TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 D D D D D D D D D D D D OR P PACKAGE (TOP VIEW) High Slew Rate . . . 10.5 V/µs Typ High-Gain Bandwidth . . . 5.1 MHz Typ Supply Voltage Range 2.7 V to 5 V Rail-to-Rail Output 360 µV Input Offset Voltage Low Distortion Driving 600-Ω 0.005% THD+N 1 mA Supply Current (Per Channel) 17 nV/√Hz Input Noise Voltage 2 pA Input Bias Current Characterized from TA = – 40°C to 125°C Available in MSOP (DGK) Package 1OUT 1IN – 1IN + VDD– /GND 1 8 2 7 3 6 4 5 VDD+ 2OUT 2IN – 2IN+ DGK PACKAGE (TOP VIEW) 1 2 3 4 1OUT 1IN – 1IN+ VDD – /GND 8 7 6 5 VDD+ 2OUT 2IN – 2IN+ description The TLV2772 dual CMOS operational amplifier combines high slew rate and bandwidth, rail-to-rail output swing, high output drive and excellent dc precision. The device provides 10.5 V/µs of slew rate and 5.1 MHz of bandwidth while only consuming 1 mA of supply current per channel. This ac performance is much higher than current competitive CMOS amplifiers. The rail-to-rail output swing and high output drive makes this device a good choice for driving the analog input or reference of analog-to-digital converters. The device also has low distortion while driving a 600-Ω load for use in telecom systems. The amplifier has a 360 µV input offset voltage, a 17 nV ǸHz input noise voltage, and a 2 pA input bias current for measurement, medical, and industrial applications. The TLV2772 is also specified across an extended temperature range (– 40°C to 125°C) making it useful for automotive systems. The device operates from a 2.2 V to 5.5 V single supply voltage and is characterized at 2.7 V and 5 V. The single supply operation and low power consumption make this device a good solution for portable applications. It is available in an 8-pin PDIP, SOIC and ultra-low profile MSOP package. AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE† (D) MSOP (DGK) PLASTIC DIP (P) 0°C to 70°C 2.5 TLV2772CD TLV2772CDGK TLV2772CP – 40°C to 125°C 2.5 1.6 TLV2772ID TLV2772AID TLV2772IDGK TLV2772AIDGK TLV2772IP TLV2772AIP CHIP FORM‡ (Y) TLV2772Y † The D packages are available taped and reeled. Add R suffix to the device type (e.g., TLV2772CDR). ‡ Chip forms are tested at TA = 25°C only. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1998, Texas Instruments Incorporated This document contains information on products in more than one phase of development. The status of each device is indicated on the page(s) specifying its electrical characteristics. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TLV2772Y chip information This chip, when properly assembled, displays characteristics similar to the TLV2772. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. (3) (8) (1) 1IN + (2) BONDING PAD ASSIGNMENTS 1IN – 2IN + (7) (5) (6) 2IN – VDD+ (8) + (1) 1OUT – + (7) 2OUT – (4) VDD – /GND 51 (2) (6) CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM (3) (4) (5) TJmax = 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. 49 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 4 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to VDD – . 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below VDD – – 0.3 V. 3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW DGK n/a n/a n/a n/a n/a P 1000 mW 8.0 mW/°C 640 mW 520 mW 200 mW recommended operating conditions C SUFFIX MIN Supply voltage, VDD 2.2 Input voltage range, VI Common-mode input voltage, VIC VDD – VDD – Operating free-air temperature, TA 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX 5.5 VDD + – 1.3 VDD + – 1.3 70 I SUFFIX MIN 2.2 VDD – VDD – – 40 MAX 5.5 UNIT V VDD + – 1.3 VDD + – 1.3 V 125 °C V 3 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB Input bias current VICR Common mode input voltage range Common-mode TEST CONDITIONS VIC = 0, 0 RS = 50 Ω VO = 0, 0 VIC = 1.35 1 35 V V, IOL = 2 2.2 2 mA Low level output voltage Low-level Differential input resistance ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, CMRR Common-mode Common mode rejection ratio VIC = 1.35 V,, VO = 0.6 V to 2.1 V RL = 10 kΩ,, 2.5 0.47 2.7 25°C to 125°C 2 25°C 1 – 40°C to 85°C 2 25°C 2 – 40°C to 85°C 6 25°C 0 to 1.4 – 0.3 to 1.7 Full range 0 to 1.4 – 0.3 to 1.7 25°C Full range 20 Full range 13 380 1012 Ω 25°C 8 pF 25 Ω 82 25°C 70 89 Full range 70 84 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V/mV 25°C 70 † Full range is 0°C to 70°C. V 0.6 25°C Full range No load V 0.21 VO = 1.5 V,, VO = 1 1.5 5V V, V 0.2 VIC = 0 to 1.5 V,, RS = 50 Ω Supply current (per channel) pA 0.1 Full range 84 IDD 100 pA 2.1 25°C 70 VIC = VDD /2,, 100 2.4 25°C VDD = 2.7 V to 5 V,, No load mV µV/°C 2.5 25°C Supplyy voltage ratio g rejection j (∆VDD /∆VIO) UNIT 2.6 AV = 10 kSVR 4 0.44 Full range 675 mA IOL = 0 0.675 ri(d) 25°C Full range 25°C 1 35 V VIC = 1.35 V, Large-signal g g differential voltage g amplification MAX Full range High level output voltage High-level AVD MIN 25°C IOH = – 2.2 2 2 mA VOL TLV2772C TYP RS = 50 Ω CMRR > 70 dB, dB IOH = – 0.675 0 675 mA VOH TA† 25°C Full range 1 dB dB 2 2 mA TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted) PARAMETER TEST CONDITIONS VO(PP) = 0 0.8 8V V, RL = 10 kΩ CL = 100 pF, pF SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent q input noise voltage f = 0.1 Hz to 1 Hz In Equivalent input noise current f = 100 Hz THD + N Total harmonic distortion plus noise TA† TYP 25°C 5 9 Full range 4.7 6 f = 10 Hz 25°C 147 f = 1 kHz 25°C 21 25°C f = 0.1 Hz to 10 Hz 25°C AV = 1 AV = 10 RL = 600 Ω Ω, f = 1 kHz φm 0.33 0.86 1.5 25°C Gain-bandwidth product 25°C 4.8 AV = – 1, Step = 0.85 V to 1.85 V,, RL = 600 Ω, CL = 100 pF 0.1% 25°C 0.186 Settling time 0.01% 25°C 3.92 RL = 600 Ω, Ω CL = 100 pF 25°C 46° 25°C 12 POST OFFICE BOX 655303 V/µs nV/√Hz µV pA /√Hz 0.12% RL = 600 Ω, Gain margin † Full range is 0°C to 70°C. UNIT 0.025% f = 10 kHz, CL = 100 pF Phase margin at unity gain MAX 0.0085% AV = 100 ts TLV2772C MIN MHz µs • DALLAS, TEXAS 75265 dB 5 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB Input bias current VICR VOH Common-mode input voltage range High-level g output voltage TA† TEST CONDITIONS VIC = 0, 0 RS = 50 Ω VO = 0, 0 Low-level output voltage 25°C 0.44 Full range 0.47 VIC = 1 1.35 35 V V, IOL = 2 2.2 2 mA VIC = 1.35 V,, VO = 0.6 V to 2.1 V RL = 10 kΩ AVD Large-signal differential voltage amplification ri(d) Differential input resistance ci(c) Common-mode input capacitance f = 10 kHz, zo Closed-loop output impedance f = 100 kHz, AV = 10 CMRR Common-mode rejection ratio VIC = 0 to 1.5 V,, RS = 50 Ω VO = 1.5 V,, kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 2.7 V to 5 V,, No load VIC = VDD /2,, IDD Supplyy current (per channel) VO = 1 1.5 5V V, No load POST OFFICE BOX 655303 2.5 0.44 1.6 2.7 0.47 1.9 1 25°C 1 – 40°C to 85°C 2 25°C 2 – 40°C to 85°C 6 100 2 100 6 0 to 1.4 – 0.3 to 1.7 0 to 1.4 – 0.3 to 1.7 Full range g 0 to 1.4 – 0.3 to 1.7 0 to 1.4 – 0.3 to 1.7 2.6 Full range 0.2 Full range pA V V 0.2 0.21 0.6 13 100 0.1 0.21 Full range pA 2.1 0.1 20 100 2.4 2.1 25°C µV/°C 2.5 2.4 25°C mV 2.6 2.5 25°C UNIT 2 25°C 380 V 0.6 20 380 V/mV 13 25°C 1012 1012 Ω 25°C 8 8 pF 25°C 25 25 Ω 25°C 70 84 70 84 Full range 70 82 70 82 25°C 70 89 70 89 Full range 70 84 70 84 dB dB 25°C Full range † Full range is – 40°C to 125°C. 6 MAX 2 Full range 675 mA IOL = 0 0.675 TYP 2 25°C 35 V VIC = 1 1.35 V, MIN 25°C to 125°C Full range IOH = – 2.2 2 2 mA VOL MAX 25°C IOH = – 0.675 0 675 mA TLV2772AI TYP RS = 50 Ω dB CMRR > 70 dB, TLV2772I MIN • DALLAS, TEXAS 75265 1 2 2 1 2 2 mA TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS VO(PP) = 0 0.8 8V V, RL = 10 kΩ CL = 100 pF, pF TLV2772I MIN TYP 25°C 5 Full range 4.7 TLV2772AI MAX MIN TYP 9 5 9 6 4.7 6 MAX UNIT SR Slew rate at unity gain Vn Equivalent input q noise voltage f = 10 Hz 25°C 147 147 f = 1 kHz 25°C 21 21 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.33 0.33 µV VN(PP) f = 0.1 Hz to 10 Hz 25°C 0.86 0.86 µV In Equivalent input noise current f = 100 Hz 25°C 1.5 1.5 pA /√Hz 0.0085% Total T t l harmonic h i distortion plus lus noise RL = 600 Ω Ω, f = 1 kHz 0.0085% THD + N 0.025% 0.025% 0.12% 0.12% AV = 1 AV = 10 25°C AV = 100 ts φm Gain-bandwidth product f = 10 kHz, CL = 100 pF Settling time AV = –1, Step = 0.85 V to 1 85 V, V 1.85 RL = 600 Ω, CL = 100 pF Phase margin at unity gain RL = 600 Ω,, RL = 600 Ω, 25°C 4.8 4.8 0.1% 25°C 0.186 0.186 0.01% 25°C 3.92 3.92 25°C 46° 46° 25°C 12 12 V/µs nV/√Hz MHz µs CL = 100 pF Gain margin † Full range is – 40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 7 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB Input bias current VICR Common mode input voltage range Common-mode TEST CONDITIONS VIC = 0, 0 RS = 50 Ω VO = 0, 0 VIC = 2 2.5 5V V, IOL = 4 4.2 2 mA Low level output voltage Low-level Differential input resistance ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, CMRR Common-mode Common mode rejection ratio VIC = 2.5 V,, VO = 1 V to 4 V RL = 10 kΩ,, 2.5 0.4 2.7 25°C to 125°C 2 25°C 1 – 40°C to 85°C 2 25°C 2 – 40°C to 85°C 6 25°C 0 to 3.7 – 0.3 to 3.8 Full range 0 to 3.7 – 0.3 to 3.8 25°C Full range 20 Full range 13 450 1012 Ω 25°C 8 pF 20 Ω 93 25°C 70 89 Full range 70 84 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V/mV 25°C 60 † Full range is 0°C to 70°C. V 0.6 25°C Full range No load V 0.21 VO = 3.7 V,, VO = 1 1.5 5V V, V 0.2 VIC = 0 to 3.7 V,, RS = 50 Ω Supply current (per channel) pA 0.1 Full range 96 IDD 100 pA 4.4 25°C 60 VIC = VDD /2,, 100 4.7 25°C VDD = 2.7 V to 5 V,, No load mV µV/°C 4.8 25°C Supplyy voltage ratio g rejection j (∆VDD /∆VIO) UNIT 4.9 AV = 10 kSVR 8 0.36 Full range 3 mA IOL = 1 1.3 ri(d) 25°C Full range 25°C 5V VIC = 2 2.5 V, Large-signal g g differential voltage g amplification MAX Full range High level output voltage High-level AVD MIN 25°C IOH = – 4.2 4 2 mA VOL TLV2772C TYP RS = 50 Ω CMRR > 60 dB, dB IOH = – 1.3 1 3 mA VOH TA† 25°C Full range 1 dB dB 2 2 mA TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS VO(PP) = 1 1.5 5V V, RL = 10 kΩ CL = 100 pF, pF SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent q input noise voltage f = 0.1 Hz to 1 Hz In Equivalent input noise current f = 100 Hz THD + N Total harmonic distortion plus noise TA† TYP 25°C 5 10.5 Full range 4.7 6 f = 10 Hz 25°C 147 f = 1 kHz 25°C 17 25°C f = 0.1 Hz to 10 Hz 25°C AV = 1 AV = 10 RL = 600 Ω Ω, f = 1 kHz φm 0.33 0.86 0.2 25°C Gain-bandwidth product 25°C 5.1 AV = –1, Step = 1.5 V to 3.5 V,, RL = 600 Ω, CL = 100 pF 0.1% 25°C 0.134 Settling time 0.01% 25°C 1.97 RL = 600 Ω, Ω CL = 100 pF 25°C 46° 25°C 12 POST OFFICE BOX 655303 V/µs nV/√Hz µV pA /√Hz 0.095% RL = 600 Ω, Gain margin † Full range is 0°C to 70°C. UNIT 0.016% f = 10 kHz, CL = 100 pF Phase margin at unity gain MAX 0.005% AV = 100 ts TLV2772C MIN MHz µs • DALLAS, TEXAS 75265 dB 9 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current IIB Input bias current VICR VOH Common-mode input voltage range High-level g output voltage TA† TEST CONDITIONS VIC = 0, 0 RS = 50 Ω VO = 0, 0 dB CMRR > 60 dB, Low-level output voltage MAX 25°C 0.36 Full range 0.4 IOL = 4 4.2 2 mA VIC = 2.5 V,, VO = 1 V to 4 V RL = 10 kΩ AVD Large-signal differential voltage amplification ri(d) Differential input resistance ci(c) Common-mode input capacitance f = 10 kHz, zo Closed-loop output impedance f = 100 kHz, AV = 10 CMRR Common-mode rejection ratio VIC = 0 to 3.7 V,, RS = 50 Ω VO = 3.7 V,, kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 2.7 V to 5 V,, No load VIC = VDD /2,, IDD Supplyy current (per channel) VO = 1 1.5 5V V, No load 1 2 25°C 2 – 40°C to 85°C 6 POST OFFICE BOX 655303 0.36 1.6 2.7 0.4 1.9 100 2 100 6 0 to 3.7 – 0.3 to 3.8 0 to 3.7 – 0.3 to 3.8 Full range g 0 to 3.7 – 0.3 to 3.8 0 to 3.7 – 0.3 to 3.8 4.9 Full range 0.2 Full range pA V V 0.2 0.21 0.6 13 100 0.1 0.21 Full range pA 4.4 0.1 20 100 4.7 4.4 25°C µV/°C 4.8 4.7 25°C mV 4.9 4.8 25°C UNIT 2 25°C 450 V 0.6 20 450 V/mV 13 25°C 1012 1012 Ω 25°C 8 8 pF 25°C 20 20 Ω 25°C 60 96 60 96 Full range 60 93 60 93 25°C 70 89 70 89 Full range 70 84 70 84 dB dB 25°C Full range † Full range is – 40°C to 125°C. 10 2.5 1 25°C – 40°C to 85°C Full range VIC = 2 2.5 5V V, MAX 2 25°C 3 mA IOL = 1 1.3 TYP 2 Full range 5V VIC = 2 2.5 V, MIN 25°C to 125°C 25°C IOH = – 1.3 1 3 mA TLV2772AI TYP RS = 50 Ω IOH = – 4.2 4 2 mA VOL TLV2772I MIN • DALLAS, TEXAS 75265 1 2 2 1 2 2 mA TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS VO(PP) = 1 1.5 5V V, RL = 10 kΩ CL = 100 pF, pF TLV2772I MIN TYP 25°C 5 Full range 4.7 TLV2772AI MAX MIN TYP 10.5 5 10.5 6 4.7 6 MAX UNIT SR Slew rate at unity gain Vn Equivalent input q noise voltage f = 10 Hz 25°C 147 147 f = 1 kHz 25°C 17 17 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.33 0.33 µV VN(PP) f = 0.1 Hz to 10 Hz 25°C 0.86 0.86 µV In Equivalent input noise current f = 100 Hz 25°C 0.2 0.2 pA /√Hz 0.005% Total T t l harmonic h i distortion plus lus noise RL = 600 Ω Ω, f = 1 kHz 0.005% THD + N 0.016% 0.016% 0.095% 0.095% AV = 1 AV = 10 25°C AV = 100 ts φm Gain-bandwidth product f = 10 kHz, CL = 100 pF Settling time AV = –1, Step = 1.5 V to 3 5 V, V 3.5 RL = 600 Ω, CL = 100 pF Phase margin at unity gain RL = 600 Ω,, RL = 600 Ω, 25°C 5.1 5.1 0.1% 25°C 0.134 0.134 0.01% 25°C 1.97 1.97 25°C 46° 46° 25°C 12 12 V/µs nV/√Hz MHz µs CL = 100 pF Gain margin † Full range is – 40°C to 125°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 11 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 electrical characteristics at specified free-air temperature, VDD = 2.7 V, TA = 25°C (unless otherwise noted) PARAMETER VIO IIO Input offset voltage IIB Input bias current TLV2772Y TEST CONDITIONS VIC = 0, 0 RS = 50 Ω Input offset current MIN VO = 0, 0 RS = 50 Ω TYP MAX UNIT 0.44 mV 1 pA 2 pA – 0.3 to 1.7 V VICR Common-mode input voltage range CMRR > 70 dB, VOH High level output voltage High-level IOH = – 0.675 mA IOH = – 2.2 mA VOL Low level output voltage Low-level VIC = 1.35 V, VIC = 1.35 V, IOL = 0.675 mA IOL = 2.2 mA 0.21 AVD Large-signal differential voltage amplification VIC = 1.35 V, VO = 0.6 V to 2.1 V RL = 10 kΩ, 380 V/mV ri(d) Differential input resistance 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, 2.6 V 2.4 0.1 AV = 10 VO = 1.5 V, CMRR Common-mode rejection ratio VIC = 0 to 1.5 V, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 2.7 V to 5 V, No load VIC = VDD /2, IDD Supply current (per channel) VO = 1.5 V, No load V 8 pF 25 Ω 84 dB 89 dB 1 mA operating characteristics at specified free-air temperature, VDD = 2.7 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS VO(PP) = 0.8 V, RL = 10 kΩ SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise CL = 100 pF, φm 9 147 f = 1 kHz 21 f = 0.1 Hz to 1 Hz 0.33 f = 0.1 Hz to 10 Hz 0.86 f = 100 Hz RL = 600 Ω Ω, f = 1 kHz 1.5 AV = 1 AV = 10 AV = – 1, Step = 0.85 V to 1.85 V,, RL = 600 Ω, CL = 100 pF 0.1% 0.186 Settling time 0.01% 3.92 RL = 600 Ω Ω, CL = 100 pF • DALLAS, TEXAS 75265 V/µs nV/√Hz µV pA /√Hz 0.12% RL = 600 Ω, POST OFFICE BOX 655303 UNIT 0.025% f = 10 kHz, CL = 100 pF Phase margin at unity gain MAX 0.0085% Gain-bandwidth product Gain margin 12 TYP f = 10 Hz AV = 100 ts TLV2772Y MIN 4.8 MHz µs 46° 12 dB TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 electrical characteristics at specified free-air temperature, VDD = 5 V, TA = 25°C (unless otherwise noted) PARAMETER VIO IIO Input offset voltage IIB Input bias current TLV2772Y TEST CONDITIONS VIC = 0, 0 RS = 50 Ω Input offset current MIN VO = 0, 0 RS = 50 Ω TYP MAX UNIT 0.36 mV 1 pA 2 pA – 0.3 to 3.8 V VICR Common-mode input voltage range CMRR > 60 dB, VOH High level output voltage High-level IOH = – 1.3 mA IOH = – 4.2 mA VOL Low level output voltage Low-level VIC = 2.5 V, VIC = 2.5 V, IOL = 1.3 mA IOL = 4.2 mA 0.21 AVD Large-signal differential voltage amplification VIC = 2.5 V, VO = 1 V to 4 V RL = 10 kΩ, 450 V/mV ri(d) Differential input resistance 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, 4.9 V 4.7 0.1 AV = 10 VO = 3.7 V, CMRR Common-mode rejection ratio VIC = 0 to 3.7 V, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 2.7 V to 5 V, No load VIC = VDD /2, IDD Supply current (per channel) VO = 1.5 V, No load V 8 pF 20 Ω 96 dB 89 dB 1 mA operating characteristics at specified free-air temperature, VDD = 5 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS VO(PP) = 1.5 V, RL = 10 kΩ SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N ts φm Total harmonic distortion plus noise CL = 100 pF, TLV2772Y MIN TYP 10.5 f = 10 Hz 147 f = 1 kHz 17 f = 0.1 Hz to 1 Hz 0.33 f = 0.1 Hz to 10 Hz 0.86 f = 100 Hz RL = 600 Ω Ω, f = 1 kHz 0.2 AV = 1 AV = 10 0.005% AV = 100 0.095% f = 10 kHz, CL = 100 pF RL = 600 Ω, AV = –1, Step = 1.5 V to 3.5 V,, RL = 600 Ω, CL = 100 pF 0.1% 0.134 Settling time 0.01% 1.97 RL = 600 Ω Ω, CL = 100 pF Gain margin POST OFFICE BOX 655303 UNIT V/µs nV/√Hz µV pA /√Hz 0.016% Gain-bandwidth product Phase margin at unity gain MAX 5.1 MHz µs • DALLAS, TEXAS 75265 46° 12 dB 13 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode input voltage αVIO Temperature coefficient Distribution IIB/IIO VOH Input bias and input offset currents vs Free-air temperature High-level output voltage vs High-level output current VOL VO(PP) Low-level output voltage vs Low-level output current 10,11 Maximum peak-to-peak output voltage vs Frequency 12,13 IOS Short-circuit output current vs Supply voltage vs Free-air temperature 14 15 VO AVD Output voltage vs Differential input voltage 16 Large-signal differential voltage amplification vs Frequency 17,18 AVD Differential voltage amplification vs Load resistance vs Free-air temperature 19 20,21 zo Output impedance vs Frequency 22,23 CMRR Common-mode rejection ratio vs Frequency vs Free-air temperature kSVR Supply-voltage rejection ratio vs Frequency IDD Supply current (per channel) vs Supply voltage 28 SR Slew rate vs Load capacitance vs Free-air temperature 29 30 VO VO Voltage-follower small-signal pulse response vs Time 31,32 Voltage-follower large-signal pulse response vs Time 33,34 VO VO Inverting small-signal pulse response vs Time 35,36 Inverting large-signal pulse response vs Time 37,38 Vn Equivalent input noise voltage vs Frequency 39,40 Noise voltage (referred to input) Over a 10-second period Total harmonic distortion plus noise vs Frequency Gain-bandwidth product vs Supply voltage 44 B1 Unity-gain bandwidth vs Load capacitance 45 φm Phase margin vs Load capacitance 46 Gain margin vs Load capacitance 47 THD + N 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1,2 3,4 5,6 7 8,9 24 25 26,27 41 42,43 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2772 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLV2772 INPUT OFFSET VOLTAGE 40 40 VDD = 2.7 V RL = 10 kΩ TA = 25°C 35 Percentage of Amplifiers – % Percentage of Amplifiers – % 35 30 25 20 15 10 VDD = 5 V RL = 10 kΩ TA = 25°C 30 25 20 15 10 5 5 0 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 0 2.5 –2.5 –2 –1.5 –1 –0.5 0 VIO – Input Offset Voltage – mV Figure 1 2 2.5 4 4.5 2 VDD = 2.7 V TA = 25°C 1.5 VIO – Input Offset Voltage – mV VIO – Input Offset Voltage – mV 1.5 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 2 1 0.5 0 –0.5 –1 VDD = 5 V TA = 25°C 1 0.5 0 –0.5 –1 –1.5 –1.5 –2 –1 1 Figure 2 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1.5 0.5 VIO – Input Offset Voltage – mV –0.5 0 0.5 1 1.5 2 2.5 3 VIC – Common-Mode Input Voltage – V –2 –1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5 VIC – Common-Mode Input Voltage – V Figure 3 Figure 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2772 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLV2772 INPUT OFFSET VOLTAGE 35 35 VDD = 2.7 V TA = 25°C to 125°C 25 20 15 10 5 0 VDD = 5 V TA = 25°C to 125°C 30 Percentage of Amplifiers – % Percentage of Amplifiers – % 30 25 20 15 10 5 –6 –3 0 3 6 9 0 12 –6 αVIO – Temperature Coefficient – µV/°C –3 0 Figure 5 9 12 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 0.20 3 VDD = 5 V VIC = 0 VO = 0 RS = 50 Ω VDD = 2.7 V VOH – High-Level Output Voltage – V I IB and I IO – Input Bias and Input Offset Currents – nA 6 Figure 6 INPUT BIAS AND OFFSET CURRENT vs FREE-AIR TEMPERATURE 0.15 IIB 0.10 0.05 IIO 2.5 2 TA = –40°C 1.5 TA = 125°C 1 TA = 25°C 0.5 TA = 85°C 0 –75 –50 –25 0 25 50 75 100 125 0 0 TA – Free-Air Temperature – °C 5 10 Figure 8 POST OFFICE BOX 655303 15 20 IOH – High-Level Output Current – mA Figure 7 16 3 αVIO – Temperature Coefficient – µV/°C • DALLAS, TEXAS 75265 25 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 5 3 VDD = 5 V TA = 25°C 4 VDD = 2.7 V VOL – Low-Level Output Voltage – V VOH – High-Level Output Voltage – V 4.5 TA = –40°C 3.5 TA = 25°C 3 2.5 TA = 125°C 2 1.5 TA = 85°C 1 0.5 0 0 5 10 15 20 25 30 35 40 45 50 2.5 TA = 125°C 1.5 TA = 25°C 1 TA = –40°C 0.5 0 55 TA = 85°C 2 0 5 IOH – High-Level Output Current – mA 10 Figure 9 TA = 85°C 2 1.5 TA = 25°C 1 TA = –40°C 0.5 0 20 30 40 50 VO(PP) – Maximum Peak-to-Peak Output Voltage – V VOL – Low-Level Output Voltage – V TA = 125°C 2.5 10 30 25 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 3 0 20 Figure 10 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VDD = 5 V 15 IOL – Low-Level Output Current – mA 5 RL = 10 kΩ VDD = 5 V 1% THD 4 3 2 VDD = 2.7 V 2% THD 1 0 100 IOL – Low-Level Output Current – mA 1000 10000 f – Frequency – kHz Figure 11 Figure 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 5 60 THD = 5% RL = 600 Ω TA = 25°C 4.5 4 I OS – Short-Circuit Output Current – mA VO(PP) – Maximum Peak-to-Peak Output Voltage – V MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 3.5 VDD = 5 V 3 2.5 VDD = 2.7 V 2 1.5 1 0.5 0 100 1000 45 VO = VDD /2 VIC = VDD /2 TA = 25°C 30 15 0 –15 –30 VID = 100 mV –45 –60 2 10000 3 f – Frequency – kHz VID = –100 mV 20 VDD = 5 V VO = 2.5 V 0 –20 VID = 100 mV –25 RL = 600 Ω TA = 25°C 3 VDD = 2.7 V 2 1 0 25 50 75 100 125 0 –1000 –750 –500 –250 TA – Free-Air Temperature – °C 0 Figure 16 POST OFFICE BOX 655303 250 500 750 VID – Differential Input Voltage – µV Figure 15 18 VDD = 5 V 4 VO – Output Voltage – V I OS – Short-Circuit Output Current – mA 5 –50 7 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 60 –60 –75 6 5 Figure 14 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE –40 4 VDD – Supply Voltage – V Figure 13 40 VID = –100 mV • DALLAS, TEXAS 75265 1000 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY VDD = 2.7 V RL = 600 Ω CL = 600 pF TA = 25°C 80 AVD 300 240 60 180 40 120 Phase 20 60 0 0 – 20 – 40 100 φ m – Phase Margin – degrees A VD – Large-Signal Differential Amplification – dB 100 – 60 10k 1k 100k 1M – 90 10M f – Frequency – Hz Figure 17 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY VDD = 5 V RL = 600 Ω CL = 600 pF TA = 25°C 80 AVD 60 240 180 40 120 Phase 20 60 0 0 – 20 – 40 100 300 φ m – Phase Margin – degrees A VD – Large-Signal Differential Amplification – dB 100 – 60 1k 10k 100k 1M – 90 10M f – Frequency – Hz Figure 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 1000 TA = 25°C A VD – Differential Voltage Amplification – V/mV A VD – Differential Voltage Amplification – V/mV 250 200 VDD = ±1.35 V VDD = ±2.5 V 150 100 50 0 0.1 1 10 100 1000 RL = 10 kΩ 100 RL = 1 MΩ RL = 600 Ω 10 1 VDD = 2.7 V VIC = 1.35 V VO = 0.6 V to 2.1 V 0.1 –75 –50 RL – Load Resistance – kΩ –25 50 75 100 125 Figure 20 DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE OUTPUT IMPEDANCE vs FREQUENCY 1000 100 RL = 10 kΩ VDD = ±1.35 V TA = 25°C RL = 1 MΩ 100 ZO – Output Impedance – Ω A VD – Differential Voltage Amplification – V/mV 25 TA – Free-Air Temperature – °C Figure 19 RL = 600 Ω 10 1 10 AV = 100 1 AV = 10 0.10 AV = 1 VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V 0.1 –75 –50 –25 0 25 50 75 100 125 0.01 100 TA – Free-Air Temperature – °C 1k 10k f – Frequency – Hz Figure 21 20 0 Figure 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100k 1M TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS OUTPUT IMPEDANCE vs FREQUENCY 90 VDD = ±2.5 V TA = 25°C CMRR – Common-Mode Rejection Ratio – dB Zo – Output Impedance – Ω 100 COMMON-MODE REJECTION RATIO vs FREQUENCY 10 Av = 100 1 Av = 10 0.1 Av = 1 0.01 100 1k 10k 100k VDD = 5 V 80 70 60 50 40 10 1M 100 f – Frequency – Hz 10k k SVR – Supply-Voltage Rejection Ratio – dB 120 115 110 105 VDD = 2.7 V 95 90 VDD = 5 V 85 –20 0 20 40 60 1M 10M SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 120 100 100k Figure 24 COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE CMRR – Common-Mode Rejection Ratio – dB 1k f – Frequency – Hz Figure 23 80 –40 VIC = 1.35 V and 2.5 V TA = 25°C VDD = 2.7 V 80 100 120 140 VDD = ±1.35 V TA = 25°C kSVR+ 100 kSVR– 80 60 40 20 0 10 100 TA – Free-Air Temperature – °C 1k 10k 100k 1M 10M f – Frequency – Hz Figure 25 Figure 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS SUPPLY VOLTAGE REJECTION RATIO vs FREQUENCY SUPPLY CURRENT (PER CHANNEL) vs SUPPLY VOLTAGE 100 1.6 VDD = ±2.5 V TA = 25°C kSVR+ I DD – Supply Current (Per Channel) – mA k SVR – Supply Voltage Rejection Ratio – dB 120 kSVR– 80 60 40 20 0 10 100 1k 10 k 100 k 1M TA = 125°C 1.4 1.2 TA = 25°C 1 TA = 0°C TA = – 40°C 0.8 0.6 0.4 0.2 0 2.5 10 M TA = 85°C 3 f – Frequency – Hz 3.5 4 Figure 27 5.5 6 6.5 7 Figure 28 SLEW RATE vs LOAD CAPACITANCE SLEW RATE vs FREE-AIR TEMPERATURE 16 14 VDD = 5 V AV = –1 TA = 25°C SR+ 14 13 SR– 12 SR – Slew Rate – µs SR – Slew Rate – V/ µs 5 4.5 VDD – Supply Voltage – V 10 8 6 VDD = 2.7 V RL = 10 kΩ CL = 100 pF AV = 1 12 11 10 4 9 2 0 10 100 1k 10k 100k 8 –75 –50 Figure 29 22 –25 0 25 Figure 30 POST OFFICE BOX 655303 50 75 TA – Free-Air Temperature – °C CL – Load Capacitance – pF • DALLAS, TEXAS 75265 100 125 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100 60 VDD = 5 V RL = 600 Ω CL = 100 pF AV = 1 TA = 25°C 80 VO – Output Voltage – mV 80 VO – Output Voltage – mV 100 VDD = 2.7 V RL = 600 Ω CL = 100 pF AV = 1 TA = 25°C 40 20 0 –20 –40 60 40 20 0 –20 –40 –60 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k –60 4.5k 5k 0 500 1k 1.5k 2k t – Time – ns VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 6 VDD = 2.7 V RL = 600 Ω CL = 100 pF AV = 1 TA = 25°C VDD = 5 V RL = 600 Ω CL = 100 pF AV = 1 TA = 25°C 5 VO – Output Voltage – V VO – Output Voltage – V 4.5k 5k VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 3 2 3k 3.5k 4k Figure 32 Figure 31 2.5 2.5k t – Time – ns 1.5 1 0.5 0 –0.5 4 3 2 1 0 –1 –1 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k –2 0 500 t – Time – ns 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k t – Time – ns Figure 34 Figure 33 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE INVERTING SMALL-SIGNAL PULSE RESPONSE 100 60 VDD = 5 V RL = 600 Ω CL = 100 pF AV = –1 TA = 25°C 80 VO – Output Voltage – mV 80 VO – Output Voltage – mV 100 VDD = 2.7 V RL = 600 Ω CL = 100 pF AV = –1 TA = 25°C 40 20 0 –20 –40 60 40 20 0 –20 –40 –60 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k –60 4.5k 5k 0 500 t – Time – ns 1k 1.5k 2k 2.5k 3k 3.5k 4k t – Time – ns Figure 36 Figure 35 INVERTING LARGE-SIGNAL PULSE RESPONSE 3 4 2.5 3.5 2 VO – Output Voltage – mV VO – Output Voltage – mV INVERTING LARGE-SIGNAL PULSE RESPONSE 1.5 1 0.5 VDD = 2.7 V RL = 600 Ω CL = 100 pF AV = –1 TA = 25°C 0 –0.5 500 3 2.5 2 1.5 VDD = 5 V RL = 600 Ω CL = 100 pF AV = –1 TA = 25°C 1 0.5 –1 0 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 1 0 500 t – Time – ns 1k 1.5k 2k 2.5k 3k 3.5k 4k t – Time – ns Figure 38 Figure 37 24 4.5k 5k POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 4.5k 5k TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 160 140 120 100 80 60 40 VDD = 5 V RS = 20 Ω TA = 25°C 120 100 80 60 40 20 20 0 10 1k 100 0 10k 10 100 f – Frequency – Hz 1k 10k f – Frequency – Hz Figure 39 Figure 40 NOISE VOLTAGE OVER A 10 SECOND PERIOD VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C 300 200 Noise Voltage – nV Vn – Input Noise Voltage – nV/ Hz 140 Vn – Input Noise Voltage – nV Hz VDD = 2.7 V RS = 20 Ω TA = 25°C 100 GND –100 –200 –300 0 1 2 3 4 5 6 7 8 9 10 t – Time – s Figure 41 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 10 VDD = 2.7 V RL = 600 Ω TA = 25°C 1 Av = 100 0.1 Av = 10 0.01 Av = 1 0.001 10 10 THD+N – Total Harmonic Distortion Plus Noise – % THD+N – Total Harmonic Distortion Plus Noise – % TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 100 1k 10k VDD = 5 V RL = 600 Ω TA = 25°C 1 0.1 Av = 100 Av = 10 0.01 Av = 1 0.001 10 100k 100 f – Frequency – Hz Figure 42 Unity-Gain Bandwidth – MHz Gain-Bandwidth Product – MHz 5 4.8 4.6 4.4 4.2 VDD = 5 V RL = 600 Ω TA = 25°C 4 3 Rnull = 100 2 Rnull = 50 Rnull = 20 1 Rnull = 0 4 2 2.5 3 3.5 4 4.5 5 5.5 6 0 10 VDD+ – Supply Voltage – V 100 1k Figure 45 POST OFFICE BOX 655303 10k CL – Load Capacitance – pF Figure 44 26 100k UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE RL = 600 Ω CL = 100 pF Freq = 10 kHz TA = 25°C 5 10k Figure 43 GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 5.2 1k f – Frequency – Hz • DALLAS, TEXAS 75265 100k TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 TYPICAL CHARACTERISTICS PHASE MARGIN vs LOAD CAPACITANCE GAIN MARGIN vs LOAD CAPACITANCE 90 70 0 5 Rnull = 100 Ω Rnull = 50 Ω 50 Rnull = 20 Ω 40 30 Rnull = 0 15 20 Rnull = 100 Ω 25 Rnull = 50 Ω 30 Rnull = 0 20 Rnull = 20 Ω 35 10 0 10 VDD = 5 V RL = 600 Ω TA = 25°C 10 60 Gain Margin – dB φ m – Phase Margin – degrees 80 VDD = 5 V RL = 600 Ω TA = 25°C 100 1k 10k 100K 40 10 CL – Load Capacitance – pF 100 1k 10k 100K CL – Load Capacitance – pF Figure 46 Figure 47 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts Release 8, the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 4) and subcircuit in Figure 48 are generated using the TLV2772 typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 EGND + R2 3 VDD + – + ISS RSS CSS VD – 53 RP 10 2 IN – J1 FB 6 VLIM + VB 8 GA GCM – DC J2 – RO1 OUT 1 11 12 RD1 5 DLN DE 92 54 C1 DP + RD2 VE + DLP 91 + VLP – – – + 90 HLIM – 4 .SUBCKT TLV2772–X 1 2 3 4 5 C1 11 12 2.3094E–12 C2 6 7 8.0000E–12 CSS 10 99 2.1042E–12 DC 5 53 DY DE 54 5 DY DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 19.391E6 –1E3 1E3 19E6 –19E6 GA 6 0 11 12 150.80E–6 GCM 0 6 10 99 7.5576E–9 ISS 3 10 DC 116.40E–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX1 J2 12 1 10 JX2 R2 6 9 100.00E3 PSpice and Parts are trademarks of MicroSim Corporation. POST OFFICE BOX 655303 VLN RD1 4 11 6.6315E3 RD2 4 12 6.6315E3 R01 8 5 17.140 R02 7 99 17.140 RP 3 4 4.5455E3 RSS 10 99 1.7182E6 VB 9 0 DC 0 VC 3 53 DC .1 VE 54 4 DC .1 VLIM 7 8 DC 0 VLP 91 0 DC 47 VLN 0 92 DC 47 .MODEL DX D (IS=800.0E–18) .MODEL DY D (IS=800.0E–18 Rs = 1m Cjo=10p) .MODEL JX1 PJF (IS=2.2500E–12 BETA=195.36E–6 + VTO= –1) .MODEL JX2 PJF (IS=1.7500E–12 BETA=195.36E–6 + VTO= –1) .ENDS Figure 48. Boyle Macromodel and Subcircuit 28 7 + 9 IN + VDD – RO2 C2 • DALLAS, TEXAS 75265 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 MECHANICAL INFORMATION D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN PINS ** 0.050 (1,27) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.244 (6,20) 0.228 (5,80) 0.008 (0,20) NOM 0.157 (4,00) 0.150 (3,81) 1 Gage Plane 7 A 0.010 (0,25) 0°– 8° 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) 0.004 (0,10) 4040047 / D 10/96 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 MECHANICAL INFORMATION DGK (R-PDSO-G8) PLASTIC SMALL-OUTLINE PACKAGE 0,38 0,25 0,65 8 0,25 M 5 0,15 NOM 3,05 2,95 4,98 4,78 Gage Plane 0,25 1 0°– 6° 4 3,05 2,95 0,69 0,41 Seating Plane 1,07 MAX 0,05 MIN 0,10 4073329/A 02/97 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion. 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2772, TLV2772A, TLV2772Y 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS SLOS209 – JANUARY 1998 MECHANICAL INFORMATION P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0°– 15° 0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Copyright 1998, Texas Instruments Incorporated