TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 D D D D D D Output Swing Includes Both Supply Rails Extended Common-Mode Input Voltage Range . . . 0 V to 4.5 V (Min) with 5-V Single Supply No Phase Inversion Low Noise . . . 18 nV/√Hz Typ at f = 1 kHz Low Input Offset Voltage 950 µV Max at TA = 25°C (TLV243xA) Low Input Bias Current . . . 1 pA Typ D D D D Very Low Supply Current . . . 125 µA Per Channel Max 600-Ω Output Drive Macromodel Included Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT description 5 V VOH OH – High-Level Output Voltage – V The TLV243x and TLV243xA are low-voltage operational amplifier from Texas Instruments. The common-mode input voltage range for each device is extended over the typical CMOS amplifiers making them suitable for a wide range of applications. In addition, these devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. The TLV243x only requires 100 µA (typ) of supply current per channel, making it ideal for battery-powered applications. The TLV243x also has increased output drive over previous rail-to-rail operational amplifiers and can drive 600-Ω loads for telecom applications. ÁÁ ÁÁ ÁÁ VDD = 5 V 4 3 TA = 125°C TA = 85°C 2 TA = 25°C TA =–40°C 1 0 0 4 8 12 16 IOH – High-Level Output Current – A m 20 Figure 1 The other members in the TLV243x family are the high-power, TLV244x, and micro-power, TLV2422, versions. The TLV243x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV243xA is available and has a maximum input offset voltage of 950 µV. If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments Incorporated. Copyright 1999, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TLV2432 and TLV2432A AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) TSSOP (PW) CERAMIC FLAT PACK (U) 0°C to 70°C 2.5 mV TLV2432CD — — TLV2432CPW — – 40°C to 85°C 950 µV µ 2.5 mV TLV2432AID TLV2432ID — — — — TLV2432AIPW — — — – 40°C to 125°C 950 µV µ 2.5 mV TLV2432AQD TLV2432QD — — — — — — — — – 55°C to 125°C 950 µV µ 2.5 mV — — TLV2432AMFK TLV2432MFK TLV2432AMJG TLV2432MJG — — TLV2432AMU TLV2432MU The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2432CDR). The PW package is available only left-end taped and reeled. TLV2434 AVAILABLE OPTIONS PACKAGED DEVICES TA SMALL OUTLINE (D) VIOmax AT 25°C TSSOP (PW) 0°C to 70°C 2.5 mV TLV2434CD TLV2434CPW – 40°C to 125°C 950 µV µ 2.5 mV TLV2434AID TLV2434ID TLV2434AIPW TLV2434IPW The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2434CDR). The PW package is available only left-end taped and reeled. TLV2432 D OR JG PACKAGE (TOP VIEW) 1OUT 1IN – 1IN + VDD – /GND 1 8 2 7 3 6 4 5 TLV2432 PW PACKAGE (TOP VIEW) 1OUT 1IN– 1IN + VDD – / GND VDD + 2OUT 2IN – 2IN + 1 2 3 4 8 7 6 5 VDD + 2OUT 2IN – 2IN + NC 1OUT NC VDD+ NC TLV2432 FK PACKAGE (TOP VIEW) 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN – NC NC 1OUT 1IN – 1IN + VDD – /GND 1 10 2 9 3 8 4 5 7 6 (TOP VIEW) NC VDD + 2OUT 2IN – 2IN + NC VDD– /GND NC 2IN+ NC NC 1IN – NC 1IN + NC TLV2434 D OR PW PACKAGE TLV2432 U PACKAGE (TOP VIEW) NC – No internal connection 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1OUT 1IN – 1IN+ VDD+ 2IN+ 2IN – 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN – 4IN+ VDD–/GND 3IN+ 3IN – 3OUT equivalent schematic (each amplifier) Q22 Q29 Q31 Q34 Q36 VB3 Q26 Q24 Q32 VB2 VB1 VDD+ Q25 Q35 Q33 Q27 VB4 Q23 Transistors Diodes Resistors Capacitors Q30 Q37 R10 D1 R9 R3 Q3 R4 R7 Q13 IN– Q1 Q6 Q4 Q8 Q15 Q10 Q18 Q7 R5 Q9 C2 VDD–/GND C1 VB3 Q11 Q16 R6 OUT C3 VB2 Q2 Q14 Q5 Q17 Q12 R1 Q21 Q19 R2 R8 VB4 3 SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 Q20 IN+ 69 5 26 6 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 COMPONENT COUNT TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Input voltage, VI (any input, see Note 1): C and I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix (dual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C I suffix (quad) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD – . 2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if input is brought below VDD – – 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D (8) D (14) FK JG PW (8) PW (14) U 725 mW 1022 mW 1375 mW 1050 mW 525 mW 720 mW 675 mW 5.8 mW/°C 7.6 mW/°C 11.0 mW/°C 8.4 mW/°C 4.2 mW/°C 5.6 mW/°C 5.4 mW/°C 464 mW 900 mW 880 mW 672 mW 336 mW 634 mW 432 mW 377 mW 777 mW 715 mW 546 mW 273 mW 547 mW 350 mW 145 mW 450 mW 275 mW 210 mW 105 mW 317 mW 135 mW recommended operating conditions C SUFFIX MIN Supply voltage, VDD UNIT 10 V VDD + – 0.8 VDD – VDD + – 0.8 V Common-mode input voltage, VIC VDD – VDD + – 1.3 VDD – VDD + – 1.3 VDD – VDD + – 1.3 VDD – VDD + – 1.3 V 125 °C 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 2.7 MAX VDD – – 40 10 M SUFFIX MIN VDD + – 0.8 125 2.7 MAX VDD – – 40 10 Q SUFFIX MIN VDD + – 0.8 70 2.7 MAX VDD – 0 10 I SUFFIX MIN Input voltage range, VI Operating free-air temperature, TA 2.7 MAX – 55 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER VIO αVIO TEST CONDITIONS VIC = 0 0, VO = 0,, VDD ± = ± 1.5 V, RS = 50 Ω Input offset voltage TLV243xAI IIO Input offset current IIB Input bias current VDD ± = ± 1.5 V, RS = 50 Ω VIC = 0, VO = 0, AVD MAX 300 2000 Full range 2500 25°C 300 Full range |VIO| ≤ 5 mV, mV High-level output voltage µV/°C 25°C 0.003 µV/mo 25°C 0.5 150 1 Low-level output voltage Large-signal g g differential voltage g amplification 150 25°C 0 to 2.5 Full range 0 to 2.2 RS = 50 Ω 25°C Full range IOL = 100 µA mA VIC = 1 1.5 5V V, IOL = 3 2 5 V, V VIC = 2.5 VO = 1 V to 2 V RL = 2 kΩ‡ RL = 1 MΩ‡ 0.02 25°C 0.83 Full range 25°C V V 1 1.5 2.5 1 V/mV 25°C 750 25°C 1000 GΩ 25°C 1000 GΩ 25°C 8 pF 130 Ω Differential input resistance ri(c) Common-mode input resistance ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, CMRR Common mode rejection ratio Common-mode VIC = 0 to 2.5 V,, VO = 1.5 V,, RS = 50 Ω 25°C 70 Full range 70 kSVR Supply voltage rejection ratio (∆VDD/∆VIO) Supply-voltage VDD = 2.7 V to 8 V,, VIC = VDD /2, No load 25°C 80 Full range 80 IDD Supply current (per channel) 1 5 V, V VO = 1.5 No load V 2.5 25°C Full range pA 2.25 ri(d) AV = 10 –0.25 to 2.75 pA 2.98 25°C IOH = – 3 mA µV 2 25°C Common mode input voltage range Common-mode 950 UNIT 1500 Full range VIC = 1.5 V, VOL 25°C TYP Full range IOH = – 100 µA VOH TLV243x MIN 25°C to 70°C Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) VICR TLV243xC,, TLV243xI TA† 25°C 25°C Full range 83 dB 95 98 dB 125 125 µA † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER TEST CONDITIONS VO = 1 V to 2 V, V CL = 100 pF‡ SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise Gain-bandwidth product RL = 2 kΩ‡, 25°C 0.15 0.25 Full range 0.1 f = 1 kHz 25°C 22 f = 0.1 Hz to 1 Hz 25°C 2.7 f = 0.1 Hz to 10 Hz 25°C 4 25°C 0.6 VO = 0.5 V to 2.5 V, f = 1 kHz kHz, RL = 2 kΩ‡ f = 10 kHz, CL = 100 pF‡ AV = 1 AV = 1, CL = 100 pF‡ Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 2 kΩ‡, CL = 100 pF‡ 0 1% To 0.1% ts RL = 2 kΩ‡, CL = 100 pF‡ UNIT nV/√Hz µV fA√Hz 0.065% 25°C AV = 10 RL = 2 kΩ‡, MAX V/µs 120 VO(PP) = 1 V, RL = 2 kΩ‡, Gain margin TYP 25°C Maximum output-swing bandwidth Phase margin at unity gain MIN f = 10 Hz BOM φm TLV243x TA† 0.5% 25°C 0.5 MHz 25°C 220 kHz 64 6.4 µs 25°C To 0 0.01% 01% 14 1 14.1 25°C 62° 11 dB † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. ‡ Referenced to 2.5 V 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25°C TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLV243xQ, TLV243xM MIN VIO αVIO VIC = 0 0, VO = 0,, VDD ± = ± 1.5 V, RS = 50 Ω Input offset voltage TLV243xAQ,, TLV243xAM IIO Input offset current IIB Input bias current VDD ± = ± 1.5 V, RS = 50 Ω VIC = 0, VO = 0, VOL AVD MAX 300 2000 Full range 2500 25°C 300 Full range µV/°C 25°C 0.003 µV/mo 25°C 0.5 150 25°C |VIO| ≤ 5 mV, mV High-level output voltage 1 Low-level output voltage Large-signal g g differential voltage g amplification 0 to 2.5 Full range 0 to 2.2 IOL = 100 µA VIC = 1 1.5 5V V, IOL = 3 2 5 V, V VIC = 2.5 VO = 1 V to 2 V RL = 2 kΩ‡ mA RL = 1 MΩ‡ –0.25 to 2.75 25°C 2.98 25°C 2.5 Full range VIC = 1.5 V, 300 25°C RS = 50 Ω IOH = – 3 mA µV 2 Full range Common mode input voltage range Common-mode 950 2000 Full range IOH = – 100 µA VOH 25°C 25°C to 70°C Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) VICR TLV243xQ,, TLV243xM UNIT TYP pA pA V V 2.25 25°C 0.02 25°C 0.83 Full range V 1 25°C 1.5 Full range 0.5 2.5 V/mV 25°C 750 ri(d) Differential input resistance 25°C 1000 GΩ ri(c) Common-mode input resistance 25°C 1000 GΩ ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, 25°C 130 Ω CMRR Common mode rejection ratio Common-mode VIC = 0 to 2.5 V,, VO = 1.5 V,, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD/∆VIO) Supply-voltage VDD = 2.7 V to 8 V,, VIC = VDD /2, No load IDD Supply current VO = 1.5 1 5 V, V AV = 10 No load 25°C 70 Full range 70 25°C 80 Full range 80 25°C Full range 83 dB 95 195 dB 250 260 µA † Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER TEST CONDITIONS VO = 1 V to 2 V, V CL = 100 pF‡ SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise BOM ts φm RL = 2 kΩ‡, TYP 0.15 0.25 Full range 0.1 120 25°C 22 f = 0.1 Hz to 1 Hz 25°C 2.7 f = 0.1 Hz to 10 Hz 25°C 4 25°C 0.6 Gain-bandwidth product f = 10 kHz, CL = 100 pF‡ RL = 2 kΩ‡, Maximum output-swing bandwidth VO(PP) = 1 V, RL = 2 kΩ‡, AV = 1, CL = 100 pF‡ 0 1% To 0.1% Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 2 kΩ‡, CL = 100 pF‡ RL = 2 kΩ‡, CL = 100 pF‡ POST OFFICE BOX 655303 MAX nV/√Hz µV fA√Hz 0.065% 25°C AV = 10 0.5% 25°C 0.5 MHz 25°C 220 kHz 64 6.4 µs 25°C To 0 0.01% 01% • DALLAS, TEXAS 75265 UNIT V/µs 25°C † Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part. ‡ Referenced to 2.5 V 8 MIN 25°C f = 1 kHz AV = 1 Gain margin TA† f = 10 Hz VO = 0.5 V to 2.5 V, f = 1 kHz kHz, RL = 2 kΩ‡ Phase margin at unity gain TLV243xQ, TLV243xM, TLV243xAQ, TLV243xAM 14 1 14.1 25°C 62° 25°C 11 dB TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO αVIO TEST CONDITIONS VIC = 0 0, VO = 0,, VDD ± = ± 2.5 V, RS = 50 Ω Input offset voltage TLV243xA IIO Input offset current IIB Input bias current VDD ± = ± 2.5 V, RS = 50 Ω VIC = 0, VO = 0, AVD MAX 300 2000 Full range 2500 25°C 300 Full range |VIO| ≤ 5 mV, mV High-level output voltage µV/°C 25°C 0.003 µV/mo 25°C 0.5 150 1 Low-level output voltage Large-signal g g differential voltage g amplification 150 25°C 0 to 4.5 Full range 0 to 4.2 RS = 50 Ω 25°C IOH = – 5 mA IOL = 100 µA mA VIC = 2 2.5 5V V, IOL = 5 2 5 V, V VIC = 2.5 VO = 1 V to 4 V RL = 2 kΩ‡ RL = 1 MΩ‡ 25°C 4 Full range 4 pA V V 4.35 25°C 0.01 25°C 0.8 Full range V 1.25 25°C 2.5 Full range 1.5 3.8 V/mV 25°C 950 25°C 1000 GΩ 25°C 1000 GΩ 25°C 8 pF 130 Ω Differential input resistance ri(c) Common-mode input resistance ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, CMRR Common mode rejection ratio Common-mode VIC = 0 to 4.5 V,, VO = 2.5 V,, RS = 50 Ω 25°C 70 Full range 70 kSVR Supply voltage rejection ratio (∆VDD/∆VIO) Supply-voltage VDD = 4.4 V to 8 V,, VIC = VDD /2, No load 25°C 80 Full range 80 IDD Supply current (per channel) 2 5 V, V VO = 2.5 No load –0.25 to 4.75 pA 4.97 ri(d) AV = 10 µV 2 25°C Common mode input voltage range Common-mode 950 UNIT 1500 Full range VIC = 2.5 V, VOL 25°C TYP Full range IOH = – 100 µA VOH TLV243x MIN 25°C to 70°C Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) VICR TLV243x TA† 25°C 25°C Full range 90 dB 95 100 dB 125 125 µA † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR TEST CONDITIONS VO = 1 1.5 5 V to 3 3.5 5 V, V CL = 100 pF F‡ Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N ts φm 25°C 0.15 0.25 Full range 01 0.1 100 25°C 18 f = 0.1 Hz to 1 Hz 25°C 1.9 f = 0.1 Hz to 10 Hz 25°C 2.8 25°C 0.6 VO(PP) = 2 V, RL = 2 kΩ‡, AV = 1, CL = 100 pF‡ To 0.1% 0 1% Settling time AV = – 1, Step = 1.5 V to 3.5 V,, RL = 2 kΩ‡, CL = 100 pF‡ RL = 2 kΩ‡, CL = 100 pF‡ UNIT nV/√Hz µV fA√Hz 0.045% 25°C AV = 10 RL =2 kΩ‡, MAX V/µs 25°C Maximum output-swing bandwidth Phase margin at unity gain TYP f = 1 kHz AV = 1 Total harmonic distortion plus noise MIN f = 10 Hz VO = 1.5 V to 3.5 V, f = 1 kHz kHz, RL = 2 kΩ‡ f = 10 kHz, CL = 100 pF‡ Gain-bandwidth product BOM RL = 2 kΩ‡, TLV243x TA† 0.4% 25°C 0.55 MHz 25°C 100 kHz 64 6.4 µs 25°C To 0 0.01% 01% 13 1 13.1 25°C 66° Gain margin 25°C 11 dB † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. ‡ Referenced to 2.5 V 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLV243xQ, TLV243xM MIN VIO αVIO VIC = 0 0, VO = 0,, VDD ± = ± 2.5 V, RS = 50 Ω Input offset voltage TLV2453xA IIO Input offset current IIB Input bias current VDD ± = ± 2.5 V, RS = 50 Ω VIC = 0, VO = 0, VOL AVD MAX 300 2000 Full range 2500 25°C 300 Full range µV/°C 25°C 0.003 µV/mo 25°C 0.5 150 25°C |VIO| ≤ 5 mV, mV High-level output voltage 1 Low-level output voltage Large-signal g g differential voltage g amplification 300 25°C 0 to 4.5 Full range 0 to 4.2 RS = 50 Ω 25°C IOH = – 5 mA VIC = 2.5 V, IOL = 100 µA VIC = 2 2.5 5V V, IOL = 5 2 5 V, V VIC = 2.5 VO = 1 V to 4 V RL = 2 kΩ‡ mA RL = 1 MΩ‡ µV 2 Full range Common mode input voltage range Common-mode 950 2000 Full range IOH = – 100 µA VOH 25°C 25°C to 70°C Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) VICR TLV2453x UNIT TYP –0.25 to 4.75 pA pA V 4.97 25°C 4 Full range 4 V 4.35 25°C 0.01 25°C 0.8 Full range V 1.25 25°C 2.5 Full range 0.5 3.8 V/mV 25°C 950 ri(d) Differential input resistance 25°C 1000 GΩ ri(c) Common-mode input resistance 25°C 1000 GΩ ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, 25°C 130 Ω CMRR Common mode rejection ratio Common-mode VIC = 0 to 4.5 V,, VO = 2.5 V,, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD/∆VIO) Supply-voltage VDD = 4.4 V to 8 V,, VIC = VDD /2, No load IDD Supply current VO = 2.5 2 5 V, V AV = 10 No load 25°C 70 Full range 70 25°C 80 Full range 80 25°C Full range 90 dB 95 200 dB 250 270 µA † Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR TEST CONDITIONS VO = 1 1.5 5 V to 3 3.5 5 V, V CL = 100 pF F‡ Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise RL = 2 kΩ‡, 0.25 Full range 01 0.1 25°C 18 f = 0.1 Hz to 1 Hz 25°C 1.9 f = 0.1 Hz to 10 Hz 25°C 2.8 25°C 0.6 RL =2 kΩ‡, BOM Maximum output-swing bandwidth VO(PP) = 2 V, RL = 2 kΩ‡, AV = 1, CL = 100 pF‡ Settling time AV = – 1, Step = 1.5 V to 3.5 V,, RL = 2 kΩ‡, CL = 100 pF‡ 0 1% To 0.1% ts RL = 2 kΩ‡, CL = 100 pF‡ POST OFFICE BOX 655303 nV/√Hz µV fA√Hz 0.045% 0.4% 25°C 0.55 MHz 25°C 100 kHz 64 6.4 µs 25°C To 0 0.01% 01% • DALLAS, TEXAS 75265 MAX 25°C AV = 10 † Full range is – 40°C to 125°C for Q level part, – 55°C to 125°C for M level part. ‡ Referenced to 2.5 V UNIT V/µs f = 1 kHz f = 10 kHz, CL = 100 pF‡ 12 TYP 0.15 100 Gain-bandwidth product Gain margin MIN 25°C 25°C AV = 1 Phase margin at unity gain TA† f = 10 Hz VO = 1.5 V to 3.5 V, f = 1 kHz kHz, RL = 2 kΩ‡ φm TLV243xQ, TLV243xM, TLV243xAQ, TLV243xAM 13 1 13.1 25°C 66° 25°C 11 dB TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode input voltage 2,3 , 4,5 αVIO IIB/IIO Temperature coefficient Distribution 6,7 Input bias and input offset currents vs Free-air temperature VOH VOL High-level output voltage vs High-level output current 9,11 Low-level output voltage vs Low-level output current 10,12 VO(PP) Maximum peak-to-peak output voltage vs Frequency 13 IOS Short circuit output current Short-circuit vs Supply y voltage g vs Free-air temperature 14 15 VID Differential input voltage vs Output voltage 16,17 Differential gain vs Load resistance 18 AVD AVD Large-signal differential voltage amplification vs Frequency 19,20 Differential voltage amplification vs Free-air temperature 21,22 zo Output impedance vs Frequency 23,24 CMRR Common mode rejection ratio Common-mode vs Frequency q y vs Free-air temperature 25 26 kSVR Supply voltage rejection ratio Supply-voltage vs Frequency q y vs Free-air temperature 27,28 , 29 IDD Supply current vs Supply voltage 30 SR Slew rate vs Load capacitance vs Free-air temperature 31 32 VO VO Inverting large-signal pulse response 33,34 Voltage-follower large-signal pulse response 35,36 VO VO Inverting small-signal pulse response 37,38 Vn Equivalent input noise voltage vs Frequency Noise voltage (referred to input) Over a 10-second period Total harmonic distortion plus noise vs Frequency Gain bandwidth product Gain-bandwidth vs Free-air temperature vs Supply voltage Phase margin vs Frequency q y vs Load capacitance 19,20 , 48 Gain margin vs Load capacitance 49 Unity-gain bandwidth vs Load capacitance 50 THD + N φm B1 Voltage-follower small-signal pulse response POST OFFICE BOX 655303 8 39,40 • DALLAS, TEXAS 75265 41, 42 43 44,45 46 47 13 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE 35 35 408 Amplifiers From 1 Wafer Lot VDD± = ± 1.5 V TA = 25°C 30 Percentage of Amplifiers – % Precentage of Amplifiers – % 30 25 20 15 10 5 408 Amplifiers From 1 Wafer Lot VDD± = ± 2.5 V TA = 25°C 25 20 15 10 5 0 –1600 –800 0 800 0 –1600 1600 VIO – Input Offset Voltage – µV –800 0 800 VIO – Input Offset Voltage – µV Figure 2 Figure 3 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 2 2 VDD =3 V TA = 25°C 1.5 VVIO IO – Input Offset Voltage – mV VVIO IO – Input Offset Voltage – mV 1.5 1 0.5 0 –0.5 ÁÁÁ ÁÁÁ ÁÁÁ –2 –0.5 VDD = 5 V TA = 25°C 1 0.5 0 ÁÁ ÁÁ ÁÁ –1 –1.5 –0.5 –1 –1.5 2 2.5 0 0.5 1 1.5 VIC – Common-Mode Input Voltage – V 3 –2 –0.5 0 0.5 1 1.5 2 Figure 5 POST OFFICE BOX 655303 2.5 3 3.5 4 4.5 VIC – Common-Mode Input Voltage – V Figure 4 14 1600 • DALLAS, TEXAS 75265 5 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 25 32 Amplifiers From 1 Wafer Lot VDD = ± 1.5 V TA = 25°C to 125°C 20 32 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V TA = 25°C to 125°C 20 Percentage of Amplifiers – % Percentage of Amplifiers – % 25 15 10 5 0 15 10 5 0 –4 2 3 –3 –2 –1 0 1 αVIO – Temperature Coefficient – µV / °C 4 2 3 –3 –2 –1 0 1 αVIO – Temperature Coefficient – µV / °C –4 Figure 7 ÁÁ ÁÁ INPUT BIAS AND INPUT OFFSET CURRENTS vs FREE-AIR TEMPERATURE HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 35 3 VDD± = ± 2.5 V VIC = 0 V VO = 0 RS = 50 Ω VDD = 3 V 25 IIB 20 15 IIO 10 ÁÁ ÁÁ 5 0 25 V VOH OH – High-Level Output Voltage – V IIO – Input Bias and Input Offset Currents – pA IIIB IB and IIO Figure 6 30 4 45 65 85 105 TA – Free-Air Temperature – °C 125 2.5 TA = –40°C 2 TA = 25°C TA = 125°C 1.5 1 TA = 0°C 0.5 0 0 Figure 8 3 6 9 12 IOH – High-Level Output Current – mA 15 Figure 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 1.4 5 ÁÁ ÁÁ ÁÁ 1.2 TA = 125°C TA = 85°C 1 0.8 0.6 TA = 25°C 0.4 0.2 0 1 2 4 3 TA = 125°C 4 3 TA = 85°C 2 TA = 25°C ÁÁ ÁÁ TA = –40°C 0 VDD = 5 V V VOH OH – High-Level Output Voltage – V V VOL OL – Low-Level Output Voltage – V VDD = 3 V 5 TA =–40°C 1 0 0 4 8 12 16 IOH – High-Level Output Current – A m IOL – Low-Level Output Current – mA Figure 10 Figure 11 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VO(PP) VO(PP) – Maximum Peak-to-Peak Output Voltage – V MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 1.2 VOL VOL – Low-Level Output Voltage – V VDD = 5 V 1 TA = 125°C 0.8 TA = 85°C 0.6 ÁÁÁ ÁÁÁ ÁÁÁ 0.4 TA = 25°C TA = –40°C 0.2 0 0 1 2 3 4 IOL – Low-Level Output Current – mA 5 ÁÁ ÁÁ ÁÁ 5 RL = 2 kΩ TA = 25°C VDD = 5 V 4 3 VDD = 3 V 2 1 0 102 Figure 12 16 20 103 104 105 f – Frequency – Hz Figure 13 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 106 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE 20 VO = VDD/2 VIC = VDD/2 TA = 25°C 15 IIOS OS – Short-Circuit Output Current – mA I OS – Short-Circuit Output Current – mA IOS 20 10 5 0 –5 –10 –15 –20 2 3 4 5 6 7 8 9 VID = –100 mV 10 5 0 –5 –10 VID = 100 mV –15 –20 –75 10 –50 VDD – Supply Voltage – V –25 0 25 50 75 100 125 TA – Free-Air Temperature – °C Figure 14 Figure 15 DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE 1000 1000 VDD = 3 V RL = 2 kΩ VIC = 1.5 V TA = 25°C 750 500 V ID – Differential Input Voltage – µ V V ID – Differential Input Voltage – µ V VDD = 5 V VIC = 2.5 V VO = 2.5 V 15 250 0 –250 –500 –750 –1000 0 0.5 1 1.5 2 VO – Output Voltage – V 2.5 3 VDD = 5 V VIC = 2.5 V RL = 2 kΩ TA = 25°C 750 500 250 0 –250 –500 –750 –1000 0 Figure 16 1 2 3 VO – Output Voltage – V 4 5 Figure 17 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS DIFFERENTIAL GAIN vs LOAD RESISTANCE 103 Differential Gain – V/ mV VO(PP) = 2 V TA = 25°C VDD = 5 V VDD = 3 V 102 101 1 101 102 RL – Load Resistance – kΩ 1 103 Figure 18 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 60 ÁÁ ÁÁ 180° VDD = 5 V RL = 2 kΩ CL = 100 pF TA = 25°C 135° 40 90° 20 45° 0 0° –20 –40 104 –45° 105 106 f – Frequency – Hz Figure 19 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 –90° 107 φom m – Phase Margin AVD AVD – Large-Signal Differential Voltage Amplification – dB 80 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 80 135° 40 90° 20 45° 0 0° –20 φom m – Phase Margin 60 AVD AVD – Large-Signal Differential Voltage Amplification – dB ÁÁ ÁÁ ÁÁ 180° VDD = 3 V RL = 2 kΩ CL = 100 pF TA = 25°C –45° –40 104 105 –90° 107 106 f – Frequency – Hz Figure 20 DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 1000 A VD – Differential Voltage Amplification – V/mV A VD – Differential Voltage Amplification – V/mV 10000 RL = 1 MΩ 1000 100 RL = 2 kΩ 10 1 0.1 – 75 VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V – 50 – 25 0 25 50 75 100 125 VDD = 3 V VIC = 2.5 V VO = 0.5 V to 2.5 V 100 RL = 1 MΩ 10 1 RL = 2 kΩ 0.1 – 75 – 50 TA – Free-Air Temperature – °C Figure 21 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 Figure 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS OUTPUT IMPEDANCE vs FREQUENCY 1000 VDD = 3 V TA = 25°C VDD = 5 V TA = 25°C z o – Output Impedance – 0 zo Ω z o – Output Impedance – 0 zo Ω 1000 OUTPUT IMPEDANCE vs FREQUENCY AV = 100 100 AV = 10 10 AV = 100 100 AV = 10 10 AV = 1 1 102 AV = 1 103 104 f – Frequency – Hz 1 102 105 103 104 f – Frequency – Hz Figure 23 Figure 24 COMMON-MODE REJECTION RATIO vs FREQUENCY COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 60 100 TA = 25°C VDD = 5 V VIC = 2.5 V CMRR – Common-Mode Rejection Ratio – dB CMRR – Common-Mode Rejection Ratio – dB 100 80 VDD = 3 V VIC = 1.5 V 40 20 0 102 103 104 105 f – Frequency – Hz 106 VDD = 5 V 98 96 VDD = 3 V 94 92 90 – 75 – 50 – 25 0 25 Figure 26 POST OFFICE BOX 655303 50 75 100 TA – Free-Air Temperature – °C Figure 25 20 105 • DALLAS, TEXAS 75265 125 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 120 VDD = 3 V TA = 25°C KSVR k SVR – Supply-Voltage Rejection Ratio – dB KSVR k SVR – Supply-Voltage Rejection Ratio – dB 120 100 80 60 40 ÁÁ ÁÁ ÁÁ 20 0 101 102 103 104 105 106 VDD = 5 V TA = 25°C 100 80 60 40 ÁÁ ÁÁ ÁÁ 20 0 101 102 103 f – Frequency – Hz Figure 27 105 106 Figure 28 SUPPLY VOLTAGE REJECTION RATIO vs FREE-AIR TEMPERATURE SUPPLY CURRENT vs SUPPLY VOLTAGE 100 300 VO = VDD/2 No Load 96 92 VDD = 2.7 V to 8 V VO = VDD/2 TA = – 40°C 200 TA = 85°C 150 ÁÁ ÁÁ ÁÁ 94 90 – 75 TA = 25°C 250 98 IIDD DD – Supply Current – µ A kSVR k SVR – Supply-Voltage Rejection Ratio – dB 104 f – Frequency – Hz 100 50 0 – 50 – 25 0 25 50 75 100 125 0 TA – Free-Air Temperature – °C 2 4 6 8 10 VDD – Supply Voltage – V Figure 29 Figure 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS SLEW RATE vs LOAD CAPACITANCE SLEW RATE vs FREE-AIR TEMPERATURE 0.6 0.35 VDD = 3 V AV = – 1 TA = 25°C SR – 0.5 VDD = 5 V RL = 2 kΩ CL = 100 pF AV = 1 SR – Slew Rate – V/ µ s SR – Slew Rate – V/ v/us µs 0.3 SR + 0.4 0.3 0.2 0.25 0.2 0.15 0.1 0 101 102 103 104 CL – Load Capacitance – pF 105 0.1 – 75 – 50 – 25 Figure 31 50 75 100 125 INVERTING LARGE-SIGNAL PULSE RESPONSE 3 5 VO VO – Output Voltage – V VDD = 3 V RL = 2 kΩ CL = 100 pF AV = – 1 TA = 25°C 2.5 VO VO – Output Voltage – V 25 Figure 32 INVERTING LARGE-SIGNAL PULSE RESPONSE 2 1.5 1 VDD = 5 V RL = 2 kΩ CL = 100 pF 4 A = –1 V TA = 25°C 3 2 1 0.5 0 0 10 20 30 t – Time – µs 40 50 0 0 10 20 30 t – Time – µs Figure 34 Figure 33 22 0 TA – Free-Air Temperature – °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 40 50 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 VDD = 3 V RL = 2 kΩ CL = 100 pF 2.5 AV = 1 TA = 25°C VDD = 5 V RL = 2 kΩ CL = 100 pF AV = 1 TA = 25°C 4 VO VO – Output Voltage – V VO VO – Output Voltage – V 3 2 1.5 1 3 2 1 0.5 0 0 10 20 30 t – Time – µs 40 0 50 0 5 10 INVERTING SMALL-SIGNAL PULSE RESPONSE 45 50 4.5 5 2.58 VDD = 3 V RL = 2 kΩ CL = 100 pF AV = –1 TA = 25°C VDD = 5 V RL = 2 kΩ CL = 100 pF AV = – 1 TA = 25°C 2.56 VO VO – Output Voltage – V V VO O – Output Voltage – V 40 INVERTING SMALL-SIGNAL PULSE RESPONSE 1.58 1.54 20 25 30 35 t – Time – µs Figure 36 Figure 35 1.56 15 1.52 1.5 1.48 1.46 2.54 2.52 2.5 2.48 2.46 1.44 0 0.5 1 1.5 2 2.5 3 t – Time – µs 3.5 4 4.5 5 2.44 0 0.5 1 1.5 2 2.5 3 3.5 t – Time – µs 4 Figure 38 Figure 37 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 1.58 1.54 VDD = 5 V RL = 2 kΩ CL = 100 pF AV = 1 TA = 25°C 2.56 VO VO – Output Voltage – V 1.56 VO VO – Output Voltage – V 2.58 VDD = 3 V RL = 2 kΩ CL = 100 pF AV = 1 TA = 25°C 1.52 1.5 1.48 1.46 2.54 2.52 2.5 2.48 2.46 1.44 2.44 0 0.5 1 1.5 2 2.5 3 t – Time – µs 3.5 4 4.5 5 0 0.5 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 4 4.5 5 120 VDD = 3 V RS = 20 Ω TA = 25°C 100 V n – Equivalent Input Noise Voltage – nV/ VN nv//HzHz V n – Equivalent Input Noise Voltage – nV/ VN nv//HzHz 2 2.5 3 3.5 t – Time – µs EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 120 80 60 40 20 102 103 f – Frequency – Hz 104 VDD = 5 V RS = 20 Ω TA = 25°C 100 80 60 40 20 0 101 Figure 41 24 1.5 Figure 40 Figure 39 0 101 1 102 103 f – Frequency – Hz Figure 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 104 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS NOISE VOLTAGE OVER A 10-SECOND PERIOD 2000 1500 Noise Voltage – nV 1000 500 0 –500 –1000 VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C –1500 –2000 0 1 2 3 4 5 6 t – Time – s 7 8 9 10 Figure 43 10 RL = 2 kΩ Tied to 2.5 V RL = 2 kΩ Tied to 0 V AV = 10 1 VDD = 5 V TA = 25°C AV = 1 0.1 AV = 10 0.01 101 AV = 1 102 103 f – Frequency – Hz 104 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY THD + N – Total Harmonic Distortion Plus Noise – % THD + N – Total Harmonic Distortion Plus Noise – % TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 105 10 RL = 2 kΩ Tied to 1.5 V RL = 2 kΩ Tied to 0 V AV = 10 1 VDD = 3 V TA = 25°C AV = 1 0.1 AV = 10 0.01 101 Figure 44 AV = 1 102 103 f – Frequency – Hz 104 105 Figure 45 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS GAIN-BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 800 Gain-Bandwidth Product – kHz 700 Gain-Bandwidth Product – kHz 750 RL = 2 kΩ CL = 100 pF f = 10 kHz 600 500 400 300 200 f = 10 kHz RL = 2 kΩ CL = 100 pF TA = 25°C 700 650 600 550 100 0 –50 –25 75 100 0 25 50 TA – Free-Air Temperature – °C 500 125 0 1 2 Figure 46 60° Rnull = 500 Ω 5 Gain Margin – dB φom m – Phase Margin Rnull = 200 Ω Rnull = 200 Ω Rnull = 0 Rnull = 100 Ω 10 5 Rnull = 0 15° TA = 25°C RL = 2 kΩ Rnull = 100 Ω 102 103 104 CL – Load Capacitance – pF 105 0 101 Figure 48 26 8 Rnull = 500 Ω Rnull = 1 kΩ 30° 0° 101 7 Rnull = 1000 Ω 15 45° 6 GAIN MARGIN vs LOAD CAPACITANCE 20 TA = 25°C RL = 2 kΩ 4 Figure 47 PHASE MARGIN vs LOAD CAPACITANCE 75° 3 VDD – Supply Voltage – V 102 103 104 CL – Load Capacitance – pF Figure 49 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 105 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE 600 B1 – Unity-Gain Bandwidth – kHz TA = 25°C RL = 2 kΩ 500 400 300 ÁÁ ÁÁ 200 100 0 101 102 103 104 CL – Load Capacitance – pF 105 Figure 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts , the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit in Figure 51 are generated using the TLV243x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 RSS + 10 J1 DP VC J2 IN + 11 RD1 VAD DC 12 C1 R2 – 53 HLIM – C2 6 – – + + GCM GA – RD2 – RO1 DE 5 + VE .SUBCKT TLV2432 1 2 3 4 5 C1 11 12 3.560E–12 C2 6 7 15.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 21.04E6 –30E6 30E6 30E6 –30E6 GA 6 0 11 12 47.12E–6 GCM 0 6 10 99 4.9E–9 ISS 3 10 DC 8.250E–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 OUT RD1 60 11 21.22E3 RD2 60 12 21.22E3 R01 8 5 120 R02 7 99 120 RP 3 4 26.04E3 RSS 10 99 24.24E6 VAD 60 4 –.6 VB 9 0 DC 0 VC 3 53 DC .65 VE 54 4 DC .65 VLIM 7 8 DC 0 VLP 91 0 DC 1.4 VLN 0 92 DC 9.4 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=500.0E–15 BETA=281E–6 + VTO= –.065) .ENDS Figure 51. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 28 – VLIM 8 54 4 91 + VLP 7 60 + – + DLP 90 RO2 VB IN – VCC – 92 FB – + ISS RP 2 1 DLN EGND + POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VLN TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0.050 (1,27) 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.008 (0,20) NOM 0.244 (6,20) 0.228 (5,80) 0.157 (4,00) 0.150 (3,81) Gage Plane 0.010 (0,25) 1 7 0°– 8° A 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) PINS ** 0.004 (0,10) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 4040047 / D 10/96 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 A B MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 25 5 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. 30 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE 0.400 (10,20) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.063 (1,60) 0.015 (0,38) 0.100 (2,54) 0°–15° 0.023 (0,58) 0.015 (0,38) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. Falls within MIL-STD-1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 0,15 0,05 1,20 MAX 0,10 PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / E 08/96 NOTES: A. B. C. D. 32 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA U (S-GDFP-F10) CERAMIC DUAL FLATPACK 0.250 (6,35) 0.246 (6,10) 0.006 (0,15) 0.004 (0,10) 0.080 (2,03) 0.050 (1,27) 0.045 (1,14) 0.026 (0,66) 0.300 (7,62) 0.350 (8,89) 0.250 (6,35) 1 0.350 (8,89) 0.250 (6,35) 10 0.019 (0,48) 0.015 (0,38) 0.050 (1,27) 0.250 (6,35) 5 6 0.025 (0,64) 0.005 (0,13) 1.000 (25,40) 0.750 (19,05) 4040179 / B 03/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 2000, Texas Instruments Incorporated