TI TL034IN

TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
D
D
D
Direct Upgrades for the TL06x Low-Power
BiFETs
Low Power Consumption . . .
6.5 mW/Channel Typ
On-Chip Offset-Voltage Trimming for
Improved DC Performance
(1.5 mV, TL031A)
D
D
Higher Slew Rate and Bandwidth Without
Increased Power Consumption
Available in TSSOP for Small Form-Factor
Designs
description
The TL03x series of JFET-input operational amplifiers offer improved dc and ac characteristics over the TL06x
family of low-power BiFET operational amplifiers. On-chip zener trimming of offset voltage yields precision
grades as low as 1.5 mV (TL031A) for greater accuracy in dc-coupled applications. Texas Instruments improved
BiFET process and optimized designs also yield improved bandwidths and slew rates without increased power
consumption. The TL03x devices are pin-compatible with the TL06x and can be used to upgrade existing
circuits or for optimal performance in new designs.
BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors without
sacrificing the output drive associated with bipolar amplifiers. This higher input impedance makes the TL3x
amplifiers better suited for interfacing with high-impedance sensors or very low-level ac signals. These devices
also feature inherently better ac response than bipolar or CMOS devices having comparable power
consumption.
The TL03x family has been optimized for micropower operation, while improving on the performance of the
TL06x series. Designers requiring significantly faster ac response should consider the Excalibur TLE206x
family of low-power BiFET operational amplifiers.
Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to
observe common-mode input-voltage limits and output swing when operating from a single supply. DC biasing
of the input signal is required and loads should be terminated to a virtual-ground node at midsupply. Texas
Instruments TLE2426 integrated virtual-ground generator is useful when operating BiFET amplifiers from single
supplies.
The TL03x devices are fully specified at ±15 V and ±5 V. For operation in low-voltage and/or single-supply
systems, Texas Instruments LinCMOS families of operational amplifiers (TLC-prefix) are recommended. When
moving from BiFET to CMOS amplifiers, particular attention should be paid to slew rate, bandwidth
requirements, and output loading.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from –40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of –55°C to 125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL032x, TL032Ax
D, JG, OR P PACKAGE
(TOP VIEW)
1
8
2
7
3
6
4
5
NC
VCC+
OUT
OFFSET N2
1OUT
1IN–
1IN+
VCC –
TL031M, TL031AM
FK PACKAGE
(TOP VIEW)
5
17
6
16
7
15
8
14
9 10 11 12 13
7
3
6
4
5
VCC+
2OUT
2IN–
2IN+
NC
1OUT
NC
VCC+
NC
NC
VCC+
NC
OUT
NC
NC
1IN–
NC
1IN+
NC
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN–
NC
NC – No internal connection
2
1OUT
1IN–
1IN+
VCC+
2IN+
2IN–
2OUT
POST OFFICE BOX 655303
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN–
4IN+
VCC–
3IN+
3IN–
3OUT
TL034M, TL034AM
FK PACKAGE
(TOP VIEW)
NC
VCC–
NC
2IN+
NC
3 2 1 20 19
18
8
2
TL032M, TL032AM
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NC
NC
NC
4
NC
VCC–
NC
OFFSET N2
NC
NC
IN–
NC
IN+
NC
1
1IN–
1OUT
NC
4OUT
4IN–
OFFSET N1
IN–
IN+
VCC–
TL034x, TL034Ax
D, J, N, OR PW PACKAGE
(TOP VIEW)
• DALLAS, TEXAS 75265
1IN+
NC
VCC+
NC
2IN+
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
2IN–
2OUT
NC
3OUT
3IN–
TL031x, TL031Ax
D, JG, OR P PACKAGE
(TOP VIEW)
4IN+
NC
VCC–
NC
3IN+
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
–40°C to 85°C
–55°C to 125°C
VIOMAX
AT 25°C
SMALL
OUTLINE†
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(N)
PLASTIC
DIP
(P)
TSSOP†
(PW)
CHIP
FORM‡
(Y)
0.8 mV
TL031ACD
TL032ACD
—
—
—
—
TL031ACP
TL032ACP
—
1.5 mV
TL031CD
TL032CD
TL034ACD
—
—
—
TL034ACN
TL031CP
TL032CP
—
4 mV
TL034CD
—
—
—
TL034CN
0.8 mV
TL031AID
TL032AID
—
—
—
—
TL031AIP
TL032AIP
—
—
1.5 mV
TL031ID
TL032ID
TL034AID
—
—
—
TL034AIN
TL031IP
TL032IP
—
—
4 mV
TL034ID
—
—
—
TL034IN
—
—
—
0.8 mV
TL031AMD
TL032AMD
TL031AMFK
TL032AMFK
—
TL031AMJG
TL032AMJG
—
TL031AMP
TL032AMP
—
—
1.5 mV
TL031MD
TL032MD
TL034AMD
TL031MFK
TL032MFK
TL034AMFK
TL034AMJ
TL031MJG
TL032MJG
TL034AMN
TL031MP
TL032MP
—
—
TL031Y
TL032Y
TL034Y
TL034CPW
4 mV
TL034MD
TL034MFK
TL034MJ
—
TL034MN
—
—
—
† The D and PW packages are available taped and reeled and are indicated by adding an R suffix to device type (e.g., TL034CDR or TL034CPWR).
‡ Chip forms are tested at 25°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
symbol (each amplifier)
IN–
–
IN+
+
OUT
equivalent schematic (each amplifier)
VCC+
Q14
Q5
Q2
D1
Q3
R4
Q6
IN+
IN–
Q11
OUT
Q8 Q10
JF1 JF2
R7
Q17
R3
Q15
R6
C1
Q1
(see Note A)
Q4
OFFSET N1
OFFSET N2
Q12
JF3
Q9
R8
Q7
R1
R2
Q16
R5
Q13
VCC–
NOTE A: OFFSET N1 and OFFSET N2 are available only on the TL031.
4
JF4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL031Y chip information
This chip, when properly assembled, has characteristics similar to the TL031C. Thermal compression or
ultrasonic bonding can be used on the doped-aluminum bonding pads. These chips can be mounted with
conductive epoxy or a gold-silicon preform.
Bonding-Pad Assignments
(5)
(4)
IN+
(6)
(3)
IN–
OFFSET N1
OFFSET N2
(7)
(3)
(2)
(1)
VCC+
(7)
+
(6)
OUT
–
(4)
VCC–
(5)
42
(1)
(8)
(2)
Chip Thickness: 15 MIls Typical
Bonding Pads: 4 × 4 Mils Minimum
TJ(max) = 150°C
Tolerances Are ±10%.
All Dimensions Are in Mils.
Pin (4) is Internally Connected
to Backside of the Chip.
54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL032Y chip information
This chip, when properly assembled, has characteristics similar to the TL032C. Thermal compression or
ultrasonic bonding can be used on the doped-aluminum bonding pads. These chips can be mounted with
conductive epoxy or a gold-silicon preform.
Bonding-Pad Assignments
(7)
(6)
(5)
(8)
1IN+
(3)
(2)
1IN–
67
(4)
2OUT
(7)
VCC+
(8)
+
(1)
1OUT
–
+
–
(5)
(6)
2IN+
2IN–
(4)
VCC–
(1)
(2)
(3)
Chip Thickness: 15 Mils Typical
Bonding Pads: 4 × 4 Mils Minimum
TJ(max) = 150°C
Tolerances Are ±10%.
All Dimensions Are in Mils.
Pin (4) is Internally Connected to Backside of Chip.
51
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL034Y chip information
This chip, when properly assembled, has characteristics similar to the TL034C. Thermal compression or
ultrasonic bonding can be used on the doped-aluminum bonding pads. These chips can be mounted with
conductive epoxy or a gold-silicon preform.
Bonding-Pad Assignments
1IN+
(13)
(12)
(11)
(10)
(9)
(2)
1IN–
2OUT
(14)
(8)
(3)
3IN+
(10)
3IN–
4OUT
(7)
(1)
(2)
(6)
(3)
(4)
(7)
(5)
(6)
(8)
(9)
93
POST OFFICE BOX 655303
(1)
1OUT
–
+
–
+
(5)
(6)
2IN+
2IN–
(8)
3OUT
–
+
(14)
–
(12)
(13)
4IN+
4IN–
(11)
VCC–
(10)
(5)
+
(7)
(9)
66
VCC+
(4)
• DALLAS, TEXAS 75265
Chip Thickness: 15 Mils Typical
Bonding Pads: 4 × 4 Mils Minimum
TJ(max) = 150°C
Tolerances Are ±10%.
All Dimensions Are in Mils.
Pin (11) is Internally Connected
to Backside of the Chip.
7
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V
Supply voltage, VCC– (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –18 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 V
Input voltage, VI (any input) (see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15 V
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA
Output current, IO (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±40 mA
Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA
Total current out of VCC– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Storage temperature range,Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1 /16 inch) from case for 10 seconds: D, N, P, or PW package . . . . . . . . . 260°C
Lead temperature 1,6 mm (1 /16 inch) from case for 60 seconds: J or JG package . . . . . . . . . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC–.
2. Differential voltages are at IN+ with respect to IN–.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
4. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D
950 mW
7.6 mW/°C
608 mW
494 mW
190 mW
FK
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
J
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
JG
1050 mW
8.4 mW/°C
672 mW
546 mW
210 mW
N
1150 mW
9.2 mW/°C
736 mW
598 mW
230 mW
P
1100 mW
8.0 mW/°C
640 mW
520 mW
200 mW
PW
700 mW
5.6 mW/°C
448 mW
N/A
N/A
recommended operating conditions
Supply voltage, VCC±
Common mode input voltage,
Common-mode
voltage VIC
VCC± = ±5 V
VCC± = ±15 V
Operating free-air temperature, TA
8
POST OFFICE BOX 655303
C SUFFIX
I SUFFIX
M SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
±5
±15
±5
±15
±5
±15
–1.5
4
–1.5
4
–1.5
4
–11.5
14
–11.5
14
–11.5
14
0
70
–40
85
–55
125
• DALLAS, TEXAS 75265
UNIT
V
V
°C
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL031C and TL031AC electrical characteristics at specified free-air temperature
TL031C, TL031AC
PARAMETER
TL031C
VIO
Input offset voltage
TL031AC
αVIO
Temperature coefficient of
input offset voltage
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
0.54
0.5
TEST CONDITIONS
0
VO = 0,
VIC = 0
0,
RS = 50 Ω
Full range†
3.5
4.5
25°C
0.41
Full range†
0.34
3.8
0.8
25°C to
70°C
71
7.1
59
5.9
TL031AC
25°C to
70°C
71
7.1
59
5.9
25°C
0.04
0.04
µV/°C
25
µV/mo
IIO
Input offset current
VO = 0,, VIC = 0,,
See Figure 5
25°C
1
100
1
100
70°C
9
200
12
200
IIB
Input bias current
VO = 0,, VIC = 0,,
See Figure 5
25°C
2
200
2
200
70°C
50
400
80
400
VICR
VOM+
VOM–
AVD
25°C
–1.5
to
4
Full range†
–1.5
to
.4
Common-mode input
voltage range
Maximum
M
i
positive
iti peak
k
out
ut voltage swing
output
Maximum
M
i
negative
ti peak
k
out
ut voltage swing
output
Large-signal
L
i
l diff
differential
ti l
voltage am
amplification
lification§
–3.4
to
5.4
pA
V
3
4.3
13
14
0°C
3
4.2
13
14
70°C
3
4.3
13
14
25°C
–3
–4.2
–12.5
–13.9
0°C
–3
–4.1
–12.5
–13.9
70°C
–3
–4.2
–12.5
–14
25°C
4
12
5
14.3
0°C
3
11.1
4
13.5
70°C
4
5
15.2
1012
Ω
4
pF
RL = 10 kΩ
RL = 10 kΩ
ri
Input resistance
25°C
ci
Input capacitance
25°C
5
CMRR
Common-mode
C
d
rejection ratio
Supply-voltage
Su
ly voltage
rejection ratio
( VCC±/∆V
(∆V
/ VIO)
–13.4
to
15.4
–11.5
to
14
13.3
1012
kSVR
–11.5
to
14
pA
25°C
RL = 10 kΩ
VIC = VICRmin,
i
VO = 0,
0 RS = 50 Ω
mV
1.8
TL031C
Input offset voltage
long-term drift‡
1.5
2.5
2.8
UNIT
25°C
70
87
75
94
0°C
70
87
75
94
70°C
70
87
75
94
25°C
75
96
75
96
0°C
75
96
75
96
70°C
75
96
75
96
VO = 0, RS = 50 Ω
V
V
V/mV
dB
dB
† Full range is 0°C to 70°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL031C and TL031AC electrical characteristics at specified free-air temperature (continued)
TL031C, TL031AC
PARAMETER
PD
ICC
Total power dissipation
Supply current
TEST CONDITIONS
VO = 0,
VO = 0,
No load
No load
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
1.9
2.5
6.5
8.4
0°C
1.8
2.5
6.3
8.4
70°C
1.9
2.5
6.3
8.4
25°C
192
250
217
280
0°C
184
250
211
280
70°C
189
250
210
280
UNIT
mW
µA
TL031C and TL031AC operating characteristics at specified free-air temperature
TL031C, TL031AC
PARAMETER
SR+
TEST CONDITIONS
Positive
P
iti slew
l
rate
t att
unity gain†
RL = 10 kΩ,,
See Figure 1
SR–
tr
tf
Negative
N
ti slew
l
rate
t att
unity gain†
Rise time
Fall time
Overshoot factor
TL031C
Vn
CL = 100 pF,,
Equivalent
q
input
noise voltage
25°C
2
1.5
2.9
0°C
1.8
1
2.6
70°C
2.2
1.5
3.2
25°C
3.9
1.5
5.1
0°C
3.7
1.5
5
1.5
4
25°C
138
132
0°C
134
127
See Figures 1 and 2
70°C
150
142
VI(PP) = ±10 mV,
RL = 10 kΩ,
CL = 100 pF,
25°C
138
132
0°C
134
127
See Figure 1
70°C
150
142
VI(PP) = ±10 mV,
CL = 100 pF, CL = 100 pF,
25°C
11%
5%
0°C
10%
4%
See Figures 1 and 2
70°C
12%
6%
61
61
41
41
61
61
41
41
25°C
0.003
0.003
25°C
1
1.1
0°C
1
1.1
70°C
1
1
25°C
61°
65°
0°C
61°
65°
70°C
60°
64°
f = 10 Hz
RS = 20 Ω,,
See Figure 3
f = 1 kHz
f = 10 Hz
f = 1 kHz
Equivalent input noise
current
f = 1 kHz
B1
Unity-gain bandwidth
VI = 10 mV,
V
CL = 25 pF
F,
RL = 10 kΩ,
kΩ
See Figure 4
VI = 10 mV,
mV
CL = 25 pF,
F,
RL = 10 kΩ,
See Figure 4
25°C
25°C
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
10
VCC± = ±15 V
MIN
TYP
MAX
70°C
In
Phase margin at unity gain
VCC± = ±5 V
MIN
TYP
MAX
VI(PP) = ±10 mV,
RL = 10 kΩ,
CL = 100 pF,
TL031AC
φm
TA
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
V/µs
V/µs
5
ns
ns
nV/√Hz
60
pA/√Hz
MHz
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL031I and TL031AI electrical characteristics at specified free-air temperature
TL031I, TL031AI
PARAMETER
TEST CONDITIONS
TL031I
VIO
Input offset voltage
TL031AI
αVIO
Temperature coefficient of
input offset voltage
VO = 0,
0
VIC = 0
0,
RS = 50 Ω
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
0.54
0.5
Full range†
3.5
5.3
25°C
0.41
Full range†
0.34
4.6
0.8
mV
2.6
TL031I
25°C to
85°C
65
6.5
TL031AI
25°C to
85°C
65
6.5
62
6.2
25°C
0 04
0.04
0 04
0.04
Input offset voltage
g
long-term drift‡
1.5
3.3
2.8
UNIT
62
6.2
µV/°C
25
µV/mo
IIO
Input offset current
VO = 0,
VIC = 0,
See Figure 5
25°C
1
100
1
100
pA
85°C
0.02
0.45
0.02
0.45
nA
IIB
Input bias current
VO = 0,
VIC = 0,
See Figure 5
25°C
2
200
2
200
pA
85°C
0.2
0.9
0.2
0.9
nA
VICR
VOM+
VOM–
AVD
25°C
–1.5
to
4
Full range†
–1.5
to
4
Common-mode input
voltage range
Maximum
M
i
positive
iti peak
k
output
out
ut voltage swing
Maximum
M
i
negative
ti peak
k
out
ut voltage swing
output
L
i
l diff
ti l
Large-signal
differential
voltage am
lification§
amplification
RL = 10 kΩ
RL = 10 kΩ
RL = 10 kΩ
–3.4
to
5.4
3
4.3
13
14
–40°C
3
4.1
13
14
85°C
3
4.4
13
14
25°C
–3
–4.2
–12.5
–13.9
–40°C
–3
–4.1
–12.5
–13.8
85°C
–3
–4.2
–12.5
–14
25°C
4
12
5
14.3
–40°C
3
8.4
4
11.6
85°C
4
5
15.3
1012
Ω
4
pF
Input resistance
25°C
ci
Input capacitance
25°C
5
CMRR
Common-mode
C
d
rejection ratio
kSVR
Su ly voltage
Supply-voltage
rejection ratio
(∆VCC±/∆VIO)
VO = 0,
25°C
70
87
75
94
–40°C
70
87
75
94
85°C
70
87
75
94
25°C
75
96
75
96
–40°C
75
96
75
96
85°C
75
96
75
96
RS = 50 Ω
RS = 50 Ω
V
25°C
ri
VO = 0,
–13.4
to
15.4
–11.5
to
14
13.5
1012
VIC = VICRmin
min,
–11.5
to
14
V
V
V/mV
dB
dB
† Full range is –40°C to 85°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL031I and TL031AI electrical characteristics at specified free-air temperature (continued)
TL031I, TL031AI
PARAMETER
PD
ICC
Total power dissipation
Supply current
TEST CONDITIONS
VO = 0,
VO = 0,
No load
No load
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
1.9
2.5
6.5
8.4
–40°C
1.4
2.5
5.4
8.4
85°C
1.9
2.5
6.2
8.4
25°C
192
250
217
280
–40°C
144
250
181
280
85°C
189
250
207
280
TA
UNIT
mW
µA
TL031I and TL031AI operating characteristics at specified free-air temperature
TL031I, TL031AI
PARAMETER
SR+
TEST CONDITIONS
Positive
P
iti slew
l
rate
t att
unity gain†
RL = 10 kΩ
See Figure 1
SR–
tr
tf
CL = 100 pF,,
N
ti slew
l
t att unity
it
Negative
rate
gain†
VI(PP) = ±10 mV,
CL = 100 pF,
RL = 10 kΩ,
Rise time
Fall time
Overshoot factor
Vn
In
B1
φm
TL031I
25°C
2
1.5
2.9
–40°C
1.6
1
2.1
85°C
2.3
1.5
3.3
25°C
3.9
1.5
5.1
–40°C
3.3
1.5
4.8
85°C
4.1
1.5
4.9
25°C
138
132
132
123
85°C
154
146
VI(PP) = ±10 mV,
RL = 10 kΩ,
CL = 100 pF,
25°C
138
132
–40°C
132
123
See Figure 1
85°C
154
146
VI(PP) = ±10 mV,
CL = 100 pF,
RL = 10 kΩ,
25°C
11%
5%
–40°C
12%
5%
85°C
13%
7%
61
61
41
41
61
61
41
41
25°C
0 003
0.003
0 003
0.003
25°C
1
1.1
–40°C
1
1.1
85°C
0.9
1
25°C
61°
65°
–40°C
60°
65°
85°C
60°
64°
f = 10 Hz
RS = 20 Ω,,
See Figure 3
f = 1 kHz
f = 10 Hz
f = 1 kHz
Equivalent
q
input noise
current
f = 1 kHz
Unity-gain bandwidth
VI = 10 mV
V
CL = 25 pF
F,
RL = 10 kΩ,
kΩ
See Figure 4
VI = 10 mV,
mV
CL = 25 pF
F
RL = 10 kΩ,
kΩ
See Figure 4
25°C
25°C
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
12
VCC± = ±15 V
MIN
TYP
MAX
–40°C
TL031AI
Phase margin at unity gain
VCC± = ±5 V
MIN
TYP
MAX
See Figures 1 and 2
See Figures 1 and 2
Equivalent
input
noise voltage
TA
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
V/µs
V/µs
ns
ns
nV/√Hz
60
pA/√Hz
MHz
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL031M and TL031AM electrical characteristics at specified free-air temperature
TL031M, TL031AM
PARAMETER
TEST CONDITIONS
TL031M
VIO
Input offset voltage
TL031AM
αVIO
Temperature coefficient of
VO = 0
0,
VIC = 0,
RS = 50 Ω
input offset voltage
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
0.54
0.5
25°C
Full range†
3.5
6.5
25°C
0.41
Full range†
0.34
5.8
0.8
mV
3.8
TL031M
25°C to
125°C
5.1
4.3
TL031AM
25°C to
125°C
5.1
4.3
25°C
0.04
0.04
Input offset voltage
long-term drift‡
1.5
4.5
2.8
UNIT
µV/°C
µV/mo
IIO
Input offset current
VO = 0,
VIC = 0,
See Figure 5
25°C
1
100
1
100
pA
125°C
0.2
10
0.2
10
nA
IIB
Input bias current
VO = 0,
VIC = 0,
See Figure 5
25°C
2
200
2
200
pA
125°C
7
20
8
20
nA
25°C
VICR
Common-mode input
voltage range
Full range†
VOM+
VOM–
AVD
Maximum
M
i
positive
iti peak
k
output
out
ut voltage swing
Maximum
M
i
negative
ti peak
k
out
ut voltage swing
output
L
i
l diff
ti l
Large-signal
differential
voltage am
lification§
amplification
RL = 10 kΩ
RL = 10 kΩ
RL = 10 kΩ
4.3
13
14
4.1
13
14
3
4.4
13
14
25°C
–3
–4.2
–12.5
–13.9
–55°C
–3
–4
–12.5
–13.8
125°C
–3
–4.3
–12.5
–14
25°C
4
12
5
14.3
–55°C
3
7.1
4
10.4
V/mV
125°C
3
12.9
1012
4
15
1012
Ω
4
pF
25°C
PD
Total power dissipation
VO = 0,
VO = 0,
RS = 50 Ω
No load
V
125°C
Input capacitance
kSVR
V
–11.5
to
14
3
ci
Su ly voltage
Supply-voltage
rejection ratio
(∆VCC±/∆VIO)
–1.5
to
4
–13.4
to
15.4
3
25°C
VIC = VICRmin,
i
VO = 0
0, RS = 50 Ω
–11.5
to
14
25°C
Input resistance
Common-mode
C
d
rejection ratio
–3.4
to
5.4
–55°C
ri
CMR
R
–1.5
to
4
5
25°C
70
87
75
94
–55°C
70
87
70
94
125°C
70
87
70
94
25°C
75
96
75
96
–55°C
75
96
75
95
125°C
75
96
75
96
V
dB
dB
25°C
1.9
2.5
6.5
8.4
–55°C
1.1
2.5
4.7
8.4
125°C
1.8
2.5
5.8
8.4
mW
† Full range is –55°C to 125°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL031M and TL031AM electrical characteristics at specified free-air temperature (continued)
TL031M, TL031AM
PARAMETER
ICC
TEST CONDITIONS
Supply current
VO = 0,
No load
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
192
250
217
280
–55°C
114
250
156
280
125°C
178
250
197
280
UNIT
µA
TL031M and TL031AM operating characteristics at specified free-air temperature
TL031M, TL031AM
PARAMETER
SR+
TEST CONDITIONS
Positive
P
iti slew
l
rate
t att
unity gain†
RL = 10 kΩ,,
See Figure 1
SR–
tr
tf
Negative
N
ti slew
l
rate
t att
unity gain†
Rise time
Fall time
Overshoot factor
TL031M
Vn
Equivalent
q
input
noise voltage
25°C
2
1.5
2.9
–55°C
1.4
1
1.9
125°C
2.4
1
3.5
25°C
3.9
1.5
5.1
–55°C
3.2
1
4.6
125°C
4.1
1
132
–55°C
142
123
See Figures 1 and 2
125°C
166
158
VI(PP) = ±10 mV,
RL = 10 kΩ, CL = 100 pF,
25°C
138
132
–55°C
142
123
See Figure 1
125°C
166
158
VI(PP) = ±10 mV,
RL = 10 kΩ, CL = 100 pF,
25°C
11%
5%
–55°C
16%
6%
See Figures 1 and 2
125°C
14%
8%
61
61
41
41
61
61
41
41
25°C
0 003
0.003
0 003
0.003
25°C
1
1.1
–55°C
1
1.1
f = 10 Hz
RS = 20 Ω,,
See Figure 3
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 1 kHz
B1
Unity-gain bandwidth
V
VI = 10 mV,
CL = 25 pF
F,
V
VI = 10 mV,
CL = 25 pF
F,
kΩ
RL = 10 kΩ,
See Figure 4
RL = 10 kΩ,
See Figure 4
25°C
25°C
125°C
0.9
0.9
25°C
61°
65°
–55°C
57°
64°
125°C
59°
62°
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
V/µs
V/µs
4.7
138
Equivalent
q
input noise
current
14
VCC± = ±15 V
MIN
TYP
MAX
25°C
In
Phase margin at unity gain
VCC± = ±5 V
MIN
TYP
MAX
VI(PP) = ±10 mV,
RL = 10 kΩ, CL = 100 pF,
TL031AM
φm
CL = 100 pF,,
TA
ns
ns
nV/√Hz
pA/√Hz
MHz
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL031Y electrical characteristics, TA = 25°C
TL031Y
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
IIO
IIB
Input offset current
Input bias current
TEST CONDITIONS
VO = 0
0,
RS = 50 Ω
VIC = 0
0,
VO = 0,,
See Figure 5
VIC = 0,,
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
UNIT
0.54
0.5
mV
71
7.1
59
5.9
µV/°C
1
1
pA
2
2
pA
–3.4
to
5.4
–13.4
to
15.4
V
VICR
Common-mode input voltage
range
VOM+
Maximum positive peak
output voltage swing
RL = 10 kΩ
4.3
14
V
VOM–
Maximum negative peak
output voltage swing
RL = 10 kΩ
–4.2
–13.9
V
AVD
Large-signal differential
voltage amplification†
RL = 10 kΩ
12
14.3
V/mV
ri
Input resistance
1012
1012
Ω
ci
Input capacitance
5
4
pF
VO = 0,
87
94
dB
96
96
dB
1.9
6.5
mW
192
217
µA
VCC± = ±5 V
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
UNIT
2
2.9
V/µs
3.9
5.1
V/µs
CMRR
Common-mode rejection ratio
VIC = VICRmin,
RS = 50 Ω
kSVR
Supply-voltage rejection ratio
(∆VCC±/∆VIO)
VO = 0,
RS = 50 Ω
VO = 0
0,
No load
PD
ICC
Total power dissipation
Supply current
† At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
TL031Y operating characteristics, TA = 25°C
TL031Y
PARAMETER
TEST CONDITIONS
MIN
SR+
Positive slew rate at unity gain‡
SR–
Negative slew rate at unity gain‡
tr
tf
Rise time
RL = 10 kΩ,
CL = 100 pF,
pF
See Figure 1
RL = 10 kΩ,
CL = 100 pF,
pF
See Figure 1
VI(PP) = ±10 mV,
RL = 10 kΩ,
CL = 100 pF,
138
132
ns
Fall time
138
132
ns
Overshoot factor
See Figures 1 and 2
Vn
Eq i alent input
Equivalent
inp t noise voltage
oltage
RS = 20 Ω,,
See Figure 3
In
Equivalent input noise current
f = 1 kHz
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
B1
11%
5%
f = 10 Hz
61
61
f = 1 kHz
41
41
0.003
0.003
1
1.1
61°
65°
RL = 10 kΩ,
See Figure 4
VI = 10 mV,
RL = 10 kΩ,
CL = 25 pF,
See Figure 4
‡ For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
φm
Phase margin at unity gain
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
nV/√Hz
pA/√Hz
MHz
15
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL032C and TL032AC electrical characteristics at specified free-air temperature
TL032C, TL032AC
PARAMETER
TEST CONDITIONS
TL032C
VIO
Input offset voltage
TL032AC
αVIO
Temperature coefficient
of input offset voltage
VO = 0
0,
VIC = 0,
RS = 50 Ω
TA
25°C
Full range†
0.04
0.04
25°C
1
100
1
100
70°C
9
200
12
200
25°C
2
200
2
200
70°C
50
400
80
400
Common-mode input
voltage range
Full range†
RL = 10 kΩ
RL = 10 kΩ
RL = 10 kΩ
–3.4
to
5.4
–1.5
to
4
–11.5
to
14
–13.4
to
15.4
–11.5
to
14
3
4.3
13
14
3
4.2
13
14
70°C
3
4.3
13
14
25°C
–3
–4.2
–12.5
–13.9
25
µV/mo
pA
pA
V
V
V
0°C
–3
–4.1
–12.5
–13.9
70°C
–3
–4.2
–12.5
–14
25°C
4
12
5
14.3
0°C
3
11.1
4
13.5
V/mV
70°C
4
13.3
1012
5
15.2
1012
Ω
14
pF
25°C
ci
Input capacitance
25°C
kSVR
–1.5
to
4
0°C
Input resistance
VCC± = ±5 V to ±15 V,
V
VO = 0, RS = 50 Ω
µV/°C
25°C
ri
VIC = VICRmin,
i
VO = 0
0, RS = 50 Ω
mV
1.8
25°C
25°C
Su ly voltage
Supply-voltage
rejection ratio
( VCC±//∆V
(∆V
VIO)
3.8
0.8
10.8
VIC = 0,,
Common-mode
C
d
rejection ratio
0.39
11.5
VO = 0,,
See Figure 5
CMRR
2.8
25°C to
70°C
Input bias current
AVD
2.5
TL032AC
IIB
L
i
l diff
ti l
Large-signal
differential
voltage am
lification§
amplification
0.53
UNIT
1.5
10.8
VIC = 0,,
Maximum negative
peak output voltage
swing
4.5
11.5
VO = 0,,
See Figure 5
VOM–
0.57
3.5
25°C to
70°C
Input offset current
Maximum
M
i
positive
iti peak
k
output
out
ut voltage swing
0.69
25°C
TL032C
IIO
VOM+
VCC± = ±15 V
MIN
TYP
MAX
Full range†
Input offset voltage
long-term drift‡
VICR
VCC± = ±5 V
MIN
TYP
MAX
5
25°C
70
87
75
94
0°C
70
87
75
94
70°C
70
87
75
94
25°C
75
96
75
96
0°C
75
96
75
96
70°C
75
96
75
96
dB
dB
† Full range is 0°C to 70°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ At VCC± = ±5 V, VO = 2.3 V; at VCC± = ±15 V, VO = ±10 V.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL032C and TL032AC electrical characteristics at specified free-air temperature (continued)
TL032C, TL032AC
PARAMETER
TEST CONDITIONS
Total
T
t l power di
dissipation
i ti
(two amplifiers)
am lifiers)
PD
VO = 0,
No load
ICC
Supply
y current
(two amplifiers)
VO = 0
0,
VO1/VO2
Crosstalk attenuation
AVD = 100 dB
No load
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
3.8
5
13
17
0°C
3.7
5
12.7
17
70°C
3.8
5
12.6
17
0°C
368
500
422
560
70°C
378
500
420
560
25°C
120
UNIT
mW
µA
120
dB
VCC± = ±15 V
MIN
TYP
MAX
UNIT
TL032C and TL032AC operating characteristics at specified free-air temperature
TL032C, TL032AC
PARAMETER
TEST CONDITIONS
TA
VCC± = ±5 V
TYP
MAX
MIN
SR+
Positive
P
iti slew
l
rate
t att unity
it
gain†
RL = 10 kΩ,, CL = 100 pF,,
See Figure 1
SR–
tr
tf
N
ti slew
l
t att unity
it
Negative
rate
gain†
Rise time
VI(PP) = ±10 V,
RL = 10 kΩ, CL = 100 pF,
See Figures 1 and 2
Fall time
Overshoot factor
TL032C
Vn
Equivalent
q
input
noise voltage
f = 10 Hz
RS = 20 Ω,,
See Figure 3
TL032AC
f = 1 kHz
f = 10 Hz
f = 1 kHz
In
Equivalent input noise current
f = 1 kHz
B1
Unity-gain bandwidth
VI = 10 mV,
V
CL = 25 pF
F,
RL = 10 kΩ,
kΩ
See Figure 4
mV
VI = 10 mV,
CL = 25 pF,
F,
RL = 10 kΩ
kΩ,
See Figure 4
φm
Phase margin at unity gain
25°C
12
1.5
2.9
0°C
1.8
1
2.6
70°C
2.2
1.5
3.2
25°C
3.9
1.5
5.1
0°C
3.7
1.5
5
70°C
4
1.5
5
25°C
138
132
0°C
134
127
70°C
150
142
25°C
138
132
0°C
134
127
70°C
150
142
25°C
11%
5%
0°C
10%
4%
70°C
12%
6%
49
49
41
41
49
49
25°C
25°C
41
41
25°C
0.003
0.003
25°C
1
1.1
0°C
1
1.1
70°C
1
1
25°C
61°
65°
0°C
61°
65°
70°C
60°
64°
V/µs
V/µs
ns
ns
nV/√Hz
√
60
pA/√Hz
MHz
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL032I and TL032AI electrical characteristics at specified free-air temperature
TL032I, TL032AI
PARAMETER
TEST CONDITIONS
TL032I
VIO
Input offset voltage
TL032AI
αVIO
Temperature coefficient
of input offset voltage
VO = 0
0,
VIC = 0,
RS = 50 Ω
TA
Full range†
10.8
25°C
0.04
0.04
VIC = 0,,
µV/mo
1
100
1
100
pA
0.02
0.45
0.02
0.45
nA
25°C
2
200
2
200
pA
85°C
0.2
0.9
0.3
0.9
nA
Full range†
–1.5
to
4
–3.4
to
5.4
–1.5
to
4
–11.5
to
14
–13.4
to
15.4
–11.5
to
14
25°C
3
4.3
13
14
–40°C
3
4.2
13
14
85°C
3
4.4
13
14
25°C
–3
–4.2
–12.5
–13.9
–40°C
–3
–4.1
–12.5
–13.8
85°C
–3
–4.2
–12.5
–14
–40°C
3
8.4
4
11.6
85°C
4
13.5
1012
5
15.3
1012
Maximum negative
peak output voltage
swing
RL = 10 kΩ
AVD
Large-signal
g
g
differential
voltage amplification§
RL = 10 kΩ
ri
Input resistance
25°C
ci
Input capacitance
25°C
VCC± = ±5 V to ±15 V,
V
µV/°C
25
85°C
Common-mode input
voltage range
VIC = VICRmin,
i
VO = 0
0, RS = 50 Ω
mV
25°C
25°C
RL = 10 kΩ
0.8
2.6
11.4
VO = 0,,
See Figure 5
Supply-voltage
Su
ly voltage
rejection ratio
( VCC±/∆V
(∆V
/ VIO)
4.6
25°C to
85°C
Input bias current
kSVR
0.39
UNIT
1.5
3.3
2.8
TL032AI
IIB
Common-mode
C
d
rejection ratio
0.53
10.8
VIC = 0,,
CMRR
5.3
25°C
11.4
VO = 0,,
See Figure 5
VOM–
0.57
3.5
25°C to
85°C
Input offset current
VOM+
0.69
Full range†
TL032I
IIO
M i
iti peak
k
Maximum
positive
out
ut voltage swing
output
VCC± = ±15 V
MIN
TYP
MAX
25°C
Input offset voltage
long-term drift‡
VICR
VCC± = ±5 V
MIN
TYP
MAX
5
4
25°C
70
87
75
94
–40°C
70
87
75
94
85°C
70
87
75
94
25°C
75
96
75
96
–40°C
75
96
75
96
V
V
V
V/mV
Ω
pF
dB
dB
VO = 0,
RS = 50 Ω
85°C
75
96
75
96
† Full range is –40°C to 85°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ At VCC± = ±5 V, VO = 2.3 V; at VCC± = ±15 V, VO = ±10 V.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL032I and TL032AI electrical characteristics at specified free-air temperature (continued)
TL032I, TL032AI
PARAMETER
TEST CONDITIONS
Total
T
t l power di
dissipation
i ti
(two amplifiers)
am lifiers)
PD
Supply
S
l currentt
(two amplifiers)
am lifiers)
ICC
VO1/VO2
VO = 0,
VO = 0,
Crosstalk attenuation
No load
No load
AVD = 100 dB
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
3.8
5
13
17
–40°C
2.9
5
10.9
17
85°C
3.7
5
12.4
17
25°C
384
500
434
560
–40°C
288
500
362
560
85°C
372
500
414
560
25°C
120
UNIT
mW
µA
120
dB
VCC± = ±15 V
MIN
TYP
MAX
UNIT
TL032I and TL032AI operating characteristics at specified free-air temperature
TL032I, TL032AI
PARAMETER
TEST CONDITIONS
TA
VCC± = ±5 V
TYP
MAX
MIN
SR+
Positive
P
iti slew
l
rate
t att unity
it
gain†
RL = 10 kΩ,
kΩ CL = 100 pF
SR–
tr
tf
Negative
N
ti slew
l
rate
t att unity
it
gain†
VI(PP) = ±10 V,
RL = 10 kΩ, CL = 100 pF,
See Figures 1 and 2
Rise time
VI(PP) = ±10 V,
RL = 10 kΩ, CL = 100 pF,
See Figure 1
Fall time
VI(PP) = ±10 V,
RL = 10 kΩ, CL = 100 pF,
See Figures 1 and 2
Overshoot factor
TL032I
Vn
Equivalent
q
input
noise voltage
f = 10 Hz
RS = 20 Ω,,
See Figure 3
TL032AI
In
f = 1 kHz
B1
Unity-gain bandwidth
VI = 10 mV,
V
CL = 25 pF
F,
Phase margin at unity gain
f = 10 Hz
f = 1 kHz
Equivalent input noise
current
φm
f = 1 kHz
VI = 10 mV,
mV
CL = 25 pF,
F,
RL = 10 kΩ,
kΩ
See Figure 4
RL = 10 kΩ
kΩ,
See Figure 4
25°C
2
1.5
2.9
–40°C
1.6
1
2.1
85°C
2.3
1.5
3.3
25°C
3.9
1.5
5.1
–40°C
3.3
1.5
4.8
85°C
4.1
1.5
4.9
25°C
138
132
–40°C
132
123
85°C
154
146
25°C
138
132
–40°C
132
123
85°C
154
146
25°C
11%
5%
–40°C
12%
5%
85°C
13%
7%
49
49
41
41
49
49
41
41
25°C
0.003
0.003
25°C
1
1.1
–40°C
1
1.1
25°C
25°C
85°C
0.9
1
25°C
61°
65°
–40°C
61°
65°
85°C
60°
64°
V/µs
V/µs
ns
ns
nV/√Hz
√
60
pA/√Hz
MHz
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL032M and TL032AM electrical characteristics at specified free-air temperature
TL032M, TL032AM
PARAMETER
TEST CONDITIONS
TL032M
VIO
Input offset voltage
TL032AM
αVIO
Temperature coefficient
of input offset voltage
VO = 0
0,
VIC = 0,
RS = 50 Ω
TA
Full range†
5.8
9.7
9.7
25°C
0.04
0.04
VO = 0,,
See Figure 5
VIC = 0,,
1
100
1
100
pA
10
0.2
10
nA
25°C
2
200
2
200
pA
125°C
7
20
8
20
nA
–1.5
to
4
–3.4
to
5.4
–1.5
to
4
3
4.3
13
14
–55°C
3
4.1
13
14
125°C
3
4.4
13
14
25°C
–3
–4.2
–12.5
–13.9
–55°C
–3
–4
–12.5
–13.8
125°C
–3
–4.3
–12.5
–14
V
V
25°C
4
12
5
14.3
3
7.1
4
10.4
125°C
3
4
15
1012
Ω
4
pF
Input resistance
25°C
Input capacitance
25°C
5
CMRR
C
d rejection
j ti
Common-mode
ratio
kSVR
V
–55°C
ci
VCC± = ±5 V to ±15 V,
V
VO = 0, RS = 50 Ω
–13.4
to
15.4
25°C
ri
Su ly voltage
Supply-voltage
rejection ratio
( VCC±/∆V
(∆V
/ VIO)
–11.5
to
14
–11.5
to
14
12.9
1012
i
VIC = VICRmin,
VO = 0
0, RS = 50 Ω
µV/mo
0.2
Full range†
RL = 10 kΩ
µV/°C
25°C
Common-mode input
voltage range
RL = 10 kΩ
mV
125°C
25°C
RL = 10 kΩ
0.8
3.8
25°C to
125°C
Input bias current
Large-signal
L
i
l diff
differential
ti l
voltage am
lification§
amplification
0.39
UNIT
1.5
4.5
2.8
TL032AM
IIB
AVD
0.53
9.7
VIC = 0,,
VOM–
6.5
25°C
9.7
VO = 0,,
See Figure 5
Maximum
M
i
negative
ti peak
k
out
ut voltage swing
output
0.57
3.5
25°C to
125°C
Input offset current
VOM+
0.69
Full range†
TL032M
IIO
M i
iti peak
k
Maximum
positive
out
ut voltage swing
output
VCC± = ±15 V
MIN
TYP
MAX
25°C
Input offset voltage
long-term drift‡
VICR
VCC± = ±5 V
MIN
TYP
MAX
25°C
70
87
75
94
–55°C
70
87
70
94
125°C
70
87
70
94
25°C
75
96
75
96
–55°C
75
95
75
95
125°C
75
96
75
96
V/mV
dB
dB
† Full range is –55°C to 125°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ At VCC± = ±5 V, VO = 2.3 V; at VCC± = ±15 V, VO = ±10 V.
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL032M and TL032AM electrical characteristics at specified free-air temperature (continued)
TL032M, TL032AM
PARAMETER
Total
T
t l power di
dissipation
i ti
(two amplifiers)
am lifiers)
PD
Supply
S
l currentt
(two amplifiers)
am lifiers)
ICC
VO1/VO2
Crosstalk attenuation
TEST CONDITIONS
VO = 0,
No load
VO = 0,
No load
AVD = 100 dB
TA
VCC± = ±5 V
MIN
TYP
MAX
25°C
3.8
5
VCC± = ±15 V
MIN
TYP
MAX
13
17
–55°C
2.3
5
9.4
17
125°C
3.6
5
11.8
17
25°C
384
500
434
560
–55°C
228
500
312
560
125°C
356
500
394
560
25°C
120
120
UNIT
mW
µA
dB
TL032M and TL032AM operating characteristics at specified free-air temperature
TL032M, TL032AM
PARAMETER
TEST CONDITIONS
TA
VCC± = ±5 V
TYP
MAX
MIN
SR+
SR–
tr
tf
Positive
P
iti slew
l
rate
t att unity
it
gain†
Negative
N
ti slew
l
rate
t att unity
it
gain†
Rise time
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF,
F,
See Figures 1 and 2
Fall time
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF,
F,
See Figure 1
Overshoot factor
Vn
In
B1
φm
RL = 10 kΩ,
CL = 100 pF,
pF
See and Figure 1
Equivalent
input noise
voltage
TL032M
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF,
F,
See Figures 1 and 2
f = 10 Hz
RS = 20 Ω,,
See Figure 3
TL032AM
f = 1 kHz
f = 10 Hz
f = 1 kHz
Equivalent input noise
current
f = 1 kHz
Unity-gain bandwidth
VI = 10 mV,
V
CL = 25 pF
F,
RL = 10 kΩ,
kΩ
See Figure 4
VI = 10 mV,
mV
CL = 25 pF,
F,
RL = 10 kΩ,
kΩ
See Figure 4
Phase margin at unity gain
VCC± = ±15 V
MIN
TYP
MAX
25°C
2
1.5
2.9
–55°C
1.4
1
1.9
125°C
2.4
1
3.5
25°C
3.9
1.5
5.1
–55°C
3.2
1
4.6
125°C
4.1
1
4.7
25°C
138
132
–55°C
142
123
125°C
166
58
25°C
138
132
–55°C
142
123
125°C
166
158
25°C
11%
5%
–55°C
16%
6%
125°C
14%
8%
49
49
41
41
49
49
41
41
25°C
0.003
0.003
25°C
1
1.1
–55°C
1
1.1
125°C
0.9
0.9
25°C
61°
65°
–55°C
57°
64°
125°C
59°
62°
25°C
25°C
UNIT
V/µs
V/µs
ns
ns
nV/√Hz
√
pA/√Hz
MHz
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL032Y electrical characteristics, TA = 25°C
TL032Y
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
IIO
TEST CONDITIONS
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
UNIT
0.69
0.57
mV
11.5
10.8
µV/°C
VO = 0
0,
RS = 50 Ω
VIC = 0
0,
Input offset current
VO = 0,
See Figure 5
VIC = 0,
1
1
pA
IIB
Input bias current
VO = 0,
See Figure 5
VIC = 0,
2
2
pA
VICR
Common-mode input voltage range
–3.4
to
5.4
–13.4
to
15.4
V
VOM+
Maximum positive peak
output voltage swing
RL = 10 kΩ
4.3
14
V
VOM–
Maximum negative peak
output voltage swing
RL = 10 kΩ
–4.2
–13.9
V
AVD
Large-signal differential
voltage amplification†
RL = 10 kΩ
12
14.3
V/mV
ri
Input resistance
1012
1012
Ω
ci
Input capacitance
5
14
pF
CMRR
Common-mode rejection ratio
VIC = VICRmin,
VO = 0, RS = 50 Ω
87
94
dB
kSVR
Supply-voltage rejection ratio
(∆VCC±/∆VIO)
VCC± = ±5 V to ±15 V,
VO = 0, RS = 50 Ω
96
96
dB
PD
Total power dissipation
(two amplifiers)
VO = 0,
3.8
13
mW
120
120
dB
VCC± = ±15 V
MIN
TYP
MAX
UNIT
No load
VO1/VO2 Crosstalk attenuation
AVD = 100 dB
† At VCC± = ±5 V, VO = 2.3 V; at VCC± = ±15 V, VO = ±10 V.
TL032Y operating characteristics, TA = 25°C
TL032Y
PARAMETER
TEST CONDITIONS
VCC± = ±5 V
MIN
TYP
MAX
SR+
Positive slew rate at unity gain†
RL = 10 kΩ,
12
2.9
V/µs
SR–
Negative slew rate at unity gain†
See Figure 1 and Note 8
3.9
5.1
V/µs
tr
tf
Rise time
VI(PP) = ±10 V,
RL = 10 kΩ,, CL = 100 pF,
138
132
ns
Fall time
138
132
ns
Overshoot factor
See Figures 1 and 2
Vn
Equivalent input noise voltage
RS = 20 Ω,,
See Figure 3
In
Equivalent input noise current
f = 1 kHz
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
B1
CL = 100 pF,
11%
5%
f = 10 Hz
49
49
f = 1 kHz
41
41
0.003
0.003
1
1.1
61°
65°
RL = 10 kΩ,
See Figure 4
VI = 10 mV,
RL = 10 kΩ,
CL = 25 pF,
See Figure 4
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
φm
22
Phase margin at unity gain
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
nV/√Hz
pA/√Hz
MHz
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL034C and TL034AC electrical characteristics at specified free-air temperature
TL034C, TL034AC
PARAMETER
TEST CONDITIONS
TL034C
VIO
Input offset voltage
VO = 0
0,
VIC = 0,
RS = 50 Ω
αVIO
Temperature coefficient of
input offset voltage
TL034AC
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
0.91
0.79
25°C
Full range†
6
8.2
25°C
0.7
Full range†
0.58
5.7
1.5
25°C to
70°C
11.6
12
TL034AC
25°C to
70°C
11.6
12
25°C
0.04
0.04
µV/°C
25
µV/mo
IIO
Input offset current
VO = 0,, VIC = 0,,
See Figure 5
25°C
1
100
1
100
70°C
9
200
12
200
IIB
Input bias current
VO = 0,, VIC = 0,,
See Figure 5
25°C
2
200
2
200
70°C
50
400
80
400
25°C
VICR
Common-mode input
voltage range
Full range†
VOM+
VOM–
AVD
M i
iti peak
k
Maximum
positive
out
ut voltage swing
output
Maximum
M
i
negative
ti peak
k
out
ut voltage swing
output
Large-signal
L
i
l diff
differential
ti l
voltage am
lification§
amplification
RL = 10 kΩ
RL = 10 kΩ
RL = 10 kΩ
0°C
3
4.2
13
14
70°C
3
4.3
13
14
25°C
–3
–4.2
–12.5
–13.9
pA
pA
V
V
V
0°C
–3
–4.1
–12.5
–13.9
70°C
–3
–4.2
–12.5
–14
25°C
4
12
5
14.3
0°C
3
11.1
4
13.5
V/mV
70°C
4
13.3
1012
5
15.2
1012
Ω
14
pF
25°C
VO = 0, RS = 50 Ω
–11.5
to
14
14
Input capacitance
kSVR
–13.4
to
15.4
13
ci
Su ly voltage
Supply-voltage
rejection ratio
(∆VCC±/∆VIO)
–1.5
to
4
–11.5
to
14
4.3
25°C
VIC = VICRmin,
VO = 0,
RS = 50 Ω
–3.4
to
5.4
3
Input resistance
C
d
Common-mode
rejection ratio
–1.5
to
4
25°C
ri
CMRR
mV
3.7
TL034C
Input offset voltage
long-term drift‡
4
6.2
3.5
UNIT
5
25°C
70
87
75
94
0°C
70
87
75
94
70°C
70
87
75
94
25°C
75
96
75
96
0°C
75
96
75
96
70°C
75
96
75
96
dB
dB
† Full range is 0°C to 70°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL034C and TL034AC electrical characteristics at specified free-air temperature (continued)
TL034C, TL034AC
PARAMETER
TEST CONDITIONS
Total
T
t l power di
dissipation
i ti
(two amplifiers)
am lifiers)
PD
ICC
VO = 0, No load
Supply current (four amplifiers)
VO1/VO2
Crosstalk attenuation
VO = 0, No load
AVD = 100
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
7.7
10
26
34
0°C
7.4
10
25.3
34
70°C
7.6
10
25.2
34
25°C
0.77
1
0.87
1.12
0°C
0.74
1
0.85
1.12
70°C
0.76
1
0.84
1.12
25°C
120
UNIT
mW
mA
120
dB
VCC± = ±15 V
MIN
TYP
MAX
UNIT
TL034C and TL034AC operating characteristics at specified free-air temperature
TL034C, TL034AC
PARAMETER
TEST CONDITIONS
TA
VCC± = ±5 V
TYP
MAX
MIN
SR+
SR–
tr
tf
Positive
P
iti slew
l
rate
t att unity
it
gain†
Negative
N
ti slew
l
rate
t att unity
it
gain†
1.5
2.9
1.8
1
2.6
70°C
2.2
1.5
3.2
25°C
3.9
1.5
5.1
0°C
3.7
1.5
5
4
1.5
5
25°C
138
132
Rise time
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF,
F,
See Figures 1 and 2
0°C
134
127
70°C
150
142
25°C
138
132
Fall time
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF,
F,
See Figure 1
0°C
134
127
70°C
150
142
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF,
F,
See Figures 1 and 2
25°C
11%
5%
0°C
10%
4%
70°C
12%
6%
83
83
43
43
83
83
TL034C
Equivalent
q
input
noise voltage
f = 10 Hz
RS = 20 Ω,,
See Figure 3
TL034AC
f = 1 kHz
f = 10 Hz
f = 1 kHz
In
Equivalent input noise current
f = 1 kHz
B1
Unity-gain bandwidth
VI = 10 mV,
V RL = 10 kΩ,
kΩ
CL = 25 pF
F, See Figure 4
φm
2
0°C
70°C
Overshoot factor
Vn
RL = 10 kΩ,
CL = 100 pF
pF,
See Figure 1
25°C
Phase margin at unity gain
VI = 10 mV,
V RL = 10 kΩ,
kΩ
CL = 25 pF
F, See Figure 4
25°C
25°C
43
43
25°C
0.003
0.003
25°C
1
1.1
0°C
1
1.1
70°C
1
1
25°C
61°
65°
0°C
61°
65°
70°C
60°
64°
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V/µs
V/µs
ns
ns
nV/√Hz
√
60
pA/√Hz
MHz
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL034I and TL034AI electrical characteristics at specified free-air temperature
TL034I, TL034AI
PARAMETER
TEST CONDITIONS
TL034I
VIO
Input offset voltage
0
VO = 0,
VIC = 0,
RS = 50 Ω
αVIO
Temperature coefficient
of input offset voltage
TL034AI
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
0.91
0.79
25°C
Full range†
3.6
9.3
25°C
0.7
Full range†
0.58
6.8
1.5
mV
4.8
TL034I
25°C to
85°C
11.5
11.6
TL034AI
25°C to
85°C
11.5
11.6
25°C
0.04
0.04
Input offset voltage
long-term drift‡
4
7.3
3.5
UNIT
µV/°C
25
µV/mo
IIO
Input offset current
VO = 0,, VIC = 0,,
See Figure 5
25°C
1
100
1
100
pA
85°C
0.02
0.45
0.02
0.45
nA
IIB
Input bias current
VO = 0,, VIC = 0,,
See Figure 5
25°C
2
200
2
200
pA
85°C
0.2
0.9
0.3
0.9
nA
25°C
VICR
Common-mode input
voltage range
Full range†
VOM+
VOM–
Maximum
M
i
positive
iti peak
k
output
out
ut voltage swing
Maximum
M
i
negative
ti peak
k
out
ut voltage swing
output
RL = 10 kΩ
RL = 10 kΩ
14
–40°C
3
4.1
13
14
85°C
3
4.4
13
14
25°C
–3
–4.2
–12.5
–13.9
–40°C
–3
–4.1
–12.5
–13.8
85°C
–3
–4.2
–12.5
–14
–40°C
4
12
5
14.3
85°C
3
8.4
1012
4
11.6
1012
25°C
ci
Input capacitance
25°C
kSVR
Su ly voltage
Supply-voltage
rejection ratio
(∆VCC±/ ∆VIO)
VO = 0, RS = 50 Ω
–11.5
to
14
13
Input resistance
VIC = VICRmin,
VO = 0,
RS = 50 Ω
–13.4
to
15.4
4.3
ri
Common-mode
C
d
rejection ratio
–1.5
to
4
–11.5
to
14
3
Large-signal
differential
g
g
voltage amplification§
CMRR
–3.4
to
5.4
25°C
AVD
RL = 10 kΩ
–1.5
to
4
5
4
25°C
70
87
75
94
–40°C
70
87
75
94
85°C
70
87
75
94
25°C
75
96
75
96
–40°C
75
96
75
96
V
V
V
V/mV
Ω
pF
dB
dB
85°C
75
96
75
96
† Full range is –40°C to 85°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL034I and TL034AI electrical characteristics at specified free-air temperature (continued)
TL034I, TL034AI
PARAMETER
TEST CONDITIONS
Total
T
t l power di
dissipation
i ti
(four amplifiers)
am lifiers)
PD
ICC
VO = 0, No load
Supply current (four amplifiers)
VO1/VO2
VO = 0, No load
Crosstalk attenuation
AVD = 100
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
7.7
10
26
34
–40°C
5.8
10
21.7
34
85°C
7.4
10
24.8
34
25°C
0.77
1
0.87
1.12
–40°C
0.58
1
0.72
1.12
85°C
0.74
1
0.83
1.12
25°C
120
UNIT
mW
mA
120
dB
VCC± = ±15 V
MIN
TYP
MAX
UNIT
TL034I and TL034AI operating characteristics
TL034I, TL034AI
PARAMETER
TEST CONDITIONS
TA
VCC± = ±5 V
TYP
MAX
MIN
SR+
Positive
P
iti slew
l
rate
t att unity
it
gain†
RL = 10 kΩ,,
See Figure 1
SR–
tr
tf
CL = 100 pF,,
Negative
N
ti slew
l
rate
t att unity
it
gain†
Rise time
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF
F,
See Figures
1 and 2
g
Fall time
Overshoot factor
TL034I
Vn
Equivalent
input
q
noise voltage
f = 10 Hz
RS = 20 Ω,,
See Figure 3
TL034AI
In
f = 1 kHz
B1
Unity-gain bandwidth
V
VI = 10 mV,
CL = 25 pF
F,
Phase margin at unity gain
f = 10 Hz
f = 1 kHz
Equivalent input noise
current
φm
f = 1 kHz
V
VI = 10 mV,
CL = 25 pF
F,
kΩ
RL = 10 kΩ,
See Figure 4
RL = 10 kΩ,
kΩ
See Figure 4
25°C
2
1.5
2.9
–40°C
1.6
1
2.1
85°C
2.3
1.5
3.3
25°C
3.9
1.5
5.1
–40°C
3.3
1.5
4.8
85°C
4.1
1.5
4.9
25°C
138
132
–40°C
132
123
85°C
154
146
25°C
138
132
–40°C
132
123
85°C
154
146
25°C
11%
5%
–40°C
12%
5%
85°C
13%
7%
83
83
43
43
83
83
43
43
25°C
0.003
0.003
25°C
1
1.1
–40°C
1
1.1
25°C
25°C
85°C
0.9
1
25°C
61°
65°
–40°C
61°
65°
85°C
60°
64°
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V/µs
V/µs
ns
ns
√
nV/√Hz
60
pA/√Hz
MHz
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL034M and TL034AM electrical characteristics at specified free-air temperature
TL034M, TL034AM
PARAMETER
TEST CONDITIONS
TL034M
VIO
Input offset voltage
0
VO = 0,
VIC = 0,
RS = 50 Ω
αVIO
Temperature coefficient of
input offset voltage
TL034AM
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
0.91
3.6
0.78
4
0.7
3.5
0.58
1.5
25°C
Full range†
11
25°C
Full range†
9
8.5
mV
6.5
TL034M
25°C to
125°C
10.6
10.9
TL034AM
25°C to
125°C
10.6
10.9
25°C
0.04
0.04
Input offset voltage
long-term drift‡
UNIT
µV/°C
µV/mo
IIO
Input offset current
VO = 0,, VIC = 0,,
See Figure 5
25°C
1
100
1
100
pA
125°C
0.2
10
0.2
10
nA
IIB
Input bias current
VO = 0,, VIC = 0,,
See Figure 5
25°C
2
200
2
200
pA
125°C
7
20
8
20
nA
25°C
VICR
Common-mode input
voltage range
Full range†
VOM+
VOM–
AVD
Maximum
M
i
positive
iti peak
k
output
out
ut voltage swing
Maximum
M
i
negative
ti peak
k
out
ut voltage swing
output
L
i
l diff
ti l
Large-signal
differential
voltage am
lification§
amplification
RL = 10 kΩ
RL = 10 kΩ
RL = 10 kΩ
–1.5
to
4
–3.4
to
5.4
–1.5
to
4
25°C
3
4.3
13
14
–55°C
3
4.1
13
14
125°C
3
4.4
13
14
25°C
–3
–4.2
–12.5
–13.9
–55°C
–3
–4
–12.5
–13.8
125°C
–3
–4.3
–12.5
–14
V
4
12
5
14.3
3
7.1
4
10.4
125°C
3
4
15
1012
Ω
4
pF
Input resistance
25°C
Input capacitance
25°C
5
CMRR
C
d
Common-mode
rejection ratio
VO = 0, RS = 50 Ω
V
25°C
ci
Supply-voltage
Su
ly voltage
rejection ratio
(∆VCC±/∆VIO)
V
–55°C
ri
kSVR
–13.4
to
15.4
–11.5
to
14
12.9
1012
i
VIC = VICRmin,
VO = 0,
0 RS = 50 Ω
–11.5
to
14
25°C
70
87
75
94
–55°C
70
87
70
94
125°C
70
87
70
94
25°C
75
96
75
96
–55°C
75
95
75
95
125°C
75
96
75
96
V/mV
dB
dB
† Full range is –55°C to 125°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA =
25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL034M and TL034AM electrical characteristics at specified free-air temperature (continued)
TL034M, TL034AM
PARAMETER
TEST CONDITIONS
Total
T
t l power di
dissipation
i ti
(two amplifiers)
am lifiers)
PD
ICC
VO = 0,
Supply current (two amplifiers)
VO1/VO2
Crosstalk attenuation
No load
VO = 0,
No load
AVD = 100
TA
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
25°C
7.7
10
26
34
–55°C
4.6
12
18.7
45
125°C
7.1
12
23.6
45
25°C
0.77
1
0.87
1.12
–55°C
0.46
1.2
0.62
1.5
125°C
0.71
1.2
0.79
1.5
25°C
120
120
UNIT
mW
mA
dB
TL034M and TL034AM operating characteristics at specified free-air temperature
TL034M, TL034AM
PARAMETER
TEST CONDITIONS
TA
VCC± = ±5 V
TYP
MAX
MIN
SR+
SR–
tr
tf
Positive
P
iti slew
l
rate
t att unity
it
gain†
Negative
N
ti slew
l
rate
t att unity
it
gain†
Rise time
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF,
F,
See Figures 1 and 2
Fall time
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF,
F,
See Figure 1
VI(PP)
( ) = ±10 V,
RL = 10 kΩ,
kΩ
CL = 100 pF,
F,
See Figures 1 and 2
Overshoot factor
TL034M
Vn
RL = 10 kΩ,
CL = 100 pF,
pF
See Figure 1
Equivalent
q
input
noise voltage
f = 10 Hz
RS = 20 Ω,,
See Figure 3
TL034AM
In
B1
φm
f = 1 kHz
f = 10 Hz
f = 1 kHz
Equivalent input noise
current
f = 1 kHz
Unity-gain bandwidth
VI = 10 mV,
V
CL = 25 pF
F,
RL = 10 kΩ,
kΩ
See Figure 4
V
VI = 10 mV,
CL = 25 pF
F,
RL = 10 kΩ,
kΩ
See Figure 4
Phase margin at unity gain
25°C
2
1.5
2.9
–55°C
1.4
1
1.9
125°C
2.4
1
3.5
25°C
3.9
1.5
5.1
–55°C
3.2
1
4.6
125°C
4.1
1
4.7
25°C
138
132
–55°C
142
123
125°C
166
58
25°C
138
132
–55°C
142
123
125°C
166
158
25°C
11%
5%
–55°C
16%
6%
125°C
14%
8%
83
83
43
43
83
83
43
43
25°C
0.003
0.003
25°C
1
1.1
–55°C
1
1.1
125°C
0.9
0.9
25°C
61°
65°
–55°C
57°
64°
125°C
59°
62°
25°C
25°C
† For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
28
POST OFFICE BOX 655303
VCC± = ±15 V
MIN
TYP
MAX
• DALLAS, TEXAS 75265
UNIT
V/µs
V/µs
ns
ns
nV/√Hz
√
pA/√Hz
MHz
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TL034Y electrical characteristics, TA = 25°C
TL034Y
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input
offset voltage
IIO
IIB
TEST CONDITIONS
VO = 0
0,
RS = 50 Ω
VIC = 0
0,
Input offset current
VO = 0,,
See Figure 5
VIC = 0,,
Input bias current
VO = 0,,
See Figure 5
VIC = 0,,
VCC± = ±5 V
MIN
TYP
MAX
VCC± = ±15 V
MIN
TYP
MAX
UNIT
0.91
0.79
mV
11.6
12
1
1
2
2
2
2
pA
µV/°C
pA
7
8
nA
–3.4
to
5.4
–13.4
to
15.4
V
VICR
Common-mode input voltage range
VOM+
Maximum positive peak output
voltage swing
RL = 10 kΩ
4.3
14
V
VOM–
Maximum negative peak output
voltage swing
RL = 10 kΩ
–4.2
–13.9
V
AVD
Large-signal differential voltage
amplification†
RL = 10 kΩ
12
14.3
V/mV
ri
Input resistance
1012
1012
Ω
ci
Input capacitance
5
4
pF
CMRR
Common-mode rejection ratio
VIC = VICRmin,
VO = 0, RS = 50 Ω
87
94
dB
kSVR
Supply-voltage rejection ratio
(∆VCC±/ ∆VIO)
VO = 0,
RS = 50 Ω
96
96
dB
PD
Total power dissipation (four
amplifiers)
VO = 0,
No load
7.7
26
mW
VO = 0,
AVD = 100
No load
0.77
0.87
mA
120
120
dB
VCC± = ±15 V
MIN
TYP
MAX
UNIT
ICC
VO1/VO2
Supply current (four amplifiers)
Crosstalk attenuation
† At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
TL034Y operating characteristics, TA = 25°C
TL034Y
PARAMETER
TEST CONDITIONS
VCC± = ±5 V
TYP
MAX
MIN
SR+
Positive slew rate at unity gain
SR–
Negative slew rate at unity gain
tr
tf
Rise time
RL = 10 kΩ,,
See Figure 1
CL = 100 pF,,
Overshoot factor
VI(PP) = ±10 V,
RL = 10 kΩ,
CL = 100 pF,
See Figures 1 and 2
Vn
Eq i alent input
inp t noise voltage
oltage
Equivalent
RS = 20 Ω,,
See Figure 3
In
Equivalent input noise current
f = 1 kHz
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
RL = 10 kΩ,
See Figure 4
φm
Phase margin at unity gain
VI = 10 mV,
CL = 25 pF,
RL = 10 kΩ,
See Figure 4
Fall time
2
1.5
2.9
V/µs
3.9
1.5
5.1
V/µs
138
132
ns
138
132
ns
11%
5%
f = 10 kHz
83
83
f = 1 kHz
43
43
0.003
0.003
1
1.1
61°
65°
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
nV/√Hz
pA/√Hz
MHz
29
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
PARAMETER MEASUREMENT INFORMATION
VCC+
–
+
VI
Overshoot
VO
90%
VCC–
RL
CL
(see Note A)
10%
tr
NOTE A: CL includes fixture capacitance.
Figure 1. Slew-Rate and Overshoot Test Circuit
Figure 2. Rise Time and Overshoot Waveform
10 kΩ
VCC+
10 kΩ
100 Ω
VO
+
VCC+
–
VI
VCC–
–
VO
CL
(see Note A)
RL
VCC–
RS
RS
NOTE A: CL includes fixture capacitance.
Figure 4. Unity-Gain Bandwidth and
Phase-Margin Test Circuit
Figure 3. Noise-Voltage Test Circuit
Ground Shield
VCC+
–
+
VCC–
Picoammeters
Figure 5. Input-Bias and Offset-Current Test Circuit
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
PARAMETER MEASUREMENT INFORMATION
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
input bias and offset current
At the picoampere bias current level typical of the TL03x and TL03xA, accurate measurement of the bias current
becomes difficult. Not only does this measurement require a picoammeter, but test-socket leakages easily can
exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses
a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with
no device in the socket. The device is then inserted into the socket and a second test that measures both the
socket leakage and the device input bias current is performed. The two measurements are then subtracted
algebraically to determine the bias current of the device.
noise
With the increasing emphasis on low noise levels in many of today’s applications, the input noise voltage density
is performed at f = 1 kHz, unless otherwise noted.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
Distribution of TL03x input offset voltages
6 – 11
Distribution of TL03x input offset-voltage temperature coefficients
Input bias current vs Common-mode input voltage
15
Input bias current and Input offset current vs Free-air temperature
16
Common-mode input voltage range vs Supply voltage
Common-mode input voltage range vs Free-air temperature
Output voltage vs Differential input voltage
17
18
19, 20
Maximum peak output voltage vs Supply voltage
21
Maximum peak-to-peak output voltage vs Frequency
22
Maximum peak output voltage vs Output current
23, 24
Maximum peak output voltage vs Free-air temperature
25, 26
Large-signal differential voltage amplification vs Load resistance
27
Large-signal differential voltage amplification and Phase shift vs Frequency
28
Large-signal differential voltage amplification and Phase shift vs Free-air temperature
29
Output impedance vs Frequency with VCC
30
" "15 V
=
Common-mode rejection ratio vs Frequency
32
12, 13, 14
31, 32
Common-mode rejection ratio vs Free-air temperature
33
Supply-voltage rejection ratio vs Free-air temperature
34
Short-circuit output current vs Supply voltage
35
Short-circuit output current vs Time
36
Short-circuit output current vs Free-air temperature
37
Equivalent input noise voltage vs Frequency (for TL031 and TL031A)
38
Equivalent input noise voltage vs Frequency (for TL032 and TL032A)
39
Equivalent input noise voltage vs Frequency (for TL034 and TL034A)
40
Supply current vs Supply voltage (for TL031 and TL031A)
41
Supply current vs Supply voltage (for TL032 and TL032A)
42
Supply current vs Supply voltage (for TL034 and TL034A)
43
Supply current vs Free-air temperature (for TL031 and TL031A)
44
Supply current vs Free-air temperature (for TL032 and TL032A)
45
Supply current vs Free-air temperature (for TL034 and TL034A)
46
Slew rate vs Load resistance
47, 48
Slew rate vs Free-air temperature
49, 50
Overshoot factor vs Load capacitance
51
Total harmonic distortion vs Frequency
52
Unity-gain bandwidth vs Supply voltage
53
Unity-gain bandwidth vs Free-air temperature
54
Phase margin vs Supply voltage
55
Phase margin vs Load capacitance
56
Phase margin vs Free-air temperature
57
Voltage-follower small-signal pulse response vs Time
58
Voltage-follower large-signal pulse response vs Time
59, 60
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TL031
INPUT OFFSET VOLTAGE
Percentage of Units – %
12
10
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
16
1681 Units Tested From 1 Wafer Lot
VCC± = ±15 V
TA = 25°C
P Package
14
Percentage of Units – %
14
DISTRIBUTION OF TL031A
INPUT OFFSET VOLTAGE
8
6
4
2
0
12
1433 Units Tested From 1 Wafer Lot
VCC± = ±15 V
TA = 25°C
P Package
ÎÎÎÎÎ
10
8
6
4
2
–1.2
–0.6
0
0.6
0
–900
1.2
–300
–600
Figure 6
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
900
15
TA = 25°C
P Package
6
3
Percentage of Amplifiers – %
Percentage of Amplification – %
600
DISTRIBUTION OF TL032A
INPUT OFFSET VOLTAGE
1681 Amplifiers Tested From 1 Wafer Lot
VCC± = ±15 V
9
300
Figure 7
DISTRIBUTION OF TL032
INPUT OFFSET VOLTAGE
12
0
VIO – Input Offset Voltage – µV
VIO – Input Offset Voltage – mV
1321 Amplifiers Tested From 1 Wafer Lot
VCC± = ±15 V
TA = 25°C
12 P Package
9
6
3
0
–1.2
–0.6
0
0.6
1.2
0
–900
–600
–300
0
300
600
900
VIO – Input Offset Voltage – µV
VIO – Input Offset Voltage – mV
Figure 9
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TL034
INPUT OFFSET VOLTAGE
9
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
1681 Amplifiers Tested From 1 Wafer Lot
VCC± = ±15 V
TA = 25°C
D Package
6
3
0
–1.2
–0.6
0
0.6
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
15
Percentage of Amplifiers – %
Percentage of Amplifiers – %
12
DISTRIBUTION OF TL034A
INPUT OFFSET VOLTAGE
12
1716 Amplifiers Tested From 3 Wafer Lots
VCC± = ±15 V
TA = 25°C
N Package
9
6
3
0
–1.8
1.2
–1.2
VIO – Input Offset Voltage – mV
Figure 10
0.6
1.2
1.8
DISTRIBUTION OF TL032
INPUT OFFSET-VOLTAGE
TEMPERATURE COEFFICIENT
76 Units Tested From 1 Wafer Lot
VCC± = ±15 V
TA = 25°C to 125°C
P Package
18
Percentage of Amplifiers – %
Percentage of Units – %
0
Figure 11
DISTRIBUTION OF TL031
INPUT OFFSET-VOLTAGE
TEMPERATURE COEFFICIENT
24
0.6
VIO – Input Offset Voltage – mV
12
6
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
30 160 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C to 125°C
25
P Package
20
15
10
5
0
–30
–20
–10
0
10
20
30
αVIO – Input Offset-Voltage Temperature Coefficient – µV/°C
0
–40
–30 –20 –10
0
10
20
30
αVIO – Temperature Coefficient – µV/°C
Figure 13
Figure 12
34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
40
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TL034
INPUT OFFSET-VOLTAGE
TEMPERATURE COEFFICIENT
25
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
10
160 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C to 125°C
D Package
VCC± = ±15 V
TA = 25°C
IIB
I IB – Input Bias Current – nA
Percentage of Amplifiers – %
30
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
20
15
10
5
0
–5
5
0
–40
–30
–20
–10
0
10
20
30
–10
–15
40
–10
–5
0
5
10
VIC – Common-Mode Input Voltage – V
αVIO – Temperature Coefficient – µV/°C
Figure 15
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT†
vs
FREE-AIR TEMPERATURE
COMMON-MODE INPUT VOLTAGE
vs
SUPPLY VOLTAGE
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
16
10
1
IIB
0.1
IIO
0.01
45
65
85
105
TA – Free-Air Temperature – °C
ÎÎÎÎÎ
ÎÎÎÎÎ
TA = 25°C
VCC± = ±15 V
VO = 0
VIC = 0
VIC
V
IC – Common-Mode Input Voltage – V
IIB
I IO – Input Bias and Input Offset Currents – nA
IIB and IIO
Figure 14
0.001
25
15
125
ÁÁ
ÁÁ
ÁÁ
12
Positive Limit
8
4
0
ÎÎÎÎÎ
ÎÎÎÎÎ
–4
Negative Limit
–8
–12
–16
0
2
Figure 16
4
6
8
10
12
|VCC±| – Supply Voltage – V
14
16
Figure 17
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
COMMON-MODE INPUT VOLTAGE RANGE†
vs
FREE-AIR TEMPERATURE
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
20
15
ÎÎÎÎÎ
Positive Limit
10
RL = 1 kΩ
RL = 2 kΩ
RL = 5 kΩ
RL = 10 kΩ
RL = 20 kΩ
1
5
0
–5
ÁÁÁ
ÁÁÁ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
1.5
VO – Output Voltage – V
VIC
V
IC – Common-Mode Input Voltage – V
VCC± = ±15 V
0.5
0
VCC± = ±5 V
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
–0.5
RL = 20 kΩ
RL = 10 kΩ
RL = 5 kΩ
RL = 2 kΩ
RL = 1 kΩ
–10
–15
ÎÎÎÎÎ
ÎÎÎÎÎ
–1
Negative Limit
–20
–75
–50
–25
0
25
50
75
100
TA – Free-Air Temperature –°C
–1.5
–5
125
–4
–3
Figure 18
VO – Output Voltage – V
1
0.5
ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈ
–1
RL = 10 kΩ
RL = 20 kΩ
RL = 50 kΩ
–1.5
–15
ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈ
1
2
3
4
5
16
RL = 5 kΩ
0
–0.5
0
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
VOM – Maximum Peak Output Voltage – V
VOM
VCC± = ±15 V
TA = 25°C
–1
Figure 19
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
1.5
–2
VID – Differential Input Voltage – V
RL = 50 kΩ
RL = 20 kΩ
RL = 10 kΩ
RL = 5 kΩ
–10
–5
0
5
10
VID – Differential Input Voltage – V
15
RL = 10 kΩ
TA = 25°C
12
VOM+
8
4
0
ÎÎÎ
ÎÎÎ
–4
VOM–
ÁÁ
ÁÁ
–8
–12
–16
0
2
Figure 20
4
6
8
10
12
|VCC±| – Supply Voltage – V
14
16
Figure 21
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
ÎÎÎÎÎ
ÎÎÎÎÎ
30
RL = 10 kΩ
VCC± = ±15 V
25
20
15
TA = –55°C
10
TA = 125°C
VCC± = ±5 V
ÁÁ
ÁÁ
ÁÁ
5
5
|VOM | – Maximum Peak Output Voltage – V
VO(PP)
VOPP – Maximum Peak-to-Peak Output Voltage – V
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE†
vs
FREQUENCY
10 k
100 k
f – Frequency – Hz
1M
VOM–
3
2
1
0
5
Figure 22
5
VOM
VOM – Maximum Peak Output Voltage – V
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VOM–
10
8
4
2
0
0
5
10
15
20
|IO| – Output Current – mA
ÎÎÎÎ
4
VOM+
3
2
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÁÁÁ
ÎÎÎ
ÁÁÁ
VOM+
6
20
MAXIMUM PEAK OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
VCC± = ±15 V
TA = 25°C
12
15
Figure 23
16
14
10
|IO| – Output Current – mA
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
|VOM | – Maximum Peak Output Voltage – V
VOM+
4
0
0
1k
VCC± = ±5 V
TA = 25°C
25
30
1
0
VCC± = ±5 V
RL = 10 kΩ
–1
–2
–3
VOM–
–4
–5
–75
–50
–25
0
25
50
75
100
125
TA – Free-Air Temperature – °C
Figure 24
Figure 25
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
MAXIMUM PEAK OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
16
12
VOM+
35
A VD – Large-Signal Differential
Voltage Amplification – V/mV
VOM
VOM – Maximum Peak Output Voltage – V
40
8
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÁÁ
ÎÎÎ
ÁÁ
ÎÎÎ
ÁÁ
4
0
VCC± = ±15 V
RL = 10 kΩ
–4
–8
VOM–
–12
–16
–75
–50
–25
0
VO = ±1 V
TA = 25°C
VCC± = ±15 V
30
25
20
VCC± = ±5 V
15
10
5
25
50
75
100
125
0
10 k
TA – Free-Air Temperature –°C
100 k
RL – Load Resistance – Ω
Figure 26
1M
Figure 27
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
0°
10 k
1k
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCC± = ±15 V
RL = 10 kΩ
CL = 25 pF
TA = 25°C
30°
60°
AVD
100
90°
Phase Shift
10
120°
1
0.1
10
Phase Shift
A VD – Large-Signal Differential
Voltage Amplification
100 k
150°
100
1k
10 k
100 k
f – Frequency – Hz
1M
180°
10 M
Figure 28
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
50
OUTPUT IMPEDANCE
vs
FREQUENCY
ÎÎÎÎ
ÎÎÎÎ
200
ÁÁ
zzo
o – Output Impedence – Ω
A VD – Large-Signal Differential
Voltage Amplification – V/mV
RL = 10 kΩ
VCC± = ±15 V
10
VCC± = ±5 V
100
80
60
AVD = 10
40
ÁÁ
ÁÁ
1
–75
AVD = 100
AVD = 1
20
VCC± = ±15 V
ro (open loop) ≈ 250 Ω
TA = 25°C
ÎÎÎÎ
10
–50
–25
0
25
50
75
100
TA – Free-Air Temperature – °C
1k
125
10 k
f – Frequency – Hz
Figure 29
Figure 30
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
VCC± = ±5 V
TA = 25°C
90
80
70
60
50
40
30
20
10
0
ÎÎÎÎ
ÎÎÎÎ
100
CMRR – Common-Mode Rejection Ratio – dB
CMRR – Common-Mode Rejection Ratio – dB
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
ÎÎÎÎ
ÎÎÎÎ
100
100 k
VCC± = ±15 V
TA = 25°C
90
80
70
60
50
40
30
20
10
0
10
100
1k
10 k
100 k
f – Frequency – Hz
1M
10 M
10
100
Figure 31
1k
10 k
100 k
f – Frequency – Hz
1M
10 M
Figure 32
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO†
vs
FREE-AIR TEMPERATURE
COMMON-MODE REJECTION RATIO†
vs
FREE-AIR TEMPERATURE
100
kSVR – Supply Voltage Rejection Ratio – dB
CMRR – Common-Mode Rejection Ratio – dB
95
VCC± = ±15 V
90
VCC± = ±5 V
85
80
ÎÎÎÎÎ
ÎÎÎÎÎ
VIC = VICRmin
75
–75
–50
–25
0
25
50
75
100
VCC± = ±5 V to ±15 V
98
96
94
92
90
–75
125
–50
–25
TA – Free-Air Temperature – °C
25
50
75
100
125
TA – Free-Air Temperature – °C
Figure 33
Figure 34
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT
vs
TIME
30
30
VO = 0
TA = 25°C
20
IIOS
OS – Short-Circuit Output Current – mA
IIOS
OS – Short-Circuit Output Current – mA
0
VID = 100 mV
10
0
VID = –100 mV
–10
ÁÁ
ÁÁ
–20
–30
VID = 100 mV
20
10
0
ÁÁ
ÎÎÎÎÎÎ
ÁÁÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VID = –100 mV
–10
VCC± = ±15 V
TA = 25°C
–20
0
2
4
6
8
10
12
|VCC±| – Supply Voltage – V
14
16
0
Figure 35
5
10
15
20
t – Time – s
25
30
Figure 36
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
I OS – Short-Circuit Output Current – mA
25
20
15
10
5
0
–5
–10
–15
–20
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ ÎÎÎÎÎ
ÎÎÎÎÎ ÎÎÎÎÎ
ÎÎÎÎÎÎ ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
VCC± = ±15 V
VID = 100 mV
VCC± = ±5 V
TL031 and TL031A
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁÁÁÁ
ÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
Vn
nV/ Hz
V n– Equivalent Input Noise Voltage – nVHz
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
VID = –100 mV
VCC± = ±5 V
VCC± = ±15 V
VO = 0
–25
–75
–50 –25
0
25
50
75
TA – Free-Air Temperature – °C
100
70
VCC± = ±15 V
RS = 20 Ω
TA = 25°C
See Figure 3
60
50
40
10
125
100
TL032 and TL032A
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁ ÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁ
VCC± = ±15 V
RS = 20Ω
TA = 25°C
See Figure 3
V n– Equivalent Input Noise Voltage – nV/
Vn
nVHzHz
V n – Equivalent Input Noise Voltage – nVHz
nV/ Hz
Vn
100 k
Figure 38
Figure 37
60
1k
10 k
f – Frequency – Hz
50
40
TL034 and TL034A
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
90
VCC± = ±15 V
RS = 20 Ω
TA = 25°C
See Figure 3
80
70
60
50
40
30
10
100
1k
10 k
f – Frequency – Hz
100 k
10
Figure 39
100
1k
10 k
f – Frequency – Hz
11 k
Figure 40
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
TL031 and TL031A
SUPPLY CURRENT†
vs
SUPPLY VOLTAGE
250
500
ÁÁÁ
ÁÁÁ
VO = 0
No Load
200
IICC
CC – Supply Current –Aµ A
AA
IICC
CC – Supply Current – µ
VO = 0
No Load
TA = 25°C
150
ÁÁ
ÁÁ
ÁÁ
TA = 125°C
400
TA = 25°C
300
ÁÁ
ÁÁ
ÁÁ
100
TA = –55°C
50
TA = 125°C
200
TA = –55°C
100
0
0
2
4
6
8
10
12
|VCC±| – Supply Voltage – V
14
0
16
0
2
4
6
8
10
12
|VCC±| – Supply Voltage – V
Figure 41
ÎÎÎ
ÎÎÎ
ÎÎÎ
1000
250
ÁÁÁ
ÁÁÁ
ÁÁÁ
VO = 0
No Load
TA = 25°C
600
TA = 125°C
ÁÁ
ÁÁ
ÁÁ
400
16
TL031 and TL031A
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
TL034 and TL034A
SUPPLY CURRENT†
vs
SUPPLY VOLTAGE
AA
IICC
CC – Supply Current – µ
800
14
Figure 42
VO = 0
No Load
IICC
CC – Supply Current –Aµ A
TL032 and TL032A
SUPPLY CURRENT†
vs
SUPPLY VOLTAGE
200
VCC± = ±15 V
VCC± = ±5 V
150
ÁÁ
ÁÁ
TA = –55°C
200
100
50
0
0
2
4
6
8
10
12
|VCC±|– Supply Voltage – V
14
16
0
–75
–50
–25
0
25
50
75
100
TA – Free-Air Temperature – °C
125
Figure 44
Figure 43
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
42
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
TL034 and TL034A
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
TL032 and TL032A
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁ
ÁÁ
VO = 0
No Load
VCC± = ±15 V
VCC± = ±5 V
300
ÁÁ
ÁÁ
200
100
0
–75
–50
–25
0
25
50
75
100
TA – Free-Air Temperature – °C
VCC± = ±5 V
600
400
200
0
–75
125
–50
SLEW RATE
vs
LOAD RESISTANCE
4
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
125
ÎÎÎ
6
VCC± = ±5 V
CL = 100 pF
TA = 25°C
See Figure 1
SR–
5
SR–
3
2
100
SLEW RATE
vs
LOAD RESISTANCE
SR – Slew Rate – V/sµ s
SR – Slew Rate – V/sµ s
5
–25
0
25
50
75
TA – Free-Air Temperature – °C
Figure 46
Figure 45
6
VCC± = ±15 V
800
400
IICC
CC – Supply Current –Aµ A
µA
IICC
CC – Supply Current –A
VO = 0
No Load
ÎÎÎÎ
ÎÎÎÎ ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
1000
500
SR+
1
4
3
SR+
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
2
VCC± = ±15 V
CL = 100 pF
TA = 25°C
See Figure 1
1
0
ÎÎ
0
1
10
RL – Load Resistance – kΩ
100
1
Figure 47
10
RL – Load Resistance – kΩ
100
Figure 48
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
SLEW RATE†
vs
FREE-AIR TEMPERATURE
SLEW RATE†
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
6
VCC± = ±5 V
RL = 10 kΩ
CL = 100 pF
See Figure 1
5
SR–
SR – Slew Rate – V/sµ s
5
SR – Slew Rate – V/sµ s
6
4
SR–
3
2
SR+
1
4
3
SR+
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
2
1
0
–75
–50
–25
0
25
50
75
100
TA – Free-Air Temperature – °C
0
–75
125
VCC± = ±15 V
RL = 10 kΩ
CL = 100 pF
See Figure 1
–50
–25
0
25
50
75
100
TA – Free-Air Temperature – °C
Figure 49
Figure 50
OVERSHOOT FACTOR
vs
LOAD CAPACITANCE
0.5
VI(PP) = ±10 mV
RL = 10 kΩ
TA = 25°C
See Figure 1
50
Overshoot Factor – %
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
40
VCC± = ±5 V
30
20
VCC± = ±15 V
10
0
0
50
100
150
200
CL – Load Capacitance – pF
250
THD – Total Harmonic Distortion – %
60
125
0.4
VCC± = ±15 V
AVD = 1
VO(rms) = 6 V
TA = 25°C
0.3
0.2
0.1
100
Figure 51
1k
10 k
f – Frequency – Hz
100 k
Figure 52
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
44
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
1.05
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VI = 10 mV
RL = 10 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
1.0
0.95
2
4
6
8
10
12
|VCC±|– Supply Voltage – V
14
VI = 10 mV
RL = 10 kΩ
CL = 25 pF
See Figure 4
1.2
VCC+ = ±15 V
1.1
1.0
VCC± = ±5 V
0.9
0.8
–75
0.9
0
16
–50
–25
50
75
100
125
PHASE MARGIN
vs
LOAD CAPACITANCE
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎÎ ÁÁÁÁ
ÎÎÎÎ
ÁÁÁÁ
ÎÎÎÎ
ÁÁÁÁ
70°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
68°
VI = 10 mV
RL = 10 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
ÁÁ
ÁÁ
61°
59°
VI = 10 mV
RL = 10 kΩ
TA = 25°C
See Figure 4
See Note A
VCC± = ±15 V
66°
φm – Phase Margin
φm – Phase Margin
ÁÁ
ÁÁ
ÁÁ
25
Figure 54
PHASE MARGIN
vs
SUPPLY VOLTAGE
63°
0
TA – Free-Air Temperature – °C
Figure 53
65°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
1.3
B1
B1 – Unity-Gain Bandwidth – MHz
B1
B1 – Unity-Gain Bandwidth – MHz
1.1
64°
62°
60°
58°
ÎÎÎÎ
ÎÎÎÎ
56°
VCC± = ±5 V
54°
52°
50°
0
57°
0
2
4
6
8
10
12
14
16
|VCC±| – Supply Voltage – V
10
20
30
40
50
60
70
80
90
100
CL – Load Capacitance – pF
NOTE A: Values of phase margin below a load capacitance of 25 pF
were estimated.
Figure 55
Figure 56
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
TYPICAL CHARACTERISTICS
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
ÎÎÎÎÎ
ÎÎÎÎÎ
67°
16
VCC± = ±15 V
12
V
VO
O – Output Voltage – mV
φ m – Phase Margin
65°
63°
VCC± = ±5 V
61°
4
VI = 10 mV
RL = 10 kΩ
CL = 25 pF
See Figure 4
57°
VCC± = ±15 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
0
ÎÎÎÎÎ ÁÁ
ÁÁ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
59°
55°
–75
8
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
–4
–8
–12
–16
–50
–25
0
25
50
75
TA – Free-Air Temperature –°C
100
0
125
Figure 57
0.2 0.4 0.6 0.8 1.0 1.2 1.4
t – Time – µs
Figure 58
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
2
8
6
VO
VO – Output Voltage – V
VO
VO – Output Voltage – V
1
VCC± = ±5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
0
ÁÁ
ÁÁ
ÁÁ
ÁÁ
–1
4
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
2
VCC± = ±15 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
0
–2
–4
–6
–2
0
1
2
3
4
t – Time – µs
5
6
7
8
–8
0
2
4
6
8 10
t – Time – µs
12
14
16
18
Figure 60
Figure 59
† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.
46
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
APPLICATION INFORMATION
input characteristics
The TL03x and TL03xA are specified with a minimum and a maximum input voltage that, if exceeded at either
input, could cause the device to malfunction.
Due to of the extremely high input impedance and resulting low bias-current requirements, the TL03x and
TL03xA are well suited for low-level signal processing; however, leakage currents on printed circuit boards and
sockets easily can exceed bias current requirements and cause degradation in system performance. It is a good
practice to include guard rings around inputs (see Figure 61). These guard rings should be driven from a
low-impedance source at the same voltage level as the common-mode input.
Unused amplifiers should be connected as grounded unity-gain followers to avoid oscillation.
+
VI
VO
+
VI
(a) NONINVERTING AMPLIFIER
(b) INVERTING AMPLIFIER
+
VO
–
–
–
VI
VO
(c) UNITY-GAIN AMPLIFIER
Figure 61. Use of Guard Rings
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
APPLICATION INFORMATION
output characteristics
All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance.
The TL03x and TL03xA drive higher capacitive loads; however, as the load capacitance increases, the resulting
response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of
the load capacitance at which oscillation occurs varies with production lots. If an application appears to be
sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate
the problem (see Figure 63). Capacitive loads of 1000 pF and larger can be driven if enough resistance is added
in series with the output (see Figure 62).
(a) CL = 100 pF, R = 0
(b) CL = 300 pF, R = 0
(c) CL = 350 pF, R = 0
(d) CL = 1000 pF, R = 0
(e) CL = 1000 pF, R = 50 Ω
(f) CL = 1000 pF, R = 2 kΩ
Figure 62. Effect of Capacitive Loads
15 V
–
–5 V
R
VO
+
5V
– 15 V
CL
(see Note A)
10 kΩ
NOTE A: CL includes fixture capacitance.
Figure 63. Test Circuit for Output Characteristics
48
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
APPLICATION INFORMATION
high-Q notch filter
In general, Texas Instruments enhanced-JFET operational amplifiers serve as excellent filters. The circuit in
Figure 64 provides a narrow notch at a specific frequency. Notch filters are designed to eliminate frequencies
that are interfering with the operation of an application. For this filter, the center frequency can be calculated as:
fO
+ 2p
1
R1
C1
With the resistors and capacitors shown in Figure 64, the center frequency is 1 kHz. C1 = C3 = C2 + 2 and
R1 = R3 = 2 × R2. The center frequency can be modified by varying these values. When adjusting the center
frequency, ensure that the operational amplifier has sufficient gain at the frequency required.
15 V
–
R1
R3
VI
VO
+
1.5 MΩ
1.5 MΩ
–15 V
C2
220 pF
R3
TL03x
750 kΩ
C1
C3
110 pF
110 pF
2
1
0
Gain – dB
–1
–2
–3
–4
–5
–6
–7
–8
0.2
0.4
0.6
0.8
1
0.2 0.4
f – Frequency – kHz
0.6
0.8
2
Figure 64. High-Q Notch Filter
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
49
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
APPLICATION INFORMATION
transimpedance amplifier
The low-power precision TL03x allows accurate measurement of low currents. The high input impedance and
low offset voltage of the TL03xA greatly simplify the design of a transimpedance amplifier. At room temperature,
this design achieves 10-bit accuracy with an error of less than 1/2 LSB.
ǒ
Ǔ
Assuming that R2 is much less than R1 and ignoring error terms, the output voltage can be expressed as:
V
O
+ – IIN
R
R1
F
) R2
R2
Using the resistor values shown in the schematic for a 1-nA input current, the output voltage equals –0.1 V. If
the VO limit for the TL03xA is measured at ±12 V, the maximum input current for these resistor values is ±120 nA.
Similarly, one LSB on a 10-bit scale corresponds to 12 mV of output voltage, or 120 pA of input current.
ƪ
ǒ
Ǔƫǒ
Ǔ
The following equation shows the effect of input offset voltage and input bias current on the output voltage:
V
O
+–
V
IO
) RF IIO ) IIB
R1
) R2
R2
If the application requires input protection for the transimpedance amplifier, do not use standard PN diodes.
Instead, use low-leakage Siliconix SN4117 JFETs (or equivalent) connected as diodes across the TL03xA
inputs as shown in Figure 65.
As with all precision applications, special care must be taken to eliminate external sources of leakage and
interference. Other precautions include using high-quality insulation, cleaning insulating surfaces to remove
fluxes and other residue, and enclosing the application within a protective box.
RF
10 MΩ
15 V
+
Input Current
TL03xA
VO
–
–15 V R1
90 kΩ
R2
10 kΩ
SN4117
Figure 65. Transimpedance Amplifier
50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
APPLICATION INFORMATION
4-mA to 20-mA current loops
Often, information from an analog sensor must be sent over a distance to the receiving circuitry. For many
applications, the most feasible method involves converting voltage information to a current before transmission.
The following circuits give two variations of low-power current loops. The circuit in Figure 66 requires three wires
from the transmitting to receiving circuitry, while the second variation in Figure 67 requires only two wires, but
includes an extra integrated circuit. Both circuits benefit from the high input impedance of the TL03xA because
many inexpensive sensors do not have low output impedance.
ǒ Ǔ ǒ Ǔ
Assuming that the voltage at the noninverting input of the TL03xA is zero, the following equation determines
the output current:
I
O
+ VI
R3
R1
R
S
) 5V
R3
R2
R
S
+ 0.16
V
I
) 4 mA
The circuits presently provide 4-mA to 20-mA output current for an input voltage of 0 to 100 mV. By modifying
R1, R2, and R3, the input voltage range or the output current range can be adjusted.
ǒ Ǔ ǒ Ǔ ǒ
Ǔ
Including the offset voltage of the operational amplifier in the above equation clearly illustrates why the low offset
TL03xA was chosen:
I
O
+ VI R1 R3R ) 5 V R2 R3R *VI
S
S
+ 0.16 VI ) 4 mA – 0.17 VI
R1
R3
R
S
) R2 R3R ) RR1
S
S
For example, an offset voltage of 1 mV decreases the output current by 0.17 mA.
Due to the low power consumption of the TL03xA, both circuits have at least 2 mA available to drive the actual
sensor from the 5-V reference node.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
4-mA to 20-mA current loops (continued)
VCC+ = 10 V
100 kΩ
R6
TL431
100 kΩ
R7
5 V Ref
R2
1 MΩ
–
R1
2N3904
+
VI
R5
5 kΩ
3.3 kΩ
TL03xA
VEE = –5 V
R4
5 kΩ
1N4148
R3 80 kΩ
RS
IO
Signal Common
100 Ω
50 Ω
RL
Figure 66. Three-Wire 4-mA to 20-mA Current Loop
VCC+ = 10 V
IN
OUT
LT1019-5
5 V Ref
GND
10 µF
R2 1 MΩ
8
2
3
4
LTC1044
5
–
R1
+
VI
10 µF
5 kΩ
TL03xA
R4
R3
R5
2N3904
3.3 kΩ
5 kΩ
1N4148
80 kΩ
RS
IO
Signal Common
100 Ω
Figure 67. Two-Wire 4-mA to 20-mA Current Loop
52
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
RL
50 Ω
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
APPLICATION INFORMATION
low-level light-detector preamplifier
Applications that need to detect small currents require high input-impedance operational amplifiers; otherwise,
the bias currents of the operational amplifier camouflage the current being monitored. Phototransistors provide
a current that is proportional to the light reaching the transistor. The TL03x allows even the small currents
resulting from low-level light to be detected.
In Figure 68, if there is no light, the phototransistor is off and the output is high. As light is detected, the
operational amplifier output begins pulling low. Adjusting R4 both compensates for offset voltage of the amplifier
and adjusts the point of light detection by the amplifier.
15 V
R6
10 kΩ
R1
10 kΩ
+
R3
TIL601
R4
10 kΩ
R5
R2
10 kΩ
C1
100 pF
R7
TL03x
VO
–
10 kΩ
10 kΩ
5 kΩ
–15 V
Figure 68. Low-Level Light-Detector Preamplifier
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
APPLICATION INFORMATION
audio-distribution amplifier
This audio-distribution amplifier (see Figure 69) feeds the input signal to three separate output channels. U1A
amplifies the input signal with a gain of 10, while U1B, U1C, and U1D serve as buffers to the output channels.
The gain response of this circuit is very flat from 20 Hz to 20 kHz. The TL03x allows quick response to the input
signal while maintaining low power consumption.
R4
1 MΩ
U1B
–
VCC+
C1
1 µF
VOA
+
–
VI
+
R1
100 kΩ
U1C
U1A
–
R2
100 kΩ
VOB
+
VCC+
C2
100 µF
R5
10 kΩ
U1D
–
R3
100 kΩ
+
NOTE A: U1A through U1D = TL03x; VCC+ = 5 V.
Figure 69. Audio-Distribution Amplifier Circuit
54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VOC
TL03x, TL03xA, TL03xY
ENHANCED-JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS180B – FEBRUARY 1997 – REVISED FEBRUARY 1999
APPLICATION INFORMATION
instrumentation amplifier with linear gain adjust
The low offset voltage and low power consumption of the TL03x provide an accurate but inexpensive
instrumentation amplifier (see Figure 70). This particular configuration offers the advantage that the gain can
be linearly set by one resistor:
VO =
R6
× (VB – VA)
R5
Adjusting R6 varies the gain. The value of R6 always should be greater than, or equal to, the value of R5 to
ensure stability. The disadvantage of this instrumentation amplifier topology is the high degree of CMRR
degradation resulting from mismatches between R1, R2, R3, and R4. For this reason, these four resistors
should be 0.1%-tolerance resistors.
VCC+
–
VA
R3
10 kΩ
0.1%
R1
10 kΩ
0.1%
+
U1A
U1C
–
VO
+
R5
100 kΩ
U1B
U1D
–
VB
+
R6
1 MΩ
–
R2
10 kΩ
0.1%
R4
10 kΩ
0.1%
+
VCC–
R7
100 kΩ
NOTE A: U1A through U1D = TL03x; VCC± = ±15 V.
Figure 70. Instrumentation Amplifier With Linear Gain-Adjust Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
55
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated