TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 • • • • • • • • 40 -V/µs Slew Rate Typ Low Noise 17 nV/√Hz Max at f = 10 kHz 11.6 nV/√Hz Typ at f = 10 kHz High Gain-Bandwidth Product . . . 10 MHz ± 30 -mA Minimum Short-Circuit Output Current Wide Supply Range . . . ± ± Input Range Includes the Positive Supply Macromodel Included Fast Settling Time Using 10-V Step 400 ns to 10 mV Typ 1.5 µs to 1 mV Typ EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY GAIN-BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE 50 45 40 Gain-Bandwidth Product – MHz Hz V n – Equivalent Input Noise Voltage – nV/ Vn 13 VCC ± = ± 15 V VIC = 0 RS = 20 Ω TA = 25°C 35 30 25 20 15 10 f = 100 kHz VIC = 0 VO = 0 RL = 2 kΩ CL = 100 pF 12 11 VCC ± = ± 15 V 10 VCC ± = ± 5 V 9 8 5 0 10 100 1k 7 – 75 – 55 – 35 –15 10 k 5 25 45 65 85 105 125 TA – Free-Air Temperature – °C f – Frequency – Hz description The TLE2072 and TLE2072A are low-noise, high-performance, internally compensated JFET-input dual operational amplifiers built using Texas Instruments complementary bipolar Excalibur process. These devices combine low noise with outstanding output drive capability, high slew rate, and wide bandwidth. AVAILABLE OPTIONS PACKAGED DEVICES CHIP FORM (Y) TA VIOmax AT 25°C SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) 0°C to 70°C 3.5 mV 6 mV TLE2072ACD TLE2072CD — — TLE2072ACP TLE2072CP — TLE2072Y – 40°C to 85°C 3.5 mV 6 mV TLE2072AID TLE2072ID — — TLE2072AIP TLE2072IP — – 55°C to 125°C 3.5 mV 6 mV TLE2072AMFK TLE2072MFK TLE2072AMJG TLE2072MJG — — — The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2072ACDR). Chip-form versions are tested at TA = 25°C. For chip-form orders, contact your local TI sales office. Copyright 1994, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-STD-883, Class B, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–1 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 description (continued) The design features a 28-V/µs minimum slew rate, which results in a high-power bandwidth. A low audio-band noise of 28 nV/√Hz is typical with a 55 nV/√Hz maximum at 10 Hz. Settling time to 0.1% of a 10-V step (1-kΩ/100-pF load) is approximately 400 ns. Gain-bandwidth product is typically 10 MHz with an 8 MHz minimum. As such, the TLE2072 and TLE2072A offer significant speed and noise advantages at a low 1.5-mA typical supply current per channel. The input current characteristics traditionally associated with JFET-input amplifiers have been maintained. Input offset voltage is graded to a 6 mV and 3.5 mV maximum for the TLE2072 and TLE2072A, respectively. Typically, temperature coefficient of input offset voltage is 2.4 µV/°C and typical CMRR and kSVR are 98 dB and 99 dB, respectively. Device performance is relatively independent of supply voltage over the wide ± 2.25-V to ± 19-V range. The input common-mode voltage range extends from the positive supply down to VCC – + 4 V without significant degradation to dynamic performance. Maximum peak output voltage swing is from VCC + – 1 V to VCC – + 1 V under light current loading conditions. The output is capable of sourcing and sinking currents to at least 30 mA and can sustain shorts to either supply. Care must be taken to ensure that maximum power dissipation is not exceeded. Both the TLE2072 and TLE2072A are available in a wide variety of packages, including both the industry-standard 8-pin small-outline version and chip form for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C, the I-suffix devices over the – 40°C to 85°C range, and the M-suffix devices over the full military temperature range of – 55°C to 125°C. 1 8 2 7 3 6 4 5 VCC + 2OUT 2IN – 2IN+ NC 1IN – NC 1IN+ NC 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC VCC – NC 2IN+ NC 1OUT 1IN – 1IN + VCC – FK PACKAGE (TOP VIEW) NC 1OUT NC V CC + NC D, JG, OR P PACKAGE (TOP VIEW) NC – No internal connection symbol IN + + IN – – OUT 5–2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 NC 2OUT NC 2IN – NC TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TLE2072Y chip information This chip, when properly assembled, displays characteristics similar to the TLE2072. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (8) (1) (7) 1IN + (3) (2) 1IN – 2OUT VCC+ (8) + (1) 1OUT – + (7) – (5) 2IN + (6) 2IN – (4) VCC – 90 (2) (6) CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 × 4 MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. (3) (5) (4) PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF THE CHIP. 80 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–3 5–4 IN + IN – Q2 Q1 D1 Q5 Q4 Q7 Q6 Q3 Q9 Q8 Q10 R1 equivalent schematic (each channel) R3 Q11 Q12 C1 R2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C2 R4 D2 VCC – R7 C3 Q15 R5 Q14 Q13 Q17 C4 Q18 Q16 R6 VCC + R9 C5 Q21 R8 Q19 Q20 R10 Q22 Q23 Q26 Q25 Q24 R11 Q27 D3 C6 Q29 Q28 R12 Q31 Q30 R13 Transistors Resistors Diodes Capacitors R14 OUT 57 37 5 11 ACTUAL DEVICE COMPONENT COUNT TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V Supply voltage, VCC – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 19 V Differential input voltage range, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC + to VCC – Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC + to VCC – Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1 mA Output current, IO (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 80 mA Total current into VCC + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values except differential voltages are with respect to the midpoint between VCC + and VCC – . 2. Differential voltages are at IN+ with respect to IN –. 3. The output can be shorted to either supply. Temperatures and/or supply voltages must be limited to ensure that the maximum dissipation rate is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW P 1000 mW 8.0 mW/°C 640 mW 344 mW 200 mW recommended operating conditions Supply voltage, VCC± Common-mode input voltage voltage, VIC VCC ± = ± 5 V VCC ± = ±15 V Operating free-air temperature, TA POST OFFICE BOX 655303 C SUFFIX I SUFFIX M SUFFIX MIN MAX MIN MAX MIN MAX ± 2.25 ± 19 ± 2.25 ± 19 ± 2.25 ± 19 – 0.9 5 – 0.8 5 – 0.8 5 – 10.9 15 – 10.8 15 – 10.8 15 0 70 – 40 85 – 55 125 • DALLAS, TEXAS 75265 UNIT V V °C 5–5 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB TA† TEST CONDITIONS 25°C VIC = 0, 0 RS = 50 Ω VO = 0, 0 F ll range Full g IO = – 200 µA VOM + M i Maximum positive i i peak k output voltage swing IO = – 2 mA IO = – 20 mA IO = 200 µA VOM – M i Maximum negative i peak k output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal L Large-signal i l diff differential i l voltage amplification VO = ± 2 2.3 3 V RL = 2 kΩ RL = 10 kΩ ri ci Input resistance Input capacitance 0.65 3.5 5.3 Full range 3.7 25°C 3.5 Full range 3.4 25°C 1.5 Full range 1.5 25°C – 3.8 Full range – 3.7 25°C – 3.5 Full range – 3.4 25°C – 1.5 Full range – 1.5 25°C 80 Full range 79 25°C 90 Full range 89 25°C 95 Full range 94 25 µV/°C 5 100 5 100 pA 1.4 nA 15 175 15 175 pA 5 nA 5 to – 1.9 5 to –1 5 to – 1.9 4.1 3.8 4.1 3.7 3.9 3.5 3.9 2.3 1.5 2.3 1.5 – 4.2 – 3.8 – 4.2 – 3.7 – 4.1 – 3.5 – 4.1 – 2.4 – 1.5 – 2.4 – 1.5 91 80 91 79 100 90 100 106 95 106 94 11 11 Differential 25°C 2.5 2.5 25°C 80 80 VIC = VICRmin, VO = 0, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio(∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω ICC Supply pp y current (both channels) VO = 0 0, No load 25°C 70 Full range 68 25°C 82 Full range 80 25°C 2.7 Full range † Full range is 0°C to 70°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 89 25°C Common-mode Common mode rejection ratio V – 3.4 Common mode CMRR V 3.4 1012 f = 1 MHz V 5 to – 0.9 1012 Open-loop output impedance mV 2.3 5 to – 0.9 3.8 UNIT 25 25°C zo 5–6 MAX 5 5 to –1 25°C VIC = 0 VIC = 0, See Figure 5 6 TYP 2.3 Full range RS = 50 Ω MIN 1.4 25°C Input bias current TLE2072AC MAX 7.8 Full range 25°C VICR 0.9 25°C VO = 0, 0 TYP Full range Full range VIC = 0, 0 See Figure 4 Common mode C Common-mode d iinput voltage g range g TLE2072C MIN 89 70 Ω pF Ω 89 dB 68 99 82 99 dB 80 2.9 3.6 3.6 2.7 2.9 3.6 3.6 mA TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) (continued) PARAMETER ax Crosstalk attenuation IOS Short circuit output Short-circuit current TEST CONDITIONS VIC = 0, RL = 2 kΩ VO = 0 VID = 1 V VID = – 1 V TA† TLE2072C MIN TYP 25°C 25°C TLE2072AC MAX MIN TYP 120 120 – 35 – 35 45 45 MAX UNIT dB mA operating characteristics at specified free-air temperature, VCC± = ±5 V PARAMETER TEST CONDITIONS TA† TLE2072C MIN 25°C SR + Positive rate P i i slew l SR – Negative rate N i slew l ts Vn VN(PP) Settling time VO(PP) = ± 2.3 2 3 V, V AVD = – 1, 1 RL = 2 kΩ kΩ, CL = 100 pF, See Figure 1 AVD = – 1, 2-V 2 V step, RL = 1 kΩ, CL = 100 pF To 10 mV MIN TYP MAX To 1 mV f = 10 kHz f = 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz 25°C UNIT 35 22 V/µs V/ 22 38 38 22 V/µs V/ 22 0.25 0.25 0.4 0.4 µs 25°C f = 10 Hz RS = 20 Ω, Ω S Fi See Figure 3 TLE2072AC MAX 35 25°C Full range Equivalent input noise voltage Peak-to-peak P k p k equivalent q i l input noise voltage Full range TYP 28 55 28 55 11.6 17 11.6 17 6 6 0.6 0.6 nV/√Hz V µV 25°C In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 5 V, f = 1 kHz, kHz RS = 25 Ω AVD = 10, RL = 2 kΩ kΩ, 25°C 0 013% 0.013% 0 013% 0.013% B1 Unity-gain bandwidth VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 94 9.4 94 9.4 MHz BOM Maximum output output-swing swing bandwidth VO(PP) = 4 V, RL = 2 kΩ , AVD = – 1, CL = 25 pF 25°C 28 2.8 28 2.8 MHz φm Phase margin g at unity y gain VI = 10 mV,, CL = 25 pF, RL = 2 kΩ,, See Figure 2 25°C 56° 56° fA /√Hz † Full range is 0°C to 70°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–7 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB TA† TEST CONDITIONS VO = 0, 0 25°C VO = 0, 0 VOM + IO = – 2 mA IO = – 20 mA IO = 200 µA VOM – M i Maximum negative i peak k output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal L Large-signal i l diff differential i l voltage amplification VO = ± 10 V RL = 2 kΩ RL = 10 kΩ ri ci Input resistance Input capacitance 3.5 5.3 Full range 13.6 25°C 13.5 Full range 13.4 25°C 11.5 Full range 11.5 25°C – 13.8 Full range – 13.7 25°C – 13.5 Full range – 13.4 25°C – 11.5 Full range – 11.5 25°C 80 Full range 79 25°C 90 Full range 89 25°C 95 Full range 94 µV/°C 6 100 6 100 pA 1.4 nA 20 175 20 175 pA 5 nA 15 to – 11.9 15 to – 11 15 to – 11.9 14.1 13.8 14.1 13.6 13.9 13.5 13.9 12.3 11.5 12.3 11.5 – 14.2 – 13.8 – 14.2 – 13.7 – 14 –13.5 – 14 – 12.4 – 11.5 – 12.4 – 11.5 96 80 96 79 109 90 109 118 95 118 94 7.5 7.5 Differential 25°C 2.5 2.5 25°C 80 80 VIC = VICRmin, VO = 0, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω ICC Supply pp y current (both channels) VO = 0 0, No load 25°C 80 Full range 79 25°C 82 Full range 81 25°C 2.7 Full range † Full range is 0°C to 70°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 89 25°C Common-mode Common mode rejection ratio V – 13.4 1012 CMRR V 13.4 1012 f = 1 MHz V 15 to – 10.9 25°C Open-loop output impedance mV 25 15 to – 10.9 13.8 UNIT 2.4 Common mode zo 5–8 0.7 5 15 to – 11 25°C VIC = 0 VIC = 0, See Figure 5 MAX 25 Full range IO = – 200 µA 6 TYP 1.4 25°C F ll range Full g MIN 2.4 Full range RS = 50 Ω TLE2072AC MAX 7.8 Full range Input bias current M i Maximum positive i i peak k output voltage swing 1.1 Full range 25°C VICR TYP 25°C VIC = 0, 0 RS = 50 Ω VIC = 0, 0 See Figure 4 Common mode C Common-mode d input i voltage g range g TLE2072C MIN 98 80 Ω pF Ω 98 dB 79 99 82 99 dB 81 3.1 3.6 3.6 2.7 3.1 3.6 3.6 mA TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) (continued) PARAMETER ax IOS Crosstalk attenuation Short-circuit output current TA† TEST CONDITIONS VIC = 0, RL = 2 kΩ VO = 0 VID = 1 V VID = – 1 V TLE2072C MIN TYP – 30 30 25°C 25°C TLE2072AC MAX MIN TYP – 45 – 30 – 45 48 30 48 120 MAX 120 UNIT dB mA operating characteristics at specified free-air temperature, VCC± = ±15 V PARAMETER SR + SR – ts Positive rate P i i slew l Negative rate N i slew l Settling time Vn Equivalent input noise voltage VN(PP) Peak-to-peak P kt k equivalent input noise voltage VO(PP) = 10 V, V AVD = – 1 1, RL = 2 kΩ kΩ, CL = 100 pF, See Figure 1 AVD = – 1, 10-V 10 V step, RL = 1 kΩ, CL = 100 pF MIN TYP 25°C 28 40 Full range 25 25°C 30 Full range 25 To 10 mV TLE2072AC MAX MIN TYP 28 40 MAX 45 30 45 V/µs V/ 25 0.4 0.4 1.5 1.5 µs To 1 mV f = 10 kHz f = 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz UNIT V/µs V/ 25 25°C f = 10 Hz RS = 20 Ω, Ω, See Figure 3 TLE2072C TA† TEST CONDITIONS 25°C 28 55 28 55 11.6 17 11.6 17 6 6 0.6 0.6 nV/√Hz V µV 25°C In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 20 V, AVD = 10, f = 1 kHz, kHz RL = 2 kΩ kΩ, RS = 25 Ω 25°C 0 008% 0.008% 0 008% 0.008% B1 Unity-gain bandwidth VI = 10 mV, CL = 25 pF, 25°C 8 10 8 10 MHz BOM Maximum output output-swing swing bandwidth VO(PP) = 20 V, AVD = – 1, RL = 2 kΩ, CL = 25 pF 25°C 478 637 478 637 kHz φm Phase margin g at unity y gain VI = 10 mV,, CL = 25 pF, 25°C RL = 2 kΩ, See Figure 2 RL = 2 kΩ,, See Figure 2 57° fA /√Hz 57° † Full range is 0°C to 70°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–9 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB TA† TEST CONDITIONS 25°C VIC = 0, 0 RS = 50 Ω, Ω VO = 0, 0 F ll range Full g IO = – 200 µA M i Maximum positive i i peak k VOM + output voltage swing IO = – 2 mA IO = – 20 mA IO = 200 µA VOM – M i Maximum negative i peak k output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal L Large-signal i l diff differential i l voltage amplification VO = ± 2 2.3 3 V RL = 2 kΩ RL = 10 kΩ ri ci Input resistance Input capacitance 0.65 3.5 6.4 Full range 3.7 25°C 3.5 Full range 3.4 25°C 1.5 Full range 1.5 25°C – 3.8 Full range – 3.7 25°C – 3.5 Full range – 3.4 25°C – 1.5 Full range – 1.5 25°C 80 Full range 79 25°C 90 Full range 89 25°C 95 Full range 94 25 µV/°C 5 100 5 100 pA 5 nA 15 175 15 175 pA 10 nA 5 to – 1.9 5 to –1 5 to – 1.9 4.1 3.8 4.1 3.7 3.9 3.5 3.9 2.3 1.5 2.3 1.5 – 4.2 – 3.8 – 4.2 – 3.7 – 4.1 – 3.5 – 4.1 – 2.4 – 1.5 – 2.4 – 1.5 91 80 91 79 100 90 100 106 95 106 94 11 11 Differential 25°C 2.5 2.5 25°C 80 80 VIC = VICRmin, VO = 0, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω ICC Supply pp y current (both channels) VO = 0 0, No load 25°C 70 Full range 68 25°C 82 Full range 80 25°C 2.7 Full range † Full range is – 40°C to 85°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 89 25°C Common-mode Common mode rejection ratio V – 3.4 1012 CMRR V 3.4 1012 f = 1 MHz V 5 to – 0.8 25°C Open-loop output impedance mV 2.4 5 to – 0.8 3.8 UNIT 25 Common mode zo 5–10 MAX 10 5 to –1 25°C VIC = 0 VIC = 0, See Figure 5 6 TYP 2.4 Full range RS = 50 Ω MIN 5 25°C Input bias current TLE2072AI MAX 9.1 Full range 25°C VICR 0.9 Full range VO = 0, 0 TYP Full range 25°C VIC = 0, 0 See Figure 4 Common mode C Common-mode d input i voltage g range g TLE2072I MIN 89 70 Ω pF Ω 89 dB 68 99 82 99 dB 80 2.9 3.6 3.6 2.7 2.9 3.6 3.6 mA TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) (continued) PARAMETER ax IOS Crosstalk attenuation Short-circuit output current TA† TEST CONDITIONS VIC = 0, RL = 2 kΩ VO = 0 VID = 1 V VID = – 1 V TLE2072I MIN TYP 25°C 25°C TLE2072AI MAX MIN TYP 120 120 – 35 – 35 45 45 MAX UNIT dB mA operating characteristics at specified free-air temperature, VCC± = ±5 V PARAMETER TEST CONDITIONS TA† TLE2072I MIN 25°C SR + Positive rate P i i slew l SR – Negative rate N i slew l ts Settling time Vn Equivalent input noise voltage VN(PP) Peak-to-peak P kt k equivalent input noise voltage 2.3 V, VO(PP) = ± 2 3V AVD = – 1 1, RL = 2 kΩ kΩ, CL = 100 pF, See Figure 1 Full range AVD = – 1, 2-V 2 V step, RL = 1 kΩ, CL = 100 pF To 10 mV TLE2072AI MAX MIN 35 TYP MAX V/µs V/ 20 38 38 20 V/µs V/ 20 0.25 0.25 0.4 0.4 µs 25°C To 1 mV f = 10 Hz f = 10 kHz RS = 20 Ω, Ω, See Figure 3 f = 10 Hz to 10 kHz 25°C 28 55 28 55 11.6 17 11.6 17 6 6 06 0.6 06 0.6 nV/√Hz V µV 25°C f = 0.1 Hz to 10 Hz UNIT 35 20 25°C Full range TYP In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 5 V, f = 1 kHz, kHz RS = 25 Ω AVD = 10, RL = 2 kΩ kΩ, 25°C 0 013% 0.013% 0 013% 0.013% B1 Unity-gain bandwidth VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 94 9.4 94 9.4 MHz BOM Maximum output outputswing bandwidth VO(PP) = 4 V, RL = 2 kΩ , AVD = – 1, CL = 25 pF 25°C 28 2.8 28 2.8 MHz φm Phase margin g at unity y gain VI = 10 mV,, CL = 25 pF, RL = 2 kΩ,, See Figure 2 25°C 56° 56° fA /√Hz † Full range is 40°C to 85°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–11 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB TA† TEST CONDITIONS VO = 0, 0 25°C VO = 0, 0 IO = – 2 mA IO = – 20 mA IO = 200 µA VOM – M i Maximum negative i peak k output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal L Large-signal i l diff differential i l voltage amplification VO = ± 10 V RL = 2 kΩ RL = 10 kΩ ri ci Input resistance Input capacitance 3.5 6.4 Full range 13.7 25°C 13.5 Full range 13.4 25°C 11.5 Full range 11.5 25°C – 13.8 Full range – 13.7 25°C – 13.5 Full range – 13.4 25°C – 11.5 Full range – 11.5 25°C 80 Full range 79 25°C 90 Full range 89 25°C 95 Full range 94 µV/°C 6 100 6 100 pA 5 nA 20 175 20 175 pA 10 nA 15 to – 11.9 15 to – 11 15 to – 11.9 14.1 13.8 14.1 13.7 13.9 13.5 13.9 12.3 11.5 12.3 11.5 – 14.2 – 13.8 – 14.2 – 13.7 – 14 –13.5 – 14 – 12.4 – 11.5 – 12.4 – 11.5 96 80 96 79 109 90 109 118 95 118 94 7.5 7.5 Differential 25°C 2.5 2.5 25°C 80 80 VIC = VICRmin, VO = 0, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω ICC Supply pp y current (both channels) VO = 0 0, No load 25°C 80 Full range 79 25°C 82 Full range 80 25°C 2.7 Full range † Full range is – 40°C to 85°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 89 25°C Common-mode Common mode rejection ratio V – 13.4 1012 CMRR V 13.4 1012 f = 1 MHz V 15 to – 10.8 25°C Open-loop output impedance mV 25 15 to – 10.8 13.8 UNIT 2.4 Common mode zo 5–12 0.7 10 15 to – 11 25°C VIC = 0 VIC = 0, See Figure 5 MAX 25 Full range IO = – 200 µA 6 TYP 5 25°C F ll range Full g MIN 2.4 Full range RS = 50 Ω TLE2072AI MAX 9.1 Full range Input bias current M i Maximum positive i i peak k VOM + output voltage swing 1.1 Full range 25°C VICR TYP 25°C VIC = 0, 0 RS = 50 Ω, Ω VIC = 0, 0 See Figure 4 Common mode C Common-mode d input i voltage g range g TLE2072I MIN 98 80 Ω pF Ω 98 dB 79 99 82 99 dB 80 3.1 3.6 3.6 2.7 3.1 3.6 3.6 mA TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) (continued) PARAMETER ax IOS TA† TEST CONDITIONS Crosstalk attenuation Short-circuit output current VIC = 0, RL = 2 kΩ VO = 0 VID = 1 V VID = – 1 V TLE2072I MIN TYP – 30 MIN TYP – 45 – 30 – 45 30 48 30 48 25°C 25°C TLE2072AI MAX 120 MAX 120 UNIT dB mA operating characteristics at specified free-air temperature, VCC± = ±15 V PARAMETER SR + Positive rate P i i slew l SR – Negative rate N i slew l ts Settling time Vn Equivalent input noise voltage VN(PP) Peak-to-peak P kt k equivalent input noise voltage TEST CONDITIONS VO(PP) = ± 10 V, V AVD = – 1 1, RL = 2 kΩ kΩ, CL = 100 pF, See Figure 1 AVD = – 1, 10-V 10 V step, RL = 1 kΩ, CL = 100 pF MIN TYP 25°C 28 40 Full range 22 25°C 30 Full range 22 To 10 mV TLE2072AI MAX MIN TYP 28 40 MAX 45 30 45 V/µs V/ 22 0.4 0.4 1.5 1.5 µs To 1 mV f = 10 kHz f = 0 Hz to 10 kHz f = 0.1 Hz to 10 Hz UNIT V/µs V/ 22 25°C f = 10 Hz RS = 20 Ω, Ω, See Figure 3 TLE2072I TA† 25°C 28 55 28 55 11.6 17 11.6 17 6 6 0.6 0.6 nV/√Hz V µV 25°C In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 20 V, AVD = 10, f = 1 kHz, kHz RL = 2 kΩ kΩ, RS = 25 Ω 25°C 0 008% 0.008% 0 008% 0.008% B1 Unity-gain bandwidth VI = 10 mV, CL = 25 pF, 25°C 8 10 8 10 MHz BOM Maximum output outputswing bandwidth VO(PP) = 20 V, AVD = – 1, RL = 2 kΩ, CL = 25 pF 25°C 478 637 478 637 kHz φm Phase margin g at unity y gain VI = 10 mV,, CL = 25 pF, 25°C RL = 2 kΩ, See Figure 2 RL = 2 kΩ,, See Figure 2 57° fA /√Hz 57° † Full range is – 40°C to 85°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–13 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB TA† TEST CONDITIONS 25°C VIC = 0, 0 RS = 50 Ω, Ω VO = 0, 0 F ll range Full g IO = – 200 µA M i Maximum positive i i peak k VOM + output voltage swing IO = – 2 mA IO = – 20 mA IO = 200 µA VOM – M i Maximum negative i peak k output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal L Large-signal i l diff differential i l voltage amplification VO = ± 2 2.3 3 V RL = 2 kΩ RL = 10 kΩ ri ci zo Input resistance Input capacitance Open-loop output impedance 5–14 0.65 3.5 8 3.8 Full range 3.6 25°C 3.5 Full range 3.3 25°C 1.5 Full range 1.4 25°C – 3.8 Full range – 3.6 25°C – 3.5 Full range – 3.3 25°C – 1.5 Full range – 1.4 25°C 80 Full range 78 25°C 90 Full range 88 25°C 95 Full range 93 25∗ µV/°C 5 100 5 100 pA 20 nA 15 175 15 175 pA 65 nA 5 to – 1.9 5 to –1 5 to – 1.9 4.1 3.8 4.1 3.6 3.9 3.5 3.9 3.3 2.3 1.5 2.3 – 4.2 – 3.8 – 4.2 – 3.6 – 4.1 – 3.5 – 4.1 – 3.3 – 2.4 – 1.5 V – 2.4 – 1.4 91 80 91 78 100 90 100 88 106 95 dB 106 93 1012 25°C 11 11 Differential 25°C 2.5 2.5 25°C 80 80 • DALLAS, TEXAS 75265 V 1.4 1012 POST OFFICE BOX 655303 V 5 to – 0.8 25°C Common-mode Common mode rejection ratio mV 2.3 Common mode f = 1 MHz UNIT 25∗ 5 to – 0.8 25°C 70 VIC = VICRmin, VO = 0, RS = 50 Ω Full range 68 ∗On products compliant to MIL-STD-883, Class B, this parameter is not production tested. † Full range is – 55°C to 125°C. CMRR MAX 65 5 to –1 25°C VIC = 0 VIC = 0, See Figure 5 6 TYP 2.3 Full range RS = 50 Ω MIN 20 25°C Input bias current TLE2072AM MAX 10.5 Full range 25°C VICR 0.9 Full range VO = 0, 0 TYP Full range 25°C VIC = 0, 0 See Figure 4 Common mode C Common-mode d input i voltage g range g TLE2072M MIN 89 70 68 89 Ω pF Ω dB TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted) (continued) PARAMETER TA† TEST CONDITIONS kSVR Supply-voltage rejection ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω ICC Supply current (both channels) VO = 0 0, No load ax Crosstalk attenuation VIC = 0, RL = 2 kΩ 25°C IOS Short circuit output Short-circuit current VO = 0 VID = 1 V VID = – 1 V 25°C TLE2072M MIN Full range 80 25°C 2.7 TYP TLE2072AM MAX MIN TYP MAX 80 2.9 Full range 3.6 2.7 UNIT dB 2.9 3.6 3.6 3.6 120 120 – 35 – 35 45 45 mA dB mA operating characteristics at specified free-air temperature, VCC± = ±5 V PARAMETER TEST CONDITIONS TA† TLE2072M MIN 25°C SR + Positive rate P i i slew l SR – Negative rate N i slew l ts Settling time Vn Equivalent input noise voltage VN(PP) Peak-to-peak P kt k equivalent input noise voltage VO(PP) = ± 2.3 2 3 V, V AVD = – 1 1, RL = 2 kΩ kΩ, CL = 100 pF, See Figure 1 Full range AVD = – 1, 2-V 2 V step, RL = 1 kΩ, CL = 100 pF To 10 mV MIN TYP MAX To 1 mV f = 10 kHz f = 10 Hz to 10 kHz 25°C 18∗ V/µs V/ 18∗ 38 38 18∗ V/µs V/ 18∗ 0.25 0.25 0.4 0.4 µs 28 11.6 55∗ 17∗ 28 11.6 6 6 06 0.6 06 0.6 55∗ 17∗ nV/√Hz V µV 25°C f = 0.1 Hz to 10 Hz UNIT 35 25°C f = 10 Hz RS = 20 Ω, Ω, See Figure 3 TLE2072AM MAX 35 25°C Full range TYP In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 5 V, f = 1 kHz, kHz RS = 25 Ω AVD = 10, RL = 2 kΩ kΩ, 25°C 0 013% 0.013% 0 013% 0.013% B1 Unity-gain bandwidth VI = 10 mV, CL = 25 pF, RL = 2 kΩ, See Figure 2 25°C 94 9.4 94 9.4 MHz BOM Maximum output output-swing swing bandwidth VO(PP) = 4 V, RL = 2 kΩ , AVD = – 1, CL = 25 pF 25°C 28 2.8 28 2.8 MHz VI = 10 mV, RL = 2 kΩ, 25°C 56° CL = 25 pF, See Figure 2 ∗On products compliant to MIL-STD-883, Class B, this parameter is not production tested. † Full range is – 55°C to 125°C. φm Phase margin at unity gain POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 fA /√Hz 56° 5–15 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB TA† TEST CONDITIONS VO = 0, 0 25°C VO = 0, 0 VOM + IO = – 2 mA IO = – 20 mA IO = 200 µA VOM – M i Maximum negative i peak k output voltage swing IO = 2 mA IO = 20 mA RL = 600 Ω AVD Large signal L Large-signal i l diff differential i l voltage amplification VO = ± 10 V RL = 2 kΩ RL = 10 kΩ ri ci Input resistance Input capacitance 3.5 8 Full range 13.6 25°C 13.5 Full range 13.3 25°C 11.5 Full range 11.4 25°C – 13.8 Full range – 13.6 25°C – 13.5 Full range – 13.3 25°C – 11.5 Full range – 11.4 25°C 80 Full range 78 25°C 90 Full range 89 25°C 95 Full range 93 µV/°C 6 100 6 100 pA 20 nA 20 175 20 175 pA 65 nA 15 to – 11.9 15 to – 11 15 to – 11.9 14.1 13.8 14.1 13.6 13.9 13.5 13.9 13.3 12.3 11.5 12.3 – 14.2 – 13.8 – 14.2 – 13.6 – 14 –13.5 – 14 – 13.3 – 12.4 – 11.5 – 12.4 96 80 96 78 109 90 109 89 118 95 118 7.5 7.5 Differential 25°C 2.5 2.5 25°C 80 80 VIC = VICRmin, VO = 0, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (∆VCC± /∆VIO) VCC ± = ± 5 V to ± 15 V, VO = 0, RS = 50 Ω 25°C 80 Full range 78 25°C 82 Full range 80 ∗On products compliant to MIL-STD-883, Class B, this parameter is not production tested. † Full range is – 55°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 93 25°C Common-mode Common mode rejection ratio V – 11.4 1012 CMRR V 11.4 1012 f = 1 MHz V 15 to – 10.8 25°C Open-loop output impedance mV 25∗ 15 to – 10.8 13.8 UNIT 2.4 Common mode zo 5–16 0.7 65 15 to – 11 25°C VIC = 0 VIC = 0, See Figure 5 MAX 25∗ Full range IO = – 200 µA 6 TYP 20 25°C F ll range Full g MIN 2.4 Full range RS = 50 Ω TLE2072AM MAX 10.5 Full range Input bias current M i Maximum positive i i peak k output voltage swing 1.1 Full range 25°C VICR TYP 25°C VIC = 0, 0 RS = 50 Ω VIC = 0, 0 See Figure 4 Common mode C Common-mode d input i voltage g range g TLE2072M MIN 98 80 98 78 99 82 80 99 Ω pF Ω dB dB TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted) PARAMETER TEST CONDITIONS ICC Supply current (both channels) VO = 0 0, No load ax Crosstalk attenuation VIC = 0, RL = 2 kΩ IOS Short circuit output Short-circuit current VO = 0 VID = 1 V VID = – 1 V TLE2072M TLE2072AM TA† MIN TYP MAX MIN TYP MAX 25°C 2.7 3.1 3.6 2.7 3.1 3.6 Full range 3.6 25°C 25°C 3.6 120 120 – 30 – 45 – 30 – 45 30 48 30 48 UNIT mA dB mA operating characteristics at specified free-air temperature, VCC± = ±15 V PARAMETER SR + TEST CONDITIONS Positive rate P i i slew l VO(PP) = 10 V, V AVD = – 1, 1 RL = 2 kΩ kΩ, CL = 100 pF, pF See Figure 1 SR – ts Negative rate N i slew l Settling time Vn Equivalent input noise voltage VN(PP) Peak-to-peak P kt k equivalent input noise voltage AVD = – 1, 10-V 10 V step, RL = 1 kΩ, CL = 100 pF TLE2072M TA† MIN TYP 25°C 28 40 Full range 20 25°C 30 Full range 20 TLE2072AM MAX MIN TYP 28 40 MAX V/µs V/ 20 45 30 45 V/µs V/ 20 To 10 mV 0.4 0.4 1.5 1.5 µs 25°C To 1 mV f = 10 Hz f = 10 kHz RS = 20 Ω, Ω, See Figure 3 f = 10 Hz to 10 kHz UNIT 28 25°C 11.6 55∗ 17∗ 28 11.6 6 6 06 0.6 06 0.6 55∗ 17∗ nV/√Hz V µV 25°C f = 0.1 Hz to 10 Hz In Equivalent input noise current VIC = 0, f = 10 kHz 25°C 2.8 2.8 THD + N Total harmonic distortion plus noise VO(PP) = 20 V, AVD = 10, f = 1 kHz, kHz RL = 2 kΩ kΩ, RS = 25 Ω 25°C 0 008% 0.008% 0 008% 0.008% B1 Unity-gain bandwidth VI = 10 mV, CL = 25 pF, 25°C 8∗ 10 8∗ 10 MHz BOM Maximum output-swing bandwidth VO(PP) = 20 V, AVD = – 1, RL = 2 kΩ, CL = 25 pF 25°C 478∗ 637 478∗ 637 kHz φm Phase margin g at unity y gain VI = 10 mV,, CL = 25 pF, 25°C RL = 2 kΩ, See Figure 2 RL = 2 kΩ,, See Figure 2 57° fA /√Hz 57° ∗On products compliant to MIL-STD-883, Class B, this parameter is not production tested. † Full range is – 55°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–17 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 electrical characteristics at VCC± = ±15 V, TA = 25°C PARAMETER VIO IIO Input offset voltage IIB Input bias current VICR C Common-mode d iinput p voltage l g range g RS = 50 Ω Maximum positive peak M i p ii p k output p voltage l g swing i g VOM + VOM – AVD ri VIC = 0, Input offset current VO = 0, VIC = 0 0, Maximum negative peak output voltage swing VO = 0 0, MIN RS = 50 Ω See Figure 4 Input resistance 6 100 pA 20 175 pA 13.8 14.1 13.5 13.9 IO = – 20 mA IO = 200 µA 11.5 12.3 – 13.8 – 14.2 – 13.5 – 14 RL = 600 Ω 80 96 RL = 2 kΩ 90 109 RL = 10 kΩ 95 118 V V V dB Ω 1012 Common mode 7.5 Differential 2.5 Input capacitance VIC = 0, See Figure 5 zo Open-loop output impedance f = 1 MHz CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio (∆VCC± /∆VIO) VIC = VICRmin, VO = 0, VCC ± = ± 5 V to ±15 V, RS = 50 Ω ICC Supply current (both channels) pF 80 Ω RS = 50 Ω 80 98 dB VO = 0, 82 99 dB VO = 0, No load VO = 0 VID = 1 V VID = – 1 V 2.7 3.1 – 30 – 45 30 48 3.6 2 kΩ 10 kΩ VCC + VCC + 2 kΩ – + VCC – VO RL † Includes fixture capacitance POST OFFICE BOX 655303 100 Ω – + VO VCC – CL† Figure 1. Slew-Rate Test Circuit 5–18 VI RL CL† Figure 2. Unity-Gain Bandwidth and Phase-Margin Test Circuit • DALLAS, TEXAS 75265 mA mA PARAMETER MEASUREMENT INFORMATION VI mV – 11 . 5 – 1 2 . 4 VIC = 0 Short circuit output current Short-circuit UNIT 6 IO = – 200 µA IO = – 2 mA VO = ± 10 V MAX 1.1 15 to 11.9 IO = 2 mA IO = 2 0 m A L g ig l differential Large-signal diff i l voltage l g amplification plifi i TYP 15 to – 11 ci IOS TLE2072Y TEST CONDITIONS TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 PARAMETER MEASUREMENT INFORMATION 2 kΩ VCC + Ground Shield – + RS RS VCC + – + VO VO VCC – Picoammeters VCC – Figure 3. Noise-Voltage Test Circuit Figure 4. Input-Bias and OffsetCurrent Test Circuit VCC + IN – – Cid IN + Cic VO + Cic VCC – Figure 5. Internal Input Capacitance typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. input bias and offset current At the picoampere bias-current level typical of the TLE2072 and TLE2072A, accurate measurement of the bias becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted in the socket and a second test is performed that measures both the socket leakage and the device input bias current. The two measurements are then subtracted algebraically to determine the bias current of the device. TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO αVIO Input offset voltage Distribution Temperature coefficient Distribution IIO Input offset current vs Free-air temperature 8, 9 IIB Input bias current vs Free-air temperature p vs Supply voltage 8,, 9 10 VICR VID Common-mode input voltage range vs Free-air temperature Differential input voltage vs Output voltage POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6 7 11 12, 13 5–19 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS Table of Graphs (Continued) FIGURE VOM + Maximum p positive peak p voltage M i ii p k output l g vs Output current vs Free-air temperature p vs S Supply l voltage l 14 16, 17 18 VOM – Maximum negative g i p peak p voltage M i k output l g vs Output current vs Free-air temperature p vs S Supply l voltage l 15 16, 17 18 VO(PP) VO Maximum peak-to-peak output voltage vs Frequency 19 Output voltage vs Settling time 20 AVD Differential plifi i Diff i l voltage l g amplification vs Load resistance vs Free-air temperature p vs Frequency F 21 22, 23 24, 25 CMRR Common-mode rejection ratio vs Frequency q y vs Free-air temperature 26 27 kSVR Supply-voltage rejection ratio vs Frequency q y vs Free-air temperature 28 29 ICC Supply S pply current vs Supply voltage vs Free-air temperature p vs Diff Differential i l iinput voltage l IOS Short-circuit p current Sh i i output vs Supply voltage vs Elapsed p time vs F Free-air i temperature SR Slew rate Sl vs Free Free-air air temperature vs Load resistance vs Diff Differential i l iinput voltage l Vn Equivalent input noise voltage vs Frequency 41 Input-referred noise voltage vs Noise bandwidth Over a 10-second time interval 42 43 Third-octave spectral noise density vs Frequency bands 44 THD + N Total harmonic distortion plus noise vs Frequency B1 Unity-gain bandwidth vs Load capacitance 47 Gain-bandwidth product vs Free-air temperature p vs Supply voltage 48 49 Gain margin vs Load capacitance 50 Ph Phase margin gi Free-air vs Free air temperature vs Supply pp y voltage g vs Load L d capacitance i 51 52 53 Phase shift vs Frequency Large-signal pulse response, noninverting vs Time 54 Vn φm 5–20 30 31 32, 33 34 35 36 37, 38 39 40 45, 46 24, 25 Small-signal pulse response vs Time 55 zo Closed-loop output impedance vs Frequency 56 ax Crosstalk attenuation vs Frequency 57 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† DISTRIBUTION OF TLE2072 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLE2072 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 20 30 600 Units Tested From One Wafer Lot VCC = ± 15 V TA = 25°C P Package Percentage of Units – % 16 27 Percentage of Amplifiers – % 18 14 12 10 8 6 4 2 24 310 Amplifiers VCC = ± 15 V TA = – 55°C to 125°C P Package 21 18 15 12 9 6 3 0 –4 – 2.4 – 0.8 2.4 0.8 0 – 30 – 24 –18 –12 – 6 4 Figure 6 1 IIO 0.1 IIB 0.01 45 65 85 105 125 IIB I IO – Input Bias and Input Offset Currents – nA IIB and IIO IIB I IO – Input Bias and Input Offset Currents – nA IIB and IIO VCC ± = ± 5 V VIC = 0 VO = 0 25 12 18 24 30 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 100 0.001 – 75 – 55 – 35 – 15 – 5 6 Figure 7 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 10 0 αVIO – Temperature Coefficient – µV/°C VIO V IO – Input Offset Voltage – mV 100 10 VCC ± = ± 15 V VIC = 0 VO = 0 IIB 1 0.1 IIO 0.01 0.001 – 75 – 55 – 35 – 15 TA – Free-Air Temperature – °C 5 25 45 65 85 105 125 TA – Free-Air Temperature – °C Figure 8 Figure 9 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–21 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† INPUT BIAS CURRENT vs SUPPLY VOLTAGE COMMON-MODE INPUT VOLTAGE RANGE vs FREE-AIR TEMPERATURE 10 6 VIC – Common-Mode Input Voltage Range – V VIC VCC + + 0.5 VICmax = VCC + IIIB IB – Input Bias Current – pA 10 5 TA = 125°C VICmin 10 4 10 3 10 2 TA = 25°C 10 1 TA = – 55°C 10 0 0 5 10 15 20 25 30 35 40 45 RS = 50 Ω VCC + VICmax VCC + – 0.5 VCC – + 3.5 VICmin VCC – + 3 VCC – + 2.5 VCC – + 2 – 75 – 55 – 35 – 15 Figure 10 200 400 0 RL = 600 Ω RL = 2 kΩ RL = 10 kΩ RL = 10 kΩ – 100 RL = 2 kΩ – 200 – 300 – 400 –5 –4 RL = 600 Ω –3 – 2 – 10 VCC ± = ± 15 V VIC = 0 RS = 50 Ω TA = 25°C 300 100 0 65 85 105 125 DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE V VID ID – Differential Input Voltage – uV µV V VID ID – Differential Input Voltage – uV µV 300 45 Figure 11 DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE VCC ± = ± 5 V VIC = 0 RS = 50 Ω TA = 25°C 25 TA – Free-Air Temperature – °C VCC – Total Supply Voltage (Referred to VCC – ) – V 400 5 1 2 3 4 5 200 RL = 600 Ω RL = 2 kΩ 100 0 RL = 10 kΩ RL = 10 kΩ – 100 RL = 2 kΩ – 200 RL = 600 Ω – 300 – 400 – 15 – 10 VO – Output Voltage – V –5 0 5 10 VO – Output Voltage – V Figure 12 Figure 13 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 5–22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† 15 13.5 12 TA = – 55°C 10.5 9 7.5 TA = 25°C 6 TA = 125°C 4.5 TA = 85°C 3 VCC ± = ± 15 V 1.5 0 0 – 5 –10 –15 – 20 – 25 – 30 – 35 – 40 – 45 – 50 MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT V OM – – Maximum Negative Peak Output Voltage – V VVOM OM+ – Maximum Positive Peak Output Voltage – V MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT –15 –13.5 TA = – 55°C –12 –10.5 TA = 25°C –9 –7.5 –6 TA = 85°C – 4.5 TA = 125°C –3 VCC ± = ± 15 V –1.5 0 0 5 IO – Output Current – mA IO = – 20 mA 1 VCC ± = ± 5 V –1 IO = 20 mA –3 IO = 2 mA –4 –5 – 75 – 55 – 35 –15 IO = 200 µA 5 25 30 35 40 45 50 MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE | V OM | – Maximum Peak Output Voltage – V VOM – Maximum Peak Output Voltage – V V OM IO = – 2 mA 3 –2 25 15 IO = – 200 µA 4 0 20 Figure 15 MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 2 15 IO – Output Current – mA Figure 14 5 10 45 65 85 105 125 IO = 200 µA IO = – 200 µA 14.5 14 IO = 2 mA IO = – 2 mA 13.5 13 IO = 20 mA 12.5 IO = – 20 mA 12 11.5 11 10.5 VCC ± = ± 15 V 10 – 75 – 55 – 35 –15 TA – Free-Air Temperature – °C 5 25 45 65 85 105 125 TA – Free-Air Temperature – °C Figure 16 Figure 17 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–23 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY V O(PP) – Maximum Peak-to-Peak Output Voltage – V VO(PP) MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE 25 VOM VOM – Maximum Peak Output Voltage – V TA = 25°C 20 15 IO = – 200 µA 10 5 IO = – 2 mA IO = – 20 mA 0 –5 IO = 20 mA –10 IO = 2 mA IO = 200 µA –15 – 20 – 25 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 30 VCC ± = ± 15 V RL = 2 kΩ 25 20 TA = – 55°C 15 TA = 25°C, 125°C 10 VCC ± = ± 5 V 5 TA = – 55°C 0 100 k 1M f – Frequency – Hz |VCC ± | – Supply Voltage – V Figure 18 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE 125 12.5 10 10 mV 120 5 AVD AVD – Large-Signal Differential Voltage Amplification – dB 7.5 1 mV 2.5 VCC ± = ± 15 V RL = 1 kΩ CL = 100 pF AV = – 1 TA = 25°C Rising 0 Falling – 2.5 –5 ÁÁ ÁÁ 1 mV – 7.5 10 mV – 10 – 12.5 0 0.5 1 1.5 2 VIC = 0 RS = 50 Ω TA = 25°C 115 110 VCC ± = ± 15 V 105 VCC ± = ± 5 V 100 95 90 0.1 ts – Settling Time – µs 1 10 RL – Load Resistance – kΩ Figure 20 Figure 21 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 5–24 10 M Figure 19 OUTPUT VOLTAGE vs SETTLING TIME VO VO – Output Voltage – V TA = 25°C, 125°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 125 110 107 VCC ± = ± 15 V VO = ± 10 V RL = 10 kΩ 121 ÁÁ ÁÁ ÁÁ AVD AVD – Large-Signal Differential Voltage Amplification – dB AVD AVD – Large-Signal Differential Voltage Amplification – dB RL = 10 kΩ 104 101 RL = 2 kΩ 98 95 92 86 VCC ± = ± 5 V VO = ± 2.3 V 80 –75 – 55 – 35 –15 113 5 25 45 65 RL = 2 kΩ 109 105 101 Á Á Á RL = 600 Ω 89 83 117 RL = 600 Ω 97 93 89 85 –75 – 55 – 35 –15 85 105 125 5 25 45 65 85 105 125 TA – Free-Air Temperature – °C TA – Free-Air Temperature – °C Figure 22 Figure 23 SMALL-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 140 VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C ÁÁ ÁÁ ÁÁ Gain 100 80 20° 40° 60° Phase Shift 60 80° 40 100° 20 120° 0 140° – 20 160° Phase Shift AVD Avd – Small-Signal Differential Voltage Amplification – dB 120 0° 180° – 40 1 10 100 1k 10 k 100 k 1 M 10 M 100 M f – Frequency – Hz Figure 24 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–25 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† SMALL-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 30 80° Phase Shift 100° CL = 25 pF 10 120° Gain ÁÁ ÁÁ 0 140° Phase Shift AVD Avd – Small-Signal Differential Voltage Amplification – dB CL = 100 pF 20 CL = 100 pF VCC ± = ± 15 V VIC = 0 RC = 2 kΩ TA = 25°C – 10 CL = 25 pF 180° 100 – 20 1 4 10 160° 40 f – Frequency – MHz Figure 25 COMMON-MODE REJECTION RATIO vs FREQUENCY COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 100 CMRR – Common-Mode Rejection Ratio – dB CMRR – Common-Mode Rejection Ratio – dB 100 VCC ± = ± 15 V 90 VCC ± = ± 5 V 80 70 60 50 40 30 VIC = 0 VO = 0 RS = 50 Ω TA = 25°C 20 10 0 10 100 1k 10 k 100 k 1M 10 M 97 VCC ± = ± 15 V 94 91 88 VCC ± = ± 5 V 85 82 79 76 73 VIC = VICRmin VO = 0 RS = 50 Ω 70 –75 – 55 – 35 –15 5 25 45 65 85 105 125 TA – Free-Air Temperature – °C f – Frequency – Hz Figure 26 Figure 27 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 5–26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREE-AIR TEMPERATURE 120 kXXXX SVR – Supply-Voltage Rejection Ratio – dB kXXXX SVR – Supply-Voltage Rejection Ratio – dB 120 kSVR + 100 80 60 kSVR – 40 ∆ VCC ± = ± 5 V to ± 15 V VIC = 0 VO = 0 RS = 50 Ω TA = 25°C 20 0 – 20 10 100 1k 10 k 100 k 1M 114 kSVR + 108 102 96 90 kSVR – 84 78 72 66 ∆ VCC ± = ± 5 V to ± 15 V VIC = 0 VO = 0 RS = 50 Ω 60 –75 – 55 – 35 –15 10 M Figure 28 25 45 65 85 105 125 Figure 29 SUPPLY CURRENT vs SUPPLY VOLTAGE SUPPLY CURRENT vs FREE-AIR TEMPERATURE 3.5 4 VIC = 0 VO = 0 No Load 3.8 3.4 VIC = 0 VO = 0 No Load 3.3 IICC CC – Supply Current – mA 3.6 IICC CC – Supply Current – mA 5 TA – Free-Air Temperature – °C f – Frequency – Hz 3.4 TA = 125°C 3.2 3 TA = 25°C 2.8 2.6 TA = – 55°C 3.2 3 2.8 2.7 2.2 2.6 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 VCC ± = ± 5 V 2.9 2.4 2 VCC ± = ± 15 V 3.1 2.5 –75 –55 –35 –15 5 25 45 65 85 105 125 TA – Free-Air Temperature – °C |VCC ±| – Supply Voltage – V Figure 30 Figure 31 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–27 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† SUPPLY CURRENT vs DIFFERENTIAL INPUT VOLTAGE SUPPLY CURRENT vs DIFFERENTIAL INPUT VOLTAGE 14 25 VCC + = 5 V VCC – = 0 VIC = 4.5 V TA = 25°C Open Loop No Load 10 VCC ± = ± 15 V VIC = 0 TA = 25°C Open Loop No Load 20 IICC CC – Supply Current – mA IICC CC – Supply Current – mA 12 8 6 4 15 10 5 2 0 – 0.5 – 0.25 0 0.25 VID – Differential Input Voltage – V 0 –1.5 0.5 –1 Figure 32 48 40 VID = – 1 V 24 12 VO = 0 TA = 25°C –12 – 24 VID = 1 V – 48 IIOS OS – Short-Circuit Output Current – mA IIOS OS – Short-Circuit Output Current – mA 50 – 36 0.5 1 VID = – 1 V 30 20 10 VCC ± = ± 15 V VO = 0 TA = 25°C 0 –10 – 20 – 30 VID = 1 V – 40 – 50 – 60 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 0 |VCC ± | – Supply Voltage – V 60 120 t – Elapsed Time – s Figure 34 Figure 35 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 5–28 1.5 SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME 60 0 0 Figure 33 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 36 – 0.5 VID – Differential Input Voltage – V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 180 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE SLEW RATE vs FREE-AIR TEMPERATURE 45 64 43 VID = – 1 V VCC ± = ± 15 V 48 32 VCC ± = ± 5 V 16 0 – 16 VCC ± = ± 5 V VID = 1 V – 32 VCC ± = ± 15 V – 48 – 64 41 V/µ s SR – Slew Rate – V/xs IIOS OS – Short-Circuit Output Current – mA 80 VCC ± = ± 5 V RL = 2 kΩ CL = 100 pF 39 SR – 37 35 SR + 33 31 29 27 VO = 0 – 80 –75 – 55 – 35 –15 5 25 45 65 25 –75 – 55 – 35 –15 85 105 125 TA – Free-Air Temperature – °C Figure 36 SR – Slew Rate – V/µ s 62 45 65 85 105 125 SLEW RATE vs LOAD RESISTANCE 50 VCC ± = ± 15 V RL = 2 kΩ CL = 100 pF 40 Rising Edge 30 SR – Slew Rate – V/µ s 66 25 Figure 37 SLEW RATE vs FREE-AIR TEMPERATURE 70 5 TA – Free-Air Temperature – °C 58 54 50 SR – 46 42 SR + 20 10 VCC ± = ± 5 V VO ± = ± 2.5 V 0 –10 AV = – 1 CL = 100 pF TA = 25°C – 20 38 – 30 34 – 40 30 –75 – 55 – 35 –15 Falling Edge – 50 100 1k 5 25 45 65 85 105 125 VCC ± = ± 15 V VO ± = ± 10 V TA – Free-Air Temperature – °C 10 k 100 k RL – Load Resistance – Ω Figure 38 Figure 39 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–29 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† INPUT-REFERRED NOISE VOLTAGE SPECTRAL DENSITY vs FREQUENCY SLEW RATE vs DIFFERENTIAL INPUT VOLTAGE 50 Hz AV = – 1 40 SR – Slew Rate – V/µ s 30 AV = 1 Rising Edge 20 VCC ± = ± 15 V VO ± = ± 10 V (10% – 90%) CL = 100 pF TA = 25°C 10 0 –10 – 20 Falling Edge – 30 AV = – 1 – 40 AV = 1 – 50 0.1 0.4 1 4 V n – Equivalent Input Noise Voltage – nV/ Vn 50 VCC ± = ± 15 V VIC = 0 RS = 20 Ω TA = 25°C 45 40 35 30 25 20 15 10 5 0 10 10 100 VID – Differential Input Voltage – V Figure 40 1.2 Vn – Input-Referred Noise Voltage – µV Vn Vn – Input-Referred Noise Voltage – µV Vn INPUT-REFERRED NOISE VOLTAGE OVER A 10-SECOND TIME INTERVAL VCC ± = ± 15 V VIC = 0 RS = 20 Ω TA = 25°C 10 10 k Figure 41 INPUT-REFERRED NOISE VOLTAGE vs NOISE BANDWIDTH 100 1k f – Frequency – Hz Peak-to-Peak 1 RMS 0.1 0.01 0.9 VCC ± = ± 15 V f = 0.1 to 10 Hz TA = 25°C 0.6 0.3 0 – 0.3 – 0.6 1 10 100 1k 10 k 100 k 0 1 2 3 4 5 6 7 8 9 t – Time – s Noise Bandwidth – Hz Figure 42 Figure 43 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 5–30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS THIRD-OCTAVE SPECTRAL NOISE DENSITY vs FREQUENCY BANDS THD + N – Total Harmonic Distortion + Noise – % Third-Octave Spectral Noise Density – dB – 75 Start Frequency: 12.5 Hz Stop Frequency: 20 kHz VCC ± = ± 15 V VIC = 0 TA = 25°C – 80 – 85 – 90 – 95 –100 –105 –110 –115 10 15 20 25 30 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 40 35 45 1 AV = 100, RL = 600 Ω 0.1 AV = 100, RL = 2 kΩ AV = 10, RL = 600 Ω AV = 10, RL = 2 kΩ 0.01 VCC ± = ± 5 V VO(PP) = 5 V TA = 25°C Filter: 10-Hz to 500-kHz Band Pass 0.001 10 100 Frequency Bands Figure 44 B1 B1 – Unity-Gain Bandwidth – MHz THD + N – Total Harmonic Distortion + Noise – % 13 Filter: 10-Hz to 500-kHz Band Pass VCC ± = ± 15 V VO(PP) = 20 V TA = 25°C AV = 100, RL = 600 Ω AV = 100, RL = 2 kΩ AV = 10, RL = 600 Ω AV = 10, RL = 2 kΩ 0.001 10 100 k UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE 1 0.01 10 k Figure 45 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 0.1 1k f – Frequency – Hz VCC ± = ± 15 V VIC = 0 VO = 0 RL = 2 kΩ TA = 25°C 12 11 10 9 8 7 100 1k 10 k 100 k 0 f – Frequency – Hz 20 40 60 80 100 CL – Load Capacitance – pF Figure 46 Figure 47 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–31 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† GAIN-BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 13 f = 100 kHz VIC = 0 VO = 0 RL = 2 kΩ CL = 100 pF 12 11 VCC ± = ± 15 V 10 9 VCC ± = ± 5 V 8 7 –75 – 55 – 35 –15 Gain-Bandwidth Product – MHz Gain-Bandwidth Product – MHz 13 f = 100 kHz VIC = 0 VO = 0 RL = 2 kΩ CL = 100 pF TA = 25°C 12 11 10 9 8 7 5 25 45 65 85 105 125 0 5 TA – Free-Air Temperature – °C Figure 48 20 25 PHASE MARGIN vs FREE-AIR TEMPERATURE 10 90° VCC ± = ± 15 V VIC = 0 VO = 0 RL = 2 kΩ TA = 25°C 80° VIC = 0 VO = 0 RL = 2 kΩ 70° φ m – Phase Margin xm Gain Margin – dB 15 Figure 49 GAIN MARGIN vs LOAD CAPACITANCE 8 10 VCC +± | – Supply Voltage – V |VCC 6 4 VCC ± = ± 15 V CL = 25 pF 60° VCC ± = ± 5 V 50° VCC ± = ± 15 V 40° 30° CL = 100 pF VCC ± = ± 5 V 20° 2 10° 0 0 20 40 60 80 100 0° –75 – 55 – 35 –15 5 25 45 65 85 105 125 TA – Free-Air Temperature – °C CL – Load Capacitance – pF Figure 50 Figure 51 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 5–32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† PHASE MARGIN vs SUPPLY VOLTAGE PHASE MARGIN vs LOAD CAPACITANCE 90° 90° 80° 80° 70° CL = 25 pF 60° xm φ m – Phase Margin φ m – Phase Margin xm 70° 50° CL = 100 pF 40° 30° VIC = 0 VO = 0 RL = 2 kΩ TA = 25°C 20° 10° 60° VCC ± = ± 15 V 50° VCC ± = ± 5 V 40° 30° VIC = 0 VO = 0 RL = 2 kΩ TA = 25°C 20° 10° 0° 0° 0 4 8 12 16 20 0 20 |VCC ±| – Supply Voltage – V 40 60 80 100 CL – Load Capacitance – pF Figure 52 Figure 53 NONINVERTING LARGE-SIGNAL PULSE RESPONSE SMALL-SIGNAL PULSE RESPONSE 100 15 TA = 25°C, 125°C VO VO – Output Voltage – mV VO VO – Output Voltage – V 10 TA = – 55°C 5 TA = – 55°C 0 TA = 25°C, 125°C –5 VCC ± = ± 15 V AV = 1 RL = 2 kΩ CL = 100 pF – 10 – 15 50 0 VCC ± = ± 15 V AV = – 1 RL = 2 kΩ CL = 100 pF TA = 25°C – 50 –100 0 1 2 3 t – Time – µs 4 5 0 Figure 54 0.4 0.8 t – Time – µs 1.2 1.6 Figure 55 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–33 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 TYPICAL CHARACTERISTICS† CLOSED-LOOP OUTPUT IMPEDANCE vs FREQUENCY CROSSTALK ATTENUATION vs FREQUENCY 140 VCC ± = ± 15 V TA = 25°C 10 1 a axx – Crosstalk Attenuation – dB zo – Closed-Loop Output Impedance – Ω zo X 100 AV = 100 0.1 AV = 10 0.01 AV = 1 0.001 10 100 1k 10 k 100 k 1M 10 M 120 100 80 60 40 20 10 VCC ± = ± 15 V VIC = 0 RL = 2 kΩ TA = 25°C 100 1k 10 k f – Frequency – Hz f – Frequency – Hz Figure 56 Figure 57 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 5–34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 k TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using PSpice Parts model generation software. The Boyle macromodel (see Note 4) and subcircuit in Figure 58 were generated using the TLE2072 typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • • • • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification • • • • • • Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 4: G.R. Boyle, B.M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 DIN 3 EGND + VCC + 92 9 FB – + 91 90 RSS ISS RO2 – + DIP + VB RP VIP VIN HLIM – + 2 10 + – – VC R2 IN – C2 J1 J2 – 7 6 DP 53 + IN+ VLIM 1 11 DC GA 12 GCM – 8 C1 RD1 VCC – RD2 54 4 – RO1 DE 5 + VE OUT .SUBCKT TLE2072 1 2 3 4 5 C1 11 12 2.2E–12 C2 6 7 10.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 5.607E6 –6E6 6E6 6E6 –6E6 GA 6 0 11 12 333.0E–6 GCM 0 6 10 99 7.43E–9 ISS 3 10 DC 400.0E–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 RD1 4 11 3.003E3 RD2 4 12 3.003E3 R01 8 5 80 R02 7 99 80 RP 3 4 27.30E3 RSS 10 99 500.0E3 VB 9 0 DC 0 VC 3 53 DC 2.20 VE 54 4 DC 2.20 VLIM 7 8 DC 0 VLP 91 0 DC 45 VLN 0 92 DC 45 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=15.00E–12 BETA=554.5E–6 + VTO=–.6) .ENDS Figure 58. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5–35 TLE2072, TLE2072A, TLE2072Y EXCALIBUR LOW-NOISE HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS SLOS124A – JUNE 1993 – REVISED AUGUST 1994 5–36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Copyright 1996, Texas Instruments Incorporated