TI TLV2422AID

TLV2422, TLV2422A, TLV2422Y
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER 1997 – REVISED SEPTEMBER 1999
•
•
•
•
•
•
•
Output Swing Includes Both Supply Rails
Extended Common-Mode Input Voltage
Range . . . 0 V to 4.5 V (Min) with 5-V Single
Supply
No Phase Inversion
Low Noise . . . 18 nV/√Hz Typ at f = 1 kHz
Low Input Offset Voltage
950 µV Max at TA = 25°C (TLV2422A)
•
•
Low Input Bias Current . . . 1 pA Typ
Micropower Operation . . . 50 µA Per
Channel
600-Ω Output Drive
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
description
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5
VDD = 5 V
VOH – High-Level Output Voltage – V
The TLV2422 and TLV2422A are dual low-voltage
operational amplifiers from Texas Instruments.
The common-mode input voltage range for this
device has been extended over the typical CMOS
amplifiers making them suitable for a wide range
of applications. In addition, the devices do not
phase invert when the common-mode input is
driven to the supply rails. This satisfies most
design requirements without paying a premium
for rail-to-rail input performance. They also exhibit
rail-to-rail output performance for increased
dynamic range in single- or split-supply
applications. This family is fully characterized at
3-V and 5-V supplies and is optimized for
low-voltage operation. The TLV2422 only requires
50 µA of supply current per channel, making it
ideal for battery-powered applications. The
TLV2422 also has increased output drive over
previous rail-to-rail operational amplifiers and can
drive 600-Ω loads for telecom applications.
TA = –40°C
4
TA = 25°C
3
2
TA = 85°C
1
TA = 125°C
0
0
4
8
12
16
20
24
28
32
36
40
IOH – High-Level Output Current – mA
Other members in the TLV2422 family are the
high-power, TLV2442, and low-power, TLV2432,
versions.
Figure 1
The TLV2422, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and
low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV2422A is available with
a maximum input offset voltage of 950 µV.
If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output
operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal
for high density, battery-powered equipment.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-STD-883, Class B, all parameters are
tested unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLV2422, TLV2422A, TLV2422Y
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER 1997 – REVISED SEPTEMBER 1999
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE
(D)
CHIP CARRIER
(FK)
CERAMIC DIP
(JG)
TSSOP
(PW)
CERAMIC
FLAT PACK
(U)
0°C to 70°C
2.5 mV
TLV2422CD
—
—
TLV2422CPWLE
—
– 40°C to 85°C
950 µV
µ
2.5 mV
TLV2422AID
TLV2422ID
—
—
—
—
TLV2422AIPWLE
—
—
—
– 40°C to 125°C
950 µV
µ
2.5 mV
TLV2422AQD
TLV2422QD
—
—
—
—
—
—
—
—
– 55°C to 125°C
950 µV
µ
2 mV
—
—
TLV2422AMFK
TLV2422MFK
TLV2422AMJG
TLV2422MJG
—
—
TLV2422AMU
TLV2422MU
CHIP FORM
(Y)
TLV2422Y
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2422CDR). The PW package is available only left-end taped
and reeled. Chips are tested at 25°C.
D OR JG PACKAGE
(TOP VIEW)
1OUT
1IN –
1IN +
VDD – /GND
1
8
2
7
3
6
4
5
PW PACKAGE
(TOP VIEW)
VDD +
2OUT
2IN –
2IN +
1OUT
1IN–
1IN +
VDD – / GND
1
2
3
4
8
7
6
5
VDD +
2OUT
2IN –
2IN +
NC
1OUT
NC
VDD+
NC
FK PACKAGE
(TOP VIEW)
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN –
NC
NC
1OUT
1IN –
1IN +
VDD – /GND
NC
VDD– /GND
NC
2IN+
NC
NC
1IN –
NC
1IN +
NC
U PACKAGE
(TOP VIEW)
NC – No internal connection
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
10
2
9
3
8
4
7
5
6
NC
VDD +
2OUT
2IN –
2IN +
equivalent schematic (each amplifier)
Q22
Q29
Q31
Q34
Q36
VB3
Q26
Q32
VB2
VB1
VDD+
Q25
Q35
Q33
Q27
VB4
Q23
Transistors
Diodes
Resistors
Capacitors
Q30
Q37
R10
D1
R9
R3
Q3
R4
R7
Q13
IN–
Q1
Q6
Q4
Q8
Q15
Q10
Q18
Q20
IN+
Q7
R5
Q9
C2
VDD–/GND
C1
VB3
Q11
Q16
R6
OUT
C3
VB2
Q2
Q14
Q5
Q17
Q12
R1
Q21
Q19
R2
R8
VB4
69
5
26
6
3
SLOS199B – SEPTEMBER 1997 – REVISED SEPTEMBER 1999
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
COMPONENT
COUNT
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
Q24
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Input voltage, VI (any input, see Note 1): C and I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD – .
2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if input is brought below VDD – – 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D
FK
JG
PW
U
725 mW
1375 mW
1050 mW
525 mW
675 mW
5.8 mW/°C
11.0 mW/°C
8 4 mW/°C
8.4
4.2 mW/
mW/°C
C
5.4 mW/°C
464 mW
880 mW
672 mW
336 mW
432 mW
377 mW
715 mW
546 mW
273 mW
350 mW
145 mW
275 mW
210 mW
105 mW
135 mW
recommended operating conditions
C SUFFIX
MIN
MAX
I SUFFIX
MIN
MAX
Q SUFFIX
MIN
MAX
M SUFFIX
MIN
MAX
UNIT
Supply voltage, VDD ±
2.7
10
V
Input voltage range, VI
VDD –
VDD + – 0.8
VDD –
VDD + – 0.8
VDD –
VDD + – 0.8
VDD –
VDD + – 0.8
V
Common-mode input voltage,
VIC
VDD –
VDD + – 0.8
VDD –
VDD + – 0.8
VDD –
VDD + – 0.8
VDD –
VDD + – 0.8
V
125
°C
Operating free-air temperature,
TA
4
0
10
70
2.7
– 40
POST OFFICE BOX 655303
10
85
2.7
– 40
• DALLAS, TEXAS 75265
10
125
2.7
– 55
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of input offset voltage
IIB
Input bias current
VICR
VOL
AVD
MAX
300
2000
2500
25°C
to 70°C
VDD ± = ± 2.5 V,
RS = 50 Ω
VIC = 0,
VO = 0
0,
25°C
0.003
µV/mo
25°C
0.5
150
25°C
|VIO| ≤ 5 mV
mV,
High-level output voltage
1
Low-level output voltage
Large-signal
g
g
differential voltage
g amplification
0
to
2.5
Full range
0
to
2.2
IOL = 100 µA
VIC = 0
0,
IOL = 250 µA
RL = 10 kه
VIC = 2.5
2 5 V,
V
VO = 1 V to 2 V
RL = 1 Mه
–0.25
to
2.75
25°C
2.97
25°C
2.75
Full range
VIC = 0,
150
25°C
RS = 50 Ω
IOH = – 500 µA
µV
µV/°C
Full range
Common mode input voltage range
Common-mode
UNIT
2
Full range
IOH = – 100 µA
VOH
TYP
Full range
Input offset voltage long-term drift (see Note 4)
Input offset current
TLV2422C
MIN
25°C
VIO
IIO
TA†
pA
pA
V
V
2.5
25°C
0.05
25°C
0.2
Full range
V
0.5
25°C
6
Full range
3
10
V/mV
25°C
700
ri(d)
Differential input resistance
25°C
1012
Ω
ri(c)
Common-mode input resistance
25°C
1012
Ω
ci(c)
Common-mode input capacitance
f = 10 kHz
25°C
8
pF
zo
Closed-loop output impedance
f = 100 kHz,
25°C
130
Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = 0 to 2.5 V,, VO = 1.5 V,,
RS = 50 Ω
kSVR
Supply voltage rejection ratio (∆VDD/∆VIO)
Supply-voltage
VDD = 2.7 V to 8 V,,
VIC = VDD /2,
No load
IDD
Supply current
VO = 1.5
15V
V,
AV = 10
No load
25°C
70
Full range
70
25°C
80
Full range
80
25°C
Full range
83
dB
95
100
dB
150
175
µA
† Full range is 0°C to 70°C.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
Input offset voltage
long-term drift (see
Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
VOH
VOL
Common-mode input
voltage range
High-level
Hi
hl
l output
t t
voltage
Low-level
L
l
l output
t t
voltage
TEST CONDITIONS
TA†
TLV2422I
MIN
25°C
MAX
300
2000
Full range
VDD ± = ± 2.5 V,
RS = 50 Ω
VIC = 0,
VIC = 0
0,
0.003
0.003
µV/mo
25°C
0.5
0.5
150
150
1
1
150
25°C
0
to
2.5
Full range
0
to
2.2
–0.25
to
2.75
150
0
to
2.5
–0.25
to
2.75
2.97
25°C
2.75
0.05
25°C
0.2
Full range
0.05
3
V
0.2
0.5
6
V
2.75
2.5
25°C
25°C
pA
2.97
2.5
Full range
pA
V
0
to
2.2
25°C
Full range
IOL = 250 µA
µV
25°C
RS = 50 Ω
IOL = 100 µA
950
1500
UNIT
µV/°C
25°C
IOH = – 500 µA
300
MAX
2
Full range
IOH = – 100 µA
TYP
2
Full range
|VIO| ≤ 5 mV
mV,
MIN
2500
25°C
to 70°C
VIC = 0,
VO = 0,
TLV2422AI
TYP
10
0.5
6
10
AVD
Large signal
Large-signal
differential voltage
amplification
25°C
700
700
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 100 kHz,
25°C
130
130
Ω
CMRR
Common-mode
rejection ratio
VIC = 0 to 2.5 V,, VO = 1.5 V,,
RS = 50 Ω
kSVR
Supply-voltage
rejection ratio
(∆VDD/∆VIO)
VDD = 2.7 V to 8 V,,
VIC = VDD /2,
No load
IDD
Supply current
VO = 1.5
15V
V,
RL = 10 kه
VIC = 2.5
2 5 V,
V
VO = 1 V to 2 V
RL = 1 Mه
AV = 10
No load
25°C
70
Full range
70
25°C
80
Full range
80
3
83
70
V/mV
83
dB
70
95
80
95
dB
25°C
Full range
80
100
150
175
100
150
175
µA
† Full range is – 40°C to 85°C.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
VO = 1.5
1 5 V to 3.5
3 5 V,
V
CL = 100 pF‡
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
THD + N
Total harmonic distortion plus noise
ts
φm
MIN
TYP
25°C
0.01
0.02
Full
range
0.008
25°C
100
25°C
23
f = 0.1 Hz to 1 Hz
25°C
2.7
f = 0.1 Hz to 10 Hz
25°C
4
25°C
0.6
Maximum output-swing bandwidth
VO(PP) = 1 V,
RL = 10 kه,
AV = 1,
CL = 100 pF‡
To 0.1%
0 1%
Settling time
AV = – 1,
Step = 0.5 V to 2.5 V,,
RL = 10 kه,
CL = 100 pF‡
RL = 10 kه,
CL = 100 pF‡
POST OFFICE BOX 655303
fA√Hz
1.8%
25°C
46
kHz
25°C
8.3
kHz
86
8.6
0 01%
To 0.01%
• DALLAS, TEXAS 75265
µV
0.25%
µs
25°C
Gain margin
† Full range for the C version is 0°C to 70°C. Full range for the I version is – 40°C to 85°C.
‡ Referenced to 2.5 V
nV/√Hz
25°C
AV = 10
RL = 10 kه,
UNIT
MAX
V/µs
f = 1 kHz
AV = 1
Phase margin at unity gain
TLV2422C, TLV2422I
TLV2422AI
f = 10 Hz
VO = 0.5 V to 2.5 V,
f = 1 kHz
kHz,
RL = 10 kه
f = 10 kHz,
CL = 100 pF‡
Gain-bandwidth product
BOM
RL = 10 kه,
TA†
16
25°C
62°
25°C
11
dB
7
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLV2422Q,
TLV2422M
MIN
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
Input offset voltage
long-term drift (see
Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
VOH
VOL
AVD
Common-mode input
voltage range
High-level
Hi
hl
l output
t t
voltage
Low-level
L
l
l output
t t
voltage
Large-signal
Large
signal
differential voltage
amplification
25°C
TYP
MAX
300
2000
Full range
VDD ± = ± 1.5 V,
RS = 50 Ω
µV/mo
25°C
0.5
RL = 10 kه
VIC = 1.5
1 5 V,
V
VO = 1 V to 2 V
RL = 1 Mه
0.5
150
150
1
1
300
25°C
0
to
2.5
Full range
0
to
2.2
–0.25
to
2.75
300
0
to
2.5
–0.25
to
2.75
2.75
0.05
25°C
0.2
Full range
0.05
2
V
0.2
0.5
Full range
V
2.75
2.5
25°C
6
pA
2.97
2.5
25°C
pA
V
0
to
2.2
2.97
25°C
IOL = 250 µA
µV
0.003
Full range
VIC = 0
0,
1800
0.003
25°C
IOL = 100 µA
950
25°C
RS = 50 Ω
VIC = 0,
300
µV/°C
25°C
IOH = – 500 µA
MAX
2
Full range
IOH = – 100 µA
UNIT
TYP
2
Full range
|VIO| ≤ 5 mV
mV,
MIN
2500
Full range
VIC = 0,
VO = 0,
TLV2422AQ,
TLV2422AM
10
0.5
6
10
2
V/mV
25°C
700
700
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 100 kHz,
25°C
130
130
Ω
CMRR
Common-mode
rejection ratio
VIC = VICR min,, VO = 1.5 V,,
RS = 50 Ω
kSVR
Supply-voltage
rejection ratio
(∆VDD/∆VIO)
VDD = 2.7 V to 8 V,,
VIC = VDD /2,
No load
IDD
Supply current
15V
VO = 1.5
V,
AV = 10
No load
25°C
70
Full range
70
25°C
80
Full range
80
83
70
83
dB
70
95
80
95
dB
25°C
Full range
80
100
150
175
100
150
175
µA
† Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part.
‡ Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
VO = 1.1
1 1 V to 1.9
1 9 V,
V
CL = 100 pF‡
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
THD + N
Total harmonic distortion plus noise
BOM
ts
φm
RL = 10 kه,
TYP
0.01
0.02
Full
range
0.008
25°C
100
25°C
23
f = 0.1 Hz to 1 Hz
25°C
2.7
f = 0.1 Hz to 10 Hz
25°C
4
25°C
0.6
Gain-bandwidth product
f = 10 kHz,
CL = 100 pF‡
RL = 10 kه,
Maximum output-swing bandwidth
VO(PP) = 1 V,
RL = 10 kه,
AV = 1,
CL = 100 pF‡
0 1%
To 0.1%
Settling time
AV = – 1,
Step = 0.5 V to 2.5 V,,
RL = 10 kه,
CL = 100 pF‡
RL = 10 kه,
CL = 100 pF‡
UNIT
MAX
V/µs
f = 1 kHz
AV = 1
Gain margin
MIN
25°C
f = 10 Hz
VO = 0.5 V to 2.5 V,
f = 1 kHz
kHz,
RL = 10 kه
Phase margin at unity gain
TA†
TLV2422Q,
TLV2422M,
TLV2422AQ,
TLV2422AM
nV/√Hz
µV
fA√Hz
0.25%
25°C
AV = 10
1.8%
25°C
46
kHz
25°C
8.3
kHz
86
8.6
µs
25°C
To 0.01%
0 01%
16
25°C
62°
25°C
11
dB
† Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part.
‡ Referenced to 1.5 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of input offset voltage
IIB
Input bias current
VICR
VOL
AVD
MAX
300
2000
2500
25°C
to 70°C
VDD ± = ± 2.5 V,
RS = 50 Ω
VIC = 0,
VO = 0
0,
25°C
0.003
µV/mo
25°C
0.5
150
25°C
|VIO| ≤ 5 mV
mV,
High-level output voltage
1
Low-level output voltage
Large-signal
g
g
differential voltage
g amplification
150
25°C
0
to
4.5
Full range
0
to
4.2
RS = 50 Ω
25°C
IOH = – 1 mA
VIC = 2.5 V,
IOL = 100 µA
5V
VIC = 2
2.5
V,
IOL = 500 µA
RL = 10 kه
VIC = 2.5
2 5 V,
V
VO = 1 V to 4 V
RL = 1 Mه
µV
µV/°C
Full range
Common mode input voltage range
Common-mode
UNIT
2
Full range
IOH = – 100 µA
VOH
TYP
Full range
Input offset voltage long-term drift (see Note 4)
Input offset current
TLV2422C
MIN
25°C
VIO
IIO
TA†
–0.25
to
4.75
pA
pA
V
4.97
25°C
4.5
Full range
4.25
V
4.75
25°C
0.04
25°C
0.15
Full range
V
0.5
25°C
8
Full range
5
12
V/mV
25°C
1000
ri(d)
Differential input resistance
25°C
1012
Ω
ri(c)
Common-mode input resistance
25°C
1012
Ω
ci(c)
Common-mode input capacitance
f = 10 kHz
25°C
8
pF
zo
Closed-loop output impedance
f = 100 kHz,
25°C
130
Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = 0 to 4.5 V,, VO = 2.5 V,,
RS = 50 Ω
kSVR
Supply voltage rejection ratio (∆VDD/∆VIO)
Supply-voltage
VDD = 4.4 V to 8 V,,
VIC = VDD /2,
No load
IDD
Supply current
VO = 2
2.5
5V
V,
AV = 10
No load
25°C
70
Full range
70
25°C
80
Full range
80
25°C
Full range
90
dB
95
100
dB
150
175
µA
† Full range is 0°C to 70°C.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
Input offset voltage
long-term drift (see
Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
VOH
VOL
Common-mode input
voltage range
High-level
Hi
hl
l output
t t
voltage
Low-level
L
l
l output
t t
voltage
TA†
TEST CONDITIONS
TLV2422I
MIN
25°C
MAX
300
2000
Full range
VDD ± = ± 2.5 V,
RS = 50 Ω
VIC = 2.5 V,
VIC = 2
2.5
5V
V,
0.003
0.003
µV/mo
25°C
0.5
0.5
150
150
1
1
150
0
to
4.5
Full range
0
to
4.2
RS = 50 Ω
25°C
IOL = 500 µA
µV
25°C
25°C
–0.25
to
4.75
150
0
to
4.5
4.5
Full range
4.25
–0.25
to
4.75
4.5
0.04
0.15
Full range
0.04
5
V
0.15
0.5
8
V
4.75
4.25
25°C
25°C
pA
4.97
4.75
25°C
Full range
pA
V
0
to
4.2
4.97
25°C
IOL = 100 µA
950
1500
UNIT
µV/°C
25°C
IOH = – 1 mA
300
MAX
2
Full range
IOH = – 100 µA
TYP
2
Full range
|VIO| ≤ 5 mV,
mV
MIN
2500
25°C
to 70°C
VIC = 0,
VO = 0,
TLV2422AI
TYP
12
0.5
8
12
AVD
Large signal
Large-signal
differential voltage
amplification
25°C
1000
1000
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 100 kHz,
25°C
130
130
Ω
CMRR
Common-mode
rejection ratio
VIC = 0 to 4.5 V,, VO = 2.5 V,,
RS = 50 Ω
kSVR
Supply-voltage
rejection ratio
(∆VDD/∆VIO)
VDD = 4.4 V to 8 V,,
VIC = VDD /2,
No load
IDD
Supply current
VO = 2.5
2 5 V,
V
RL = 10 kه
VIC = 2.5
2 5 V,
V
VO = 1 V to 4 V
RL = 1 Mه
AV = 10
No load
25°C
70
Full range
70
25°C
80
Full range
80
5
90
70
V/mV
90
dB
70
95
80
95
dB
25°C
Full range
80
100
150
175
100
150
175
µA
† Full range is – 40°C to 85°C.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
SR
TEST CONDITIONS
VO = 1
1.5
5 V to 3
3.5
5 V,
V
CL = 100 pF
F‡
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
THD + N
Total harmonic distortion plus noise
BOM
ts
φm
RL = 10 kه,
TYP
25°C
0.01
0.02
Full
range
0 008
0.008
100
25°C
18
f = 0.1 Hz to 1 Hz
25°C
1.9
f = 0.1 Hz to 10 Hz
25°C
2.8
25°C
0.6
Gain-bandwidth product
f = 10 kHz,
CL = 100 pF‡
RL =10 kه,
Maximum output-swing bandwidth
VO(PP) = 2 V,
RL = 10 kه,
AV = 1,
CL = 100 pF‡
0 1%
To 0.1%
Settling time
AV = – 1,
Step = 1.5 V to 3.5 V,,
RL = 10 kه,
CL = 100 pF‡
RL = 10 kه,
CL = 100 pF‡
POST OFFICE BOX 655303
nV/√Hz
µV
fA√Hz
0.24%
25°C
AV = 10
1.7%
25°C
52
kHz
25°C
5.3
kHz
85
8.5
µs
25°C
To 0
0.01%
01%
• DALLAS, TEXAS 75265
UNIT
MAX
V/µs
25°C
† Full range for the C version is 0°C to 70°C. Full range for the I version is – 40°C to 85°C.
‡ Referenced to 2.5 V
12
MIN
f = 1 kHz
AV = 1
Gain margin
TLV2422C, TLV2422I
TLV2422AI
f = 10 Hz
VO = 1.5 V to 3.5 V,
f = 1 kHz
kHz,
RL = 10 kه
Phase margin at unity gain
TA†
15 5
15.5
25°C
66°
25°C
11
dB
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TA†
TEST CONDITIONS
TLV2422Q,
TLV2422M
MIN
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
Input offset voltage
long-term drift (see
Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
VOH
VOL
AVD
Common-mode input
voltage range
High-level
Hi
hl
l output
t t
voltage
Low-level
L
l
l output
t t
voltage
Large-signal
Large
signal
differential voltage
amplification
25°C
TYP
MAX
300
2000
Full range
VDD ± = ± 2.5 V,
RS = 50 Ω
µV/mo
25°C
0.5
RL = 10 kه
VIC = 2.5
2 5 V,
V
VO = 1 V to 4 V
RL = 1 Mه
0.5
150
150
1
1
300
25°C
0
to
4.5
Full range
0
to
4.2
–0.25
to
4.75
300
0
to
4.5
–0.25
to
4.75
4.75
0.04
25°C
0.15
Full range
0.04
3
V
0.15
0.5
Full range
V
4.75
4.5
25°C
8
pA
4.97
4.5
25°C
pA
V
0
to
4.2
4.97
25°C
IOL = 500 µA
µV
0.003
Full range
VIC = 2
2.5
5V
V,
1800
0.003
25°C
IOL = 100 µA
950
25°C
RS = 50 Ω
VIC = 2.5 V,
300
µV/°C
25°C
IOH = – 1 mA
MAX
2
Full range
IOH = – 100 µA
UNIT
TYP
2
Full range
|VIO| ≤ 5 mV,
mV
MIN
2500
Full range
VIC = 0,
VO = 0,
TLV2422AQ,
TLV2422AM
12
0.5
8
12
3
V/mV
25°C
1000
1000
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 100 kHz,
25°C
130
130
Ω
CMRR
Common-mode
rejection ratio
VIC = VICR min,, VO = 2.5 V,,
RS = 50 Ω
kSVR
Supply-voltage
rejection ratio
(∆VDD/∆VIO)
VDD = 4.4 V to 8 V,,
VIC = VDD /2,
No load
IDD
Supply current
2 5 V,
V
VO = 2.5
AV = 10
No load
25°C
70
Full range
70
25°C
80
Full range
80
90
70
90
dB
70
95
80
95
dB
25°C
Full range
80
100
150
175
100
150
175
µA
† Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
SR
TEST CONDITIONS
VO = 1
1.5
5 V to 3
3.5
5 V,
V
CL = 100 pF
F‡
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
THD + N
Total harmonic distortion plus noise
RL = 10 kه,
Full
range
0 008
0.008
25°C
18
f = 0.1 Hz to 1 Hz
25°C
1.9
f = 0.1 Hz to 10 Hz
25°C
2.8
25°C
0.6
RL =10 kه,
BOM
Maximum output-swing bandwidth
VO(PP) = 2 V,
RL = 10 kه,
AV = 1,
CL = 100 pF‡
Settling time
AV = – 1,
Step = 1.5 V to 3.5 V,,
RL = 10 kه,
CL = 100 pF‡
0 1%
To 0.1%
ts
RL = 10 kه,
CL = 100 pF‡
POST OFFICE BOX 655303
nV/√Hz
µV
fA√Hz
0.24%
1.7%
25°C
52
kHz
25°C
5.3
kHz
85
8.5
µs
25°C
To 0
0.01%
01%
• DALLAS, TEXAS 75265
MAX
25°C
AV = 10
† Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part.
‡ Referenced to 2.5 V
UNIT
V/µs
f = 1 kHz
f = 10 kHz,
CL = 100 pF‡
14
0.02
100
Gain-bandwidth product
Gain margin
TYP
0.01
25°C
AV = 1
Phase margin at unity gain
MIN
25°C
f = 10 Hz
VO = 1.5 V to 3.5 V,
f = 1 kHz
kHz,
RL = 10 kه
φm
TA†
TLV2422Q,
TLV2422M,
TLV2422AQ,
TLV2422AM
15 5
15.5
25°C
66°
25°C
11
dB
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
vs Common-mode input voltage
2,3
,
4,5
αVIO
IIB/IIO
Temperature coefficient
Distribution
6,7
Input bias and input offset currents
vs Free-air temperature
VOH
VOL
High-level output voltage
vs High-level output current
9,11
Low-level output voltage
vs Low-level output current
10,12
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
13
IOS
Short circuit output current
Short-circuit
vs Supply
y voltage
g
vs Free-air temperature
14
15
VID
Differential input voltage
vs Output voltage
16,17
Differential gain
vs Load resistance
18
AVD
Large signal differential voltage amplification
Large-signal
vs Frequency
q
y
vs Free-air temperature
19,20
,
21,22
zo
Output impedance
vs Frequency
23,24
CMRR
Common mode rejection ratio
Common-mode
vs Frequency
q
y
vs Free-air temperature
25
26
kSVR
Supply voltage rejection ratio
Supply-voltage
vs Frequency
q
y
vs Free-air temperature
27,28
,
29
IDD
Supply current
vs Supply voltage
30
SR
Slew rate
vs Load capacitance
vs Free-air temperature
31
32
VO
VO
Inverting large-signal pulse response
33,34
Voltage-follower large-signal pulse response
35,36
VO
VO
Inverting small-signal pulse response
37,38
Vn
Equivalent input noise voltage
vs Frequency
Noise voltage (referred to input)
Over a 10-second period
Total harmonic distortion plus noise
vs Frequency
Gain bandwidth product
Gain-bandwidth
vs Supply
y voltage
g
vs Free-air temperature
Phase margin
vs Frequency
q
y
vs Load capacitance
19,20
,
48
Gain margin
vs Load capacitance
49
Unity-gain bandwidth
vs Load capacitance
50
THD + N
φm
B1
Voltage-follower small-signal pulse response
POST OFFICE BOX 655303
8
39,40
• DALLAS, TEXAS 75265
41, 42
43
44,45
46
47
15
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2422
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLV2422
INPUT OFFSET VOLTAGE
20
18
Percentage of Amplifiers – %
16
14
Percentage of Amplifiers – %
452 Amplifiers from 1 Wafer Lot
VDD = 3 V
RL = 10 kΩ
TA = 25°C
12
10
8
6
4
454 Amplifiers from 1 Wafer Lot
VDD = 5 V
RL = 10 kΩ
TA = 25°C
15
10
5
2
0
0
–0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
–0.4 –0.3 –0.2 –0.1 0
VIO – Input Offset Voltage – mV
Figure 2
Figure 3
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
2
VDD = 3 V
VDD = 5 V
1.5
VIO – Input Offset Voltage – mV
VIO – Input Offset Voltage – mV
1.5
1
0.5
0
–0.5
–1
–1.5
–2
–0.5
1
0.5
0
–0.5
–1
–1.5
0
0.5
1
1.5
2
2.5
3
VIC – Common-Mode Input Voltage – V
–2
–0.5
0
0.5
1
1.5
2
2.5
Figure 5
POST OFFICE BOX 655303
3
3.5
4
4.5
VIC – Common-Mode Input Voltage – V
Figure 4
16
0.1 0.2 0.3 0.4 0.5 0.6
VIO – Input Offset Voltage – mV
• DALLAS, TEXAS 75265
5
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2422 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLV2422 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
25
32 Amplifiers From 1 Wafer Lot
VDD = ± 1.5 V
TA = 25°C to 125°C
20
15
10
5
0
–4
32 Amplifiers From 1 Wafer Lot
VDD = ± 2.5 V
TA = 25°C to 125°C
20
Percentage of Amplifiers – %
Percentage of Amplifiers – %
25
2
3
–3
–2
–1
0
1
αVIO – Temperature Coefficient – µV / °C
15
10
5
0
4
–4
2
3
–3
–2
–1
0
1
αVIO – Temperature Coefficient – µV / °C
Figure 7
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
3
200
VDD = ± 2.5 V
VDD = 3 V
VOH – High-Level Output Voltage – V
I IB and I IO – Input Bias and Input Offset Currents – pA
Figure 6
4
160
120
IIB
80
40
2.5
TA = 85°C
2
TA = 0°C
1.5
TA = 125°C
1
TA = 25°C
0.5
IIO
0
–55
0
–40
0
25
70
85
125
TA – Free-Air Temperature – °C
0
3
6
9
12
15
IOH – High-Level Output Current – mA
Figure 8
Figure 9
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
1.6
5
VDD = 3 V
VDD = 5 V
VOH – High-Level Output Voltage – V
VOL – Low-Level Output Voltage – V
1.4
1.2
TA = 125°C
1
TA = 85°C
0.8
0.6
0.4
TA = 25°C
0.2
TA = –40°C
4
TA = 25°C
3
2
TA = 85°C
1
TA = 125°C
TA = –40°C
0
0
1
2
3
4
0
5
0
IOL – Low-Level Output Current – mA
4
12
8
Figure 10
1
TA = 125°C
0.8
TA = 85°C
0.4
TA = 25°C
TA = –40°C
0
1
2
3
4
5
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
VOH – High-Level Output Voltage – V
VDD = 5 V
0
28
32
36
40
5
RL = 10 kΩ
TA = 25°C
VDD = 5 V
4
3
VDD = 3 V
2
1
0
102
IOL – Low-Level Output Current – mA
103
104
f – Frequency – Hz
Figure 12
18
24
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
1.2
0.2
20
Figure 11
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0.6
16
IOH – High-Level Output Current – mA
Figure 13
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
105
106
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
8
30
VO = VDD/2
VIC = VDD/2
TA = 25°C
20
VID = –100 mV
I OS – Short-Circuit Output Current – mA
I OS – Short-Circuit Output Current – mA
25
15
10
5
0
–5
–10
–15
–20
–25
3
4
5
6
8
7
9
4
2
VDD = 5 V
0
–2
–4
–6
VID = 100 mV
–8
–55
–30
2
6
10
–40
Figure 14
85
125
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
1000
VDD = 3 V
RL = 10 kΩ
TA = 25°C
VDD = 5 V
RL = 10 kΩ
TA = 25°C
800
VID – Differential Input Voltage – µV
VID – Differential Input Voltage – µV
70
Figure 15
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
800
25
0
TA – Free-Air Temperature – °C
VDD – Supply Voltage – V
600
400
200
0
–200
–400
–600
–800
600
400
200
0
–200
–400
–600
–800
–1000
0
0.5
1
1.5
2
2.5
3
–1000
0
VO – Output Voltage – V
1
2
3
4
5
VO – Output Voltage – V
Figure 16
Figure 17
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
DIFFERENTIAL GAIN
vs
LOAD RESISTANCE
10000
Differential Gain – V/mV
1000
VID = 5 V
VID = 3 V
100
10
1
10
100
1000
RL – Load Resistance – kΩ
Figure 18
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
50
AVD – Large-Signal Differential
Voltage Amplification – dB
30
135
20
PHASE
90
10
45
0
GAIN
–10
0
–20
–30
– 45
–40
–50
103
104
105
f – Frequency – Hz
Figure 19
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
– 90
106
φ m – Phase Margin – °
40
180
VDD = 3 V
RL = 10 kΩ
CL = 100 pF
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
60
180
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AVD – Large-Signal Differential
Voltage Amplification – dB
40
135
PHASE
30
90
20
45
10
0
GAIN
–10
0
–20
φ m – Phase Margin – °
50
– 45
–30
–40
103
104
– 90
106
105
f – Frequency – Hz
Figure 20
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
10000
VDD = 3 V
AVD – Differential Voltage Amplication – V/mV
AVD – Differential Voltage Amplication – V/mV
10000
RL = 1 MΩ
1000
100
RL = 10 kΩ
10
1
–75
–50
–25
0
25
50
75
100
125
VDD = 5 V
RL = 1 MΩ
1000
100
RL = 10 kΩ
10
1
–75
–50
TA – Free-Air Temperature – °C
–25
0
25
50
75
100
125
TA – Free-Air Temperature – °C
Figure 21
Figure 22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
OUTPUT IMPEDANCE
vs
FREQUENCY
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
1000
AV = 100
AV = 10
z o – Output Impedance – Ω
z o – Output Impedance – Ω
AV = 100
100
AV = 1
10
AV = 10
100
AV = 1
10
VDD = 3 V
TA = 25°C
VDD = 5 V
TA = 25°C
1
102
104
103
1
102
105
f – Frequency – Hz
Figure 24
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
94
TA = 25°C
CMRR – Common-Mode Rejection Ratio – dB
CMRR – Common-Mode Rejection Ratio – dB
100
80
60
VDD = 5 V
40
VDD = 3 V
20
103
104
105
106
93
92
VDD = 5 V
91
90
VDD = 3 V
89
88
87
86
85
84
–55
–40
f – Frequency – Hz
0
25
70
85
TA – Free-Air Temperature – °C
Figure 25
22
105
f – Frequency – Hz
Figure 23
0
102
104
103
Figure 26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
120
VDD = 3 V
TA = 25°C
KSVR – Supply-Voltage Rejection Ratio – dB
KSVR – Supply-Voltage Rejection Ratio – dB
120
100
KSVR+
80
60
KSVR–
40
20
0
101
103
102
104
105
VDD = 5 V
TA = 25°C
100
KSVR+
80
60
KSVR–
40
20
0
101
106
102
103
f – Frequency – Hz
Figure 27
105
106
Figure 28
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
100
160
VDD = 2.7 V to 8 V
VO = VDD/2
No Load
140
TA = –40°C
98
I DD – Supply Current – µ A
k SVR – Supply-Voltage Rejection Ratio – dB
104
f – Frequency – Hz
96
94
TA = 25°C
120
100
TA = 85°C
80
60
40
92
20
90
–55
–40
0
25
70
85
125
0
0
1
2
TA – Free-Air Temperature – °C
3
4
5
6
7
8
9
10
VDD – Supply Voltage – V
Figure 29
Figure 30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
SLEW RATE
vs
LOAD CAPACITANCE
SLEW RATE
vs
FREE-AIR TEMPERATURE
0.03
0.025
30
VDD = 3 V
AV = –1
TA = 25°C
SR – Slew Rate – V/ms
SR – Slew Rate – V/µs
25
SR–
0.02
SR+
0.015
0.01
20
15
10
0.005
0
102
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AV = 1
104
103
105
5
–55
106
–40
CL – Load Capacitance – pF
0
Figure 31
1500
3
1000
2
VO – Output Voltage – mV
VO – Output Voltage – mV
4
500
0
–500
–2000
–1000
VDD = 3 V
RL = 10 kΩ
CL = 100 pF
AV = –1
TA = 25°C
–600
0
0
–1
–2
200
600
1000
–4
–1000
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AV = –1
TA = 25°C
–600
t – Time – µs
–200
0
200
t – Time – µs
Figure 34
Figure 33
24
125
1
–3
–200
85
INVERTING LARGE SIGNAL
PULSE RESPONSE
2000
–1500
70
Figure 32
INVERTING LARGE SIGNAL
PULSE RESPONSE
–1000
25
TA – Free-Air Temperature – °C
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
600
1000
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER LARGE SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER LARGE SIGNAL
PULSE RESPONSE
2000
1000
1500
VO – Output Voltage – mV
VO – Output Voltage – mV
1500
2000
VDD = 3 V
RL = 10 kΩ
CL = 100 pF
AV = 1
TA = 25°C
500
0
–500
–1000
–1500
1000
500
0
–500
–1000
–1500
–2000
–1000
–600
–200
0
200
600
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AV = 1
TA = 25°C
–2000
–1000
1000
–600
–200
t – Time – µs
INVERTING SMALL SIGNAL
PULSE RESPONSE
300
VO – Output Voltage – mV
VO – Output Voltage – mV
1000
400
VDD = 3 V
RL = 10 kΩ
CL = 100 pF
AV = –1
TA = 25°C
100
0
–100
–200
–300
–400
–5
600
INVERTING SMALL SIGNAL
PULSE RESPONSE
400
200
200
Figure 36
Figure 35
300
0
t – Time – µs
200
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AV = –1
TA = 25°C
100
0
–100
–200
–300
–4
–3
–2
–1
0
1
2
3
4
5
–400
–5
–4
t – Time – µs
–3
–2
–1
0
1
2
3
4
5
t – Time – µs
Figure 38
Figure 37
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
400
200
300
VO – Output Voltage – mV
VO – Output Voltage – mV
300
400
VDD = 3 V
RL = 10 kΩ
CL = 100 pF
AV = 1
TA = 25°C
100
0
–100
–200
–300
–400
–5
200
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AV = 1
TA = 25°C
100
0
–100
–200
–300
–4
–3
–2
–1
0
1
2
3
4
–400
–5
5
–4
–3
–2
t – Time – µs
1
2
3
4
5
Figure 40
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
120
120
VDD = 3 V
TA = 25°C
Vn – Equivalent Input Noise Voltage – nV/ Hz
Vn – Equivalent Input Noise Voltage – nV/ Hz
0
t – Time – µs
Figure 39
100
80
60
40
20
0
10
102
103
104
VDD = 5 V
TA = 25°C
100
80
60
40
20
0
10
f – Frequency – Hz
102
103
f – Frequency – Hz
Figure 41
26
–1
Figure 42
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
104
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
NOISE VOLTAGE OVER A 10-SECOND PERIOD
1000
Over a 10 Second Period
800
600
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
Noise Voltage – nV
400
200
0
–200
–400
–600
–800
–1000
–1200
0
1
2
3
4
6
5
8
7
10
9
t – Time – s
Figure 43
100
VDD = 3 V
RL = 10 kΩ
TA = 25°C
10
1
AV = 10
AV = 1
0.1
0.01
101
102
103
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
THD +N – Total Harmonic Distortion Plus Noise – %
THD +N – Total Harmonic Distortion Plus Noise – %
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
104
105
100
VDD = 5 V
RL = 10 kΩ
TA = 25°C
10
1
AV = 10
AV = 1
0.1
0.01
0.001
101
102
103
f – Frequency – Hz
f – Frequency – Hz
Figure 44
Figure 45
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
104
105
27
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
80
80
RL = 10 kΩ
CL = 100 pF
f = 10 kHz
TA = 25°C
Gain-Bandwidth Product – kHz
Gain-Bandwidth Product – kHz
70
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
f = 10 kHz
70
60
50
40
30
60
50
40
30
20
10
20
3
5
4
6
7
0
–50
8
–25
0
25
50
Figure 46
125
GAIN MARGIN
vs
LOAD CAPACITANCE
120
40
RL = 10 kΩ
TA = 25°C
Rnull = 500
100
RL = 10 kΩ
TA = 25°C
Rnull = 500
Rnull = 1000
30
80
Gain Margin – dB
φ m – Phase Margin – °
100
Figure 47
PHASE MARGIN
vs
LOAD CAPACITANCE
60
40
Rnull = 1000
Rnull = 200
20
Rnull = 100
Rnull = 200
10
Rnull = 100
20
Rnull = 0
Rnull = 0
0
10
102
103
104
105
0
10
CL – Load Capacitance – pF
102
103
Figure 49
POST OFFICE BOX 655303
104
CL – Load Capacitance – pF
Figure 48
28
75
TA – Free-Air Temperature – °C
VDD – Supply Voltage – V
• DALLAS, TEXAS 75265
105
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
TYPICAL CHARACTERISTICS
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
B1 – Unity-Gain Bandwidth – kHz
60
50
40
30
20
10
0
10
102
103
104
105
CL – Load Capacitance – pF
Figure 50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
MECHANICAL DATA
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0.050 (1,27)
0.020 (0,51)
0.014 (0,35)
14
0.010 (0,25) M
8
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
0.010 (0,25)
1
7
0°– 8°
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
PINS **
0.004 (0,10)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047 / D 10/96
NOTES: A.
B.
C.
D.
30
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
MECHANICAL DATA
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
25
5
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
MECHANICAL DATA
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE PACKAGE
0.400 (10,20)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.063 (1,60)
0.015 (0,38)
0.100 (2,54)
0°–15°
0.023 (0,58)
0.015 (0,38)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
32
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
Falls within MIL-STD-1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
MECHANICAL DATA
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
0,75
0,50
A
Seating Plane
0,15
0,05
1,20 MAX
0,10
PINS **
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064 / E 08/96
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
MECHANICAL DATA
U (S-GDFP-F10)
CERAMIC DUAL FLATPACK
0.250 (6,35)
0.246 (6,10)
0.006 (0,15)
0.004 (0,10)
0.080 (2,03)
0.050 (1,27)
0.045 (1,14)
0.026 (0,66)
0.300 (7,62)
0.350 (8,89)
0.250 (6,35)
1
0.350 (8,89)
0.250 (6,35)
10
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
0.250 (6,35)
5
6
0.025 (0,64)
0.005 (0,13)
1.000 (25,40)
0.750 (19,05)
4040179 / B 03/95
NOTES: A.
B.
C.
D.
E.
34
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only.
Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated