TLK3134 4-Channel Multi-Rate Transceiver Data Manual PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Literature Number: SLLS838D May 2007 – Revised July 2008 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Contents 1 Introduction ....................................................................................................................... 13 1.1 1.2 1.3 1.4 2 13 13 13 14 Detailed Description ........................................................................................................... 16 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2 Features ..................................................................................................................... Applications ................................................................................................................. Pin Out ....................................................................................................................... Description .................................................................................................................. Clocking Modes............................................................................................................. Operating Frequency Range.............................................................................................. CPRI Latency Support ..................................................................................................... Powerdown Mode .......................................................................................................... Application Examples ...................................................................................................... Device Operation Modes .................................................................................................. Parallel Interface Modes - Detailed Description ........................................................................ 2.7.1 XAUI/10GFC Mode .............................................................................................. 2.7.2 RGMII Mode (Reduced Gigabit Media Independent Interface) ............................................ 2.7.3 RTBI Mode (Reduced Ten Bit Interface) ..................................................................... 2.7.4 TBI Mode (Ten Bit Interface) ................................................................................... 2.7.5 GMII Mode (Gigabit Media Independent Interface) ......................................................... 2.7.6 EBI Mode (Eight Bit Interface) ................................................................................. 2.7.7 REBI Mode (Reduced Eight Bit Interface) ................................................................... 2.7.8 NBI Mode (Nine Bit Interface Mode) .......................................................................... 2.7.9 RNBI Mode (Reduced Nine Bit Interface) .................................................................... 2.7.10 TBID Mode (Ten Bit Interface DDR) .......................................................................... 2.7.11 NBID Mode (Nine Bit Interface DDR) ......................................................................... 2.7.12 Parallel Interface Clocking Modes............................................................................. 2.7.13 Parallel Interface Data .......................................................................................... 2.7.14 Transmission Latency ........................................................................................... 2.7.15 Channel Clock to Serial Transmit Clock Synchronization .................................................. 2.7.16 Data Reception Latency ........................................................................................ 2.7.17 8B/10B Encoder ................................................................................................. 2.7.18 Comma Detect and 8B/10B Decoding ........................................................................ 2.7.19 Channel Initialization and Synchronization .................................................................. 2.7.20 Channel State Descriptions: ................................................................................... 2.7.21 End of Packet Error Detection ................................................................................. 2.7.22 Fault Detection and Reporting ................................................................................. 2.7.23 Receive Synchronization and Skew Compensation ........................................................ 2.7.24 Column State Descriptions: .................................................................................... 2.7.25 Inter-Packet Gap Management ................................................................................ 2.7.26 Clock Tolerance Compensation (CTC) ....................................................................... 2.7.27 Parallel to Serial ................................................................................................. 2.7.28 Serial to Parallel ................................................................................................. 2.7.29 High Speed CML Output ....................................................................................... 2.7.30 High Speed Receiver ........................................................................................... 2.7.31 Loopback ......................................................................................................... 2.7.32 Link Test Functions ............................................................................................. 2.7.33 MDIO Management Interface .................................................................................. 2.7.34 MDIO Protocol Timing .......................................................................................... 2.7.35 Clause 22 Indirect Addressing ................................................................................. Programmers Reference .................................................................................................. 2.8.1 10G XAUI Programmers Reference (ST = 0)................................................................ 1G Programmers Reference .............................................................................................. Contents 16 16 17 17 17 21 22 22 23 24 25 26 27 28 29 30 31 32 33 34 34 35 35 35 37 37 38 39 39 40 41 42 44 46 46 46 48 48 48 48 49 50 52 52 63 Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com ..................................................................................... 68 ................................................................................ 91 3.1 XAUI MODE (XGMII) ...................................................................................................... 91 3.2 Gigabit Ethernet Mode (RGMII) .......................................................................................... 94 3.3 Jitter Test Pattern Generation and Verification Procedures .......................................................... 97 3.4 PRBS Test Generation and Verification Procedures ................................................................. 101 3.5 Signal Pin Description .................................................................................................... 104 Electrical Specifications .................................................................................................... 112 4.1 ABSOLUTE MAXIMUM RATINGS ..................................................................................... 112 4.2 RECOMMENDED OPERATING CONDITIONS ...................................................................... 112 4.3 REFERENCE CLOCK TIMING REQUIREMENTS (REFCLKP/N) ................................................. 113 4.4 REFERENCE CLOCK ELECTRICAL CHARACTERISTICS (REFCLKP/N) ...................................... 113 4.5 SINGLE ENDED REFERENCE CLOCK ELECTRICAL CHARACTERISTICS (REFCLK)...................... 113 4.6 JITTER CLEANER TIMING PARAMETERS .......................................................................... 113 4.7 LVCMOS ELECTRICAL CHARACTERISTICS ....................................................................... 114 4.8 MDIO ELECTRICAL CHARACTERISTICS ........................................................................... 114 4.9 HSTL SIGNALS (VDDQ = 1.5/1.8 V) ELECTRICAL CHARACTERISTICS ....................................... 114 4.10 SERIAL TRANSMITTER/RECEIVER CHARACTERISTICS ........................................................ 115 4.10.1 Parameter Measurement ..................................................................................... 116 4.11 HSTL Output Switching Characteristics (DDR Timing Mode Only) ................................................ 120 4.12 HSTL Output Switching Characteristics (SDR Timing Mode Only) ................................................ 121 4.13 HSTL (DDR Timing Mode Only) Input Timing Requirements ....................................................... 122 4.14 HSTL (SDR Timing Mode Only) Input Timing Requirements ....................................................... 123 4.15 MDIO Timing Requirements Over Recommended Operating Conditions ......................................... 124 4.16 JTAG Timing Requirements Over Recommended Operating Conditions ......................................... 125 Package Dissipation Rating ............................................................................................. 127 APPENDIX A – Frequency Ranges Supported ...................................................................... 129 A.1 Recovered Byte Clock Jitter Cleaner Mode: .......................................................................... 144 APPENDIX B – Jitter Cleaner PLL External Loop Filter .......................................................... 146 APPENDIX C – Device Test Mode ....................................................................................... 147 2.10 3 4 A B C SLLS838D – MAY 2007 – REVISED JULY 2008 Top Level Programmers Reference Device Reset Requirements/Procedure Contents 3 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com List of Figures 1-1 System Block Diagram – XAUI .................................................................................................. 14 1-2 System Block Diagram – XAUI Backplane 1-3 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28 2-29 2-30 2-31 2-32 2-33 2-34 2-35 2-36 4 .................................................................................... Block Diagram – TLK3134 Clocking Architecture............................................................................. Quad 10-Bit SERDES Application .............................................................................................. XAUI Mode – XAUI (Serial) Loopback Application ........................................................................... XAUI Mode - XGMII (Parallel ) Loopback Application ........................................................................ Custom Independent Configuration Application ............................................................................... TLK3134 Block Diagram ......................................................................................................... Detailed XAUI/1000Base-X Core Block Diagram ............................................................................. Block Diagram of SERDES Core ............................................................................................... RGMII – Individual Channel Byte Ordering – Channel 0 Example ......................................................... RTBI – Individual Channel Byte Ordering – Channel 0 Example ........................................................... TBI – Individual Channel Byte Ordering – Channel 0 Example ............................................................. GMII – Individual Channel Byte Ordering – Channel 0 Example ........................................................... EBI – Individual Channel Byte Ordering – Channel 0 Example............................................................. REBI – Individual Channel Byte Ordering – Channel 0 Example ........................................................... NBI – Individual Channel Byte Ordering – Channel 0 Example ............................................................ RNBI – Individual Channel Byte Ordering – Channel 0 Example .......................................................... TBID – Individual Channel Byte Ordering – Channel 0 Example ........................................................... NBID – Individual Channel Byte Ordering – Channel 0 Example .......................................................... Receive Interface Timing – Source Centered/Aligned ....................................................................... Transmit Interface Timing ........................................................................................................ Transmission Latency ............................................................................................................ Receiver Latency .................................................................................................................. Channel Synchronization State Machine ...................................................................................... End of Packet Error Detection ................................................................................................... Column De-Skew State Machine ............................................................................................... Channel Deskew Using Alignment Code ...................................................................................... Inter-Packet Gap Management.................................................................................................. IPG Management State Machine ............................................................................................... Clock Tolerance Compensation: Add .......................................................................................... Clock Tolerance Compensation: Drop ......................................................................................... Example High Speed I/O AC Coupled Mode .................................................................................. Output differential voltage with 1-tap FIR de-emphasis ...................................................................... CL45 - Management Interface Extended Space Address Timing .......................................................... CL45 – Management Interface Extended Space Write Timing ............................................................. CL45 – Management Interface Extended Space Read Timing ............................................................. CL45 – Management Interface Extended Space Read And Increment Timing ........................................... CL22 – Management Interface Read Timing .................................................................................. List of Figures 15 15 17 17 18 18 19 19 20 23 24 25 26 27 28 29 30 31 32 33 34 35 35 38 39 40 42 43 44 45 46 47 47 49 49 49 50 50 Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 2-37 CL22 - Management Interface Write Timing................................................................................... 50 2-38 CL22 – Indirect Address Method – Address Write............................................................................ 50 2-39 CL22 – Indirect Address Method – Data Write ................................................................................ 51 2-40 CL22 – Indirect Address Method – Address Write............................................................................ 51 2-41 CL22 – Indirect Address Method – Data Read................................................................................ 51 3-1 Device Pinout Diagram – Part 1 (Top View) ................................................................................. 110 3-2 Device Pinout Diagram – Part 2 (Top View) ................................................................................. 111 4-1 Transmit Output Waveform Parameter Definitions .......................................................................... 116 4-2 Transmit Template............................................................................................................... 116 4-3 Receive Template ............................................................................................................... 117 4-4 ........................................................................................................................ HSTL (DDR Timing Mode Only) Source Centered Output Timing Requirements ...................................... HSTL (DDR Timing Mode Only) Source Aligned Output Timing Requirements ........................................ HSTL (SDR Timing Mode Only) Rising Edge Aligned Output Timing Requirements .................................. HSTL (SDR Timing Mode Only) Falling Edge Aligned Output Timing Requirements .................................. HSTL (DDR Timing Mode Only) Source Centered Data Input Timing Requirements .................................. HSTL (DDR Timing Mode Only) Source Aligned Data Input Timing Requirements .................................... HSTL (SDR Timing Mode Only) Falling Edge Aligned (Rising Edge Sampled) Data Input Timing Requirements . HSTL (SDR Timing Mode Only) Rising Edge Aligned (Falling Edge Sampled) Data Input Timing Requirements . MDIO Read/Write Timing ....................................................................................................... HSTL I/O Schematic ............................................................................................................ JTAG Timing ..................................................................................................................... TLK3134 Application Mode vs Interface Timing Mode Support ........................................................... PACKAGE Information (Package Designator = ZEL) ....................................................................... Worst Case Device Power Dissipation ....................................................................................... Reference Clock Selection – XAUI – 10 GbE Mode ........................................................................ Reference Clock Selection – 10 Gigabit Fibre Channel Mode ............................................................ Reference Clock Selection – Gigabit Ethernet Mode ....................................................................... Reference Clock Selection – 1X/2X Fibre Channel Mode ................................................................. Reference Clock Selection – OBSAI Mode .................................................................................. Reference Clock Selection – CPRI Mode .................................................................................... Reference Clock Selection – 9/10 Bit SERDES Mode – Full Rate (SPEED[1:0] == 00) ............................... Reference Clock Selection – 9/10 Bit SERDES Mode – Half Rate (SPEED[1:0] == 01) .............................. Reference Clock Selection –9/10 Bit SERDES Mode – Quarter Rate (SPEED[1:0] == 10) ........................... Reference Clock Selection – 8 Bit SERDES Mode – Full Rate (SPEED[1:0] == 00) .................................. Reference Clock Selection – 8 Bit SERDES Mode – Half Rate (SPEED[1:0] == 01) .................................. Reference Clock Selection – 8 Bit SERDES Mode – Quarter Rate (SPEED[1:0] == 10).............................. Standard Based Jitter Cleaner/SERDES Provisioning ..................................................................... 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (2x) Provisioning ................................................... 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (1x) Provisioning ................................................... 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (0.5x) Provisioning ................................................. 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 4-17 4-18 A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-10 A-11 A-12 A-13 A-14 A-15 A-16 Input Jitter List of Figures 117 120 120 121 121 122 122 123 123 124 124 125 126 127 128 129 130 130 131 131 132 132 133 133 134 134 135 136 137 138 139 5 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com A-17 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (0.25x) Provisioning................................................ 140 A-18 8 BIT SERDES Mode – Jitter Cleaner/SERDES (2x) Provisioning(A) ..................................................... 141 A-19 8 BIT SERDES Mode – Jitter Cleaner/SERDES (1x) Provisioning(A) ..................................................... 142 A-20 8 BIT SERDES Mode – Jitter Cleaner/SERDES (0.5x) Provisioning ..................................................... 143 A-21 Recovered Byte Clock Jitter Cleaner Mode .................................................................................. 145 B-1 Jitter Cleaner External Loop Filter ............................................................................................. 146 6 List of Figures Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 List of Tables 2-1 Supported Protocol Rates and REFCLK Values .............................................................................. 16 2-2 Device Operation Modes ......................................................................................................... 21 2-3 XAUI – Lane To Functional Pin Mapping (XAUI_ORDER = 1) ............................................................. 22 2-4 10GFC – Lane To Functional Pin Mapping (XAUI_ORDER = 0) ........................................................... 22 2-5 RGMII – Lane To Functional Pin Mapping..................................................................................... 23 2-6 RTBI – Lane To Functional Pin Mapping ...................................................................................... 24 2-7 TBI – Lane To Functional Pin Mapping ........................................................................................ 25 2-8 GMII – Lane To Functional Pin Mapping....................................................................................... 26 2-9 EBI – Lane To Functional Pin Mapping ........................................................................................ 27 2-10 REBI – Lane To Functional Pin Mapping ...................................................................................... 28 2-11 NBI – Lane To Functional Pin Mapping ........................................................................................ 29 2-12 RNBI – Lane To Functional Pin Mapping ...................................................................................... 30 2-13 TBID – Lane To Functional Pin Mapping ...................................................................................... 31 2-14 NBID – Lane To Functional Pin Mapping ...................................................................................... 32 2-15 Valid K-Codes ..................................................................................................................... 36 2-16 Valid XGMII Channel Encodings ................................................................................................ 36 2-17 Receive Data Controls 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28 2-29 2-30 2-31 2-32 2-33 2-34 2-35 2-36 2-37 2-38 2-39 ........................................................................................................... IPG Management State Machine Notation .................................................................................... XS_CONTROL_1 ................................................................................................................. XS_STATUS_1 .................................................................................................................... XS_DEVICE_IDENTIFIER_1 .................................................................................................... XS_DEVICE_IDENTIFIER_2 .................................................................................................... XS_SPEED_ABILITY ............................................................................................................. XS_DEVICES_IN_PACKAGE_1 ................................................................................................ XS_DEVICES_IN_PACKAGE_2 ................................................................................................ XS_STATUS_2 .................................................................................................................... XS_PACKAGE_IDENTIFIER_1 ................................................................................................. XS_PACKAGE_IDENTIFIER_2 ................................................................................................. XS_LANE_STATUS .............................................................................................................. XS_TEST_CONTROL ............................................................................................................ TEST_CONFIG .................................................................................................................... TEST_VERIFICATION_CONTROL ............................................................................................. TX_FIFO_STATUS ............................................................................................................... TX_FIFO_DROP_COUNT ....................................................................................................... TX_FIFO_INSERT_COUNT ..................................................................................................... TX_CODEGEN_STATUS ........................................................................................................ LANE_0_TEST_ERROR_COUNT .............................................................................................. LANE_1_ TEST_ERROR_COUNT ............................................................................................. LANE_2_ TEST_ERROR_COUNT ............................................................................................. List of Tables 37 44 52 52 52 52 53 53 53 53 53 53 54 54 54 54 54 55 55 55 55 55 56 7 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com 2-40 LANE_3_ TEST_ERROR_COUNT ............................................................................................. 56 2-41 10GFCCJPAT_CRPAT_CJPAT_TEST_ERROR_COUNT_1 ............................................................... 56 2-42 10GFCCJPAT_CRPAT_CJPAT_TEST_ERROR_COUNT_2 ............................................................... 56 2-43 LANE_0_EOP_ERROR_COUNT ............................................................................................... 56 2-44 LANE_1_EOP_ERROR_COUNT ............................................................................................... 57 2-45 LANE_2_EOP_ERROR_COUNT ............................................................................................... 57 2-46 LANE_3_EOP_ERROR_COUNT ............................................................................................... 57 2-47 LANE_0_CODE_ERROR_COUNT ............................................................................................. 57 2-48 LANE_1_CODE_ERROR_COUNT ............................................................................................. 57 2-49 LANE_2_CODE_ERROR_COUNT ............................................................................................. 58 2-50 LANE_3_CODE_ERROR_COUNT ............................................................................................. 58 2-51 RX_CHANNEL_SYNC_STATE ................................................................................................. 58 2-52 RX_LANE_ALIGN_STATUS..................................................................................................... 58 2-53 RX_CHANNEL_SYNC_STATUS ............................................................................................... 58 2-54 BIT_ORDER ....................................................................................................................... 58 2-55 LOOPBACK_CONTROL ......................................................................................................... 59 2-56 TX_MODE_CONTROL ........................................................................................................... 59 2-57 RX_CTC_STATUS ................................................................................................................ 59 2-58 RX_CTC_INSERT_COUNT ..................................................................................................... 59 2-59 RX_CTC_DELETE_COUNT ..................................................................................................... 60 2-60 DATA_DOWN 2-61 2-62 2-63 2-64 2-65 2-66 2-67 2-68 2-69 2-70 2-71 2-72 2-73 2-74 2-75 2-76 2-77 2-78 2-79 2-80 8 ..................................................................................................................... RX_MODE_CONTROL........................................................................................................... CLOCK_DOWN_STATUS ....................................................................................................... DATAPATH_RESET_CONTROL ............................................................................................... TEST_PATTERN_STATUS ..................................................................................................... LANE_0_ERROR_CODE ........................................................................................................ LANE_1_ERROR_CODE ........................................................................................................ LANE_2_ERROR_CODE ........................................................................................................ LANE_3_ERROR_CODE ........................................................................................................ RX_PHASE_SHIFT_CONTROL ................................................................................................ CHANNEL_SYNC_CONTROL .................................................................................................. XGMII_IO_MODE_CONTROL .................................................................................................. 10G_MODE_CONTROL ......................................................................................................... RX_CLK_OUTPUT_CONTROL ................................................................................................. PHY_CONTROL_1 ............................................................................................................... PHY_STATUS_1 .................................................................................................................. PHY_IDENTIFIER_1.............................................................................................................. PHY_IDENTIFIER_2.............................................................................................................. PHY_EXT_STATUS .............................................................................................................. PHY_CH_CONTROL_1 .......................................................................................................... PHY_CH_CONTROL_2 .......................................................................................................... List of Tables 60 60 60 60 61 61 61 61 61 61 62 62 62 62 63 64 64 64 64 65 65 Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 2-81 PHY_RX_CTC_FIFO_STATUS ................................................................................................. 66 2-82 PHY_TX_CTC_FIFO_STATUS ................................................................................................. 67 2-83 PHY_TX_WIDE_FIFO _STATUS ............................................................................................... 67 2-84 PHY_TEST_PATTERN_SYNC_STATUS 2-85 2-86 2-87 2-88 2-89 2-90 2-91 2-92 2-93 2-94 2-95 2-96 2-97 2-98 2-99 2-100 2-101 2-102 2-103 2-104 2-105 2-106 2-107 2-108 2-109 2-110 2-111 2-112 2-113 2-114 2-115 2-116 2-117 2-118 2-119 2-120 2-121 ..................................................................................... PHY_TEST_PATTERN_COUNTER ............................................................................................ PHY_CRPAT_PATTERN_COUNTER_1 ...................................................................................... PHY_CRPAT_PATTERN_COUNTER_2 ...................................................................................... PHY_TEST_MODE_CONTROL ................................................................................................ PHY_CHANNEL_STATUS....................................................................................................... PHY_PRBS_HIGH_SPEED_TEST_COUNTER .............................................................................. PHY_EXT_ADDRESS_CONTROL ............................................................................................. PHY_EXT_ADDRESS_DATA ................................................................................................... SERDES_PLL_CONFIG ......................................................................................................... PLL Multiplier Control ............................................................................................................. SERDES_RATE_CONFIG_TX_RX ............................................................................................. SERDES_RX0_CONFIG ......................................................................................................... SERDES_RX1_CONFIG ......................................................................................................... SERDES_RX2_CONFIG ......................................................................................................... SERDES_RX3_CONFIG ......................................................................................................... SERDES_TX0_CONFIG ......................................................................................................... SERDES_TX1_CONFIG ......................................................................................................... SERDES_TX2_CONFIG ......................................................................................................... SERDES_TX3_CONFIG ......................................................................................................... Transmit De-emphasis Control .................................................................................................. Output Swing Control ............................................................................................................. SERDES_TEST_CONFIG_TX .................................................................................................. SERDES_TEST_CONFIG_RX .................................................................................................. SERDES_RX0_STATUS ......................................................................................................... SERDES_RX1_STATUS ......................................................................................................... SERDES_RX2_STATUS ......................................................................................................... SERDES_RX3_STATUS ......................................................................................................... SERDES_TX0_STATUS ......................................................................................................... SERDES_TX1_STATUS ......................................................................................................... SERDES_TX2_STATUS ......................................................................................................... SERDES_TX3_STATUS ......................................................................................................... SERDES_PLL_STATUS ......................................................................................................... JC_CLOCK_MUX_CONTROL .................................................................................................. JC_VTP_CLK_DIV_CONTROL ................................................................................................. JC_DELAY_STOPWATCH_CLK_DIV_CONTROL ........................................................................... JC_DELAY_STOPWATCH_COUNTER ....................................................................................... JC_REFCLK_FB_DIV_CONTROL.............................................................................................. List of Tables 67 67 67 67 68 68 68 68 68 69 69 69 71 71 72 72 73 73 74 74 75 75 75 76 76 76 77 77 77 77 77 78 78 78 79 79 79 79 9 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com 2-122 JC_RXB_OUTPUT_CLK_DIV_CONTROL .................................................................................... 80 2-123 JC_CHARGE_PUMP_ CONTROL 2-124 2-125 2-126 2-127 2-128 2-129 2-130 2-131 2-132 2-133 2-134 2-135 2-136 2-137 2-138 2-139 2-140 2-141 2-142 2-143 2-144 2-145 2-146 2-147 2-148 2-149 2-150 2-151 2-152 2-153 2-154 2-155 2-156 2-157 2-158 2-159 2-160 2-161 2-162 10 ............................................................................................. Charge Pump Control Setting (CP_CTRL) .................................................................................... JC_PLL_CONTROL .............................................................................................................. JC_TEST_CONTROL_1 ......................................................................................................... JC_TEST_CONTROL_2 ......................................................................................................... JC_TI_TEST_CONTROL_1 ..................................................................................................... JC_TI_TEST_CONTROL_2 ..................................................................................................... JC_TRIM_STATUS ............................................................................................................... DIE_ID_7 ........................................................................................................................... DIE_ID_6 ........................................................................................................................... DIE_ID_5 ........................................................................................................................... DIE_ID_4 ........................................................................................................................... DIE_ID_3 ........................................................................................................................... DIE_ID_2 ........................................................................................................................... DIE_ID_1 ........................................................................................................................... DIE_ID_0 ........................................................................................................................... EFUSE_STATUS ................................................................................................................. EFUSE_CONTROL ............................................................................................................... HSTL_INPUT_TERMINATION_CONTROL ................................................................................... HSTL_OUTPUT_SLEWRATE_CONTROL .................................................................................... HSTL_INPUT_VTP_CONTROL ................................................................................................. HSTL_OUTPUT_VTP_CONTROL .............................................................................................. HSTL_GLOBAL_CONTROL ..................................................................................................... TX0_DLL_CONTROL............................................................................................................. TX1_DLL_CONTROL............................................................................................................. TX2_DLL_CONTROL............................................................................................................. TX3_DLL_CONTROL............................................................................................................. RX0_DLL_CONTROL ............................................................................................................ RX1_DLL_CONTROL ............................................................................................................ RX2_DLL_CONTROL ............................................................................................................ RX3_DLL_CONTROL ............................................................................................................ DLL Offset Control ................................................................................................................ TX0_DLL_STATUS ............................................................................................................... TX1_DLL_STATUS ............................................................................................................... TX2_DLL_STATUS ............................................................................................................... TX3_DLL_STATUS ............................................................................................................... RX0_DLL_STATUS ............................................................................................................... RX1_DLL_STATUS ............................................................................................................... RX2_DLL_STATUS ............................................................................................................... RX3_DLL_STATUS ............................................................................................................... List of Tables 80 80 81 81 81 81 81 82 82 82 82 82 82 82 82 82 83 83 83 83 84 84 85 85 86 86 86 86 87 87 87 87 87 88 88 88 88 88 88 88 Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 2-163 CH0_TESTFAIL_ERR_COUNTER ............................................................................................. 88 2-164 CH1_TESTFAIL_ERR_COUNTER ............................................................................................. 89 2-165 CH2_TESTFAIL_ERR_COUNTER ............................................................................................. 89 2-166 CH3_TESTFAIL_ERR_COUNTER ............................................................................................. 89 2-167 STCI_CONTROL_STATUS ...................................................................................................... 89 2-168 TESTCLK_CONTROL ............................................................................................................ 89 2-169 BIDI_CMOS_CONTROL ......................................................................................................... 89 2-170 DEBUG_CONTROL .............................................................................................................. 90 2-171 DUTY_CYCLE_CONTROL ...................................................................................................... 90 3-1 Global Signals .................................................................................................................... 104 3-2 JTAG Signals..................................................................................................................... 105 3-3 MDIO Related Signals .......................................................................................................... 105 3-4 Parallel Data Pins................................................................................................................ 106 3-5 Serial Side Data/Clock Pins .................................................................................................... 108 3-6 Miscellaneous Pins .............................................................................................................. 108 3-7 Voltage Supply and Reference Pins .......................................................................................... 109 3-8 Jitter Cleaner Related Pins ..................................................................................................... 110 4-1 XAUI Driver Template Parameters ............................................................................................ 116 4-2 Parallel Interface – Valid Signal Operational Mode Definitions ............................................................ 118 C-1 Device Mode Configuration C-2 .................................................................................................... Device Test Mode Pin Configuration .......................................................................................... List of Tables 147 147 11 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 12 List of Tables www.ti.com Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 1 Introduction 1.1 Features • • • • • • • • • Four-Channel 600Mbps to 3.75Gbps Multi-Rate Transceiver Supports 10GbE (XAUI), 1X/2X/10X Fibre Channel (FC), CPRI (x1/x2/x4), OBSAI (x1/x2/x4), and 1GbE (1000Base-X) Data Rates Complete IEEE Compliant 10 GbE XGXS (XAUI) Compliant Core and 1000Base-X PCS Support Supports Independent Channel SERDES Operation Modes in 8/10 Bit Data Modes (TBI and 8 Bit + Control) Serial Side Transmit De-Emphasis and Receive Adaptive Equalization to Allow Extended Backplane Reach Low Jitter LC Oscillator Jitter-Cleaner Allows use of Poor Quality REFCLK Full Datapath Loopback Capability (Serial/Parallel Side) Support PRBS 27-1 and 223 - 1 Gen/Verify. Support standard defined CJPAT, CRPAT, High and Low Frequency, and Mixed Freq Testing. XGMII/GMII/RGMII: HSTL Class 1 I/O With On-Chip 50Ω Termination on Inputs/Outputs (1.5/1.8 V Power Supply) 1.2 • • • SLLS838D – MAY 2007 – REVISED JULY 2008 • • • • • • • • • • • • XGMII/GMII/RGMII: Source And Data Centered I/O Timing Modes Supports Jumbo Packet (9600 byte maximum) Operation. XAUI Align Character Skew Support of 30 Bit Times at Chip Pins MDIO: IEEE 802.3ae Clause 22 and Clause 45 Compliant Management Data Input / Output Interface Modes (Either 1.2 V or 2.5 V MDIO I/O) 1.2 V Core, 1.5 V/1.8 V HSTL I/O Supply, and 2.5 V LVCMOS I/O Supply JTAG: IEEE 1149.1/1149.6 Test Interface ±200 ppm Clock Tolerance in XAUI TX and 1000Base-X/XAUI RX Datapaths 90 nm Advanced CMOS Technology Package: PBGA, 19×19mm, 289 Ball, 1mm Pitch 1.3W Maximum Power Dissipation (1.5 V HSTL XAUI Mode, Input HSTL Termination Disabled) Asymmetric RX/TX Rates Supported in Independent Channel Modes Industrial Ambient Operating Temperature (–40°C to 85°C) at Full Rate Applications Gigabit Ethernet links CPRI/OBSAI Links Point-to-Point High-Speed Backplane Links 1.3 Pin Out TLK3134 TD(31..0) TC(7..0) 4 TDP/N[3:0] RCLK(3:0) RDP/N[3:0] RD(31..0) 4 XAUI/Serial I/F (R)GMII/XGMII TCLK(3:0) RC(7..0) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2007–2008, Texas Instruments Incorporated TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 1.4 www.ti.com Description The TLK3134 is a flexible four-channel independently configurable serial transceiver. It can be configured to be compliant with the 10Gbps Ethernet XAUI specification. It can also be configured to be compliant with the 1000Base-X 1Gbps Ethernet Specification (Auto-Negotiation not supported). The TLK3134 provides high-speed bidirectional point-to-point data transmissions with up to 30 Gbps of raw data transmission capacity. The primary application of this device is in backplanes and front panel connections requiring 10Gbps connections over controlled impedance media of approximately 50Ω. The transmission media can be printed circuit board (PCB) traces, copper cables or fiber-optical media. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling into the lines. The TLK3134 performs the parallel-to-serial, serial-to-parallel conversion, and clock extraction functions for a physical layer interface. The TLK3134 provides a complete XGXS/PCS function defined in Clause 47/48 of the IEEE 802.3ae 10Gbps Ethernet standard. The TLK3134 also provides 1000Base-X (PCS) layer functionality described in Clause 36 of 802.3-2002. The serial transmitter is implemented using differential Current Mode Logic (CML) with integrated termination resistors. The TLK3134 can be optionally configured as a XAUI or 10GFC transceiver. TLK3134 supports a 32-bit data path, 4-bit control, 10 Gigabit Media Independent Interface (XGMII) to the protocol device. Figure 1-1 shows an example system block diagram for TLK3134 used to provide the 10Gbps Ethernet Physical Coding Sublayer to Coarse Wave-length Division Multiplexed optical transceiver or parallel optics. Many common applications may be enabled by way of externally available control pins. Detailed control of the TLK3134 on a per channel basis is available by way of accessing a register space of control bits available through a two-wire access port called the Management Data Input/Output (MDIO) interface. The PCS (Physical Coding Sublayer) functions such as the CTC FIFO are designed to be compliant for an IEEE 802.3 XAUI or 1000Base-X PCS link. However, each of the PCS functions may be disabled or bypassed until the TLK3134 is operating at its most basic state, that of a simple four channel 10-bit SERDES suitable for a wide range of applications such as CPRI or OBSAI wireless infrastructure links. The differential output swing for the TLK3134 is suitable for compliance with IEEE 802.3 XAUI links, which is also suitable for CPRI LV serial links. The TLK3134 provides for setting larger output signal swing suitable for CPRI HV links by setting an appropriate register bit available though MDIO. Line Card TCLK TD(31:0) TC(3:0) MAC/ Packet Processor 4 XAUI XGMI RX A TLK3134 XGMI TX A 4 XAUI XAUI Backplane 4 4 CWDM or Parallel Optics TLK3134 RC(3:0) RCLK RD(31:0) Figure 1-1. System Block Diagram – XAUI Figure 1-2 shows an example system block diagram for TLK3134 used to provide the system backplane interconnect. 14 Introduction Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Line Card 4 RCLK RDP/N[3:0] RD(31:0) RC(3:0) MAC/ PACKET PROCESSOR TLK3134 4 FRAMER/ PCS PHY/ OPTICS TDP/N[3:0] System Backplane TCLK TD(31:0) TC(3:0) 4 RCLK RDP/N[3:0] RD(31:0) SWITCH FABRIC RC(3:0) TLK3134 4 TDP/N[3:0] TCLK TD(31:0) TC(3:0) Figure 1-2. System Block Diagram – XAUI Backplane REF_SEL[1:0] REFCLK_P 00 REFCLK_N 01 1X REFCLK REFCLK Divider REF_DIV[6:0] Jitter Cleaner PLL Core PLL Feedback Divider FB_DIV[6:0] RXBCLK[0] TX_SEL[1:0] First PLL Output Divider RXTX_DIV[6:0] SERDES TX 00 01 REFCLK_TX 10 11 00 01 10 RXB_SEL[1:0] 11 00 DELAY_CLK 01 DEL_SEL[1:0] 11 10 HSTL_2X_CLK HSTL Output Divider HSTL_DIV2[6:0] 00 01 10 11 Second PLL Output Divider RXB_DIV[6:0] Third PLL Output Divider DEL_DIV[6:0] Fourth PLL Output Divider HSTL_DIV1[6:0] P2S P2S P2S TX3P/N TX2P/N TX1P/N TX0P/N SERDES RX 00 01 REFCLK_RX 10 11 RXBYTE_CLK P2S PLL S2P PLL S2P S2P S2P RX3P/N RX2P/N RX1P/N RX0P/N RX_SEL[1:0] (2.875 Ghz Min., 3 Ghz Typ., 3.125 Ghz Max.) Note: Default Mux Selects Are Underlined. HSTL_SEL[1:0] Figure 1-3. Block Diagram – TLK3134 Clocking Architecture Submit Documentation Feedback Introduction 15 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 2 Detailed Description 2.1 Clocking Modes www.ti.com The TLK3134 contains an internal low-bandwidth, low-jitter high quality LC oscillator that may be configured as a jitter cleaner. The jitter cleaner oscillator has a high frequency narrow band of operation that may be used to generate all common reference clock frequencies by way of programmable pre-scaler and post-scaler registers. In this manner a poor quality input reference clock can be input to the jitter cleaner which will lock to the reference clock and provide a clean reference to the internal SERDES PLLs. Appendix A defines in detail the clocking possibilities, and device settings. Alternatively, the jitter cleaner may be used to lock to a recovered byte clock from RX channel 0 and remove jitter that may have transferred through the clock/data recovery circuit from the serial data stream to the recovered byte clock (including parallel output data timing). In this way the recovered byte clock may be extracted from the serial data stream yet be suitable for use in applications that require a clean clock source derived from the serial data stream. The TLK3134 jitter cleaner may only be used on the recovered byte clock from Channel 0. If the jitter cleaner is used to clean the recovered byte clock, it may not be used to clean the input reference clock, and the PLL at the center of the deserializer core must have a clean low-jitter reference clock from an external clock source, preferably a low-jitter crystal based oscillator. Note that the Transmit SERDES macro can run from the cleaned recovered RX channel 0 byte clock which allows for the outgoing TX serial data rate for all channels to exactly match the incoming data rate of RX Channel 0. The TLK3134 clocking architecture allows for bypass of the Jitter cleaner PLL in cases where power or application board area is critical. See Figure 1-3 Clocking Architecture for a representation of the use of the jitter cleaner in the TLK3134. 2.2 Operating Frequency Range The TLK3134 is optimized for operation at a serial data rate of 600 Mbit/s through 3.75 Gbit/s. The external differential (optionally single-ended) reference clock has a large operating frequency range allowing support for many different applications. The reference clock frequency must be within ±200 PPM of the incoming serial data rate, and have less than 40ps of jitter. Table 2-1 shows a summary of frequency ranges supported. For more details, see Appendix A. In all applications except XAUI/10GFC, the transmit parallel clock must be frequency locked (0 ppm) to the supplied REFCLK frequency (XAUI/10GFC allows ±200 ppm). Table 2-1. Supported Protocol Rates and REFCLK Values 16 PROTOCOL Refclk (MHz) XAUI – 10G Ethernet 78.125/156.25/312.5 3.125 10 Gigabit Fibre Channel 79.6875/159.375/ 318.75 3.1875 1G Ethernet 62.5/125/250 1.25 1X/2X Fibre Channel 53.125/106.25/212.5 2.125 1.0625 OBSAI 76.8/153.6/307.2 3.072 1.536 0.768 CPRI 61.44/122.88/245.76 2.4576 1.2288 0.6144 Detailed Description LINE RATE (Gbps) Generic TBI 50 → 375 MHz 0.600 → 3.75 Generic RTBI 50 → 375 MHz 0.600 → 1.6 Generic NBID/TBID 50 → 375 MHz 0.600 → 3.2 Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 2.3 SLLS838D – MAY 2007 – REVISED JULY 2008 CPRI Latency Support The TLK3134 has a round trip latency measurement capability to support its use in CPRI applications. When enabled, the TLK3134 will measure the elapsed time from the transmission of a K28.5 code in a CPRI frame until the reception of a K28.5 code in the receive path. This measurement result may be read through an MDIO readable register. The measurement has an accuracy of ±4 ns with the Jitter Cleaner PLL enabled, and an accuracy of ±2 parallel byte clock periods if the Jitter Cleaner PLL is disabled. 2.4 Powerdown Mode The TLK3134 (through the ENABLE pin and through register control) is capable of going into a low power quiescent state. In this state, all analog and digital circuitry is disabled. 2.5 Application Examples TLK3134 supports many different application modes. Detailed register settings per application mode are shown in Table 2-2. The following application diagrams do not show all possible applications, and are intended only to illustrate the flexibility of the device. Figure 2-1 shows the TLK3134 in a Quad independent channel SERDES Application. The 1000Base-X PCS layer can be enabled or disabled. Note that in independent channel mode, the 8B/10B encoder/decoder functions can either be turned on or turned off. When turned off, either 5 or 10 bits (DDR/SDR) of data is accepted from and presented to the parallel side. When the 8B/10B encoder/decoder functions are enabled, 1 bit of control and 8 bits of data are accepted from and presented to the parallel side using the standardized (R)GMII control characters. TLK3134 1 1 10 10 1 1 10 10 XAUI XGMII 10 10 1 1 1 1 10 10 Figure 2-1. Quad 10-Bit SERDES Application Figure 2-2 shows the TLK3134 in a XAUI Loopback Application. It is possible to configure XAUI side loopback in SERDES mode for all 4 channels on an individual basis. TLK3134 XGXS CORE XAUI 36 XGMII 4 4 Figure 2-2. XAUI Mode – XAUI (Serial) Loopback Application Submit Documentation Feedback Detailed Description 17 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Figure 2-3 shows the TLK3134 in a XGMII Loopback Application. It is possible to configure XGMII side loopback in SERDES mode for all 4 channels on an individual basis. TLK3134 XGXS CORE A 36 XAUI XGMII 4 Figure 2-3. XAUI Mode - XGMII (Parallel ) Loopback Application Figure 2-4 shows the TLK3134 in a custom application example with mixed modes per Channel. • Channel 1 in Parallel independent loopback mode • Channel 3 in Serial independent loopback mode • Channel 0 & 2 in independent channel transceiver mode TLK3134 LANE1 SERIAL PARALLEL LANE0 XGXS CORE LANE2 LANE3 Figure 2-4. Custom Independent Configuration Application The TLK3134 supports the IEEE 802.3 defined Management Data Input/Output (MDIO) Interface to allow ease in configuration and status monitoring of the link. The bi-directional data pin (MDIO) must be externally pulled up to 1.2 V or 2.5 V (VDDM) per the standard for MDIO. The TLK3134 supports the IEEE 1149.1/1149.6 defined JTAG test port for ease in board manufacturing test. It also supports a comprehensive series of built-in tests for self-test purposes including PRBS generation and verification, CRPAT, CJPAT, Mixed/High/Low Frequency testing. The TLK3134 operates with a 1.2 V core voltage supply, a 1.5/1.8 V HSTL I/O voltage supply and a 2.5 V LVCMOS/bias supply. The TLK3134 is packaged in a 19×19mm, 289-ball, 1mm ball pitch Plastic Ball Grid Array (PBGA) package and is characterized for operation from –40°C to 85°C Ambient, 105°C Junction, and 5% power supply variation at the balls of the device unless noted otherwise. The following block diagram provides a high level description of the TLK3134. 18 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 XGMII/ GMII/ RGMII/ TBI/ RTBI TX TCLK(3:0) TXD(31:0) TXC(7:0) 4 Serial I/F Core XAUI Core + 1000Base-X PCS TDP[3:0] TDN[3:0] 4 RCLK(3:0) XGMII/ GMII/ RGMII/ RXD(31:0) TBI/ RTBI RXC(7:0) RX RDP[3:0] RDN[3:0] TCK TDI Jitter Cleaner PLL TMS JTAG TRSTN PRTAD[4:0] MDIO TDO MDIO MDC Figure 2-5. TLK3134 Block Diagram Following is a more detailed block diagram description of the XAUI core. Test mode Test mode Test mode Test mode CHANNEL 3 CHANNEL 2 CHANNEL 1 TDP3/TDN3 CHANNEL 0 Self Test TCLK TXD[7:0] TX FIFO 8 Bit / CTC TDP2/TDN2 8b/ 10b enc TDP1/TDN1 10 Bit TDP0 TDN0 RDP3/RDN3 RCLK RCLK RXD(7:0) 8 Bit 8b/10b Decoding And Self Test Verification/ Reporting RX FIFO / CTC 10 Bit RDP2/RDN2 SERDES Core RDP0 RDP1/RDN1 RDN0 RCLK REFCLKP REFCLKN Figure 2-6. Detailed XAUI/1000Base-X Core Block Diagram Submit Documentation Feedback Detailed Description 19 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Parallel to Serial Parallel Data In Multiplying Clock Synthesizer REFCLKP N/ TDP D Q TDN Baud Clock Interpolator and Clock Recovery Recovered Clock RCLK Parallel Data Out Serial to Parallel and Comma Detect RDP RDN Figure 2-7. Block Diagram of SERDES Core 20 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 2.6 SLLS838D – MAY 2007 – REVISED JULY 2008 Device Operation Modes Table 2-2. Device Operation Modes DEVICE MODE XAUI (1) (DDR) 10GFC (2) (DDR) RGMII (DDR) GMII (SDR) RTBI (DDR ) TBI (SDR ) REBI (DDR) EBI (SDR) ST Primary Chip Input 0 1 MDIO Access Method Clause 45 Clause 22 (3) XAUI_ORDER 32809.15 Logical Or w/CODE pin XAUI_TX_EDGE_ALIGN 32808.15 XAUI_RX_EDGE_ALIGN 32808.11 1 1 0 1 0 1 0 1 0/1 X 0/1 X 0/1 X 0/1 X X 0/1 RX_EDGE_MODE 17.0 0 X 0/1 0 1 0/1 0 0/1 1 0/1 1 0 1 0 ENC_DEC_EN 17.2 BUSWIDTH 36864.7 NBID (DDR) X TX_EDGE_MODE 17.1 PCS_EN 17.3 Logical OR w/CODE pin 0 TBID (DDR) 0/1 NIBBLE_ORDER 17.4 COMMA_DET_EN 17.7 NBI (SDR ) 0 DDR_SDR 17.5 FC_ENC_MODE 17.6 RNBI (DDR) 0 0 FULL_DDR 17.9 1 1 0 0 1 Legend : (X = Don’t Care) — (0 = Must Be Zero) — (1 = Must Be One) — (0/1 = Can Be Either Zero-or-One) (1) (2) (3) Default Mode if ST Primary Chip Input Pin “0”, CODE Primary Chip Input Pin “1”. Default Mode if ST Primary Chip Input Pin “0”, CODE Primary Chip Input Pin “0”. All Clause 22 Registers are Per Device Channel. Submit Documentation Feedback Detailed Description 21 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 2.7 www.ti.com Parallel Interface Modes - Detailed Description The TLK3134 has several parallel interface modes. The major parallel interface modes of operation are presented below: 2.7.1 XAUI/10GFC Mode Table 2-3. XAUI – Lane To Functional Pin Mapping (XAUI_ORDER = 1) XAUI LANE TRANSMIT CONTROL BIT (INPUT) TRANSMIT DATA BYTE (INPUT) RECEIVE CONTROL BIT (OUTPUT) RECEIVE CONTROL BYTE (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Lane 3 TXC_[3] TXD_[31:24] RXC_[3] RXD_[31:24] TXCLK_[1] RXCLK_[1] Lane 2 TXC_[2] TXD_[23:16] RXC_[2] RXD_[23:16] TXCLK_[1] RXCLK_[1] Lane 1 TXC_[1] TXD_[15:8] RXC_[1] RXD_[15:8] TXCLK_[1] RXCLK_[1] Lane 0 TXC_[0] TXD_[7:0] RXC_[0] RXD_[7:0] TXCLK_[1] RXCLK_[1] Table 2-4. 10GFC – Lane To Functional Pin Mapping (XAUI_ORDER = 0) 10GFC LANE TRANSMIT CONTROL BIT (INPUT) TRANSMIT DATA BYTE (INPUT) RECEIVE CONTROL BIT (OUTPUT) RECEIVE CONTROL BYTE (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Lane 0 TXC_[3] TXD_[31:24] RXC_[3] RXD_[31:24] TXCLK_[1] RXCLK_[1] Lane 1 TXC_[2] TXD_[23:16] RXC_[2] RXD_[23:16] TXCLK_[1] RXCLK_[1] Lane 2 TXC_[1] TXD_[15:8] RXC_[1] RXD_[15:8] TXCLK_[1] RXCLK_[1] Lane 3 TXC_[0] TXD_[7:0] RXC_[0] RXD_[7:0] TXCLK_[1] RXCLK_[1] 22 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 2.7.2 SLLS838D – MAY 2007 – REVISED JULY 2008 RGMII Mode (Reduced Gigabit Media Independent Interface) Table 2-5. RGMII – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TX_EN/TX_ER CONTROL BIT (INPUT) TRANSMIT DATA NIBBLE (INPUT) RX_DV/RX_ER CONTROL BIT (OUTPUT) RECEIVE CONTROL NIBBLE (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[4] TXD_[3:0] RXD_[4] RXD_[3:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[12] TXD_[11:8] RXD_[12] RXD_[11:8] TXCLK_[1] RXCLK_[1] Channel 2 TXD_[20] TXD_[19:16] RXD_[20] RXD_[19:16] TXCLK_[2] RXCLK_[2] Channel 3 TXD_[28] TXD_[27:24] RXD_[28] RXD_[27:24] TXCLK_[3] RXCLK_[3] DDR Source Centered Timing Nibble Order = 1 (Default) TXCLK_[0] TXD_[4:0] {TX_EN,Data0[3:0]} {TX_EN^TX_ER, Data0[7:4]} {TX_EN,Data1[3:0]} {TX_EN^TX_ER, Data1[7:4]} RXCLK_[0] RXD_[4:0] {RX_DV,Data0[3:0]} {RX_DV^RX_ER, Data0[7:4]} {RX_DV,Data1[3:0]} {RX_DV^RX_ER, Data1[7:4]} Note: If Nibble Order = 0, the picture is the same except that {TX_EN,DataN[3:0]} and {TX_EN^TX_ER,DataN[7:4]} swap locations. Note: If Nibble Order = 0, the picture is the same except that {RX_DV,DataN[3:0]} and {RX_DV^RX_ER,DataN[7:4]} swap locations. DDR Source Aligned Timing Nibble Order = 1 (Default) TXCLK_[0] TXD_[4:0] {TX_EN,Data0[3:0]} {TX_EN^TX_ER, Data0[7:4]} {TX_EN,Data1[3:0]} {TX_EN^TX_ER, Data1[7:4]} RXCLK_[0] RXD_[4:0] {RX_DV,Data0[3:0]} {RX_DV^RX_ER, Data0[7:4]} {RX_DV,Data1[3:0]} {RX_DV^RX_ER, Data1[7:4]} Note: If Nibble Order = 0, the picture is the same except that {TX_EN,DataN[3:0]} and {TX_EN^TX_ER,DataN[7:4]} swap locations. Note: If Nibble Order = 0, the picture is the same except that {RX_DV,DataN[3:0]} and {RX_DV^RX_ER,DataN[7:4]} swap locations. Figure 2-8. RGMII – Individual Channel Byte Ordering – Channel 0 Example Submit Documentation Feedback Detailed Description 23 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 2.7.3 www.ti.com RTBI Mode (Reduced Ten Bit Interface) Table 2-6. RTBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 5 BITS (INPUT) RECEIVE DATA 5 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[4:0] RXD_[4:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[12:8] RXD_[12:8] TXCLK_[1] RXCLK_[1] Channel 2 TXD_[20:16] RXD_[20:16] TXCLK_[2] RXCLK_[2] Channel 3 TXD_[28:24] RXD_[28:24] TXCLK_[3] RXCLK_[3] DDR Source Centered Timing (Nibble Order = 0) DDR Source Centered Timing (Nibble Order = 1 Default) TXCLK_[0] TXCLK_[0] TXD_[4:0] Data0[4:0] Data0[9:5] RXCLK_[0] TXD_[4:0] Data0[9:5] Data0[4:0] Data0[9:5] Data0[4:0] RXCLK_[0] RXD_[4:0] Data0[4:0] Data0[9:5] RXD_[4:0] DDR Source Aligned Timing (Nibble Order = 0) DDR Source Aligned Timing (Nibble Order = 1 Default) TXCLK_[0] TXCLK_[0] TXD_[4:0] Data0[4:0] Data0[9:5] RXCLK_[0] RXD_[4:0] TXD_[4:0] Data0[9:5] Data0[4:0] Data0[9:5] Data0[4:0] RXCLK_[0] Data0[4:0] Data0[9:5] RXD_[4:0] Figure 2-9. RTBI – Individual Channel Byte Ordering – Channel 0 Example 24 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 2.7.4 SLLS838D – MAY 2007 – REVISED JULY 2008 TBI Mode (Ten Bit Interface) Table 2-7. TBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 10 BITS (INPUT) RECEIVE DATA 10 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 {TXC_[4], TXC_[0],TXD_[7:0]} {RXC_[4], RXC_[0],RXD_[7:0]} TXCLK_[0] RXCLK_ [0] Channel 1 {TXC_[5],TXC_[1],TXD_[15:8]} {RXC_[5], RXC_[1],RXD_[15:8]} TXCLK_[1] RXCLK_ [1] Channel 2 {TXC_[6],TXC_[2],TXD_[23:16]} {RXC_[6],RXC_[2],RXD_[23:16]} TXCLK_[2] RXCLK_ [2] Channel 3 {TXC_[7],TXC_[3],TXD_[31:24]} {RXC_[7],RXC_[3],RXD_[31:24]} TXCLK_[3] RXCLK_ [3] SDR Rising Edge Aligned Timing TXCLK_[0] TXC_[4],TXC_[0],TXD_[7:0] Data0[9:0] Data1[9:0] Data0[9:0] Data1[9:0] RXCLK_[0] RXC_[4],RXC_[0],RXD_[7:0] SDR Falling Edge Aligned Timing TXCLK_[0] TXC_[4],TXC_[0],TXD_[7:0] Data0[9:0] Data1[9:0] Data0[9:0] Data1[9:0] RXCLK_[0] RXC_[4],RXC_[0],RXD_[7:0] Figure 2-10. TBI – Individual Channel Byte Ordering – Channel 0 Example Submit Documentation Feedback Detailed Description 25 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 2.7.5 www.ti.com GMII Mode (Gigabit Media Independent Interface) Table 2-8. GMII – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TX_EN CONTROL BIT (INPUT) TX_ER CONTROL BIT (INPUT) TRANSMIT DATA BYTE (INPUT) RX_DV CONTROL BIT (OUTPUT) RX_ER CONTROL BIT (OUTPUT) Channel 0 TXC_[0] Channel 1 TXC_[1] TXC_[4] TXD_[7:0] RXC_[0] TXC_[5] TXD_[15:8] RXC_[1] Channel 2 TXC_[2] TXC_[6] TXD_[23:16] Channel 3 TXC_[3] TXC_[7] TXD_[31:24] RECEIVE DATA BYTE (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) RXC_[4] RXD_[7:0] TXCLK_[0] RXCLK_[0] RXC_[5] RXD_[15:8] TXCLK_[1] RXCLK_[1] RXC_[2] RXC_[6] RXD_[23:16] TXCLK_[2] RXCLK_[2] RXC_[3] RXC_[7] RXD_[31:24] TXCLK_[3] RXCLK_[3] SDR Rising Edge Aligned Timing TXCLK_[0] TXC_[0],TXC_[4],TXD_[7:0] {TX_EN,TX_ER,Data0[7:0]} {TX_EN,TX_ER,Data1[7:0]} {RX_DV,RX_ER,Data0[7:0]} {RX_DV,RX_ER,Data1[7:0]} RXCLK_[0] RXC_[0],RXC_[4],RXD_[7:0] SDR Falling Edge Aligned Timing TXCLK_[0] TXC_[0],TXC_[4],TXD_[7:0] {TX_EN,TX_ER,Data0[7:0]} {TX_EN,TX_ER,Data1[7:0]} {RX_DV,RX_ER,Data0[7:0]} {RX_DV,RX_ER,Data1[7:0]} RXCLK_[0] RXC_[0],RXC_[4],RXD_[7:0] Figure 2-11. GMII – Individual Channel Byte Ordering – Channel 0 Example 26 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 2.7.6 SLLS838D – MAY 2007 – REVISED JULY 2008 EBI Mode (Eight Bit Interface) Table 2-9. EBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 8 BITS (INPUT) RECEIVE DATA 8 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[7:0] RXD_[7:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[15:8] RXD_[15:8] TXCLK_[1] RXCLK_[1] Channel 2 TXD_[23:16] RXD_[23:16] TXCLK_[2] RXCLK_[2] Channel 3 TXD_[31:24] RXD_[31:24] TXCLK_[3] RXCLK_[3] SDR Rising Edge Aligned Timing TXCLK_[0] TXD_[7:0] Data0[7:0] Data1[7:0] Data0[7:0] Data1[7:0] RXCLK_[0] RXD_[7:0] SDR Falling Edge Aligned Timing TXCLK_[0] TXD_[7:0] Data0[7:0] Data1[7:0] Data0[7:0] Data1[7:0] RXCLK_[0] RXD_[7:0] Figure 2-12. EBI – Individual Channel Byte Ordering – Channel 0 Example Submit Documentation Feedback Detailed Description 27 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 2.7.7 www.ti.com REBI Mode (Reduced Eight Bit Interface) Table 2-10. REBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 4 BITS (INPUT) RECEIVE DATA 4 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[3:0] RXD_[3:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[11:8] RXD_[11:8] TXCLK_[1] RXCLK_[1] Channel 2 TXD_[19:16] RXD_[19:16] TXCLK_[2] RXCLK_[2] Channel 3 TXD_[27:24] RXD_[27:24] TXCLK_[3] RXCLK_[3] DDR Source Centered Timing (Nibble Order = 0) DDR Source Centered Timing (Nibble Order = 1 Default) TXCLK_[0] TXD_[3:0] TXCLK_[0] Data0[3:0] Data0[7:4] RXCLK_[0] RXD_[3:0] TXD_[3:0] Data0[3:0] Data0[7:4] TXCLK_[0] RXD_[3:0] Data0[7:4] Data0[3:0] DDR Source Aligned Timing (Nibble Order = 0) TXCLK_[0] Data0[3:0] Data0[7:4] RXCLK_[0] RXD_[3:0] Data0[3:0] RXCLK_[0] DDR Source Aligned Timing (Nibble Order = 1 Default) TXD_[3:0] Data0[7:4] TXD_[3:0] Data0[7:4] Data0[3:0] Data0[7:4] Data0[3:0] RXCLK_[0] Data0[3:0] Data0[7:4] RXD_[3:0] Figure 2-13. REBI – Individual Channel Byte Ordering – Channel 0 Example 28 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 2.7.8 SLLS838D – MAY 2007 – REVISED JULY 2008 NBI Mode (Nine Bit Interface Mode) Table 2-11. NBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 9 BITS (INPUT) RECEIVE DATA 9 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 {TXC_[0],TXD_[7:0]} {RXC_[0],RXD_[7:0]} TXCLK_[0] RXCLK_[0] Channel 1 {TXC_[1],TXD_[15:8]} {RXC_[1],RXD_[15:8]} TXCLK_[1] RXCLK_[1] Channel 2 {TXC_[2],TXD_[23:16]} {RXC_[2],RXD_[23:16]} TXCLK_[2] RXCLK_[2] Channel 3 {TXC_[3],TXD_[31:24]} {RXC_[3],RXD_[31:24]} TXCLK_[3] RXCLK_[3] SDR Rising Edge Aligned Timing TXCLK_[0] TXC_[0],TXD_[7:0] Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} RXCLK_[0] RXC_[0],RXD_[7:0] SDR Falling Edge Aligned Timing TXCLK_[0] TXC_[0],TXD_[7:0] Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} RXCLK_[0] RXC_[0],RXD_[7:0] Figure 2-14. NBI – Individual Channel Byte Ordering – Channel 0 Example Submit Documentation Feedback Detailed Description 29 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 2.7.9 www.ti.com RNBI Mode (Reduced Nine Bit Interface) Table 2-12. RNBI – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 5 BITS (INPUT) RECEIVE DATA 5 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 TXD_[4:0] RXD_[4:0] TXCLK_[0] RXCLK_[0] Channel 1 TXD_[12:8] RXD_[12:8] TXCLK_[1] RXCLK_[1] Channel 2 TXD_[20:16] RXD_[20:16] TXCLK_[2] RXCLK_[2] Channel 3 TXD_[28:24] RXD_[28:24] TXCLK_[3] RXCLK_[3] DDR Source Centered Timing (Nibble Order = 0) DDR Source Centered Timing (Nibble Order = 1 Default) TXCLK_[0] TXD_[4:0] TXCLK_[0] Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} RXCLK_[0] RXD_[4:0] TXD_[4:0] Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} RXD_[4:0] Data0[8:5] = {Control Bit, Data Byte[7:5]} Data0[4:0] = {Data Byte[4:0]} DDR Source Aligned Timing (Nibble Order = 0) TXCLK_[0] TXCLK_[0] Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} RXCLK_[0] RXD_[4:0] Data0[4:0] = {Data Byte[4:0]} RXCLK_[0] DDR Source Aligned Timing (Nibble Order = 1 Default) TXD_[4:0] Data0[8:5] = {Control Bit, Data Byte[7:5]} TXD_[4:0] Data0[8:5] = {Control Bit, Data Byte[7:5]} Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} Data0[4:0] = {Data Byte[4:0]} RXCLK_[0] Data0[4:0] = {Data Byte[4:0]} Data0[8:5] = {Control Bit, Data Byte[7:5]} RXD_[4:0] Figure 2-15. RNBI – Individual Channel Byte Ordering – Channel 0 Example 30 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 2.7.10 TBID Mode (Ten Bit Interface DDR) Table 2-13. TBID – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 10 BITS (INPUT) RECEIVE DATA 10 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 {TXC_[4], TXC_[0],TXD_[7:0]} {RXC_[4], RXC_[0],RXD_[7:0]} TXCLK_[0] RXCLK_ [0] Channel 1 {TXC_[5],TXC_[1],TXD_[15:8]} {RXC_[5], RXC_[1],RXD_[15:8]} TXCLK_[1] RXCLK_ [1] Channel 2 {TXC_[6],TXC_[2],TXD_[23:16] } {RXC_[6],RXC_[2],RXD_[23:1 6]} TXCLK_[2] RXCLK_ [2] Channel 3 {TXC_[7],TXC_[3],TXD_[31:24] } {RXC_[7],RXC_[3],RXD_[31:2 4]} TXCLK_[3] RXCLK_ [3] DDR Source Centered Timing TXCLK_[0] TXC_[4], TXC_[0], TXD_[7:0] Data0[9:0] Data1[9:0] Data0[9:0] Data1[9:0] RXCLK_[0] RXC_[4], RXC_[0], RXD_[7:0] DDR Source Aligned Timing TXCLK_[0] TXC_[4], TXC_[0], TXD_[7:0] Data0[9:0] Data1[9:0] Data0[9:0] Data1[9:0] RXCLK_[0] RXC_[4], RXC_[0], RXD_[7:0] Figure 2-16. TBID – Individual Channel Byte Ordering – Channel 0 Example Submit Documentation Feedback Detailed Description 31 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com 2.7.11 NBID Mode (Nine Bit Interface DDR) Table 2-14. NBID – Lane To Functional Pin Mapping DATA CHANNEL NUMBER TRANSMIT DATA 9 BITS (INPUT) RECEIVE DATA 9 BITS (OUTPUT) TRANSMIT CLOCK (INPUT) RECEIVE CLOCK (OUTPUT) Channel 0 {TXC_[0],TXD_[7:0]} {RXC_[0],RXD_[7:0]} TXCLK_[0] RXCLK_ [0] Channel 1 {TXC_[1],TXD_[15:8]} {RXC_[1],RXD_[15:8]} TXCLK_[1] RXCLK_ [1] Channel 2 {TXC_[2],TXD_[23:16]} {RXC_[2],RXD_[23:16]} TXCLK_[2] RXCLK_ [2] Channel 3 {TXC_[3],TXD_[31:24]} {RXC_[3],RXD_[31:24]} TXCLK_[3] RXCLK_ [3] DDR Source Centered Timing TXCLK_[0] TXC_[0], TXD_[7:0] Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} RXCLK_[0] RXC_[0], RXD_[7:0] DDR Source Aligned Timing TXCLK_[0] TXC_[0], TXD_[7:0] Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} Data0[8:0] = {Control Bit, Data Byte} Data1[8:0] = {Control Bit, Data Byte} RXCLK_[0] RXC_[0], RXD_[7:0] Figure 2-17. NBID – Individual Channel Byte Ordering – Channel 0 Example 32 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 2.7.12 Parallel Interface Clocking Modes The TLK3134 supports source centered timing and source aligned DDR timing on the parallel receive output bus. TLK3134 also supports rising edge aligned and falling edge aligned SDR timing on the parallel receive output bus. See Figure 2-18 for more details. RXCLK tSETUP Source Centered (DDR) RXD RXC tHOLD tHOLD tSETUP Data Data Source Aligned (DDR) RXD RXC Data Data Data Falling Edge Aligned (SDR) RXD RXC Data Data Rising Edge Aligned (SDR) Data RXD RXC Data Figure 2-18. Receive Interface Timing – Source Centered/Aligned The transmit input timing modes are shown in Figure 2-19. In the receive data path a FIFO, placed on the output of the serial to parallel conversion logic for each serial link, compensates for channel skew, clock phase and frequency tolerance differences between the recovered clocks for each serial links and the receive output clock, RCLK. Submit Documentation Feedback Detailed Description 33 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com TXCLK tSETUP Source Centered (DDR) TXD TXC tSETUP tHOLD tHOLD Data Data Source Aligned (DDR) TXD TXC Data Data Data Falling Edge Aligned (Rising Edge Sampled) (SDR) TXD TXC Data Data Rising Edge Aligned (Falling Edge Sampled) (SDR) TXD TXC Data Data Figure 2-19. Transmit Interface Timing 2.7.13 Parallel Interface Data Data placed on the XGMII transmit input bus is latched and then phase aligned to the internal version of the transmit reference clock, 8b/10b encoded, serialized, then transmitted sequentially beginning with the LSB of the encoded data byte over the differential high speed serial transmit pins. The XGMII receive data bus outputs four bytes on RXD(31:0). Control character (K-characters) reporting for each byte is done by asserting the corresponding control pin, RXC(3:0). When RXC is asserted, the 8 bits of data corresponding to the control pin is to be interpreted as a K-character. If an error is uncovered in decoding the data, the control pin is asserted and 0xFE is output for the corresponding byte. 2.7.14 Transmission Latency For each channel, the data transmission latency of the TLK3134 is defined as the delay from the rising or falling edge of the selected transmit clock when valid data is on the transmit data pins to the serial transmission of bit 0, as shown in Figure 2-20. The maximum transmit latency is a function of the mode of operation, and is detailed in Section 4.10: Serial Transmitter/Receiver characteristics. 34 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 10-Bit Code Transmitted TXxP TXxN Tlatency Bytes to Be Transmitted TXD[31:0] TCLK Figure 2-20. Transmission Latency 2.7.15 Channel Clock to Serial Transmit Clock Synchronization In XAUI mode, the TLK3134 allows ±200 ppm difference between the serdes transmit reference on the XAUI side, versus the input TCLK on the XGMII side. There exists a FIFO capable of CTC operations, and has a depth of 32 locations (32 bits wide per location). The reference clock and the transmit data clock(s) may be from a common source, but the design allows for up to ±200 ppm of frequency difference should the application require it. NOTE Note that there are no CTC operations in any of the independent channel modes. 2.7.16 Data Reception Latency For each serial link, the serial-to-parallel data latency is the time from when the first bit arrives at the serial receiver input until it is output in the aligned parallel word on the XGMII, as shown in Figure 2-21. The maximum receive latency is a function of the mode of operation, and is detailed in Section 4.10: Serial Transmitter/Receiver characteristics. 10-Bit Code Received RDP, RDN R latency RXD[31:0] Bytes Received RCLK Figure 2-21. Receiver Latency 2.7.17 8B/10B Encoder All true serial interfaces require a method of encoding to insure sufficient transition density for the receiving PLL to acquire and maintain lock. The encoding scheme also maintains the signal DC balance by keeping the number of ones and zeros balanced which allows for AC coupled data transmission. The TLK3134 uses the 8B/10B encoding algorithm that is used by 10Gbps and 1Gbps Ethernet and FibreChannel standards. This provides good transition density for clock recovery and improves error checking. The TLK3134 will internally encode and decode the data such that the user reads and writes actual 8-bit data on each channel. The encoder and decoder functions can optionally be enabled or disabled on a per channel basis. Submit Documentation Feedback Detailed Description 35 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com The 8B/10B encoder converts 8-bit wide data to a 10-bit wide encoded data character to improve its transition density. This transmission code includes D Characters, used for transmitting data, and K Characters, used for transmitting protocol information. Each K or D character code word can also have both a positive and a negative disparity version. The disparity of a code word is selected by the encoder to balance the running disparity of the serialized data stream. The generation of K-characters to be transmitted on each channel is controlled by transmit control pins, TXC(3:0). When the control pin is asserted along with the 8 bits of data, an 8B/10B K-character is transmitted. Similarly, reception of K-characters is reported by the receive control pins, RXC(3:0). When receive control pin is asserted, the corresponding byte on the receive data bus should be interpreted as a K-character. The TLK3134 will transmit and receive all of the twelve valid K-characters as defined in Table 2-15. Table 2-15. Valid K-Codes K-CODE TXC(3:0) OR RXC(3:0) DATA BUS BYTES (RXD[x: x-7] OR TXD[x: x-7]) 00 through FF 0 K28.0 1 K28.1 ENCODED K-CODE NEGATIVE RUNNING DISPARITY POSITIVE RUNNING DISPARITY DDD DDDDD dddddd dddd dddddd dddd Normal data 000 11100 001111 0100 110000 1011 IdleO/busy 1 001 11100 001111 1001 110000 0110 IdleE/busy K28.2 1 010 11100 001111 0101 110000 1010 K28.3 1 011 11100 001111 0011 110000 1100 K28.4 1 100 11100 001111 0010 110000 1101 K28.5 1 101 11100 001111 1010 110000 0101 K28.6 1 110 11100 001111 0110 110000 1001 K28.7 1 111 11100 001111 1000 110000 0111 Code Violation or Parity Error K23.7 1 111 10111 111010 1000 000101 0111 IdleO/not-busy K27.7 1 111 11011 110110 1000 001001 0111 SOP(S) K29.7 1 111 11101 101110 1000 010001 0111 EOP(T) K30.7 1 111 11110 011110 1000 100001 0111 K-CODE DESCRIPTION Channel Alignment (A) IdleE/not-busy (K) Table 2-16 provides additional transmit data control coding and descriptions that have been incorporated into 10 Gbps Ethernet. Data patterns put on XGMII transmit data bus other than those defined in Table 2-16 when the transmit control pin is asserted will result in an invalid K-character being transmitted which will result in a code error at the receiver. Table 2-16. Valid XGMII Channel Encodings 36 DATA BUS (TXD[x: x-7] OR RXD[x: x-7]) TXC(3:0) OR RXC(3:0) 00 through FF 0 Normal Data Transmission 00 through 06 1 Reserved 07 1 Idle 08 through 9B 1 Reserved DESCRIPTION 9C 1 Sequence (only valid in Channel 0) 9D through FA 1 Reserved FB 1 Start (only valid in Channel 0) FC 1 Reserved FD 1 Terminate FE 1 Transmit error propagation FF 1 Reserved Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 2.7.18 Comma Detect and 8B/10B Decoding When parallel data is clocked into a parallel to serial converter, the byte boundary that was associated with the parallel data is lost in the serialization of the data. When the serial data is received and converted to parallel format again, a method is needed to be able to recognize the byte boundary again. Generally this is accomplished through the use of a synchronization pattern. This is a unique pattern of 1’s and 0’s that either cannot occur as part of valid data or is a pattern that repeats at defined intervals. 8B/10B encoding contains a character called the comma (b’0011111 or b’1100000) which is used by the comma detect circuit to align the received serial data back to its original byte boundary. The channel synchronization block detects the comma pattern found in the K28.5 character, generating a synchronization signal aligning the data to their 10-bit boundaries for decoding. It then converts the data back into 8-bit data. It is important to note that the comma can be either a (b’0011111) or the inverse (b’1100000) depending on the running disparity. The TLK3134 decoder will detect both patterns. The reception of K-characters is reported by the assertion of receive control pin, RXC(3:0) for the corresponding byte on the XGMII receive bus. When a code word error or running disparity error is detected in the decoded data received on a serial link, the receive control pin is asserted and an 0xFE is placed on the receive data bus for that channel, as shown in Table 2-17. Table 2-17. Receive Data Controls EVENT Normal Data Normal K-character Code word error or running disparity error RECEIVE DATA BUS RXD[x:x–7] RXC(3:0) XX 0 Valid K-code 1 FE 1 2.7.19 Channel Initialization and Synchronization The TLK3134 has a synchronization state machine which is responsible for handling link initialization and synchronization for each channel. The initialization and synchronization state diagram is provided in Figure 2-22. The status of any channel can be monitored by reading MDIO register 4/5.24.3:0. Submit Documentation Feedback Detailed Description 37 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com reset Valid Data or Error UNSYNC comma Valid Data Error ACQ1 MISS3 4 Consecutive Valid Data Words Error Valid Data comma Error Error ACQ2 Error MISS2 Error 4 Consecutive Valid Data Words comma ACQ3 Valid Data MISS1 comma Error 4 Consecutive Valid Data Words SYNC Valid Data or Comma Figure 2-22. Channel Synchronization State Machine 2.7.20 Channel State Descriptions: (1) 38 UNSYNC This is the initial state for each channel upon device power up or reset. In this state, the TLK3134 will have the comma detect circuit active and will make code word alignment adjustments based on the position of a comma in the incoming data stream. While in this state the TLK3134 will set the Lane Sync bit to '0' for the particular channel in MDIO register bits 4/5.24.3:0 indicating the lane is not synchronized. (1) The channel state will transition to the ACQ1 state upon the detection of a comma. ACQ1 During this state the comma detect circuit is active but code word re-alignment is disabled. The TLK3134 will remain in this state until either a comma is detected in the same code word alignment position as found in state UNSYNC or a decode error is encountered. While in this state, the Lane Sync bit for the particular channel will remain de-asserted indicating the lane is not synchronized.(1) A decode or running disparity error will return the channel state to UNSYNC. A detected comma will cause the channel state to transition to ACQ2. ACQ2 During this state, the comma detect circuit is active but code word re-alignment is disabled. The TLK3134 will remain in this state until either a comma is detected in the same code word alignment position as found in state UNSYNC or a decode error is encountered. While in this state, the Lane Sync bit for the particular channel will remain de-asserted indicating the lane is not synchronized.(1) A decode or running disparity error will return the channel state to UNSYNC. A detected comma will cause the channel state to transition to ACQ3. The Lane Sync bit = '0' bit from any/or all channels will cause a local fault to be output on the receive data bus. Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 ACQ3 During this state the comma detect circuit is active but code word re-alignment is disabled. The TLK3134 will remain in this state until either a comma is detected or a decode error encountered. While in this state, the Lane Sync bit for the particular channel will remain de-asserted indicating the lane is not synchronized.(1) A decode or running disparity error will return the channel state to UNSYNC. A detected comma will cause the channel state to transition to SYNC. SYNC This is the normal state for receiving data. When in this state, the TLK3134 will set the Lane Sync bit to '1' for the particular channel in the MDIO register bits 4/5.24.3:0 indicating the lane has been synchronized. During this state the comma detect circuit is active but code word re-alignment is disabled. A decode or running disparity error will cause the channel state to transition to MISS1. MISS1 When entering this state an internal error counter is cleared. If the next four consecutive codes are decoded without error, the channel state reverts back to SYNC. If a decode or running disparity error is detected, the channel state will transition to MISS2. MISS2 When entering this state an internal error counter is cleared. If the next four consecutive codes are decoded without error, the channel state reverts back to MISS1. If a decode or running disparity error is detected, the channel state will transition to MISS3. MISS3 When entering this state an internal error counter is cleared. If the next four consecutive codes are decoded without error, the channel state reverts back to MISS2. If a decode or running disparity error is detected, the channel state will transition to UNSYNC. 2.7.21 End of Packet Error Detection Because of their unique data patterns, /A/ (K28.3), /K/ (K28.5), and /T/ (K29.7) will catch running disparity errors that may have propagated undetected from previous codes in a packet. Running disparity errors detected by these control codes at the end of packets will cause the previous data codes to be reported as errors (0xFE) to allow the protocol device to reject the packet (see Figure 2-23). XGMII XAUI RDP/N0 ... D D D D A Running Disparity Error Detected by /A/ Yields RDP/N1 ... D D D T A Running Disparity Error Detected by /T/ Yields ... D D E T I RDP/N2 ... D D D K A Running Disparity Error Detected by /K/ Yields ... D D E I I RDP/N3 ... D D D K A Running Disparity Error Detected by /K/ Yields ... D D E I I ... D D D E I D = Data, T = K29.7, A = K28.3, K = K28.5, E = Error (0xFE), I = Idle Figure 2-23. End of Packet Error Detection 2.7.22 Fault Detection and Reporting The TLK3134 will detect and report local faults as well as forward both local and remote faults as defined in the IEEE 802.3ae 10Gbps Ethernet Standard to aid in fault diagnosis. All faults detected by the TLK3134 are reported as local faults to the upper layer protocols. Once a local fault is detected in the TLK3134, MDIO register bit 4/5.1.7 is set. Fault sequences, sequence ordered sets received by the TLK3134, either on the Transmit Data Bus or on the high speed receiver pins, are forwarded without change to the MDIO registers in the TLK3134. Also, note that the TLK3134 is capable of performing CTC operation where only RF and LF or any Q sequences are transported (not generated) in either the transmit or receive direction in XAUI mode. Submit Documentation Feedback Detailed Description 39 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com TLK3134 reports a fault by outputting a K28.4 (0x9C) on RXD(7:0), 0x00 on RXD(15:8) and RXD(23:16) and 0x01 for local faults on RXD(31:24). Forwarding of remote faults is handled as a normal transmission. Note that the TLK3134 will not generate a remote fault indication nor any other type of Q. 2.7.23 Receive Synchronization and Skew Compensation In XAUI mode, the TLK3134 has a FIFO enabled on the receive data path coming from each serial link to compensate for channel skew and clock phase and frequency tolerance differences between the recovered clocks for each channel and the receive output clock RCLK. This FIFO has a depth of 16 locations (32 bits wide for each location). The de-skew of the 4 serial links that make up each XAUI channel into a single 32 bit wide column of data is accomplished by alignment of the receive FIFOs on each serial link to a K28.3 control code sent during the inter-packet gap (IPG) between data packets or during initial link synchronization. Until the alignment code is recognized by the CTC FIFOs, the output of the FIFOs may be un-aligned and as such undefined, as shown in Figure 2-25. The K28.3 code (referred to as the “A” or alignment code) is transmitted on the first column following the end of the data packet as shown in Figure 2-26. The column de-skew state machine is provided in Figure 2-24 . The status of column alignment can be monitored by reading MDIO registers 4/5.24.12 for global alignment. RESET or LOS UNALIGN Valid Data Deskew Error FAIL3 Valid Data Valid Data Deskew Error FAIL2 ||A|| Deskew Error FAIL1 ||A|| ||A|| Deskew Error DET1 Valid Data ||A|| Deskew Error DET2 Valid Data Deskew Error Deskew Error ||A|| DET3 ||A|| Valid Data ||A|| ALIGN Valid Data Note: Deskew Error is at least one column containing an A character, but not all four simultaneously. Figure 2-24. Column De-Skew State Machine 40 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 2.7.24 Column State Descriptions: (2) UNALIGN This is the initial state for the column state machine upon device power up or reset. If any of the channel state machines are set to UNSYNC, the column state is set to UNALIGN. In this state, the column state machine will search for alignment character codes (K28.3 or /A/) on each channel and align the FIFO pointers on each channel to the /A/ character code. While in this state, the Column Alignment Sync bit is set to '0' in MDIO registers 4/5.24.12, indicating the column is not aligned. (2) The column state will transition to the DET1 state upon the detection and alignment of /A/ character codes in all four channels. DET1 During this state, the alignment character code detect circuit is active on each channel but the column re-alignment is disabled. The column state machine will remain in this state looking for a column of alignment character codes. If an incomplete alignment column is detected (alignment character codes not found on all channels) or a deskew error is detected, the column state machine will transition to state UNALIGN. While in this state, the Column Alignment Sync bit is set to '0' in MDIO registers 4/5.24.12 indicating the column is not aligned.(2) Detection of a complete alignment column will cause the column state machine to transition to state DET2. DET2 During this state, the alignment character code detect circuit is active on each channel but the column re-alignment is disabled. The column state machine will remain in this state looking for a column of alignment character codes. If an incomplete alignment column is detected (alignment character codes not found on all channels) or a deskew error is detected, the column state machine will transition to state UNALIGN. While in this state, the Column Alignment Sync bit is set to '0' in MDIO registers 4/5.24.12 indicating the column is not aligned.(2) Detection of a complete alignment column will cause the column state machine to transition to state DET3. DET3 During this state, the alignment character code detect circuit is active on each channel but the column re-alignment is disabled. The column state machine will remain in this state looking for a column of alignment character codes. If an incomplete alignment column is detected (alignment character codes not found on all channels) or a deskew error is detected, the column state machine will transition to state UNALIGN. While in this state, the Column Alignment Sync bit is set to '0' in MDIO registers 4/5.24.12 indicating the column is not aligned.(2) Detection of a complete alignment column will cause the column state machine to transition to state ALIGN. ALIGN This is the normal state for receiving data. When in this state, the column state machine will set the Column Alignment Sync bit to '1' in MDIO registers 4/5.24.12 indicating all channels are aligned. During this state the alignment character code detect circuit is active on each channel but the column re-alignment is disabled. If a deskew error is detected in the correct position within the Inter-Packet Gap, the column state machine will transition to state FAIL1. FAIL1 When in this state, the Column Alignment Sync bit is '1' in MDIO registers 4/5.24.12. During this state the alignment character code detect circuit is active on each channel but the column re-alignment is disabled. If a complete alignment column is not detected in the correct position within the Inter-Packet Gap, the column state machine will transition to state FAIL2. If a complete alignment column is detected in the correct position within the Inter-Packet Gap, the column state machine will transition to state ALIGN. FAIL2 When in this state, the Column Alignment Sync bit is '1' in MDIO registers 4/5.24.12. During this state the alignment character code detect circuit is active on each channel but the column re-alignment is disabled. If a complete alignment column is not detected in the correct position within the Inter-Packet Gap, the column state machine will transition to state FAIL3. If a complete alignment column is detected in the correct position within the Inter-Packet Gap, the column state machine will transition to state FAIL1. The XGXS Lane Alignment bit = '0' will cause a local fault to be output on the receive data bus. Submit Documentation Feedback Detailed Description 41 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 FAIL3 www.ti.com When in this state, the Column Alignment Sync bit is '1' in MDIO registers 4/5.24.12. During this state the alignment character code detect circuit is active on each channel but the column re-alignment is disabled. If complete alignment column is not detected in the correct position within the Inter-Packet Gap, the column state machine will transition to state UNALIGN. If a complete alignment column is detected in the correct position within the Inter-Packet Gap, the column state machine will transition to state FAIL2. Any Valid Code K28.3 K28.5 K28.0 RDP/N0 R R X X X X X X X X X X A A A A A A A A A A K K K K K K K K K K R R R R R R R R R R K RDP/N1 R R X X X X X X X X X X A A A A A A A A A A K K K K K K K K K K R R R R R R R R RDP/N2 R R X X X X X X X X X X A A A A A A A A A A K K K K K K K K K K R R R R R R R R R R K K K K RDP/N3 R R X X X X X X X X X X A A A A A A A A A A K K K K K K K K K K R R R R R R R R R R RCLK RXD(7:0) undefined undefined A K RXD(15:8) undefined undefined A K RXD(23:16) undefined undefined A K RXD(31:24) undefined undefined A K Figure 2-25. Channel Deskew Using Alignment Code 2.7.25 Inter-Packet Gap Management When in XAUI mode, the TLK3134 replaces the idle codes (see Table 2-15) during the Inter-Packet Gap (IPG) with the necessary codes to perform all channel alignment, byte alignment, and clock tolerance compensation as defined in IEEE 802.3ae 10Gbps Ethernet Standard. According to the Ethernet Standard, a valid packet must begin on TXD(7:0) of the XGMII. However, due to variable packet sizes, the IPG can begin on any channel. The TLK3134 will replace idle codes latched on the same XGMII clock edge as the end of packet code with /K/ codes (as shown in Figure 2-26). 42 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Packet IPG TXD(7:0) I I S D D D D ... D D D D I I I I I I TXD(15:8) I I D D D D D ... D D D T I I I I I I TXD(23:16) I I D D D D D ... D D D I I I I I I I TXD(31:24) I I D D D D D ... D D D I I I I I I I TDP/N0 K R S D D D D ... D D D D A R R K K R TDP/N1 K R D D D D D ... D D D T A R R K K R TDP/N2 K R D D D D D ... D D D K A R R K K R TDP/N3 K R D D D D D ... D D D K A R R K K R Input Output S = Start of Packet, D = Data, T = End of Packet, A = K28.3, K = K28.5, R = K28.0, I = Idle Figure 2-26. Inter-Packet Gap Management The subsequent idles in the IPG will be replaced by “columns” of channel alignment codes (K28.3), byte alignment codes (K28.5), or clock tolerance compensation codes (K28.0). The state machine which governs the IPG replacement procedure is illustrated in Figure 2-27, with notation defined in Table 2-18. Note that any IPG management state will transition to send data if the IPG is terminated. The repetition of the “/A/” pattern on each serial channel allows the FIFOs to remove or add the required phase and frequency difference to align the data from all four serial links of a XAUI channel and allow output of the aligned 32 bit wide data on a single edge of the receive clock, RCLK, as shown in Figure 2-25. Submit Documentation Feedback Detailed Description 43 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Any State !(||idle|| + ||Q||) ||T|| & nextAK= K + Acnt != 0 Send Data ||T|| & nextAK= A * Acnt= 0 reset Send K Send A ||Q|| !||Q|| Send Q Acnt != 0 * nextKR = R Send R Acnt != 0 * nextKR = K Acnt != 0 * nextKR = K Send K nextKR = R Acnt = 0 Acnt != 0 * nextKR = R !||Q|| * nextKR = R Send A ||Q|| Acnt = 0 !||Q|| * nextKR = K Send Q nextKR = K Figure 2-27. IPG Management State Machine Table 2-18. IPG Management State Machine Notation SYMBOL ||idle|| ||Q|| nextAK Acnt DEFINITION XGMII idle. 0x07 on TXD(x:: :x-7), Link status message: K28.4, Dx.y, Dx.y, Dx.y. A Boolean variable. It takes the value K when an A is sent at the beginning of the IPG and the value A when a K is sent at the beginning of the IPG. Its initial value is K. When an A character is sent, variable Acnt is loaded with a random number such that 16 ≤ Acnt ≤ 31. Acnt is decremented each time a column of A characters is generated. nextKR A randomly-generated Boolean that can assume the value K or R. ||T|| Terminate Character Column (Terminate Character in Any Lane). 2.7.26 Clock Tolerance Compensation (CTC) The XAUI interface is defined to allow for separate clock domains on each side of the link. Though the reference clocks for two devices on a XAUI link have the same specified frequencies, there are slight differences that, if not compensated for, will lead to over or under run of the FIFOs on the receive/transmit data path. The TLK3134 provides compensation for these differences in clock frequencies via the insertion or the removal of /R/ characters on all channels, as shown in Figure 2-28 and Figure 2-29. 44 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Packet IPG RDP/N0 K R S D D D D ... D D D D A R R K S D RDP/N1 K R D D D D D ... D D D T A R R K D D RDP/N2 K R D D D D D ... D D D K A R R K D D RDP/N3 K R D D D D D ... D D D K A R R K D D RXD(7:0) I I S D D D D ... D D D D I I I I I S RXD(15:8) I I D D D D D ... D D D T I I I I I D RXD(23:16) I I D D D D D ... D D D I I I I I I D RXD(31:24) I I D D D D D ... D D D I I I I I I D Input Output S = Start of Packet, D = Data, T = End of Packet, A = K28.3, K = K28.5, R = K28.0, I = Idle Added Column Figure 2-28. Clock Tolerance Compensation: Add The /R/ code is disparity neutral, allowing its removal or insertion without affecting the current running disparity of each channel’s serial stream. Submit Documentation Feedback Detailed Description 45 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Packet IPG RDP/N0 K R S D D D D ... D D D D A R R K S D RDP/N1 K R D D D D D ... D D D T A R R K D D RDP/N2 K R D D D D D ... D D D K A R R K D D RDP/N3 K R D D D D D ... D D D K A R R K D D Input Dropped Column RXD(7:0) I I S D D D D ... D D D D I I I S D D RXD(15:8) I I D D D D D ... D D D T I I I D D D RXD(23:16) I I D D D D D ... D D D I I I I D D D RXD(31:24) I I D D D D D ... D D D I I I I D D D Output S = Start of Packet, D = Data, T = End of Packet, A = K28.3, K = K28.5, R = K28.0, I = Idle Figure 2-29. Clock Tolerance Compensation: Drop 2.7.27 Parallel to Serial The parallel-to-serial shift register on each channel takes in data and converts it to a serial stream. The shift register is clocked by the internally generated bit clock, which is 10 times the reference clock (REFCLKP/REFCLKN) frequency. The least significant bit (LSB) for each channel is transmitted first. 2.7.28 Serial to Parallel For each channel, serial data is received on the RDPx/RDNx pins. The interpolator and clock recovery circuit will lock to the data stream if the clock to be recovered is within ±200 PPM of the internally generated bit rate clock. The recovered clock is used to retime the input data stream. The serial data is then clocked into the serial-to-parallel shift registers. If enabled, the 10-bit wide parallel data is then fed into 8b/10b decoders. 2.7.29 High Speed CML Output The high speed data output driver is implemented using Current Mode Logic (CML) with integrated pull up resistors requires no external components. The line can be directly coupled or AC coupled. Under many circumstances, AC coupling is desirable. 46 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 TDP RDP 50 W transmission line VDDT 0.8*VDDT DIR AC COUP COUP 50 GND + – 50 50 W transmission line RDN TDN TRANSMITTER MEDIA RECEIVER Figure 2-30. Example High Speed I/O AC Coupled Mode Current Mode Logic (CML) drivers often require external components. The disadvantage of the external component is a limited edge rate due to package and line parasitic. The CML driver on TLK3134 has on-chip 50Ω termination resistors terminated to VDDT, providing optimum performance for increased speed requirements. The transmitter output driver is highly configurable allowing output amplitude and de-emphasis to be tuned to a channel's individual requirements. Software programmability allows for very flexible output amplitude control. AC Coupled and Direct Coupled modes are supported. When AC coupling is selected, the receiver input is internally biased 0.8 × VDDT which is the optimum voltage for input sensitivity. As the input and output references are derived from VDDT, the tolerance of this supply will dominate the accuracy of the internal reference. When transmitting data across long lengths of PCB trace or cable, the high frequency content of the signal is attenuated due to the skin effect of the media. This causes a “smearing” of the data eye when viewed on an oscilloscope. The net result is reduced timing margins for the receiver and clock recovery circuits. In order to provide equalization for the high frequency loss, 1-tap finite impulse response (FIR) transmit de-emphasis is implemented. A highly configurable output driver maximizes flexibility in the end system by allowing de-emphasis and output amplitude to be tuned to a channel’s individual requirements. A total of 15 de-emphasis settings and 8 output amplitude settings can be independently selected. VOD(p) VOD(d) VCMT VOD(pd) VOD(pp) VOD(d) bit time bit time VOD(p) Figure 2-31. Output differential voltage with 1-tap FIR de-emphasis Submit Documentation Feedback Detailed Description 47 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com The level of de-emphasis is programmable via MDIO Register bits. Users can control the strength of the de-emphasis to optimize for a specific system requirement. 2.7.30 High Speed Receiver The high speed receiver conforms to the physical layer requirements of IEEE 802.3ae Clause 47(XAUI), Gigabit Ethernet, and FibreChannel 1 and 2. Register control gives selection between AC and DC coupling at the receiver. When the receiver is AC coupled, the termination impedances of the receivers are configured as 100 Ohms with the center tap weakly tied to 0.8 × VDDT with a capacitor to create an AC ground. When the receiver is DC coupled, the common mode will be determined by both receiver and transmitter characteristics. All receive channels incorporate an adaptive equalizer. This circuit compensates for channel insertion loss by amplifying the high frequency components of the signal, reducing inter-symbol interference. Equalization can be enabled or disabled per register settings. Both the gain and bandwidth of the equalizer are controlled by the receiver equalization logic. There are ten available equalization settings. 2.7.31 Loopback In XAUI Mode, two internal loopback modes are possible for the XAUI Channel Group. One, called XGMII loopback, allows the data input on the XGMII interface to be returned out the XGMII interface. The other, called XAUI loopback, allows serial data on the XAUI interface to be returned out the XAUI interface. In independent channel mode, channels can independently be configured for parallel or serial side loopback similar to above. An external loopback (requiring external connection) is also supported, which can be used with the PRBS patterns, as well as the CJPAT, CRPAT, Mixed/High/Low Frequency tests. 2.7.32 Link Test Functions The TLK3134 has an extensive suite of built in test functions to support system diagnostic requirements. Each channel has built-in link test generator and verification logic. Several patterns can be selected via the MDIO that offer extensive test coverage. The patterns are: 27-1 or 223-1 PRBS (Pseudo Random Bit Stream), CJPAT, CRPAT, high and low and mixed frequency patterns. 2.7.33 MDIO Management Interface The TLK3134 supports the Management Data Input/Output (MDIO) Interface as defined in Clauses 22 and 45 of the IEEE 802.3ae Ethernet specification. The MDIO allows register-based management and control of the serial links. Normal operation of the TLK3134 is possible without use of this interface. However, some additional features are accessible only through the MDIO. The MDIO Management Interface consists of a bi-directional data path (MDIO) and a clock reference (MDC). The device id and port address are determined by control pins (see Table 3-3). Also, whether the device responds as a Clause 22 or Clause 45 device is also determined by control pin ST (see Table 3-3). In Clause 45 (ST = 0), the top 4 control pins PRTAD[4:1] determine the device port address. Note that TLK3134 can accessed only through even port addresses in Clause 45 mode. In this mode, TLK3134 will respond if the PHY address field on the MDIO protocol (PA[4:0]) matches {PRTAD[4:1], 1’b0}. PRTAD[0] pin acts as device id pin where it determines whether TLK3134 is a DTE or PHY device. The device ID is required to be either 4 (PHY) or 5 (DTE), so only one bit is required to differentiate. If PRTAD[0] is a 0, then a PHY device is selected for the XGXS. If PRTAD[0] is a 1, then a DTE device is selected for the XGXS. In this mode, TLK3134 will respond as PHY if the Device address field (DA[4:0]) on the MDIO protocol is 5’b00100 and as DTE if it is 5’b00101. Note, each register is accessed as either DTE or PHY devices in the TLK3134, although physically there is only one register accessed two different ways. 48 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 In Clause 22 (ST = 1), the top 3 control pins PRTAD[4:2] determine the device port address. In this mode the 4 individual channels in TLK3134 are classified as 4 different ports. So for any PRTAD[4:2] value there will be 4 ports per TLK3134. TLK3134 will respond if the 3 MSB’s of PHY address field on MDIO protocol (PA[4:2]) matches PRTAD[4:2]. 2 LSB’s of PHY address field (PA[1:0]) will determine which channel/port within TLK3134 to respond. If PA[1:0] = 2’b00, TLK3134 Channel 0 will respond. If PA[1:0] = 2’b01, TLK3134 Channel 1 will respond. If PA[1:0] = 2’b10, TLK3134 Channel 2 will respond. If PA[1:0] = 2’b11, TLK3134 Channel 3 will respond. Write transactions which address an invalid register or device or a read only register will be ignored. Read transactions which address an invalid register will return a 0. 2.7.34 MDIO Protocol Timing Timing for a Clause 45 address transaction is shown in Figure 2-32. The Clause 45 timing required to write to the internal registers is shown in Figure 2-33. The Clause 45 timing required to read from the internal registers is shown in Figure 2-34. The Clause 45 timing required to read from the internal registers and then increment the active address for the next transaction is shown in Figure 2-35. The Clause 22 timing required to read from the internal registers is shown in Figure 2-36. The Clause 22 timing required to write to the internal registers is shown in Figure 2-37. MDC 0 MDIO 0 0 0 PA [4:0] DA [4:0] 1 0 A15 A0 1 32 "1's" Preamble Addr Code Start PHY Addr Dev Addr Turn Around Reg Addr Idle Note that the 1 in the Turn Around section is externally pulled up, and driven to Z by TLK3134 Figure 2-32. CL45 - Management Interface Extended Space Address Timing MDC 0 MDIO 0 0 1 PA [4:0] DA [4:0] 1 0 D15 D0 1 32 "1's" Preamble Write Code Start PHY Addr Dev Addr Turn Around Data Idle Figure 2-33. CL45 – Management Interface Extended Space Write Timing MDC Pu1 0 MDIO 0 1 1 PA4 PA0 DA4 DA0 0 D15 D0 1 32 "1's" Preamble Start Read Code PHY Addr Dev Addr Turn Around Data Idle Figure 2-34. CL45 – Management Interface Extended Space Read Timing Submit Documentation Feedback Detailed Description 49 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com MDC Pu1 0 MDIO 0 1 0 PA4 PA0 DA4 DA0 0 D15 1 D0 32 "1's" Preamble Read Inc Code Start PHY Addr Dev Addr Turn Around Idle Data Figure 2-35. CL45 – Management Interface Extended Space Read And Increment Timing MDC Pu1 MDIO 1 0 1 0 PA4 PA0 DA4 32 "1's" Read Code Start Preamble PHY Addr 0 DA0 REG Addr D15 1 D0 Turn Around Data Idle Note that the 1 in the Turn Around section is externally pulled up, and driven to Z by TLK3134 Figure 2-36. CL22 – Management Interface Read Timing MDC MDIO 0 1 0 1 PA [4:0] RA 4 RA 0 1 0 D15 D0 1 32 "1's" Write Code Start Preamble PHY Addr REG Addr Turn Around Data Idle Figure 2-37. CL22 - Management Interface Write Timing The IEEE 802.3 Clause 22/45 specification defines many of the registers, and additional registers have been implemented for expanded functionality. 2.7.35 Clause 22 Indirect Addressing TLK3134 Register space is divided into 3 register groups. First register group that can be addressed only through Clause 45, second register group that can be addressed only through Clause 22 and third register group that can be addressed through both clause 45 and clause 22. Third register group which can be addressed through both clause 45 and clause 22 are implemented in vendor specific register space (16’h9000 onwards). This register space can be accessed directly using clause 45 addressing method. Due to clause 22 register space limitations, an indirect addressing method is implemented so that this register space can be accessed through clause 22. To access this register space (16’h9000 onwards), an address control register (Reg 30, 5’h1E) should be written with the register address followed by a read/write transaction to address content register (Reg 31, 5’h1F) to access the contents of the address specified in address control register. Following timing diagrams illustrate an example write transaction to Register 16’h9000 using indirect addressing in Clause 22. MDC MDIO 0 1 0 1 PA [4:0] 5'h1E PHY Addr REG Addr 1 0 16 'h9000 1 32 "1's" Preamble Start Write Code Turn Around Data Idle Figure 2-38. CL22 – Indirect Address Method – Address Write 50 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 MDC MDIO 0 1 0 1 PA [4:0] 5'h1F PHY Addr REG Addr 1 0 DATA Turn Around Data 1 32 "1's" Write Code Start Preamble Idle Figure 2-39. CL22 – Indirect Address Method – Data Write Following timing diagrams illustrate an example read transaction to read contents of Register 16’h9000 using indirect addressing in Clause 22. MDC MDIO 0 1 0 1 PA [4:0] 5'h1E PHY Addr REG Addr 1 0 1 16 'h9000 32 "1's" Write Code Start Preamble Turn Around Data Idle Figure 2-40. CL22 – Indirect Address Method – Address Write MDC Pu1 MDIO 1 0 1 0 PA4 PA0 5’h1F 32 "1's" Start Preamble Read Code PHY Addr REG Addr 0 D15 D0 1 Turn Around Data Idle Figure 2-41. CL22 – Indirect Address Method – Data Read The IEEE 802.3 Clause 22/45 specification defines many of the registers, and additional registers have been implemented for expanded functionality. Submit Documentation Feedback Detailed Description 51 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 2.8 www.ti.com Programmers Reference 2.8.1 10G XAUI Programmers Reference (ST = 0) Following 10G XAUI registers can be addressed only through Clause 45. Primary device input pin “ST” must be 0 to use Clause 45. Table 2-19. XS_CONTROL_1 (1) ADDRESS: 0x0000 BIT(s) ACCESS (2) DESCRIPTION Reset 1 = XGXS reset (including all registers) 0 = Normal operation (Default) RW SC 4/5.0.14 Loop Back 1 = Enable loop back mode. If the device is configured as PHY XS (PRTAD(0) = 0), then XAUI_DATA_LOOPBACK will be performed (Same as SLOOP). If the device is configured as DTE XS (PRTAD(0) = 1), then XGMII_DATA_LOOPBACK will be performed (Same as PLOOP) 0 = Disable loop back mode (Default) RW 4/5.0.13 Speed Selection This bit always reads 1 indicating operation at 10 Gbps and above. RO 4/5.0.11 Low Power 1 = Low power mode 0 = Normal operation (Default) In low power mode all the internal clocks and datapaths are placed in shut down mode. After de-assertion of this bit, datapath reset (4/5.32800.15) needs to be performed to achieve proper datapath function. Serdes PLL’s can be shut down by de-asserting bits 4/5.36864.12 and 4/5.36864.4. Jitter cleaner PLL can be shut down by de-asserting 4/5.37127.15 RW 4/5.0.6 Speed Selection This bit always reads 1 indicating operation at 10Gbps and above. 4/5.0.5:2 Speed Selection These bits always read 0 indicating operation at 10Gbps. 4/5.0.15 (1) (2) NAME DEFAULT: 0x2040 RO In this section XS refers to either PHY or DTE XS device. RO: Read-Only, RW: Read-Write, SC: Self-Clearing, LL: Latching-Low, LH: Latching-High, COR: Clear-on-Read Table 2-20. XS_STATUS_1 ADDRESS: 0x0001 BIT(s) NAME DEFAULT: 0x0082 DESCRIPTION ACCESS 4/5.1.7 Fault 1 = Fault condition detected (either on TX or RX side. This bit is OR ed version of 4/5.8.10 and 4/5.8.11) 0 = No fault condition detected 4/5.1.2 XS Transmit Link Status 1 = XS Transmit link is up. 0 = XS Transmit links is down. (This bit is latched low version of 4/5.24.12) 4/5.1.1 Low Power Ability This bit always reads 1 indicating support for low power mode RO RO/LL RO Table 2-21. XS_DEVICE_IDENTIFIER_1 ADDRESS: 0x0002 BIT(s) 4/5.2.15.0 NAME DEFAULT: 0x4000 DESCRIPTION OUI c:r ACCESS Organizationally unique identifier. RO Table 2-22. XS_DEVICE_IDENTIFIER_2 ADDRESS: 0x0003 BIT(s) 4/5.3.15:0 52 NAME OUI c:r Detailed Description DEFAULT: 0x50D0 DESCRIPTION Device identifier. Manufacturer model and revision number ACCESS RO Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-23. XS_SPEED_ABILITY ADDRESS: 0x0004 BIT(s) 4/5.4.0 DEFAULT: 0x0001 NAME DESCRIPTION 10G Capable ACCESS This bit always reads 1 indicating operation at 10Gb/s RO Table 2-24. XS_DEVICES_IN_PACKAGE_1 ADDRESS: 0x0005 BIT(s) DEFAULT: 0x0011 NAME DESCRIPTION ACCESS 4/5.5.5 DTE XS Present 1 = DTE XS present in the package. 0 = DTE XS not present in the package. Read will return 1, when PRTAD[0] is high 4/5.5.4 PHY XS Present 1 = PHY XS present in the package. 0 = PHY XS not present in the package. Read will return 1, when PRTAD[0] is low RO 4/5.5.3 PCS Present Always reads 0 RO 4/5.5.2 WIS Present Always reads 0 RO 4/5.5.1 PMD/PMA Present Always reads 0 RO 4/5.5.0 Clause 22 Registers Present Always reads 1 RO RO Table 2-25. XS_DEVICES_IN_PACKAGE_2 ADDRESS: 0x0006 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 4/5.6.15 Vendor Specific Device 2 Present This bit always reads 0 indicating that vendor specific device 2 not present in package RO 4/5.6.14 Vendor Specific Device 1 Present This bit always reads 0 indicating that vendor specific device 1 not present in package RO Table 2-26. XS_STATUS_2 ADDRESS: 0x0008 BIT(s) 4/5.8.15:14 4/5.8.11 4/5.8.10 NAME DEFAULT: 0x8C00 DESCRIPTION ACCESS Device Present Always read 2’b10 indicating that device responds at this address RO Transmit Fault 1 = Fault condition on transmit path. This bit is asserted when ppm difference between TX_CLK and XAUI serdes transmit reference clock is more than ±200. Local faults are sent on the transmit data stream during this condition. 0 = No fault condition on transmit path RO/LH Receive Fault 1 = Fault condition on receive path. This bit is asserted when there is loss of lane alignment or when ppm difference between XAUI serdes transmit reference versus RX recovered clock is more than ±200. Local faults are sent on the receive data stream during this condition. 0 = No fault condition on receive path RO/LH Table 2-27. XS_PACKAGE_IDENTIFIER_1 ADDRESS: 0x000E BIT(s) 4/5.14.15:0 NAME DEFAULT: 0x4000 DESCRIPTION OUI c:r ACCESS Organizationally unique identifier. RO Table 2-28. XS_PACKAGE_IDENTIFIER_2 ADDRESS: 0x000F BIT(s) 4/5.15.15:0 NAME OUI c:r Submit Documentation Feedback DEFAULT: 0x50D0 DESCRIPTION ACCESS Organizationally unique identifier Manufacturer model and revision number. RO Detailed Description 53 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-29. XS_LANE_STATUS ADDRESS: 0x0018 BIT(s) DEFAULT: 0x0C00 NAME DESCRIPTION ACCESS 4/5.24.12 Align Status 4/5.24.11 Pattern Testing Ability Always reads 1. Able to generate test patterns When 1, indicates all lanes are aligned RO RO 4/5.24.10 Loopback Ability Always read 1. Has the ability to perform loopback function RO 4/5.24.3 Lane 3 Sync 1 = Lane 3 is synchronized 0 = Lane 3 is not synchronized RO 4/5.24.2 Lane 2 Sync 1 = Lane 2 is synchronized 0 = Lane 2 is not synchronized RO 4/5.24.1 Lane 1 Sync 1 = Lane 1 is synchronized 0 = Lane 1 is not synchronized RO 4/5.24.0 Lane 0 Sync 1 = Lane 0 is synchronized 0 = Lane 0 is not synchronized RO Table 2-30. XS_TEST_CONTROL ADDRESS: 0x0019 DEFAULT: 0x0000 BIT(s) NAME 4/5.25.2 Receive Test-Pattern Enable 1 = Enables test pattern generation/verification (High/Low/Medium) 0 = Test pattern generation/verification disabled (Default) RW Test-Pattern Select 00 = 01 = 10 = 11 = RW 4/5.25.1:0 DESCRIPTION ACCESS High frequency test pattern (Default) Low frequency test pattern Mixed frequency test pattern Reserved Table 2-31. TEST_CONFIG ADDRESS: 0x8000 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 4/5.32768.2 10GFC_CJPAT Enable When set, enables the 10G Fiber channel compliant CJPAT test pattern generation on all 4 lanes. (Default 1’b0) 4/5.32768.1 CRPAT enable When set, enables the CRPAT test pattern generation on all 4 lanes. (Default 1’b0) 4/5.32768.0 CJPAT enable When set, enables the CJPAT test pattern generation on all 4 lanes. (Default 1’b0) RW Table 2-32. TEST_VERIFICATION_CONTROL ADDRESS: 0x8001 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 4/5.32769.2 10GFC_CJPAT check enable When set, enables the verification of 10G Fiber channel compliant CJPAT test mode. (Default 1’b0) 4/5.32769.1 CRPAT Check Enable When set, enables the verification of CRPAT test mode. (Default 1’b0) 4/5.32769.0 CJPAT Check Enable When set, enables the verification of CJPAT test mode. (Default 1’b0) RW Table 2-33. TX_FIFO_STATUS ADDRESS: 0x8002 BIT(s) 54 NAME 4/5.32770.9 Lane 3 Overflow 4/5.32770.8 Lane 2 Overflow 4/5.32770.7 Lane 1 Overflow 4/5.32770.6 Lane 0 Overflow Detailed Description DEFAULT: 0x0000 DESCRIPTION ACCESS When high, indicates that transmit FIFO overflow condition occurred for the corresponding lane. RO/LH Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-33. TX_FIFO_STATUS (continued) ADDRESS: 0x8002 BIT(s) DEFAULT: 0x0000 NAME 4/5.32770.5 Lane 3 Underflow 4/5.32770.4 Lane 2 Underflow 4/5.32770.3 Lane 1 Underflow 4/5.32770.2 Lane 0 Underflow 4/5.32770.1 4/5.32770.0 DESCRIPTION ACCESS When high, indicates that transmit FIFO underflow condition occurred for the corresponding lane. RO/LH Overflow When high, indicates that transmit FIFO overflow condition occurred in any lane RO/LH Underflow When high, indicates that transmit FIFO underflow condition occurred in any lane RO/LH Table 2-34. TX_FIFO_DROP_COUNT ADDRESS: 0x8003 BIT(s) DEFAULT: 0xFFFD NAME 4/5.32771.15:0 DESCRIPTION Drop Count ACCESS Counter for number of idle drops in the transmit FIFO RO/COR Table 2-35. TX_FIFO_INSERT_COUNT ADDRESS: 0x8004 BIT(s) DEFAULT: 0xFFFD NAME 4/5.32772.15:0 DESCRIPTION Insert Count ACCESS Counter for number of idle inserts in the transmit FIFO RO/COR Table 2-36. TX_CODEGEN_STATUS ADDRESS: 0x8005 DEFAULT: 0x0000 BIT(s) NAME DESCRIPTION 4/5.32773.6 Invalid XGMII character in lane 3 4/5.32773.5 Invalid XGMII character in lane 2 4/5.32773.4 Invalid XGMII character in lane 1 4/5.32773.3 Invalid XGMII character in lane 0 4/5.32773.2 ACCESS When high, indicates invalid XGMII character received in the corresponding lane. RO/LH Invalid XGMII character error When high, indicates invalid XGMII character received in any lane RO/LH 4/5.32773.1 Invalid T column error When high, indicates invalid Terminate column (column that contains Terminate character not followed by Idle character(s)) received from the XGMII interface. RO/LH 4/5.32773.0 Invalid S column error When high, indicates invalid Start column (column that contains Start character in a lane other than lane 0) received from the XGMII interface. RO/LH Table 2-37. LANE_0_TEST_ERROR_COUNT ADDRESS: 0x8006 BIT(s) 4/5.32774.15:0 NAME DEFAULT: 0xFFFD DESCRIPTION Lane 0 test pattern error counter ACCESS This counter reflects errors for High, Medium or Low Frequency test patterns for lane 0. This counter increments by one for each received character that has error. RO/COR Table 2-38. LANE_1_ TEST_ERROR_COUNT ADDRESS: 0x8007 BIT(s) 4/5.32775.15:0 NAME Lane 1 test pattern error counter Submit Documentation Feedback DEFAULT: 0xFFFD DESCRIPTION ACCESS This counter reflects errors for High, Medium or Low Frequency test patterns for lane 1. This counter increments by one for each received character that has error. RO/COR Detailed Description 55 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-39. LANE_2_ TEST_ERROR_COUNT ADDRESS: 0x8008 BIT(s) 4/5.32776.15:0 NAME DEFAULT: 0xFFFD DESCRIPTION Lane 2 test pattern error counter ACCESS This counter reflects errors for High, Medium or Low Frequency test patterns for lane 2. This counter increments by one for each received character that has error. RO/COR Table 2-40. LANE_3_ TEST_ERROR_COUNT ADDRESS: 0x8009 BIT(s) 4/5.32777.15:0 NAME DEFAULT: 0xFFFD DESCRIPTION Lane 3 test pattern error counter ACCESS This counter reflects errors for High, Medium or Low Frequency test patterns for lane 3. This counter increments by one for each received character that has error. RO/COR Table 2-41. 10GFCCJPAT_CRPAT_CJPAT_TEST_ERROR_COUNT_1 (1) ADDRESS: 0x800A BIT(s) 4/5.32778.15:0 (1) NAME DEFAULT: 0xFFFF DESCRIPTION ACCESS 10GFC_CJPAT/CRPAT/CJMSW of 10GFC_CJPAT/CRPAT/CJPAT error counter for all 4 lanes PAT Test Error Counter[31:16] RO/COR User has to make sure that register 32778 is read first and then register 32779. If user reads register 32779 without reading register 32778 first, then the count value read through 32779 register may not be correct. Table 2-42. 10GFCCJPAT_CRPAT_CJPAT_TEST_ERROR_COUNT_2 (1) ADDRESS: 0x800B BIT(s) 4/5.32779.15:0 (1) NAME DEFAULT: 0xFFFD DESCRIPTION 10GFC_CJPAT/CRPAT/CJPAT Test Error Counter[15:0] ACCESS LSW of 10GFC_ CJPAT/CRPAT/CJPAT error counter for all 4 lanes RO/COR User has to make sure that register 32778 is read first and then register 32779. If user reads register 32779 without reading register 32778 first, then the count value read through 32779 register may not be correct. Table 2-43. LANE_0_EOP_ERROR_COUNT (1) ADDRESS: 0x800C BIT(s) 4/5.32780.15:0 (1) 56 DEFAULT: 0xFFFD NAME DESCRIPTION ACCESS Lane 0 end of packet error counter End of packet termination error counter for lane 0. End of packet error for lane 0 is detected on the RX side. It is detected when Terminate character is in lane 0 and one or both of the following holds • Terminate character is not followed by /K/ characters in lanes 1, 2 and 3 • The column following the terminate column is neither ||K|| nor ||A||. RO/COR Counter will increment by 1 when EOP error is found on the corresponding lane and when all the lanes are aligned (align_status should be high). Counter will hold on to its value when align_status goes low or when the counter reaches its maximum value. It will be cleared when it is read. Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-44. LANE_1_EOP_ERROR_COUNT (1) ADDRESS: 0x800D BIT(s) 4/5.32781.15:0 (1) NAME Lane 1 end of packet error counter DEFAULT: 0xFFFD DESCRIPTION ACCESS End of packet termination error counter for lane 1. End of packet error for lane 1 is detected on the RX side. It is detected when Terminate character is in lane 1 and one or both of the following holds: • Terminate character is not followed by /K/ characters in lanes 2 and 3 • The column following the terminate column is neither ||K|| nor ||A||. RO/COR Counter will increment by 1 when EOP error is found on the corresponding lane and when all the lanes are aligned (align_status should be high). Counter will hold on to its value when align_status goes low or when the counter reaches its maximum value. It will be cleared when it is read. Table 2-45. LANE_2_EOP_ERROR_COUNT (1) ADDRESS: 0x800E BIT(s) 4/5.32782.15:0 (1) DEFAULT: 0xFFFD NAME DESCRIPTION ACCESS Lane 2 end of packet error counter End of packet termination error counter for lane 2. End of packet error for lane 2 is detected on the RX side. It is detected when Terminate character is in lane 2 and one or both of the following holds: • Terminate character is not followed by /K/ character in lane 3 • The column following the terminate column is neither ||K|| nor ||A||. RO/COR Counter will increment by 1 when EOP error is found on the corresponding lane and when all the lanes are aligned (align_status should be high). Counter will hold on to its value when align_status goes low or when the counter reaches its maximum value. It will be cleared when it is read. Table 2-46. LANE_3_EOP_ERROR_COUNT (1) ADDRESS: 0x800F (1) DEFAULT: 0xFFFD BIT(s) NAME DESCRIPTION ACCESS 4/5.32783.15:0 Lane 3 end of packet error counter End of packet termination error counter for lane 3. End of packet error for lane 3 is detected on the RX side. It is detected when Terminate character is in lane 3 and the column following the terminate column is neither ||K|| nor ||A||. RO/COR Counter will increment by 1 when EOP error is found on the corresponding lane and when all the lanes are aligned (align_status should be high). Counter will hold on to its value when align_status goes low or when the counter reaches its maximum value. It will be cleared when it is read. Table 2-47. LANE_0_CODE_ERROR_COUNT (1) ADDRESS: 0x8010 BIT(s) 4/5.32784.15:0 (1) NAME Lane 0 Code Error Counter DEFAULT: 0xFFFD DESCRIPTION ACCESS Output 16-bit counter for invalid code group found in lane 0. Invalid code group is detected when the 8B10B decoder cannot decode the received code word. RO/COR Counter will increment by 1 when code word error is found on the corresponding lane and when all the lanes are aligned (align_status should be high). Counter will hold on to its value when align_status goes low or when the counter reaches its maximum value. It will be cleared when it is read. Table 2-48. LANE_1_CODE_ERROR_COUNT (1) ADDRESS: 0x8011 BIT(s) 4/5.32785.15:0 (1) NAME Lane 1 Code Error Counter DEFAULT: 0xFFFD DESCRIPTION ACCESS Output 16-bit counter for invalid code group found in lane 1. Invalid code group is detected when the 8B10B decoder cannot decode the received code word. RO/COR Counter will increment by 1 when code word error is found on the corresponding lane and when all the lanes are aligned (align_status should be high). Counter will hold on to its value when align_status goes low or when the counter reaches its maximum value. It will be cleared when it is read. Submit Documentation Feedback Detailed Description 57 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-49. LANE_2_CODE_ERROR_COUNT (1) ADDRESS: 0x8012 BIT(s) 4/5.32786.15:0 (1) DEFAULT: 0xFFFD NAME Lane 2 Code Error Counter DESCRIPTION ACCESS Output 16-bit counter for invalid code group found in lane 2. Invalid code group is detected when the 8B10B decoder cannot decode the received code word. RO/COR Counter will increment by 1 when code word error is found on the corresponding lane and when all the lanes are aligned (align_status should be high). Counter will hold on to its value when align_status goes low or when the counter reaches its maximum value. It will be cleared when it is read. Table 2-50. LANE_3_CODE_ERROR_COUNT (1) ADDRESS: 0x8013 BIT(s) 4/5.32787.15:0 (1) DEFAULT: 0xFFFD NAME Lane 3 Code Error Counter DESCRIPTION ACCESS Output 16-bit counter for invalid code group found in lane 3. Invalid code group is detected when the 8B10B decoder cannot decode the received code word. RO/COR Counter will increment by 1 when code word error is found on the corresponding lane and when all the lanes are aligned (align_status should be high). Counter will hold on to its value when align_status goes low or when the counter reaches its maximum value. It will be cleared when it is read. Table 2-51. RX_CHANNEL_SYNC_STATE ADDRESS: 0x8014 BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 4/5.32788.11:9 Channel synchronization FSM state for lane 0 Current state of sync state machine in lane 0 4/5.32788.8:6 Channel synchronization FSM state for Lane 1 Current state of sync state machine in lane 1 4/5.32788.5:3 Channel synchronization FSM state for Lane 2 Current state of sync state machine in lane 2 4/5.32788.2:0 Channel Synchronization FSM state for Lane 3 Current state of sync state machine in lane 3 RO Table 2-52. RX_LANE_ALIGN_STATUS ADDRESS: 0x8015 BIT(s) 4/5.32789.15:12 4/5.32789.0 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS Align state Current lane alignment FSM state RO Lane Alignment FIFO collision Collision status for lane alignment FIFO. When high, indicates that there is collision error in lane alignment FIFO. RO/LH Table 2-53. RX_CHANNEL_SYNC_STATUS ADDRESS: 0x8016 BIT(s) 4/5.32790.11 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS Channel Synchronization status for all 1 = Channel synchronization is achieved in all lanes. lanes 0 = Channel synchronization is lost in one or more lanes RO/LL Table 2-54. BIT_ORDER ADDRESS: 0x8017 BIT(s) 58 NAME DEFAULT: 0x0005 DESCRIPTION ACCESS 4/5.32791. 3 XGMII RX bit order When high, reverses the order of bits in the parallel data sent from XAUI RX for each lane. (Default 1’b0) 4/5.32791. 2 XAUI RX bit order When high, reverses the order of bits in the parallel data received from SERDES macros for XAUI RX for each lane. (Default 1’b1) RW 4/5.32791. 1 XGMII TX bit order When high, reverses the order of bits in the parallel data received from the XGMII interface each lane. (Default 1’b0) RW Detailed Description RW Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-54. BIT_ORDER (continued) ADDRESS: 0x8017 BIT(s) 4/5.32791. 0 DEFAULT: 0x0005 NAME DESCRIPTION ACCESS When high, reverses the order of bits in the parallel data sent to the SERDES TX macro for each lane. (Default 1’b1) XAUI TX bit order RW Table 2-55. LOOPBACK_CONTROL (1) ADDRESS: 0x8018 BIT(s) 4/5.32792. 1 4/5.32792. 0 (1) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS XAUI data loopback When 1, loops back serial RX input on to serial TX output. (4/5.0.14 should be 0 else no effect). Performs same function as SLOOP. (Default 1’b0) XGMII data loopback When 1, loops back parallel TX input onto parallel RX output (4/5.0.14 should be 0 else no effect). Performs same function as PLOOP. (Default 1’b0) RW See Loopback section for more information. Table 2-56. TX_MODE_CONTROL ADDRESS: 0x8019 BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS RW 4/5.32793.15 TX IPG management bypass When high, bypasses IPG management (replacing Idle XGMII characters with /A/K/R/Q/ code-words) in transmit side. (Default 1’b0) 4/5.32793.11 TX CTC disable When high, disables clock tolerance compensation in transmit side. (Default 1’b0) RW 4/5.32793.7 Lane 3 8B10B encoder disable 4/5.32793.6 Lane 2 8B10B encoder disable 4/5.32793.5 Lane 1 8B10B encoder disable When high, disables XAUI 8B10B encoding on the corresponding lane. (Default 1’b0) RW 4/5.32793.4 Lane 0 8B10B encoder disable Table 2-57. RX_CTC_STATUS ADDRESS: 0x801A BIT(s) NAME 4/5.32794.9 Lane 3 overflow 4/5.32794.8 Lane 2 overflow 4/5.32794.7 Lane 1 overflow 4/5.32794.6 Lane 0 overflow 4/5.32794.5 Lane 3 underflow 4/5.32794.4 Lane 2 underflow 4/5.32794.3 Lane 1 underflow 4/5.32794.2 Lane 0 underflow 4/5.32794.1 4/5.32794.0 DEFAULT: 0x0000 DESCRIPTION ACCESS When high, indicates overflow error in the corresponding lane. RO/LH When high, indicates underflow error in the corresponding lane. RO/LH Overflow When high, indicates overflow error in any lane. RO/LH Underflow When high, indicates underflow error in any lane. RO/LH Table 2-58. RX_CTC_INSERT_COUNT ADDRESS: 0x801B BIT(s) 4/5.32795.15:0 NAME Idle insert count Submit Documentation Feedback DEFAULT: 0xFFFD DESCRIPTION Counter for number of idle insertions in RX side ACCESS RO/COR Detailed Description 59 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-59. RX_CTC_DELETE_COUNT ADDRESS: 0x801C BIT(s) 4/5.32796.15:0 DEFAULT: 0xFFFD NAME DESCRIPTION Idle delete count ACCESS Counter for number of idle deletions RO/COR Table 2-60. DATA_DOWN ADDRESS: 0x801D BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION 4/5.32797.3 Lane 3 data down 4/5.32797.2 Lane 2 data down 4/5.32797.1 Lane 1 data down 4/5.32797.0 Lane 0 data down ACCESS When high, indicates that link for the corresponding lane was inactive (data did not toggle) for 4095 cycles of recovered clock from serial input data The recovered clock is generated internally by the PLL from the 156Mhz Reference clock. RO/COR Table 2-61. RX_MODE_CONTROL ADDRESS: 0x801E BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 4/5.32798.15 RX CTC disable When set, disables clock tolerance compensation on the RX side. (Default 1’b0) 4/5.32798.14 IPG Checker bypass When set, disables the replacement of /A/K/R/ into Idles and also bypasses end-of-packet error checking. (Default 1’b0) RW 4/5.32798.11 Lane 3 8B/10B decoder bypass 4/5.32798.10 Lane 2 8B/10B decoder bypass 4/5.32798.9 Lane 1 8B/10B decoder bypass When set, disables the XAUI 8B/10B decoding for the corresponding lane. (Default 1’b0) RW 4/5.32798.8 Lane 0 8B/10B decoder bypass 4/5.32798.7 When high, sequence columns are counted as part of IPG. Consider sequence column part When low, sequence columns are not counted as IPG (Default of IPG 1’b0) RW 4/5.32798.3 RX Lane align bypass enable RW When set, enables lane alignment bypass on the RX side RW Table 2-62. CLOCK_DOWN_STATUS ADDRESS: 0x801F BIT(s) NAME 4/5.32799. 7 Lane 3 clock 312 down 4/5.32799. 6 Lane 2 clock 312 down 4/5.32799. 5 Lane 1 clock 312 down 4/5.32799. 4 Lane 0 clock 312 down 4/5.32799. 3 Lane 3 clock 156 down 4/5.32799. 2 Lane 2 clock 156 down 4/5.32799. 1 Lane 1 clock 156 down 4/5.32799. 0 Lane 0 clock 156 down DEFAULT: 0x0000 DESCRIPTION ACCESS When high, indicates that serial clock generated by SERDES TX is down on the corresponding lane for 255 or more cycles. The detection is done on the transmit side. RO/LH When high, indicates that 156MHz XGMII clock is down on the corresponding lane for 255 or more cycles. The detection is done on the transmit side RO/LH Table 2-63. DATAPATH_RESET_CONTROL ADDRESS: 0x8020 BIT(s) 4/5.32800. 15 60 NAME XAUI datapath reset Detailed Description DEFAULT: 0x0000 DESCRIPTION ACCESS When set, resets XAUI data path but does not reset any R/W registers. (Default 1’b0) RW/SC Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-64. TEST_PATTERN_STATUS ADDRESS: 0x8021 BIT(s) 4/5/32801.15 NAME DEFAULT: 0x0000 DESCRIPTION Test pattern sync status ACCESS When high, indicates that preamble for 10GFC_CJPAT/CRPAT/CJPAT has been recovered. RO Table 2-65. LANE_0_ERROR_CODE ADDRESS: 0x8022 BIT(s) 4/5.32802.15:7 NAME DEFAULT: 0xCE00 DESCRIPTION ACCESS Error code to be transmitted in case of error condition. This applies to both TX and RX data paths. The msb is the control bit; remaining 8 bits constitute the error code. The default value for lane 0 corresponds to 8’h9C with the control bit being 1’b1. The default values for lanes 0~3 correspond to ||LF|| Lane 0 error code select. RW Table 2-66. LANE_1_ERROR_CODE ADDRESS: 0x8023 BIT(s) 4/5.32803.15:7 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS Error code to be transmitted in case of error condition. This applies to both TX and RX data paths. The msb is the control bit; remaining 8 bits constitute the error code. The default value for lane 1 corresponds to 8’h00 with the control bit being 1’b0. The default values for lanes 0~3 correspond to ||LF|| Lane 1 error code select. RW Table 2-67. LANE_2_ERROR_CODE ADDRESS: 0x8024 BIT(s) 4/5.32804.15:7 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS Error code to be transmitted in case of error condition. This applies to both TX and RX data paths. The msb is the control bit; remaining 8 bits constitute the error code. The default value for lane 2 corresponds to 8’h00 with the control bit being 1’b0. The default values for lanes 0~3 correspond to ||LF|| Lane 2 error code select. RW Table 2-68. LANE_3_ERROR_CODE ADDRESS: 0x8025 BIT(s) 4/5.32805.15:7 NAME DEFAULT: 0x0080 DESCRIPTION ACCESS Error code to be transmitted in case of error condition. This applies to both TX and RX data paths. The msb is the control bit; remaining 8 bits constitute the error code. The default value for lane 3 corresponds to 8’h01 with the control bit being 1’b0. The default values for lanes 0~3 correspond to ||LF|| Lane 3 error code select. RW Table 2-69. RX_PHASE_SHIFT_CONTROL ADDRESS: 0x8026 BIT(s) NAME 4/5.32806. 15 Lane 3 phase shift 4/5.32806. 14 Lane 2 phase shift 4/5.32806. 13 Lane 1 phase shift 4/5.32806. 12 Lane 0 phase shift Submit Documentation Feedback DEFAULT: 0x0000 DESCRIPTION ACCESS When set, delays the RX data sent to the XGMII interface by one clock cycle. (Default 1’b0) RW Detailed Description 61 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-70. CHANNEL_SYNC_CONTROL ADDRESS: 0x8027 BIT(s) DEFAULT: 0x0000 NAME 4/5.32807. 15 Lane 3 channel sync bypass 4/5.32807. 14 Lane 2 channel sync bypass 4/5.32807. 13 Lane 1 channel sync bypass 4/5.32807. 12 Lane 0 channel sync bypass 4/5.32807. 11 Lane 3 channel sync freeze 4/5.32807. 10 Lane 2 channel sync freeze 4/5.32807. 9 Lane 1 channel sync freeze 4/5.32807. 8 Lane 0 channel sync freeze DESCRIPTION ACCESS When set, channel synchronization for the corresponding lane is bypassed. (Default 1’b0) RW When set, freezes the last acquired word alignment for the corresponding lane. (Default 1’b0) RW Table 2-71. XGMII_IO_MODE_CONTROL ADDRESS: 0x8028 BIT(s) NAME DEFAULT: 0x0080 DESCRIPTION ACCESS 4/5.32808. 15 XAUI Tx Edge Align When set selects data relationship with the clock on the transmit side 0 – Source centered (Default 1’b0) 1 – Source aligned 4/5.32808. 11 XAUI Rx Edge Align When set selects data relationship with the clock on the receive side 0 – Source centered (Default 1’b0) 1 – Source aligned RW 4/5.32808. 7 RCLK Output Enable 0 – Disables RCLK output 1 – Enables RCLK output (Default 1’b1) RW XAUI Isolate Setting this bit high isolates the XGXS core from the XGMII interface. Inputs are ignored; Outputs are set to high impedance. 1 = Isolate is enabled 0 = Normal operation (Default 1’b0) RW 4/5.32808. 3 RW Table 2-72. 10G_MODE_CONTROL ADDRESS: 0x8029 BIT(s) 4/5.32809.15 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS When set selects XAUI/10GFC mode. Logically OR’ed with CODE pin. 0 = 10 GFC mode (Default 1’b0) 1 = XAUI mode XAUI order RW Table 2-73. RX_CLK_OUTPUT_CONTROL ADDRESS: 0x802A BIT(s) 4/5.32810. 15:14 62 NAME RX_CLK output clock select Detailed Description DEFAULT: 0x0000 DESCRIPTION ACCESS These control bits select the clock to be sent out on receive parallel output clock (RX_CLK) 00 = Selects SERDES TX clock 01 = Selects Jitter cleaned clock (Selecting the jitter cleaned clock while the jitter cleaner PLL is disabled is not recommended) 10 = Selects SERDES RX clock 11 = Reserved RW Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 2.9 SLLS838D – MAY 2007 – REVISED JULY 2008 1G Programmers Reference Following registers can be addressed directly only through Clause 22 (1G Related Registers). Clause 22 access is valid only when “ST” pin is set to 1. These bits are per channel basis. Channel identification is based on PHY (Port) address field. Channel 0 can be accessed by setting 2 LSB’s of PHY address to 00. Channel 1 can be accessed by setting 2 LSB’s of PHY address to 01. Channel 2 can be accessed by setting 2 LSB’s of PHY address to 10. Channel 3 can be accessed by setting 2 LSB’s of PHY address to 11. Registers 30 (5’h1E) and 31 (5’h1F) are global in 1G mode. These registers contents are same when accessed through any of the 4 channels mentioned above. Table 2-74. PHY_CONTROL_1 ADDRESS: 0x00 BIT(s) (1) NAME DEFAULT: 0x0140 DESCRIPTION ACCESS 0. 15 Reset 1 = PHY reset (including all registers and both Tx/Rx datapaths) 0 = Normal operation (Default 1’b0) 0. 14 Loopback Logically OR’ed with PLOOP 1 = Enable loop back mode. In this mode, serial output of the channel is looped back onto serial input. 0 = Disable loop back mode (Default 1’b0) RW 0. 13 Speed Selection(LSB) This is the least significant bit of the speed selection bits (MSB is 0.6). {0.6,0.13} = 2’b10 1000Base-X Rate This bit always reads 0. RO 0. 12 Auto-Negotiation Enable Always reads 0. (Auto-Negotiation not supported) RO 0. 11 Power Down Setting this bit high powers down respective channel, with exception that MDIO interface stays active. Serdes PLL’s can be shut down by de-asserting bits 36864.12 and 36864.4. Jitter cleaner PLL can be shut down by de-asserting 37127.15 1 = Power Down mode is enabled. 0 = Normal operation (Default 1’b0) RW 0. 10 Isolate Setting this bit high isolates the channel from the parallel interface. Inputs are ignored; Outputs are set to high impedance. 1 = Isolate is enabled 0 = Normal operation (Default 1’b0) RW 0. 9 Restart Auto-Negotiation Always reads 0. (Auto-Negotiation not supported) RO 0. 8 Duplex Mode Always reads 1. (Only Full duplex supported) RO 0. 7 Collision Test Not Applicable. Read will return a 0. RO 0. 6 Speed Selection (MSB) This is the most significant bit of the speed selection bits (LSB is 0.13). {0.6,0.13} = 2’b10 1000Base-X Rate This bit always reads 1 RO RW SC (1) After reset bit is set to one, it automatically sets itself back to zero on the next MDC clock cycle. Submit Documentation Feedback Detailed Description 63 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-75. PHY_STATUS_1 ADDRESS: 0x01 BIT(s) DEFAULT: 0x0101 NAME DESCRIPTION ACCESS 1. 15 1000Base-T4 Always reads 0 RO 1. 14 100Base-X FD Always reads 0 RO 1. 13 100Base-X HD Always reads 0 RO 1. 12 10Mb/s FD Always reads 0 RO 1. 11 10Mb/s HD Always reads 0 RO 1. 10 100Base-T2 FD Always reads 0 RO 1. 9 100Base-T2 HD Always reads 0 RO 1. 8 Extended Status Read will return 1 indicating extended status information is held in register 0x0F. RO 1. 6 MF Prea Supp Read will return 0 indicating MDIO doesn’t accept command without preceding preamble (minimum 32 1’s). Writes will be ignored RO 1. 5 AN Complete Always reads 0 (AN not supported) RO 1. 4 Remote Fault Always reads 0 RO 1. 3 AN Ability Read will return 0, indicating that Auto negotiation is not supported RO 1. 2 Link Status Read will return the Link Status and is valid only when device is in GMII/RGMII mode or when bit 17.7 is set in Non-GMII/RGMII modes. Note: Link status will always indicate high when in loopback. In remote loopback mode, the bit represents the normal bit function. 1 = Link UP 0 = Link DOWN 1.1 Jabber Detect Always reads 0 RO 1.0 Extended Capability Read will return 1 indicating extended register capability RO RO/LL Table 2-76. PHY_IDENTIFIER_1 ADDRESS: 0x02 BIT(s) 2.15.0 NAME OUI c:r DEFAULT: 0x4000 DESCRIPTION ACCESS Organizationally unique identifier. RO Table 2-77. PHY_IDENTIFIER_2 ADDRESS: 0x03 BIT(s) 3.15:0 NAME OUI c:r DEFAULT: 0x50D0 DESCRIPTION ACCESS Device identifier. Manufacturer model and revision number RO Table 2-78. PHY_EXT_STATUS ADDRESS: 0x0F BIT(s) 64 NAME DEFAULT: 0x8000 DESCRIPTION 15.15 1000Base-X FD Always reads 1, indicating device supports Full Duplex mode. 15.14 1000Base-X HD Read will return 0, writes will be ignored. 15.13 1000Base-T FD Read will return 0, writes will be ignored. 15.12 1000Base-T HD Read will return 0, writes will be ignored. Detailed Description ACCESS RO Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-79. PHY_CH_CONTROL_1 ADDRESS: 0x10 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS RW/SC 16.15 Global Write When written as 1 the settings in 16.14:0 will affect all channels of one device simultaneously. When written as 0 the settings in 16.14:0 are only valid for the addressed channel. This value always reads zero. 16.11 Datapath Reset Control 1 = Resets channel logic excluding MDIO registers (Resets both Tx and Rx datapaths) RW/SC Receive Parallel Output Clock Select 00 = Selects respective channel SERDES TX clock 01 = Selects Jitter cleaned clock(Selecting the jitter cleaned clock while the jitter cleaner PLL is disabled is not recommended) 10 = Selects respective channel SERDES RX clock 11 = Reserved RW 16.8 Farend Loopback Logically OR’ed with SLOOP When asserted high the data presented at the serial receive interface is looped back to the serial transmit interface of the same channel via the deserializer, the serializer and if enabled the PCS function. If 1GX PCS is not enabled, the incoming datarate must be frequency locked (ppm 0) with REFCLK. Also referred to as remote loopback. 0 = Farend Loopback is disabled. (Default 1’b0) 1 = Farend loopback is enabled. RW 16.7 PRBS Verifier Enable A logic 1 enables the PRBS (2^7) verifier in the receive datapath. Logically OR'ed with the PRBSEN pin. (Default 1’b0) RW 16.6 PRBS Generator Enable A logic 1 enables the PRBS (2^7) generator in the transmit datapath. Logically OR'ed with the PRBSEN pin. (Default 1’b0) RW 16.5 Channel sync freeze control When set, freezes last acquired word alignment. (Default 1’b0) RW 16.4 Test Pattern Generator Enable When high activates the generator selected by bits 16.2:0. (Default 1’b0) RW 16.3 Test Pattern Verifier Enable When high activates the verifier selected by bits 16.2:0. (Default 1’b0) RW Pattern Select Test Pattern Selection 000 = High Frequency Test Pattern (Default 3’b000) 001 = Low Frequency Test Pattern 010 = Mixed Frequency Test Pattern 011 = CRPAT Long 100 = CRPAT Short Others = Reserved RW 16.10:9 16.2:0 Table 2-80. PHY_CH_CONTROL_2 ADDRESS: 0x11 BIT(s) NAME DEFAULT: 0x3590 DESCRIPTION ACCESS RW/SC 17.15 Global write When written as 1 the settings in 17.14:0 will affect all channels of one device simultaneously. When written as 0 the settings in 17.14:0 are only valid for the addressed channel. This value always reads zero. 17.14 Sync Status Override 1 = Causes an override of the sync state of 1000Base-X synchronization state machine to reflect a “1” in the sync_status (1.2) bit. 0 = Original (normal operation) sync_status value is represented in bit 1.2. (Default 1’b0) RW TX PMA Bit Order When asserted, allows the ten bits of data given to the parallel side of the SERDES TX macro to be flipped. This is normally set since the SERDES transmits MSB first, and the 1000Base-X standard requires LSB to be transmitted first. For standard based operation, the customer may leave this bit alone. (Default 1’b1) RW RX PMA Bit Order When asserted, allows the ten bits of data received from the parallel side of the SERDES RX macro to be flipped. This is normally set since the SERDES receives MSB first, and the 1000Base-X standard requires LSB to be received first. For standard based operation, the customer may leave this bit alone. (Default 1’b1) RW 17.13 17.12 Submit Documentation Feedback Detailed Description 65 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-80. PHY_CH_CONTROL_2 (continued) ADDRESS: 0x11 BIT(s) NAME DEFAULT: 0x3590 DESCRIPTION ACCESS 17.11 LOS Override 1 = Overrides Loss of signal (LOS) status coming from SERDES. Synchronization turned on irrespective of LOS status 0 = Synchronization depends on LOS status. (Default 1’b0) 17.10 CTC enable 1 = Clock Tolerance Compensation on receive datapath is enabled (Default 1’b1) 0 = Clock Tolerance Compensation on receive datapath is disabled RW 17.9 Full DDR mode 1 = Sets the device in full DDR mode (NBID/TBID modes) 0 = Disables full DDR mode (Default) RW 17.8 RCLK out enable 1 = Enables RX_CLK out (Default 1’b1) 0 = Disables RX_CLK out. RX_CLK will be low when this bit is de-asserted RW 17.7 Comma enable 1 = Enables comma detection (Default 1’b1) 0 = Disables comma detection RW 17.6 FC enable 1 = Enables FC_PH overlay detection. This is needed in 1x/2x Fiber channel mode to allow proper detection of EOF 8B/10B disparity 0 = Disables FC_PH overlay detection (Default 1’b0) RW 17.5 Data mode Valid only when 17.9 (Full DDR mode) is LOW. 1 = Enables DDR data mode on parallel Transmit and Receive directions (data clocked on both rising and falling edge) 0 = Enables SDR data mode on parallel Transmit and Receive directions (data is clocked only on rising edge or only on falling edge) (Default 1’b0) RW 17.4 Nibble order Applicable only in non FULL DDR modes 1 = LSB on rising edge followed by MSB on falling edge (Default 1’b1) 0 = MSB on rising edge followed by LSB on falling edge RW 17.3 PCS TX_RX Enable 1 = Enables 1000Base-X PCS Tx & PCS Rx functions 0 = Disables 1000Base-X PCS Tx Function (Default 1’b0) RW 17.2 Encode Decode Enable 0 = 8B/10B encode decode functions are disabled (Default 1’b0) 1 = 8B/10B encode decode functions are enabled RW TX Edge Mode When channel is in DDR mode 1 = Source aligned timing on transmit parallel interface. 0 = Source centered timing on transmit parallel interface. Data is latched on both rising and falling clock edges. When channel is in SDR mode 1 = Rising edge align mode. Incoming parallel data is aligned to rising edge of parallel input clock. Internally data is latched at the falling edge of the clock. 0 = Falling edge align mode. Incoming data is aligned to falling edge of parallel input clock. Internally data is latched at the rising edge of the clock RW RX Edge Mode When channel is in DDR mode 1 = Source aligned timing on receive parallel interface. Data changes at clock edge. 0 = Source centered timing on receive parallel interface. When channel is in SDR mode 1 = Rising edge align mode. Outgoing parallel data is aligned to the rising edge of the parallel output clock 0 = Falling edge align mode. Outgoing parallel data is aligned to the falling edge of the parallel output clock RW 17.1 17.0 RW Table 2-81. PHY_RX_CTC_FIFO_STATUS ADDRESS: 0x12 BIT(s) 66 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 18.15 RX_CTC_Reset When high indicates overflow or underflow has occurred in CTC FIFO and FIFO has been reset. 18.14 RX_CTC_Insert When high indicates RX CTC has inserted at least one ordered set. 18.13 RX_CTC_Delete When high indicates RX CTC has deleted at least one ordered set. Detailed Description RO/LH Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-82. PHY_TX_CTC_FIFO_STATUS ADDRESS: 0x13 BIT(s) NAME 19.15 TX_FIFO_Reset_1Gx DEFAULT: 0x0000 DESCRIPTION ACCESS When high indicates collision has occurred in TX FIFO and the FIFO is reset in 1gx mode. Valid in Non-NBID, Non-TBID modes. RO/LH Table 2-83. PHY_TX_WIDE_FIFO _STATUS ADDRESS: 0x14 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 20.15 TX_WIDE_FIFO_ Overflow When high indicates Overflow condition has occurred in TX WIDE FIFO. Valid only when device is in NBID/TBID modes. 20.14 TX_WIDE_FIFO_ Underflow When high indicates Underflow condition has occurred in TX WIDE FIFO. Valid only when device is in NBID/TBID modes. RO/LH Table 2-84. PHY_TEST_PATTERN_SYNC_STATUS ADDRESS: 0x15 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 21.1 Test Pattern Sync When high indicates alignment has been determined and a correct pattern has been received for fixed test patterns. 21.0 CRPAT Sync When high indicates alignment has been determined and a correct pattern has been received for continuous test patterns. RO Table 2-85. PHY_TEST_PATTERN_COUNTER ADDRESS: 0x16 BIT(s) 22.15:0 NAME Fixed Test Pattern Error Counter DEFAULT: 0xFFFD DESCRIPTION ACCESS This counter reflects error count for high, Mixed, and Low Frequency test patterns. Counter increments for each received character that has an error. Counter clears upon read. COR Table 2-86. PHY_CRPAT_PATTERN_COUNTER_1 (1) ADDRESS: 0x17 (1) BIT(s) NAME 23.15:0 CRPAT Error counter[31:16] DEFAULT: 0xFFFF DESCRIPTION ACCESS This counter reflects MSW part of error count for CRPAT Frequency test pattern. Counter increments for each received character that has an error. Counter clears upon read. COR User has to make sure that register 23 is read first and then register 24. If user reads register 24 before reading register 23, then the count value read through register 24 may not be correct. Table 2-87. PHY_CRPAT_PATTERN_COUNTER_2 (1) ADDRESS: 0x18 BIT(s) 24.15:0 (1) NAME CRPAT Error counter[15:0] DEFAULT: 0xFFFD DESCRIPTION ACCESS This counter reflects LSW part of error count for CRPAT Frequency test pattern. Counter increments for each received character that has an error. Counter clears upon read. COR User has to make sure that register 23 is read first and then register 24. If user reads register 24 before reading register 23, then the count value read through register 24 may not be correct. Submit Documentation Feedback Detailed Description 67 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-88. PHY_TEST_MODE_CONTROL ADDRESS: 0x1B BIT(s) 27.15 27.14:12 DEFAULT: 0x7000 NAME DESCRIPTION ACCESS Global write When written as 1 the settings in 27.14:12 will affect all channels of one device simultaneously. When written as 0 the settings in 27.14:12 are only valid for the addressed channel. This value always reads zero. RW/SC Test Mux Select Mux control to select debug signals onto test mux data pins. For TI test purposes only RW Table 2-89. PHY_CHANNEL_STATUS ADDRESS: 0x1C BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 28.15 Signal Detect When high, indicates that the SERDES detected valid signal. 28.13 Encoder Invalid Code Word When high, indicates that the 1000Base-X encoder received an invalid control word. 28:12 Decoder Invalid Code Word When high, indicates that the 1000Base-X decoder received an invalid code word. RO/LL RO/LH Table 2-90. PHY_PRBS_HIGH_SPEED_TEST_COUNTER ADDRESS: 0x1D BIT(s) 29.15:0 DEFAULT: 0xFFFD NAME DESCRIPTION ACCESS This counter reflects errors for PRBS (2^7) test pattern verification . Counter increments by one for each received character that has error. This counter saturates at 16’hffff. When read, it resets to zero and continues to count. PRBS High Speed Test Counter COR Table 2-91. PHY_EXT_ADDRESS_CONTROL (1) ADDRESS: 0x1E BIT(s) 30.15:0 (1) DEFAULT: 0x0000 NAME Ext address control DESCRIPTION ACCESS This register should be written with the extended register address to be written/read. Contents of address written in this register can be accessed from Reg 31 (0x1F). RW This register is not per channel basis. This register can be accessed through any of the 4 channels. Table 2-92. PHY_EXT_ADDRESS_DATA (1) ADDRESS: 0x1F BIT(s) 31.15:0 (1) DEFAULT: 0x0000 NAME Ext address data register DESCRIPTION ACCESS This register contains the data associated with the register address written in Register 30 (0x1E) RW This register is not per channel basis. This register can be accessed through any of the 4 channels. 2.10 Top Level Programmers Reference Following registers can be addressed directly through Clause 45 and indirectly through Clause 22. 68 Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-93. SERDES_PLL_CONFIG (1) ADDRESS: 0x9000 BIT(s) DESCRIPTION ACCESS Loop Bandwidth RX(LB_RX) SERDES RX PLL Bandwidth settings 00 = Applicable when JC PLL is not engaged 01 = Reserved 10 = Reserved 11 = Applicable when JC PLL is engaged RW 4/5.36864. 12 ENPLL_RX 0 = Disables PLL in SERDES RX 1 = Enable PLL in SERDES RX RW 4/5.36864.11:8 PLL Multiplier factor RX (MPY_RX) SERDES RX PLL multiplier setting See Table 94: PLL Multiplier Control RW BUSWIDTH 1 = 8 bit mode. Applicable for only EBI and REBI modes 0 = 10 Bit mode. Applicable for all other modes RW Loop Bandwidth TX (LB_TX) SERDES TX PLL Bandwidth settings 00 = Applicable when JC PLL is not engaged 01 = Reserved 10 = Reserved 11 = Applicable when JC PLL is engaged RW ENPLL_TX 0 = Disables PLL in SERDES TX 1 = Enable PLL in SERDES TX RW PLL Multiplier factor TX (MPY_TX) SERDES TX PLL multiplier setting See Table 94: PLL Multiplier Control RW 4/5.36864.14:13 4/5.36864.7 4/5.36864.6:5 4/5.36864.4 4/5.36864. 3:0 (1) DEFAULT: 0x1515 NAME These are global PLL control bits and will be applicable to all 4 channels. Table 2-94. PLL Multiplier Control 36864[11:8]/ 36864[3:0] 36864[11:8]/ 36864[3:0] VALUE PLL MULTIPLIER FACTOR VALUE PLL MULTIPLIER FACTOR 0000 4x 1000 15x 0001 5x 1001 20x 0010 6x 1010 25x 0011 Reserved 1011 Reserved 0100 8x 1100 Reserved 0101 10x 1101 50x 0110 12x 1110 60x 0111 12.5x 1111 Reserved Table 2-95. SERDES_RATE_CONFIG_TX_RX (1) ADDRESS: 0x9001 BIT(s) 4/5.36865.15:14 4/5.36865.13:12 4/5.36865.11:10 (1) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS RATE_0_TX TX Ch 0 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW RATE _1_TX TX Ch 1 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW RATE _2_TX TX Ch 2 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW These are global PLL control bits and will be applicable to all 4 channels. Submit Documentation Feedback Detailed Description 69 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 4/5.36865.9:8 4/5.36865.7:6 4/5.36865.5:4 4/5.36865.3:2 4/5.36865.1:0 70 www.ti.com RATE _3_TX TX Ch 3 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW RATE_0_RX RX Ch 0 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW RATE _1_RX RX Ch 1 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW RATE _2_RX RX Ch 2 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW RATE _3_RX RX Ch 3 Operating rate 00 = Full rate (2 data samples/output per PLL output clock cycle) 01 = Half rate (1 data sample/output per PLL output clock cycle) 10 = Quarter rate (1 data sample/output per 2 PLL output clock cycle) 11 = Reserved RW Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-96. SERDES_RX0_CONFIG (1) ADDRESS: 0x9002 BIT(s) DESCRIPTION ACCESS 4/5.36866.15:12 EQUALIZER Adaptive equalization control 0000 = Adaptive equalization disabled. Equalizer provides flat response at maximum gain. 0001 = Full adaptive equalization 0010 to 1111 = Reserved 4/5.36866.11:9 CDR Clock data recovery algorithm selection RW INVPAIR 1 = Inverts polarity of RXP and RXN RW LOS 00 = Loss of signal detection disabled 01 = Reserved 10 = Loss of signal detection enabled with threshold in the range of 85-175 mVdfpp. 11 = Reserved. RW ALIGN Receiver symbol alignment selection 00 = Alignment disabled. 01 = Comma alignment enabled 10 = Symbol alignment will be performed by one bit position when this mode is selected (i.e ALIGN changes from 00 to 10) 11= Reserved RW TERM Receive Termination selection 00 = Common point connected to VDDT (For DC Coupled Systems) 01 = Common point set to 0.8 VDDT (For AC Coupled Systems) 10 = Reserved 11 = Reserved RW ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9012) RW ENRX 1 = Enables receiver 0 = Disables receiver RW 4/5.36866.8 4/5.36866.7:6 4/5.36866.5:4 4/5.36866.3:2 4/5.36866.1 4/5.36866.0 (1) DEFAULT: 0x0001 NAME RW These are SERDES receiver control bits for channel 0. Table 2-97. SERDES_RX1_CONFIG (1) ADDRESS: 0x9004 BIT(s) DESCRIPTION ACCESS 4/5.36868.15:12 EQUALIZER Adaptive equalization control 0000 = Adaptive equalization disabled. Equalizer provides flat response at maximum gain. 0001 = Full adaptive equalization 0010 to 1111 = Reserved 4/5.36868.11:9 CDR Clock data recovery algorithm selection RW INVPAIR 1 = Inverts polarity of RXP and RXN RW LOS 00 = Loss of signal detection disabled 01 = Reserved 10 = Loss of signal detection enabled with threshold in the range of 85-175 mVdfpp. 11 = Reserved. RW ALIGN Receiver symbol alignment selection 00 = Alignment disabled. 01 = Comma alignment enabled 10 = Symbol alignment will be performed by one bit position when this mode is selected (i.e ALIGN changes from 00 to 10) 11= Reserved RW TERM Receive Termination selection 00 = Common point connected to VDDT (For DC Coupled Systems) 01 = Common point set to 0.8 VDDT (For AC Coupled Systems) 10 = Reserved 11 = Reserved RW ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9012) RW 4/5.36868.8 4/5.36868.7:6 4/5.36868.5:4 4/5.36868.3:2 4/5.36868.1 (1) DEFAULT: 0x0001 NAME RW These are SERDES receiver control bits for channel 1. Submit Documentation Feedback Detailed Description 71 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-97. SERDES_RX1_CONFIG (continued) ADDRESS: 0x9004 BIT(s) 4/5.36868.0 DEFAULT: 0x0001 NAME DESCRIPTION ACCESS 1 = Enables receiver 0 = Disables receiver ENRX RW Table 2-98. SERDES_RX2_CONFIG (1) ADDRESS: 0x9006 BIT(s) NAME DESCRIPTION ACCESS 4/5.36870.15:12 EQUALIZER Adaptive equalization control 0000 = Adaptive equalization disabled. Equalizer provides flat response at maximum gain. 0001 = Full adaptive equalization 0010 to 1111 = Reserved 4/5.36870.11:9 CDR Clock data recovery algorithm selection RW INVPAIR 1 = Inverts polarity of RXP and RXN RW LOS 00 = Loss of signal detection disabled 01 = Reserved 10 = Loss of signal detection enabled with threshold in the range of 85-175 mVdfpp. 11 = Reserved. RW ALIGN Receiver symbol alignment selection 00 = Alignment disabled. 01 = Comma alignment enabled 10 = Symbol alignment will be performed by one bit position when this mode is selected (i.e ALIGN changes from 00 to 10) 11= Reserved RW TERM Receive Termination selection 00 = Common point connected to VDDT (For DC Coupled Systems) 01 = Common point set to 0.8 VDDT (For AC Coupled Systems) 10 = Reserved 11 = Reserved RW ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9012) RW ENRX 1 = Enables receiver 0 = Disables receiver RW 4/5.36870.8 4/5.36870.7:6 4/5.36870.5:4 4/5.36870.3:2 4/5.36870.1 4/5.36870.0 (1) DEFAULT: 0x0001 RW These are SERDES receiver control bits for channel 2. Table 2-99. SERDES_RX3_CONFIG (1) ADDRESS: 0x9008 BIT(s) ACCESS 4/5.36872.15:12 EQUALIZER 4/5.36872.11:9 CDR Clock data recovery algorithm selection RW INVPAIR 1 = Inverts polarity of RXP and RXN RW LOS 00 = Loss of signal detection disabled 01 = Reserved 10 = Loss of signal detection enabled with threshold in the range of 85-175 mVdfpp. 11 = Reserved. RW ALIGN Receiver symbol alignment selection 00 = Alignment disabled. 01 = Comma alignment enabled 10 = Symbol alignment will be performed by one bit position when this mode is selected (i.e ALIGN changes from 00 to 10) 11= Reserved RW 4/5.36872.7:6 4/5.36872.5:4 72 DESCRIPTION Adaptive equalization control 0000 = Adaptive equalization disabled. Equalizer provides flat response at maximum gain. 0001 = Full adaptive equalization 0010 to 1111 = Reserved 4/5.36872.8 (1) DEFAULT: 0x0001 NAME RW These are SERDES receiver control bits for channel 3. Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-99. SERDES_RX3_CONFIG (continued) ADDRESS: 0x9008 BIT(s) 4/5.36872.3:2 4/5.36872.1 4/5.36872.0 DEFAULT: 0x0001 NAME DESCRIPTION ACCESS TERM Receive Termination selection 00 = Common point connected to VDDT (For DC Coupled Systems) 01 = Common point set to 0.8 VDDT (For AC Coupled Systems) 10 = Reserved 11 = Reserved RW ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9012) RW ENRX 1 = Enables receiver 0 = Disables receiver RW Table 2-100. SERDES_TX0_CONFIG (1) ADDRESS: 0x900A BIT(s) 4/5.36874.15:12 DESCRIPTION ACCESS Reserved Always reads 0 RW SWING Transmitter Output swing control for SERDES transmitter. Refer Table 2-105: Output swing Control If swing is set to 750mV or more, CM bit (4/5.36874.8) needs to be set to 1. If swing is set to 625 mV or less, CM bit (4/5.36874.8) needs to be set to 0. RW CM 1 = Applicable for SWING settings 750 mV or more. 0 = Applicable for SWING settings 625 mV or less. RW DE-EMPHASIS Transmitter Differential output De-emphasis control Refer Table 2-104: Transmit De-emphasis Control RW 4/5.36874.3 INVPAIR Transmitter Polarity 1 = Inverted polarity. TXP considered negative data and TXN considered positive data 0 = Normal polarity. TXP considered positive data and TXN considered negative data RW 4/5.36874.2 Reserved Always reads 0 RW 4/5.36874.1 ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9011) RW ENTX 1 = Enables transmitter 0 = Disables transmitter RW 4/5.36874.11:9 4/5.36874.8 4/5.36874.7:4 4/5.36874.0 (1) DEFAULT: 0x0001 NAME These are SERDES transmitter control bits for channel 0. Table 2-101. SERDES_TX1_CONFIG (1) ADDRESS: 0x900C BIT(s) 4/5.36876.15:12 NAME DESCRIPTION ACCESS Reserved Always reads 0 RW SWING Transmitter Output swing control for SERDES transmitter. Refer Table 2-105: Output swing Control If swing is set to 750mV or more, CM bit (4/5.36876.8) needs to be set to 1. If swing is set to 625 mV or less, CM bit (4/5.36876.8) needs to be set to 0. RW CM 1 = Applicable for SWING settings 750 mV or more. 0 = Applicable for SWING settings 625 mV or less. RW DE-EMPHASIS Transmitter Differential output De-emphasis control Refer Table 2-104: Transmit De-emphasis Control RW 4/5.36876.3 INVPAIR Transmitter Polarity 1 = Inverted polarity. TXP considered negative data and TXN considered positive data 0 = Normal polarity. TXP considered positive data and TXN considered negative data RW 4/5.36876.2 Reserved Always reads 0 RW 4/5.36876.11:9 4/5.36876.8 4/5.36876.7:4 (1) DEFAULT: 0x0001 These are SERDES transmitter control bits for channel 1. Submit Documentation Feedback Detailed Description 73 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-101. SERDES_TX1_CONFIG (continued) ADDRESS: 0x900C BIT(s) DEFAULT: 0x0001 NAME DESCRIPTION ACCESS 4/5.36876.1 ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9011) RW 4/5.36876.0 ENTX 1 = Enables transmitter 0 = Disables transmitter RW Table 2-102. SERDES_TX2_CONFIG (1) ADDRESS: 0x900E BIT(s) 4/5.36878.15:12 DESCRIPTION ACCESS Reserved Always reads 0 RW SWING Transmitter Output swing control for SERDES transmitter Refer Table 2-105: Output swing Control If swing is set to 750mV or more, CM bit (4/5.36878.8) needs to be set to 1. If swing is set to 625 mV or less, CM bit (4/5.36878.8) needs to be set to 0. RW CM 1 = Applicable for SWING settings 750 mV or more. 0 = Applicable for SWING settings 625 mV or less. RW DE-EMPHASIS Transmitter Differential output De-emphasis control Refer Table 2-104: Transmit De-emphasis Control RW 4/5.36878.3 INVPAIR Transmitter Polarity 1 = Inverted polarity. TXP considered negative data and TXN considered positive data 0 = Normal polarity. TXP considered positive data and TXN considered negative data RW 4/5.36878.2 Reserved Always reads 0 RW 4/5.36878.1 ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9011) RW ENTX 1 = Enables transmitter 0 = Disables transmitter RW 4/5.36878.11:9 4/5.36878.8 4/5.36878.7:4 4/5.36878.0 (1) DEFAULT: 0x0001 NAME These are SERDES transmitter control bits for channel 2. Table 2-103. SERDES_TX3_CONFIG (1) ADDRESS: 0x9010 BIT(s) 4/5.36880.15:12 ACCESS Always reads 0 RW SWING Transmitter Output swing control for SERDES transmitter Refer Table 2-105: Output swing Control If swing is set to 750mV or more, CM bit (4/5.36880.8) needs to be set to 1. If swing is set to 625 mV or less, CM bit (4/5.36880.8) needs to be set to 0. RW CM 1 = Applicable for SWING settings 750 mV or more. 0 = Applicable for SWING settings 625 mV or less. RW DE-EMPHASIS Transmitter Differential output De-emphasis control Refer Table 2-104: Transmit De-emphasis Control RW 4/5.36880.3 INVPAIR Transmitter Polarity 1 = Inverted polarity. TXP considered negative data and TXN considered positive data 0 = Normal polarity. TXP considered positive data and TXN considered negative data RW 4/5.36880.2 Reserved Always reads 0 RW 4/5.36880.1 ENTEST 1= Enables test modes specified in TESTCFG (Register 0x9011) RW ENTX 1 = Enables transmitter 0 = Disables transmitter RW 4/5.36880.8 4/5.36880.7:4 4/5.36880.0 74 DESCRIPTION Reserved 4/5.36880.11:9 (1) DEFAULT: 0x0001 NAME These are SERDES transmitter control bits for channel 3. Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-104. Transmit De-emphasis Control 4/5.36874/36876/36878/36880 [7:4] AMPLITUDE REDUCTION VALUE AMPLITUDE REDUCTION VALUE % dB % dB 0000 0 0 1000 38.08 -4.16 0001 4.76 -0.42 1001 42.85 -4.86 0010 9.52 -0.87 1010 47.61 -5.61 0011 14.28 -1.34 1011 52.38 -6.44 0100 19.04 -1.83 1100 57.14 -7.35 0101 23.8 -2.36 1101 61.9 -8.38 0110 28.56 -2.92 1110 66.66 -9.54 0111 33.32 -3.52 1111 71.42 -10.87 Table 2-105. Output Swing Control 4/5.36874/36876/36878/36880 [11:9] VALUE AMPLITUDE (mVdfpp) VALUE AMPLITUDE (mVdfpp) 000 125 100 750 001 250 101 1000 010 500 110 1250 011 625 111 1375 Table 2-106. SERDES_TEST_CONFIG_TX (1) ADDRESS: 0x9011 BIT(s) 4/5.36881.10:8 DESCRIPTION ACCESS Reserved Reserved for TI test RW LOOPBACK_TX 00 = 01 = 10 = 11 = RW CLKBYPASS_TX PLL Bypass control in test mode 00 = No bypass 01 = Reserved 10 = Functional bypass. Macros run using TESCLKT 11 = Refclk observe (Reserved. For TI purposes only) RW 4/5.36881.3 ENRXPATT_TX 0 – Disables test pattern verification in SERDES TX macro. 1 – Enables test pattern verification in SERDES TX macro. RW 4/5.36881.2 ENTXPATT_TX 0 – Disables test pattern generation in SERDES TX macro. 1 – Enables test pattern generation in SERDES TX macro. RW TESTPATT_TX Valid when ENTXPATT_TX, ENRXPATT_TX, ENTEST_TX are set 00 = Reserved (Default) 01 = Clock pattern (Half baud clock pattern with period of 2UI) 10 = 27 - 1 PRBS pattern 11 = 223 – 1 PRBS pattern RW 4/5.36881.7:6 4/5.36881.5:4 4/5.36881.1:0 (1) DEFAULT: 0x0000 NAME Disabled Pad loopback. For TI purposes only Inner loopback (CML driver disabled) Inner loopback (CML driver enabled) Above control bits are only for vendor testing only. Customer should leave them at their default values Submit Documentation Feedback Detailed Description 75 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-107. SERDES_TEST_CONFIG_RX (1) ADDRESS: 0x9012 BIT(s) 4/5.36882.10:8 DESCRIPTION ACCESS Reserved Reserved for TI test. RW LOOPBACK_RX 00 = 01 = 10 = 11 = RW CLKBYPASS_RX PLL Bypass control in test mode 00 = No bypass 01 = Reserved 10 = Functional bypass. Macros run using TESCLKR 11 = Refclk observe (Reserved. For TI purposes only) RW 4/5.36882.3 ENRXPATT_RX 0 – Disables test pattern verification in SERDES RX macro. 1 – Enables test pattern verification in SERDES RX macro. RW 4/5.36882.2 ENTXPATT_RX 0 – Disables test pattern generation in SERDES RX macro. 1 – Enables test pattern generation in SERDES RX macro. RW TESTPATT_RX Valid when ENTXPATT_RX, ENRXPATT_RX, ENTEST_RX are set 00 = Reserved (Default) 01 = Clock pattern (Half baud clock pattern with period of 2UI) 10 = 27 – 1 PRBS pattern 11 = 223 – 1 PRBS pattern RW 4/5.36882.7:6 4/5.36882.5:4 4/5.36882.1:0 (1) DEFAULT: 0x0000 NAME Disabled Pad loopback. For TI purposes only Inner loopback (CML driver disabled) Inner loopback (CML driver enabled) Above control bits are only for vendor testing only. Customer should leave them at their default values Table 2-108. SERDES_RX0_STATUS (1) ADDRESS: 0x9013 BIT(s) DESCRIPTION ACCESS 4/5.36883.3 LOSDTCT When HIGH indicates Loss of Signal condition is detected for RX CH 0 RO 4/5.36883.2 ODDCG LOW when SYNC is HIGH. After that toggles every cycle. RO SYNC When comma detection is enabled, this bit is HIGH when an aligned comma is received. RO RX CH 0 TESTFAIL When HIGH, indicates an error occurred during test pattern verification for SERDES RX CH 0. When ST = 0, this bit status is valid when PRBS_EN pin is set or when SERDES RX test pattern registers bits are set When ST = 1, this bit status is valid only when SERDES RX test pattern verification bits are set RO 4/5.36883.1 4/5.36883.0 (1) DEFAULT: 0x0000 NAME Above status bits are only for Receive CH 0. Table 2-109. SERDES_RX1_STATUS (1) ADDRESS: 0x9014 BIT(s) 76 NAME DESCRIPTION ACCESS 4/5.36884.3 LOSDTCT When HIGH indicates Loss of Signal condition is detected for RX CH 1 RO 4/5.36884.2 ODDCG LOW when SYNC is HIGH. After that toggles every cycle. RO 4/5.36884.1 SYNC When comma detection is enabled, this bit is HIGH when an aligned comma is received. RO RX CH 1 TESTFAIL When HIGH, indicates an error occurred during test pattern verification for SERDES RX CH 1. When ST = 0, this bit status is valid when PRBS_EN pin is set or when SERDES RX test pattern registers bits are set When ST = 1, this bit status is valid only when SERDES RX test pattern verification bits are set RO 4/5.36884.0 (1) DEFAULT: 0x0000 Above status bits are only for Receive CH 1. Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-110. SERDES_RX2_STATUS (1) ADDRESS: 0x9015 BIT(s) DESCRIPTION ACCESS 4/5.36885.3 LOSDTCT When HIGH indicates Loss of Signal condition is detected for RX CH 2 RO 4/5.36885.2 ODDCG LOW when SYNC is HIGH. After that toggles every cycle. RO SYNC When comma detection is enabled, this bit is HIGH when an aligned comma is received. RO RX CH 2 TESTFAIL When HIGH, indicates an error occurred during test pattern verification for SERDES RX CH 2. When ST = 0, this bit status is valid when PRBS_EN pin is set or when SERDES RX test pattern registers bits are set When ST = 1, this bit status is valid only when SERDES RX test pattern verification bits are set RO 4/5.36885.1 4/5.36885.0 (1) DEFAULT: 0x0000 NAME Above status bits are only for Receive CH 2. Table 2-111. SERDES_RX3_STATUS (1) ADDRESS: 0x9016 BIT(s) DESCRIPTION ACCESS 4/5.36886.3 LOSDTCT When HIGH indicates Loss of Signal condition is detected for RX CH 3 RO 4/5.36886.2 ODDCG LOW when SYNC is HIGH. After that toggles every cycle. RO 4/5.36886.1 SYNC When comma detection is enabled, this bit is HIGH when an aligned comma is received. RO RX CH 3 TESTFAIL When HIGH, indicates an error occurred during test pattern verification for SERDES RX CH 3 When ST = 0, this bit status is valid when PRBS_EN pin is set or when SERDES RX test pattern registers bits are set When ST = 1, this bit status is valid only when SERDES RX test pattern verification bits are set RO 4/5.36886.0 (1) DEFAULT: 0x0000 NAME Above status bits are only for Receive CH 3. Table 2-112. SERDES_TX0_STATUS (1) ADDRESS: 0x9017 BIT(s) 4/5.36887.0 (1) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS When HIGH, indicates an error occurred during test pattern verification for SERDES TX CH 0. TX CH 0 TESTFAIL RO Above status bits are only for Transmit CH 0. Table 2-113. SERDES_TX1_STATUS (1) ADDRESS: 0x9018 BIT(s) 4/5.36888.0 (1) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS When HIGH, indicates an error occurred during test pattern verification for SERDES TX CH 1. TX CH 1 TESTFAIL RO Above status bits are only for Transmit CH 1. Table 2-114. SERDES_TX2_STATUS (1) ADDRESS: 0x9019 BIT(s) 4/5.36889.0 (1) DEFAULT: 0x0000 NAME TX CH 2 TESTFAIL DESCRIPTION ACCESS When HIGH, indicates an error occurred during test pattern verification for SERDES TX CH 2. RO Above status bits are only for Transmit CH 2. Submit Documentation Feedback Detailed Description 77 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-115. SERDES_TX3_STATUS (1) ADDRESS: 0x901A BIT(s) 4/5.36890.0 (1) DEFAULT: 0x0000 NAME DESCRIPTION TX CH 3 TESTFAIL ACCESS When HIGH, indicates an error occurred during test pattern verification for SERDES TX CH 3. RO Above status bits are only for Transmit CH 3. Table 2-116. SERDES_PLL_STATUS ADDRESS: 0x901B BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 4/5.36891.4 PLL_LOCK_RX 1 = Indicates PLL is locked within 10ppm of REFCLKP/N in SERDES RX macro 4/5.36891.0 PLL_LOCK_TX 1 = Indicates PLL is locked within 10ppm of REFCLKP/N in SERDES TX macro RO/LL Table 2-117. JC_CLOCK_MUX_CONTROL ADDRESS: 0x9100 BIT(s) 4/5.37120.15:14 4/5.37120.13:12 4/5.37120.11:10 4/5.37120.9:8 4/5.37120.7:6 4/5.37120.5:4 78 NAME DEFAULT: 0x3FF0 DESCRIPTION ACCESS REF_SEL[1:0] Jitter Cleaner Reference clock select control 00 = Selects differential REFCLKP/N as jitter cleaner clock input 01 = Selects CMOS REFCLK as jitter cleaner clock input 10 = Selects recovered clock as jitter cleaner clock input 11 = Reserved RW RXB_SEL[1:0] Jitter Cleaner RXBYTECLK select control 00 = Selects RXB_DIV divider output clock as RXBYTECLK 01 = Selects recovered clock as RXBYTECLK 10 = Selects CMOS REFCLK as RXBYTECLK 11 = Selects differential REFCLKP/N as RXBYTECLK RW TX_SEL[1:0] Jitter Cleaner SERDES TX Reference clock input select control 00 = Selects jitter cleaner output clock as TX SERDES reference clock input 01 = Selects recovered clock as TX SERDES reference clock input 10 = Selects CMOS REFCLK as TX SERDES reference clock input 11 = Selects differential REFCLKP/N as TX SERDES reference clock input RW RX_SEL[1:0] Jitter Cleaner SERDES RX Reference clock input select control 00 = Selects jitter cleaner output clock as RX SERDES reference clock input 01 = Selects recovered clock as RX SERDES reference clock input (Not Recommended) 10 = Selects CMOS REFCLK as RX SERDES reference clock input 11 = Selects differential REFCLKP/N as RX SERDES reference clock input RW DEL_SEL[1:0] Delay stopwatch clock input select control 00 = Selects delay clock divider output clock as delay stopwatch clock input 01 = Selects recovered clock as delay stopwatch clock input 10 = Selects CMOS REFCLK as delay stopwatch clock input 11 = Selects differential REFCLKP/N as delay stopwatch clock input RW HSTL_SEL[1:0] HSTL VTP 2x clock divider input select control 00 = Selects HSTL DIV clock output as HSTL VTP 2x clock divider input 01 = Selects recovered clock as HSTL VTP 2x clock divider input 10 = Selects CMOS REFCLK as HSTL VTP 2x clock divider input 11 = Selects differential REFCLKP/N as HSTL VTP 2x clock divider input RW Detailed Description Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-118. JC_VTP_CLK_DIV_CONTROL ADDRESS: 0x9101 BIT(s) NAME DEFAULT: 0x0E06 DESCRIPTION ACCESS 4/5.37121.14:8 HSTL_DIV[6:0] HSTL Output Divider 1 Value. See Figure 1-3. This value is the divider value for the clock which runs the HSTL impedance compensation controller. The target output frequency for the impedance controller clock is 40 Mhz. If the jitter cleaner is not enabled, this value is not used. Legal programmed values are greater than or equal to 6 RW 4/5.37121.6:0 HSTL Output Divider 2 Value. See Figure 1-3. This value is the divider value for the HSTL impedance compensation controller. The target output frequency for this clock is 40 MHz. When the jitter cleaner (HSTL_DIV1) is used, this value should be provisioned to 6 decimal. When the jitter cleaner (HSTL_DIV1) is not HSTL_DIV2[6:0] used, this divider value should be provisioned according to the following equation: Value = (Parallel Output Byte Clock Frequency / 40 Mhz) Legal programmed values are 1, and greater than or equal to 4 RW Table 2-119. JC_DELAY_STOPWATCH_CLK_DIV_CONTROL ADDRESS: 0x9102 BIT(s) DEFAULT: 0x0600 NAME DESCRIPTION ACCESS DEL_DIV[6:0] Delay Measurement Clock Output Divider Value. See Figure 1-3. Controls the clock divider for the delay stop watch function. This value should be provisioned to decimal 6.This value is only used when the delay calculator circuit is enabled. Legal programmed values are greater than or equal to 6 RW 4/5.37122.2:1 Delay stop watch lane select[1:0] Lane select to enable comma monitor. Valid only when 37122:0 is “1” 00 = Comma monitor enabled on Lane 0 01 = Comma monitor enabled on Lane 1 10 = Comma monitor enabled on Lane 2 11 = Comma monitor enabled on Lane 3 RW 4/5.37122.0 Delay stop watch clock enable When set, enables Delay stop watch clock RW 4/5.37122.14:8 Table 2-120. JC_DELAY_STOPWATCH_COUNTER ADDRESS: 0x9103 BIT(s) 4/5.37123.15:0 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS Delay Counter. This value represents the latency in number of clock cycles. This counter resets on read and will return 16’h0000 if its read before rx comma is received. If latency is more than 16’hFFFF clock cycles then this counter returns 16’hFFFF. Delay stop watch counter[15:0] RO Table 2-121. JC_REFCLK_FB_DIV_CONTROL ADDRESS: 0x9104 BIT(s) 4/5.37124.15 4/5.37124.14:8 4/5.37124.7 4/5.37124.6:0 NAME DEFAULT: 0x018E DESCRIPTION ACCESS REFDIV_EN 1 = Enables Reference clock divider 0 = Disables Reference clock divider RW REF_DIV[0:6] Controls the clock divider value for the reference clock. See Figure 1-3, and Appendix A for provisioning details Note: REF_DIV[6:0] = 4/5.37124.8:14. (Example: To program REF_DIV to decimal value 4, 14:8 needs to be set to 7’b0010000) RW FBDIV_EN 1 = Enables Feedback divider 0 = Disables feedback divider RW FB_DIV[6:0] Controls the feedback divider value See Figure 1-3, and Appendix A for provisioning details. Note: JC_CHARGE_PUMP_ CONTROL (4/5.37126) needs to be set accordingly based on FB_DIV range. Refer Table 2-124: Charge Pump Control Setting (CP_CTRL) RW Submit Documentation Feedback Detailed Description 79 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-122. JC_RXB_OUTPUT_CLK_DIV_CONTROL ADDRESS: 0x9105 BIT(s) DEFAULT: 0x0E8E NAME DESCRIPTION ACCESS RW 4/5.37125.14:8 RXB_DIV[6:0] Receive Byte Clock Output Divider Value. This divider value is always provisioned with the same value as RXTX_DIV[6:0]. See Figure 1-3, and Appendix A for provisioning details. This value is only used when the jitter cleaner is used to source the receive parallel interface output clock. Legal programmed values are greater than or equal to 6 4/5.37125.7 OUTDIV_EN 1 = Enables output divider (RXTX_DIV) 0 = Disables output divider RW RXTX_DIV[6:0] RX/TX SERDES Output Divider Value See Figure 1-3, and Appendix A for provisioning details Legal programmed values are greater than or equal to 6 RW 4/5.37125.6:0 Table 2-123. JC_CHARGE_PUMP_ CONTROL (1) ADDRESS: 0x9106 BIT(s) DEFAULT: 0x00C0 NAME DESCRIPTION ACCESS 4/5.37126.15:14 CP_BUF_CTRL[1:0] Charge pump buffer control 4/5.37126.13:0 Charge pump control. When JC PLL is used, CP_CTRL[13:0] values need to be set according to FB_DIV[6:0] range. Refer Table 2-124: Charge Pump Control Setting (CP_CTRL) (1) CP_CTRL[13:0] RW When JC PLL is used, this register value should be set according to the values specified in Charge Pump Control Setting Table Table 2-124. Charge Pump Control Setting (CP_CTRL) 80 Detailed Description FB DIV VALUE RANGE (4/5.37124[6:0]) (IN DECIMAL) JC_CHARGE_PUMP_ CONTROL SETTING (4/5. 37126 [15:0]) 1 - 15 0x00FF 16 - 18 0x00C1 19 - 30 0x0081 31 - 33 0x017F 34 - 45 0x017D 46 - 53 0x011F 54 - 59 0x0151 60 - 68 0x0121 69 - 77 0x01C3 78 - 85 0x0101 86 - 88 0x02FB 89 - 91 0x0183 92 - 99 0x0237 100 - 107 0x0181 108 - 113 0x0261 114 - 127 0x0215 Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-125. JC_PLL_CONTROL ADDRESS: 0x9107 BIT(s) 4/5.37127.15 DEFAULT: 0x30C4 NAME DESCRIPTION 0 = Disables Jitter Cleaner 1 = Enables Jitter Cleaner JC_EN_PLL 4/5.37127.14:12 VCO_BIAS_CTRL[2:0] Control bits for VCO tail current VCO_CAPBANK_CTRL[3:0 ] Control bits for VCO band select 4/5.37127.7 DIFFTX_EN Enable signal for TX differential path 4/5.37127.6 DIFFRX_EN Enable signal for RX differential path 4/5.37127.11:8 4/5.37127.5:4 ACCESS RW PFD_CTRL[1:0] Control bits for phase frequency detector 4/5.37127.3 AD_SEL_TST Control bit to select either digital or analog TST_OUT 4/5.37127.2 REFCLK_CML_EN Enable signal for CML buffer inside output divider Table 2-126. JC_TEST_CONTROL_1 (1) ADDRESS: 0x9108 BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION ACCESS 4/5.37128.15:12 REFCK_DIV_TST[3:0] Test bits for Reference divider 4/5.37128.11:8 FB_DIV_TST[3:0] Test bits for Feedback divider 4/5.37128.7:4 TXRX_DIV_TST[3:0] Test bits for TXRX output divider. Should be set to 4’b1010 when JC PLL is used 4/5.37128.3:2 RXBCLK_DIV_TST[1:0] Test bits for RXBYTECLK divider (1) RW This register value should be written 0x00A0 when JC PLL is used Table 2-127. JC_TEST_CONTROL_2 ADDRESS: 0x9109 BIT(s) DEFAULT: 0x0000 NAME DESCRIPTION 4/5.37129.15:14 DEL_DIV_TST[1:0] Test bits for Delay clock divider 4/5.37129.13:12 HSTL_DIV_TST[1:0] Test bits for HSTL VTP divider 4/5.37129.11:10 HSTL_DIV2_TST[1:0] Test bits for HSTL VTP 2X divider 4/5.37129.9:8 PFD_TST[1:0] Test bits for Phase frequency detector 4/5.37129.7:4 CP_TST[3:0] Test bits for Charge pump 4/5.37129.3:0 CP_BUF_TST[3:0] Test bits for Charge pump Buffer ACCESS RW Table 2-128. JC_TI_TEST_CONTROL_1 ADDRESS: 0x9150 BIT(s) NAME DEFAULT:0x0000 DESCRIPTION ACCESS 4/5.37200.15:8 CML_BIAS_TST[7:0] Test bits for Bias generator for CML divider. For TI purposes only. 4/5.37200.7:4 CML_BIAS_CTRL[3:0] Control bits for Bias generator for CML divider. For TI purposes only. 4/5.37200.3 DIFFTX_ENTST Enable for TX clock out from SERDES REFCLK MUX. For TI purposes only. 4/5.37200.2 DIFFRX_ENTST Enable for RX clock out from SERDES REFCLK MUX. For TI purposes only. RW Table 2-129. JC_TI_TEST_CONTROL_2 ADDRESS: 0x9151 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 4/5.37201.15:13 VCO_FILCAP_CTRL[2:0] Control bits for VCO tail current noise filter. For TI purposes only. 4/5.37201.12:10 ANA_MUX_CTRL[2:0] Control bits to select the tested signals. For TI purposes only. Submit Documentation Feedback RW Detailed Description 81 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-130. JC_TRIM_STATUS ADDRESS: 0x9152 BIT(s) 4/5.37202.9:0 NAME JC_TRIM[9:0] DEFAULT: 0x0000 DESCRIPTION ACCESS Jitter Cleaner Resistor Trim value RO Table 2-131. DIE_ID_7 ADDRESS: 0x9200 BIT(s) 4/5.37376.15:0 NAME Die ID [127:112] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [127:112] of the Die ID. Unique TI DIE identifier. RO Table 2-132. DIE_ID_6 ADDRESS: 0x9201 BIT(s) 4/5.37377.15:0 NAME Die ID [111:96] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [111:96] of the Die ID. Unique TI DIE identifier. RO Table 2-133. DIE_ID_5 ADDRESS: 0x9202 BIT(s) 4/5.37378.15:0 NAME Die ID [95:80] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [95:80] of the Die ID. Unique TI DIE identifier. RO Table 2-134. DIE_ID_4 ADDRESS: 0x9203 BIT(s) 4/5.37379.15:0 NAME Die ID [79:64] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [79:64] of the Die ID. Unique TI DIE identifier. RO Table 2-135. DIE_ID_3 ADDRESS: 0x9204 BIT(s) 4/5.37380.15:0 NAME Die ID [63:48] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [63:48] of the Die ID. Unique TI DIE identifier. RO Table 2-136. DIE_ID_2 ADDRESS: 0x9205 BIT(s) 4/5.37381.15:0 NAME Die ID [47:32] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [47:32] of the Die ID. Unique TI DIE identifier. RO Table 2-137. DIE_ID_1 ADDRESS: 0x9206 BIT(s) 4/5.37382.15:0 NAME Die ID [31:16] DEFAULT: 0x0000 DESCRIPTION ACCESS Bits [31:16] of the Die ID. Unique TI DIE identifier. RO Table 2-138. DIE_ID_0 ADDRESS: 0x9207 BIT(s) 4/5.37383.15:0 82 NAME Die ID [15:0] Detailed Description DEFAULT: 0x0000 DESCRIPTION Bits [15:0] of the Die ID. Unique TI DIE identifier. ACCESS RO Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-139. EFUSE_STATUS ADDRESS: 0x9208 BIT(s) 4/5.37384.8 4/5.37384.4:0 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS EFC ready When high, indicates that EFUSE autoload operation has completed EFC error[4:0] Efuse error bus. Updated when EFC_ready goes high or when instruction is complete. Non-zero value indicates error condition. RO Table 2-140. EFUSE_CONTROL ADDRESS: 0x9209 BIT(s) 4/5.37385.15 NAME EFUSE Auto Load Enable DEFAULT: 0x0000 DESCRIPTION ACCESS When HIGH, Re-enables EFUSE Auto load function. Needs to set back to LOW to complete Auto load function. RW Table 2-141. HSTL_INPUT_TERMINATION_CONTROL ADDRESS: 0x9300 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS 4/5.37632.15:14 HSTL_TERM_3[1:0] Termination setting for input HSTL cells (for CH 3) 00 = Termination disable (High Impedance) 01 = Half termination strength (300 Ω to VHSTL&GND) 10 = 3/4 termination strength (200 Ω to VHSTL&GND) 11 = Full termination strength (150 Ω to VHSTL&GND) RW 4/5.37632.11:10 HSTL_TERM_2[1:0] Termination setting for input HSTL cells (for CH 2) 00 = Termination disable (High Impedance) 01 = Half termination strength (300 Ω to VHSTL&GND) 10 = 3/4 termination strength (200 Ω to VHSTL&GND) 11 = Full termination strength (150 Ω to VHSTL&GND) RW HSTL_TERM_1[1:0] Termination setting for input HSTL cells (for CH 1) 00 = Termination disable (High Impedance) 01 = Half termination strength (300 Ω to VHSTL&GND) 10 = 3/4 termination strength (200 Ω to VHSTL&GND) 11 = Full termination strength (150 Ω to VHSTL&GND) RW HSTL_TERM_0[1:0] Termination setting for input HSTL cells (for CH 0) 00 = Termination disable 01 = Half termination strength (300 Ω to VHSTL&GND) 10 = 3/4 termination strength (200 Ω to VHSTL&GND) 11 = Full termination strength (150 Ω to VHSTL&GND) RW 4/5.37632.7:6 4/5.37632.3:2 Table 2-142. HSTL_OUTPUT_SLEWRATE_CONTROL ADDRESS: 0x9301 BIT(s) NAME DEFAULT: 0x0000 DESCRIPTION ACCESS Slew Rate setting for output HSTL cells (for CH 3) 00 = No slew control (fastest edge) 4/5.37633.15:14 HSTL_SLEW_RATE_3 [1:0] 01 = 33% slew control 10 = 66 % slew control termination strength 11 = Full slew control (slowest edge) RW Slew Rate setting for output HSTL cells (for CH 2) 00 = No slew control (fastest edge) 4/5.37633.11:10 HSTL_SLEW_RATE_2 [1:0] 01 = 33% slew control 10 = 66 % slew control termination strength 11 = Full slew control (slowest edge) RW Slew Rate setting for output HSTL cells (for CH 1) 00 = No slew control (fastest edge) HSTL_SLEW_RATE_1 [1:0] 01 = 33% slew control 10 = 66 % slew control termination strength 11 = Full slew control (slowest edge) RW 4/5.37633.7:6 Submit Documentation Feedback Detailed Description 83 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-142. HSTL_OUTPUT_SLEWRATE_CONTROL (continued) ADDRESS: 0x9301 BIT(s) 4/5.37633.3:2 NAME DEFAULT: 0x0000 DESCRIPTION ACCESS Slew Rate setting for output HSTL cells (for CH 0) 00 = No slew control (fastest edge) HSTL_SLEW_RATE_0 [1:0] 01 = 33% slew control 10 = 66 % slew control termination strength 11 = Full slew control (slowest edge) RW Table 2-143. HSTL_INPUT_VTP_CONTROL ADDRESS: 0x9302 BIT(s) NAME DEFAULT: 0x0640 DESCRIPTION ACCESS 4/5.37634.15 I_FORCE_UP_N When set, increases NFET strength in all HSTL input cells. For TI purposes Only 4/5.37634.14 I_FORCE_UP_P When set, increases PFET strength in all HSTL input cells. For TI purposes Only 4/5.37634.13 I_FORCE_DOWN_N When set, decreases NFET strength in all HSTL input cells. For TI purposes Only 4/5.37634.12 I_FORCE_DOWN_P When set, decreases PFET strength in all HSTL input cells. For TI purposes Only I_VTP_DRIVE[2:0] Drive strength control for HSTL input cells 3’b000 = 30 % drive strength increase 3’b001 = 20% drive strength increase 3’b010 = 10% drive strength increase 3’b011 = Normal drive strength (default) 3’b100 = 10% drive strength decrease 3’b101 = 20% drive strength decrease 3’b110 = 30% drive strength decrease 3’b111 = 40% drive strength decrease RW I_FILTER_CONTROL[2:0] Filter Control 3’b000 = Impedance change filtering off 3’b001 = Update on 2 consecutive update requests 3’b010 = Update on 3 consecutive update requests(default) 3’b011 = Update on 4 consecutive update requests 3’b100 = Update on 5 consecutive update requests 3’b101 = Update on 6 consecutive update requests 3’b110 = Update on 7 consecutive update requests 3’b111 = Update on 8 consecutive update requests RW I_LOCK Impedance Lock Control When set, disables dynamic impedance control updates for HSTL input cells RW 4/5.37634.11:9 4/5.37634.7:5 4/5.37634.3 RW Table 2-144. HSTL_OUTPUT_VTP_CONTROL ADDRESS: 0x9303 BIT(s) 84 NAME DEFAULT: 0x0640 DESCRIPTION ACCESS 4/5.37635.15 O_FORCE_UP_N When set, increases NFET strength in all HSTL output cells . For TI purposes Only 4/5.37635.14 O_FORCE_UP_P When set, increases PFET strength in all HSTL output cells . For TI purposes Only 4/5.37635.13 O_FORCE_DOWN_N When set, decreases NFET strength in all HSTL output cells . For TI purposes Only 4/5.37635.12 O_FORCE_DOWN_P When set, decreases PFET strength in all HSTL output cells . For TI purposes Only Detailed Description RW Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-144. HSTL_OUTPUT_VTP_CONTROL (continued) ADDRESS: 0x9303 BIT(s) 4/5.37635.11:9 4/5.37635.7:5 4/5.37635.3 DEFAULT: 0x0640 NAME DESCRIPTION ACCESS O_VTP_DRIVE[2:0] Drive strength control for HSTL output cells 3’b000 = 30 % drive strength increase 3’b001 = 20% drive strength increase 3’b010 = 10% drive strength increase 3’b011 = Normal drive strength(default) 3’b100 = 10% drive strength decrease 3’b101 = 20% drive strength decrease 3’b110 = 30% drive strength decrease 3’b111 = 40% drive strength decrease RW O_FILTER_CONTROL[2:0] Filter Control 3’b000 = Impedance change filtering off 3’b001 = Update on 2 consecutive update requests 3’b010 = Update on 3 consecutive update requests(default) 3’b011 = Update on 4 consecutive update requests 3’b100 = Update on 5 consecutive update requests 3’b101 = Update on 6 consecutive update requests 3’b110 = Update on 7 consecutive update requests 3’b111 = Update on 8 consecutive update requests RW O_LOCK Impedance Lock Control When set, disables dynamic impedance control updates for HSTL output cells RW Table 2-145. HSTL_GLOBAL_CONTROL ADDRESS: 0x9304 BIT(s) DEFAULT: 0x0088 NAME DESCRIPTION ACCESS RW 4/5.37636.15 HSTL power down control When set, triggers HSTL power down sequence and places all HSTL cells in power down state. 4/5.37636.14 HSTL Retrain When set, triggers retraining of all HSTL inputs and outputs to match the impedance. Retraining is triggered only when this bit value goes from 0 to 1. RW 4/5.37636.11 HSTL_CLK_EN HSTL impedance control clock (CLK2X) selection 1 = Uses MDC (MDIO clock) as CLK2X 0 = Uses clock generated from Jitter cleaner as CLK2X RW 4/5.37636.7 Voltage reference selection 1 = Internal voltage reference used for HSTL input signals 0 = External voltage reference used for HSTL input signals RW 4/5.37636.3 VTP POWERSAVE When set, enables power save mode on HSTL VTP controllers RW 4/5.37636.2 GP 3-state Control When set, 3-states GP outputs RW Table 2-146. TX0_DLL_CONTROL ADDRESS: 0x9400 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION 4/5.37888.15 Lock_en For TI use only 4/5.37888.14 ACCESS Write_en For TI use only 4/5.37888.13:8 Delay_sel[5:0] DLL delay control. For TI use only 4/5.37888.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15ns. Refer Table 2-154: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 4/5.37888.3 Submit Documentation Feedback RW Detailed Description 85 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-147. TX1_DLL_CONTROL ADDRESS: 0x9401 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION ACCESS 4/5.37889.15 Lock_en For TI use only 4/5.37889.14 Write_en For TI use only 4/5.37889.13:8 Delay_sel[5:0] DLL delay control. For TI use only 4/5.37889.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15ns. Refer Table 2-154: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 4/5.37889.3 RW Table 2-148. TX2_DLL_CONTROL ADDRESS: 0x9402 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION ACCESS 4/5.37890.15 Lock_en For TI use only 4/5.37890.14 Write_en For TI use only 4/5.37890.13:8 Delay_sel[5:0] DLL delay control. For TI use only 4/5.37890.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15ns. Refer Table 2-154: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 4/5.37890.3 RW Table 2-149. TX3_DLL_CONTROL ADDRESS: 0x9403 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION 4/5.37891.15 Lock_en For TI use only 4/5.37891.14 ACCESS Write_en For TI use only 4/5.37891.13:8 Delay_sel[5:0] DLL delay control. For TI use only 4/5.37891.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15 ns. Refer Table 2-154: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 4/5.37891.3 RW Table 2-150. RX0_DLL_CONTROL ADDRESS: 0x9404 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION ACCESS 4/5.37892.15 Lock_en For TI use only 4/5.37892.14 Write_en For TI use only 4/5.37892.13:8 Delay_sel[5:0] DLL delay control. For TI use only 4/5.37892.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15 ns. Refer Table 2-154: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 4/5.37892.3 86 Detailed Description RW Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-151. RX1_DLL_CONTROL ADDRESS: 0x9405 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION ACCESS 4/5.37893.15 Lock_en For TI use only 4/5.37893.14 Write_en For TI use only 4/5.37893.13:8 Delay_sel[5:0] DLL delay control. For TI use only 4/5.37893.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15 ns. Refer Table 2-154: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 4/5.37893.3 RW Table 2-152. RX2_DLL_CONTROL ADDRESS: 0x9406 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION ACCESS 4/5.37894.15 Lock_en For TI use only 4/5.37894.14 Write_en For TI use only 4/5.37894.13:8 Delay_sel[5:0] DLL delay control. For TI use only 4/5.37894.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15 ns. Refer Table 2-154: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 4/5.37894.3 RW Table 2-153. RX3_DLL_CONTROL ADDRESS: 0x9407 BIT(s) DEFAULT: 0x0008 NAME DESCRIPTION 4/5.37895.15 Lock_en For TI use only 4/5.37895.14 ACCESS Write_en For TI use only 4/5.37895.13:8 Delay_sel[5:0] DLL delay control. For TI use only 4/5.37895.7:5 Offset[2:0] Phase shift control. Adds or removes delay element. Each delay element is 0.15 ns. Refer Table 2-154: DLL Offset Control Filter_en When asserted, the internal filter is used to reduce the cycle to cycle jitter of the output clock. 4/5.37895.3 RW Table 2-154. DLL Offset Control OFFSET[2:0] VALUE RESULT 000 No delay elements are added 001 1 extra delay element is added 010 2 extra delay elements are added 011 3 extra delay elements are added 100 No delay elements are removed 101 1 extra delay element is removed 110 2 extra delay elements are removed 111 3 extra delay elements are removed Table 2-155. TX0_DLL_STATUS ADDRESS: 0x9408 BIT(s) 4/5.37896.5:0 DEFAULT: 0x0000 NAME Delay_status[5:0] Submit Documentation Feedback DESCRIPTION For TI use only. ACCESS RO Detailed Description 87 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-156. TX1_DLL_STATUS ADDRESS: 0x9409 BIT(s) 4/5.37897.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-157. TX2_DLL_STATUS ADDRESS: 0x940A BIT(s) 4/5.37898.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-158. TX3_DLL_STATUS ADDRESS: 0x940B BIT(s) 4/5.37899.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-159. RX0_DLL_STATUS ADDRESS: 0x940C BIT(s) 4/5.37900.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-160. RX1_DLL_STATUS ADDRESS: 0x940D BIT(s) 4/5.37901.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-161. RX2_DLL_STATUS ADDRESS: 0x940E BIT(s) 4/5.37902.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-162. RX3_DLL_STATUS ADDRESS: 0x940F BIT(s) 4/5.37903.5:0 DEFAULT: 0x0000 NAME DESCRIPTION Delay_status[5:0] ACCESS For TI use only. RO Table 2-163. CH0_TESTFAIL_ERR_COUNTER ADDRESS: 0x9500 BIT(s) 4/5.38144.7:0 88 NAME Ch0_Testfail error counter[7:0] Detailed Description DEFAULT: 0x00FD DESCRIPTION ACCESS This counter reflects error count during PRBS test. Counter increments for each received character that has an error. Counter clears upon read. When ST = 0, counter value is valid when PRBS_EN pin is set or when SERDES RX test pattern registers bits are set When ST = 1, counter value is valid only when SERDES RX test pattern verification bits are set COR Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 2-164. CH1_TESTFAIL_ERR_COUNTER ADDRESS: 0x9501 BIT(s) 4/5.38145.7:0 DEFAULT: 0x00FD NAME DESCRIPTION ACCESS This counter reflects error count during PRBS test. Counter increments for each received character that has an error. Counter clears upon read. When ST = 0, counter value is valid when PRBS_EN pin is set or when SERDES RX test pattern registers bits are set When ST = 1, counter value is valid only when SERDES RX test pattern verification bits are set Ch1_Testfail error counter[7:0] COR Table 2-165. CH2_TESTFAIL_ERR_COUNTER ADDRESS: 0x9502 BIT(s) 4/5.38146.7:0 DEFAULT: 0x00FD NAME DESCRIPTION Ch2_Testfail error counter ACCESS This counter reflects error count during PRBS test. Counter increments for each received character that has an error. Counter clears upon read. When ST = 0, counter value is valid when PRBS_EN pin is set or when SERDES RX test pattern registers bits are set When ST = 1, counter value is valid only when SERDES RX test pattern verification bits are set COR Table 2-166. CH3_TESTFAIL_ERR_COUNTER ADDRESS: 0x9503 BIT(s) 4/5.38147.7:0 DEFAULT: 0x00FD NAME DESCRIPTION Ch3_Testfail error counter ACCESS This counter reflects error count during PRBS test. Counter increments for each received character that has an error. Counter clears upon read. When ST = 0, counter value is valid when PRBS_EN pin is set or when SERDES RX test pattern registers bits are set When ST = 1, counter value is valid only when SERDES RX test pattern verification bits are set COR Table 2-167. STCI_CONTROL_STATUS ADDRESS: 0x9600 BIT(s) 4/5.38400.15 DEFAULT: 0x0000 NAME STCI_CLK DESCRIPTION ACCESS Bit to generate STCI clock in functional mode. 4/5.38400.11:10 STCI_CFG[1:0] STCI CFG control 4/5.38400.7 STCI_D STCI data in 4/5.38400.3 STCI_Q STCI read data RW RO Table 2-168. TESTCLK_CONTROL ADDRESS: 0x9601 BIT(s) 4/5.38401.15 NAME TESTCLKT DEFAULT: 0x0000 DESCRIPTION ACCESS Bit to generate TESTCLKT clock in functional mode. For TI test purposes only RW Table 2-169. BIDI_CMOS_CONTROL ADDRESS: 0x9700 BIT(s) 4/5.38656.15 NAME MDIO Disable Comp Test Control Submit Documentation Feedback DEFAULT: 0x0000 DESCRIPTION ACCESS 0 = MDIO/MDC Bidi cells automatically detects operating voltage (Default) 1 = MDIO/MDC Bidi cells expects 2.5 V operating voltage RW Detailed Description 89 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 2-170. DEBUG_CONTROL ADDRESS: 0x9800 BIT(s) NAME DEFAULT: 0x001F DESCRIPTION ACCESS 4/5.38912:8 DEBUG_SEL_EN 1 = Sends debug status signals onto debug outputs (GPO) 0 = Debug outputs are tied to 0. For TI test purposes only 4/5.38912.7 DIG_TST_OUT_EN 1 = Enables sending DIG TST debug signal onto GPO4 0 = Disables sending DIG TST debug signal onto GPO4. For TI test purposes only DEBUG_SEL Debug select bits. For TI test purposes only 4/5.38912.4:0 RW Table 2-171. DUTY_CYCLE_CONTROL ADDRESS: 0x9900 BIT(s) 4/5.39168.15 90 NAME Duty Cycle Correction Bypass Detailed Description DEFAULT: 0x0000 DESCRIPTION ACCESS 1 = Bypasses duty cycle corrected RX/TXBCLK. (Duty cycle set to 40-60, same clocks as SERDES parallel launch and capture clocks) 0 = Uses duty cycle corrected RX/TXBCLK. (Duty cycle set to 50-50, no phase relationship to SERDES parallel launch and capture clock)(Default) For TI test purposes only RW Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 3 Device Reset Requirements/Procedure 3.1 XAUI MODE (XGMII) SLLS838D – MAY 2007 – REVISED JULY 2008 REFCLK frequency = 156.25 MHz, Serdes Data Rate = Full Rate, Mode = Transceiver, Edge Mode = Source Centered, RX_CLK out = TXBCLK, Jitter Cleaner PLL Multiplier Ratio = 1X or Off • Device Pin Setting(s) – Pin settings allow for maximum software configurability. – Ensure ST input pin is Low. – Ensure CODE input pin is Low. – Ensure PLOOP input pin is Low. – Ensure SLOOP input pin is Low. – Ensure SPEED [1:0] input pins are both High. – Ensure ENABLE input pin is High. – Ensure PRBS_EN input pin is Low. • Reset Device – Issue a hard or soft reset (RST_N asserted for at least 10 us -or- Write 1’b1 to 4/5.0.15) • Clock Configuration – If using JCPLL (JCPLL 1X) • JCPLL Mux Settings (see Figure 1-3) – Select REFCLK input (Default = Differential) – If Single Ended REFCLK used – Write 2’b01 to 4/5.37120.15:14 – If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 • Write 2’b11 to 4/5.37120.13:12 to select differential REFCLKP/N as RXBYTECLK • Write 4’b0000 to 4/5.37120.11:8 to select jitter cleaned clock for SERDES TX/RX. • Write 2’b00 to 4/5.37120.5:4 to select jitter cleaned clock for HSTL VTP 2x • Write 2’b00 to 4/5.32810.15:14 to select SERDES TX clock as RX_CLK output • Write 16’h0081 to 4/5.37126 to set Charge pump control • Write 16’h00A0 to 4/5.37128 to set TXRX output divider • Clock Divide Settings (see Figure A-13) – Write 7’b1000000 to 4/5.37124.14:8 to set REF_DIV to value of 1 – Write 1’b1 to 4/5.37124.15 REFDIV_EN to enable reference clock divider – Write 7’h14 to 4/5.37124.6:0 to set FB_DIV to value of 20 – Write 1’b1 to 4/5.37124.7 FBDIV_EN to enable feedback divider – Write 7’h14 to 4/5.37125.6:0 to set RXTX_DIV to value of 20 – Write 1’b1 to 4/5.37125.7 OUTDIV_EN to enable output divider – Write 7’h0D to 4/5.37121.14:8 to set HSTL_DIV to value of 13 – Write 7’h06 to 4/5.37121.6:0 to set HSTL_DIV2 to value of 6 – Write 2’b11 to 4/5.36864.14:13 to set RX Loop Bandwidth – Write 2’b11 to 4/5.36864.6:5 to set TX Loop Bandwidth – Write 4’b0101 to 4/5.36864.11:8 to set MPY RX multiplier factor to 10 – Write 4’b0101 to 4/5.36864.3:0 to set MPY TX multiplier factor to 10 – Write 16’h0000 to 4/5.36865 SERDES_RATE_CONFIG_TX_RX to set Full Rate – Write 3'b000 to 4/5.37127.14:12 to set control bits for VCO tail current to 0 – Write 1’b1 to 4/5.37127.15 to enable Jitter Cleaner – Wait 50 ms in order for JCPLL to lock – If using clock bypass mode (JCPLL Off) • JCPLL Mux Settings (see Figure 1-3) – Select REFCLK input (Default = Differential) Submit Documentation Feedback Device Reset Requirements/Procedure 91 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 • • • • 92 www.ti.com – If Single Ended REFCLK used – Write 2’b01 to 4/5.37120.15:14 – If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 – Select RXBYTE_CLK (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 4/5.37120.13:12 – If Differential REFCLK used – Write 2’b11 to 4/5.37120.13:12 – Select SERDES TX Reference Clock Input (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 4/5.37120.11:10 – If Differential REFCLK used – Write 2’b11 to 4/5.37120.11:10 – Select SERDES RX Reference Clock Input (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 4/5.37120.9:8 – If Differential REFCLK used – Write 2’b11 to 4/5.37120.9:8 – Select HSTL_2X_CLK (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 4/5.37120.5:4 – If Differential REFCLK used – Write 2’b11 to 4/5.37120.5:4 – Write 2’b00 to 4/5.32810.15:14 to select SERDES TX clock as RX_CLK output – Write 7’h04 to 4/5.37121.6:0 to set HSTL_DIV2 to value of 4. – Write 16’h0000 to 4/5.36865 SERDES_RATE_CONFIG_TX_RX to set Full Rate Mode Control (see Table 2-2) – Write 1’b1 to 4/5.32809.15 XAUI_ORDER – Write 1’b0 to 4/5.32808.15 to set source centered data for TX side – Write 1’b0 to 4/5.32808.11 to set source centered data for RX side – Write 1’b0 to 4/5.32792.1 to disable XAUI data loop back – Write 1’b0 to 4/5.32792.0 to disable XGMII data loop back – Write 1’b0 to 4/5.0.14 to disable loop back mode – Write 3’b110 to 4/5.36874.11:9 to set lane 0 TX swing setting amplitude to 1250 mVdfpp – Write 1’b1 to 4/5.36874.8 to set channel 0 TX CM bit – Write 3’b110 to 4/5.36876.11:9 to set lane 1 TX swing setting amplitude to 1250 mVdfpp – Write 1’b1 to 4/5.36876.8 to set channel 1 TX CM bit – Write 3’b110 to 4/5.36878.11:9 to set lane 2 TX swing setting amplitude to 1250 mVdfpp – Write 1’b1 to 4/5.36878.8 to set channel 2 TX CM bit – Write 3’b110 to 4/5.36880.11:9 to set lane 3 TX swing setting amplitude to 1250 mVdfpp – Write 1’b1 to 4/5.36880.8 to set channel 3 TX CM bit RX equalization settings – Write 4’b0001 to 4/5.36866.15:12 to turn on adaptive equalization (4’b0000 is off) – Write 4’b0001 to 4/5.36868.15:12 to turn on adaptive equalization (4’b0000 is off) – Write 4’b0001 to 4/5.36870.15:12 to turn on adaptive equalization (4’b0000 is off) – Write 4’b0001 to 4/5.36872.15:12 to turn on adaptive equalization (4’b0000 is off) – Write 2’b01 to 4/5.36866.3:2 for AC coupled mode (2’b00 is DC coupled mode) – Write 2’b01 to 4/5.36868.3:2 for AC coupled mode (2’b00 is DC coupled mode) – Write 2’b01 to 4/5.36870.3:2 for AC coupled mode (2’b00 is DC coupled mode) – Write 2’b01 to 4/5.36872.3:2 for AC coupled mode (2’b00 is DC coupled mode) TX DLL Offset – Write 16'h0028 to 4/5.37888 TX0_DLL_CONTROL – Write 16'h0028 to 4/5.37889 TX1_DLL_CONTROL – Write 16'h0028 to 4/5.37890 TX2_DLL_CONTROL – Write 16'h0028 to 4/5.37891 TX3_DLL_CONTROL Poll Serdes PLL Status for Locked State Device Reset Requirements/Procedure Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com • • • SLLS838D – MAY 2007 – REVISED JULY 2008 – Read 4/5.36891.4,0 SERDES_PLL_STATUS – PLL_LOCK_TX/RX – Keep polling until both bits are high. Issue Data path Reset – Write 1’b1 to 4/5.32800.15 Clear Latched Registers – Read 4/5.1 XS_STATUS_1 to clear – Read 4/5.8 XS_STATUS_2 to clear – Read 4/5.32770 TX_FIFO_STATUS to clear – Read 4/5.32771 TX_FIFO_DROP_COUNT to clear – Read 4/5.32772 TX_FIFO_INSERT_COUNT to clear – Read 4/5.32773 TX_CODEGEN_STATUS to clear – Read 4/5.(32780,1,2,3) LANE_0~3_EOP_ERROR_COUNT to clear – Read 4/5.(32784,5,6,7) LANE_0~3_CODE_ERROR_COUNT to clear – Read 4/5.32789 RX_LANE_ALIGN_STATUS to clear – Read 4/5.32790 RX_CHANNEL_SYNC_STATUS to clear – Read 4/5.32794 RX_CTC_STATUS to clear – Read 4/5.32795 RX_CTC_INSERT_COUNT to clear – Read 4/5.32796 RX_CTC_DELETE_COUNT to clear – Read 4/5.32797 DATA_DOWN to clear – Read 4/5.32799 CLOCK_DOWN_STATUS to clear – Read 4/5.36891 SERDES_PLL_STATUS to clear Operational Mode Status – Read Verify 4/5.1.7 XS_STATUS_1 – Fault (1’b0) – Read Verify 4/5.1.2 XS_STATUS_1 – XS Transmit Link Status (1’b1) – Read Verify 4/5.8.11 XS_STATUS_2 – Transmit fault (1’b0) – Read Verify 4/5.8.10 XS_STATUS_2 – Receive fault (1’b0) – Read Verify 4/5.24.12 XS_LANE_STATUS – Align status (1’b1) – Read Verify 4/5.32773.6:0 TX_CODEGEN_STATUS (6’b000000) – Read Verify 4/5.24.3:0 XS_LANE_STATUS – Lane (3-0) sync (4’b1111) – Read Verify 4/5.36891.4 SERDES_PLL_STATUS – PLL_LOCK_RX (1’b1) – Read Verify 4/5.36891.0 SERDES_PLL_STATUS – PLL_LOCK_TX (1’b1) Submit Documentation Feedback Device Reset Requirements/Procedure 93 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 3.2 www.ti.com Gigabit Ethernet Mode (RGMII) NOTE All global registers must be accessed indirectly through Clause 22. REFCLK frequency = 125 MHz, Serdes Data Rate = Half Rate, Mode = Transceiver, Edge Mode = Source Centered Mode, RX_CLK[n] out = TXBCLK[n], Jitter Cleaner PLL Multiplier Ratio = 1X or Off • Device Pin Setting(s) – Pin settings allow for maximum software configurability. – Ensure ST input pin is high. – Ensure CODE input pin is Low. – Ensure PLOOP input pin is Low. – Ensure SLOOP input pin is Low. – Ensure SPEED [1:0] input pins are both High. – Ensure ENABLE input pin is High. – Ensure PRBS_EN input pin is Low. • Reset Device – Issue a hard or soft reset (RST_N asserted for at least 10 us -or- Write 1’b1 to 0.15) • Clock Configuration – If using JCPLL (JCPLL 1X) • JCPLL Mux Settings (see Figure 1-3) – Select REFCLK input (Default = Differential) – If Single Ended REFCLK used – Write 2’b01 to 4/5.37120.15:14 – If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 – Write 2’b11 to 4/5.37120.13:12 to select differential REFCLKP/N as RXBYTECLK – Write 4’b0000 to 4/5.37120.11:8 to select jitter cleaned clock for SERDES TX/RX. – Write 2’b11 to 4/5.37120.7:6 to select differential REFCLKP/N as Delay Stopwatch clock input – Write 2’b00 to 4/5.37120.5:4 to select jitter cleaned clock for HSTL VTP 2x – Write 2’b00 to 16.10:9 to select SERDES TX clock as RX_CLK output (per channel) – Write 16’h0081 to 4/5.37126 to set Charge pump control – Write 16’h00A0 to 4/5.37128 to set TXRX output divider • Clock Divide Settings (see Figure A-13) – Write 7’b1000000 to 4/5.37124.14:8 to set REF_DIV to value of 1 – Write 1’b1 to 4/5.37124.15 REFDIV_EN to enable reference clock divider – Write 7’h18 to 4/5.37124.6:0 to set FB_DIV to value of 24 – Write 1’b1 to 4/5.37124.7 FBDIV_EN to enable feedback divider – Write 7’h18 to 4/5.37125.6:0 to set RXTX_DIV to value of 24 – Write 1’b1 to 4/5.37125.7 OUTDIV_EN to enable RXTX_DIV output divider – Write 7’h0D to 4/5.37121.14:8 to set HSTL_DIV to value of 13 – Write 7’h06 to 4/5.37121.6:0 to set HSTL_DIV2 to value of 6 – Write 2’b11 to 4/5.36864.14:13 to set RX Loop Bandwidth – Write 2’b11 to 4/5.36864.6:5 to set TX Loop Bandwidth – Write 4’b0101 to 4/5.36864.11:8 to set MPY RX multiplier factor to 10 – Write 4’b0101 to 4/5.36864.3:0 to set MPY TX multiplier factor to 10 – Write 16’h5555 to 4/5.36865 SERDES_RATE_CONFIG_TX_RX to set Half Rate – Write 3'b000 to 4/5.37127.14:12 to set control bits for VCO tail current to 0 – Write 1’b1 to 4/5.37127.15 to enable Jitter Cleaner – Wait 50 ms in order for JCPLL to lock 94 Device Reset Requirements/Procedure Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 • • • Else if using clock bypass mode (JCPLL Off) – JCPLL Mux Settings (see Figure 1-3) – Select REFCLK input (Default = Differential) – If Single Ended REFCLK used – Write 2’b01 to 4/5.37120.15:14 – If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 – Select RXBYTE_CLK (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 4/5.37120.13:12 – If Differential REFCLK used – Write 2’b11 to 4/5.37120.13:12 – Select SERDES TX Reference Clock Input (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 4/5.37120.11:10 – If Differential REFCLK used – Write 2’b11 to 4/5.37120.11:10 – Select SERDES RX Reference Clock Input (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 4/5.37120.9:8 – If Differential REFCLK used – Write 2’b11 to 4/5.37120.9:8 – Select DELAY_CLK (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 4/5.37120.7:6 – If Differential REFCLK used – Write 2’b11 to 4/5.37120.7:6 – Select HSTL_2X_CLK (Default = Differential) – If Single Ended REFCLK used – Write 2’b10 to 4/5.37120.5:4 – If Differential REFCLK used – Write 2’b11 to 4/5.37120.5:4 – Write 2’b00 to 16.10:9 to select SERDES TX clock as RX_CLK output (per channel) – Write 7’h04 to 4/5.37121.6:0 to set HSTL_DIV2 to value of 4. – Write 15’h1515 to 4/5.36864.14:0 SERDES_PLL_CONFIG to set MPY RX/TX multiplier factor to 10 – Write 16’h5555 to 4/5.36865 SERDES_RATE_CONFIG_TX_RX to set Half Rate Mode Control (see Table 2-2) – Write 1’b0 to 17.0 for RX source centered mode (per channel) – Write 1’b0 to 17.1 for TX source centered mode (per channel) – Write 1’b1 to 17.2 to enable 8B/10B encode decode functions (per channel) – Write 1’b1 to 17.3 to enable 1000Base-X PCS TX & PCS RX functions (per channel) – Write 1’b1 to 17.4 to set nibble order, LSB on rising edge, MSB on falling edge (per channel) – Write 1’b1 to 17.5 to enable DDR data on TX/RX directions (per channel) – Write 1’b0 to 17.6 to disable FC_PH overlay detection (per channel) – Write 1’b1 to 17.7 to enable comma detection (per channel) – Write 1’b0 to 17.9 to disable full DDR mode (per channel) – Write 1’b0 to 16.8 to disable Farend Loop back (per channel) – Write 1’b0 to 0.14 to disable loop back mode (per channel) – Write 3’b111 to 4/5.36874.11:9 to set channel 0 TX swing setting amplitude to 1375 mVdfpp – Write 1’b1 to 4/5.36874.8 to set channel 0 TX CM bit – Write 3’b111 to 4/5.36876.11:9 to set channel 1 TX swing setting amplitude to 1375 mVdfpp – Write 1’b1 to 4/5.36876.8 to set channel 1 TX CM bit – Write 3’b111 to 4/5.36878.11:9 to set channel 2 TX swing setting amplitude to 1375 mVdfpp – Write 1’b1 to 4/5.36878.8 to set channel 2 TX CM bit – Write 3’b111 to 4/5.36880.11:9 to set channel 3 TX swing setting amplitude to 1375 mVdfpp – Write 1’b1 to 4/5.36880.8 to set channel 3 TX CM bit RX equalization settings – Write 4’b0001 to 4/5.36866.15:12 to turn on adaptive equalization (4’b0000 is off) Submit Documentation Feedback Device Reset Requirements/Procedure 95 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 • • • • • 96 www.ti.com – Write 4’b0001 to 4/5.36868.15:12 to turn on adaptive equalization (4’b0000 is off) – Write 4’b0001 to 4/5.36870.15:12 to turn on adaptive equalization (4’b0000 is off) – Write 4’b0001 to 4/5.36872.15:12 to turn on adaptive equalization (4’b0000 is off) – Write 2’b01 to 4/5.36866.3:2 for AC coupled mode (2’b00 is DC coupled mode) – Write 2’b01 to 4/5.36868.3:2 for AC coupled mode (2’b00 is DC coupled mode) – Write 2’b01 to 4/5.36870.3:2 for AC coupled mode (2’b00 is DC coupled mode) – Write 2’b01 to 4/5.36872.3:2 for AC coupled mode (2’b00 is DC coupled mode) TX DLL Offset – Write 16'h0028 to 4/5.37888 TX0_DLL_CONTROL – Write 16'h0028 to 4/5.37889 TX1_DLL_CONTROL – Write 16'h0028 to 4/5.37890 TX2_DLL_CONTROL – Write 16'h0028 to 4/5.37891 TX3_DLL_CONTROL Poll Serdes PLL Status for Locked State – Read 4/5.36891.4,0 SERDES_PLL_STATUS – PLL_LOCK_TX/RX – Keep polling until both bits are high Issue Data path Reset – Write 1’b1 to 16.11 (per channel) Clear Latched Registers – Read 1 PHY_STATUS_1 to clear (per channel) – Read 18 PHY_RX_CTC_FIFO_STATUS to clear (per channel) – Read 19 PHY_TX_CTC_FIFO_STATUS to clear (per channel) – Read 28 PHY_CHANNEL_STATUS to clear (per channel) – Read 4/5.36891 SERDES_PLL_STATUS to clear Operational Mode Status – Read Verify 1.2 PHY_STATUS_1 – Link Status (1’b1) (per channel) – Read Verify 18.15 PHY_RX_CTC_FIFO_STATUS – RX_CTC_Reset (1’b0) (per channel) – Read Verify 19.15 PHY_TX_CTC_FIFO_STATUS – TX_FIFO_Reset_1Gx (1’b0) (per channel) – Read Verify 28.13:12 PHY_CHANNEL_STATUS – Enc/Dec Invalid Code Word (2’b00) (per channel) – Read Verify 4/5.36891.4 SERDES_PLL_STATUS – PLL_LOCK_RX (1’b1) – Read Verify 4/5.36891.0 SERDES_PLL_STATUS – PLL_LOCK_TX (1’b1) Device Reset Requirements/Procedure Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 3.3 SLLS838D – MAY 2007 – REVISED JULY 2008 Jitter Test Pattern Generation and Verification Procedures Use one of the following procedures to generate and verify the respective test patterns. It is assumed that an appropriate external cable has been connected between serial outputs and serial inputs. No functional parallel side connections are necessary. • XAUI Based High Frequency Test Pattern: – Device Pin Setting(s): • Ensure ST primary input pin is low. – Reset Device: • Issue a hard or soft reset (RST_N asserted –or- Write 1 to 4/5.0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used - Write 2’b01 to 4/5.37120.15:14 • If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.11:10 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.9:8 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.9:8 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – Issue Datapath Reset: • Write 1’b1 to 4/5.32800.15 – Verify RX Link Up: • Read 4/5.8.10, and discard value read. • Poll 4/5.8.10 deasserted. – Bypass Lane Alignment Logic: • Write 1’b1 to 4/5.32798.3 – Select Test Pattern: • Write 2’b00 to 4/5.25.1:0. – Enable Pattern Generation/Verification • Write 1’b1 to 4/5.25.2. – Clear Error Counters: • Read 4/5.32774, 4/5.32775, 4/5.32776, 4/5.32777 – The pattern verification is now in progress. – Verify Error Free Operation (as many times as desired during the duration of the test period): • Read 4/5.32774, and verify 16’h0000 is read to confirm error free operation. • Read 4/5.32775, and verify 16’h0000 is read to confirm error free operation. • Read 4/5.32776, and verify 16’h0000 is read to confirm error free operation. • Read 4/5.32777, and verify 16’h0000 is read to confirm error free operation. • XAUI Based Low Frequency Test Pattern: – Follow the XAUI Based High Frequency Test Pattern procedure above, with the following exception: • Write 2’b01 to 4/5.25.1:0 instead of 2’b00. • XAUI Based Mixed Frequency Test Pattern: – Follow the XAUI Based High Frequency Test Pattern procedure above, with the following exception: • Write 2’b10 to 4/5.25.1:0 instead of 2’b00. Submit Documentation Feedback Device Reset Requirements/Procedure 97 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 98 www.ti.com • XAUI Based Continuous Random Test Pattern (CRPAT): – Device Pin Setting(s): • Ensure ST primary input pin is low. • Ensure CODE primary input pin is low. – Reset Device: • Issue a hard or soft reset (RST_N asserted –or- Write 1 to 4/5.0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used - Write 2’b01 to 4/5.37120.15:14 • If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.11:10 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.9:8 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.9:8 – Set XAUI mode: • Write 1’b1 to 4/5.32809.15 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – Issue Datapath Reset: • Write 1’b1 to 4/5.32800.15 – Clear Counters: • Read the test pattern error counters in the following order – 4/5.32778 – 4/5.32779 – Enable Pattern Generation: • Write 1’b1 to 4/5.32768.1 – Enable Pattern Verification: • Write 1’b1 to 4/5.32769.1 – Poll Lane Align Status Asserted: • Read 4/5.1.2, and discard value read. • Poll 4/5.1.2 asserted – Verify that the test pattern preamble has been received: • Poll 4/5.32801.15 asserted – The pattern verification is now in progress. – Verify Error Free Operation (as many times as desired during the duration of the test period): • Poll 4/5.1.2 asserted (Lane Align Status) • Read 4/5.32778, and verify 16’h0000 is read to confirm error free operation. • Read 4/5.32779, and verify 16’h0000 is read to confirm error free operation. • XAUI Based Continuous Jitter Test Pattern (CJPAT): – Follow the XAUI Based Continuous Random Test Pattern procedure above, with the following exceptions: • Write 1’b1 to 4/5.32768.0 instead of 4/5.32768.1. • Write 1’b1 to 4/5.32769.0 instead of 4/5.32769.1. • 10GFC Based Continuous Jitter Test Pattern (CJPAT): – Follow the XAUI Based Continuous Random Test Pattern procedure above, with the following Device Reset Requirements/Procedure Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 exceptions: • Write 1’b1 to 4/5.32768.2 instead of 4/5.32768.1. • Write 1’b1 to 4/5.32769.2 instead of 4/5.32769.1. • Write 1’b0 to 4/5.32809.15 instead of 1’b1. • 1000Base-X Based High/Mixed/Low Frequency Test Pattern: – Device Pin Setting(s): • Ensure ST primary input pin is high. • Ensure CODE primary input pin is low. – Reset Device: • Issue a hard or soft reset (RST_N asserted –or- Write 1 to 0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used - Write 2’b01 to 4/5.37120.15:14 • If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.11:10 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.9:8 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.9:8 – Disable Comma Detection: • Write 1’b0 to 17.7 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – Issue Datapath Reset: • Write 1’b1 to 16.11 – Select Test Pattern: • If High Frequency Pattern is desired: – Write 3’b000 to 16.2:0 • If Low Frequency Pattern is desired: – Write 3’b001 to 16.2:0 • If Mixed Frequency Pattern is desired: – Write 3’b010 to 16.2:0 – Enable Test Pattern Generation: • Write 1’b1 to 16.4 – Clear Counters: • Read 22.15:0 and discard the value. – Enable Test Pattern Verification: • Write 1’b1 to 16.3 – Verify Test In Progress: • Poll 21.1 asserted. – The pattern verification is now in progress. – Verify Error Free Operation (as many times as desired during the duration of the test period): • Read 22.15:0, and verify 16’h0000 is read to confirm error free operation. • 1000Base-X Based Continuous Random Pattern (CRPAT) Long/Short Test Pattern: – Device Pin Setting(s): • Ensure ST primary input pin is high. Submit Documentation Feedback Device Reset Requirements/Procedure 99 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 – – – – – – – – – – – – – – www.ti.com • Ensure CODE primary input pin is high. Reset Device: • Issue a hard or soft reset (RST_N asserted –or- Write 1 to 0.15) Select single ended or differential REFCLK input: • If Single Ended REFCLK used - Write 2’b01 to 4/5.37120.15:14 • If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.11:10 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.11:10 Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.9:8 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.9:8 Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. Enable Encoder/Decoder • Write 1’b1 to 17.2 Issue Datapath Reset: • Write 1’b1 to 16.11 Select Test Pattern: • If CRPAT Long Pattern is desired: – Write 3’b011 to 16.2:0 • If CRPAT Short Pattern is desired: – Write 3’b100 to 16.2:0 Enable Test Pattern Generation: • Write 1’b1 to 16.4 Clear Counters: • Read 23.15:0 and 24.15:0 and discard the values. Enable Test Pattern Verification: • Write 1’b1 to 16.3 Verify Test In Progress: • Poll 21.0 asserted. The pattern verification is now in progress. Verify Error Free Operation (as many times as desired during the duration of the test period): • Read 23.15:0, and verify 16’h0000 is read to confirm error free operation. • Read 24.15:0, and verify 16’h0000 is read to confirm error free operation. If more than one test is specified results are unpredictable. If another test type is desired, begin at the first step of that procedure. 100 Device Reset Requirements/Procedure Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com 3.4 SLLS838D – MAY 2007 – REVISED JULY 2008 PRBS Test Generation and Verification Procedures Use one of the following procedures to generate and verify the respective PRBS test patterns. It is assumed that an appropriate external cable has been connected between serial outputs and serial inputs. No functional parallel side connections are necessary. • 1000Base-X 27-1 PRBS Register Based Testing – Device Pin Setting(s): • Ensure ST primary input pin is high. • Ensure CODE primary input pin is low. – Reset Device: • Issue a hard or soft reset (RST_N asserted –or- Write 1 to 0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used - Write 2’b01 to 4/5.37120.15:14 • If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.11:10 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.9:8 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.9:8 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – Issue Datapath Reset: • Write 1’b1 to 16.11 – Enable PRBS Generator (On Channel Desired): • Write 1’b1 to 16.6 – Enable Test Pattern Verification: • Write 1’b1 to 16.7 – Clear Counters: • Read 29.15:0 and discard the value. – The pattern verification is now in progress. – Verify Error Free Operation (as many times as desired during the duration of the test period): • Read 29.15:0, and verify 16’h0000 is read to confirm error free operation. – GPO3 contains a real time output that when high indicates if the input PRBS pattern on TD × 3/RD × 3 is errored. – GPO2 contains a real time output that when high indicates if the input PRBS pattern on TD × 2/RD × 2 is errored. – GPO1 contains a real time output that when high indicates if the input PRBS pattern on TD × 1/RD × 1 is errored. – GPO0 contains a real time output that when high indicates if the input PRBS pattern on TD × 0/RD × 0 is errored. • 27-1/223-1 PRBS Pin Based Testing – Device Pin Setting(s): • Ensure PRBS_EN primary input pin is high. • PRBS Selection: – For PRBS 27-1- Ensure ST primary input pin is high. – For PRBS 223-1- Ensure ST primary input pin is low. – Reset Device: Submit Documentation Feedback Device Reset Requirements/Procedure 101 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com • – – – – – – – – – • 102 Issue a hard or soft reset (RST_N asserted –or- ST=0: Write 1 to 4/5.0.15 ST=1: Write 1 to 0.15) Select single ended or differential REFCLK input: • If Single Ended REFCLK used - Write 2’b01 to 4/5.37120.15:14 • If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.11:10 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.11:10 Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.9:8 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.9:8 Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. Issue Datapath Reset: • If ST=1: Write 1’b1 to 16.11 • If ST=0: Write 1’b1 to 4/5.32800.15 GPO3 contains a real time output that when high indicates if the input PRBS pattern on TD × 3/RD × 3 is errored. GPO2 contains a real time output that when high indicates if the input PRBS pattern on TD × 2/RD × 2 is errored. GPO1 contains a real time output that when high indicates if the input PRBS pattern on TD × 1/RD × 1 is errored. GPO0 contains a real time output that when high indicates if the input PRBS pattern on TD × 0/RD × 0 is errored. SERDES Macro 27-1/223-1 PRBS Register Based Testing – Reset Device: • Issue a hard or soft reset (RST_N asserted –or- ST=0: Write 1 to 4/5.0.15 ST=1: Write 1 to 0.15) – Select single ended or differential REFCLK input: • If Single Ended REFCLK used - Write 2’b01 to 4/5.37120.15:14 • If Differential REFCLK used – Write 2’b00 to 4/5.37120.15:14 – Select SERDES TX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.11:10 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.11:10 – Select SERDES RX Reference Clock Input: • If Single Ended REFCLK used - Write 2’b10 to 4/5.37120.9:8 • If Differential REFCLK used – Write 2’b11 to 4/5.37120.9:8 – Ensure a legal reference clock operation frequency is selected based on Appendix A, and provision control settings accordingly. It is also possible to use the Jitter Cleaner during these tests, and the user should consult Appendix A for further Jitter Cleaner provisioning details. – PRBS Selection: • For PRBS 27-1– Write 2’b10 4/5.36881.1:0. – Write 2’b10 4/5.36882.1:0. • For PRBS 223-1– Write 2’b11 4/5.36881.1:0. – Write 2’b11 4/5.36882.1:0. Device Reset Requirements/Procedure Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 • • • • • • • • • Enable PRBS Generation: – Write 1’b1 to 4/5.36881.2 – Write 1’b1 to 4/5.36874.1 – Write 1’b1 to 4/5.36876.1 – Write 1’b1 to 4/5.36878.1 – Write 1’b1 to 4/5.36880.1 Enable PRBS Verification: – Write 1’b1 to 4/5.36882.3 – Write 1’b1 to 4/5.36866.1 – Write 1’b1 to 4/5.36868.1 – Write 1’b1 to 4/5.36870.1 – Write 1’b1 to 4/5.36872.1 Clear Counters: – Read 4/5.38144.7:0, 4/5.38145.7:0, 4/5.38146.7:0, 4/5.38147.7:0 and discard the value. The pattern verification is now in progress Verify Error Free Operation (as many times as desired during the duration of the test period): – Read 4/5.38147.7:0, and verify 8’h00 is read to confirm error free operation on TD × 3/RD × 3. – Read 4/5.38146.7:0, and verify 8’h00 is read to confirm error free operation on TD × 2/RD × 2. – Read 4/5.38145.7:0, and verify 8’h00 is read to confirm error free operation on TD × 1/RD × 1. – Read 4/5.38144.7:0, and verify 8’h00 is read to confirm error free operation on TD × 0/RD × 0. GPO3 contains a real time output that when high indicates if the input PRBS pattern on TD × 3/RD × 3 is errored, provided that ST=0. If ST=1, GPO3 does not indicate test failure status. It is acceptable to de-assert ST (ST=0) at this point in the test (if not already de-asserted). GPO2 contains a real time output that when high indicates if the input PRBS pattern on TD × 2/RD × 2 is errored, provided that ST=0. If ST=1, GPO2 does not indicate test failure status. It is acceptable to de-assert ST (ST=0) at this point in the test (if not already de-asserted). GPO1 contains a real time output that when high indicates if the input PRBS pattern on TD × 1/RD × 1 is errored, provided that ST=0. If ST=1, GPO1 does not indicate test failure status. It is acceptable to de-assert ST (ST=0) at this point in the test (if not already de-asserted). GPO0 contains a real time output that when high indicates if the input PRBS pattern on TD × 0/RD × 0 is errored, provided that ST=0. If ST=1, GPO0 does not indicate test failure status. It is acceptable to de-assert ST (ST=0) at this point in the test (if not already de-asserted). Submit Documentation Feedback Device Reset Requirements/Procedure 103 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 3.5 www.ti.com Signal Pin Description Table 3-1. Global Signals SIGNAL RST_N ENABLE LOCATION P1 U1 VOLTAGE TYPE DESCRIPTION VDDO 2.5 V LVCMOS Input Chip Reset (Active Low) When asserted (low logic level), this signal reinitializes the entire device. Must be held asserted (low logic level) for at least 10 µS after device power up. VDDO 2.5 V LVCMOS Input Device Enable. When this pin is held low, the device is in a low power state. When high the device operates normally. A hard or soft reset must be applied after a change of state occurs on this input signal. Speed Selection pins. These pins put all four channels of TLK3134 into one of the three supported (full/half/quarter) channel operation speeds. 00 – All Four Channels in Full Rate mode 01 – All Four Channels in Half Rate mode 10 – All Four Channels in Quarter rate mode 11 – Software Selectable Rate In the software selectable rate mode, the rate for each channel may be configured independently by the MDIO interface. SPEED[1:0] R16 N14 VDDO 2.5 V LVCMOS Input The SPEED[1:0] inputs control both RX and TX directions for all four channels (Including XAUI and 10GFC modes). See Appendix A for further information on speed selection (full/half/quarter) for proper settings as a function of the application mode and reference clock frequency. Note that if these pins are not configured on the application board to select “Software Selectable Rate”, then the internal speed register bits cannot be used to control the rate settings, and the full/half/quarter rate selection is fixed. PLOOP SLOOP PRBS_EN 104 N16 R17 U2 VDDO VDDO VDDO 2.5 V LVCMOS Input Parallel Loop Enable. When high, the serial output for each channel is internally looped back to its serial input so that the transmit parallel interface input data is output onto the receive parallel interface. 2.5 V LVCMOS Input Serial Loop Enable. When high, the serial input from each channel is internally looped back to that channel’s serial output, making that channel a serial repeater. In device configurations where clock tolerance compensation is not performed in the transmit direction, there are two options for error free serial loopback operation: 1. Frequency lock (0 ppm) the incoming serial data rate to the local reference clock device input. 2. Provision the TX SERDES REFCLK to run from a jitter cleaned version of the RX SERDES RXBCLK (Receive Byte Clock). 2.5 V LVCMOS Input PRBS Enable. When this pin is asserted high, the internal PRBS generator and comparator circuits are enabled on the transmit and receive data paths of all channels. The PRBS results for each channel can be read through MDIO counters. Primary chip output signals GPO3/GPO2/GPO1/GPO0 remain low during PRBS testing when the input serial stream PRBS pattern is correct, and pulse high when PRBS errors are detected on the input serial stream on a per channel basis. GPO3 contains the Channel 3 PRBS currently passing (when low) indication. GPO2 contains the Channel 2 PRBS currently passing (when low) indication. GPO1 contains the Channel 1 PRBS currently passing (when low) indication. GPO0 contains the Channel 0 PRBS currently passing (when low) indication. An external loopback connection (via external cables) is required during PRBS testing. ST=0: PRBS 223-1 is transmitted on each transmit channel serial output, and compared on each receive channel serial input. ST=1: PRBS 27-1 is transmitted on each transmit serial output, and compared on each receive serial input. Device Reset Requirements/Procedure Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 3-1. Global Signals (continued) SIGNAL CODE LOCATION VOLTAGE M3 VDDO TYPE DESCRIPTION 2.5 V LVCMOS Input Code Enable. This signal selects different functionality based on the setting of the ST primary chip input pin. ST=0: This signal is logically OR’d with the XAUI_ORDER register bit (Register Bit 32809.15). XAUI applications can either tie this input signal high (preferred) or tie this signal low (must program the XAUI_ORDER register bit after device reset to high if CODE is tied off low). 10GFC applications must tie this signal low. ST=1: This signal is logically OR’d with the PCS_EN register bit (Register Bit 17.3). RGMII/GMII applications can either tie this input signal high (preferred) or tie this signal low (must program the PCS_EN 17.3 register bit after device reset to high if CODE is tied off low). Non RGMII/GMII applications must tie this input signal low. Table 3-2. JTAG Signals SIGNAL LOCATION VOLTAGE TYPE DESCRIPTION JTAG Input Data. TDI is used to serially shift test data and test instructions into the device during the operation of the test port. TDI N13 VDDO 2.5 V LVCMOS Input (Internal Pullup) TDO R15 VDDO 2.5 V LVCMOS Output JTAG Output Data. TDO is used to serially shift test data and test instructions out of the device during operation of the test port. When the JTAG port is not in use, TDO is in a high impedance state. TMS P15 VDDO 2.5 V LVCMOS Input (Internal Pullup) JTAG Mode Select. TMS is used to control the state of the internal test-port controller. TCK P17 VDDO 2.5 V LVCMOS Input JTAG Clock. TCK is used to clock state information and test data into and out of the device during the operation of the test port. TRST_N N15 VDDO 2.5 V LVCMOS Input (Internal Pullup) JTAG Test Reset. TRST_N is used to reset the JTAG logic into system operational mode. Table 3-3. MDIO Related Signals SIGNAL LOCATION VOLTAGE TYPE MDC T16 VDDM 1.2 V OR 2.5 V LVCMOS Input MDIO U16 VDDM 1.2 V OR 2.5 V LVCMOS Input/ Output PRTAD[4: 0] N5, N4, N3, N2, T1 VDDO Submit Documentation Feedback 2.5 V LVCMOS Input DESCRIPTION Management Interface Clock This clock is used to sample the MDIO signal. Management Interface Data This bidirectional data line for MDIO Port is sampled on the rising edge of MDC. THIS SIGNAL MUST BE EXTERNALLY PULLED UP TO VDDM. Consult IEEE802.3 Clause 22/45 for an appropriate resistance value. Port Address Used to select the Device Id/Port ID in Clause 22/Clause 45 MDIO modes. ST=0 (Clause 45 Mode): If PRTAD[0] is a 0, then a PHY device is selected for XAUI/10GFC register accesses (4.xxxxx.x). If PRTAD[0] is a 1, then a DTE device is selected for XAUI/10GFC register accesses (5.xxxxx.x). PRTAD[4:1] selects the Clause 45 port address (TLK3134 must be located on even boundaries since the lowest port address bit determines DTE/PHY, and is used as a device address instead of port address). ST=1 (Clause 22 Mode): PRTAD[4:2] selects a block of four sequential Clause 22 port addresses. Each channel is implemented as a different port address, and can be accessed by setting the appropriate port address field within the Clause 22 MDIO transaction. PRTAD[1:0] pins are not used in Clause 22 mode. Channel 0 responds to port address 0 within the block of four port addresses. Channel 1 responds to port address 1 within the block of four port addresses. Channel 2 responds to port address 2 within the block of four port addresses. Channel 3 responds to port address 3 within the block of four port addresses. Device Reset Requirements/Procedure 105 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 3-3. MDIO Related Signals (continued) SIGNAL ST LOCATION M5 REFCLK M2 VOLTAGE TYPE DESCRIPTION VDDO 2.5 V LVCMOS Input MDIO Select Used to select Clause 22 (=1) or Clause 45 (=0) operation. A hard or soft reset must be applied after a change of state occurs on this input signal. VDDO 2.5 V LVCMOS Input Single Ended Reference Clock Single ended reference clock input. By default, the differential reference clock (REFCLKP/N) is selected. This default value may be changed by a mdio register (4/5.37120.15:14). The acceptable input frequency range on this input signal is 50 Mhz → 150 Mhz. Jitter performance is optimal when using the differential REFCLK input. Table 3-4. Parallel Data Pins SIGNAL LOCATION VOLTAGE TXCLK_[3:0] C11 F16 K13 M14 VDDQ/ VREF1/2 1.5/1.8 V Transmit Data Clocks (XGMII) These four signals are the parallel (XGMII) HSTL Input side input clocks per channel. In XAUI/10GFC mode, TXCLK_1 is used. TXD_[31:0] B11 A13 B13 C12 E12 B14 D13 C15 D14 E13 B16 D15 F13 C16 D17 E15 E16 E17 F15 G16 G13 G17 J13 J14 J15 J17 K15 M17 L16 L13 L14 M16 VDDQ/ VREF1/2 Transmit Data Pins (XGMII) Parallel interface data pins. See the following tables for functionality per application mode: Table 2-3 XAUI - Lane To Functional Pin Mapping (XAUI_ORDER = 1) Table 2-4 10GFC - Lane To Functional Pin Mapping (XAUI_ORDER = 0) Table 2-5 RGMII - Lane To Functional Pin Mapping Table 2-6 RTBI - Lane To Functional Pin Mapping 1.5/1.8 V Table 2-7 TBI - Lane To Functional Pin Mapping HSTL Input Table 2-8 GMII - Lane To Functional Pin Mapping Table 2-9 EBI - Lane To Functional Pin Mapping Table 2-10 REBI - Lane To Functional Pin Mapping Table 2-11 NBI - Lane To Functional Pin Mapping Table 2-12 RNBI - Lane To Functional Pin Mapping Table 2-13 TBID - Lane To Functional Pin Mapping Table 2-15 NBID - Lane To Functional Pin Mapping TXC_[7:0] B12 D12 A16 C17 F14 H16 K17 L15 VDDQ/ VREF1/2 See the following tables for functionality per application mode: Table 2-3 XAUI - Lane To Functional Pin Mapping (XAUI_ORDER = 1) Table 2-4 10GFC - Lane To Functional Pin Mapping (XAUI_ORDER = 0) Table 2-5 RGMII - Lane To Functional Pin Mapping Table 2-6 RTBI - Lane To Functional Pin Mapping Table 2-7 TBI - Lane To Functional Pin Mapping 1.5/1.8 V Table 2-8 GMII - Lane To Functional Pin Mapping HSTL Input Table 2-9 EBI - Lane To Functional Pin Mapping Table 2-10 REBI - Lane To Functional Pin Mapping Table 2-11 NBI - Lane To Functional Pin Mapping Table 2-12 RNBI - Lane To Functional Pin Mapping Table 2-13 TBID - Lane To Functional Pin Mapping Table 2-15 NBID - Lane To Functional Pin Mapping RXCLK_[3:0] C2 C6 D7 D9 VDDQ 106 Device Reset Requirements/Procedure TYPE 1.5/1.8 V HSTL Output DESCRIPTION Receive Data Clocks (XGMII ) These four signals are the parallel (XGMII) side output clocks per channel. In XAUI/10GFC mode, RXCLK_1 is used. Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 3-4. Parallel Data Pins (continued) SIGNAL LOCATION RXD_[31:0] H2 H1 H5 G3 G4 F1 F5 E2 E1 E3 D2 E5 B1 D4 B2 E6 A3 B3 C5 B4 A4 B6 A6 A8 B8 D8 B9 A10 C9 A11 D10 E10 RXC_[7:0] H4 F4 D3 D5 E7 B7 E8 C10 Submit Documentation Feedback VOLTAGE VDDQ VDDQ TYPE DESCRIPTION 1.5/1.8 V HSTL Output Receive Data Pins (XGMII) Parallel interface data pins. See the following tables for functionality per application mode: Table 2-3 XAUI - Lane To Functional Pin Mapping (XAUI_ORDER = 1) Table 2-4 10GFC - Lane To Functional Pin Mapping (XAUI_ORDER = 0) Table 2-5 RGMII - Lane To Functional Pin Mapping Table 2-6 RTBI - Lane To Functional Pin Mapping Table 2-7 TBI - Lane To Functional Pin Mapping Table 2-8 GMII - Lane To Functional Pin Mapping Table 2-9 EBI - Lane To Functional Pin Mapping Table 2-10 REBI - Lane To Functional Pin Mapping Table 2-11 NBI - Lane To Functional Pin Mapping Table 2-12 RNBI - Lane To Functional Pin Mapping Table 2-13 TBID - Lane To Functional Pin Mapping Table 2-15 NBID - Lane To Functional Pin Mapping 1.5/1.8 V HSTL Output Receive Data Control (XGMII) XGMII Control inputs. See the following tables for functionality per application mode: Table 2-3 XAUI - Lane To Functional Pin Mapping (XAUI_ORDER = 1) Table 2-4 10GFC - Lane To Functional Pin Mapping (XAUI_ORDER = 0) Table 2-5 RGMII - Lane To Functional Pin Mapping Table 2-6 RTBI - Lane To Functional Pin Mapping Table 2-7 TBI - Lane To Functional Pin Mapping Table 2-8 GMII - Lane To Functional Pin Mapping Table 2-9 EBI - Lane To Functional Pin Mapping Table 2-10 REBI - Lane To Functional Pin Mapping Table 2-11 NBI - Lane To Functional Pin Mapping Table 2-12 RNBI - Lane To Functional Pin Mapping Table 2-13 TBID - Lane To Functional Pin Mapping Table 2-15 NBID - Lane To Functional Pin Mapping Device Reset Requirements/Procedure 107 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 3-5. Serial Side Data/Clock Pins SIGNAL LOCATION VOLTAGE TYPE DESCRIPTION TDP3/TDN3 TDP2/TDN2 TDP1/TDN1 TDP0/TDN0 U8 U7 R6 R7 U5 U4 R3 R4 AVDD CML Output Transmit Differential Pairs, XAUI Lane, High speed serial outputs. The data rate of these signals is from 600 Mbps minimum to 3.75 Gbps maximum. RDP3/RDN3 RDP2/RDN2 RDP1/RDN1 RDP0/RDN0 U13 U14 R13 R12 U10 U11 R10 R9 AVDD CML Input Receive Differential Pairs, XAUI Lane, High speed serial inputs with on-chip 100 ohm differential termination. Each input pair is terminated differentially across an on chip 100 ohm resistor. The data rate of these signals is from 600 Mbps minimum to 3.75 Gbps maximum. Table 3-6. Miscellaneous Pins SIGNAL LOCATION VPP D11 E11 VOLTAGE TYPE DESCRIPTION DVDD P TESTEN M6 VDDO LVCMOS 2.5 V Input Test Mode Enable Input – Must Be Grounded in the System Application. AMUX1 T12 VDDA Analog Output SERDES Analog Mux 1 RX – Must be Unconnected/Open in the System Application AMUX0 T6 VDDA Analog Output SERDES Analog Mux 0 TX – Must be Unconnected/Open in the System Application Efuse Controller Voltage (1.2 V). Must be tied to 1.2 V (DVDD) in the system application. HSTL Impedance Control Resistors – 0.5% Tolerance Resistor required of the following values: 150 Ohms between RES4 and GND 150 Ohms between RES3 and GND 50 Ohms between RES2 and GND 50 Ohms between RES1 and GND Note: These resistors cannot be shared between output pins. RES[4:1] C14 H15 G2 C4 VDDQ Resistive Connection GPI1 R2 VDDO LVCMOS 2.5 V Input General Purpose Input – Must be Grounded in the System Application. GPO[4:0] J6 K6 L6 L3 N1 LVCMOS 2.5 V Output General Purpose Outputs – Must be Unconnected/Open in the System Application. It is recommended that these output ports go to headers or non-populated resistor pads to facilitate probing of internal device functions/settings during the initial system bring up process. Also, to monitor PRBS testing real time, these outputs must be available for probing on the application board. 108 VDDO Device Reset Requirements/Procedure Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 3-7. Voltage Supply and Reference Pins SIGNAL LOCATION TYPE DVDD F11, F6, F8, F9, G12, G6, J12, J7 M12 N10, N12, N17, N6, N8 T2 P Digital Core Power Supply (1.2 V ±5%) VDDO L2 N9 P14, P16, P3 R1 P LVCMOS and Bias Power (2.5 V ±5%) VDDM T17 P MDIO Power (2.5 V or 1.2 V ±5%) VDDQ A12, A15, A2, A5, A9 B15, B17, B5 C1, C7, C8 D1 E14, E4 F10, F17, F3, F7 G1, G14 H13, H17, H3, H6 J16 K16 L12 M15 P XGMII HSTL Power (1.5/1.8 V) 1.5 V Operation Range: 1.4 V → 1.6 V 1.8 V Operation Range: 1.7V → 1.9 V VREF1, VREF2 H14 A14 P XGMII HSTL Reference Voltage (.75 V or .9 V) These signals should be equal to VDDQ divided by 2. DGND A1, A17, A7 B10 C13, C3 D16, D6 E9 F12, F2 G10, G11, G15, G5, G7, G8, G9 H10, H11, H12, H7, H8, H9 J10, J11, J8, J9 K10, K11, K12, K14, K7, K8, K9 L10, L11, L17, L7, L8, L9 M10, M11, M13, M4, M7, M8, M9 P2 T15 U17 G Digital Ground AVDD N11, N7 R11, R14, R5, R8 U12, U6, U9 P Analog Power (1.2 V ±5%) AGND P10, P12, P13 , P4, P5,P6, P8 T11, T14, T3, T5, T8 G Analog Ground VDDR P9 P SERDES Voltage Regulator Input (1.5 V –or– 1.8 V) VDDT P11, P7 T4, T9 P SERDES Termination Voltage (1.2 V) VDDD T10, T13, T7 U15, U3 P SERDES Digital Power (1.2 V) Submit Documentation Feedback DESCRIPTION Device Reset Requirements/Procedure 109 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 3-8. Jitter Cleaner Related Pins SIGNAL LOCATION VOLTAGE TYPE DESCRIPTION REFCLKP/ REFCLKN L1 K1 VDD_CML I Differential Reference Clock Inputs By default, the differential reference clock (REFCLKP/N) is selected. This default value may be changed by a mdio register (4/5.37120.15:14). Must Be Externally AC Coupled REFCLKP – DPECL REFCLK P Input REFCLKN – DPECL REFCLK N Input Acceptable input frequency range is 50 MHz → 375 MHz. Jitter performance is optimal when using the differential REFCLK input. VDDA_VCO K2 P P Jitter Cleaner – VCO Supply - 1.2 V VSSA_VCO K3 G G Jitter Cleaner Ground VDDA_CP L4 P P Jitter Cleaner – Charge Pump - 1.2 V VSSA_CP L5 G G Jitter Cleaner Ground VDD_CML M1 P P Jitter Cleaner – REFCLKP/N Input Supply - 1.2 V VSS_CML J1 G G Jitter Cleaner Ground VDD_PLL J5 P P Jitter Cleaner Digital Power (1.2 V) VSS_PLL J4 G G Jitter Cleaner Ground VCO_TL_TST J3 G Analog Input VCO Testability Input. This signal should be grounded in the application. Jitter Cleaner Testability Pin. This signal should be left open (unconnected) in the application. TST_OUT J2 VDD_PLL Analog Input/Output CP_OUT K5 VDDA_CP Analog Output Charge Pump Output. If the internal Jitter Cleaner PLL is used, this signal should be connected to the input of the external loop filter (See Figure B-1). If the internal Jitter Cleaner PLL is not used, this node should be left open (unconnected). VTUNE K4 VDDA_VCO Analog Input LC VCO Bias Voltage. This signal should be connected to the output of the external loop filter if the Jitter Cleaner PLL is used (Figure B-1). If the internal Jitter Cleaner PLL is not used, this node should be grounded. A B C D E F G H J K L M N P R T U 1 2 3 4 5 DGND VDDQ RXD_15 RXD_11 VDDQ RXD_19 RXD_17 RXD_14 RXD_12 VDDQ VDDQ RXCLK_3 DGND RES1 RXD_13 VDDQ RXD_21 RXC_5 RXD_18 RXC_4 RXD_23 RXD_24 RXD_22 VDDQ RXD_20 RXD_26 DGND VDDQ RXC_6 RXD_25 VDDQ RES2 RXD_28 RXD_27 DGND RXD_30 RXD_31 VDDQ RXC_7 RXD_29 VSS_CML TST_OUT VCO_TL_TST VSS_PLL VDD_PLL REFCLKN VDDA_VCO VSSA_VCO VTUNE CP_OUT REFCLKP VDDO GPO1 VDDA_CP VSSA_CP VDD_CML REFCLK CODE DGND ST GPO0 PRTAD1 PRTAD2 PRTAD3 PRTAD4 RST_N DGND VDDO AGND AGND VDDO GPI1 TDP0 TDN0 AVDD PRTAD0 DVDD AGND VDDT AGND ENABLE PRBS_EN VDDD TDN1 TDP1 6 7 RXD_9 DGND RXD_10 RXC_2 RXCLK_2 VDDQ DGND RXCLK_1 RXD_16 RXC_3 DVDD VDDQ DVDD DGND VDDQ DGND GPO4 DVDD GPO3 DGND GPO2 DGND TESTEN DGND DVDD AVDD AGND VDDT TDP2 TDN2 AMUX0 VDDD AVDD TDN3 8 RXD_8 RXD_7 VDDQ RXD_6 RXC_1 DVDD DGND DGND DGND DGND DGND DGND DVDD AGND AVDD AGND TDP3 9 VDDQ RXD_5 RXD_3 RXCLK_0 DGND DVDD DGND DGND DGND DGND DGND DGND VDDO VDDR RDN0 VDDT AVDD Figure 3-1. Device Pinout Diagram – Part 1 (Top View) 110 Device Reset Requirements/Procedure Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 A B C D E F G H J K L M N P R T U 10 RXD_4 DGND RXC_0 RXD_1 RXD_0 VDDQ DGND DGND DGND DGND DGND DGND DVDD AGND RDP0 VDDD RDP1 11 RXD_2 TXD_31 TXCLK_3 VPP VPP DVDD DGND DGND DGND DGND DGND DGND AVDD VDDT AVDD AGND RDN1 12 VDDQ TXC_7 TXD_28 TXC_6 TXD_27 DGND DVDD DGND DVDD DGND VDDQ DVDD DVDD AGND RDN2 AMUX1 AVDD 13 14 TXD_30 VREF2 TXD_29 TXD_26 DGND RES4 TXD_25 TXD_23 TXD_22 VDDQ TXD_19 TXC_3 TXD_11 VDDQ VDDQ VREF1 TXD_9 TXD_8 TXCLK_1 DGND TXD_2 TXD_1 DGND TXCLK_0 TDI SPEED0 AGND VDDO RDP2 AVDD VDDD AGND RDP3 RDN3 15 16 VDDQ TXC_5 VDDQ TXD_21 TXD_24 TXD_18 TXD_20 DGND TXD_16 TXD_15 TXD_13 TXCLK_2 DGND TXD_12 RES3 TXC_2 TXD_7 VDDQ TXD_5 VDDQ TXC_0 TXD_3 VDDQ TXD_0 TRST_N PLOOP TMS VDDO TDO SPEED1 DGND MDC VDDD MDIO 17 DGND VDDQ TXC_4 TXD_17 TXD_14 VDDQ TXD_10 VDDQ TXD_6 TXC_1 DGND TXD_4 DVDD TCK SLOOP VDDM DGND Figure 3-2. Device Pinout Diagram – Part 2 (Top View) Submit Documentation Feedback Device Reset Requirements/Procedure 111 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 4 Electrical Specifications 4.1 ABSOLUTE MAXIMUM RATINGS (1) (2) www.ti.com over operating free-air temperature range (unless otherwise noted) UNIT Supply voltage AVDD, DVDD, VDDT, VDDD, VDDA_VCO, VDD_PLL, VDDA_CP, VDD_CML, VREF1/2 –0.3 to 1.5 V Supply voltage VDDQ, VDDR –0.3 to 2.0 V Supply voltage VDDO, VDDM Input Voltage (LVCMOS) VI Input Voltage (HSTL CLASS 1) VI –0.3 to 3.0 V –0.3 to Supply + 0.3 V –0.3 to 2.0 V Storage temperature –65°C to 150°C Electrostatic Discharge HBM: 1.5KV, CDM:500V Characterized free-air operating temperature range (1) (2) –40°C to 85°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. 4.2 RECOMMENDED OPERATING CONDITIONS MIN NOM MAX UNIT DVDD Core supply voltage 1.14 1.2 1.26 V AVDD Analog supply voltage 1.14 1.2 1.26 V 1.4 1.5 1.6 V VDDQ Parallel HSTL I/O supply voltage VDDO LVCMOS I/O supply voltage 1.5 V Application 1.8 V Application 1.7 1.8 1.9 2.37 2.5 2.63 1.2 V Application 1.14 1.2 1.26 2.5 V Application 2.37 2.5 2.63 1.5 V Application 0.65 0.75 0.85 1.8 V Application 0.85 0.9 0.95 V VDDM MDIO CMOS I/O supply voltage VREF1/2 HSTL reference voltage AVDD, VDDD, VDDT Supply current 3.75 Gbps 440 mA DVDD Supply current 3.75 Gbps 290 mA VDDR Supply current 3.75 Gbps 25 mA Supply current (1.6 V) 3.75 Gbps 520 Supply current (1.9 V) 3.75 Gbps 640 VDDO Supply current 3.75 Gbps 30 mA VDDA_VCO, VDD_PLL, VDD_CML, VDDA_CP Supply current 3.75 Gbps 100 mA PD Total power consumption See Figure 4-18 AVDD, VDDD, VDDT Shutdown current (1.26V) ENABLE low (1) 40 mA DVDD Shutdown current (1.26V) ENABLE low (1), HSTL powerdown 30 VDDR Shutdown current (1.9V) VDDQ (1) ENABLE low , HSTL active ENABLE low (1) ENABLE low (1), HSTL powerdown V V mA W 130 1 10 mA mA VDDQ Shutdown current (1.9V) VDDO Shutdown current (2.63V) ENABLE low (1) 10 mA Shutdown current (1.26V) (1) 1 mA VDDA_VCO, VDD_PLL, VDD_CML, VDDA_CP (1) 112 ENABLE low (1), HSTL active ENABLE low 230 mA Toggle RST_N before setting ENABLE low for proper shutdown. Electrical Specifications Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 REFERENCE CLOCK TIMING REQUIREMENTS (REFCLKP/N) (1) 4.3 PARAMETER CONDITION Frequency Minimum data rate Accuracy XAUI/10GFC/1G PCS Mode Accuracy Independent Channel Mode (1) NOM MAX UNIT 60 – 375 MHz 100 ppm ppm –100 Duty Cycle Jitter MIN 0 0 0 45% 50% 55% Random and deterministic 40 ps This clock should be crystal referenced to meet the requirements of the above table 4.4 REFERENCE CLOCK ELECTRICAL CHARACTERISTICS (REFCLKP/N) PARAMETER CONDITION Vid Differential Input Voltage CIN Input Capacitance RIN Input Differential Impedance trise Rise Time 4.5 MIN NOM MAX UNIT 100 2000 mVPP 80 20% to 80% 50 100 3 pF 120 Ω 600 ps SINGLE ENDED REFERENCE CLOCK ELECTRICAL CHARACTERISTICS (REFCLK) PARAMETER CONDITION MIN NOM MAX UNIT VIH High-Level Input Voltage 1.7 VDDO + 0.3 VIL Low-Level Input Voltage –0.3 0.7 V IIH/IIL High/Low Input Current ±10 µA trise Rise Time 20% → 80% 1 ns Jitter Peak to Peak Jitter Jitter Cleaner not used on REFCLK Tcyc Duty Cycle 4.6 V 40 40% 50% ps 60% Period MIN NOM MAX UNIT 1 MHz JITTER CLEANER TIMING PARAMETERS PARAMETER PLL Bandwidth CONDITION –3dB Jitter Peaking 0.1 dB VCO Output Jitter (rms) 2 MHz → 30 MHz 2 ps VCO Output Jitter (rms) 1.2 MHz → 30 MHz 2.5 ps VCO Output Jitter (rms) 600 kHz → 30 MHz 4 ps VCO Output Jitter (rms) 300 kHz → 30 MHz 8 ps Submit Documentation Feedback Electrical Specifications 113 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 4.7 www.ti.com LVCMOS ELECTRICAL CHARACTERISTICS CONDITION MIN VOH High-level output voltage PARAMETER IOH = –100 µA, Driver Enabled 2.1 VDDO V VOL Low-level output voltage IOL = 100 µA, Driver Enabled 0 0.2 V VIH High-level input voltage 1.7 VDDO + 0.3 V VIL Low-level input voltage –0.3 0.7 V IIH, IIL Receiver Only Low/High Input Current ±10 µA IOZ Driver Only Driver Disabled IOZ Driver/Receiver With Pullup/Pulldown Driver Disabled With Pull Up/Down Enabled CIN Input capacitance 4.8 NOM MAX UNIT ±35 µA ±100 µA 5 pF MDIO ELECTRICAL CHARACTERISTICS PARAMETER CONDITION MIN NOM MAX UNIT VIH High-level input voltage VDDM = 2.5 V 2.1 VDDM + 0.3 V VIL Low-level input voltage VDDM = 2.5 V –0.3 0.7 V VIH High-level input voltage VDDM = 1.2 V 0.84 VDDM + 0.3 V VIL Low-level input voltage VDDM = 1.2 V –0.3 0.36 V VOL Low Level Output Voltage VDDM = 2.5 V (IOL = 100 µA) 0 0.2 V VOL Low Level Output Voltage VDDM = 1.2 V (IOL = 100 µA) 0 0.2 V VOH High Level Output Voltage VDDM = 1.2/2.5 V (Open Drain Driver) Must be pulled up to VDDM on the customer board. – – V IIH, IIL Low/High Input Current MDC Signal ±20 µA IZ Low/High input current MDIO – Driver disabled ±50 µA CIN Input capacitance 5 pF 4.9 HSTL SIGNALS (VDDQ = 1.5/1.8 V) ELECTRICAL CHARACTERISTICS PARAMETER CONDITION MIN VOH(dc) High-level output voltage VOL(dc) Low-level output voltage VOH(ac) High-level output voltage VOL(ac) Low-level output voltage VIH(dc) High-level DC input voltage DC input, logic high VIL(dc) Low-level DC input voltage DC input, logic low VIH(ac) High-level AC input voltage AC input, logic high VIL(ac) Low-level AC input voltage AC input, logic low IOH(dc) High output current –8 IOL(dc) Low output current 8 CIN Input Capacitance Tacr AC Test Condition Rise Time (20 → 80%) 1 Tacs AC Test Condition Signal Swing 1 114 – Electrical Specifications NOM VDDQ– 0.4 MAX UNIT VDDQ V 0.40 V VDDQ V 0.50 V VREF1/2 + 0.10 VDDQ + 0.3 V VDDQ– 0.5 -0.30 VREF1/2 – 0.1 V VREF1/2 + 0.20 VDDQ+ 0.3 V -0.30 VREF1/2 – 0.20 V mA mA 4 pF 1 1 ns 1 1 V Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 4.10 SERIAL TRANSMITTER/RECEIVER CHARACTERISTICS PARAMETER VOD(pp) TX Output Differential Peak-to-Peak voltage swing. De-emphasis Amount = 0%. MIN NOM MAX SWING = 000 (See Table 2-105) CONDITION 80 125 180 SWING = 001 (See Table 2-105) 210 250 330 SWING = 010 (See Table 2-105) 425 500 630 SWING = 011 (See Table 2-105) 530 625 780 SWING = 100 (See Table 2-105) 635 750 900 SWING = 101 (See Table 2-105) 900 1000 1200 SWING = 110 (See Table 2-105) 1000 1250 1500 SWING = 111 (See Table 2-105) 1080 1375 1650 4.7% UNIT mVPP VDE TX Output De-Emphasis (VOD(dpp) = VDE × Percentage of nominal VOD(pp)) See Table 2-104 for details on de-emphasis settings. VCMT TX output common mode voltage See Figure 4-1. VID RX input differential voltage |RXP – RXN| See Figure 4-3. Direct Coupled Mode Only 100 600 See Figure 4-3. AC Coupled Mode Only 100 1100 RX input differential peak-to-peak voltage swing 2 × |RXP – RXN| See Figure 4-3. Direct Coupled Mode Only 200 1200 See Figure 4-3. AC Coupled Mode Only 200 2200 VCMR RX input common mode voltage range See Figure 4-3. Direct Coupled Mode Only 800 0.9 × AVDD mV ILKG RX input leakage current –10 10 µA CI RX input capacitance 2 pF tr, tf Differential output signal rise, fall time (20% to 80%) RL = 50 Ω, CL = 5 pF, See Figure 4-1 160 ps JTOL Jitter Tolerance, Total Jitter at Serial Input Zero crossing, See Figure 4-4. 0.65 UI (1) JDR Serial Input Deterministic Jitter Zero crossing, See Figure 4-4. 0.37 UI JT Serial Output Total Jitter 3.125 GHz. 0.35 UI JD Serial Output Deterministic Jitter 3.125 GHz. 0.17 UI R(LATENCY) Total delay from RX input to RD output See Figure 2-21. XAUI/10GFC Mode 950 Bit Times T(LATENCY) Total delay from TD input to TX output See Figure 2-20. XAUI/10GFC Mode 900 Bit Times R(LATENCY) Total delay from RX input to RD output See Figure 2-21. 1000Base-X Mode 190 Bit Times T(LATENCY) Total delay from TD input to TX output See Figure 2-20. 1000Base-X Mode 130 Bit Times R(LATENCY) Total delay from RX input to RD output See Figure 2-21. NBID Mode 110 200 Bit Times T(LATENCY) Total delay from TD input to TX output See Figure 2-20. NBID Mode 90 250 Bit Times R(LATENCY) Total delay from RX input to RD output See Figure 2-21. TBID Mode 90 200 Bit Times T(LATENCY) Total delay from TD input to TX output See Figure 2-20. TBID Mode 80 250 Bit Times VID(pp) (1) 72% AVDD – (0.25 × VOD(pp)) 80 0.20 mV mV mVPP Unit Interval = one serial bit time (min. 320 ps) Submit Documentation Feedback Electrical Specifications 115 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com 4.10.1 Parameter Measurement Table 4-1. XAUI Driver Template Parameters PARAMETER NEAR END VALUE FAR END VALUE UNIT X1 (See Figure 4-2) 0.175 0.275 UI X2 (See Figure 4-2) 0.390 0.400 UI A1 (See Figure 4-2) 400 100 mV A2 (See Figure 4-2) 800 800 mV VCMT 0.5 * VDE* 0.5 * VOD(pp) VOD(pp) 0.25 * VDE * VOD(pp) 0.25 * VOD(pp) bit tr, tf time Figure 4-1. Transmit Output Waveform Parameter Definitions D iffe re ntia l A m plitude (m V ) A2 A1 0 -A1 -A2 X1 X2 1-X2 X2 1.0 Time (UI) Figure 4-2. Transmit Template 116 Electrical Specifications Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 D iffe re ntia l A m plitude (m V ) www.ti.com +100 0 -100 0.325 0.675 Unit Interval 1.0 Figure 4-3. Receive Template JDR JR JR JTOL Note: JTOL = JR + JDR, where JTOL is the receive jitter tolerance, JDR is the received deterministic jitter, and JR is the Gaussian random edge jitter distribution at a maximum BER = 10-12. Figure 4-4. Input Jitter The TLK3134 has several different application modes, which impact parallel interface I/O timing definitions. Each of the modes is defined below, and then subsequently referred to in the detailed timing parameter definitions. RXDATA and RXCLK, and TXDATA and TXCLK in the detailed timing specification will be defined by the exact following signal definitions. Submit Documentation Feedback Electrical Specifications 117 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Table 4-2. Parallel Interface – Valid Signal Operational Mode Definitions TIMING MODE NAME XGMII USAGE MODE TX SIGNALS USED RX SIGNALS USED XAUI Applications, 10 Gigabit Fibre Channel Applications. Only DDR Timing Supported See Section 4.11: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.13: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. TXDATA = TXD_[31:0] and TXC_[3:0]. TXCLK = TXCLK_[1]. RXDATA = RXD_[31:0] and RXC_[3:0]. RXCLK = RXCLK_[1]. TXDATA = TXD_[4:0] TXCLK = TXCLK_[0] -orTXDATA = TXD_[12:8] TXCLK = TXCLK_ [1] -orTXDATA = TXD_ [20:16] TXCLK = TXCLK_ [2] -orTXDATA = TXD_ [28:24] TXCLK = TXCLK_ [3] RXDATA = RXD_[4:0] RXCLK = RXCLK_[0] -orRXDATA = RXD_ [12:8] RXCLK = RXCLK_ [1] -orRXDATA = RXD_ [20:16] RXCLK = RXCLK_ [2] -orRXDATA = RXD_ [28:24] RXCLK = RXCLK_ [3] 1000Base-X Applications Reduced Ten Bit Applications (RTBI) Only DDR Timing Supported See Section 4.11: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.13: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In RGMII Mode CH0: TX_EN/TX_ER = TXD_[4] RGMII, RTBI CH1: TX_EN/TX_ER = TXD_[12] CH2: TX_EN/TX_ER = TXD_[20] CH3: TX_EN/TX_ER = TXD_[28] CH0: RX_DV/RX_ER = RXD_[4] CH1: RX_DV/RX_ER = RXD_[12] CH2: RX_DV/RX_ER = RXD_[20] CH3: RX_DV/RX_ER = RXD_[28] TBI, GMII EBI REBI 118 Ten Bit Interface Mode (TBI) Only SDR Timing Supported See Section 4.12: HSTL Output Switching Characteristics (SDR Timing Mode Only) and Section 4.14: HSTL (SDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In GMII Mode CH0: TX_EN = TXC_[0] CH1: TX_EN = TXC_[1] CH2: TX_EN = TXC_[2] CH3: TX_EN = TXC_[3] CH0: TX_ER = TXC_[4] CH1: TX_ER = TXC_[5] CH2: TX_ER = TXC_[6] CH3: TX_ER = TXC_[7] CH0: RX_DV = RXC_[0] CH1: RX_DV = RXC_[1] CH2: RX_DV = RXC_[2] CH3: RX_DV = RXC_[3] CH0: RX_ER = RXC_[4] CH1: RX_ER = RXC_[5] CH2: RX_ER = RXC_[6] CH3: RX_ER = RXC_[7] Note: In TBI Mode CH0: TX Data Bit 8 = TXC_[0] CH1: TX Data Bit 8 = TXC_[1] CH2: TX Data Bit 8 = TXC_[2] CH3: TX Data Bit 8 = TXC_[3] CH0: TX Data Bit 9 = TXC_[4] CH1: TX Data Bit 9 = TXC_[5] CH2: TX Data Bit 9 = TXC_[6] CH3: TX Data Bit 9 = TXC_[7] CH0: RX Data Bit 8 = RXC_[0] CH1: RX Data Bit 8 = RXC_[1] CH2: RX Data Bit 8 = RXC_[2] CH3: RX Data Bit 8 = RXC_[3] CH0: RX Data Bit 9 = RXC_[4] CH1: RX Data Bit 9 = RXC_[5] CH2: RX Data Bit 9 = RXC_[6] CH3: RX Data Bit 9 = RXC_[7] TXDATA = TXC_ [4],TXC_ [0], TXD[7:0] TXCLK = TXCLK_ [0] -orTXDATA = TXC_ [5],TXC_ [1], TXD_ [15:8] TXCLK = TXCLK_ [1] -orTXDATA = TXC_ [6],TXC_ [2], TXD_ [23:16] TXCLK = TXCLK_ [2] -orTXDATA = TXC_ [7],TXC_ [3], TXD_ [31:24] TXCLK = TXCLK_ [3] Eight Bit Interface Mode (EBI) SDR Timing Support See Section 4.12: HSTL Output Switching Characteristics (SDR Timing Mode Only) and Section 4.14: HSTL (SDR Timing Mode Only) Input Timing Requirements for AC timing details. TXDATA = TXD_ [7:0] TXCLK = TXCLK_ [0] -orTXDATA = TXD_ [15:8] TXCLK = TXCLK_ [1] -orTXDATA = TXD_ [23:16] TXCLK = TXCLK_ [2] -orTXDATA = TXD_ [31:24] TXCLK = TXCLK_ [3] RXDATA = RXD_ [7:0] RXCLK = RXCLK_ [0] -orRXDATA = RXD_ [15:8] RXCLK = RXCLK_ [1] -orRXDATA = RXD_ [23:16] RXCLK = RXCLK_ [2] -orRXDATA = RXD_ [31:24] RXCLK = RXCLK_ [3] Reduced Eight Bit Interface Mode (REBI) DDR Timing Support See Section 4.11: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.13: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. TXDATA = TXD_ [3:0] TXCLK = TXCLK_ [0] -orTXDATA = TXD_ [11:8] TXCLK = TXCLK_ [1] -orTXDATA = TXD_ [19:16] TXCLK = TXCLK_ [2] -orTXDATA = TXD_ [27:24] TXCLK = TXCLK_ [3] RXDATA = RXD_ [3:0] RXCLK = RXCLK_ [0] -orRXDATA = RXD_ [11:8] RXCLK = RXCLK_ [1] -orRXDATA = RXD_ [19:16] RXCLK = RXCLK_ [2] -orRXDATA = RXD_ [27:24] RXCLK = RXCLK_ [3] Electrical Specifications RXDATA = RXC_ [4],RXC_ RXD[7:0] RXCLK = RXCLK_ [0] -orRXDATA = RXC_ [5],RXC_ RXD_ [15:8] RXCLK = RXCLK_ [1] -orRXDATA = RXC_ [6],RXC_ RXD_ [23:16] RXCLK = RXCLK_ [2] -orRXDATA = RXC_ [7],RXC_ RXD_ [31:24] RXCLK = RXCLK_ [3] [0], [1], [2], [3], Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Table 4-2. Parallel Interface – Valid Signal Operational Mode Definitions (continued) TIMING MODE NAME USAGE MODE TX SIGNALS USED RX SIGNALS USED NBI Nine Bit Interface Mode (NBI) (Un-encoded Data Byte + 1 Control Bit) SDR Timing Support See Section 4.12: HSTL Output Switching Characteristics (SDR Timing Mode Only) and Section 4.14: HSTL (SDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In NBI Mode CH0: TX Control Bit = TXC_[0] CH1: TX Control Bit = TXC_[1] CH2: TX Control Bit = TXC_[2] CH3: TX Control Bit = TXC_[3] CH0: RX Control Bit = RXC_[0] CH1: RX Control Bit = RXC_[1] CH2: RX Control Bit = RXC_[2] CH3: RX Control Bit = RXC_[3] TXDATA = TXC_ [0], TXD[7:0] TXCLK = TXCLK_ [0] -orTXDATA = TXC_ [1], TXD_ [15:8] TXCLK = TXCLK_ [1] -orTXDATA = TXC_ [2], TXD_ [23:16] TXCLK = TXCLK_ [2] -orTXDATA = TXC_ [3], TXD_ [31:24] TXCLK = TXCLK_ [3] RXDATA = RXC_ [0], RXD[7:0] RXCLK = RXCLK_ [0] -orRXDATA = RXC_ [1], RXD_ [15:8] RXCLK = RXCLK_ [1] -orRXDATA = RXC_ [2], RXD_ [23:16] RXCLK = RXCLK_ [2] -orRXDATA = RXC_ [3], RXD_ [31:24] RXCLK = RXCLK_ [3] RNBI Reduced Nine Bit Interface Mode (RNBI) (Un-encoded Data Byte + 1 Control Bit) DDR Timing Support See Section 4.11: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.13: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In RNBI Mode CH0: TX Control Bit = TXD_[4] CH1: TX Control Bit = TXD_[12] CH2: TX Control Bit = TXD_[20] CH3: TX Control Bit = TXD_[28] CH0: RX Control Bit = RXD_[4] CH1: RX Control Bit = RXD_[12] CH2: RX Control Bit = RXD_[20] CH3: RX Control Bit = RXD_[28] TXDATA = TXD_[4:0] TXCLK = TXCLK_[0] -orTXDATA = TXD_[12:8] TXCLK = TXCLK_ [1] -orTXDATA = TXD_ [20:16] TXCLK = TXCLK_ [2] -orTXDATA = TXD_ [28:24] TXCLK = TXCLK_ [3] RXDATA = RXD_[4:0] RXCLK = RXCLK_[0] -orRXDATA = RXD_ [12:8] RXCLK = RXCLK_ [1] -orRXDATA = RXD_ [20:16] RXCLK = RXCLK_ [2] -orRXDATA = RXD_ [28:24] RXCLK = RXCLK_ [3] TBID Ten Bit Interface DDR Mode (TBID) Only DDR Timing Supported See Section 4.11: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.13: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In TBID Mode CH0: TX Data Bit 8 = TXC_[0] CH1: TX Data Bit 8 = TXC_[1] CH2: TX Data Bit 8 = TXC_[2] CH3: TX Data Bit 8 = TXC_[3] CH0: TX Data Bit 9 = TXC_[4] CH1: TX Data Bit 9 = TXC_[5] CH2: TX Data Bit 9 = TXC_[6] CH3: TX Data Bit 9 = TXC_[7] CH0: RX Data Bit 8 = RXC_[0] CH1: RX Data Bit 8 = RXC_[1] CH2: RX Data Bit 8 = RXC_[2] CH3: RX Data Bit 8 = RXC_[3] CH0: RX Data Bit 9 = RXC_[4] CH1: RX Data Bit 9 = RXC_[5] CH2: RX Data Bit 9 = RXC_[6] CH3: RX Data Bit 9 = RXC_[7] TXDATA = TXC_ [4],TXC_ [0], TXD[7:0] TXCLK = TXCLK_ [0] -orTXDATA = TXC_ [5],TXC_ [1], TXD_ [15:8] TXCLK = TXCLK_ [1] -orTXDATA = TXC_ [6],TXC_ [2], TXD_ [23:16] TXCLK = TXCLK_ [2] -orTXDATA = TXC_ [7],TXC_ [3], TXD_ [31:24] TXCLK = TXCLK_ [3] Nine Bit Interface DDR Mode (NBID) (Un-encoded Data Byte + 1 Control Bit) DDR Timing Support See Section 4.11: HSTL Output Switching Characteristics (DDR Timing Mode Only) and Section 4.13: HSTL (DDR Timing Mode Only) Input Timing Requirements for AC timing details. Note: In NBID Mode CH0: TX Control Bit = TXC_[0] CH1: TX Control Bit = TXC_[1] CH2: TX Control Bit = TXC_[2] CH3: TX Control Bit = TXC_[3] CH0: RX Control Bit = RXC_[0] CH1: RX Control Bit = RXC_[1] CH2: RX Control Bit = RXC_[2] CH3: RX Control Bit = RXC_[3] TXDATA = TXC_ [0], TXD[7:0] TXCLK = TXCLK_ [0] -orTXDATA = TXC_ [1], TXD_ [15:8] TXCLK = TXCLK_ [1] -orTXDATA = TXC_ [2], TXD_ [23:16] TXCLK = TXCLK_ [2] -orTXDATA = TXC_ [3], TXD_ [31:24] TXCLK = TXCLK_ [3] NBID Submit Documentation Feedback RXDATA = RXC_ [4],RXC_ RXD[7:0] RXCLK = RXCLK_ [0] -orRXDATA = RXC_ [5],RXC_ RXD_ [15:8] RXCLK = RXCLK_ [1] -orRXDATA = RXC_ [6],RXC_ RXD_ [23:16] RXCLK = RXCLK_ [2] -orRXDATA = RXC_ [7],RXC_ RXD_ [31:24] RXCLK = RXCLK_ [3] [0], [1], [2], [3], RXDATA = RXC_ [0], RXD[7:0] RXCLK = RXCLK_ [0] -orRXDATA = RXC_ [1], RXD_ [15:8] RXCLK = RXCLK_ [1] -orRXDATA = RXC_ [2], RXD_ [23:16] RXCLK = RXCLK_ [2] -orRXDATA = RXC_ [3], RXD_ [31:24] RXCLK = RXCLK_ [3] Electrical Specifications 119 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com 4.11 HSTL Output Switching Characteristics (DDR Timing Mode Only) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT tsetup RXDATA setup prior to RXCLK transition high or low Source Centered, See Figure 4-5. Note: Cload = 10 pF, using timing reference of VDDQ/2 0.15 × tperiod ps thold RXDATA hold after RXCLK transition high or low Source Centered, See Figure 4-5. Note: Cload = 10 pF, using timing reference of VDDQ/2 0.15 × tperiod ps Tduty RXCLK Duty Cycle Source Centered and Source Aligned. Note: Cload = 10 pF, using timing reference of VDDQ/2. 45% 55% tperiod RXCLK Period Source Centered and Source Aligned 6.25 16.67 (1) Tfreq RXCLK Frequency Source Centered and Source Aligned 60 (2) 160 Tpd RXCLK rising or falling to RXDATA valid. Source Aligned, See Figure 4-6. Note: Cload = 10 pF, using timing reference of VDDQ/2 –0.10 × tperiod +0.10 × tperiod (1) (2) ns MHz ps In TBID/NBID Modes Only, the maximum allowed RXCLK period is 33.33 ns. In TBID/NBID Modes Only, the minimum allowed RXCLK frequency is 30 MHz. tPERIOD VOH(ac) VDDQ/2 RXCLK VOL(ac) tSETUP tHOLD tSETUP tHOLD VOH(ac) RXDATA VDDQ/2 VOL(ac) Figure 4-5. HSTL (DDR Timing Mode Only) Source Centered Output Timing Requirements VOH(ac) VDDQ/2 RXCLK VOL(ac) Tpd Tpd VOH(ac) RXDATA VDDQ/2 VOL(ac) Figure 4-6. HSTL (DDR Timing Mode Only) Source Aligned Output Timing Requirements 120 Electrical Specifications Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 4.12 HSTL Output Switching Characteristics (SDR Timing Mode Only) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX UNIT Tduty RXCLK Duty Cycle Rising and Falling Edge Aligned Data Note: Cload = 10pF, using timing reference of VDDQ/2. 40% 60% tperiod RXCLK Period Rising and Falling Edge Aligned Data 2.67 16.67 Tfreq RXCLK Frequency Rising and Falling Edge Aligned Data 60 375 Tpd RXCLK rising to RXDATA valid. Rising Edge Aligned Note: Cload = 10pF, using timing reference of VDDQ/2. –0.10 × tperiod +0.10 × tperiod ps Tpd RXCLK falling to RXDATA valid. Falling Edge Aligned Note: Cload = 10pF, using timing reference of VDDQ/2. –0.10 × tperiod +0.10 × tperiod ps ns MHz tPERIOD VOH(ac) VDDQ/2 RXCLK VOL(ac) TPD VOH(ac) RXDATA VDDQ/2 VOL(ac) Figure 4-7. HSTL (SDR Timing Mode Only) Rising Edge Aligned Output Timing Requirements tPERIOD VOH(ac) VDDQ/2 RXCLK VOL(ac) TPD VOH(ac) RXDATA VDDQ/2 VOL(ac) Figure 4-8. HSTL (SDR Timing Mode Only) Falling Edge Aligned Output Timing Requirements Submit Documentation Feedback Electrical Specifications 121 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com 4.13 HSTL (DDR Timing Mode Only) Input Timing Requirements over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN NOM (1) MAX UNIT tsetup TXDATA setup prior to TXCLK transition high or low Source Centered. See Figure 4-9. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. 0.075 × tperiod ps thold TXDATA hold after TXCLK transition high or low Source Centered. See Figure 4-9. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. 0.075 × tperiod ps tduty TXCLK Duty Cycle Source Centered Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. 40% 60% tduty TXCLK Duty Cycle Source Aligned. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. 45% 55% tperiod TXCLK Period Source Centered and Aligned. 6.25 16.67 (2) (3) 160 –0.175 × tperiod (4) +0.175 × tperiod (5) Tfreq TXCLK Frequency Source Centered and Aligned. Tskew TXCLK rising or falling to TXDATA valid. Source Aligned. See Figure 4-10. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. (1) (2) (3) (4) (5) 60 ns MHz ps All typical values are at 25°C and with a nominal supply. In TBID/NBID Modes Only, the maximum allowed TXCLK period is 33.33 ns. In TBID/NBID Modes Only, the minimum allowed TXCLK frequency is 30 Mhz. In TBID/NBID Modes, when the TXCLK is in the 30 → 60 Mhz range, this parameter becomes -0.10 × tperiod In TBID/NBID Modes, when the TXCLK is in the 30→ 60 Mhz range, this parameter becomes +0.10 × tperiod t VIH(ac) VDDQ/2 TXCLK VIL(ac) tSETUP tHOLD tSETUP tHOLD VIH(ac) TXDATA VDDQ/2 VIL(ac) Figure 4-9. HSTL (DDR Timing Mode Only) Source Centered Data Input Timing Requirements VOH(ac) VDDQ/2 TXCLK VOL(ac) Tskew Tskew VOH(ac) TXDATA VDDQ/2 VOL(ac) Figure 4-10. HSTL (DDR Timing Mode Only) Source Aligned Data Input Timing Requirements 122 Electrical Specifications Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 4.14 HSTL (SDR Timing Mode Only) Input Timing Requirements over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN NOM (1) MAX UNIT tsetup TXDATA setup prior to TXCLK transition high Falling Edge Aligned (Rising Edge Sampled) Data See Figure 4-11. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. 480 ps thold TXDATA hold after TXCLK transition high Falling Edge Aligned (Rising Edge Sampled) Data See Figure 4-11. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. 480 ps tsetup TXDATA setup prior to TXCLK transition low Rising Edge Aligned (Falling Edge Sampled) Data See Figure 4-12. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. 480 ps thold TXDATA hold after TXCLK transition low Rising Edge Aligned (Falling Edge Sampled) Data See Figure 4-12. Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. 480 ps tduty TXCLK Duty Cycle Rising and Falling Edge Sampled Data Note: Input timing reference of VDDQ/2, with ±1 ns/V rise time on all inputs signals. 40% 60% tperiod TXCLK Period Rising and Falling Edge Aligned Data 2.67 16.67 Tfreq TXCLK Frequency Rising and Falling Edge Aligned Data 60 375 (1) ns MHz All typical values are at 25°C and with a nominal supply. tPERIOD VOH(ac) VDDQ/2 RXCLK VOL(ac) TPD VOH(ac) RXDATA VDDQ/2 VOL(ac) Figure 4-11. HSTL (SDR Timing Mode Only) Falling Edge Aligned (Rising Edge Sampled) Data Input Timing Requirements tPERIOD VIH(ac) VDDQ/2 TXCLK VIL(ac) tSETUP tHOLD VIH(ac) TXDATA VDDQ/2 VIL(ac) Figure 4-12. HSTL (SDR Timing Mode Only) Rising Edge Aligned (Falling Edge Sampled) Data Input Timing Requirements Submit Documentation Feedback Electrical Specifications 123 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com 4.15 MDIO Timing Requirements Over Recommended Operating Conditions (1) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT tperiod MDC period See Figure 4-13. 100 ns tsetup MDIO setup to ↑ MDC See Figure 4-13. 10 ns thold MDIO hold to ↑ MDC See Figure 4-13. 10 Tvalid MDIO valid from MDC ↑ (1) 0 ns 300 ns Unless otherwise noted. MDC tPERIOD tSETUP tHOLD MDIO Figure 4-13. MDIO Read/Write Timing VDDQ 150/200/ 300/Open (W) 50 W 50 W transmission line + 150/200/ 300/Open (W) VDDQ GND - RW RW GND OUTPUT PCB VREF INPUT Figure 4-14. HSTL I/O Schematic 124 Electrical Specifications Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 4.16 JTAG Timing Requirements Over Recommended Operating Conditions (1) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT tperiod TCK period See Figure 4-15. 66.67 ns tsetup TDI/TMS/TRST_N setup to ↑ TCK See Figure 4-15. 3 ns thold TDI/TMS/TRST_N hold from ↑ TCK See Figure 4-15. 5 Tvalid TDO delay from TCK falling See Figure 4-15. 0 (1) ns 5 ns Unless otherwise noted. TCK tPERIOD tSETUP tHOLD TDI/TMS/ TRST_N tVALID TDO Figure 4-15. JTAG Timing Submit Documentation Feedback Electrical Specifications 125 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 Application Mode XGMII RGMII GMII TBI RTBI NBI RNBI EBI REBI TBID NBID N Y Y N N N N N N N N N N N Y Y Y Y N N Y Y N N N Y Y Y Y N N Y Y N N N Y N Y N N N Y Y N N N Y Y Y Y N N Y Y N N N Y Y Y Y N N Y Y N N N Y N Y N N N Y Y Y N N N N N N N N N N Y N N N N N N N N N N N N N Y Y Y Y N N Y Y N N N Y N Y N N N Y Y N N N N N N N Y Y N N N N N N N N N Y N N N N N N Y Y N N N N Y N N N N Y N N N N N Y N N N N Y N N N N N N N N N N N N Y Y N N N Y N N N N N Y N N N N Y N N N N N Y N N N N N Gigabit Ethernet (1000Base-X) 1.25 Gbps CPRI x1 0.6144 Gbps CPRI x2 1.2288 Gbps CPRI x4 2.4576 Gbps OBSAI x1 0.768 Gbps OBSAI x2 1.536 Gbps OBSAI x4 3.072 Gbps 10 Gigabit Ethernet (XAUI) 4x3.125 Gbps 10 Gigabit Fibre Channel (10GFC) 4x3.1875 Gbps Fibre Channel 1X 1.0625 Gbps Fibre Channel 2X 2.125 Gbps 8 Bit SERDES Mode 0.600 à 1.28 Gbps 8 Bit SERDES Mode 1.28 à 3.0 Gbps 10 Bit SERDES Mode 0.600 à 1.6 Gbps 10 Bit SERDES Mode 1.6 à 3.2 Gbps 10 Bit SERDES Mode 3.2 à 3.75 Gbps 9 Bit SERDES Mode 0.600 à 1.6 Gbps 9 Bit SERDES Mode 1.6 à 3.2 Gbps 9 Bit SERDES Mode 3.2 à 3.75 Gbps A. www.ti.com Latency measurement only operates in TBI, TBID, and RTBI modes. Figure 4-16. TLK3134 Application Mode vs Interface Timing Mode Support 126 Electrical Specifications Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Figure 4-17. PACKAGE Information (Package Designator = ZEL) Package Dissipation Rating PARAMETER CONDITION MIN NOM MAX UNIT θJA Junction to free air thermal resistance Airflow = 0 lfpm 14.45 °C/W θJA Junction to free air thermal resistance Airflow = 150 lfpm 7.50 °C/W Submit Documentation Feedback Electrical Specifications 127 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Device Total Worst Case Power (All Channels Active, All Supplies +5%, T=85C) VDDQ Voltage JC PLL Enabled HSTL Input Termination Total Power (mW) VDDQ Voltage JC PLL Enabled HSTL Input Termination Total Power (mW) VDDQ Voltage JC PLL Enabled HSTL Input Termination Total Power (mW) N Serial Bit Rate = 3.75Gbps 1.6V Y 1.9V N Y None Max. None Max. None Max. None Max. 1489 1828 1557 1893 1730 2201 1795 2278 N Serial Bit Rate = 3.125Gbps (XAUI) 1.6V Y 1.9V N Y None Max. None Max. None Max. None Max. 1253 1691 1295 1740 1424 2039 1472 2091 Serial Bit Rate = 1.25Gbps (Gigabit Ethernet) 1.6V N Y N 1.9V Y None Max. None Max. None Max. None Max. 1078 1490 1178 1591 1264 1845 1366 1947 Figure 4-18. Worst Case Device Power Dissipation 128 Electrical Specifications Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com A SLLS838D – MAY 2007 – REVISED JULY 2008 APPENDIX A – Frequency Ranges Supported The following tables show the details of REFCLK input frequency versus Jitter Cleaner PLL multiplier value for each application TLK3134 supports. If the desired serial bit rate is between 2.0 Gbps and 3.75 Gbps, full rate should be selected for the RATE[1:0] bits for that channel. If the desired serial bit rate is between 1.0 Gbps and 2.125 Gbps, half rate should be selected for the RATE[1:0] bits for that channel. If the desired serial bit rate is between 600 Mbps and 1.0625 Gbps, quarter rate should be selected for the RATE[1:0] bits for that channel. If the desired serial bit rate falls in the overlap between the full and half rate ranges defined above, then either setting is appropriate. If the desired serial bit rate falls in the overlap between the half and quarter rate ranges defined above, then either setting is appropriate. In general, there are many different settings that will yield the same serial bit rate. It should be noted that selecting the setting with the highest SERDES REFCLK and the lowest SERDES PLL Multiplier will give the best serial performance. XAUI Mode - Legal Clocking Mode Settings TLK3134 Jitter SERDES SERDES REFCLK Cleaner REFCLK PLL Input (MHz) Multiplier Input (MHz) Multiplier 78.12500 OFF 78.12500 20 78.12500 0.25 19.53125 78.12500 0.5 39.06250 78.12500 1 78.12500 20 78.12500 2 156.25000 10 156.25000 OFF 156.25000 10 156.25000 0.25 39.06250 156.25000 0.5 78.12500 20 156.25000 1 156.25000 10 156.25000 2 312.50000 5 312.50000 OFF 312.50000 5 312.50000 0.25 78.12500 20 312.50000 0.5 156.25000 10 312.50000 1 312.50000 5 312.50000 2 625.00000 Serial Data Rate = f(SPEED[1:0]) (Mbps) Full (00) Half (01) Qrtr. (10) 3125.000 1562.500 781.250 3125.000 1562.500 3125.000 1562.500 3125.000 1562.500 781.250 781.250 781.250 1562.500 1562.500 1562.500 1562.500 1562.500 1562.500 1562.500 781.250 781.250 781.250 781.250 781.250 781.250 781.250 3125.000 3125.000 3125.000 3125.000 3125.000 3125.000 3125.000 Figure A-1. Reference Clock Selection – XAUI – 10 GbE Mode Submit Documentation Feedback APPENDIX A – Frequency Ranges Supported 129 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com 10GFC Mode - Legal Clocking Mode Settings TLK3134 Jitter SERDES SERDES Serial Data Rate = f(SPEED[1:0]) (Mbps) REFCLK Cleaner REFCLK PLL Full (00) Half (01) Qrtr. (10) Input (MHz) Multiplier Input (MHz) Multiplier 79.68750 OFF 79.68750 20 3187.500 1593.750 796.875 79.68750 0.25 19.92188 79.68750 0.5 39.84375 79.68750 1 79.68750 20 3187.500 1593.750 796.875 79.68750 2 159.37500 10 3187.500 1593.750 796.875 159.37500 OFF 159.37500 10 3187.500 1593.750 796.875 159.37500 0.25 39.84375 159.37500 0.5 79.68750 20 3187.500 1593.750 796.875 159.37500 1 159.37500 10 3187.500 1593.750 796.875 159.37500 2 318.75000 5 3187.500 1593.750 796.875 318.75000 OFF 318.75000 5 3187.500 1593.750 796.875 318.75000 0.25 79.68750 20 3187.500 1593.750 796.875 318.75000 0.5 159.37500 10 3187.500 1593.750 796.875 318.75000 1 318.75000 5 3187.500 1593.750 796.875 318.75000 2 637.50000 Figure A-2. Reference Clock Selection – 10 Gigabit Fibre Channel Mode Gigabit Ethernet Mode - Legal Clocking Mode Settings TLK3134 Jitter SERDES SERDES Serial Data Rate = f(SPEED[1:0]) (Mbps) REFCLK Cleaner REFCLK PLL Full (00) Half (01) Qrtr. (10) Input (MHz) Multiplier Input (MHz) Multiplier 62.50000 OFF 62.50000 20 2500.000 1250.000 625.000 62.50000 0.25 15.62500 62.50000 0.5 31.25000 62.50000 1 62.50000 20 2500.000 1250.000 625.000 62.50000 2 125.00000 10 2500.000 1250.000 625.000 125.00000 OFF 125.00000 10 2500.000 1250.000 625.000 125.00000 0.25 31.25000 125.00000 0.5 62.50000 20 2500.000 1250.000 625.000 125.00000 1 125.00000 10 2500.000 1250.000 625.000 125.00000 2 250.00000 5 2500.000 1250.000 625.000 250.00000 OFF 250.00000 5 2500.000 1250.000 625.000 250.00000 0.25 62.50000 20 2500.000 1250.000 625.000 250.00000 0.5 125.00000 10 2500.000 1250.000 625.000 250.00000 1 250.00000 5 2500.000 1250.000 625.000 250.00000 2 500.00000 Figure A-3. Reference Clock Selection – Gigabit Ethernet Mode 130 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Fibre Channel Mode - Legal Clocking Mode Settings TLK3134 Jitter SERDES SERDES Serial Data Rate = f(SPEED[1:0]) (Mbps) REFCLK Cleaner REFCLK PLL Full (00) Half (01) Qrtr. (10) Input (MHz) Multiplier Input (MHz) Multiplier 53.12500 OFF 53.12500 20 2125.000 1062.500 531.250 53.12500 0.25 13.28125 53.12500 0.5 26.56250 53.12500 1 53.12500 20 2125.000 1062.500 531.250 53.12500 2 106.25000 10 2125.000 1062.500 531.250 106.25000 OFF 106.25000 10 2125.000 1062.500 531.250 106.25000 0.25 26.56250 106.25000 0.5 53.12500 20 2125.000 1062.500 531.250 106.25000 1 106.25000 10 2125.000 1062.500 531.250 106.25000 2 212.50000 5 2125.000 1062.500 531.250 212.50000 OFF 212.50000 5 2125.000 1062.500 531.250 212.50000 0.25 53.12500 20 2125.000 1062.500 531.250 212.50000 0.5 106.25000 10 2125.000 1062.500 531.250 212.50000 1 212.50000 5 2125.000 1062.500 531.250 Figure A-4. Reference Clock Selection – 1X/2X Fibre Channel Mode OBSAI Mode - Legal Clocking Mode Settings TLK3134 Jitter SERDES SERDES Serial Data Rate = f(SPEED[1:0]) (Mbps) REFCLK Cleaner REFCLK PLL Full (00) Half (01) Qrtr. (10) Input (MHz) Multiplier Input (MHz) Multiplier 76.80000 OFF 76.80000 20 3072.000 1536.000 768.000 76.80000 0.25 19.20000 76.80000 0.5 38.40000 76.80000 1 76.80000 20 3072.000 1536.000 768.000 76.80000 2 153.60000 10 3072.000 1536.000 768.000 153.60000 OFF 153.60000 10 3072.000 1536.000 768.000 153.60000 0.25 38.40000 153.60000 0.5 76.80000 20 3072.000 1536.000 768.000 153.60000 1 153.60000 10 3072.000 1536.000 768.000 153.60000 2 307.20000 5 3072.000 1536.000 768.000 307.20000 OFF 307.20000 5 3072.000 1536.000 768.000 307.20000 0.25 76.80000 20 3072.000 1536.000 768.000 307.20000 0.5 153.60000 10 3072.000 1536.000 768.000 307.20000 1 307.20000 5 3072.000 1536.000 768.000 307.20000 2 614.40000 Figure A-5. Reference Clock Selection – OBSAI Mode Submit Documentation Feedback APPENDIX A – Frequency Ranges Supported 131 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com CPRI Mode - Legal Clocking Mode Settings TLK3134 Jitter SERDES SERDES Serial Data Rate = f(SPEED[1:0]) (Mbps) REFCLK Cleaner REFCLK PLL Full (00) Half (01) Qrtr. (10) Input (MHz) Multiplier Input (MHz) Multiplier 61.44000 OFF 61.44000 20 2457.600 1228.800 614.400 61.44000 0.25 15.36000 61.44000 0.5 30.72000 61.44000 1 61.44000 20 2457.600 1228.800 614.400 61.44000 2 122.88000 10 2457.600 1228.800 614.400 122.88000 OFF 122.88000 10 2457.600 1228.800 614.400 122.88000 0.25 30.72000 122.88000 0.5 61.44000 20 2457.600 1228.800 614.400 122.88000 1 122.88000 10 2457.600 1228.800 614.400 122.88000 2 245.76000 5 2457.600 1228.800 614.400 245.76000 OFF 245.76000 5 2457.600 1228.800 614.400 245.76000 0.25 61.44000 20 2457.600 1228.800 614.400 245.76000 0.5 122.88000 10 2457.600 1228.800 614.400 245.76000 1 245.76000 5 2457.600 1228.800 614.400 Figure A-6. Reference Clock Selection – CPRI Mode Nine/Ten Bit SERDES Mode - Clock Range Support (RATE[1:0] == 00) (Full) Jitter REFCLK SERDES REFCLK SERDES Serial Data Rate (Mbps) Minimum Maximum Cleaner Minimum Maximum PLL Full (MHz) (MHz) Multiplier (MHz) (MHz) Multiplier Minimum Maximum 200.0000 375.0000 OFF 200.0000 375.0000 5 2000.00 3750.00 100.0000 187.5000 OFF 100.0000 187.5000 10 2000.00 3750.00 50.0000 93.7500 OFF 50.0000 93.7500 20 2000.00 3750.00 800.0000 ######## 0.25 200.0000 375.0000 5 2000.00 3750.00 400.0000 850.0000 0.25 100.0000 212.5000 10 2000.00 4250.00 200.0000 375.0000 0.25 50.0000 93.7500 20 2000.00 3750.00 400.0000 750.0000 0.5 200.0000 375.0000 5 2000.00 3750.00 200.0000 375.0000 0.5 100.0000 187.5000 10 2000.00 3750.00 100.0000 187.5000 0.5 50.0000 93.7500 20 2000.00 3750.00 200.0000 375.0000 1 200.0000 375.0000 5 2000.00 3750.00 100.0000 187.5000 1 100.0000 187.5000 10 2000.00 3750.00 50.0000 93.7500 1 50.0000 93.7500 20 2000.00 3750.00 100.0000 187.5000 2 200.0000 375.0000 5 2000.00 3750.00 50.0000 93.7500 2 100.0000 187.5000 10 2000.00 3750.00 25.0000 46.8750 2 50.0000 93.7500 20 2000.00 3750.00 Figure A-7. Reference Clock Selection – 9/10 Bit SERDES Mode – Full Rate (SPEED[1:0] == 00) 132 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Nine/Ten Bit SERDES Mode - Clock Range Support (RATE[1:0] == 01) (Half) REFCLK SERDES REFCLK SERDES Serial Data Rate (Mbps) Jitter Minimum Maximum Cleaner Minimum Maximum PLL Half (MHz) (MHz) Multiplier (MHz) (MHz) Multiplier Minimum Maximum 200.0000 375.0000 OFF 200.0000 375.0000 5 1000.00 1875.00 100.0000 212.5000 OFF 100.0000 212.5000 10 1000.00 2125.00 50.0000 106.2500 OFF 50.0000 106.2500 20 1000.00 2125.00 800.0000 ######## 0.25 200.0000 375.0000 5 1000.00 1875.00 400.0000 850.0000 0.25 100.0000 212.5000 10 1000.00 2125.00 200.0000 375.0000 0.25 50.0000 93.7500 20 1000.00 1875.00 400.0000 750.0000 0.5 200.0000 375.0000 5 1000.00 1875.00 200.0000 375.0000 0.5 100.0000 187.5000 10 1000.00 1875.00 100.0000 212.5000 0.5 50.0000 106.2500 20 1000.00 2125.00 200.0000 375.0000 1 200.0000 375.0000 5 1000.00 1875.00 100.0000 200.0000 1 100.0000 200.0000 10 1000.00 2000.00 50.0000 106.2500 1 50.0000 106.2500 20 1000.00 2125.00 100.0000 187.5000 2 200.0000 375.0000 5 1000.00 1875.00 50.0000 100.0000 2 100.0000 200.0000 10 1000.00 2000.00 25.0000 53.1250 2 50.0000 106.2500 20 1000.00 2125.00 Figure A-8. Reference Clock Selection – 9/10 Bit SERDES Mode – Half Rate (SPEED[1:0] == 01) Nine/Ten Bit SERDES Mode - Clock Range Support (RATE[1:0] == 10) (Quarter) REFCLK SERDES REFCLK SERDES Serial Data Rate (Mbps) Jitter Minimum Maximum Cleaner Minimum Maximum PLL Quarter (MHz) (MHz) Multiplier (MHz) (MHz) Multiplier Minimum Maximum 240.0000 375.0000 OFF 240.0000 375.0000 5 600.00 937.50 120.0000 212.5000 OFF 120.0000 212.5000 10 600.00 1062.50 60.0000 106.2500 OFF 60.0000 106.2500 20 600.00 1062.50 800.0000 ######## 0.25 200.0000 375.0000 5 500.00 937.50 400.0000 850.0000 0.25 100.0000 212.5000 10 500.00 1062.50 240.0000 375.0000 0.25 60.0000 93.7500 20 600.00 937.50 400.0000 750.0000 0.5 200.0000 375.0000 5 500.00 937.50 240.0000 375.0000 0.5 120.0000 187.5000 10 600.00 937.50 120.0000 212.5000 0.5 60.0000 106.2500 20 600.00 1062.50 240.0000 375.0000 1 240.0000 375.0000 5 600.00 937.50 120.0000 200.0000 1 120.0000 200.0000 10 600.00 1000.00 60.0000 106.2500 1 60.0000 106.2500 20 600.00 1062.50 120.0000 187.5000 2 240.0000 375.0000 5 600.00 937.50 60.0000 100.0000 2 120.0000 200.0000 10 600.00 1000.00 25.0000 53.1250 2 50.0000 106.2500 20 500.00 1062.50 Figure A-9. Reference Clock Selection –9/10 Bit SERDES Mode – Quarter Rate (SPEED[1:0] == 10) Submit Documentation Feedback APPENDIX A – Frequency Ranges Supported 133 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 Eight Bit SERDES Mode - Clock Range Support (RATE[1:0] == Jitter REFCLK SERDES REFCLK SERDES Minimum Maximum Cleaner Minimum Maximum PLL (MHz) (MHz) Multiplier (MHz) (MHz) Multiplier 250.0000 375.0000 OFF 250.0000 375.0000 4 125.0000 187.5000 OFF 125.0000 187.5000 8 ######## ######## 0.25 250.0000 375.0000 4 500.0000 937.5000 0.25 125.0000 234.3750 8 500.0000 750.0000 0.5 250.0000 375.0000 4 250.0000 375.0000 0.5 125.0000 187.5000 8 250.0000 375.0000 1 250.0000 375.0000 4 125.0000 187.5000 1 125.0000 187.5000 8 125.0000 187.5000 2 250.0000 375.0000 4 62.5000 93.7500 2 125.0000 187.5000 8 www.ti.com 00) (Full) Serial Data Rate (Mbps) Full Minimum Maximum 2000.00 3000.00 2000.00 3000.00 2000.00 3000.00 2000.00 3750.00 2000.00 3000.00 2000.00 3000.00 2000.00 3000.00 2000.00 3000.00 2000.00 3000.00 2000.00 3000.00 Figure A-10. Reference Clock Selection – 8 Bit SERDES Mode – Full Rate (SPEED[1:0] == 00) Eight Bit SERDES Mode - Clock Range Support (RATE[1:0] == Jitter REFCLK SERDES REFCLK SERDES Minimum Maximum Cleaner Minimum Maximum PLL (MHz) (MHz) Multiplier (MHz) (MHz) Multiplier 250.0000 375.0000 OFF 250.0000 375.0000 4 125.0000 265.6250 OFF 125.0000 265.6250 8 ######## ######## 0.25 250.0000 375.0000 4 500.0000 937.5000 0.25 125.0000 234.3750 8 500.0000 750.0000 0.5 250.0000 375.0000 4 250.0000 375.0000 0.5 125.0000 187.5000 8 250.0000 375.0000 1 250.0000 375.0000 4 125.0000 200.0000 1 125.0000 200.0000 8 125.0000 187.5000 2 250.0000 375.0000 4 62.5000 100.0000 2 125.0000 200.0000 8 01) (Half) Serial Data Rate (Mbps) Half Minimum Maximum 1000.00 1500.00 1000.00 2125.00 1000.00 1500.00 1000.00 1875.00 1000.00 1500.00 1000.00 1500.00 1000.00 1500.00 1000.00 1600.00 1000.00 1500.00 1000.00 1600.00 Figure A-11. Reference Clock Selection – 8 Bit SERDES Mode – Half Rate (SPEED[1:0] == 01) 134 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Eight Bit SERDES Mode - Clock Range Support (RATE[1:0] == Jitter REFCLK SERDES REFCLK SERDES Minimum Maximum Cleaner Minimum Maximum PLL (MHz) (MHz) Multiplier (MHz) (MHz) Multiplier 300.0000 375.0000 OFF 300.0000 375.0000 4 150.0000 265.6250 OFF 150.0000 265.6250 8 ######## ######## 0.25 250.0000 375.0000 4 500.0000 937.5000 0.25 125.0000 234.3750 8 500.0000 750.0000 0.5 250.0000 375.0000 4 300.0000 375.0000 0.5 150.0000 187.5000 8 300.0000 375.0000 1 300.0000 375.0000 4 150.0000 200.0000 1 150.0000 200.0000 8 150.0000 187.5000 2 300.0000 375.0000 4 75.0000 100.0000 2 150.0000 200.0000 8 10) (Quarter) Serial Data Rate (Mbps) Quarter Minimum Maximum 600.00 750.00 600.00 1062.50 500.00 750.00 500.00 937.50 500.00 750.00 600.00 750.00 600.00 750.00 600.00 800.00 600.00 750.00 600.00 800.00 Figure A-12. Reference Clock Selection – 8 Bit SERDES Mode – Quarter Rate (SPEED[1:0] == 10) Submit Documentation Feedback APPENDIX A – Frequency Ranges Supported 135 136 APPENDIX A – Frequency Ranges Supported REF_DIV[6:0] 4/5.37124:14:8 (Decimal) 1 1 4 1 1 4 1 1 4 1 1 4 1 REFCLK (Mhz) 62.5 125 250 61.44 122.88 245.76 76.8 153.6 307.2 78.125 156.25 312.5 79.6875 48 24 48 48 24 48 40 20 40 40 20 40 38 FB_DIV[6:0] 4/5.37124:6:0 (Decimal) 10 5 10 5 10 5 PLL_MULT[3:0] See Note 1 Below 10 5 2X 24 12 6 24 12 6 20 10 5 20 10 5 19 RXTX_DIV[6:0] 4/5.37125:6:0 10GFC 10 159.375 1 19 9.5 318.75 4 38 4.75 53.125 1 56 10 28 FC (1x/2x) 106.25 1 28 5 14 212.5 4 56 7 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. XAUI (10 GbE) OBSAI (1x/2x/4x) CPRI (1x/2x/4x) Gigabit Ethernet Application Mode 20 10 5 10 PLL_MULT[3:0] See Note 1 Below 20 10 5 20 10 5 20 10 5 20 10 5 20 1X 56 28 14 48 24 12 48 24 12 40 20 10 40 20 10 38 19 9.5 RXTX_DIV[6:0] 4/5.37125:6:0 0.5X 20 10 20 10 20 10 20 10 20 10 20 10 PLL_MULT[3:0] See Note 1 Below Jitter Cleaner PLL Multiplier Ratio 56 28 96 48 24 80 40 20 80 40 20 76 38 19 96 48 24 RXTX_DIV[6:0] 4/5.37125:6:0 20 20 20 20 20 20 20 PLL_MULT[3:0] See Note 1 Below 0.25X 112 56 76 38 192 96 48 192 96 48 160 80 40 160 80 40 152 RXTX_DIV[6:0] 4/5.37125:6:0 If 1x --> 2'b01 (Half) If 2x --> 2'b00 (Full) 2'b00 (Full) 2'b00 (Full) If 1x --> 2'b10 (1/4) If 2x --> 2'b01 (Half) If 4x --> 2'b00 (Full) If 1x --> 2'b10 (1/4) If 2x --> 2'b01 (Half) If 4x --> 2'b00 (Full) 2'b01 (Half) See Note 2 Below SERDES RATE[1:0] TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Figure A-13. Standard Based Jitter Cleaner/SERDES Provisioning Submit Documentation Feedback SERDES RATE [1:0] (See Note 2 Below) REF_DIV[6:0] FB_DIV[6:0] 2'b00 (Full) 2'b01 (Half) 2'b10 (Quarter) 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max Min Max Min Max 50.0000 52.0833 1 60 10 30 2000.000 2083.333 1000.000 1041.667 500.000 520.833 50.4310 53.8793 1 58 10 29 2017.241 2155.172 1008.621 1077.586 504.310 538.793 52.2321 55.8036 1 56 10 28 2089.286 2232.143 1044.643 1116.071 522.321 558.036 54.1667 57.8704 1 54 10 27 2166.667 2314.815 1083.333 1157.407 541.667 578.704 56.2500 60.0962 1 52 10 26 2250.000 2403.846 1125.000 1201.923 562.500 600.962 58.5000 62.5000 1 50 10 25 2340.000 2500.000 1170.000 1250.000 600.000 625.000 60.9375 65.1042 1 48 10 24 2437.500 2604.167 1218.750 1302.083 609.375 651.042 63.5870 67.9348 1 46 10 23 2543.478 2717.391 1271.739 1358.696 635.870 679.348 66.4773 71.0227 1 44 10 22 2659.091 2840.909 1329.545 1420.455 664.773 710.227 69.6429 74.4048 1 42 10 21 2785.714 2976.190 1392.857 1488.095 696.429 744.048 73.1250 78.1250 1 40 10 20 2925.000 3125.000 1462.500 1562.500 731.250 781.250 76.9737 82.2368 1 38 10 19 3078.947 3289.474 1539.474 1644.737 769.737 822.368 81.2500 86.8056 1 36 10 18 3250.000 3472.222 1625.000 1736.111 812.500 868.056 86.0294 91.9118 1 34 10 17 3441.176 3676.471 1720.588 1838.235 860.294 919.118 91.4063 97.6563 1 32 10 16 3656.250 3750.000 1828.125 1953.125 914.063 976.563 97.5000 100.0000 1 30 10 15 3900.000 4000.000 1950.000 2000.000 975.000 1000.000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Note that REFCLK is limited to 93.75 Mhz when in full rate mode to achieve 3750 Mbps serial data rate. Figure A-14. 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (2x) Provisioning Submit Documentation Feedback APPENDIX A – Frequency Ranges Supported 137 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 SERDES REF_DIV[6:0] FB_DIV[6:0] RATE[1:0] =2'b00 Full 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max 50.0000 53.8793 1 58 20 58 2000.000 2155.172 51.3158 54.8246 1 57 20 57 2052.632 2192.982 52.2321 55.8036 1 56 20 56 2089.286 2232.143 53.1818 56.8182 1 55 20 55 2127.273 2272.727 54.1667 57.8704 1 54 20 54 2166.667 2314.815 55.1887 58.9623 1 53 20 53 2207.547 2358.491 56.2500 60.0962 1 52 20 52 2250.000 2403.846 57.3529 61.2745 1 51 20 51 2294.118 2450.980 58.5000 62.5000 1 50 20 50 2340.000 2500.000 59.6939 63.7755 1 49 20 49 2387.755 2551.020 60.9375 65.1042 1 48 20 48 2437.500 2604.167 62.2340 66.4894 1 47 20 47 2489.362 2659.574 63.5870 67.9348 1 46 20 46 2543.478 2717.391 65.0000 69.4444 1 45 20 45 2600.000 2777.778 66.4773 71.0227 1 44 20 44 2659.091 2840.909 68.0233 72.6744 1 43 20 43 2720.930 2906.977 69.6429 74.4048 1 42 20 42 2785.714 2976.190 71.3415 76.2195 1 41 20 41 2853.659 3048.780 73.1250 78.1250 1 40 20 40 2925.000 3125.000 75.0000 80.1282 1 39 20 39 3000.000 3205.128 76.9737 82.2368 1 38 20 38 3078.947 3289.474 79.0541 84.4595 1 37 20 37 3162.162 3378.378 81.2500 86.8056 1 36 20 36 3250.000 3472.222 83.5714 89.2857 1 35 20 35 3342.857 3571.429 86.0294 91.9118 1 34 20 34 3441.176 3676.471 88.6364 94.6970 1 33 20 33 3545.455 3750.000 91.4063 97.6563 1 32 20 32 3656.250 3750.000 94.3548 100.8065 1 31 20 31 3774.194 4032.258 97.5000 104.1667 1 30 20 30 3900.000 4166.667 100.8621 106.2500 1 29 20 29 4034.483 4250.000 104.4643 106.2500 1 28 20 28 4178.571 4250.000 100.0000 104.1667 1 30 10 30 2000.000 2083.333 100.0000 107.7586 1 29 10 29 2000.000 2155.172 104.4643 111.6071 1 28 10 28 2089.286 2232.143 108.3333 115.7407 1 27 10 27 2166.667 2314.815 112.5000 120.1923 1 26 10 26 2250.000 2403.846 117.0000 125.0000 1 25 10 25 2340.000 2500.000 121.8750 130.2083 1 24 10 24 2437.500 2604.167 127.1739 135.8696 1 23 10 23 2543.478 2717.391 132.9545 142.0455 1 22 10 22 2659.091 2840.909 139.2857 148.8095 1 21 10 21 2785.714 2976.190 146.2500 156.2500 1 20 10 20 2925.000 3125.000 153.9474 164.4737 1 19 10 19 3078.947 3289.474 162.5000 173.6111 1 18 10 18 3250.000 3472.222 172.0588 183.8235 1 17 10 17 3441.176 3676.471 182.8125 195.3125 1 16 10 16 3656.250 3750.000 195.0000 200.0000 1 15 10 15 3900.000 4000.000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) www.ti.com RATE [1:0] (See Note 2 Below) RATE[1:0] =2'b01 Half RATE[1:0] =2'b10 Qrtr. Min 1000.000 1026.316 1044.643 1063.636 1083.333 1103.774 1125.000 1147.059 1170.000 1193.878 1218.750 1244.681 1271.739 1300.000 1329.545 1360.465 1392.857 1426.829 1462.500 1500.000 1539.474 1581.081 1625.000 1671.429 1720.588 1772.727 1828.125 1887.097 1950.000 2017.241 2089.286 1000.000 1000.000 1044.643 1083.333 1125.000 1170.000 1218.750 1271.739 1329.545 1392.857 1462.500 1539.474 1625.000 1720.588 1828.125 1950.000 Max 1077.586 1096.491 1116.071 1136.364 1157.407 1179.245 1201.923 1225.490 1250.000 1275.510 1302.083 1329.787 1358.696 1388.889 1420.455 1453.488 1488.095 1524.390 1562.500 1602.564 1644.737 1689.189 1736.111 1785.714 1838.235 1893.939 1953.125 2016.129 2083.333 2125.000 2125.000 1041.667 1077.586 1116.071 1157.407 1201.923 1250.000 1302.083 1358.696 1420.455 1488.095 1562.500 1644.737 1736.111 1838.235 1953.125 2000.000 Min 500.000 513.158 522.321 531.818 541.667 551.887 562.500 600.000 600.000 600.000 609.375 622.340 635.870 650.000 664.773 680.233 696.429 713.415 731.250 750.000 769.737 790.541 812.500 835.714 860.294 886.364 914.063 943.548 975.000 1008.621 1044.643 500.000 500.000 522.321 541.667 562.500 600.000 600.000 635.870 664.773 696.429 731.250 769.737 812.500 860.294 914.063 975.000 Max 538.793 548.246 558.036 568.182 578.704 589.623 600.962 612.745 625.000 637.755 651.042 664.894 679.348 694.444 710.227 726.744 744.048 762.195 781.250 801.282 822.368 844.595 868.056 892.857 919.118 946.970 976.563 1008.065 1041.667 1062.500 1062.500 520.833 538.793 558.036 578.704 600.962 625.000 651.042 679.348 710.227 744.048 781.250 822.368 868.056 919.118 976.563 1000.000 Note that REFCLK is limited to 187.5 Mhz when in full rate mode to achieve 3750 Mbps serial data rate. Figure A-15. 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (1x) Provisioning 138 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 SERDES RATE[1:0] (See Note 2 Below) REF_DIV[6:0] FB_DIV[6:0] RATE[1:0] =2'b00 Full RATE[1:0] =2'b01 Half RATE[1:0] =2'b10 Qrtr. 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max Min Max Min Max 100.0000 105.9322 4 118 20 59 2000.000 2118.644 1000.000 1059.322 500.000 529.661 100.8621 107.7586 4 116 20 58 2017.241 2155.172 1008.621 1077.586 504.310 538.793 102.6316 109.6491 4 114 20 57 2052.632 2192.982 1026.316 1096.491 513.158 548.246 104.4643 111.6071 4 112 20 56 2089.286 2232.143 1044.643 1116.071 522.321 558.036 106.3636 113.6364 4 110 20 55 2127.273 2272.727 1063.636 1136.364 531.818 568.182 108.3333 115.7407 4 108 20 54 2166.667 2314.815 1083.333 1157.407 541.667 578.704 110.3774 117.9245 4 106 20 53 2207.547 2358.491 1103.774 1179.245 551.887 589.623 112.5000 120.1923 4 104 20 52 2250.000 2403.846 1125.000 1201.923 562.500 600.962 114.7059 122.5490 4 102 20 51 2294.118 2450.980 1147.059 1225.490 600.000 612.745 117.0000 125.0000 4 100 20 50 2340.000 2500.000 1170.000 1250.000 600.000 625.000 119.3878 127.5510 4 98 20 49 2387.755 2551.020 1193.878 1275.510 600.000 637.755 121.8750 130.2083 4 96 20 48 2437.500 2604.167 1218.750 1302.083 609.375 651.042 124.4681 132.9787 4 94 20 47 2489.362 2659.574 1244.681 1329.787 622.340 664.894 127.1739 135.8696 4 92 20 46 2543.478 2717.391 1271.739 1358.696 635.870 679.348 130.0000 138.8889 4 90 20 45 2600.000 2777.778 1300.000 1388.889 650.000 694.444 132.9545 142.0455 4 88 20 44 2659.091 2840.909 1329.545 1420.455 664.773 710.227 136.0465 145.3488 4 86 20 43 2720.930 2906.977 1360.465 1453.488 680.233 726.744 139.2857 148.8095 4 84 20 42 2785.714 2976.190 1392.857 1488.095 696.429 744.048 142.6829 152.4390 4 82 20 41 2853.659 3048.780 1426.829 1524.390 713.415 762.195 146.2500 156.2500 4 80 20 40 2925.000 3125.000 1462.500 1562.500 731.250 781.250 150.0000 160.2564 4 78 20 39 3000.000 3205.128 1500.000 1602.564 750.000 801.282 153.9474 164.4737 4 76 20 38 3078.947 3289.474 1539.474 1644.737 769.737 822.368 158.1081 168.9189 4 74 20 37 3162.162 3378.378 1581.081 1689.189 790.541 844.595 162.5000 173.6111 4 72 20 36 3250.000 3472.222 1625.000 1736.111 812.500 868.056 167.1429 178.5714 4 70 20 35 3342.857 3571.429 1671.429 1785.714 835.714 892.857 172.0588 183.8235 4 68 20 34 3441.176 3676.471 1720.588 1838.235 860.294 919.118 177.2727 189.3939 4 66 20 33 3545.455 3750.000 1772.727 1893.939 886.364 946.970 182.8125 195.3125 4 64 20 32 3656.250 3750.000 1828.125 1953.125 914.063 976.563 188.7097 201.6129 4 62 20 31 3774.194 4032.258 1887.097 2016.129 943.548 1008.065 195.0000 208.3333 4 60 20 30 3900.000 4166.667 1950.000 2083.333 975.000 1041.667 201.7241 212.5000 4 58 20 29 4034.483 4250.000 2017.241 2125.000 1008.621 1062.500 208.9286 212.5000 4 56 20 28 4178.571 4250.000 2089.286 2125.000 1044.643 1062.500 200.0000 208.3333 4 60 10 30 2000.000 2083.333 1000.000 1041.667 500.000 520.833 201.7241 215.5172 4 58 10 29 2017.241 2155.172 1008.621 1077.586 504.310 538.793 208.9286 223.2143 4 56 10 28 2089.286 2232.143 1044.643 1116.071 522.321 558.036 216.6667 231.4815 4 54 10 27 2166.667 2314.815 1083.333 1157.407 541.667 578.704 225.0000 240.3846 4 52 10 26 2250.000 2403.846 1125.000 1201.923 562.500 600.962 234.0000 250.0000 4 50 10 25 2340.000 2500.000 1170.000 1250.000 600.000 625.000 243.7500 260.4167 4 48 10 24 2437.500 2604.167 1218.750 1302.083 609.375 651.042 254.3478 271.7391 4 46 10 23 2543.478 2717.391 1271.739 1358.696 635.870 679.348 265.9091 284.0909 4 44 10 22 2659.091 2840.909 1329.545 1420.455 664.773 710.227 278.5714 297.6190 4 42 10 21 2785.714 2976.190 1392.857 1488.095 696.429 744.048 292.5000 312.5000 4 40 10 20 2925.000 3125.000 1462.500 1562.500 731.250 781.250 307.8947 328.9474 4 38 10 19 3078.947 3289.474 1539.474 1644.737 769.737 822.368 325.0000 347.2222 4 36 10 18 3250.000 3472.222 1625.000 1736.111 812.500 868.056 344.1176 367.6471 4 34 10 17 3441.176 3676.471 1720.588 1838.235 860.294 919.118 365.6250 375.0000 4 32 10 16 3656.250 3750.000 1828.125 1875.000 914.063 937.500 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) Figure A-16. 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (0.5x) Provisioning Submit Documentation Feedback APPENDIX A – Frequency Ranges Supported 139 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com SERDES RATE[1:0] (See Note 2 Below) REF_DIV[6:0] FB_DIV[6:0] RATE[1:0] =2'b00 FullRATE[1:0] =2'b01 HalfRATE[1:0] =2'b10 Qrtr. 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max Min Max Min Max 200.0000 211.8644 4 59 20 59 2000.000 2118.644 1000.000 1059.322 500.000 529.661 201.7241 215.5172 4 58 20 58 2017.241 2155.172 1008.621 1077.586 504.310 538.793 205.2632 219.2982 4 57 20 57 2052.632 2192.982 1026.316 1096.491 513.158 548.246 208.9286 223.2143 4 56 20 56 2089.286 2232.143 1044.643 1116.071 522.321 558.036 212.7273 227.2727 4 55 20 55 2127.273 2272.727 1063.636 1136.364 531.818 568.182 216.6667 231.4815 4 54 20 54 2166.667 2314.815 1083.333 1157.407 541.667 578.704 220.7547 235.8491 4 53 20 53 2207.547 2358.491 1103.774 1179.245 551.887 589.623 225.0000 240.3846 4 52 20 52 2250.000 2403.846 1125.000 1201.923 562.500 600.962 229.4118 245.0980 4 51 20 51 2294.118 2450.980 1147.059 1225.490 573.529 612.745 234.0000 250.0000 4 50 20 50 2340.000 2500.000 1170.000 1250.000 585.000 625.000 238.7755 255.1020 4 49 20 49 2387.755 2551.020 1193.878 1275.510 600.000 637.755 243.7500 260.4167 4 48 20 48 2437.500 2604.167 1218.750 1302.083 609.375 651.042 248.9362 265.9574 4 47 20 47 2489.362 2659.574 1244.681 1329.787 622.340 664.894 254.3478 271.7391 4 46 20 46 2543.478 2717.391 1271.739 1358.696 635.870 679.348 260.0000 277.7778 4 45 20 45 2600.000 2777.778 1300.000 1388.889 650.000 694.444 265.9091 284.0909 4 44 20 44 2659.091 2840.909 1329.545 1420.455 664.773 710.227 272.0930 290.6977 4 43 20 43 2720.930 2906.977 1360.465 1453.488 680.233 726.744 278.5714 297.6190 4 42 20 42 2785.714 2976.190 1392.857 1488.095 696.429 744.048 285.3659 304.8780 4 41 20 41 2853.659 3048.780 1426.829 1524.390 713.415 762.195 292.5000 312.5000 4 40 20 40 2925.000 3125.000 1462.500 1562.500 731.250 781.250 300.0000 320.5128 4 39 20 39 3000.000 3205.128 1500.000 1602.564 750.000 801.282 307.8947 328.9474 4 38 20 38 3078.947 3289.474 1539.474 1644.737 769.737 822.368 316.2162 337.8378 4 37 20 37 3162.162 3378.378 1581.081 1689.189 790.541 844.595 325.0000 347.2222 4 36 20 36 3250.000 3472.222 1625.000 1736.111 812.500 868.056 334.2857 357.1429 4 35 20 35 3342.857 3571.429 1671.429 1785.714 835.714 892.857 344.1176 367.6471 4 34 20 34 3441.176 3676.471 1720.588 1838.235 860.294 919.118 354.5455 375.0000 4 33 20 33 3545.455 3750.000 1772.727 1875.000 886.364 937.500 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) Figure A-17. 9/10 BIT SERDES Mode – Jitter Cleaner/SERDES (0.25x) Provisioning 140 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback A. Submit Documentation Feedback REFCLK (Mhz) SERDES RATE [1:0] (See Note 2 Below) FB_DIV[6:0] REF_DIV[6:0] 2'b10 (Quarter) 2'b01 (Half) 2'b00 (Full) RXTX_DIV[6:0] PLL_MULT[3:0] 4/5.37124:6:0 4/5.37124:14:8 Max Min Max Min Max Min 4/5.37125:6:0 See Note 1 Below (Decimal) (Decimal) Max Min 520.833 500.000 1000.000 1041.667 2000.000 2083.333 24 8 48 1 65.1042 62.5000 543.478 508.696 1017.391 1086.957 2034.783 2173.913 23 8 46 1 67.9348 63.5870 568.182 531.818 1063.636 1136.364 2127.273 2272.727 22 8 44 1 71.0227 66.4773 595.238 557.143 1190.476 1114.286 2228.571 2380.952 21 8 42 1 74.4048 69.6429 625.000 600.000 1250.000 1170.000 2340.000 2500.000 20 8 40 1 78.1250 73.1250 657.895 615.789 1231.579 1315.789 2463.158 2631.579 19 8 38 1 82.2368 76.9737 694.444 650.000 1300.000 1388.889 2600.000 2777.778 18 8 36 1 86.8056 81.2500 735.294 688.235 1376.471 1470.588 2752.941 2941.176 17 8 34 1 91.9118 86.0294 781.250 731.250 1462.500 1562.500 2925.000 3000.000 16 8 32 1 97.6563 91.4063 800.000 780.000 1560.000 1600.000 3120.000 3200.000 15 8 30 1 100.0000 97.5000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. 8 Bit SERDES Mode - Continuous Mode - Jitter Cleaner (2x) Mode TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Note that REFCLK is limited to 93.75 Mhz when in Full rate mode to achieve 3000 Mbps serial data rate. Figure A-18. 8 BIT SERDES Mode – Jitter Cleaner/SERDES (2x) Provisioning(A) APPENDIX A – Frequency Ranges Supported 141 A. 142 REFCLK (Mhz) SERDES RATE [1:0] (See Note 2 Below) FB_DIV[6:0] REF_DIV[6:0] 2'b10 (Quarter) 2'b01 (Half) 2'b00 (Full) RXTX_DIV[6:0] PLL_MULT[3:0] 4/5.37124:6:0 4/5.37124:14:8 Max Min Max Min Max Min 4/5.37125:6:0 Below 1 Note See (Decimal) (Decimal) Max Min 520.833 500.000 1041.667 1000.000 2083.333 2000.000 24 8 24 1 130.2083 125.0000 543.478 508.696 1086.957 1017.391 2173.913 2034.783 23 8 23 1 135.8696 127.1739 568.182 531.818 1136.364 1063.636 2272.727 2127.273 22 8 22 1 142.0455 132.9545 595.238 557.143 1190.476 1114.286 2380.952 2228.571 21 8 21 1 148.8095 139.2857 625.000 600.000 1250.000 1170.000 2500.000 2340.000 20 8 20 1 156.2500 146.2500 657.895 615.789 1315.789 1231.579 2631.579 2463.158 19 8 19 1 164.4737 153.9474 694.444 650.000 1388.889 1300.000 2777.778 2600.000 18 8 18 1 173.6111 162.5000 735.294 688.235 1470.588 1376.471 2941.176 2752.941 17 8 17 1 183.8235 172.0588 781.250 731.250 1562.500 1462.500 3000.000 2925.000 16 8 16 1 195.3125 182.8125 800.000 780.000 1600.000 1560.000 3200.000 3120.000 15 8 15 1 200.0000 195.0000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. 8 Bit SERDES Mode - Continuous Mode - Jitter Cleaner (1x) Mode TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 www.ti.com Note that REFCLK is limited to 187.5 Mhz when in Full rate mode to achieve 3000 Mbps serial data rate. Figure A-19. 8 BIT SERDES Mode – Jitter Cleaner/SERDES (1x) Provisioning(A) APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback SERDES RATE [1:0] (See Note 2 Below) REF_DIV[6:0] FB_DIV[6:0] 2'b00 (Full) 2'b01 (Half) 2'b10 (Quarter) 4/5.37124:14:8 4/5.37124:6:0 PLL_MULT[3:0] RXTX_DIV[6:0] Min Max (Decimal) (Decimal) See Note 1 Below 4/5.37125:6:0 Min Max Min Max Min Max 250.0000 260.4167 4 48 8 24 2000.000 2083.333 1000.000 1041.667 500.000 520.833 254.3478 271.7391 4 46 8 23 2034.783 2173.913 1017.391 1086.957 508.696 543.478 265.9091 284.0909 4 44 8 22 2127.273 2272.727 1063.636 1136.364 531.818 568.182 278.5714 297.6190 4 42 8 21 2228.571 2380.952 1114.286 1190.476 557.143 595.238 292.5000 312.5000 4 40 8 20 2340.000 2500.000 1170.000 1250.000 600.000 625.000 307.8947 328.9474 4 38 8 19 2463.158 2631.579 1231.579 1315.789 615.789 657.895 325.0000 347.2222 4 36 8 18 2600.000 2777.778 1300.000 1388.889 650.000 694.444 344.1176 367.6471 4 34 8 17 2752.941 2941.176 1376.471 1470.588 688.235 735.294 365.6250 375.0000 4 32 8 16 2925.000 3000.000 1462.500 1500.000 731.250 750.000 Note 1: PLL_MULT[3:0] bits are found in bits 11:8 and 3:0 in register SERDES_PLL_CONFIG at address 4/5.36864. Note 2: RATE[1:0] bits are found in the SERDES_RATE_CONFIG_TX_RX register at address 4/5.36865. REFCLK (Mhz) TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Figure A-20. 8 BIT SERDES Mode – Jitter Cleaner/SERDES (0.5x) Provisioning Submit Documentation Feedback APPENDIX A – Frequency Ranges Supported 143 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 A.1 www.ti.com Recovered Byte Clock Jitter Cleaner Mode: If it is desired to dedicate the Jitter Cleaner PLL to clean the RX SERDES recovered byte clock, then the following procedure must be followed: 1. Program REF_SEL[1:0] to 2’b10. 2. Program RXB_SEL[1:0] to 2’b00. 3. Program RX_SEL to 2’b10 -or- 2’b11. 4. Program TX_SEL as desired. 5. Program 4/5.32810.15:14 -or- 16.10:9 as desired on a per channel basis. 6. Consult the rows in the appropriate Appendix A table to find the appropriate REFCLK and SERDES mode settings. Note that only rows indicating that the Jitter Cleaner PLL is OFF may be used. Provision the SERDES settings appropriately. 7. Divide the selected SERDES serial rate by 8 if in EBI/REBI modes, or 10 otherwise, and use that frequency as the input to Figure A-21 Recovered Byte Clock Jitter Cleaner Mode, to determine the appropriate Jitter Cleaner PLL settings. Note that only a 1:1 frequency ratio is supported between the SERDES output byte clock and the parallel interface output recovered byte clock. Depending upon the selection of TX_SEL, it may also be necessary to provision RXTX_DIV with the same value as RXB_DIV. 144 APPENDIX A – Frequency Ranges Supported Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com SLLS838D – MAY 2007 – REVISED JULY 2008 Recovered Byte Clock Cleaning Mode - Jitter Cleaner (1x) Mode Recovered Byte Clock (Mhz) Min 50.0000 51.3158 52.2321 53.1818 54.1667 55.1887 56.2500 57.3529 58.5000 59.6939 60.9375 62.2340 63.5870 65.0000 66.4773 68.0233 69.6429 71.3415 73.1250 75.0000 76.9737 79.0541 81.2500 83.5714 86.0294 88.6364 91.4063 94.3548 97.5000 100.8621 104.4643 108.3333 112.5000 117.0000 121.8750 127.1739 132.9545 139.2857 146.2500 153.9474 162.5000 172.0588 182.8125 195.0000 208.9286 225.0000 243.7500 265.9091 292.5000 325.0000 365.6250 Max 53.8793 54.8246 55.8036 56.8182 57.8704 58.9623 60.0962 61.2745 62.5000 63.7755 65.1042 66.4894 67.9348 69.4444 71.0227 72.6744 74.4048 76.2195 78.1250 80.1282 82.2368 84.4595 86.8056 89.2857 91.9118 94.6970 97.6563 100.8065 104.1667 107.7586 111.6071 115.7407 120.1923 125.0000 130.2083 135.8696 142.0455 148.8095 156.2500 164.4737 173.6111 183.8235 195.3125 208.3333 223.2143 240.3846 260.4167 284.0909 312.5000 347.2222 375.0000 REF_DIV[6:0] FB_DIV[6:0] 4/5.37124:14:8 4/5.37124:6:0 RXB_DIV[6:0] (Decimal) (Decimal) 4/5.37125:14:8 1 58 58 1 57 57 1 56 56 1 55 55 1 54 54 1 53 53 1 52 52 1 51 51 1 50 50 1 49 49 1 48 48 1 47 47 1 46 46 1 45 45 1 44 44 1 43 43 1 42 42 1 41 41 1 40 40 1 39 39 1 38 38 1 37 37 1 36 36 1 35 35 1 34 34 1 33 33 1 32 32 1 31 31 1 30 30 1 29 29 1 28 28 1 27 27 1 26 26 1 25 25 1 24 24 1 23 23 1 22 22 1 21 21 1 20 20 1 19 19 1 18 18 1 17 17 1 16 16 1 15 15 1 14 14 1 13 13 1 12 12 1 11 11 1 10 10 1 9 9 1 8 8 Figure A-21. Recovered Byte Clock Jitter Cleaner Mode Submit Documentation Feedback APPENDIX A – Frequency Ranges Supported 145 TLK3134 4-Channel Multi-Rate Transceiver SLLS838D – MAY 2007 – REVISED JULY 2008 B www.ti.com APPENDIX B – Jitter Cleaner PLL External Loop Filter The following external loop filter is required anytime the Jitter Cleaner PLL is enabled. TLK Device CP_OUT VTUNE R3=1.21k R3=1.21kW C2=1.5nF R1=100W R1=100 C1=3.3uF VSSA_VCO C3=1.800nF VSSA_VCO VSSA_VCO External passive loop filter Figure B-1. Jitter Cleaner External Loop Filter 146 APPENDIX B – Jitter Cleaner PLL External Loop Filter Submit Documentation Feedback TLK3134 4-Channel Multi-Rate Transceiver www.ti.com C SLLS838D – MAY 2007 – REVISED JULY 2008 APPENDIX C – Device Test Mode This device can be placed into one of the three modes: functional mode including JTAG testing mode, scan testing mode, and Jadis/eFuse testing mode. The scan testing mode and Jadis/eFuse testing modes are for TI use only, and may be ignored by external users of this device. Table C-1. Device Mode Configuration FUNCTIONAL DEVICE PIN NAME FUNCTIONAL MODE/JTAG TESTING SCAN MODE Jadis/eFuse MODE TESTEN 0 or 1 0 1 GPI1 0 1 1 Table C-2. Device Test Mode Pin Configuration FUNCTION AL DEVICE PIN NAME FUNCTIONAL MODE SIGNAL DIRECTION TEST MODE SIGNAL DIRECTION FUNCTIONAL MODE/JTAG TESTING SCAN MODE SPEED1 I I SPEED1 Scan In 5 STCI_D SPEED0 I I SPEED0 Scan In 4 EFUSE_TMS PLOOP I I PLOOP Scan In 3 EFUSE_TDI SLOOP I I SLOOP Scan In 2 STCICFG1 PRBS_EN I I PRBS_EN Scan In 1 EFUSE_INITZ CODE I I CODE Scan Enable TDI I I TDI Adaptive Scan Enable (Test Mode) PRTAD4 I I PRTAD4 Scan HS Enable (Transition Fault) PRTAD3 I I PRTAD3 Scan Clock STCICLK PRTAD2 I I: Jadis/eFuse O: Scan PRTAD2 Scan Out 5 STCICFG0 PRTAD1 I I PRTAD1 Jadis/eFuse MODE TESTCLK_T JADIS_EFUSE_SEL TESTCLK_R Scan Clock Select (0: from device pin, 1: from Jadis), EFUSE_SYS_CLK also EFUSE_SYS_CLK PRTAD0 I I PRTAD0 HSTL Force Down GPO0 O O TEST_DOUT0 Scan Out 4 Tied LOW GPO1 O O TEST_DOUT1 Scan Out 3 Tied LOW GPO2 O O TEST_DOUT2 Scan Out 2 STCI_Q GPO3 O O TEST_DOUT3 Scan Out 1 EFUSE_TDO O TEST_DOUT4 or JC PLL Digital Test Out Burnin_Output Burnin_Output GPO4 O Submit Documentation Feedback EFUSE_TCK APPENDIX C – Device Test Mode 147 PACKAGE OPTION ADDENDUM www.ti.com 9-Sep-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing TLK3134ZEL ACTIVE BGA ZEL Pins Package Eco Plan (2) Qty 289 84 Green (RoHS & no Sb/Br) Lead/Ball Finish SNAGCU MSL Peak Temp (3) Level-4-260C-72 HR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated