TI TLV2772ID

TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
D
D
D
D
D
D
D
D
D
D
D
D OR P PACKAGE
(TOP VIEW)
High Slew Rate . . . 10.5 V/µs Typ
High-Gain Bandwidth . . . 5.1 MHz Typ
Supply Voltage Range 2.7 V to 5 V
Rail-to-Rail Output
360 µV Input Offset Voltage
Low Distortion Driving 600-Ω
0.005% THD+N
1 mA Supply Current (Per Channel)
17 nV/√Hz Input Noise Voltage
2 pA Input Bias Current
Characterized from TA = – 40°C to 125°C
Available in MSOP (DGK) Package
1OUT
1IN –
1IN +
VDD– /GND
1
8
2
7
3
6
4
5
VDD+
2OUT
2IN –
2IN+
DGK PACKAGE
(TOP VIEW)
1
2
3
4
1OUT
1IN –
1IN+
VDD – /GND
8
7
6
5
VDD+
2OUT
2IN –
2IN+
description
The TLV2772 dual CMOS operational amplifier combines high slew rate and bandwidth, rail-to-rail output swing,
high output drive and excellent dc precision. The device provides 10.5 V/µs of slew rate and 5.1 MHz of
bandwidth while only consuming 1 mA of supply current per channel. This ac performance is much higher than
current competitive CMOS amplifiers. The rail-to-rail output swing and high output drive makes this device a
good choice for driving the analog input or reference of analog-to-digital converters. The device also has low
distortion while driving a 600-Ω load for use in telecom systems.
The amplifier has a 360 µV input offset voltage, a 17 nV ǸHz input noise voltage, and a 2 pA input bias current
for measurement, medical, and industrial applications. The TLV2772 is also specified across an extended
temperature range (– 40°C to 125°C) making it useful for automotive systems.
The device operates from a 2.2 V to 5.5 V single supply voltage and is characterized at 2.7 V and 5 V. The single
supply operation and low power consumption make this device a good solution for portable applications. It is
available in an 8-pin PDIP, SOIC and ultra-low profile MSOP package.
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax AT 25°C
SMALL OUTLINE†
(D)
MSOP
(DGK)
PLASTIC DIP
(P)
0°C to 70°C
2.5
TLV2772CD
TLV2772CDGK
TLV2772CP
– 40°C to 125°C
2.5
1.6
TLV2772ID
TLV2772AID
TLV2772IDGK
TLV2772AIDGK
TLV2772IP
TLV2772AIP
CHIP FORM‡
(Y)
TLV2772Y
† The D packages are available taped and reeled. Add R suffix to the device type (e.g., TLV2772CDR).
‡ Chip forms are tested at TA = 25°C only.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1998, Texas Instruments Incorporated
This document contains information on products in more than one phase
of development. The status of each device is indicated on the page(s)
specifying its electrical characteristics.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TLV2772Y chip information
This chip, when properly assembled, displays characteristics similar to the TLV2772. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
(3)
(8)
(1)
1IN +
(2)
BONDING PAD ASSIGNMENTS
1IN –
2IN +
(7)
(5)
(6)
2IN –
VDD+
(8)
+
(1)
1OUT
–
+
(7)
2OUT
–
(4)
VDD – /GND
51
(2)
(6)
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
(3)
(4)
(5)
TJmax = 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
49
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD
Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 4 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to VDD – .
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought
below VDD – – 0.3 V.
3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D
725 mW
5.8 mW/°C
464 mW
377 mW
145 mW
DGK
n/a
n/a
n/a
n/a
n/a
P
1000 mW
8.0 mW/°C
640 mW
520 mW
200 mW
recommended operating conditions
C SUFFIX
MIN
Supply voltage, VDD
2.2
Input voltage range, VI
Common-mode input voltage, VIC
VDD –
VDD –
Operating free-air temperature, TA
0
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MAX
5.5
VDD + – 1.3
VDD + – 1.3
70
I SUFFIX
MIN
2.2
VDD –
VDD –
– 40
MAX
5.5
UNIT
V
VDD + – 1.3
VDD + – 1.3
V
125
°C
V
3
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input offset
voltage
IIO
Input offset current
IIB
Input bias current
VICR
Common mode input voltage range
Common-mode
TEST CONDITIONS
VIC = 0,
0
RS = 50 Ω
VO = 0,
0
VIC = 1.35
1 35 V
V,
IOL = 2
2.2
2 mA
Low level output voltage
Low-level
Differential input resistance
ci(c)
Common-mode input capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 100 kHz,
CMRR Common-mode
Common mode rejection ratio
VIC = 1.35 V,,
VO = 0.6 V to 2.1 V
RL = 10 kΩ,,
2.5
0.47
2.7
25°C
to
125°C
2
25°C
1
– 40°C to
85°C
2
25°C
2
– 40°C to
85°C
6
25°C
0
to
1.4
– 0.3
to
1.7
Full range
0
to
1.4
– 0.3
to
1.7
25°C
Full range
20
Full range
13
380
1012
Ω
25°C
8
pF
25
Ω
82
25°C
70
89
Full range
70
84
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V/mV
25°C
70
† Full range is 0°C to 70°C.
V
0.6
25°C
Full range
No load
V
0.21
VO = 1.5 V,,
VO = 1
1.5
5V
V,
V
0.2
VIC = 0 to 1.5 V,,
RS = 50 Ω
Supply current (per channel)
pA
0.1
Full range
84
IDD
100
pA
2.1
25°C
70
VIC = VDD /2,,
100
2.4
25°C
VDD = 2.7 V to 5 V,,
No load
mV
µV/°C
2.5
25°C
Supplyy voltage
ratio
g rejection
j
(∆VDD /∆VIO)
UNIT
2.6
AV = 10
kSVR
4
0.44
Full range
675 mA
IOL = 0
0.675
ri(d)
25°C
Full range
25°C
1 35 V
VIC = 1.35
V,
Large-signal
g
g
differential voltage
g
amplification
MAX
Full range
High level output voltage
High-level
AVD
MIN
25°C
IOH = – 2.2
2 2 mA
VOL
TLV2772C
TYP
RS = 50 Ω
CMRR > 70 dB,
dB
IOH = – 0.675
0 675 mA
VOH
TA†
25°C
Full range
1
dB
dB
2
2
mA
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VO(PP) = 0
0.8
8V
V,
RL = 10 kΩ
CL = 100 pF,
pF
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent
q
input noise
voltage
f = 0.1 Hz to 1 Hz
In
Equivalent input noise current
f = 100 Hz
THD + N
Total harmonic distortion plus noise
TA†
TYP
25°C
5
9
Full
range
4.7
6
f = 10 Hz
25°C
147
f = 1 kHz
25°C
21
25°C
f = 0.1 Hz to 10 Hz
25°C
AV = 1
AV = 10
RL = 600 Ω
Ω,
f = 1 kHz
φm
0.33
0.86
1.5
25°C
Gain-bandwidth product
25°C
4.8
AV = – 1,
Step = 0.85 V to 1.85 V,,
RL = 600 Ω,
CL = 100 pF
0.1%
25°C
0.186
Settling time
0.01%
25°C
3.92
RL = 600 Ω,
Ω
CL = 100 pF
25°C
46°
25°C
12
POST OFFICE BOX 655303
V/µs
nV/√Hz
µV
pA /√Hz
0.12%
RL = 600 Ω,
Gain margin
† Full range is 0°C to 70°C.
UNIT
0.025%
f = 10 kHz,
CL = 100 pF
Phase margin at unity gain
MAX
0.0085%
AV = 100
ts
TLV2772C
MIN
MHz
µs
• DALLAS, TEXAS 75265
dB
5
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
IIO
Input offset current
IIB
Input bias current
VICR
VOH
Common-mode
input voltage range
High-level
g
output
voltage
TA†
TEST CONDITIONS
VIC = 0,
0
RS = 50 Ω
VO = 0,
0
Low-level output
voltage
25°C
0.44
Full range
0.47
VIC = 1
1.35
35 V
V,
IOL = 2
2.2
2 mA
VIC = 1.35 V,,
VO = 0.6 V to 2.1 V
RL = 10 kΩ
AVD
Large-signal
differential voltage
amplification
ri(d)
Differential input
resistance
ci(c)
Common-mode
input capacitance
f = 10 kHz,
zo
Closed-loop
output impedance
f = 100 kHz,
AV = 10
CMRR
Common-mode
rejection ratio
VIC = 0 to 1.5 V,,
RS = 50 Ω
VO = 1.5 V,,
kSVR
Supply voltage
rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 5 V,,
No load
VIC = VDD /2,,
IDD
Supplyy current
(per channel)
VO = 1
1.5
5V
V,
No load
POST OFFICE BOX 655303
2.5
0.44
1.6
2.7
0.47
1.9
1
25°C
1
– 40°C to
85°C
2
25°C
2
– 40°C to
85°C
6
100
2
100
6
0
to
1.4
– 0.3
to
1.7
0
to
1.4
– 0.3
to
1.7
Full range
g
0
to
1.4
– 0.3
to
1.7
0
to
1.4
– 0.3
to
1.7
2.6
Full range
0.2
Full range
pA
V
V
0.2
0.21
0.6
13
100
0.1
0.21
Full range
pA
2.1
0.1
20
100
2.4
2.1
25°C
µV/°C
2.5
2.4
25°C
mV
2.6
2.5
25°C
UNIT
2
25°C
380
V
0.6
20
380
V/mV
13
25°C
1012
1012
Ω
25°C
8
8
pF
25°C
25
25
Ω
25°C
70
84
70
84
Full range
70
82
70
82
25°C
70
89
70
89
Full range
70
84
70
84
dB
dB
25°C
Full range
† Full range is – 40°C to 125°C.
6
MAX
2
Full range
675 mA
IOL = 0
0.675
TYP
2
25°C
35 V
VIC = 1
1.35
V,
MIN
25°C
to
125°C
Full range
IOH = – 2.2
2 2 mA
VOL
MAX
25°C
IOH = – 0.675
0 675 mA
TLV2772AI
TYP
RS = 50 Ω
dB
CMRR > 70 dB,
TLV2772I
MIN
• DALLAS, TEXAS 75265
1
2
2
1
2
2
mA
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)
PARAMETER
TA†
TEST CONDITIONS
VO(PP) = 0
0.8
8V
V,
RL = 10 kΩ
CL = 100 pF,
pF
TLV2772I
MIN
TYP
25°C
5
Full
range
4.7
TLV2772AI
MAX
MIN
TYP
9
5
9
6
4.7
6
MAX
UNIT
SR
Slew rate at unity gain
Vn
Equivalent
input
q
noise voltage
f = 10 Hz
25°C
147
147
f = 1 kHz
25°C
21
21
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
0.33
0.33
µV
VN(PP)
f = 0.1 Hz to 10 Hz
25°C
0.86
0.86
µV
In
Equivalent input
noise current
f = 100 Hz
25°C
1.5
1.5
pA /√Hz
0.0085%
Total
T
t l harmonic
h
i
distortion plus
lus noise
RL = 600 Ω
Ω,
f = 1 kHz
0.0085%
THD + N
0.025%
0.025%
0.12%
0.12%
AV = 1
AV = 10
25°C
AV = 100
ts
φm
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF
Settling time
AV = –1,
Step = 0.85 V to
1 85 V,
V
1.85
RL = 600 Ω,
CL = 100 pF
Phase margin at
unity gain
RL = 600 Ω,,
RL = 600 Ω,
25°C
4.8
4.8
0.1%
25°C
0.186
0.186
0.01%
25°C
3.92
3.92
25°C
46°
46°
25°C
12
12
V/µs
nV/√Hz
MHz
µs
CL = 100 pF
Gain margin
† Full range is – 40°C to 125°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
7
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input offset
voltage
IIO
Input offset current
IIB
Input bias current
VICR
Common mode input voltage range
Common-mode
TEST CONDITIONS
VIC = 0,
0
RS = 50 Ω
VO = 0,
0
VIC = 2
2.5
5V
V,
IOL = 4
4.2
2 mA
Low level output voltage
Low-level
Differential input resistance
ci(c)
Common-mode input capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 100 kHz,
CMRR Common-mode
Common mode rejection ratio
VIC = 2.5 V,,
VO = 1 V to 4 V
RL = 10 kΩ,,
2.5
0.4
2.7
25°C
to
125°C
2
25°C
1
– 40°C to
85°C
2
25°C
2
– 40°C to
85°C
6
25°C
0
to
3.7
– 0.3
to
3.8
Full range
0
to
3.7
– 0.3
to
3.8
25°C
Full range
20
Full range
13
450
1012
Ω
25°C
8
pF
20
Ω
93
25°C
70
89
Full range
70
84
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V/mV
25°C
60
† Full range is 0°C to 70°C.
V
0.6
25°C
Full range
No load
V
0.21
VO = 3.7 V,,
VO = 1
1.5
5V
V,
V
0.2
VIC = 0 to 3.7 V,,
RS = 50 Ω
Supply current (per channel)
pA
0.1
Full range
96
IDD
100
pA
4.4
25°C
60
VIC = VDD /2,,
100
4.7
25°C
VDD = 2.7 V to 5 V,,
No load
mV
µV/°C
4.8
25°C
Supplyy voltage
ratio
g rejection
j
(∆VDD /∆VIO)
UNIT
4.9
AV = 10
kSVR
8
0.36
Full range
3 mA
IOL = 1
1.3
ri(d)
25°C
Full range
25°C
5V
VIC = 2
2.5
V,
Large-signal
g
g
differential voltage
g
amplification
MAX
Full range
High level output voltage
High-level
AVD
MIN
25°C
IOH = – 4.2
4 2 mA
VOL
TLV2772C
TYP
RS = 50 Ω
CMRR > 60 dB,
dB
IOH = – 1.3
1 3 mA
VOH
TA†
25°C
Full range
1
dB
dB
2
2
mA
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VO(PP) = 1
1.5
5V
V,
RL = 10 kΩ
CL = 100 pF,
pF
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent
q
input noise
voltage
f = 0.1 Hz to 1 Hz
In
Equivalent input noise current
f = 100 Hz
THD + N
Total harmonic distortion plus noise
TA†
TYP
25°C
5
10.5
Full
range
4.7
6
f = 10 Hz
25°C
147
f = 1 kHz
25°C
17
25°C
f = 0.1 Hz to 10 Hz
25°C
AV = 1
AV = 10
RL = 600 Ω
Ω,
f = 1 kHz
φm
0.33
0.86
0.2
25°C
Gain-bandwidth product
25°C
5.1
AV = –1,
Step = 1.5 V to 3.5 V,,
RL = 600 Ω,
CL = 100 pF
0.1%
25°C
0.134
Settling time
0.01%
25°C
1.97
RL = 600 Ω,
Ω
CL = 100 pF
25°C
46°
25°C
12
POST OFFICE BOX 655303
V/µs
nV/√Hz
µV
pA /√Hz
0.095%
RL = 600 Ω,
Gain margin
† Full range is 0°C to 70°C.
UNIT
0.016%
f = 10 kHz,
CL = 100 pF
Phase margin at unity gain
MAX
0.005%
AV = 100
ts
TLV2772C
MIN
MHz
µs
• DALLAS, TEXAS 75265
dB
9
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
IIO
Input offset current
IIB
Input bias current
VICR
VOH
Common-mode
input voltage range
High-level
g
output
voltage
TA†
TEST CONDITIONS
VIC = 0,
0
RS = 50 Ω
VO = 0,
0
dB
CMRR > 60 dB,
Low-level output
voltage
MAX
25°C
0.36
Full range
0.4
IOL = 4
4.2
2 mA
VIC = 2.5 V,,
VO = 1 V to 4 V
RL = 10 kΩ
AVD
Large-signal
differential voltage
amplification
ri(d)
Differential input
resistance
ci(c)
Common-mode
input capacitance
f = 10 kHz,
zo
Closed-loop
output impedance
f = 100 kHz,
AV = 10
CMRR
Common-mode
rejection ratio
VIC = 0 to 3.7 V,,
RS = 50 Ω
VO = 3.7 V,,
kSVR
Supply voltage
rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 5 V,,
No load
VIC = VDD /2,,
IDD
Supplyy current
(per channel)
VO = 1
1.5
5V
V,
No load
1
2
25°C
2
– 40°C to
85°C
6
POST OFFICE BOX 655303
0.36
1.6
2.7
0.4
1.9
100
2
100
6
0
to
3.7
– 0.3
to
3.8
0
to
3.7
– 0.3
to
3.8
Full range
g
0
to
3.7
– 0.3
to
3.8
0
to
3.7
– 0.3
to
3.8
4.9
Full range
0.2
Full range
pA
V
V
0.2
0.21
0.6
13
100
0.1
0.21
Full range
pA
4.4
0.1
20
100
4.7
4.4
25°C
µV/°C
4.8
4.7
25°C
mV
4.9
4.8
25°C
UNIT
2
25°C
450
V
0.6
20
450
V/mV
13
25°C
1012
1012
Ω
25°C
8
8
pF
25°C
20
20
Ω
25°C
60
96
60
96
Full range
60
93
60
93
25°C
70
89
70
89
Full range
70
84
70
84
dB
dB
25°C
Full range
† Full range is – 40°C to 125°C.
10
2.5
1
25°C
– 40°C to
85°C
Full range
VIC = 2
2.5
5V
V,
MAX
2
25°C
3 mA
IOL = 1
1.3
TYP
2
Full range
5V
VIC = 2
2.5
V,
MIN
25°C
to
125°C
25°C
IOH = – 1.3
1 3 mA
TLV2772AI
TYP
RS = 50 Ω
IOH = – 4.2
4 2 mA
VOL
TLV2772I
MIN
• DALLAS, TEXAS 75265
1
2
2
1
2
2
mA
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TA†
TEST CONDITIONS
VO(PP) = 1
1.5
5V
V,
RL = 10 kΩ
CL = 100 pF,
pF
TLV2772I
MIN
TYP
25°C
5
Full
range
4.7
TLV2772AI
MAX
MIN
TYP
10.5
5
10.5
6
4.7
6
MAX
UNIT
SR
Slew rate at unity gain
Vn
Equivalent
input
q
noise voltage
f = 10 Hz
25°C
147
147
f = 1 kHz
25°C
17
17
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
0.33
0.33
µV
VN(PP)
f = 0.1 Hz to 10 Hz
25°C
0.86
0.86
µV
In
Equivalent input
noise current
f = 100 Hz
25°C
0.2
0.2
pA /√Hz
0.005%
Total
T
t l harmonic
h
i
distortion plus
lus noise
RL = 600 Ω
Ω,
f = 1 kHz
0.005%
THD + N
0.016%
0.016%
0.095%
0.095%
AV = 1
AV = 10
25°C
AV = 100
ts
φm
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF
Settling time
AV = –1,
Step = 1.5 V to
3 5 V,
V
3.5
RL = 600 Ω,
CL = 100 pF
Phase margin at
unity gain
RL = 600 Ω,,
RL = 600 Ω,
25°C
5.1
5.1
0.1%
25°C
0.134
0.134
0.01%
25°C
1.97
1.97
25°C
46°
46°
25°C
12
12
V/µs
nV/√Hz
MHz
µs
CL = 100 pF
Gain margin
† Full range is – 40°C to 125°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
11
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
electrical characteristics at specified free-air temperature, VDD = 2.7 V, TA = 25°C (unless otherwise
noted)
PARAMETER
VIO
IIO
Input offset voltage
IIB
Input bias current
TLV2772Y
TEST CONDITIONS
VIC = 0,
0
RS = 50 Ω
Input offset current
MIN
VO = 0,
0
RS = 50 Ω
TYP
MAX
UNIT
0.44
mV
1
pA
2
pA
– 0.3
to
1.7
V
VICR
Common-mode input voltage range
CMRR > 70 dB,
VOH
High level output voltage
High-level
IOH = – 0.675 mA
IOH = – 2.2 mA
VOL
Low level output voltage
Low-level
VIC = 1.35 V,
VIC = 1.35 V,
IOL = 0.675 mA
IOL = 2.2 mA
0.21
AVD
Large-signal differential voltage amplification
VIC = 1.35 V,
VO = 0.6 V to 2.1 V
RL = 10 kΩ,
380
V/mV
ri(d)
Differential input resistance
1012
Ω
ci(c)
Common-mode input capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 100 kHz,
2.6
V
2.4
0.1
AV = 10
VO = 1.5 V,
CMRR Common-mode rejection ratio
VIC = 0 to 1.5 V,
RS = 50 Ω
kSVR
Supply voltage rejection ratio (∆VDD /∆VIO)
VDD = 2.7 V to 5 V,
No load
VIC = VDD /2,
IDD
Supply current (per channel)
VO = 1.5 V,
No load
V
8
pF
25
Ω
84
dB
89
dB
1
mA
operating characteristics at specified free-air temperature, VDD = 2.7 V, TA = 25°C (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
VO(PP) = 0.8 V,
RL = 10 kΩ
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
THD + N
Total harmonic distortion plus noise
CL = 100 pF,
φm
9
147
f = 1 kHz
21
f = 0.1 Hz to 1 Hz
0.33
f = 0.1 Hz to 10 Hz
0.86
f = 100 Hz
RL = 600 Ω
Ω,
f = 1 kHz
1.5
AV = 1
AV = 10
AV = – 1,
Step = 0.85 V to 1.85 V,,
RL = 600 Ω,
CL = 100 pF
0.1%
0.186
Settling time
0.01%
3.92
RL = 600 Ω
Ω,
CL = 100 pF
• DALLAS, TEXAS 75265
V/µs
nV/√Hz
µV
pA /√Hz
0.12%
RL = 600 Ω,
POST OFFICE BOX 655303
UNIT
0.025%
f = 10 kHz,
CL = 100 pF
Phase margin at unity gain
MAX
0.0085%
Gain-bandwidth product
Gain margin
12
TYP
f = 10 Hz
AV = 100
ts
TLV2772Y
MIN
4.8
MHz
µs
46°
12
dB
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
electrical characteristics at specified free-air temperature, VDD = 5 V, TA = 25°C (unless otherwise
noted)
PARAMETER
VIO
IIO
Input offset voltage
IIB
Input bias current
TLV2772Y
TEST CONDITIONS
VIC = 0,
0
RS = 50 Ω
Input offset current
MIN
VO = 0,
0
RS = 50 Ω
TYP
MAX
UNIT
0.36
mV
1
pA
2
pA
– 0.3
to
3.8
V
VICR
Common-mode input voltage range
CMRR > 60 dB,
VOH
High level output voltage
High-level
IOH = – 1.3 mA
IOH = – 4.2 mA
VOL
Low level output voltage
Low-level
VIC = 2.5 V,
VIC = 2.5 V,
IOL = 1.3 mA
IOL = 4.2 mA
0.21
AVD
Large-signal differential voltage amplification
VIC = 2.5 V,
VO = 1 V to 4 V
RL = 10 kΩ,
450
V/mV
ri(d)
Differential input resistance
1012
Ω
ci(c)
Common-mode input capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 100 kHz,
4.9
V
4.7
0.1
AV = 10
VO = 3.7 V,
CMRR Common-mode rejection ratio
VIC = 0 to 3.7 V,
RS = 50 Ω
kSVR
Supply voltage rejection ratio (∆VDD /∆VIO)
VDD = 2.7 V to 5 V,
No load
VIC = VDD /2,
IDD
Supply current (per channel)
VO = 1.5 V,
No load
V
8
pF
20
Ω
96
dB
89
dB
1
mA
operating characteristics at specified free-air temperature, VDD = 5 V, TA = 25°C (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
VO(PP) = 1.5 V,
RL = 10 kΩ
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
THD + N
ts
φm
Total harmonic distortion plus noise
CL = 100 pF,
TLV2772Y
MIN
TYP
10.5
f = 10 Hz
147
f = 1 kHz
17
f = 0.1 Hz to 1 Hz
0.33
f = 0.1 Hz to 10 Hz
0.86
f = 100 Hz
RL = 600 Ω
Ω,
f = 1 kHz
0.2
AV = 1
AV = 10
0.005%
AV = 100
0.095%
f = 10 kHz,
CL = 100 pF
RL = 600 Ω,
AV = –1,
Step = 1.5 V to 3.5 V,,
RL = 600 Ω,
CL = 100 pF
0.1%
0.134
Settling time
0.01%
1.97
RL = 600 Ω
Ω,
CL = 100 pF
Gain margin
POST OFFICE BOX 655303
UNIT
V/µs
nV/√Hz
µV
pA /√Hz
0.016%
Gain-bandwidth product
Phase margin at unity gain
MAX
5.1
MHz
µs
• DALLAS, TEXAS 75265
46°
12
dB
13
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
vs Common-mode input voltage
αVIO
Temperature coefficient
Distribution
IIB/IIO
VOH
Input bias and input offset currents
vs Free-air temperature
High-level output voltage
vs High-level output current
VOL
VO(PP)
Low-level output voltage
vs Low-level output current
10,11
Maximum peak-to-peak output voltage
vs Frequency
12,13
IOS
Short-circuit output current
vs Supply voltage
vs Free-air temperature
14
15
VO
AVD
Output voltage
vs Differential input voltage
16
Large-signal differential voltage amplification
vs Frequency
17,18
AVD
Differential voltage amplification
vs Load resistance
vs Free-air temperature
19
20,21
zo
Output impedance
vs Frequency
22,23
CMRR
Common-mode rejection ratio
vs Frequency
vs Free-air temperature
kSVR
Supply-voltage rejection ratio
vs Frequency
IDD
Supply current (per channel)
vs Supply voltage
28
SR
Slew rate
vs Load capacitance
vs Free-air temperature
29
30
VO
VO
Voltage-follower small-signal pulse response
vs Time
31,32
Voltage-follower large-signal pulse response
vs Time
33,34
VO
VO
Inverting small-signal pulse response
vs Time
35,36
Inverting large-signal pulse response
vs Time
37,38
Vn
Equivalent input noise voltage
vs Frequency
39,40
Noise voltage (referred to input)
Over a 10-second period
Total harmonic distortion plus noise
vs Frequency
Gain-bandwidth product
vs Supply voltage
44
B1
Unity-gain bandwidth
vs Load capacitance
45
φm
Phase margin
vs Load capacitance
46
Gain margin
vs Load capacitance
47
THD + N
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1,2
3,4
5,6
7
8,9
24
25
26,27
41
42,43
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2772
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLV2772
INPUT OFFSET VOLTAGE
40
40
VDD = 2.7 V
RL = 10 kΩ
TA = 25°C
35
Percentage of Amplifiers – %
Percentage of Amplifiers – %
35
30
25
20
15
10
VDD = 5 V
RL = 10 kΩ
TA = 25°C
30
25
20
15
10
5
5
0
–2.5 –2 –1.5 –1 –0.5 0
0.5
1
1.5
2
0
2.5
–2.5 –2 –1.5 –1 –0.5 0
VIO – Input Offset Voltage – mV
Figure 1
2
2.5
4
4.5
2
VDD = 2.7 V
TA = 25°C
1.5
VIO – Input Offset Voltage – mV
VIO – Input Offset Voltage – mV
1.5
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
1
0.5
0
–0.5
–1
VDD = 5 V
TA = 25°C
1
0.5
0
–0.5
–1
–1.5
–1.5
–2
–1
1
Figure 2
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1.5
0.5
VIO – Input Offset Voltage – mV
–0.5
0
0.5
1
1.5
2
2.5
3
VIC – Common-Mode Input Voltage – V
–2
–1 –0.5
0
0.5
1
1.5
2
2.5
3
3.5
VIC – Common-Mode Input Voltage – V
Figure 3
Figure 4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2772
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLV2772
INPUT OFFSET VOLTAGE
35
35
VDD = 2.7 V
TA = 25°C to 125°C
25
20
15
10
5
0
VDD = 5 V
TA = 25°C to 125°C
30
Percentage of Amplifiers – %
Percentage of Amplifiers – %
30
25
20
15
10
5
–6
–3
0
3
6
9
0
12
–6
αVIO – Temperature Coefficient – µV/°C
–3
0
Figure 5
9
12
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0.20
3
VDD = 5 V
VIC = 0
VO = 0
RS = 50 Ω
VDD = 2.7 V
VOH – High-Level Output Voltage – V
I IB and I IO – Input Bias and Input Offset Currents – nA
6
Figure 6
INPUT BIAS AND OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
0.15
IIB
0.10
0.05
IIO
2.5
2
TA = –40°C
1.5
TA = 125°C
1
TA = 25°C
0.5
TA = 85°C
0
–75
–50
–25
0
25
50
75
100
125
0
0
TA – Free-Air Temperature – °C
5
10
Figure 8
POST OFFICE BOX 655303
15
20
IOH – High-Level Output Current – mA
Figure 7
16
3
αVIO – Temperature Coefficient – µV/°C
• DALLAS, TEXAS 75265
25
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
5
3
VDD = 5 V
TA = 25°C
4
VDD = 2.7 V
VOL – Low-Level Output Voltage – V
VOH – High-Level Output Voltage – V
4.5
TA = –40°C
3.5
TA = 25°C
3
2.5
TA = 125°C
2
1.5
TA = 85°C
1
0.5
0
0
5
10
15
20 25
30
35 40 45
50
2.5
TA = 125°C
1.5
TA = 25°C
1
TA = –40°C
0.5
0
55
TA = 85°C
2
0
5
IOH – High-Level Output Current – mA
10
Figure 9
TA = 85°C
2
1.5
TA = 25°C
1
TA = –40°C
0.5
0
20
30
40
50
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
VOL – Low-Level Output Voltage – V
TA = 125°C
2.5
10
30
25
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
3
0
20
Figure 10
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VDD = 5 V
15
IOL – Low-Level Output Current – mA
5
RL = 10 kΩ
VDD = 5 V
1% THD
4
3
2
VDD = 2.7 V
2% THD
1
0
100
IOL – Low-Level Output Current – mA
1000
10000
f – Frequency – kHz
Figure 11
Figure 12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
5
60
THD = 5%
RL = 600 Ω
TA = 25°C
4.5
4
I OS – Short-Circuit Output Current – mA
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
3.5
VDD = 5 V
3
2.5
VDD = 2.7 V
2
1.5
1
0.5
0
100
1000
45
VO = VDD /2
VIC = VDD /2
TA = 25°C
30
15
0
–15
–30
VID = 100 mV
–45
–60
2
10000
3
f – Frequency – kHz
VID = –100 mV
20
VDD = 5 V
VO = 2.5 V
0
–20
VID = 100 mV
–25
RL = 600 Ω
TA = 25°C
3
VDD = 2.7 V
2
1
0
25
50
75
100
125
0
–1000 –750 –500 –250
TA – Free-Air Temperature – °C
0
Figure 16
POST OFFICE BOX 655303
250
500
750
VID – Differential Input Voltage – µV
Figure 15
18
VDD = 5 V
4
VO – Output Voltage – V
I OS – Short-Circuit Output Current – mA
5
–50
7
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
60
–60
–75
6
5
Figure 14
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
–40
4
VDD – Supply Voltage – V
Figure 13
40
VID = –100 mV
• DALLAS, TEXAS 75265
1000
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE MARGIN
vs
FREQUENCY
VDD = 2.7 V
RL = 600 Ω
CL = 600 pF
TA = 25°C
80
AVD
300
240
60
180
40
120
Phase
20
60
0
0
– 20
– 40
100
φ m – Phase Margin – degrees
A VD – Large-Signal Differential Amplification – dB
100
– 60
10k
1k
100k
1M
– 90
10M
f – Frequency – Hz
Figure 17
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE MARGIN
vs
FREQUENCY
VDD = 5 V
RL = 600 Ω
CL = 600 pF
TA = 25°C
80
AVD
60
240
180
40
120
Phase
20
60
0
0
– 20
– 40
100
300
φ m – Phase Margin – degrees
A VD – Large-Signal Differential Amplification – dB
100
– 60
1k
10k
100k
1M
– 90
10M
f – Frequency – Hz
Figure 18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
1000
TA = 25°C
A VD – Differential Voltage Amplification – V/mV
A VD – Differential Voltage Amplification – V/mV
250
200
VDD = ±1.35 V
VDD = ±2.5 V
150
100
50
0
0.1
1
10
100
1000
RL = 10 kΩ
100
RL = 1 MΩ
RL = 600 Ω
10
1
VDD = 2.7 V
VIC = 1.35 V
VO = 0.6 V to 2.1 V
0.1
–75
–50
RL – Load Resistance – kΩ
–25
50
75
100
125
Figure 20
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
RL = 10 kΩ
VDD = ±1.35 V
TA = 25°C
RL = 1 MΩ
100
ZO – Output Impedance – Ω
A VD – Differential Voltage Amplification – V/mV
25
TA – Free-Air Temperature – °C
Figure 19
RL = 600 Ω
10
1
10
AV = 100
1
AV = 10
0.10
AV = 1
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
0.1
–75
–50
–25
0
25
50
75
100
125
0.01
100
TA – Free-Air Temperature – °C
1k
10k
f – Frequency – Hz
Figure 21
20
0
Figure 22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100k
1M
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
OUTPUT IMPEDANCE
vs
FREQUENCY
90
VDD = ±2.5 V
TA = 25°C
CMRR – Common-Mode Rejection Ratio – dB
Zo – Output Impedance – Ω
100
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
10
Av = 100
1
Av = 10
0.1
Av = 1
0.01
100
1k
10k
100k
VDD = 5 V
80
70
60
50
40
10
1M
100
f – Frequency – Hz
10k
k SVR – Supply-Voltage Rejection Ratio – dB
120
115
110
105
VDD = 2.7 V
95
90
VDD = 5 V
85
–20
0
20
40
60
1M
10M
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
120
100
100k
Figure 24
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
CMRR – Common-Mode Rejection Ratio – dB
1k
f – Frequency – Hz
Figure 23
80
–40
VIC = 1.35 V
and 2.5 V
TA = 25°C
VDD = 2.7 V
80
100 120 140
VDD = ±1.35 V
TA = 25°C
kSVR+
100
kSVR–
80
60
40
20
0
10
100
TA – Free-Air Temperature – °C
1k
10k
100k
1M
10M
f – Frequency – Hz
Figure 25
Figure 26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
SUPPLY VOLTAGE REJECTION RATIO
vs
FREQUENCY
SUPPLY CURRENT (PER CHANNEL)
vs
SUPPLY VOLTAGE
100
1.6
VDD = ±2.5 V
TA = 25°C
kSVR+
I DD – Supply Current (Per Channel) – mA
k SVR – Supply Voltage Rejection Ratio – dB
120
kSVR–
80
60
40
20
0
10
100
1k
10 k
100 k
1M
TA = 125°C
1.4
1.2
TA = 25°C
1
TA = 0°C
TA = – 40°C
0.8
0.6
0.4
0.2
0
2.5
10 M
TA = 85°C
3
f – Frequency – Hz
3.5
4
Figure 27
5.5
6
6.5
7
Figure 28
SLEW RATE
vs
LOAD CAPACITANCE
SLEW RATE
vs
FREE-AIR TEMPERATURE
16
14
VDD = 5 V
AV = –1
TA = 25°C
SR+
14
13
SR–
12
SR – Slew Rate – µs
SR – Slew Rate – V/ µs
5
4.5
VDD – Supply Voltage – V
10
8
6
VDD = 2.7 V
RL = 10 kΩ
CL = 100 pF
AV = 1
12
11
10
4
9
2
0
10
100
1k
10k
100k
8
–75
–50
Figure 29
22
–25
0
25
Figure 30
POST OFFICE BOX 655303
50
75
TA – Free-Air Temperature – °C
CL – Load Capacitance – pF
• DALLAS, TEXAS 75265
100
125
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
100
60
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
80
VO – Output Voltage – mV
80
VO – Output Voltage – mV
100
VDD = 2.7 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
40
20
0
–20
–40
60
40
20
0
–20
–40
–60
0
500
1k 1.5k 2k
2.5k
3k 3.5k 4k
–60
4.5k 5k
0
500
1k 1.5k 2k
t – Time – ns
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
6
VDD = 2.7 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
5
VO – Output Voltage – V
VO – Output Voltage – V
4.5k 5k
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
3
2
3k 3.5k 4k
Figure 32
Figure 31
2.5
2.5k
t – Time – ns
1.5
1
0.5
0
–0.5
4
3
2
1
0
–1
–1
0
500
1k 1.5k 2k
2.5k
3k 3.5k 4k
4.5k 5k
–2
0
500
t – Time – ns
1k 1.5k 2k
2.5k
3k 3.5k 4k
4.5k 5k
t – Time – ns
Figure 34
Figure 33
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
INVERTING SMALL-SIGNAL
PULSE RESPONSE
INVERTING SMALL-SIGNAL
PULSE RESPONSE
100
60
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
80
VO – Output Voltage – mV
80
VO – Output Voltage – mV
100
VDD = 2.7 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
40
20
0
–20
–40
60
40
20
0
–20
–40
–60
0
500
1k 1.5k 2k
2.5k
3k 3.5k 4k
–60
4.5k 5k
0
500
t – Time – ns
1k 1.5k 2k 2.5k 3k 3.5k 4k
t – Time – ns
Figure 36
Figure 35
INVERTING LARGE-SIGNAL
PULSE RESPONSE
3
4
2.5
3.5
2
VO – Output Voltage – mV
VO – Output Voltage – mV
INVERTING LARGE-SIGNAL
PULSE RESPONSE
1.5
1
0.5
VDD = 2.7 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
0
–0.5
500
3
2.5
2
1.5
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
1
0.5
–1
0
1k 1.5k 2k
2.5k
3k 3.5k 4k
4.5k 5k
1
0
500
t – Time – ns
1k 1.5k 2k 2.5k 3k 3.5k 4k
t – Time – ns
Figure 38
Figure 37
24
4.5k 5k
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
4.5k 5k
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
160
140
120
100
80
60
40
VDD = 5 V
RS = 20 Ω
TA = 25°C
120
100
80
60
40
20
20
0
10
1k
100
0
10k
10
100
f – Frequency – Hz
1k
10k
f – Frequency – Hz
Figure 39
Figure 40
NOISE VOLTAGE
OVER A 10 SECOND PERIOD
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
300
200
Noise Voltage – nV
Vn – Input Noise Voltage – nV/ Hz
140
Vn – Input Noise Voltage – nV Hz
VDD = 2.7 V
RS = 20 Ω
TA = 25°C
100
GND
–100
–200
–300
0
1
2
3
4
5
6
7
8
9
10
t – Time – s
Figure 41
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
10
VDD = 2.7 V
RL = 600 Ω
TA = 25°C
1
Av = 100
0.1
Av = 10
0.01
Av = 1
0.001
10
10
THD+N – Total Harmonic Distortion Plus Noise – %
THD+N – Total Harmonic Distortion Plus Noise – %
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
100
1k
10k
VDD = 5 V
RL = 600 Ω
TA = 25°C
1
0.1
Av = 100
Av = 10
0.01
Av = 1
0.001
10
100k
100
f – Frequency – Hz
Figure 42
Unity-Gain Bandwidth – MHz
Gain-Bandwidth Product – MHz
5
4.8
4.6
4.4
4.2
VDD = 5 V
RL = 600 Ω
TA = 25°C
4
3
Rnull = 100
2
Rnull = 50
Rnull = 20
1
Rnull = 0
4
2
2.5
3
3.5
4
4.5
5
5.5
6
0
10
VDD+ – Supply Voltage – V
100
1k
Figure 45
POST OFFICE BOX 655303
10k
CL – Load Capacitance – pF
Figure 44
26
100k
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
RL = 600 Ω
CL = 100 pF
Freq = 10 kHz
TA = 25°C
5
10k
Figure 43
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
5.2
1k
f – Frequency – Hz
• DALLAS, TEXAS 75265
100k
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
TYPICAL CHARACTERISTICS
PHASE MARGIN
vs
LOAD CAPACITANCE
GAIN MARGIN
vs
LOAD CAPACITANCE
90
70
0
5
Rnull = 100 Ω
Rnull = 50 Ω
50
Rnull = 20 Ω
40
30
Rnull = 0
15
20
Rnull = 100 Ω
25
Rnull = 50 Ω
30
Rnull = 0
20
Rnull = 20 Ω
35
10
0
10
VDD = 5 V
RL = 600 Ω
TA = 25°C
10
60
Gain Margin – dB
φ m – Phase Margin – degrees
80
VDD = 5 V
RL = 600 Ω
TA = 25°C
100
1k
10k
100K
40
10
CL – Load Capacitance – pF
100
1k
10k
100K
CL – Load Capacitance – pF
Figure 46
Figure 47
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts  Release 8, the model generation
software used with Microsim PSpice . The Boyle macromodel (see Note 4) and subcircuit in Figure 48 are
generated using the TLV2772 typical electrical and operating characteristics at TA = 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers”, IEEE
Journal of Solid-State Circuits, SC-9, 353 (1974).
99
EGND +
R2
3
VDD +
–
+
ISS
RSS
CSS
VD
–
53
RP
10
2
IN –
J1
FB
6
VLIM
+
VB
8
GA
GCM
–
DC
J2
–
RO1
OUT
1
11
12
RD1
5
DLN
DE
92
54
C1
DP
+
RD2
VE
+ DLP
91
+
VLP
–
–
–
+
90
HLIM
–
4
.SUBCKT TLV2772–X 1 2 3 4 5
C1
11
12
2.3094E–12
C2
6
7
8.0000E–12
CSS
10
99
2.1042E–12
DC
5
53
DY
DE
54
5
DY
DLP
90
91
DX
DLN
92
90
DX
DP
4
3
DX
EGND
99
0
POLY (2) (3,0) (4,0) 0 .5 .5
FB
7
99
POLY (5) VB VC VE VLP
+ VLN 0 19.391E6 –1E3 1E3 19E6 –19E6
GA
6
0
11
12 150.80E–6
GCM
0
6
10
99 7.5576E–9
ISS
3
10
DC 116.40E–6
HLIM
90
0
VLIM 1K
J1
11
2
10 JX1
J2
12
1
10 JX2
R2
6
9
100.00E3
PSpice and Parts are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303
VLN
RD1
4
11
6.6315E3
RD2
4
12
6.6315E3
R01
8
5
17.140
R02
7
99
17.140
RP
3
4
4.5455E3
RSS
10
99
1.7182E6
VB
9
0
DC 0
VC
3
53
DC .1
VE
54
4
DC .1
VLIM
7
8
DC 0
VLP
91
0
DC 47
VLN
0
92
DC 47
.MODEL DX D (IS=800.0E–18)
.MODEL DY D (IS=800.0E–18 Rs = 1m Cjo=10p)
.MODEL JX1 PJF (IS=2.2500E–12 BETA=195.36E–6
+ VTO= –1)
.MODEL JX2 PJF (IS=1.7500E–12 BETA=195.36E–6
+ VTO= –1)
.ENDS
Figure 48. Boyle Macromodel and Subcircuit
28
7
+
9
IN +
VDD –
RO2
C2
• DALLAS, TEXAS 75265
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
MECHANICAL INFORMATION
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
PINS **
0.050 (1,27)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
0.020 (0,51)
0.014 (0,35)
14
0.010 (0,25) M
8
0.244 (6,20)
0.228 (5,80)
0.008 (0,20) NOM
0.157 (4,00)
0.150 (3,81)
1
Gage Plane
7
A
0.010 (0,25)
0°– 8°
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
0.004 (0,10)
4040047 / D 10/96
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
MECHANICAL INFORMATION
DGK (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE
0,38
0,25
0,65
8
0,25 M
5
0,15 NOM
3,05
2,95
4,98
4,78
Gage Plane
0,25
1
0°– 6°
4
3,05
2,95
0,69
0,41
Seating Plane
1,07 MAX
0,05 MIN
0,10
4073329/A 02/97
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2772, TLV2772A, TLV2772Y
2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS209 – JANUARY 1998
MECHANICAL INFORMATION
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE PACKAGE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0°– 15°
0.010 (0,25) M
0.010 (0,25) NOM
4040082 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.
TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.
Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.
Copyright  1998, Texas Instruments Incorporated