalent q input noise voltage 25°C 2 1.5 2.9 0°C 1.8 1 2.6 70°C 2.2 1.5 3.2 25°C 3.9 1.5 5.1 0°C 3.7 1.5 5 1.5 4 25°C 138 132 0°C 134 127 See Figures 1 and 2 70°C 150 142 VI(PP) = ±10 mV, RL = 10 kΩ, CL = 100 pF, 25°C 138 132 0°C 134 127 See Figure 1 70°C 150 142 VI(PP) = ±10 mV, CL = 100 pF, CL = 100 pF, 25°C 11% 5% 0°C 10% 4% See Figures 1 and 2 70°C 12% 6% 61 61 41 41 61 61 41 41 25°C 0.003 0.003 25°C 1 1.1 0°C 1 1.1 70°C 1 1 25°C 61° 65° 0°C 61° 65° 70°C 60° 64° f = 10 Hz RS = 20 Ω,, See Figure 3 f = 1 kHz f = 10 Hz f = 1 kHz Equivalent input noise current f = 1 kHz B1 Unity-gain bandwidth VI = 10 mV, V CL = 25 pF F, RL = 10 kΩ, kΩ See Figure 4 VI = 10 mV, mV CL = 25 pF, F, RL = 10 kΩ, See Figure 4 25°C 25°C † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. 10 VCC± = ±15 V MIN TYP MAX 70°C In Phase margin at unity gain VCC± = ±5 V MIN TYP MAX VI(PP) = ±10 mV, RL = 10 kΩ, CL = 100 pF, TL031AC φm TA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT V/µs V/µs 5 ns ns nV/√Hz 60 pA/√Hz MHz TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL031I and TL031AI electrical characteristics at specified free-air temperature TL031I, TL031AI PARAMETER TEST CONDITIONS TL031I VIO Input offset voltage TL031AI αVIO Temperature coefficient of input offset voltage VO = 0, 0 VIC = 0 0, RS = 50 Ω TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 0.54 0.5 Full range† 3.5 5.3 25°C 0.41 Full range† 0.34 4.6 0.8 mV 2.6 TL031I 25°C to 85°C 65 6.5 TL031AI 25°C to 85°C 65 6.5 62 6.2 25°C 0 04 0.04 0 04 0.04 Input offset voltage g long-term drift‡ 1.5 3.3 2.8 UNIT 62 6.2 µV/°C 25 µV/mo IIO Input offset current VO = 0, VIC = 0, See Figure 5 25°C 1 100 1 100 pA 85°C 0.02 0.45 0.02 0.45 nA IIB Input bias current VO = 0, VIC = 0, See Figure 5 25°C 2 200 2 200 pA 85°C 0.2 0.9 0.2 0.9 nA VICR VOM+ VOM– AVD 25°C –1.5 to 4 Full range† –1.5 to 4 Common-mode input voltage range Maximum M i positive iti peak k output out ut voltage swing Maximum M i negative ti peak k out ut voltage swing output L i l diff ti l Large-signal differential voltage am lification§ amplification RL = 10 kΩ RL = 10 kΩ RL = 10 kΩ –3.4 to 5.4 3 4.3 13 14 –40°C 3 4.1 13 14 85°C 3 4.4 13 14 25°C –3 –4.2 –12.5 –13.9 –40°C –3 –4.1 –12.5 –13.8 85°C –3 –4.2 –12.5 –14 25°C 4 12 5 14.3 –40°C 3 8.4 4 11.6 85°C 4 5 15.3 1012 Ω 4 pF Input resistance 25°C ci Input capacitance 25°C 5 CMRR Common-mode C d rejection ratio kSVR Su ly voltage Supply-voltage rejection ratio (∆VCC±/∆VIO) VO = 0, 25°C 70 87 75 94 –40°C 70 87 75 94 85°C 70 87 75 94 25°C 75 96 75 96 –40°C 75 96 75 96 85°C 75 96 75 96 RS = 50 Ω RS = 50 Ω V 25°C ri VO = 0, –13.4 to 15.4 –11.5 to 14 13.5 1012 VIC = VICRmin min, –11.5 to 14 V V V/mV dB dB † Full range is –40°C to 85°C. ‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL031I and TL031AI electrical characteristics at specified free-air temperature (continued) TL031I, TL031AI PARAMETER PD ICC Total power dissipation Supply current TEST CONDITIONS VO = 0, VO = 0, No load No load VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 1.9 2.5 6.5 8.4 –40°C 1.4 2.5 5.4 8.4 85°C 1.9 2.5 6.2 8.4 25°C 192 250 217 280 –40°C 144 250 181 280 85°C 189 250 207 280 TA UNIT mW µA TL031I and TL031AI operating characteristics at specified free-air temperature TL031I, TL031AI PARAMETER SR+ TEST CONDITIONS Positive P iti slew l rate t att unity gain† RL = 10 kΩ See Figure 1 SR– tr tf CL = 100 pF,, N ti slew l t att unity it Negative rate gain† VI(PP) = ±10 mV, CL = 100 pF, RL = 10 kΩ, Rise time Fall time Overshoot factor Vn In B1 φm TL031I 25°C 2 1.5 2.9 –40°C 1.6 1 2.1 85°C 2.3 1.5 3.3 25°C 3.9 1.5 5.1 –40°C 3.3 1.5 4.8 85°C 4.1 1.5 4.9 25°C 138 132 132 123 85°C 154 146 VI(PP) = ±10 mV, RL = 10 kΩ, CL = 100 pF, 25°C 138 132 –40°C 132 123 See Figure 1 85°C 154 146 VI(PP) = ±10 mV, CL = 100 pF, RL = 10 kΩ, 25°C 11% 5% –40°C 12% 5% 85°C 13% 7% 61 61 41 41 61 61 41 41 25°C 0 003 0.003 0 003 0.003 25°C 1 1.1 –40°C 1 1.1 85°C 0.9 1 25°C 61° 65° –40°C 60° 65° 85°C 60° 64° f = 10 Hz RS = 20 Ω,, See Figure 3 f = 1 kHz f = 10 Hz f = 1 kHz Equivalent q input noise current f = 1 kHz Unity-gain bandwidth VI = 10 mV V CL = 25 pF F, RL = 10 kΩ, kΩ See Figure 4 VI = 10 mV, mV CL = 25 pF F RL = 10 kΩ, kΩ See Figure 4 25°C 25°C † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. 12 VCC± = ±15 V MIN TYP MAX –40°C TL031AI Phase margin at unity gain VCC± = ±5 V MIN TYP MAX See Figures 1 and 2 See Figures 1 and 2 Equivalent input noise voltage TA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT V/µs V/µs ns ns nV/√Hz 60 pA/√Hz MHz TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL031M and TL031AM electrical characteristics at specified free-air temperature TL031M, TL031AM PARAMETER TEST CONDITIONS TL031M VIO Input offset voltage TL031AM αVIO Temperature coefficient of VO = 0 0, VIC = 0, RS = 50 Ω input offset voltage TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 0.54 0.5 25°C Full range† 3.5 6.5 25°C 0.41 Full range† 0.34 5.8 0.8 mV 3.8 TL031M 25°C to 125°C 5.1 4.3 TL031AM 25°C to 125°C 5.1 4.3 25°C 0.04 0.04 Input offset voltage long-term drift‡ 1.5 4.5 2.8 UNIT µV/°C µV/mo IIO Input offset current VO = 0, VIC = 0, See Figure 5 25°C 1 100 1 100 pA 125°C 0.2 10 0.2 10 nA IIB Input bias current VO = 0, VIC = 0, See Figure 5 25°C 2 200 2 200 pA 125°C 7 20 8 20 nA 25°C VICR Common-mode input voltage range Full range† VOM+ VOM– AVD Maximum M i positive iti peak k output out ut voltage swing Maximum M i negative ti peak k out ut voltage swing output L i l diff ti l Large-signal differential voltage am lification§ amplification RL = 10 kΩ RL = 10 kΩ RL = 10 kΩ 4.3 13 14 4.1 13 14 3 4.4 13 14 25°C –3 –4.2 –12.5 –13.9 –55°C –3 –4 –12.5 –13.8 125°C –3 –4.3 –12.5 –14 25°C 4 12 5 14.3 –55°C 3 7.1 4 10.4 V/mV 125°C 3 12.9 1012 4 15 1012 Ω 4 pF 25°C PD Total power dissipation VO = 0, VO = 0, RS = 50 Ω No load V 125°C Input capacitance kSVR V –11.5 to 14 3 ci Su ly voltage Supply-voltage rejection ratio (∆VCC±/∆VIO) –1.5 to 4 –13.4 to 15.4 3 25°C VIC = VICRmin, i VO = 0 0, RS = 50 Ω –11.5 to 14 25°C Input resistance Common-mode C d rejection ratio –3.4 to 5.4 –55°C ri CMR R –1.5 to 4 5 25°C 70 87 75 94 –55°C 70 87 70 94 125°C 70 87 70 94 25°C 75 96 75 96 –55°C 75 96 75 95 125°C 75 96 75 96 V dB dB 25°C 1.9 2.5 6.5 8.4 –55°C 1.1 2.5 4.7 8.4 125°C 1.8 2.5 5.8 8.4 mW † Full range is –55°C to 125°C. ‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL031M and TL031AM electrical characteristics at specified free-air temperature (continued) TL031M, TL031AM PARAMETER ICC TEST CONDITIONS Supply current VO = 0, No load TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 192 250 217 280 –55°C 114 250 156 280 125°C 178 250 197 280 UNIT µA TL031M and TL031AM operating characteristics at specified free-air temperature TL031M, TL031AM PARAMETER SR+ TEST CONDITIONS Positive P iti slew l rate t att unity gain† RL = 10 kΩ,, See Figure 1 SR– tr tf Negative N ti slew l rate t att unity gain† Rise time Fall time Overshoot factor TL031M Vn Equivalent q input noise voltage 25°C 2 1.5 2.9 –55°C 1.4 1 1.9 125°C 2.4 1 3.5 25°C 3.9 1.5 5.1 –55°C 3.2 1 4.6 125°C 4.1 1 132 –55°C 142 123 See Figures 1 and 2 125°C 166 158 VI(PP) = ±10 mV, RL = 10 kΩ, CL = 100 pF, 25°C 138 132 –55°C 142 123 See Figure 1 125°C 166 158 VI(PP) = ±10 mV, RL = 10 kΩ, CL = 100 pF, 25°C 11% 5% –55°C 16% 6% See Figures 1 and 2 125°C 14% 8% 61 61 41 41 61 61 41 41 25°C 0 003 0.003 0 003 0.003 25°C 1 1.1 –55°C 1 1.1 f = 10 Hz RS = 20 Ω,, See Figure 3 f = 1 kHz f = 10 Hz f = 1 kHz f = 1 kHz B1 Unity-gain bandwidth V VI = 10 mV, CL = 25 pF F, V VI = 10 mV, CL = 25 pF F, kΩ RL = 10 kΩ, See Figure 4 RL = 10 kΩ, See Figure 4 25°C 25°C 125°C 0.9 0.9 25°C 61° 65° –55°C 57° 64° 125°C 59° 62° † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT V/µs V/µs 4.7 138 Equivalent q input noise current 14 VCC± = ±15 V MIN TYP MAX 25°C In Phase margin at unity gain VCC± = ±5 V MIN TYP MAX VI(PP) = ±10 mV, RL = 10 kΩ, CL = 100 pF, TL031AM φm CL = 100 pF,, TA ns ns nV/√Hz pA/√Hz MHz TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL031Y electrical characteristics, TA = 25°C TL031Y PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO IIB Input offset current Input bias current TEST CONDITIONS VO = 0 0, RS = 50 Ω VIC = 0 0, VO = 0,, See Figure 5 VIC = 0,, VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX UNIT 0.54 0.5 mV 71 7.1 59 5.9 µV/°C 1 1 pA 2 2 pA –3.4 to 5.4 –13.4 to 15.4 V VICR Common-mode input voltage range VOM+ Maximum positive peak output voltage swing RL = 10 kΩ 4.3 14 V VOM– Maximum negative peak output voltage swing RL = 10 kΩ –4.2 –13.9 V AVD Large-signal differential voltage amplification† RL = 10 kΩ 12 14.3 V/mV ri Input resistance 1012 1012 Ω ci Input capacitance 5 4 pF VO = 0, 87 94 dB 96 96 dB 1.9 6.5 mW 192 217 µA VCC± = ±5 V TYP MAX VCC± = ±15 V MIN TYP MAX UNIT 2 2.9 V/µs 3.9 5.1 V/µs CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 Ω kSVR Supply-voltage rejection ratio (∆VCC±/∆VIO) VO = 0, RS = 50 Ω VO = 0 0, No load PD ICC Total power dissipation Supply current † At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V. TL031Y operating characteristics, TA = 25°C TL031Y PARAMETER TEST CONDITIONS MIN SR+ Positive slew rate at unity gain‡ SR– Negative slew rate at unity gain‡ tr tf Rise time RL = 10 kΩ, CL = 100 pF, pF See Figure 1 RL = 10 kΩ, CL = 100 pF, pF See Figure 1 VI(PP) = ±10 mV, RL = 10 kΩ, CL = 100 pF, 138 132 ns Fall time 138 132 ns Overshoot factor See Figures 1 and 2 Vn Eq i alent input Equivalent inp t noise voltage oltage RS = 20 Ω,, See Figure 3 In Equivalent input noise current f = 1 kHz Unity-gain bandwidth VI = 10 mV, CL = 25 pF, B1 11% 5% f = 10 Hz 61 61 f = 1 kHz 41 41 0.003 0.003 1 1.1 61° 65° RL = 10 kΩ, See Figure 4 VI = 10 mV, RL = 10 kΩ, CL = 25 pF, See Figure 4 ‡ For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. φm Phase margin at unity gain POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 nV/√Hz pA/√Hz MHz 15 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL032C and TL032AC electrical characteristics at specified free-air temperature TL032C, TL032AC PARAMETER TEST CONDITIONS TL032C VIO Input offset voltage TL032AC αVIO Temperature coefficient of input offset voltage VO = 0 0, VIC = 0, RS = 50 Ω TA 25°C Full range† 0.04 0.04 25°C 1 100 1 100 70°C 9 200 12 200 25°C 2 200 2 200 70°C 50 400 80 400 Common-mode input voltage range Full range† RL = 10 kΩ RL = 10 kΩ RL = 10 kΩ –3.4 to 5.4 –1.5 to 4 –11.5 to 14 –13.4 to 15.4 –11.5 to 14 3 4.3 13 14 3 4.2 13 14 70°C 3 4.3 13 14 25°C –3 –4.2 –12.5 –13.9 25 µV/mo pA pA V V V 0°C –3 –4.1 –12.5 –13.9 70°C –3 –4.2 –12.5 –14 25°C 4 12 5 14.3 0°C 3 11.1 4 13.5 V/mV 70°C 4 13.3 1012 5 15.2 1012 Ω 14 pF 25°C ci Input capacitance 25°C kSVR –1.5 to 4 0°C Input resistance VCC± = ±5 V to ±15 V, V VO = 0, RS = 50 Ω µV/°C 25°C ri VIC = VICRmin, i VO = 0 0, RS = 50 Ω mV 1.8 25°C 25°C Su ly voltage Supply-voltage rejection ratio ( VCC±//∆V (∆V VIO) 3.8 0.8 10.8 VIC = 0,, Common-mode C d rejection ratio 0.39 11.5 VO = 0,, See Figure 5 CMRR 2.8 25°C to 70°C Input bias current AVD 2.5 TL032AC IIB L i l diff ti l Large-signal differential voltage am lification§ amplification 0.53 UNIT 1.5 10.8 VIC = 0,, Maximum negative peak output voltage swing 4.5 11.5 VO = 0,, See Figure 5 VOM– 0.57 3.5 25°C to 70°C Input offset current Maximum M i positive iti peak k output out ut voltage swing 0.69 25°C TL032C IIO VOM+ VCC± = ±15 V MIN TYP MAX Full range† Input offset voltage long-term drift‡ VICR VCC± = ±5 V MIN TYP MAX 5 25°C 70 87 75 94 0°C 70 87 75 94 70°C 70 87 75 94 25°C 75 96 75 96 0°C 75 96 75 96 70°C 75 96 75 96 dB dB † Full range is 0°C to 70°C. ‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At VCC± = ±5 V, VO = 2.3 V; at VCC± = ±15 V, VO = ±10 V. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL032C and TL032AC electrical characteristics at specified free-air temperature (continued) TL032C, TL032AC PARAMETER TEST CONDITIONS Total T t l power di dissipation i ti (two amplifiers) am lifiers) PD VO = 0, No load ICC Supply y current (two amplifiers) VO = 0 0, VO1/VO2 Crosstalk attenuation AVD = 100 dB No load TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 3.8 5 13 17 0°C 3.7 5 12.7 17 70°C 3.8 5 12.6 17 0°C 368 500 422 560 70°C 378 500 420 560 25°C 120 UNIT mW µA 120 dB VCC± = ±15 V MIN TYP MAX UNIT TL032C and TL032AC operating characteristics at specified free-air temperature TL032C, TL032AC PARAMETER TEST CONDITIONS TA VCC± = ±5 V TYP MAX MIN SR+ Positive P iti slew l rate t att unity it gain† RL = 10 kΩ,, CL = 100 pF,, See Figure 1 SR– tr tf N ti slew l t att unity it Negative rate gain† Rise time VI(PP) = ±10 V, RL = 10 kΩ, CL = 100 pF, See Figures 1 and 2 Fall time Overshoot factor TL032C Vn Equivalent q input noise voltage f = 10 Hz RS = 20 Ω,, See Figure 3 TL032AC f = 1 kHz f = 10 Hz f = 1 kHz In Equivalent input noise current f = 1 kHz B1 Unity-gain bandwidth VI = 10 mV, V CL = 25 pF F, RL = 10 kΩ, kΩ See Figure 4 mV VI = 10 mV, CL = 25 pF, F, RL = 10 kΩ kΩ, See Figure 4 φm Phase margin at unity gain 25°C 12 1.5 2.9 0°C 1.8 1 2.6 70°C 2.2 1.5 3.2 25°C 3.9 1.5 5.1 0°C 3.7 1.5 5 70°C 4 1.5 5 25°C 138 132 0°C 134 127 70°C 150 142 25°C 138 132 0°C 134 127 70°C 150 142 25°C 11% 5% 0°C 10% 4% 70°C 12% 6% 49 49 41 41 49 49 25°C 25°C 41 41 25°C 0.003 0.003 25°C 1 1.1 0°C 1 1.1 70°C 1 1 25°C 61° 65° 0°C 61° 65° 70°C 60° 64° V/µs V/µs ns ns nV/√Hz √ 60 pA/√Hz MHz † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL032I and TL032AI electrical characteristics at specified free-air temperature TL032I, TL032AI PARAMETER TEST CONDITIONS TL032I VIO Input offset voltage TL032AI αVIO Temperature coefficient of input offset voltage VO = 0 0, VIC = 0, RS = 50 Ω TA Full range† 10.8 25°C 0.04 0.04 VIC = 0,, µV/mo 1 100 1 100 pA 0.02 0.45 0.02 0.45 nA 25°C 2 200 2 200 pA 85°C 0.2 0.9 0.3 0.9 nA Full range† –1.5 to 4 –3.4 to 5.4 –1.5 to 4 –11.5 to 14 –13.4 to 15.4 –11.5 to 14 25°C 3 4.3 13 14 –40°C 3 4.2 13 14 85°C 3 4.4 13 14 25°C –3 –4.2 –12.5 –13.9 –40°C –3 –4.1 –12.5 –13.8 85°C –3 –4.2 –12.5 –14 –40°C 3 8.4 4 11.6 85°C 4 13.5 1012 5 15.3 1012 Maximum negative peak output voltage swing RL = 10 kΩ AVD Large-signal g g differential voltage amplification§ RL = 10 kΩ ri Input resistance 25°C ci Input capacitance 25°C VCC± = ±5 V to ±15 V, V µV/°C 25 85°C Common-mode input voltage range VIC = VICRmin, i VO = 0 0, RS = 50 Ω mV 25°C 25°C RL = 10 kΩ 0.8 2.6 11.4 VO = 0,, See Figure 5 Supply-voltage Su ly voltage rejection ratio ( VCC±/∆V (∆V / VIO) 4.6 25°C to 85°C Input bias current kSVR 0.39 UNIT 1.5 3.3 2.8 TL032AI IIB Common-mode C d rejection ratio 0.53 10.8 VIC = 0,, CMRR 5.3 25°C 11.4 VO = 0,, See Figure 5 VOM– 0.57 3.5 25°C to 85°C Input offset current VOM+ 0.69 Full range† TL032I IIO M i iti peak k Maximum positive out ut voltage swing output VCC± = ±15 V MIN TYP MAX 25°C Input offset voltage long-term drift‡ VICR VCC± = ±5 V MIN TYP MAX 5 4 25°C 70 87 75 94 –40°C 70 87 75 94 85°C 70 87 75 94 25°C 75 96 75 96 –40°C 75 96 75 96 V V V V/mV Ω pF dB dB VO = 0, RS = 50 Ω 85°C 75 96 75 96 † Full range is –40°C to 85°C. ‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At VCC± = ±5 V, VO = 2.3 V; at VCC± = ±15 V, VO = ±10 V. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL032I and TL032AI electrical characteristics at specified free-air temperature (continued) TL032I, TL032AI PARAMETER TEST CONDITIONS Total T t l power di dissipation i ti (two amplifiers) am lifiers) PD Supply S l currentt (two amplifiers) am lifiers) ICC VO1/VO2 VO = 0, VO = 0, Crosstalk attenuation No load No load AVD = 100 dB TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 3.8 5 13 17 –40°C 2.9 5 10.9 17 85°C 3.7 5 12.4 17 25°C 384 500 434 560 –40°C 288 500 362 560 85°C 372 500 414 560 25°C 120 UNIT mW µA 120 dB VCC± = ±15 V MIN TYP MAX UNIT TL032I and TL032AI operating characteristics at specified free-air temperature TL032I, TL032AI PARAMETER TEST CONDITIONS TA VCC± = ±5 V TYP MAX MIN SR+ Positive P iti slew l rate t att unity it gain† RL = 10 kΩ, kΩ CL = 100 pF SR– tr tf Negative N ti slew l rate t att unity it gain† VI(PP) = ±10 V, RL = 10 kΩ, CL = 100 pF, See Figures 1 and 2 Rise time VI(PP) = ±10 V, RL = 10 kΩ, CL = 100 pF, See Figure 1 Fall time VI(PP) = ±10 V, RL = 10 kΩ, CL = 100 pF, See Figures 1 and 2 Overshoot factor TL032I Vn Equivalent q input noise voltage f = 10 Hz RS = 20 Ω,, See Figure 3 TL032AI In f = 1 kHz B1 Unity-gain bandwidth VI = 10 mV, V CL = 25 pF F, Phase margin at unity gain f = 10 Hz f = 1 kHz Equivalent input noise current φm f = 1 kHz VI = 10 mV, mV CL = 25 pF, F, RL = 10 kΩ, kΩ See Figure 4 RL = 10 kΩ kΩ, See Figure 4 25°C 2 1.5 2.9 –40°C 1.6 1 2.1 85°C 2.3 1.5 3.3 25°C 3.9 1.5 5.1 –40°C 3.3 1.5 4.8 85°C 4.1 1.5 4.9 25°C 138 132 –40°C 132 123 85°C 154 146 25°C 138 132 –40°C 132 123 85°C 154 146 25°C 11% 5% –40°C 12% 5% 85°C 13% 7% 49 49 41 41 49 49 41 41 25°C 0.003 0.003 25°C 1 1.1 –40°C 1 1.1 25°C 25°C 85°C 0.9 1 25°C 61° 65° –40°C 61° 65° 85°C 60° 64° V/µs V/µs ns ns nV/√Hz √ 60 pA/√Hz MHz † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL032M and TL032AM electrical characteristics at specified free-air temperature TL032M, TL032AM PARAMETER TEST CONDITIONS TL032M VIO Input offset voltage TL032AM αVIO Temperature coefficient of input offset voltage VO = 0 0, VIC = 0, RS = 50 Ω TA Full range† 5.8 9.7 9.7 25°C 0.04 0.04 VO = 0,, See Figure 5 VIC = 0,, 1 100 1 100 pA 10 0.2 10 nA 25°C 2 200 2 200 pA 125°C 7 20 8 20 nA –1.5 to 4 –3.4 to 5.4 –1.5 to 4 3 4.3 13 14 –55°C 3 4.1 13 14 125°C 3 4.4 13 14 25°C –3 –4.2 –12.5 –13.9 –55°C –3 –4 –12.5 –13.8 125°C –3 –4.3 –12.5 –14 V V 25°C 4 12 5 14.3 3 7.1 4 10.4 125°C 3 4 15 1012 Ω 4 pF Input resistance 25°C Input capacitance 25°C 5 CMRR C d rejection j ti Common-mode ratio kSVR V –55°C ci VCC± = ±5 V to ±15 V, V VO = 0, RS = 50 Ω –13.4 to 15.4 25°C ri Su ly voltage Supply-voltage rejection ratio ( VCC±/∆V (∆V / VIO) –11.5 to 14 –11.5 to 14 12.9 1012 i VIC = VICRmin, VO = 0 0, RS = 50 Ω µV/mo 0.2 Full range† RL = 10 kΩ µV/°C 25°C Common-mode input voltage range RL = 10 kΩ mV 125°C 25°C RL = 10 kΩ 0.8 3.8 25°C to 125°C Input bias current Large-signal L i l diff differential ti l voltage am lification§ amplification 0.39 UNIT 1.5 4.5 2.8 TL032AM IIB AVD 0.53 9.7 VIC = 0,, VOM– 6.5 25°C 9.7 VO = 0,, See Figure 5 Maximum M i negative ti peak k out ut voltage swing output 0.57 3.5 25°C to 125°C Input offset current VOM+ 0.69 Full range† TL032M IIO M i iti peak k Maximum positive out ut voltage swing output VCC± = ±15 V MIN TYP MAX 25°C Input offset voltage long-term drift‡ VICR VCC± = ±5 V MIN TYP MAX 25°C 70 87 75 94 –55°C 70 87 70 94 125°C 70 87 70 94 25°C 75 96 75 96 –55°C 75 95 75 95 125°C 75 96 75 96 V/mV dB dB † Full range is –55°C to 125°C. ‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At VCC± = ±5 V, VO = 2.3 V; at VCC± = ±15 V, VO = ±10 V. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL032M and TL032AM electrical characteristics at specified free-air temperature (continued) TL032M, TL032AM PARAMETER Total T t l power di dissipation i ti (two amplifiers) am lifiers) PD Supply S l currentt (two amplifiers) am lifiers) ICC VO1/VO2 Crosstalk attenuation TEST CONDITIONS VO = 0, No load VO = 0, No load AVD = 100 dB TA VCC± = ±5 V MIN TYP MAX 25°C 3.8 5 VCC± = ±15 V MIN TYP MAX 13 17 –55°C 2.3 5 9.4 17 125°C 3.6 5 11.8 17 25°C 384 500 434 560 –55°C 228 500 312 560 125°C 356 500 394 560 25°C 120 120 UNIT mW µA dB TL032M and TL032AM operating characteristics at specified free-air temperature TL032M, TL032AM PARAMETER TEST CONDITIONS TA VCC± = ±5 V TYP MAX MIN SR+ SR– tr tf Positive P iti slew l rate t att unity it gain† Negative N ti slew l rate t att unity it gain† Rise time VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF, F, See Figures 1 and 2 Fall time VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF, F, See Figure 1 Overshoot factor Vn In B1 φm RL = 10 kΩ, CL = 100 pF, pF See and Figure 1 Equivalent input noise voltage TL032M VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF, F, See Figures 1 and 2 f = 10 Hz RS = 20 Ω,, See Figure 3 TL032AM f = 1 kHz f = 10 Hz f = 1 kHz Equivalent input noise current f = 1 kHz Unity-gain bandwidth VI = 10 mV, V CL = 25 pF F, RL = 10 kΩ, kΩ See Figure 4 VI = 10 mV, mV CL = 25 pF, F, RL = 10 kΩ, kΩ See Figure 4 Phase margin at unity gain VCC± = ±15 V MIN TYP MAX 25°C 2 1.5 2.9 –55°C 1.4 1 1.9 125°C 2.4 1 3.5 25°C 3.9 1.5 5.1 –55°C 3.2 1 4.6 125°C 4.1 1 4.7 25°C 138 132 –55°C 142 123 125°C 166 58 25°C 138 132 –55°C 142 123 125°C 166 158 25°C 11% 5% –55°C 16% 6% 125°C 14% 8% 49 49 41 41 49 49 41 41 25°C 0.003 0.003 25°C 1 1.1 –55°C 1 1.1 125°C 0.9 0.9 25°C 61° 65° –55°C 57° 64° 125°C 59° 62° 25°C 25°C UNIT V/µs V/µs ns ns nV/√Hz √ pA/√Hz MHz † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL032Y electrical characteristics, TA = 25°C TL032Y PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO TEST CONDITIONS VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX UNIT 0.69 0.57 mV 11.5 10.8 µV/°C VO = 0 0, RS = 50 Ω VIC = 0 0, Input offset current VO = 0, See Figure 5 VIC = 0, 1 1 pA IIB Input bias current VO = 0, See Figure 5 VIC = 0, 2 2 pA VICR Common-mode input voltage range –3.4 to 5.4 –13.4 to 15.4 V VOM+ Maximum positive peak output voltage swing RL = 10 kΩ 4.3 14 V VOM– Maximum negative peak output voltage swing RL = 10 kΩ –4.2 –13.9 V AVD Large-signal differential voltage amplification† RL = 10 kΩ 12 14.3 V/mV ri Input resistance 1012 1012 Ω ci Input capacitance 5 14 pF CMRR Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω 87 94 dB kSVR Supply-voltage rejection ratio (∆VCC±/∆VIO) VCC± = ±5 V to ±15 V, VO = 0, RS = 50 Ω 96 96 dB PD Total power dissipation (two amplifiers) VO = 0, 3.8 13 mW 120 120 dB VCC± = ±15 V MIN TYP MAX UNIT No load VO1/VO2 Crosstalk attenuation AVD = 100 dB † At VCC± = ±5 V, VO = 2.3 V; at VCC± = ±15 V, VO = ±10 V. TL032Y operating characteristics, TA = 25°C TL032Y PARAMETER TEST CONDITIONS VCC± = ±5 V MIN TYP MAX SR+ Positive slew rate at unity gain† RL = 10 kΩ, 12 2.9 V/µs SR– Negative slew rate at unity gain† See Figure 1 and Note 8 3.9 5.1 V/µs tr tf Rise time VI(PP) = ±10 V, RL = 10 kΩ,, CL = 100 pF, 138 132 ns Fall time 138 132 ns Overshoot factor See Figures 1 and 2 Vn Equivalent input noise voltage RS = 20 Ω,, See Figure 3 In Equivalent input noise current f = 1 kHz Unity-gain bandwidth VI = 10 mV, CL = 25 pF, B1 CL = 100 pF, 11% 5% f = 10 Hz 49 49 f = 1 kHz 41 41 0.003 0.003 1 1.1 61° 65° RL = 10 kΩ, See Figure 4 VI = 10 mV, RL = 10 kΩ, CL = 25 pF, See Figure 4 † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. φm 22 Phase margin at unity gain POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 nV/√Hz pA/√Hz MHz TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL034C and TL034AC electrical characteristics at specified free-air temperature TL034C, TL034AC PARAMETER TEST CONDITIONS TL034C VIO Input offset voltage VO = 0 0, VIC = 0, RS = 50 Ω αVIO Temperature coefficient of input offset voltage TL034AC TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 0.91 0.79 25°C Full range† 6 8.2 25°C 0.7 Full range† 0.58 5.7 1.5 25°C to 70°C 11.6 12 TL034AC 25°C to 70°C 11.6 12 25°C 0.04 0.04 µV/°C 25 µV/mo IIO Input offset current VO = 0,, VIC = 0,, See Figure 5 25°C 1 100 1 100 70°C 9 200 12 200 IIB Input bias current VO = 0,, VIC = 0,, See Figure 5 25°C 2 200 2 200 70°C 50 400 80 400 25°C VICR Common-mode input voltage range Full range† VOM+ VOM– AVD M i iti peak k Maximum positive out ut voltage swing output Maximum M i negative ti peak k out ut voltage swing output Large-signal L i l diff differential ti l voltage am lification§ amplification RL = 10 kΩ RL = 10 kΩ RL = 10 kΩ 0°C 3 4.2 13 14 70°C 3 4.3 13 14 25°C –3 –4.2 –12.5 –13.9 pA pA V V V 0°C –3 –4.1 –12.5 –13.9 70°C –3 –4.2 –12.5 –14 25°C 4 12 5 14.3 0°C 3 11.1 4 13.5 V/mV 70°C 4 13.3 1012 5 15.2 1012 Ω 14 pF 25°C VO = 0, RS = 50 Ω –11.5 to 14 14 Input capacitance kSVR –13.4 to 15.4 13 ci Su ly voltage Supply-voltage rejection ratio (∆VCC±/∆VIO) –1.5 to 4 –11.5 to 14 4.3 25°C VIC = VICRmin, VO = 0, RS = 50 Ω –3.4 to 5.4 3 Input resistance C d Common-mode rejection ratio –1.5 to 4 25°C ri CMRR mV 3.7 TL034C Input offset voltage long-term drift‡ 4 6.2 3.5 UNIT 5 25°C 70 87 75 94 0°C 70 87 75 94 70°C 70 87 75 94 25°C 75 96 75 96 0°C 75 96 75 96 70°C 75 96 75 96 dB dB † Full range is 0°C to 70°C. ‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL034C and TL034AC electrical characteristics at specified free-air temperature (continued) TL034C, TL034AC PARAMETER TEST CONDITIONS Total T t l power di dissipation i ti (two amplifiers) am lifiers) PD ICC VO = 0, No load Supply current (four amplifiers) VO1/VO2 Crosstalk attenuation VO = 0, No load AVD = 100 TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 7.7 10 26 34 0°C 7.4 10 25.3 34 70°C 7.6 10 25.2 34 25°C 0.77 1 0.87 1.12 0°C 0.74 1 0.85 1.12 70°C 0.76 1 0.84 1.12 25°C 120 UNIT mW mA 120 dB VCC± = ±15 V MIN TYP MAX UNIT TL034C and TL034AC operating characteristics at specified free-air temperature TL034C, TL034AC PARAMETER TEST CONDITIONS TA VCC± = ±5 V TYP MAX MIN SR+ SR– tr tf Positive P iti slew l rate t att unity it gain† Negative N ti slew l rate t att unity it gain† 1.5 2.9 1.8 1 2.6 70°C 2.2 1.5 3.2 25°C 3.9 1.5 5.1 0°C 3.7 1.5 5 4 1.5 5 25°C 138 132 Rise time VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF, F, See Figures 1 and 2 0°C 134 127 70°C 150 142 25°C 138 132 Fall time VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF, F, See Figure 1 0°C 134 127 70°C 150 142 VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF, F, See Figures 1 and 2 25°C 11% 5% 0°C 10% 4% 70°C 12% 6% 83 83 43 43 83 83 TL034C Equivalent q input noise voltage f = 10 Hz RS = 20 Ω,, See Figure 3 TL034AC f = 1 kHz f = 10 Hz f = 1 kHz In Equivalent input noise current f = 1 kHz B1 Unity-gain bandwidth VI = 10 mV, V RL = 10 kΩ, kΩ CL = 25 pF F, See Figure 4 φm 2 0°C 70°C Overshoot factor Vn RL = 10 kΩ, CL = 100 pF pF, See Figure 1 25°C Phase margin at unity gain VI = 10 mV, V RL = 10 kΩ, kΩ CL = 25 pF F, See Figure 4 25°C 25°C 43 43 25°C 0.003 0.003 25°C 1 1.1 0°C 1 1.1 70°C 1 1 25°C 61° 65° 0°C 61° 65° 70°C 60° 64° † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V/µs V/µs ns ns nV/√Hz √ 60 pA/√Hz MHz TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL034I and TL034AI electrical characteristics at specified free-air temperature TL034I, TL034AI PARAMETER TEST CONDITIONS TL034I VIO Input offset voltage 0 VO = 0, VIC = 0, RS = 50 Ω αVIO Temperature coefficient of input offset voltage TL034AI TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 0.91 0.79 25°C Full range† 3.6 9.3 25°C 0.7 Full range† 0.58 6.8 1.5 mV 4.8 TL034I 25°C to 85°C 11.5 11.6 TL034AI 25°C to 85°C 11.5 11.6 25°C 0.04 0.04 Input offset voltage long-term drift‡ 4 7.3 3.5 UNIT µV/°C 25 µV/mo IIO Input offset current VO = 0,, VIC = 0,, See Figure 5 25°C 1 100 1 100 pA 85°C 0.02 0.45 0.02 0.45 nA IIB Input bias current VO = 0,, VIC = 0,, See Figure 5 25°C 2 200 2 200 pA 85°C 0.2 0.9 0.3 0.9 nA 25°C VICR Common-mode input voltage range Full range† VOM+ VOM– Maximum M i positive iti peak k output out ut voltage swing Maximum M i negative ti peak k out ut voltage swing output RL = 10 kΩ RL = 10 kΩ 14 –40°C 3 4.1 13 14 85°C 3 4.4 13 14 25°C –3 –4.2 –12.5 –13.9 –40°C –3 –4.1 –12.5 –13.8 85°C –3 –4.2 –12.5 –14 –40°C 4 12 5 14.3 85°C 3 8.4 1012 4 11.6 1012 25°C ci Input capacitance 25°C kSVR Su ly voltage Supply-voltage rejection ratio (∆VCC±/ ∆VIO) VO = 0, RS = 50 Ω –11.5 to 14 13 Input resistance VIC = VICRmin, VO = 0, RS = 50 Ω –13.4 to 15.4 4.3 ri Common-mode C d rejection ratio –1.5 to 4 –11.5 to 14 3 Large-signal differential g g voltage amplification§ CMRR –3.4 to 5.4 25°C AVD RL = 10 kΩ –1.5 to 4 5 4 25°C 70 87 75 94 –40°C 70 87 75 94 85°C 70 87 75 94 25°C 75 96 75 96 –40°C 75 96 75 96 V V V V/mV Ω pF dB dB 85°C 75 96 75 96 † Full range is –40°C to 85°C. ‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL034I and TL034AI electrical characteristics at specified free-air temperature (continued) TL034I, TL034AI PARAMETER TEST CONDITIONS Total T t l power di dissipation i ti (four amplifiers) am lifiers) PD ICC VO = 0, No load Supply current (four amplifiers) VO1/VO2 VO = 0, No load Crosstalk attenuation AVD = 100 TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 7.7 10 26 34 –40°C 5.8 10 21.7 34 85°C 7.4 10 24.8 34 25°C 0.77 1 0.87 1.12 –40°C 0.58 1 0.72 1.12 85°C 0.74 1 0.83 1.12 25°C 120 UNIT mW mA 120 dB VCC± = ±15 V MIN TYP MAX UNIT TL034I and TL034AI operating characteristics TL034I, TL034AI PARAMETER TEST CONDITIONS TA VCC± = ±5 V TYP MAX MIN SR+ Positive P iti slew l rate t att unity it gain† RL = 10 kΩ,, See Figure 1 SR– tr tf CL = 100 pF,, Negative N ti slew l rate t att unity it gain† Rise time VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF F, See Figures 1 and 2 g Fall time Overshoot factor TL034I Vn Equivalent input q noise voltage f = 10 Hz RS = 20 Ω,, See Figure 3 TL034AI In f = 1 kHz B1 Unity-gain bandwidth V VI = 10 mV, CL = 25 pF F, Phase margin at unity gain f = 10 Hz f = 1 kHz Equivalent input noise current φm f = 1 kHz V VI = 10 mV, CL = 25 pF F, kΩ RL = 10 kΩ, See Figure 4 RL = 10 kΩ, kΩ See Figure 4 25°C 2 1.5 2.9 –40°C 1.6 1 2.1 85°C 2.3 1.5 3.3 25°C 3.9 1.5 5.1 –40°C 3.3 1.5 4.8 85°C 4.1 1.5 4.9 25°C 138 132 –40°C 132 123 85°C 154 146 25°C 138 132 –40°C 132 123 85°C 154 146 25°C 11% 5% –40°C 12% 5% 85°C 13% 7% 83 83 43 43 83 83 43 43 25°C 0.003 0.003 25°C 1 1.1 –40°C 1 1.1 25°C 25°C 85°C 0.9 1 25°C 61° 65° –40°C 61° 65° 85°C 60° 64° † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V/µs V/µs ns ns √ nV/√Hz 60 pA/√Hz MHz TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL034M and TL034AM electrical characteristics at specified free-air temperature TL034M, TL034AM PARAMETER TEST CONDITIONS TL034M VIO Input offset voltage 0 VO = 0, VIC = 0, RS = 50 Ω αVIO Temperature coefficient of input offset voltage TL034AM TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 0.91 3.6 0.78 4 0.7 3.5 0.58 1.5 25°C Full range† 11 25°C Full range† 9 8.5 mV 6.5 TL034M 25°C to 125°C 10.6 10.9 TL034AM 25°C to 125°C 10.6 10.9 25°C 0.04 0.04 Input offset voltage long-term drift‡ UNIT µV/°C µV/mo IIO Input offset current VO = 0,, VIC = 0,, See Figure 5 25°C 1 100 1 100 pA 125°C 0.2 10 0.2 10 nA IIB Input bias current VO = 0,, VIC = 0,, See Figure 5 25°C 2 200 2 200 pA 125°C 7 20 8 20 nA 25°C VICR Common-mode input voltage range Full range† VOM+ VOM– AVD Maximum M i positive iti peak k output out ut voltage swing Maximum M i negative ti peak k out ut voltage swing output L i l diff ti l Large-signal differential voltage am lification§ amplification RL = 10 kΩ RL = 10 kΩ RL = 10 kΩ –1.5 to 4 –3.4 to 5.4 –1.5 to 4 25°C 3 4.3 13 14 –55°C 3 4.1 13 14 125°C 3 4.4 13 14 25°C –3 –4.2 –12.5 –13.9 –55°C –3 –4 –12.5 –13.8 125°C –3 –4.3 –12.5 –14 V 4 12 5 14.3 3 7.1 4 10.4 125°C 3 4 15 1012 Ω 4 pF Input resistance 25°C Input capacitance 25°C 5 CMRR C d Common-mode rejection ratio VO = 0, RS = 50 Ω V 25°C ci Supply-voltage Su ly voltage rejection ratio (∆VCC±/∆VIO) V –55°C ri kSVR –13.4 to 15.4 –11.5 to 14 12.9 1012 i VIC = VICRmin, VO = 0, 0 RS = 50 Ω –11.5 to 14 25°C 70 87 75 94 –55°C 70 87 70 94 125°C 70 87 70 94 25°C 75 96 75 96 –55°C 75 95 75 95 125°C 75 96 75 96 V/mV dB dB † Full range is –55°C to 125°C. ‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL034M and TL034AM electrical characteristics at specified free-air temperature (continued) TL034M, TL034AM PARAMETER TEST CONDITIONS Total T t l power di dissipation i ti (two amplifiers) am lifiers) PD ICC VO = 0, Supply current (two amplifiers) VO1/VO2 Crosstalk attenuation No load VO = 0, No load AVD = 100 TA VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX 25°C 7.7 10 26 34 –55°C 4.6 12 18.7 45 125°C 7.1 12 23.6 45 25°C 0.77 1 0.87 1.12 –55°C 0.46 1.2 0.62 1.5 125°C 0.71 1.2 0.79 1.5 25°C 120 120 UNIT mW mA dB TL034M and TL034AM operating characteristics at specified free-air temperature TL034M, TL034AM PARAMETER TEST CONDITIONS TA VCC± = ±5 V TYP MAX MIN SR+ SR– tr tf Positive P iti slew l rate t att unity it gain† Negative N ti slew l rate t att unity it gain† Rise time VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF, F, See Figures 1 and 2 Fall time VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF, F, See Figure 1 VI(PP) ( ) = ±10 V, RL = 10 kΩ, kΩ CL = 100 pF, F, See Figures 1 and 2 Overshoot factor TL034M Vn RL = 10 kΩ, CL = 100 pF, pF See Figure 1 Equivalent q input noise voltage f = 10 Hz RS = 20 Ω,, See Figure 3 TL034AM In B1 φm f = 1 kHz f = 10 Hz f = 1 kHz Equivalent input noise current f = 1 kHz Unity-gain bandwidth VI = 10 mV, V CL = 25 pF F, RL = 10 kΩ, kΩ See Figure 4 V VI = 10 mV, CL = 25 pF F, RL = 10 kΩ, kΩ See Figure 4 Phase margin at unity gain 25°C 2 1.5 2.9 –55°C 1.4 1 1.9 125°C 2.4 1 3.5 25°C 3.9 1.5 5.1 –55°C 3.2 1 4.6 125°C 4.1 1 4.7 25°C 138 132 –55°C 142 123 125°C 166 58 25°C 138 132 –55°C 142 123 125°C 166 158 25°C 11% 5% –55°C 16% 6% 125°C 14% 8% 83 83 43 43 83 83 43 43 25°C 0.003 0.003 25°C 1 1.1 –55°C 1 1.1 125°C 0.9 0.9 25°C 61° 65° –55°C 57° 64° 125°C 59° 62° 25°C 25°C † For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V. 28 POST OFFICE BOX 655303 VCC± = ±15 V MIN TYP MAX • DALLAS, TEXAS 75265 UNIT V/µs V/µs ns ns nV/√Hz √ pA/√Hz MHz TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TL034Y electrical characteristics, TA = 25°C TL034Y PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO IIB TEST CONDITIONS VO = 0 0, RS = 50 Ω VIC = 0 0, Input offset current VO = 0,, See Figure 5 VIC = 0,, Input bias current VO = 0,, See Figure 5 VIC = 0,, VCC± = ±5 V MIN TYP MAX VCC± = ±15 V MIN TYP MAX UNIT 0.91 0.79 mV 11.6 12 1 1 2 2 2 2 pA µV/°C pA 7 8 nA –3.4 to 5.4 –13.4 to 15.4 V VICR Common-mode input voltage range VOM+ Maximum positive peak output voltage swing RL = 10 kΩ 4.3 14 V VOM– Maximum negative peak output voltage swing RL = 10 kΩ –4.2 –13.9 V AVD Large-signal differential voltage amplification† RL = 10 kΩ 12 14.3 V/mV ri Input resistance 1012 1012 Ω ci Input capacitance 5 4 pF CMRR Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω 87 94 dB kSVR Supply-voltage rejection ratio (∆VCC±/ ∆VIO) VO = 0, RS = 50 Ω 96 96 dB PD Total power dissipation (four amplifiers) VO = 0, No load 7.7 26 mW VO = 0, AVD = 100 No load 0.77 0.87 mA 120 120 dB VCC± = ±15 V MIN TYP MAX UNIT ICC VO1/VO2 Supply current (four amplifiers) Crosstalk attenuation † At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V. TL034Y operating characteristics, TA = 25°C TL034Y PARAMETER TEST CONDITIONS VCC± = ±5 V TYP MAX MIN SR+ Positive slew rate at unity gain SR– Negative slew rate at unity gain tr tf Rise time RL = 10 kΩ,, See Figure 1 CL = 100 pF,, Overshoot factor VI(PP) = ±10 V, RL = 10 kΩ, CL = 100 pF, See Figures 1 and 2 Vn Eq i alent input inp t noise voltage oltage Equivalent RS = 20 Ω,, See Figure 3 In Equivalent input noise current f = 1 kHz B1 Unity-gain bandwidth VI = 10 mV, CL = 25 pF, RL = 10 kΩ, See Figure 4 φm Phase margin at unity gain VI = 10 mV, CL = 25 pF, RL = 10 kΩ, See Figure 4 Fall time 2 1.5 2.9 V/µs 3.9 1.5 5.1 V/µs 138 132 ns 138 132 ns 11% 5% f = 10 kHz 83 83 f = 1 kHz 43 43 0.003 0.003 1 1.1 61° 65° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 nV/√Hz pA/√Hz MHz 29 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 PARAMETER MEASUREMENT INFORMATION VCC+ – + VI Overshoot VO 90% VCC– RL CL (see Note A) 10% tr NOTE A: CL includes fixture capacitance. Figure 1. Slew-Rate and Overshoot Test Circuit Figure 2. Rise Time and Overshoot Waveform 10 kΩ VCC+ 10 kΩ 100 Ω VO + VCC+ – VI VCC– – VO CL (see Note A) RL VCC– RS RS NOTE A: CL includes fixture capacitance. Figure 4. Unity-Gain Bandwidth and Phase-Margin Test Circuit Figure 3. Noise-Voltage Test Circuit Ground Shield VCC+ – + VCC– Picoammeters Figure 5. Input-Bias and Offset-Current Test Circuit 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 PARAMETER MEASUREMENT INFORMATION typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. input bias and offset current At the picoampere bias current level typical of the TL03x and TL03xA, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test-socket leakages easily can exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. noise With the increasing emphasis on low noise levels in many of today’s applications, the input noise voltage density is performed at f = 1 kHz, unless otherwise noted. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS Table of Graphs FIGURE Distribution of TL03x input offset voltages 6 – 11 Distribution of TL03x input offset-voltage temperature coefficients Input bias current vs Common-mode input voltage 15 Input bias current and Input offset current vs Free-air temperature 16 Common-mode input voltage range vs Supply voltage Common-mode input voltage range vs Free-air temperature Output voltage vs Differential input voltage 17 18 19, 20 Maximum peak output voltage vs Supply voltage 21 Maximum peak-to-peak output voltage vs Frequency 22 Maximum peak output voltage vs Output current 23, 24 Maximum peak output voltage vs Free-air temperature 25, 26 Large-signal differential voltage amplification vs Load resistance 27 Large-signal differential voltage amplification and Phase shift vs Frequency 28 Large-signal differential voltage amplification and Phase shift vs Free-air temperature 29 Output impedance vs Frequency with VCC 30 " "15 V = Common-mode rejection ratio vs Frequency 32 12, 13, 14 31, 32 Common-mode rejection ratio vs Free-air temperature 33 Supply-voltage rejection ratio vs Free-air temperature 34 Short-circuit output current vs Supply voltage 35 Short-circuit output current vs Time 36 Short-circuit output current vs Free-air temperature 37 Equivalent input noise voltage vs Frequency (for TL031 and TL031A) 38 Equivalent input noise voltage vs Frequency (for TL032 and TL032A) 39 Equivalent input noise voltage vs Frequency (for TL034 and TL034A) 40 Supply current vs Supply voltage (for TL031 and TL031A) 41 Supply current vs Supply voltage (for TL032 and TL032A) 42 Supply current vs Supply voltage (for TL034 and TL034A) 43 Supply current vs Free-air temperature (for TL031 and TL031A) 44 Supply current vs Free-air temperature (for TL032 and TL032A) 45 Supply current vs Free-air temperature (for TL034 and TL034A) 46 Slew rate vs Load resistance 47, 48 Slew rate vs Free-air temperature 49, 50 Overshoot factor vs Load capacitance 51 Total harmonic distortion vs Frequency 52 Unity-gain bandwidth vs Supply voltage 53 Unity-gain bandwidth vs Free-air temperature 54 Phase margin vs Supply voltage 55 Phase margin vs Load capacitance 56 Phase margin vs Free-air temperature 57 Voltage-follower small-signal pulse response vs Time 58 Voltage-follower large-signal pulse response vs Time 59, 60 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS DISTRIBUTION OF TL031 INPUT OFFSET VOLTAGE Percentage of Units – % 12 10 ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ 16 1681 Units Tested From 1 Wafer Lot VCC± = ±15 V TA = 25°C P Package 14 Percentage of Units – % 14 DISTRIBUTION OF TL031A INPUT OFFSET VOLTAGE 8 6 4 2 0 12 1433 Units Tested From 1 Wafer Lot VCC± = ±15 V TA = 25°C P Package ÎÎÎÎÎ 10 8 6 4 2 –1.2 –0.6 0 0.6 0 –900 1.2 –300 –600 Figure 6 ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ 900 15 TA = 25°C P Package 6 3 Percentage of Amplifiers – % Percentage of Amplification – % 600 DISTRIBUTION OF TL032A INPUT OFFSET VOLTAGE 1681 Amplifiers Tested From 1 Wafer Lot VCC± = ±15 V 9 300 Figure 7 DISTRIBUTION OF TL032 INPUT OFFSET VOLTAGE 12 0 VIO – Input Offset Voltage – µV VIO – Input Offset Voltage – mV 1321 Amplifiers Tested From 1 Wafer Lot VCC± = ±15 V TA = 25°C 12 P Package 9 6 3 0 –1.2 –0.6 0 0.6 1.2 0 –900 –600 –300 0 300 600 900 VIO – Input Offset Voltage – µV VIO – Input Offset Voltage – mV Figure 9 Figure 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS DISTRIBUTION OF TL034 INPUT OFFSET VOLTAGE 9 ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ 1681 Amplifiers Tested From 1 Wafer Lot VCC± = ±15 V TA = 25°C D Package 6 3 0 –1.2 –0.6 0 0.6 ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ 15 Percentage of Amplifiers – % Percentage of Amplifiers – % 12 DISTRIBUTION OF TL034A INPUT OFFSET VOLTAGE 12 1716 Amplifiers Tested From 3 Wafer Lots VCC± = ±15 V TA = 25°C N Package 9 6 3 0 –1.8 1.2 –1.2 VIO – Input Offset Voltage – mV Figure 10 0.6 1.2 1.8 DISTRIBUTION OF TL032 INPUT OFFSET-VOLTAGE TEMPERATURE COEFFICIENT 76 Units Tested From 1 Wafer Lot VCC± = ±15 V TA = 25°C to 125°C P Package 18 Percentage of Amplifiers – % Percentage of Units – % 0 Figure 11 DISTRIBUTION OF TL031 INPUT OFFSET-VOLTAGE TEMPERATURE COEFFICIENT 24 0.6 VIO – Input Offset Voltage – mV 12 6 ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ 30 160 Amplifiers Tested From 2 Wafer Lots VCC± = ±15 V TA = 25°C to 125°C 25 P Package 20 15 10 5 0 –30 –20 –10 0 10 20 30 αVIO – Input Offset-Voltage Temperature Coefficient – µV/°C 0 –40 –30 –20 –10 0 10 20 30 αVIO – Temperature Coefficient – µV/°C Figure 13 Figure 12 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 40 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS DISTRIBUTION OF TL034 INPUT OFFSET-VOLTAGE TEMPERATURE COEFFICIENT 25 ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ 10 160 Amplifiers Tested From 2 Wafer Lots VCC± = ±15 V TA = 25°C to 125°C D Package VCC± = ±15 V TA = 25°C IIB I IB – Input Bias Current – nA Percentage of Amplifiers – % 30 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE 20 15 10 5 0 –5 5 0 –40 –30 –20 –10 0 10 20 30 –10 –15 40 –10 –5 0 5 10 VIC – Common-Mode Input Voltage – V αVIO – Temperature Coefficient – µV/°C Figure 15 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT† vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE vs SUPPLY VOLTAGE ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎ ÎÎÎ ÎÎ ÎÎ 16 10 1 IIB 0.1 IIO 0.01 45 65 85 105 TA – Free-Air Temperature – °C ÎÎÎÎÎ ÎÎÎÎÎ TA = 25°C VCC± = ±15 V VO = 0 VIC = 0 VIC V IC – Common-Mode Input Voltage – V IIB I IO – Input Bias and Input Offset Currents – nA IIB and IIO Figure 14 0.001 25 15 125 ÁÁ ÁÁ ÁÁ 12 Positive Limit 8 4 0 ÎÎÎÎÎ ÎÎÎÎÎ –4 Negative Limit –8 –12 –16 0 2 Figure 16 4 6 8 10 12 |VCC±| – Supply Voltage – V 14 16 Figure 17 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS COMMON-MODE INPUT VOLTAGE RANGE† vs FREE-AIR TEMPERATURE OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 20 15 ÎÎÎÎÎ Positive Limit 10 RL = 1 kΩ RL = 2 kΩ RL = 5 kΩ RL = 10 kΩ RL = 20 kΩ 1 5 0 –5 ÁÁÁ ÁÁÁ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 1.5 VO – Output Voltage – V VIC V IC – Common-Mode Input Voltage – V VCC± = ±15 V 0.5 0 VCC± = ±5 V TA = 25°C ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ –0.5 RL = 20 kΩ RL = 10 kΩ RL = 5 kΩ RL = 2 kΩ RL = 1 kΩ –10 –15 ÎÎÎÎÎ ÎÎÎÎÎ –1 Negative Limit –20 –75 –50 –25 0 25 50 75 100 TA – Free-Air Temperature –°C –1.5 –5 125 –4 –3 Figure 18 VO – Output Voltage – V 1 0.5 ÈÈÈÈ ÈÈÈÈ ÈÈÈÈ –1 RL = 10 kΩ RL = 20 kΩ RL = 50 kΩ –1.5 –15 ÈÈÈÈ ÈÈÈÈ ÈÈÈÈ ÈÈÈÈ 1 2 3 4 5 16 RL = 5 kΩ 0 –0.5 0 MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE VOM – Maximum Peak Output Voltage – V VOM VCC± = ±15 V TA = 25°C –1 Figure 19 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 1.5 –2 VID – Differential Input Voltage – V RL = 50 kΩ RL = 20 kΩ RL = 10 kΩ RL = 5 kΩ –10 –5 0 5 10 VID – Differential Input Voltage – V 15 RL = 10 kΩ TA = 25°C 12 VOM+ 8 4 0 ÎÎÎ ÎÎÎ –4 VOM– ÁÁ ÁÁ –8 –12 –16 0 2 Figure 20 4 6 8 10 12 |VCC±| – Supply Voltage – V 14 16 Figure 21 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT ÎÎÎÎÎ ÎÎÎÎÎ 30 RL = 10 kΩ VCC± = ±15 V 25 20 15 TA = –55°C 10 TA = 125°C VCC± = ±5 V ÁÁ ÁÁ ÁÁ 5 5 |VOM | – Maximum Peak Output Voltage – V VO(PP) VOPP – Maximum Peak-to-Peak Output Voltage – V MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE† vs FREQUENCY 10 k 100 k f – Frequency – Hz 1M VOM– 3 2 1 0 5 Figure 22 5 VOM VOM – Maximum Peak Output Voltage – V ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ VOM– 10 8 4 2 0 0 5 10 15 20 |IO| – Output Current – mA ÎÎÎÎ 4 VOM+ 3 2 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÁÁÁ ÎÎÎ ÁÁÁ VOM+ 6 20 MAXIMUM PEAK OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE VCC± = ±15 V TA = 25°C 12 15 Figure 23 16 14 10 |IO| – Output Current – mA MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT |VOM | – Maximum Peak Output Voltage – V VOM+ 4 0 0 1k VCC± = ±5 V TA = 25°C 25 30 1 0 VCC± = ±5 V RL = 10 kΩ –1 –2 –3 VOM– –4 –5 –75 –50 –25 0 25 50 75 100 125 TA – Free-Air Temperature – °C Figure 24 Figure 25 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS MAXIMUM PEAK OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE 16 12 VOM+ 35 A VD – Large-Signal Differential Voltage Amplification – V/mV VOM VOM – Maximum Peak Output Voltage – V 40 8 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÁÁ ÎÎÎ ÁÁ ÎÎÎ ÁÁ 4 0 VCC± = ±15 V RL = 10 kΩ –4 –8 VOM– –12 –16 –75 –50 –25 0 VO = ±1 V TA = 25°C VCC± = ±15 V 30 25 20 VCC± = ±5 V 15 10 5 25 50 75 100 125 0 10 k TA – Free-Air Temperature –°C 100 k RL – Load Resistance – Ω Figure 26 1M Figure 27 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 0° 10 k 1k ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ VCC± = ±15 V RL = 10 kΩ CL = 25 pF TA = 25°C 30° 60° AVD 100 90° Phase Shift 10 120° 1 0.1 10 Phase Shift A VD – Large-Signal Differential Voltage Amplification 100 k 150° 100 1k 10 k 100 k f – Frequency – Hz 1M 180° 10 M Figure 28 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE 50 OUTPUT IMPEDANCE vs FREQUENCY ÎÎÎÎ ÎÎÎÎ 200 ÁÁ zzo o – Output Impedence – Ω A VD – Large-Signal Differential Voltage Amplification – V/mV RL = 10 kΩ VCC± = ±15 V 10 VCC± = ±5 V 100 80 60 AVD = 10 40 ÁÁ ÁÁ 1 –75 AVD = 100 AVD = 1 20 VCC± = ±15 V ro (open loop) ≈ 250 Ω TA = 25°C ÎÎÎÎ 10 –50 –25 0 25 50 75 100 TA – Free-Air Temperature – °C 1k 125 10 k f – Frequency – Hz Figure 29 Figure 30 COMMON-MODE REJECTION RATIO vs FREQUENCY VCC± = ±5 V TA = 25°C 90 80 70 60 50 40 30 20 10 0 ÎÎÎÎ ÎÎÎÎ 100 CMRR – Common-Mode Rejection Ratio – dB CMRR – Common-Mode Rejection Ratio – dB COMMON-MODE REJECTION RATIO vs FREQUENCY ÎÎÎÎ ÎÎÎÎ 100 100 k VCC± = ±15 V TA = 25°C 90 80 70 60 50 40 30 20 10 0 10 100 1k 10 k 100 k f – Frequency – Hz 1M 10 M 10 100 Figure 31 1k 10 k 100 k f – Frequency – Hz 1M 10 M Figure 32 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO† vs FREE-AIR TEMPERATURE COMMON-MODE REJECTION RATIO† vs FREE-AIR TEMPERATURE 100 kSVR – Supply Voltage Rejection Ratio – dB CMRR – Common-Mode Rejection Ratio – dB 95 VCC± = ±15 V 90 VCC± = ±5 V 85 80 ÎÎÎÎÎ ÎÎÎÎÎ VIC = VICRmin 75 –75 –50 –25 0 25 50 75 100 VCC± = ±5 V to ±15 V 98 96 94 92 90 –75 125 –50 –25 TA – Free-Air Temperature – °C 25 50 75 100 125 TA – Free-Air Temperature – °C Figure 33 Figure 34 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs TIME 30 30 VO = 0 TA = 25°C 20 IIOS OS – Short-Circuit Output Current – mA IIOS OS – Short-Circuit Output Current – mA 0 VID = 100 mV 10 0 VID = –100 mV –10 ÁÁ ÁÁ –20 –30 VID = 100 mV 20 10 0 ÁÁ ÎÎÎÎÎÎ ÁÁÎÎÎÎÎÎ ÎÎÎÎÎÎ VID = –100 mV –10 VCC± = ±15 V TA = 25°C –20 0 2 4 6 8 10 12 |VCC±| – Supply Voltage – V 14 16 0 Figure 35 5 10 15 20 t – Time – s 25 30 Figure 36 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS I OS – Short-Circuit Output Current – mA 25 20 15 10 5 0 –5 –10 –15 –20 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎ VCC± = ±15 V VID = 100 mV VCC± = ±5 V TL031 and TL031A EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY ÁÁ ÁÁÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ Vn nV/ Hz V n– Equivalent Input Noise Voltage – nVHz SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE VID = –100 mV VCC± = ±5 V VCC± = ±15 V VO = 0 –25 –75 –50 –25 0 25 50 75 TA – Free-Air Temperature – °C 100 70 VCC± = ±15 V RS = 20 Ω TA = 25°C See Figure 3 60 50 40 10 125 100 TL032 and TL032A EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁ ÁÁ VCC± = ±15 V RS = 20Ω TA = 25°C See Figure 3 V n– Equivalent Input Noise Voltage – nV/ Vn nVHzHz V n – Equivalent Input Noise Voltage – nVHz nV/ Hz Vn 100 k Figure 38 Figure 37 60 1k 10 k f – Frequency – Hz 50 40 TL034 and TL034A EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ 90 VCC± = ±15 V RS = 20 Ω TA = 25°C See Figure 3 80 70 60 50 40 30 10 100 1k 10 k f – Frequency – Hz 100 k 10 Figure 39 100 1k 10 k f – Frequency – Hz 11 k Figure 40 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ TL031 and TL031A SUPPLY CURRENT† vs SUPPLY VOLTAGE 250 500 ÁÁÁ ÁÁÁ VO = 0 No Load 200 IICC CC – Supply Current –Aµ A AA IICC CC – Supply Current – µ VO = 0 No Load TA = 25°C 150 ÁÁ ÁÁ ÁÁ TA = 125°C 400 TA = 25°C 300 ÁÁ ÁÁ ÁÁ 100 TA = –55°C 50 TA = 125°C 200 TA = –55°C 100 0 0 2 4 6 8 10 12 |VCC±| – Supply Voltage – V 14 0 16 0 2 4 6 8 10 12 |VCC±| – Supply Voltage – V Figure 41 ÎÎÎ ÎÎÎ ÎÎÎ 1000 250 ÁÁÁ ÁÁÁ ÁÁÁ VO = 0 No Load TA = 25°C 600 TA = 125°C ÁÁ ÁÁ ÁÁ 400 16 TL031 and TL031A SUPPLY CURRENT† vs FREE-AIR TEMPERATURE TL034 and TL034A SUPPLY CURRENT† vs SUPPLY VOLTAGE AA IICC CC – Supply Current – µ 800 14 Figure 42 VO = 0 No Load IICC CC – Supply Current –Aµ A TL032 and TL032A SUPPLY CURRENT† vs SUPPLY VOLTAGE 200 VCC± = ±15 V VCC± = ±5 V 150 ÁÁ ÁÁ TA = –55°C 200 100 50 0 0 2 4 6 8 10 12 |VCC±|– Supply Voltage – V 14 16 0 –75 –50 –25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 Figure 44 Figure 43 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS TL034 and TL034A SUPPLY CURRENT† vs FREE-AIR TEMPERATURE TL032 and TL032A SUPPLY CURRENT† vs FREE-AIR TEMPERATURE ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁ VO = 0 No Load VCC± = ±15 V VCC± = ±5 V 300 ÁÁ ÁÁ 200 100 0 –75 –50 –25 0 25 50 75 100 TA – Free-Air Temperature – °C VCC± = ±5 V 600 400 200 0 –75 125 –50 SLEW RATE vs LOAD RESISTANCE 4 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 125 ÎÎÎ 6 VCC± = ±5 V CL = 100 pF TA = 25°C See Figure 1 SR– 5 SR– 3 2 100 SLEW RATE vs LOAD RESISTANCE SR – Slew Rate – V/sµ s SR – Slew Rate – V/sµ s 5 –25 0 25 50 75 TA – Free-Air Temperature – °C Figure 46 Figure 45 6 VCC± = ±15 V 800 400 IICC CC – Supply Current –Aµ A µA IICC CC – Supply Current –A VO = 0 No Load ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 1000 500 SR+ 1 4 3 SR+ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 2 VCC± = ±15 V CL = 100 pF TA = 25°C See Figure 1 1 0 ÎÎ 0 1 10 RL – Load Resistance – kΩ 100 1 Figure 47 10 RL – Load Resistance – kΩ 100 Figure 48 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS SLEW RATE† vs FREE-AIR TEMPERATURE SLEW RATE† vs FREE-AIR TEMPERATURE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 6 VCC± = ±5 V RL = 10 kΩ CL = 100 pF See Figure 1 5 SR– SR – Slew Rate – V/sµ s 5 SR – Slew Rate – V/sµ s 6 4 SR– 3 2 SR+ 1 4 3 SR+ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 2 1 0 –75 –50 –25 0 25 50 75 100 TA – Free-Air Temperature – °C 0 –75 125 VCC± = ±15 V RL = 10 kΩ CL = 100 pF See Figure 1 –50 –25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 49 Figure 50 OVERSHOOT FACTOR vs LOAD CAPACITANCE 0.5 VI(PP) = ±10 mV RL = 10 kΩ TA = 25°C See Figure 1 50 Overshoot Factor – % TOTAL HARMONIC DISTORTION vs FREQUENCY ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ 40 VCC± = ±5 V 30 20 VCC± = ±15 V 10 0 0 50 100 150 200 CL – Load Capacitance – pF 250 THD – Total Harmonic Distortion – % 60 125 0.4 VCC± = ±15 V AVD = 1 VO(rms) = 6 V TA = 25°C 0.3 0.2 0.1 100 Figure 51 1k 10 k f – Frequency – Hz 100 k Figure 52 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH† vs FREE-AIR TEMPERATURE UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 1.05 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ VI = 10 mV RL = 10 kΩ CL = 25 pF TA = 25°C See Figure 4 1.0 0.95 2 4 6 8 10 12 |VCC±|– Supply Voltage – V 14 VI = 10 mV RL = 10 kΩ CL = 25 pF See Figure 4 1.2 VCC+ = ±15 V 1.1 1.0 VCC± = ±5 V 0.9 0.8 –75 0.9 0 16 –50 –25 50 75 100 125 PHASE MARGIN vs LOAD CAPACITANCE ÁÁÁÁ ÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁ ÎÎÎÎ ÁÁÁÁ ÎÎÎÎ ÁÁÁÁ 70° ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 68° VI = 10 mV RL = 10 kΩ CL = 25 pF TA = 25°C See Figure 4 ÁÁ ÁÁ 61° 59° VI = 10 mV RL = 10 kΩ TA = 25°C See Figure 4 See Note A VCC± = ±15 V 66° φm – Phase Margin φm – Phase Margin ÁÁ ÁÁ ÁÁ 25 Figure 54 PHASE MARGIN vs SUPPLY VOLTAGE 63° 0 TA – Free-Air Temperature – °C Figure 53 65° ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 1.3 B1 B1 – Unity-Gain Bandwidth – MHz B1 B1 – Unity-Gain Bandwidth – MHz 1.1 64° 62° 60° 58° ÎÎÎÎ ÎÎÎÎ 56° VCC± = ±5 V 54° 52° 50° 0 57° 0 2 4 6 8 10 12 14 16 |VCC±| – Supply Voltage – V 10 20 30 40 50 60 70 80 90 100 CL – Load Capacitance – pF NOTE A: Values of phase margin below a load capacitance of 25 pF were estimated. Figure 55 Figure 56 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 TYPICAL CHARACTERISTICS PHASE MARGIN† vs FREE-AIR TEMPERATURE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE ÎÎÎÎÎ ÎÎÎÎÎ 67° 16 VCC± = ±15 V 12 V VO O – Output Voltage – mV φ m – Phase Margin 65° 63° VCC± = ±5 V 61° 4 VI = 10 mV RL = 10 kΩ CL = 25 pF See Figure 4 57° VCC± = ±15 V RL = 10 kΩ CL = 100 pF TA = 25°C See Figure 1 0 ÎÎÎÎÎ ÁÁ ÁÁ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 59° 55° –75 8 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ –4 –8 –12 –16 –50 –25 0 25 50 75 TA – Free-Air Temperature –°C 100 0 125 Figure 57 0.2 0.4 0.6 0.8 1.0 1.2 1.4 t – Time – µs Figure 58 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 2 8 6 VO VO – Output Voltage – V VO VO – Output Voltage – V 1 VCC± = ±5 V RL = 10 kΩ CL = 100 pF TA = 25°C See Figure 1 0 ÁÁ ÁÁ ÁÁ ÁÁ –1 4 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 2 VCC± = ±15 V RL = 10 kΩ CL = 100 pF TA = 25°C See Figure 1 0 –2 –4 –6 –2 0 1 2 3 4 t – Time – µs 5 6 7 8 –8 0 2 4 6 8 10 t – Time – µs 12 14 16 18 Figure 60 Figure 59 † Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices. 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 APPLICATION INFORMATION input characteristics The TL03x and TL03xA are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Due to of the extremely high input impedance and resulting low bias-current requirements, the TL03x and TL03xA are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets easily can exceed bias current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 61). These guard rings should be driven from a low-impedance source at the same voltage level as the common-mode input. Unused amplifiers should be connected as grounded unity-gain followers to avoid oscillation. + VI VO + VI (a) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER + VO – – – VI VO (c) UNITY-GAIN AMPLIFIER Figure 61. Use of Guard Rings POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 APPLICATION INFORMATION output characteristics All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL03x and TL03xA drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem (see Figure 63). Capacitive loads of 1000 pF and larger can be driven if enough resistance is added in series with the output (see Figure 62). (a) CL = 100 pF, R = 0 (b) CL = 300 pF, R = 0 (c) CL = 350 pF, R = 0 (d) CL = 1000 pF, R = 0 (e) CL = 1000 pF, R = 50 Ω (f) CL = 1000 pF, R = 2 kΩ Figure 62. Effect of Capacitive Loads 15 V – –5 V R VO + 5V – 15 V CL (see Note A) 10 kΩ NOTE A: CL includes fixture capacitance. Figure 63. Test Circuit for Output Characteristics 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 APPLICATION INFORMATION high-Q notch filter In general, Texas Instruments enhanced-JFET operational amplifiers serve as excellent filters. The circuit in Figure 64 provides a narrow notch at a specific frequency. Notch filters are designed to eliminate frequencies that are interfering with the operation of an application. For this filter, the center frequency can be calculated as: fO + 2p 1 R1 C1 With the resistors and capacitors shown in Figure 64, the center frequency is 1 kHz. C1 = C3 = C2 + 2 and R1 = R3 = 2 × R2. The center frequency can be modified by varying these values. When adjusting the center frequency, ensure that the operational amplifier has sufficient gain at the frequency required. 15 V – R1 R3 VI VO + 1.5 MΩ 1.5 MΩ –15 V C2 220 pF R3 TL03x 750 kΩ C1 C3 110 pF 110 pF 2 1 0 Gain – dB –1 –2 –3 –4 –5 –6 –7 –8 0.2 0.4 0.6 0.8 1 0.2 0.4 f – Frequency – kHz 0.6 0.8 2 Figure 64. High-Q Notch Filter POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 APPLICATION INFORMATION transimpedance amplifier The low-power precision TL03x allows accurate measurement of low currents. The high input impedance and low offset voltage of the TL03xA greatly simplify the design of a transimpedance amplifier. At room temperature, this design achieves 10-bit accuracy with an error of less than 1/2 LSB. ǒ Ǔ Assuming that R2 is much less than R1 and ignoring error terms, the output voltage can be expressed as: V O + – IIN R R1 F ) R2 R2 Using the resistor values shown in the schematic for a 1-nA input current, the output voltage equals –0.1 V. If the VO limit for the TL03xA is measured at ±12 V, the maximum input current for these resistor values is ±120 nA. Similarly, one LSB on a 10-bit scale corresponds to 12 mV of output voltage, or 120 pA of input current. ƪ ǒ Ǔƫǒ Ǔ The following equation shows the effect of input offset voltage and input bias current on the output voltage: V O +– V IO ) RF IIO ) IIB R1 ) R2 R2 If the application requires input protection for the transimpedance amplifier, do not use standard PN diodes. Instead, use low-leakage Siliconix SN4117 JFETs (or equivalent) connected as diodes across the TL03xA inputs as shown in Figure 65. As with all precision applications, special care must be taken to eliminate external sources of leakage and interference. Other precautions include using high-quality insulation, cleaning insulating surfaces to remove fluxes and other residue, and enclosing the application within a protective box. RF 10 MΩ 15 V + Input Current TL03xA VO – –15 V R1 90 kΩ R2 10 kΩ SN4117 Figure 65. Transimpedance Amplifier 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 APPLICATION INFORMATION 4-mA to 20-mA current loops Often, information from an analog sensor must be sent over a distance to the receiving circuitry. For many applications, the most feasible method involves converting voltage information to a current before transmission. The following circuits give two variations of low-power current loops. The circuit in Figure 66 requires three wires from the transmitting to receiving circuitry, while the second variation in Figure 67 requires only two wires, but includes an extra integrated circuit. Both circuits benefit from the high input impedance of the TL03xA because many inexpensive sensors do not have low output impedance. ǒ Ǔ ǒ Ǔ Assuming that the voltage at the noninverting input of the TL03xA is zero, the following equation determines the output current: I O + VI R3 R1 R S ) 5V R3 R2 R S + 0.16 V I ) 4 mA The circuits presently provide 4-mA to 20-mA output current for an input voltage of 0 to 100 mV. By modifying R1, R2, and R3, the input voltage range or the output current range can be adjusted. ǒ Ǔ ǒ Ǔ ǒ Ǔ Including the offset voltage of the operational amplifier in the above equation clearly illustrates why the low offset TL03xA was chosen: I O + VI R1 R3R ) 5 V R2 R3R *VI S S + 0.16 VI ) 4 mA – 0.17 VI R1 R3 R S ) R2 R3R ) RR1 S S For example, an offset voltage of 1 mV decreases the output current by 0.17 mA. Due to the low power consumption of the TL03xA, both circuits have at least 2 mA available to drive the actual sensor from the 5-V reference node. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 4-mA to 20-mA current loops (continued) VCC+ = 10 V 100 kΩ R6 TL431 100 kΩ R7 5 V Ref R2 1 MΩ – R1 2N3904 + VI R5 5 kΩ 3.3 kΩ TL03xA VEE = –5 V R4 5 kΩ 1N4148 R3 80 kΩ RS IO Signal Common 100 Ω 50 Ω RL Figure 66. Three-Wire 4-mA to 20-mA Current Loop VCC+ = 10 V IN OUT LT1019-5 5 V Ref GND 10 µF R2 1 MΩ 8 2 3 4 LTC1044 5 – R1 + VI 10 µF 5 kΩ TL03xA R4 R3 R5 2N3904 3.3 kΩ 5 kΩ 1N4148 80 kΩ RS IO Signal Common 100 Ω Figure 67. Two-Wire 4-mA to 20-mA Current Loop 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 RL 50 Ω TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 APPLICATION INFORMATION low-level light-detector preamplifier Applications that need to detect small currents require high input-impedance operational amplifiers; otherwise, the bias currents of the operational amplifier camouflage the current being monitored. Phototransistors provide a current that is proportional to the light reaching the transistor. The TL03x allows even the small currents resulting from low-level light to be detected. In Figure 68, if there is no light, the phototransistor is off and the output is high. As light is detected, the operational amplifier output begins pulling low. Adjusting R4 both compensates for offset voltage of the amplifier and adjusts the point of light detection by the amplifier. 15 V R6 10 kΩ R1 10 kΩ + R3 TIL601 R4 10 kΩ R5 R2 10 kΩ C1 100 pF R7 TL03x VO – 10 kΩ 10 kΩ 5 kΩ –15 V Figure 68. Low-Level Light-Detector Preamplifier POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 APPLICATION INFORMATION audio-distribution amplifier This audio-distribution amplifier (see Figure 69) feeds the input signal to three separate output channels. U1A amplifies the input signal with a gain of 10, while U1B, U1C, and U1D serve as buffers to the output channels. The gain response of this circuit is very flat from 20 Hz to 20 kHz. The TL03x allows quick response to the input signal while maintaining low power consumption. R4 1 MΩ U1B – VCC+ C1 1 µF VOA + – VI + R1 100 kΩ U1C U1A – R2 100 kΩ VOB + VCC+ C2 100 µF R5 10 kΩ U1D – R3 100 kΩ + NOTE A: U1A through U1D = TL03x; VCC+ = 5 V. Figure 69. Audio-Distribution Amplifier Circuit 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VOC TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999 APPLICATION INFORMATION instrumentation amplifier with linear gain adjust The low offset voltage and low power consumption of the TL03x provide an accurate but inexpensive instrumentation amplifier (see Figure 70). This particular configuration offers the advantage that the gain can be linearly set by one resistor: VO = R6 × (VB – VA) R5 Adjusting R6 varies the gain. The value of R6 always should be greater than, or equal to, the value of R5 to ensure stability. The disadvantage of this instrumentation amplifier topology is the high degree of CMRR degradation resulting from mismatches between R1, R2, R3, and R4. For this reason, these four resistors should be 0.1%-tolerance resistors. VCC+ – VA R3 10 kΩ 0.1% R1 10 kΩ 0.1% + U1A U1C – VO + R5 100 kΩ U1B U1D – VB + R6 1 MΩ – R2 10 kΩ 0.1% R4 10 kΩ 0.1% + VCC– R7 100 kΩ NOTE A: U1A through U1D = TL03x; VCC± = ±15 V. Figure 70. Instrumentation Amplifier With Linear Gain-Adjust Circuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1999, Texas Instruments Incorporated