TI TMS320C6742ZCEA3

TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
1 TMS320C6742 Fixed/Floating-Point DSP
1.1 Features
•
•
•
300-MHz C674x VLIW DSP
C674x Instruction Set Features
– Superset of the C67x+™ and C64x+™ ISAs
– 2400/1800 C674x MIPS/MFLOPS
– Byte-Addressable (8-/16-/32-/64-Bit Data)
– 8-Bit Overflow Protection
– Bit-Field Extract, Set, Clear
– Normalization, Saturation, Bit-Counting
– Compact 16-Bit Instructions
C674x Two Level Cache Memory Architecture
– 32K-Byte L1P Program RAM/Cache
– 32K-Byte L1D Data RAM/Cache
– 64K-Byte L2 Unified Mapped RAM/Cache
– Flexible RAM/Cache Partition (L1 and L2)
– 1024K-Byte Boot ROM
Enhanced Direct-Memory-Access Controller 3
(EDMA3):
– 2 Channel Controllers
– 3 Transfer Controllers
– 64 Independent DMA Channels
– 16 Quick DMA Channels
– Programmable Transfer Burst Size
TMS320C674x Floating-Point VLIW DSP Core
– Load-Store Architecture With Non-Aligned
Support
– 64 General-Purpose Registers (32 Bit)
– Six ALU (32-/40-Bit) Functional Units
• Supports 32-Bit Integer, SP (IEEE Single
Precision/32-Bit) and DP (IEEE Double
Precision/64-Bit) Floating Point
• Supports up to Four SP Additions Per
Clock, Four DP Additions Every 2
Clocks
• Supports up to Two Floating Point (SP
or DP) Reciprocal Approximation
(RCPxP) and Square-Root Reciprocal
Approximation (RSQRxP) Operations
Per Cycle
– Two Multiply Functional Units
• Mixed-Precision IEEE Floating Point
Multiply Supported up to:
– 2 SP x SP -> SP Per Clock
– 2 SP x SP -> DP Every Two Clocks
– 2 SP x DP -> DP Every Three Clocks
– 2 DP x DP -> DP Every Four Clocks
•
•
•
•
•
•
•
•
•
Fixed Point Multiply Supports Two 32 x
32-Bit Multiplies, Four 16 x 16-Bit
Multiplies, or Eight 8 x 8-Bit Multiplies
per Clock Cycle, and Complex Multiples
– Instruction Packing Reduces Code Size
– All Instructions Conditional
– Hardware Support for Modulo Loop
Operation
– Protected Mode Operation
– Exceptions Support for Error Detection and
Program Redirection
Software Support
– TI DSP/BIOS™
– Chip Support Library and DSP Library
1.8V or 3.3V LVCMOS IOs (except DDR2
interfaces)
Two External Memory Interfaces:
– EMIFA
• NOR (8-/16-Bit-Wide Data)
• NAND (8-/16-Bit-Wide Data)
• 16-Bit SDRAM With 128 MB Address
Space
– DDR2/Mobile DDR Memory Controller
• 16-Bit DDR2 SDRAM With 512 MB
Address Space or
• 16-Bit mDDR SDRAM With 256 MB
Address Space
One Configurable 16550 type UART Modules:
– With Modem Control Signals
– 16-byte FIFO
– 16x or 13x Oversampling Option
One Serial Peripheral Interface (SPI) With
Multiple Chip-Selects
One Master/Slave Inter-Integrated Circuit (I2C
Bus™)
One Multichannel Audio Serial Port:
– Transmit/Receive Clocks up to 50 MHz
– Two Clock Zones and 16 Serial Data Pins
– Supports TDM, I2S, and Similar Formats
– DIT-Capable
– FIFO buffers for Transmit and Receive
One Multichannel Buffered Serial Ports:
– Transmit/Receive Clocks up to 50 MHz
– Two Clock Zones and 16 Serial Data Pins
– Supports TDM, I2S, and Similar Formats
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this document.
TMS320C6000, C6000 are trademarks of Texas Instruments.
PRODUCT PREVIEW information concerns products in the
formative or design phase of development. Characteristic data and
other specifications are design goals. Texas Instruments reserves
the right to change or discontinue these products without notice.
Copyright © 2009, Texas Instruments Incorporated
PRODUCT PREVIEW
•
•
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
•
•
•
•
PRODUCT PREVIEW
2
– AC97 Audio Codec Interface
– Telecom Interfaces (ST-Bus, H100)
– 128-channel TDM
– FIFO buffers for Transmit and Receive
Real-Time Clock With 32 KHz Oscillator and
Separate Power Rail
One 64-Bit General-Purpose Timers
(Configurable as Two 32-Bit Timers)
One 64-Bit General-Purpose Timer (Watch
Dog)
Two Enhanced Pulse Width Modulators
(eHRPWM):
– Dedicated 16-Bit Time-Base Counter With
Period And Frequency Control
– 6 Single Edge, 6 Dual Edge Symmetric or 3
Dual Edge Asymmetric Outputs
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
•
•
•
•
– Dead-Band Generation
– PWM Chopping by High-Frequency Carrier
– Trip Zone Input
Three 32-Bit Enhanced Capture Modules
(eCAP):
– Configurable as 3 Capture Inputs or 3
Auxiliary Pulse Width Modulator (APWM)
outputs
– Single Shot Capture of up to Four Event
Time-Stamps
361-Ball Pb-Free Plastic Ball Grid Array
(PBGA) [ZCE Suffix], 0.65-mm Ball Pitch
361-Ball Pb-Free Plastic Ball Grid Array
(PBGA) [ZWT Suffix], 0.80-mm Ball Pitch
Commercial or Extended Temperature
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
1.2 Trademarks
DSP/BIOS, TMS320C6000, C6000, TMS320, TMS320C62x, and TMS320C67x are trademarks of Texas
Instruments.
PRODUCT PREVIEW
All trademarks are the property of their respective owners.
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
3
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
1.3 Description
The device is a Low-power applications processor based on a C674x DSP core. It provides significantly
lower power than other members of the TMS320C6000™ platform of DSPs.
The device enables OEMs and ODMs to quickly bring to market devices featuring robust operating
systems support, rich user interfaces, and high processing performance life through the maximum
flexibility of a fully integrated mixed processor solution.
The device DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a
32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The
Level 2 program cache (L2P) consists of a 64KB memory space that is shared between program and data
space. L2 also has a 1024KB Boot ROM. L2 memory can be configured as mapped memory, cache, or
combinations of the two. Although the DSP L2 is accessible by other hosts in the system.
PRODUCT PREVIEW
The peripheral set includes: one inter-integrated circuit (I2C) Bus interface; one multichannel audio serial
port (McASP) with 16 serializers and FIFO buffers; one multichannel buffered serial port (McBSP) with
FIFO buffers; one SPI interface with multiple chip selects; two 64-bit general-purpose timers each
configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 9 banks
of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes,
multiplexed with other peripherals; one UART interface ( with RTS and CTS); two enhanced
high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module
peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM)
outputs; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface
(EMIFA) for slower memories or peripherals, and a higher speed DDR2/Mobile DDR controller.
The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each of the peripherals, see the related sections later in this document
and the associated peripheral reference guides.
The device has a complete set of development tools for the DSP. These include C compilers, a DSP
assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for
visibility into source code execution.
4
TMS320C6742 Fixed/Floating-Point DSP
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
1.4 Functional Block Diagram
DSP Subsystem
JTAG Interface
System Control
C674x™
DSP CPU
PLL/Clock
Generator
w/OSC
Input
Clock(s)
GeneralPurpose
Timer (x1)
RTC/
32-kHz
OSC
AET
32KB
L1 Pgm
Power/Sleep
Controller
32KB
L1 RAM
64KB L2 RAM
Pin
Multiplexing
1024KB L2 ROM
PRODUCT PREVIEW
Switched Central Resource (SCR)
Peripherals
DMA
Audio Ports
EDMA3
(x2)
McASP
w/FIFO
Connectivity
HPI
Serial Interfaces
Control Timers
ePWM
(x2)
eCAP
(x3)
McBSP
(x1)
I2C
(x1)
SPI
(x1)
UART
(x1)
External Memory Interfaces
EMIFA(8b/16B)
NAND/Flash
16b SDRAM
DDR2/MDDR
Controller
Figure 1-1. Functional Block Diagram
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
5
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Contents
1
2
3
TMS320C6742 Fixed/Floating-Point DSP
PRODUCT PREVIEW
5
Behavior ............................................. 49
1
Features .............................................. 1
6.3
Power Supplies ...................................... 49
1.2
Trademarks ........................................... 3
6.4
Reset ................................................ 50
1.3
Description ............................................ 4
6.5
Crystal Oscillator or External Clock Input ........... 53
1.4
Functional Block Diagram ............................ 5
6.6
Clock PLLs .......................................... 54
Revision History ......................................... 7
Device Overview ......................................... 8
6.7
Interrupts ............................................ 58
6.8
Power and Sleep Controller (PSC) .................. 64
..............................
Documentation Support
6.9
EDMA
3.2
Device Characteristics ................................ 8
6.10
External Memory Interface A (EMIFA) .............. 75
3.3
Device Compatibility .................................. 9
6.11
DDR2/mDDR Controller ............................. 84
3.4
DSP Subsystem ..................................... 10
6.12
Multichannel Audio Serial Port (McASP) ............ 97
16
6.13
Multichannel Buffered Serial Port (McBSP)........ 106
19
6.14
Serial Peripheral Interface Ports (SPI1)
22
6.15
6.16
Inter-Integrated Circuit Serial Ports (I2C) .......... 128
Universal Asynchronous Receiver/Transmitter
(UART) ............................................. 132
42
6.17
Host-Port Interface (UHPI) ......................... 134
42
6.18
6.19
Enhanced Capture (eCAP) Peripheral ............. 142
Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM) ......................................... 145
6.20
Timers .............................................. 150
6.21
Real Time Clock (RTC) ............................ 152
6.22
General-Purpose Input/Output (GPIO)............. 155
6.23
Emulation Logic .................................... 159
.............................
3.6
Pin Assignments ....................................
3.7
Pin Multiplexing Control .............................
3.8
Terminal Functions ..................................
Device Configuration ..................................
4.1
Boot Modes .........................................
4.2
SYSCFG Module ....................................
Device Operating Conditions ........................
Memory Map Summary
8
23
42
45
5.1
Absolute Maximum Ratings Over Operating
Junction Temperature Range
(Unless Otherwise Noted) ................................. 45
5.2
5.3
6
Recommended Operating Conditions ............... 46
Electrical Characteristics Over Recommended
Ranges of Supply Voltage and Operating Junction
Temperature (Unless Otherwise Noted) ............ 47
Peripheral Information and Electrical
Specifications ........................................... 48
6.1
6.2
6
...............................................
3.1
3.5
4
...........
1.1
Parameter Information .............................. 48
Recommended Clock and Control Signal Transition
Contents
7
...........
69
112
Mechanical Packaging and Orderable
Information ............................................. 161
7.1
Device Support..................................... 161
7.2
Thermal Data for ZCE Package
7.3
Thermal Data for ZWT Package ................... 164
...................
163
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
2 Revision History
PRODUCT PREVIEW
NOTE: This is a placeholder for the Revision History Table for future revisions of the document.
Submit Documentation Feedback
Revision History
7
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
3 Device Overview
3.1 Documentation Support
3.1.1
Related Documentation From Texas Instruments
The following documents are available on the Internet at www.ti.com. Tip: Enter the literature number in
the search box provided at www.ti.com.
PRODUCT PREVIEW
DSP Reference Guides
SPRUG82
TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the
TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications.
Shows how to maintain coherence with external memory, how to use DMA to reduce
memory latencies, and how to optimize your code to improve cache efficiency. The internal
memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a
dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level.
Accesses by the CPU to the these first level caches can complete without CPU pipeline
stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next
lower memory level, L2 or external memory.
SPRUFE8
TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal
processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with
added functionality and an expanded instruction set.
SPRUFK5
TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory
access (IDMA) controller, the interrupt controller, the power-down controller, memory
protection, bandwidth management, and the memory and cache.
SPRUFK9
TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides
an overview and briefly describes the peripherals available on the device.
3.2 Device Characteristics
Table 3-1 provides an overview of the device. The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
8
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 3-1. Characteristics of C6742
HARDWARE FEATURES
DDR2 or Mobile DDR, 16-bit bus width, up to 150 MHz
EMIFA
Asynchronous (8/16-bit bus width) RAM, Flash, 16-bit
SDRAM, NOR, NAND
EDMA3
64 independent channels, 16 QDMA channels, 2 channel
controllers, 3 transfer controllers
Timers
2 64-Bit General Purpose (configurable as 2 separate 32-bit
timers, 1 configurable as Watch Dog)
UART
Not all peripherals pins
SPI
are available at the
same time (for more
I2C
detail, see the Device
Configurations section). Multichannel Audio Serial Port [McASP]
Multichannel Buffered Serial Port [McBSP]
1 (with RTS and CTS flow control)
1 (with one hardware chip select)
1 ( Master/Slave)
1 (each with transmit/receive, FIFO buffer, 16 serializers)
1 (with transmit/receive, FIFO buffer, 16)
eHRPWM
4 Single Edge, 4 Dual Edge Symmetric, or 2 Dual Edge
Asymmetric Outputs
eCAP
3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs
UHPI
1 (16-bit multiplexed address/data)
General-Purpose Input/Output Port
9 banks of 16-bit
Size (Bytes)
488KB RAM, 1088KB Boot ROM
Organization
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
64KB Unified Mapped RAM/Cache (L2)
1024KB ROM (L2)
DSP Memories can be made accessible to EDMA3 and
other peripherals.
C674x CPU ID + CPU
Rev ID
Control Status Register (CSR.[31:16])
0x1400
C674x Megamodule
Revision
Revision ID Register (MM_REVID[15:0])
0x0000
JTAG BSDL_ID
DEVIDR0 Register
CPU Frequency
MHz
Cycle Time
ns
CPU Frequency
MHz
Cycle Time
ns
Voltage
Core (V)
I/O (V)
(1)
0x0B7D_102F
674x DSP 300 MHz
674x DSP 3.33 ns
674x DSP 300 MHz
674x DSP 3.33 ns
1.2 V
1.8V or 3.3 V
13 mm x 13 mm, 361-Ball 0.65 mm pitch, PBGA (ZCE)
Packages
Product Status (1)
PRODUCT PREVIEW
Peripherals
On-Chip Memory
C6742
DDR2/mDDR Controller
16 mm x 16 mm, 361-Ball 0.80 mm pitch, PBGA (ZWT)
Product Preview (PP),
Advance Information (AI),
or Production Data (PD)
PP
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other
specifications are design goals.
3.3 Device Compatibility
The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both
the C64x+ and C67x+ DSP families.
Submit Documentation Feedback
Device Overview
9
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
3.4 DSP Subsystem
The DSP Subsystem includes the following features:
• C674x DSP CPU
• 32KB L1 Program (L1P)/Cache (up to 32KB)
• 32KB L1 Data (L1D)/Cache (up to 32KB)
• 64KB Unified Mapped RAM/Cache (L2)
• 1MB Mask-programmable ROM
• Little endian
PRODUCT PREVIEW
32K Bytes
L1P RAM/
Cache
64K Bytes
L2 RAM
256
256
256
Cache Control
Memory Protect
1M Byte
L2 ROM
256
Cache Control
Memory Protect
L1P
Bandwidth Mgmt
L2
Bandwidth Mgmt
256
256
256
Instruction Fetch
256
Power Down
Interrupt
Controller
C674x
Fixed/Floating Point CPU
IDMA
Register
File A
Register
File B
64
64
256
CFG
Bandwidth Mgmt
Memory Protect
Cache Control
8 x 32
EMC
L1D
MDMA
64
32K Bytes
L1D RAM/
Cache
32
Configuration
Peripherals
Bus
SDMA
64
64
64
High
Performance
Switch Fabric
Figure 3-1. C674xMegamodule Block Diagram
10
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
3.4.1
SPRS587 – JUNE 2009
C674x DSP CPU Description
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two
data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain
32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be
data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit
data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are
stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or
32 MSBs in the next upper register (which is always an odd-numbered register).
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the
C67x+ core.
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with
add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four
16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for
Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and
modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs
and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding
capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The
32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on
a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a
pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data
performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2
comparisons were only available on the .L units. On the C674x core they are also available on the .S unit
which increases the performance of algorithms that do searching and sorting. Finally, to increase data
packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit
and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack
instructions return parallel results to output precision including saturation support.
Other new features include:
• SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size
associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
• Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x
compiler can restrict the code to use certain registers in the register file. This compression is
performed by the code generation tools.
• Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field
multiplication.
• Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and
from system events (such as a watchdog time expiration).
• Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with
read, write, and execute permissions.
Submit Documentation Feedback
Device Overview
11
PRODUCT PREVIEW
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one
instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units
perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from
memory to the register file and store results from the register file into memory.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
•
www.ti.com
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a
free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following
documents:
• TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRUFE8)
• TMS320C64x Technical Overview (literature number SPRU395)
PRODUCT PREVIEW
12
Device Overview
Submit Documentation Feedback
www.ti.com
ÁÁTMS320C6742 Fixed/Floating-Point DSP
ÁÁ
ÁÁ Á
ÁÁ Á
ÁÁ Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
SPRS587 – JUNE 2009
src1
Odd
register
file A
(A1, A3,
A5...A31)
src2
.L1
odd dst
Even
register
file A
(A0, A2,
A4...A30)
(D)
even dst
long src
ST1b
ST1a
32 MSB
32 LSB
long src
Data path A
.S1
8
8
even dst
odd dst
src1
(D)
LD1b
LD1a
32 LSB
DA2
32
32
src2
32 MSB
DA1
LD2a
LD2b
Á
Á
Á
Á
Á
Á
.M1
dst2
dst1
src1
(A)
(B)
(C)
dst
.D1
src1
src2
2x
1x
Odd
register
file B
(B1, B3,
B5...B31)
src2
.D2
32 LSB
32 MSB
src1
dst
src2
.M2
Even
register
file B
(B0, B2,
B4...B30)
(C)
src1
dst2
32
(B)
dst1
32
(A)
src2
src1
.S2 odd dst
even dst
long src
Data path B
ST2a
ST2b
32 MSB
32 LSB
long src
even dst
.L2
(D)
8
8
(D)
odd dst
src2
src1
Control Register
A.
B.
C.
D.
On .M unit, dst2 is 32 MSB.
On .M unit, dst1 is 32 LSB.
On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
Figure 3-2. TMS320C674x CPU (DSP Core) Data Paths
Submit Documentation Feedback
Device Overview
13
PRODUCT PREVIEW
src2
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
3.4.2
www.ti.com
DSP Memory Mapping
The DSP memory map is shown in .
By default the DSP also has access to most on and off chip memory areas.
Additionally, the DSP megamodule includes the capability to limit access to its internal memories through
its SDMA port; without needing an external MPU unit.
3.4.2.1 External Memories
The DSP has access to the following External memories:
• Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
• SDRAM (DDR2)
3.4.2.2 DSP Internal Memories
PRODUCT PREVIEW
The DSP has access to the following DSP memories:
• L2 RAM
• L1P RAM
• L1D RAM
3.4.2.3 C674x CPU
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB
direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2
memory/cache (L2) consists of a 64 KB memory space that is shared between program and data space.
L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 3-2 shows a memory map of the C674x CPU cache registers for the device.
Table 3-2. C674x Cache Registers
Byte Address
Register Name
0x0184 0000
L2CFG
0x0184 0020
L1PCFG
0x0184 0024
L1PCC
0x0184 0040
L1DCFG
0x0184 0044
L1DCC
0x0184 0048 - 0x0184 0FFC
-
0x0184 1000
EDMAWEIGHT
Register Description
L2 Cache configuration register
L1P Size Cache configuration register
L1P Freeze Mode Cache configuration register
L1D Size Cache configuration register
L1D Freeze Mode Cache configuration register
Reserved
L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC
-
0x0184 2000
L2ALLOC0
Reserved
L2 allocation register 0
0x0184 2004
L2ALLOC1
L2 allocation register 1
0x0184 2008
L2ALLOC2
L2 allocation register 2
0x0184 200C
L2ALLOC3
L2 allocation register 3
0x0184 2010 - 0x0184 3FFF
-
0x0184 4000
L2WBAR
L2 writeback base address register
0x0184 4004
L2WWC
L2 writeback word count register
0x0184 4010
L2WIBAR
L2 writeback invalidate base address register
0x0184 4014
L2WIWC
L2 writeback invalidate word count register
14
Reserved
0x0184 4018
L2IBAR
L2 invalidate base address register
0x0184 401C
L2IWC
L2 invalidate word count register
0x0184 4020
L1PIBAR
L1P invalidate base address register
0x0184 4024
L1PIWC
L1P invalidate word count register
0x0184 4030
L1DWIBAR
L1D writeback invalidate base address register
0x0184 4034
L1DWIWC
L1D writeback invalidate word count register
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 3-2. C674x Cache Registers (continued)
Byte Address
Register Name
0x0184 4038
-
0x0184 4040
L1DWBAR
L1D Block Writeback
0x0184 4044
L1DWWC
L1D Block Writeback
0x0184 4048
L1DIBAR
L1D invalidate base address register
0x0184 404C
L1DIWC
L1D invalidate word count register
-
0x0184 5000
L2WB
0x0184 5004
L2WBINV
0x0184 5008
L2INV
0x0184 500C - 0x0184 5027
-
0x0184 5028
L1PINV
0x0184 502C - 0x0184 5039
-
Reserved
L2 writeback all register
L2 writeback invalidate all register
L2 Global Invalidate without writeback
Reserved
PRODUCT PREVIEW
0x0184 4050 - 0x0184 4FFF
Register Description
Reserved
L1P Global Invalidate
Reserved
0x0184 5040
L1DWB
0x0184 5044
L1DWBINV
L1D Global Writeback
0x0184 5048
L1DINV
L1D Global Invalidate without writeback
0x0184 8000 – 0x0184 80FF
MAR0 - MAR63
Reserved 0x0000 0000 – 0x3FFF FFFF
0x0184 8100 – 0x0184 817F
MAR64 – MAR95
Memory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 –
0x5FFF FFFF
0x0184 8180 – 0x0184 8187
MAR96 - MAR97
Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 –
0x61FF FFFF
0x0184 8188 – 0x0184 818F
MAR98 – MAR99
Memory Attribute Registers for EMIFA Async Data (CS3) 0x6200 0000 –
0x63FF FFFF
0x0184 8190 – 0x0184 8197
MAR100 – MAR101
Memory Attribute Registers for EMIFA Async Data (CS4) 0x6400 0000 –
0x65FF FFFF
0x0184 8198 – 0x0184 819F
MAR102 – MAR103
Memory Attribute Registers for EMIFA Async Data (CS5) 0x6600 0000 –
0x67FF FFFF
0x0184 81A0 – 0x0184 81FF
MAR104 – MAR127
Reserved 0x6800 0000 – 0x7FFF FFFF
0x0184 8200
MAR128
Reserved 0x8000 0000 - 0x81FF FFFF
0x0184 8204 – 0x0184 82FF
MAR129 – MAR191
Reserved 0x8200 0000 – 0xBFFF FFFF
0x0184 8300 – 0x0184 837F
MAR192 – MAR223
Memory Attribute Registers for DDR2 Data (CS2) 0xC000 0000 – 0xDFFF
FFFF
0x0184 8380 – 0x0184 83FF
MAR224 – MAR255
Reserved 0xE000 0000 – 0xFFFF FFFF
L1D Global Writeback with Invalidate
See the following table for a detailed top level device memory map that includes the DSP memory space.
Submit Documentation Feedback
Device Overview
15
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
3.5 Memory Map Summary
Table 3-3. C6746 Top Level Memory Map
Start Address
End Address
Size
DSP Mem Map
0x0000 0000
0x006F FFFF
0x0070 0000
0x0080 0000
0x007F FFFF
1024K
DSP L2 ROM
0x0080 FFFF
64K
0x0081 0000
0x00DF FFFF
DSP L2 RAM
32K
DSP L1P RAM
32K
DSP L1D RAM
0x00E0 0000
0x00E0 7FFF
0x00E0 8000
0x00EF FFFF
PRODUCT PREVIEW
0x00F0 0000
0x00F0 7FFF
0x00F0 8000
0x017F FFFF
0x0180 0000
0x0180 FFFF
64K
DSP Interrupt Controller
0x0181 0000
0x0181 0FFF
4K
DSP Powerdown Controller
0x0181 1000
0x0181 1FFF
4K
DSP Security ID
DSP Revision ID
EDMA Mem Map
0x0181 2000
0x0181 2FFF
4K
0x0181 3000
0x0181 FFFF
52K
0x0182 0000
0x0182 FFFF
64K
DSP EMC
0x0183 0000
0x0183 FFFF
64K
DSP Internal Reserved
0x0184 0000
0x0184 FFFF
64K
DSP Memory System
0x0185 0000
0x01BB FFFF
0x01BC 0000
0x01BC 0FFF
0x01BC 1000
0x01BC 17FF
0x01BC 1800
0x01BC 18FF
0x01BC 1900
0x01BF FFFF
0x01C0 0000
0x01C0 7FFF
32K
EDMA3 CC
0x01C0 8000
0x01C0 83FF
1K
EDMA3 TC0
0x01C0 8400
0x01C0 87FF
1K
EDMA3 TC1
0x01C0 8800
0x01C0 FFFF
0x01C1 0000
0x01C1 0FFF
4K
PSC 0
0x01C1 1000
0x01C1 1FFF
4K
PLL Controller 0
0x01C1 2000
0x01C1 3FFF
4K
SYSCFG0
0x01C1 4000
0x01C1 4FFF
0x01C1 5000
0x01C1 FFFF
0x01C2 0000
0x01C2 0FFF
4K
Timer0
0x01C2 1000
0x01C2 1FFF
4K
Timer1
0x01C2 2000
0x01C2 2FFF
4K
I2C 0
0x01C2 3000
0x01C2 3FFF
4K
RTC
0x01C2 4000
0x01C3 FFFF
0x01C4 0000
0x01C4 0FFF
4K
0x01C4 1000
0x01C4 1FFF
4K
0x01C4 2000
0x01C4 2FFF
4K
0x01C4 3000
0x01CF FFFF
0x01D0 0000
0x01D0 0FFF
4K
McASP 0 Control
0x01D0 1000
0x01D0 1FFF
4K
McASP 0 AFIFO Ctrl
0x01D0 2000
0x01D0 2FFF
4K
McASP 0 Data
0x01D0 3000
0x01D0 BFFF
0x01D0 C000
0x01D0 CFFF
16
Device Overview
Master Peripheral
Mem Map
UART 0
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 3-3. C6746 Top Level Memory Map (continued)
End Address
0x01D0 D000
0x01D0 DFFF
0x01D0 E000
0x01D0 FFFF
0x01D1 0000
0x01D1 07FF
0x01D1 0800
0x01D1 0FFF
Size
DSP Mem Map
EDMA Mem Map
0x01D1 1000
0x01D1 17FF
2K
McBSP1
0x01D1 1800
0x01D1 1FFF
2K
McBSP1 FIFO Ctrl
0x01D1 2000
0x01DF FFFF
0x01E0 0000
0x01E0 FFFF
0x01E1 0000
0x01E1 0FFF
4K
UHPI
0x01E1 1000
0x01E1 2FFF
0x01E1 3000
0x01E1 3FFF
0x01E1 4000
0x01E1 5FFF
0x01E1 6000
0x01E1 6FFF
0x01E1 7000
0x01E1 7FFF
PLL Controller 1
0x01E1 8000
0x01E1 9FFF
0x01E1 A000
0x01E1 AFFF
4K
0x01E1 B000
0x01E1 BFFF
4K
0x01E1 C000
0x01E1 FFFF
0x01E2 0000
0x01E2 1FFF
0x01E2 2000
0x01E2 2FFF
0x01E2 3000
0x01E2 3FFF
0x01E2 4000
0x01E2 4FFF
0x01E2 5000
0x01E2 5FFF
0x01E2 6000
0x01E2 6FFF
4K
GPIO
0x01E2 7000
0x01E2 7FFF
4K
PSC 1
0x01E2 8000
0x01E2 8FFF
4K
SYSCFG1
0x01E2 9000
0x01E2 BFFF
0x01E2 C000
0x01E2 CFFF
0x01E2 D000
0x01E2 FFFF
0x01E3 0000
0x01E3 7FFF
32K
EDMA3 CC1
0x01E3 8000
0x01E3 83FF
1K
EDMA3 TC2
0x01E3 8400
0x01EF FFFF
0x01F0 0000
0x01F0 0FFF
4K
eHRPWM 0
0x01F0 1000
0x01F0 1FFF
4K
HRPWM 0
0x01F0 2000
0x01F0 2FFF
4K
eHRPWM 1
0x01F0 3000
0x01F0 3FFF
4K
HRPWM 1
0x01F0 4000
0x01F0 5FFF
0x01F0 6000
0x01F0 6FFF
4K
ECAP 0
0x01F0 7000
0x01F0 7FFF
4K
ECAP 1
0x01F0 8000
0x01F0 8FFF
4K
ECAP 2
0x01F0 9000
0x01F0 BFFF
0x01F0 C000
0x01F0 CFFF
0x01F0 D000
0x01F0 DFFF
0x01F0 E000
0x01F0 EFFF
4K
SPI1
0x01F0 F000
0x01F0 FFFF
0x01F1 0000
0x01F1 0FFF
Submit Documentation Feedback
Master Peripheral
Mem Map
PRODUCT PREVIEW
Start Address
4K
Device Overview
17
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 3-3. C6746 Top Level Memory Map (continued)
Start Address
End Address
Size
0x01F1 1000
0x01F1 1FFF
4K
McBSP1 FIFO Data
0x01F1 2000
0x116F FFFF
0x1170 0000
0x117F FFFF
1024K
DSP L2 ROM
0x1180 0000
0x1180 FFFF
64K
DSP L2 RAM
0x1181 0000
0x11DF FFFF
32K
DSP L1P RAM
32K
DSP L1D RAM
EDMA Mem Map
PRODUCT PREVIEW
0x11E0 0000
0x11E0 7FFF
0x11E0 8000
0x11EF FFFF
0x11F0 0000
0x11F0 7FFF
0x11F0 8000
0x3FFF FFFF
0x4000 0000
0x5FFF FFFF
512M
EMIFA SDRAM data (CS0)
0x6000 0000
0x61FF FFFF
32M
EMIFA async data (CS2)
0x6200 0000
0x63FF FFFF
32M
EMIFA async data (CS3)
0x6400 0000
0x65FF FFFF
32M
EMIFA async data (CS4)
0x6600 0000
0x67FF FFFF
32M
EMIFA async data (CS5)
0x6800 0000
0x6800 7FFF
32K
EMIFA Control Regs
0x6800 8000
0x7FFF FFFF
32K
DDR2 Control Regs
512M
DDR2 Data
0x8000 0000
0x8001 FFFF
0x8002 0000
0xAFFF FFFF
0xB000 0000
0xB000 7FFF
0xB000 8000
0xBFFF FFFF
0xC000 0000
0xDFFF FFFF
0xE000 0000
0xFFFC FFFF
0xFFFD 0000
0xFFFD FFFF
0xFFFE 0000
0xFFFE DFFF
0xFFFE E000
0xFFFE FFFF
0xFFFF 0000
0xFFFF 1FFF
0xFFFF 2000
0xFFFF FFFF
18
DSP Mem Map
Device Overview
Master Peripheral
Mem Map
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
3.6 Pin Assignments
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in
the smallest possible package. Pin multiplexing is controlled using a combination of hardware
configuration at device reset and software programmable register settings.
3.6.1
Pin Map (Bottom View)
W
V
1
2
3
4
5
6
7
8
9
10
GP7[8]
GP7[9]
GP7[10]
DDR_A[10]
DDR_A[6]
DDR_A[2]
DDR_CLKN
DDR_CLKP
DDR_RAS
DDR_D[15]
W
GP7[11]
GP7[12]
GP7[13]
DDR_A[12]
DDR_A[5]
DDR_A[3]
DDR_CKE
DDR_BA[0]
DDR_CS
DDR_D[13]
V
GP7[14]
GP7[15]
GP7[0]/
BOOT[0]
DDR_A[8]
DDR_A[4]
DDR_A[7]
DDR_A[0]
DDR_BA[2]
DDR_CAS
DDR_D[12]
U
U
T
GP7[1]/
BOOT[1]
GP7[2]/
BOOT[2]
GP7[3]/
BOOT[3]
DDR_A[11]
DDR_A[13]
DDR_A[9]
DDR_A[1]
DDR_WE
DDR_BA[1]
DDR_D[10]
T
R
GP7[4]/
BOOT[4]
GP7[5]/
BOOT[5]
GP7[6]/
BOOT[6]
DVDD3313_C
GP6[0]
DDR_VREF
DDR_DVDD18
DDR_DVDD18
DDR_DVDD18
DDR_DQM[1]
R
P
NC
NC
NC
GP7[7]/
BOOT[7]
DVDD3318_C
DVDD3318_C
DDR_DVDD18
DDR_DVDD18
DDR_DVDD18
DDR_DVDD18
P
N
NC
NC
NC
NC
VSS
DDR_DVDD18
RVDD
CVDD
DDR_DVDD18
DDR_DVDD18
N
VSS
VSS
VSS
VSS
CVDD
CVDD
VSS
M
DVDD3318_C
VSS
DVDD18
VSS
VSS
VSS
VSS
L
DVDD18
CVDD
VSS
VSS
VSS
VSS
K
5
6
7
8
9
10
M
VSS
NC
L
NC
NC
K
VSS
1
NC
VSS
GP6[3]
GP6[1]
VSS
2
3
4
PRODUCT PREVIEW
The following graphics show the bottom view of the ZCE and ZWT packages pin assignments in four
quadrants (A, B, C, and D). The pin assignments for both packages are identical.
Figure 3-3. Pin Map (Quad A)
Submit Documentation Feedback
Device Overview
19
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
PRODUCT PREVIEW
11
12
13
14
W
DDR_D[7]
DDR_D[6]
DDR_DQM[0]
UHPI_HCS/
GP6[7]/
V
DDR_DQS[1]
DDR_D[5]
DDR_D[4]
DDR_D[2]
UHPI_HDS1/
GP6[6]
U
DDR_D[14]
DDR_ZP
DDR_D[3]
DDR_D[1]
DDR_D[0]
T
DDR_D[9]
DDR_D[11]
DDR_D[8]
DDR_DQS[0]
UHPI_HRW/
GP6[8]
R
DDR_DQGATE0
DDR_DQGATE1
DVDD18
P
VSS
DVSS3318_C
DVDD18
NC
NC
NC
N
VSS
VSS
DVDD3318_C
NC
PLL1_VDDA12
NC
M
VSS
NC
DVDD3318_C
NC
PLL1_VSSA12
L
VSS
CVDD
DVDD3318_C
K
VSS
CVDD
DVDD3318_C
11
12
13
UHPI_HD[13]/
15
16
17
UHPI_HCNTL1/
GP6[10]
UHPI_HD[12]/
UHPI_HD[10]/
UHPI_HD[14]/
UHPI_HD[11]/
UHPI_HD[1]/
18
19
UHPI_HD[9]/
UHPI_HD[8]/
W
UHPI_HD[7]/
UHPI_HD[6]/
V
UHPI_HHWIL/
GP6[9]
UHPI_HCNTL0/
GP6[11]
UHPI_HD[4]/
RESETOUT/
UHPI_HAS/
GP6[15]
UHPI_HINT/
GP6[12]
UHPI_HRDY/
GP6[13]
UHPI_HD[0]/
GP6[5]
UHPI_HD[15]/
UHPI_HD[5]/
U
CLKOUT/
UHPI_HDS2/
GP6[14]
RSV2
UHPI_HD[3]
UHPI_HD[2]
T
R
NC
NC
P
NC
NC
NC
N
TDI
PLL0_VSSA12
NC
NC
M
PLL0_VDDA12
TMS
TRST
OSCVSS
OSCIN
L
RESET
DVDD3318_B
EMU1
NC
OSCOUT
K
14
15
16
18
19
RTC_CVDD
GP8[0]
17
Figure 3-4. Pin Map (Quad B)
20
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
11
12
13
14
15
16
17
18
19
J
VSS
CVDD
DVDD18
DVDD3318_B
TCK
EMU0
NMI
TDO
RTC_XI
J
H
CVDD
CVDD
CVDD
RVDD
VSS
SPI1_ENA/
GP2[12]
SPI1_SOMI/
GP2[11]
RTC_VSS
RTC_XO
H
G
DVDD18
DVDD18
CVDD
DVDD3318_A
DVDD3318_A
SPI1_SCS[7]/
I2C0_SCL/
GP1[15]
SPI1_SIMO/
GP2[10]
SPI1_SCS[6]/
I2C0_SDA/
GP1[4]
SPI1_CLK/
GP2[13]
G
F
DVDD3318_B
DVDD3318_B
DVDD3318_B
DVDD18
DVDD3318_A
SPI1_SCS[4]/
GP1[2]
E
EMA_A[18]/
GP4[2]
EMA_A[16]/
GP4[0]
EMA_A[6]/
GP5[6]
DVDD3318_B
CVDD
TM64P0_OUT12/
GP1[7]/
D
EMA_A[13]/
GP5[13]
EMA_A[9]/
GP5[9]
EMA_A[12]/
GP5[12]
EMA_A[3]/
GP5[3]
EMA_A[1]/
GP5[1]
UART0_RTS/
GP8[1]/
C
EMA_A[15]/
GP5[15]
EMA_A[10]/
GP5[10]
EMA_A[5]/
GP5[5]
EMA_A[0]/
GP5[0]
EMA_BA[0]/
GP2[8]
B
EMA_A[17]/
GP4[1]
EMA_A[11]/
GP5[11]
EMA_A7/
GP5[7]
EMA_A[2]/
GP5[2]
A
EMA_A[20]/
GP4[4]
EMA_A[14]/
GP5[14]
EMA_A[8]/
GP5[8]
11
12
13
SPI1_SCS[1]/
EPWM1A/
GP2[15]/
SPI1_SCS[2]/
GP1[0]
SPI1_SCS[3]/
GP1[1]
SPI1_SCS[0]/
EPWM1B/
GP2[14]/
TM64P1_OUT12/
GP1[6]/
TM64P1_IN12
UART0_TXD/
GP8[3]/
EPWM0A/
GP1[8]/
EPWMSYNCI/
GP8[6]/
EPWM0B/
EPWMSYNCO/
GP8[5]/
UART0_RXD/
GP8[4]/
EMA_OE/
GP3[10]
EMA_CS[5]/
GP3[12]
EMA_CS[2]/
GP3[15]
EMA_WAIT[0]/
GP3[8]
EMA_WAIT[1]/
GP2[1]
B
EMA_A[4]/
GP5[4]
EMA_BA[1]/
GP2[9]
EMA_RAS/
GP2[5]
EMA_CS[3]/
GP3[14]
EMA_CS[0]/
GP2[0]
VSS
A
14
15
16
17
18
19
SPI1_SCS[5]/
GP1[3]
UART0_CTS/
GP8[2]/
PRODUCT PREVIEW
www.ti.com
F
E
D
C
Figure 3-5. Pin Map (Quad C)
Submit Documentation Feedback
Device Overview
21
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
J
www.ti.com
1
2
3
4
5
6
7
8
9
10
NC
NC
GP6[2]
GP8[13]
DVDD3318_C
CVDD
VSS
VSS
VSS
VSS
J
VSS
GP6[4]
GP8[9]
DVDD3318_A
CVDD
CVDD
VSS
VSS
CVDD
H
PRODUCT PREVIEW
H
VSS
G
GP8[15]
GP8[14]
GP8[12]/
GP8[8]
DVDD3318_A
DVDD18
CVDD
CVDD
DVDD3318_B
DVDD18
G
GP8[11]
GP8[10]
AXR0/
ECAP0_APWM0/
GP8[7]/
RSVD/
RTC_ALARM/
GP0[8]/
DEEPSLEEP
DVDD3318_A
DVDD3318_B
DVDD3318_B
DVDD3318_B
EMA_CS[4]/
GP3[13]
DVDD3318_B
F
AXR3/
GP1[11]/
AXR8/
CLKS1/
ECAP1_APWM1/
GP0[0]
RVDD
EMA_D[15]/
GP3[7]
EMA_D[5]/
GP4[13]
EMA_D[3]/
GP4[11]
EMA_A[23]/
MMCSD0_CLK/
GP4[7]
EMA_D[8]/
GP3[0]
E
EMA_D[11]/
GP3[3]
EMA_D[7]/
GP4[15]
EMA_SDCKE/
GP2[6]
EMA_D[9]/
GP3[1]
F
E
D
C
AXR1/
GP1[19]/
AXR2/
GP2[10]/
AXR4/
GP1[12]/
AXR7/
EPWM1TZ[0]/
GP1[15]
AXR6/
GP1[14]/
B
ACLKX/
GP0[14]
A
ACLKR/
GP0[15]
1
AXR5/
GP1[13]/
AXR10/
DR1/
GP0[2]
AMUTE/
GP0[9]
AFSR/
GP0[13]
AXR9/
DX1/
GP0[1]
AXR12/
FSR1/
GP0[4]
AXR11/
FSX1/
GP0[3]
EMA_D[6]/
GP4[14]
EMA_D[14]/
GP3[6]
EMA_WEN_DQM[0]/
GP2[3]
EMA_D[0]/
GP4[8]
AFX/
GP0[12]
AXR13/
CLKX1/
GP0[5]
AXR14/
CLKR1/
GP0[6]
EMA_D[4]/
GP4[12]
EMA_D[13]/
GP3[5]
EMA_CLK/
GP2[7]
EMA_D[2]/
GP4[10]
EMA_WE/
GP3[11]
AHCLKR/
GP0[11]
AHCLKX/
GP0[10]
AXR15/
EPWM0TZ[0]/
ECAP2_APWM2/
GP0[7]
EMA_WEB_DQM[1]/
GP2[2]
EMA_D[12]/
GP3[4]
EMA_D[10]/
GP3[2]
EMA_D[1]/
GP4[9]
EMA_CAS/
GP2[4]
2
3
4
5
6
7
8
9
EMA_A_RW/
GP3[9]
D
EMA_A[19]/
GP4[3]
C
EMA_A[21]/
GP4[5]
B
EMA_A[22]/
GP4[6]
A
10
Figure 3-6. Pin Map (Quad D)
3.7 Pin Multiplexing Control
Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module.
For the device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed
with several different functions has a corresponding 4-bit field in one of the PINMUX registers.
Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data
and output enable values only. The default pin multiplexing control for almost every pin is to select 'none'
of the peripheral functions in which case the pin's IO buffer is held tri-stated.
Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX
registers have no effect on input from a pin.
22
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
3.8 Terminal Functions
Table 3-4 to Table 3-21 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal
pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin
description.
3.8.1
Device Reset, NMI and JTAG
Table 3-4. Reset, NMI and JTAG Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
K14
I
IPU
B
Device reset input
NMI
J17
I
IPU
B
Non-Maskable Interrupt
T17
(4)
IPD
C
Reset output
RESETOUT / UHPI_HAS/ GP6[15]
O
JTAG
TMS
L16
I
IPU
B
JTAG test mode select
TDI
TDO
M16
I
IPU
B
JTAG test data input
J18
O
IPU
B
JTAG test data output
TCK
J15
I
IPU
B
JTAG test clock
TRST
L17
I
IPD
B
JTAG test reset
EMU[0]
J16
I/O
IPU
B
Emulation pin
EMU[1]
K16
I/O
IPU
B
Emulation pin
GP8[0]
K17
I/O
IPD
B
General-purpose input/output
(1)
(2)
(3)
(4)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Open drain mode for RESETOUT function.
Submit Documentation Feedback
Device Overview
23
PRODUCT PREVIEW
RESET
RESET
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
3.8.2
www.ti.com
High-Frequency Oscillator and PLL
Table 3-5. High-Frequency Oscillator and PLL Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
IPU
C
DESCRIPTION
CLKOUT / UHPI_HDS2 / GP6[14]
T18
O
PLL Observation Clock
OSCIN
L19
I
—
—
Oscillator input
OSCOUT
K19
O
—
—
Oscillator output
OSCVSS
L18
GND
—
—
Oscillator ground (for filter only)
PLL0_VDDA
L15
PWR
—
—
PLL analog VDD (1.2-V filtered supply)
PLL0_VSSA
M17
GND
—
—
PLL analog VSS (for filter)
PLL1_VDDA
N15
PWR
—
—
PLL analog VDD (1.2-V filtered supply)
PLL1_VSSA
M15
GND
—
—
PLL analog VSS (for filter)
1.2-V OSCILLATOR
1.2-V PLL0
PRODUCT PREVIEW
1.2-V PLL1
(1)
(2)
(3)
24
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
3.8.3
SPRS587 – JUNE 2009
Real-Time Clock and 32-kHz Oscillator
Table 3-6. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
—
—
RTC 32-kHz oscillator input
RTC_XI
J19
I
RTC_XO
DESCRIPTION
H19
O
—
—
RTC 32-kHz oscillator output
RTC_ALARM / GP0[8] /DEEPSLEEP
F4
O
CP[0]
A
RTC Alarm
RTC_CVDD
L14
PWR
—
—
RTC module core power
(isolated from chip CVDD)
RTC_Vss
H18
GND
—
—
Oscillator ground (for filter)
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
3.8.4
DEEPSLEEP Power Control
Table 3-7. DEEPSLEEP Power Control Terminal Functions
SIGNAL
NAME
RTC_ALARM / GP0[8] /DEEPSLEEP
(1)
(2)
(3)
NO.
F4
TYPE (1)
PULL (2)
POWER
GROUP (3)
I
CP[0]
A
DESCRIPTION
DEEPSLEEP power control output
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
3.8.5
External Memory Interface A (EMIFA)
Submit Documentation Feedback
Device Overview
25
PRODUCT PREVIEW
SIGNAL
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 3-8. External Memory Interface A (EMIFA) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
PRODUCT PREVIEW
EMA_D[15] / GP3[7]
E6
I/O
CP[17]
B
EMA_D[14] / GP3[6]
C7
I/O
CP[17]
B
EMA_D[13] / GP3[5]
B6
I/O
CP[17]
B
EMA_D[12] / GP3[4]
A6
I/O
CP[17]
B
EMA_D[11] / GP3[3]
D6
I/O
CP[17]
B
EMA_D[10] / GP3[2]
A7
I/O
CP[17]
B
EMA_D[9] / GP3[1]
D9
I/O
CP[17]
B
EMA_D[8] / GP3[0]
E10
I/O
CP[17]
B
EMA_D[7] / GP4[15]
D7
I/O
CP[17]
B
EMA_D[6] / GP4[14]
C6
I/O
CP[17]
B
EMA_D[5] / GP4[13]
E7
I/O
CP[17]
B
EMA_D[4] / GP4[12]
B5
I/O
CP[17]
B
EMA_D[3] / GP4[11]
E8
I/O
CP[17]
B
EMA_D[2] / GP4[10]
B8
I/O
CP[17]
B
EMA_D[1] / GP4[9]
A8
I/O
CP[17]
B
EMA_D[0] / GP4[8]
C9
I/O
CP[17]
B
(1)
(2)
(3)
26
DESCRIPTION
EMIFA data bus
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 3-8. External Memory Interface A (EMIFA) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
E9
O
CP[18]
B
EMA_A[22]/GP4[6]
A10
O
CP[18]
B
EMA_A[21] /GP4[5]
B10
O
CP[18]
B
EMA_A[20] /GP4[4]
A11
O
CP[18]
B
EMA_A[19] /GP4[3]
C10
O
CP[18]
B
EMA_A[18] /GP4[2]
E11
O
CP[18]
B
EMA_A[17] /GP4[1]
B11
O
CP[18]
B
EMA_A[16]/GP4[0]
E12
O
CP[18]
B
EMA_A[15]/GP5[15]
C11
O
CP[19]
B
EMA_A[14] /GP5[14]
A12
O
CP[19]
B
EMA_A[13] / GP5[13]
D11
O
CP[19]
B
EMA_A[12] / GP5[12]
D13
O
CP[19]
B
EMA_A[11] / GP5[11]
B12
O
CP[19]
B
EMA_A[10] / GP5[10]
C12
O
CP[19]
B
EMA_A[9] / GP5[9]
D12
O
CP[19]
B
EMA_A[8] / GP5[8]
A13
O
CP[19]
B
EMA_A[7] / GP5[7]
B13
O
CP[20]
B
EMA_A[6] / GP5[6]
E13
O
CP[20]
B
EMA_A[5] / GP5[5]
C13
O
CP[20]
B
EMA_A[4] / GP5[4]
A14
O
CP[20]
B
EMA_A[3] / GP5[3]
D14
O
CP[20]
B
EMA_A[2] / GP5[2]
B14
O
CP[20]
B
EMA_A[1] / GP5[1]
D15
O
CP[20]
B
EMA_A[0] / GP5[0]
C14
O
CP[20]
B
EMA_BA[0] / GP2[8]
C15
O
CP[16]
B
EMA_BA[1] / GP2[9]
A15
O
CP[16]
B
EMA_CLK / GP2[7]
B7
O
CP[16]
B
EMIFA clock
EMA_SDCKE / GP2[6]
D8
O
CP[16]
B
EMIFA SDRAM clock enable
EMA_RAS / GP2[5]
A16
O
CP[16]
B
EMIFA SDRAM row address strobe
EMA_CAS / GP2[4]
A9
O
CP[16]
B
EMIFA SDRAM column address strobe
EMA_CS[0] / GP2[0]
A18
O
CP[16]
B
EMA_CS[2] / GP3[15]
B17
O
CP[16]
B
EMA_CS[3] / GP3[14]
A17
O
CP[16]
B
EMA_CS[4] / GP3[13]
F9
O
CP[16]
B
EMA_CS[5] / GP3[12]
B16
O
CP[16]
B
EMA_A_RW / GP3[9]
D10
O
CP[16]
B
EMIFA Async Read/Write control
EMA_WE / GP3[11]
B9
O
CP[16]
B
EMIFA SDRAM write enable
EMA_WEN_DQM[1] / GP2[2]
A5
O
CP[16]
B
EMIFA write enable/data mask for
EMA_D[15:8]
EMA_WEN_DQM[0] / GP2[3]
C8
O
CP[16]
B
EMIFA write enable/data mask for EMA_D[7:0]
EMA_OE / GP3[10]
B15
O
CP[16]
B
EMIFA output enable
EMA_WAIT[0] / GP3[8]
B18
I
CP[16]
B
EMA_WAIT[1] / GP2[1]
B19
I
CP[16]
B
Submit Documentation Feedback
PRODUCT PREVIEW
EMA_A[23]/GP4[7]
EMIFA address bus
EMIFA bank address
EMIFA Async Chip Select
EMIFA wait input/interrupt
Device Overview
27
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
3.8.6
www.ti.com
DDR2 Controller (DDR2)
Table 3-9. DDR2 Controller (DDR2) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
DESCRIPTION
PRODUCT PREVIEW
DDR_D[15]
W10
I/O
IPD
DDR_D[14]
U11
I/O
IPD
DDR_D[13]
V10
I/O
IPD
DDR_D[12]
U10
I/O
IPD
DDR_D[11]
T12
I/O
IPD
DDR_D[10]
T10
I/O
IPD
DDR_D[9]
T11
I/O
IPD
DDR_D[8]
T13
I/O
IPD
DDR_D[7]
W11
I/O
IPD
DDR_D[6]
W12
I/O
IPD
DDR_D[5]
V12
I/O
IPD
DDR_D[4]
V13
I/O
IPD
DDR_D[3]
U13
I/O
IPD
DDR_D[2]
V14
I/O
IPD
DDR_D[1]
U14
I/O
IPD
DDR_D[0]
U15
I/O
IPD
DDR_A[13]
T5
O
IPD
DDR_A[12]
V4
O
IPD
DDR_A[11]
T4
O
IPD
DDR_A[10]
W4
O
IPD
DDR_A[9]
T6
O
IPD
DDR_A[8]
U4
O
IPD
DDR_A[7]
U6
O
IPD
DDR_A[6]
W5
O
IPD
DDR_A[5]
V5
O
IPD
DDR_A[4]
U5
O
IPD
DDR_A[3]
V6
O
IPD
DDR_A[2]
W6
O
IPD
DDR_A[1]
T7
O
IPD
DDR_A[0]
U7
O
IPD
DDR_CLKP
W8
O
IPD
DDR2 clock (positive)
DDR_CLKN
W7
O
IPD
DDR2 clock (negative)
DDR_CKE
V7
O
IPD
DDR2 clock enable
DDR_WE
T8
O
IPD
DDR2 write enable
DDR_RAS
W9
O
IPD
DDR2 row address strobe
DDR_CAS
U9
O
IPD
DDR2 column address strobe
DDR_CS
V9
O
IPD
DDR2 chip select
DDR_DQM[0]
W13
O
IPD
DDR_DQM[1]
R10
O
IPD
(1)
(2)
28
DDR2 SDRAM data bus
DDR2 row/column address
DDR2 data mask outputs
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 3-9. DDR2 Controller (DDR2) Terminal Functions (continued)
NAME
NO.
TYPE (1)
PULL (2)
DESCRIPTION
DDR_DQS[0]
T14
I/O
IPD
DDR_DQS[1]
V11
I/O
IPD
DDR_BA[2]
U8
O
IPD
DDR_BA[1]
T9
O
IPD
DDR_BA[0]
V8
O
IPD
DDR_DQGATE0
R11
O
IPD
DDR2 loopback signal for external DQS gating.
Route to DDR and back to DDR_DQGATE1 with
same constraints as used for DDR clock and data.
DDR_DQGATE1
R12
I
IPD
DDR2 loopback signal for external DQS gating.
Route to DDR and back to DDR_DQGATE0 with
same constraints as used for DDR clock and data.
DDR_ZP
U12
O
—
DDR2 reference output for drive strength calibration
of N and P channel outputs. Tie to ground via 50
ohm resistor @ 0.5% tolerance.
DDR_VREF
R6
I
—
DDR voltage input for the DDR2/mDDR I/O buffers.
Note even in the case of mDDR an external resistor
divider connected to this pin is necessary.
N6, N9, N10,
P7, P8, P9,
P10, R7, R8,
R9
PWR
—
DDR PHY 1.8V power supply pins
DDR_DVDD18
Submit Documentation Feedback
DDR2 data strobe inputs/outputs
DDR2 SDRAM bank address
Device Overview
29
PRODUCT PREVIEW
SIGNAL
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
3.8.7
www.ti.com
Serial Peripheral Interface Modules (SPI)
Table 3-10. Serial Peripheral Interface (SPI) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
SPI1
PRODUCT PREVIEW
SPI1_CLK / GP2[13]
G19
O
CP[15]
A
SPI1 clock
SPI1_ENA / GP2[12]
H16
O
CP[15]
A
SPI1 enable
SPI1_SCS[0] / EPWM1B / GP2[14]
E19
O
CP[14]
A
SPI1_SCS[1] / EPWM1A / GP2[15]
F18
O
CP[14]
A
SPI1_SCS[2] / GP1[0]
F19
O
CP[13]
A
SPI1_SCS[3] / GP1[1]
E18
O
CP[13]
A
SPI1_SCS[4] / GP1[2]
F16
O
CP[12]
A
SPI1_SCS[5] / GP1[3]
F17
O
CP[12]
A
SPI1_SCS[6] / I2C0_SDA / GP1[4]
G18
O
CP[11]
A
SPI1_SCS[7] / I2C0_SCL / GP1[5]
G16
O
CP[11]
A
SPI1_SIMO / GP2[10]
G17
I/O/Z
CP[15]
A
SPI1 data
slave-in-master-out
SPI1_SOMI / GP2[11]
H17
I/O/Z
CP[15]
A
SPI1 data
slave-out-master-in
(1)
(2)
(3)
30
SPI1 chip selects
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
3.8.8
SPRS587 – JUNE 2009
Enhanced Capture/Auxiliary PWM Modules (eCAP0)
The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon
how the eCAP module is programmed.
Table 3-11. Enhanced Capture Module (eCAP) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
CP[6]
A
enhanced capture 0 input or
auxiliary PWM 0 output
CP[3]
A
enhanced capture 1 input or
auxiliary PWM 1 output
CP[1]
A
enhanced capture 2 input or
auxiliary PWM 2 output
DESCRIPTION
eCAP0
AXR0 / ECAP0_APWM0 / GP8[7]
F3
I/O
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0]
E4
I/O
eCAP2
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
(1)
(2)
(3)
A4
I/O
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
31
PRODUCT PREVIEW
eCAP1
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
3.8.9
www.ti.com
Enhanced Pulse Width Modulators (eHRPWM)
Table 3-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
eHRPWM0
EPWM0A / GP1[8]
D19
I/O
CP[7]
A
eHRPWM0 A output
(with high-resolution)
EPWM0B
C17
I/O
CP[7]
A
eHRPWM0 B output
A4
I/O
CP[1]
A
eHRPWM0 trip zone input
EPWMSYNCI / GP8[6]
C16
I/O
CP[7]
A
eHRPWM0 sync input
EPWMSYNCO / GP8[5]
C18
I/O
CP[7]
A
eHRPWM0 sync output
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
PRODUCT PREVIEW
eHRPWM1
SPI1_SCS[1] / EPWM1A / GP2[15]
F18
I/O
CP[14]
A
eHRPWM1 A output
(with high-resolution)
SPI1_SCS[0] / EPWM1B / GP2[14]
E19
I/O
CP[14]
A
eHRPWM1 B output
AXR7 / EPWM1TZ[0] / GP1[15]
D2
I/O
CP[4]
A
eHRPWM1 trip zone input
(1)
(2)
(3)
32
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
3.8.10
SPRS587 – JUNE 2009
Boot
Table 3-13. Boot Mode Selection Terminal Functions (1)
NAME
NO.
TYPE (2)
PULL (3)
POWER
GROUP (4)
GP7[7] / BOOT[7]
P4
I
CP[29]
C
GP7[6] / BOOT[6]
R3
I
CP[29]
C
GP7[5] / BOOT[5]
R2
I
CP[29]
C
GP7[4] / BOOT[4]
R1
I
CP[29]
C
GP7[3] / BOOT[3]
T3
I
CP[29]
C
GP7[2] / BOOT[2]
T2
I
CP[29]
C
GP7[1] / BOOT[1]
T1
I
CP[29]
C
GP7[0] / BOOT[0]
U3
I
CP[29]
C
(1)
(2)
(3)
(4)
DESCRIPTION
Boot Mode Selection Pins
Boot decoding is defined in the bootloader application report.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
33
PRODUCT PREVIEW
SIGNAL
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
3.8.11 Universal Asynchronous Receiver/Transmitters (UART0)
Table 3-14. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
UART0
UART0_RXD / GP8[4]
C19
I
CP[8]
A
UART0 receive data
UART0_TXD / GP8[3]
D18
O
CP[8]
A
UART0 transmit data
UART0_RTS / GP8[1]
D16
O
CP[9]
A
UART0 ready-to-send output
UART0_CTS / GP8[2]
E17
I
CP[9]
A
UART0 clear-to-send input
(1)
PRODUCT PREVIEW
(2)
(3)
34
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
3.8.12 Inter-Integrated Circuit Modules(I2C0)
Table 3-15. Inter-Integrated Circuit (I2C) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
SPI1_SCS[6] / I2C0_SDA / GP1[4]
G18
I/O
CP[11]
A
I2C0 serial data
SPI1_SCS[7] / I2C0_SCL / GP1[5]
G16
I/O
CP[11]
A
I2C0 serial clock
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
35
PRODUCT PREVIEW
I2C0
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
3.8.13 Timers
Table 3-16. Timers Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
TIMER0
TM64P0_OUT12 / GP1[7] /TM64P0_IN12
E16
I
CP[10]
A
Timer0 lower input.
TM64P0_OUT12 / GP1[7] / TM64P0_IN12
E16
O
CP[10]
A
Timer0 lower
output
TIMER1 (Watchdog)
PRODUCT PREVIEW
TM64P1_OUT12 / GP1[6] / TM64P1_IN12
D17
I
CP[10]
A
Timer1 lower input.
TM64P1_OUT12 / GP1[6] / TM64P1_IN12
D17
O
CP[10]
A
Timer1 lower
output
(1)
(2)
(3)
36
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
3.8.14 Multichannel Audio Serial Ports (McASP)
Table 3-17. Multichannel Audio Serial Ports Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
A4
I/O
CP[1]
A
AXR14 / CLKR1 / GP0[6]
B4
I/O
CP[2]
A
AXR13 / CLKX1 / GP0[5]
B3
I/O
CP[2]
A
AXR12 / FSR1 / GP0[4]
C4
I/O
CP[2]
A
AXR11 / FSX1 / GP0[3]
C5
I/O
CP[2]
A
AXR10 / DR1 / GP0[2]
D4
I/O
CP[2]
A
AXR9 / DX1 / GP0[1]
C3
I/O
CP[2]
A
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0]
E4
I/O
CP[3]
A
AXR7 / EPWM1TZ[0] / GP1[15]
D2
I/O
CP[4]
A
AXR6 / GP1[14]
C1
I/O
CP[5]
A
AXR5 / GP1[13]
D3
I/O
CP[5]
A
AXR4 / GP1[12]
D1
I/O
CP[5]
A
AXR3 / GP1[11]
E3
I/O
CP[5]
A
AXR2 / GP1[10]
E2
I/O
CP[5]
A
AXR1 / GP1[9]
E1
I/O
CP[5]
A
AXR0 / ECAP0_APWM0 / GP8[7]
F3
I/O
CP[6]
A
AHCLKX / GP0[10]
A3
I/O
CP[0]
A
McASP0 transmit master clock
ACLKX / GP0[14]
B1
I/O
CP[0]
A
McASP0 transmit bit clock
AFSX / GP0[12]
B2
I/O
CP[0]
A
McASP0 transmit frame sync
AHCLKR / GP0[11]
A2
I/O
CP[0]
A
McASP0 receive master clock
ACLKR / GP0[15]
A1
I/O
CP[0]
A
McASP0 receive bit clock
AFSR / GP0[13]
C2
I/O
CP[0]
A
McASP0 receive frame sync
AMUTE / GP0[9]
D5
I/O
CP[0]
A
McASP0 mute output
(1)
(2)
(3)
PRODUCT PREVIEW
McASP0
McASP0 serial data
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
37
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
3.8.15 Multichannel Buffered Serial Ports (McBSP)
Table 3-18. Multichannel Buffered Serial Ports (McBSPs) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
McBSP1
PRODUCT PREVIEW
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0]
E4
I
CP[3]
A
McBSP1 sample rate generator clock input
AXR14 / CLKR1 / GP0[6]
B4
I/O
CP[2]
A
McBSP1 receive clock
AXR12 / FSR1 / GP0[4]
C4
I/O
CP[2]
A
McBSP1 receive frame sync
AXR10 / DR1 / GP0[2]
D4
I
CP[2]
A
McBSP1 receive data
AXR13 / CLKX1 / GP0[5]
B3
I/O
CP[2]
A
McBSP1 transmit clock
AXR11 / FSX1 / GP0[3]
C5
I/O
CP[2]
A
McBSP1 transmit frame sync
AXR9 / DX1 / GP0[1]
C3
O
CP[2]
A
McBSP1 transmit data
(1)
(2)
(3)
38
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
3.8.16
SPRS587 – JUNE 2009
Universal Host-Port Interface (UHPI)
Table 3-19. Universal Host-Port Interface (UHPI) Terminal Functions
TYPE (1)
PULL (2)
POWER
GROUP (3)
U18
I/O
CP[26]
C
UHPI_HD[14]
V16
I/O
CP[26]
C
UHPI_HD[13]
R14
I/O
CP[26]
C
UHPI_HD[12]
W16
I/O
CP[26]
C
UHPI_HD[11]
V17
I/O
CP[26]
C
UHPI_HD[10]
W17
I/O
CP[26]
C
UHPI_HD[9]
W18
I/O
CP[26]
C
UHPI_HD[8]
W19
I/O
CP[26]
C
UHPI_HD[7]
V18
I/O
CP[27]
C
UHPI_HD[6]
V19
I/O
CP[27]
C
UHPI_HD[5]
U19
I/O
CP[27]
C
UHPI_HD[4]
T16
I/O
CP[27]
C
UHPI_HD[3]
R18
I/O
CP[27]
C
UHPI_HD[2]
R19
I/O
CP[27]
C
UHPI_HD[1]
R15
I/O
CP[27]
C
UHPI_HD[0]
P17
I/O
CP[27]
C
UHPI_HCNTL0 /GP6[11]
U17
I
CP[24]
C
UHPI_HCNTL1 /GP6[10]
W15
I
CP[24]
C
UHPI_HHWIL /GP6[9]
U16
I
CP[24]
C
UHPI half-word
identification control
UHPI_HRW /GP6[8]
T15
I
CP[24]
C
UHPI read/write
UHPI_HCS / GP6[7]
W14
I
CP[25]
C
UHPI chip select
UHPI_HDS1 / GP6[6]
V15
I
CP[25]
C
CLKOUT / UHPI_HDS2
T18
I
CP[22]
C
UHPI_HINT / GP6[12]
R16
I
CP[23]
C
UHPI host interrupt
UHPI_HRDY / GP6[13]
R17
O
CP[23]
C
UHPI ready
RESETOUT / UHPI_HAS / GP6[15]
T17
I
CP[21]
C
UHPI address strobe
NAME
NO.
UHPI_HD[15]
(1)
(2)
(3)
DESCRIPTION
PRODUCT PREVIEW
SIGNAL
UHPI data bus
UHPI access control
UHPI data strobe
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
3.8.17 Reserved and No Connect
Table 3-20. Reserved and No Connect Terminal Functions
SIGNAL
NAME
RSV2
(1)
NO.
T19
TYPE (1)
PWR
DESCRIPTION
Reserved. For proper device operation, this pin must be tied directly to CVDD.
PWR = Supply voltage.
Submit Documentation Feedback
Device Overview
39
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 3-20. Reserved and No Connect Terminal Functions (continued)
SIGNAL
NAME
NC
NO.
M3, M14, N16
TYPE (1)
—
DESCRIPTION
No connect (Leave unconnected, do not connect to power or ground.)
PRODUCT PREVIEW
40
Device Overview
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
3.8.18 Supply and Ground
Table 3-21. Supply and Ground Terminal Functions
NAME
NO.
TYPE (1)
DESCRIPTION
CVDD (Core supply)
E15, G7, G8,
G13, H6, H7,
H10, H11,
H12, H13, J6,
J12, K6, K12,
L12, M8, M9,
N8
PWR
1.2-V core supply voltage pins
RVDD (Internal RAM supply)
E5, H14, N7
PWR
1.2V internal ram supply voltage pins
DVDD18 (I/O supply)
F14, G6, G10,
G11, G12,
J13, K5, L6,
N6, N9, N10,
P7, P8, P9,
P10, P13, R7,
R8, R9, R13
PWR
1.8V I/O supply voltage pins
DVDD3318_A (I/O supply)
F5, F15, G5,
G14, G15, H5
PWR
1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group A
DVDD3318_B (I/O supply)
E14, F6, F7,
F8, F10, F11,
F12, F13, G9,
J14, K15
PWR
1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group B
DVDD3318_C (I/O supply)
J5, K13, L4,
L13, M13,
N13, P5, P6,
P12, R4
PWR
1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group C
VSS (Ground)
A19, H8, H9,
H15, J7, J8,
J9, J10, J11,
K7, K8, K9,
K10, K11, L5,
L7, L8, L9,
L10, L11, M4,
M5, M6, M7,
M10, M11, N5,
N11, N12, P11
GND
Ground pins.
(1)
PWR = Supply voltage, GND - Ground.
Submit Documentation Feedback
Device Overview
41
PRODUCT PREVIEW
SIGNAL
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
4 Device Configuration
4.1 Boot Modes
This device supports a variety of boot modes through an internal DSP ROM bootloader. This device does
not support dedicated hardware boot modes; therefore, all boot modes utilize the internal DSP ROM. The
input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the
system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is
determined by the values of the BOOT pins.
See Using the D800K001 Bootloader Application Report (SPRAB04) for more details on the ROM Boot
Loader.
PRODUCT PREVIEW
The following boot modes are supported:
• NAND Flash boot
– 8-bit NAND
• NOR Flash boot
– NOR Direct boot (8-bit or 16-bit)
– NOR Legacy boot (8-bit or 16-bit)
– NOR AIS boot (8-bit or 16-bit)
• HPI Boot
• I2C0 Boot
– EEPROM (Master Mode)
– External Host (Slave Mode)
• SPI1 Boot
– Serial Flash (Master Mode)
– SERIAL EEPROM (Master Mode)
– External Host (Slave Mode)
• UART0 Boot
– External Host
4.2 SYSCFG Module
The following system level features of the chip are controlled by the SYSCFG peripheral:
• Readable Device, Die, and Chip Revision ID
• Control of Pin Multiplexing
• Priority of bus accesses different bus masters in the system
• Capture at power on reset the chip BOOT pin values and make them available to software
• Control of the DeepSleep power management function
• Enable and selection of the programmable pin pullups and pulldowns
• Special case settings for peripherals:
– Locking of PLL controller settings
– Default burst sizes for EDMA3 transfer controllers
– Selection of the source for the eCAP module input capture (including on chip sources)
– McASP AMUTEIN selection and clearing of AMUTE status for the McASP
– Clock source selection for EMIFA
– DDR2 Controller PHY settings
• Selects the source of emulation suspend signal (from DSP) of peripherals supporting this function.
Since the SYSCFG peripheral controls global operation of the device, its registers are protected against
erroneous accesses by several mechanisms:
42
Device Configuration
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
•
•
SPRS587 – JUNE 2009
A special key sequence must be written to KICK0, KICK1 registers before any other registers are
writeable.
Additionally, many registers are accessible only by a host (DSP) when it is operating in its privileged
mode. (ex. from the kernel, but not from user space code).
Table 4-1. System Configuration (SYSCFG) Module Register Access
Register Name
Register Description
Register Access
REVID
Revision Identification Register
—
0x01C14008
DIEIDR0
Device Identification Register 0
—
0x01C1400C
DIEIDR1
Device Identification Register 1
—
0x01C14010
DIEIDR2
Device Identification Register 2
—
0x01C14014
DIEIDR3
Device Identification Register 3
0x01C1 4020
BOOTCFG
Boot Configuration Register
Privileged mode
0x01C1 4038
KICK0R
Kick 0 Register
Privileged mode
0x01C1 403C
KICK1R
Kick 1 Register
Privileged mode
0x01C1 4044
HOST1CFG
Host 1 Configuration Register
0x01C1 40E0
IRAWSTAT
Interrupt Raw Status/Set Register
Privileged mode
0x01C1 40E4
IENSTAT
Interrupt Enable Status/Clear Register
Privileged mode
0x01C1 40E8
IENSET
Interrupt Enable Register
Privileged mode
0x01C1 40EC
IENCLR
Interrupt Enable Clear Register
Privileged mode
0x01C1 40F0
EOI
End of Interrupt Register
Privileged mode
0x01C1 40F4
FLTADDRR
Fault Address Register
Privileged mode
0x01C1 40F8
FLTSTAT
Fault Status Register
0x01C1 4110
MSTPRI0
Master Priority 0 Registers
Privileged mode
0x01C1 4114
MSTPRI1
Master Priority 1 Registers
Privileged mode
0x01C1 4118
MSTPRI2
Master Priority 2 Registers
Privileged mode
0x01C1 4120
PINMUX0
Pin Multiplexing Control 0 Register
Privileged mode
0x01C1 4124
PINMUX1
Pin Multiplexing Control 1 Register
Privileged mode
0x01C1 4128
PINMUX2
Pin Multiplexing Control 2 Register
Privileged mode
0x01C1 412C
PINMUX3
Pin Multiplexing Control 3 Register
Privileged mode
0x01C1 4130
PINMUX4
Pin Multiplexing Control 4 Register
Privileged mode
0x01C1 4134
PINMUX5
Pin Multiplexing Control 5 Register
Privileged mode
0x01C1 4138
PINMUX6
Pin Multiplexing Control 6 Register
Privileged mode
0x01C1 413C
PINMUX7
Pin Multiplexing Control 7 Register
Privileged mode
0x01C1 4140
PINMUX8
Pin Multiplexing Control 8 Register
Privileged mode
0x01C1 4144
PINMUX9
Pin Multiplexing Control 9 Register
Privileged mode
0x01C1 4148
PINMUX10
Pin Multiplexing Control 10 Register
Privileged mode
0x01C1 414C
PINMUX11
Pin Multiplexing Control 11 Register
Privileged mode
0x01C1 4150
PINMUX12
Pin Multiplexing Control 12 Register
Privileged mode
0x01C1 4154
PINMUX13
Pin Multiplexing Control 13 Register
Privileged mode
0x01C1 4158
PINMUX14
Pin Multiplexing Control 14 Register
Privileged mode
0x01C1 415C
PINMUX15
Pin Multiplexing Control 15 Register
Privileged mode
0x01C1 4160
PINMUX16
Pin Multiplexing Control 16 Register
Privileged mode
0x01C1 4164
PINMUX17
Pin Multiplexing Control 17 Register
Privileged mode
0x01C1 4168
PINMUX18
Pin Multiplexing Control 18 Register
Privileged mode
0x01C1 416C
PINMUX19
Pin Multiplexing Control 19 Register
Privileged mode
0x01C1 4170
SUSPSRC
Suspend Source Register
Privileged mode
0x01C1 4174
CHIPSIG
Chip Signal Register
—
0x01C1 4178
CHIPSIG_CLR
Chip Signal Clear Register
—
Submit Documentation Feedback
—
PRODUCT PREVIEW
Register Address
0x01C1 4000
—
—
Device Configuration
43
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 4-1. System Configuration (SYSCFG) Module Register Access (continued)
Register Address
Register Name
Register Description
Register Access
0x01C1 417C
CFGCHIP0
Chip Configuration 0 Register
Privileged mode
0x01C1 4180
CFGCHIP1
Chip Configuration 1 Register
Privileged mode
0x01C1 4188
CFGCHIP3
Chip Configuration 3 Register
Privileged mode
0x01C1 418C
CFGCHIP4
Chip Configuration 4 Register
Privileged mode
0x01E2 C000
VTPIO_CTL
VTPIO COntrol Register
Privileged mode
0x01E2 C004
DDR_SLEW
DDR Slew Register
Privileged mode
0x01E2 C008
DeepSleep
DeepSleep Register
Privileged mode
0x01E2 C00C
PUPD_ENA
Pullup / Pulldown Enable Register
Privileged mode
0x01E2 C010
PUPD_SEL
Pullup / Pulldown Selection Register
Privileged mode
0x01E2 C014
RXACTIVE
RXACTIVE Control Register
Privileged mode
PRODUCT PREVIEW
44
Device Configuration
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
5 Device Operating Conditions
5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range
(Unless Otherwise Noted) (1)
Core Logic, Variable and Fixed
(CVDD, RVDD, RTC_CVDD, PLL0_VDDA , PLL1_VDDA
I/O, 1.8V
(DDR_DVDD18)
Output voltage (VO) ranges
Clamp Current
(3)
-0.5 V to 1.4 V
-0.5 V to 2 V
(3)
I/O, 3.3V
(DVDD3318_A, DVDD3318_B, DVDD3318_C)
Input voltage (VI) ranges
,)
-0.5 V to 3.8V
(3)
Oscillator inputs (OSCIN, RTC_XI), 1.2V
-0.3 V to CVDD + 0.3V
Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Steady State)
-0.3V to DVDD + 0.3V
Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Transient)
DVDD + 20%
up to 20% of Signal
Period
Dual-voltage LVCMOS outputs, 3.3V or 1.8V
(Steady State)
-0.5 V to DVDD + 0.3V
Dual-voltage LVCMOS outputs, 3.3V or 1.8V
(Transient)
DVDD + 20%
up to 20% of Signal
Period
±20mA
Input or Output Voltages 0.3V above or below their respective power
rails. Limit clamp current that flows through the I/O's internal diode
protection cells.
Operating Junction Temperature ranges,
TJ
Commercial (default)
0°C to 90°C
Extended (A version)
-40°C to 105°C
Storage temperature range, Tstg
(default)
-55°C to 150°C
(1)
(2)
(3)
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
This pin is an internal LDO output and connected via 0.22 F capacitor to VSS
All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS, RTC_VSS
Submit Documentation Feedback
Device Operating Conditions
45
PRODUCT PREVIEW
Supply voltage ranges
(2)
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
5.2 Recommended Operating Conditions
NAME
CVDD
Supply
Voltage
MIN
NOM
MAX
UNIT
1.14
1.2 or 1.26
1.32
V
1.1V operating point
1.05
1.1
1.16
V
1.0V operating point
0.95
1.0
1.05
V
Internal RAM Supply Voltage
1.14
1.2 or 1.26
1.32
V
RTC_CVDD
RTC Core Logic Supply Voltage
1.14
1.2 or 1.26
1.32
V
PLL0_VDDA
PLL0 Supply Voltage
1.14
1.2 or 1.26
1.32
V
PLL1_VDDA
PLL1 Supply Voltage
1.14
1.2 or 1.26
1.32
V
DDR_DVDD18
DDR2 PHY Supply Voltage
1.71
1.8
1.89
V
0.49*
DDR_DVDD18
0.5*
DDR_DVDD1
8
0.51*
DDR_DVDD18
V
PRODUCT PREVIEW
DDR_VREF
DDR2/mDDR reference voltage
DDR_ZP
DDR2/mDDR impedance control,
connected via 200Ω resistor to Vss
DVDD3318_A
Power Group A Dual-voltage IO
Supply Voltage
1.8V operating point
1.71
1.8
1.89
V
3.3V operating point
3.15
3.3
3.45
V
Power Group B Dual-voltage IO
Supply Voltage
1.8V operating point
1.71
1.8
1.89
V
3.3V operating point
3.15
3.3
3.45
V
DVDD3318_C
Power Group C Dual-voltage IO
Supply Voltage
1.8V operating point
1.71
1.8
1.89
V
3.3V operating point
3.15
3.3
3.45
V
VSS
Core Logic Digital Ground
V
PLL0_VSSA
PLL0 Ground
V
PLL1_VSSA
PLL1 Ground
V
Oscillator Ground
V
OSCVSS
(1)
RTC Oscillator Ground
VIH
High-level input voltage, Dual-voltage I/O, 3.3V (2)
V
0.65*DVDD
V
High-level input voltage, RTC_XI
0.8*RTC_CVDD
V
High-level input voltage, OSCIN
0.8*CVDD
tt
46
V
0.8
V
0.35*DVDD
V
Low-level input voltage, RTC_XI
0.2*RTC_CVDD
V
Low-level input voltage, OSCIN
0.2*CVDD
V
5
ns
(2)
10%-90%, All Inputs (except USB0 and DDR2)
FSYSCLK1,6
Extended temperature grade (A
suffix)
(2)
(2)
Low-level input voltage, Dual-voltage I/O, 3.3V (2)
Commercial temperature grade
(default)
(1)
V
High-level input voltage, Dual-voltage I/O, 1.8V
Voltage
Input Low
V
2
High-level input voltage, Dual-voltage I/O, 1.8V
VIL
Operating
Frequency
Vss
RTC_VSS (1)
Voltage
Input High
Transition
Time
CONDITION
1.2V operating point
RVDD
DVDD3318_B
Supply
Ground
DESCRIPTION
Core Logic Supply Voltage (variable)
CVDD = 1.2V
operating point
0
300
CVDD = 1.1V
operating point
0
200
CVDD = 1.0V
operating point
0
100
CVDD = 1.2V
operating point
0
300
CVDD = 1.1V
operating point
0
200
CVDD = 1.0V
operating point
0
100
MHz
MHz
When an external crystal is used oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected
directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on
the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground.
These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR . DDR2/mDDR IOs are 1.8V IOs and
adhere to the JESD79-2A standard.
Device Operating Conditions
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating
Junction Temperature (Unless Otherwise Noted)
VOH
TEST CONDITIONS
High-level output voltage
(dual-voltage LVCMOS IOs at 3.3V) (1)
High-level output voltage
(dual-voltage LVCMOS IOs at 1.8V) (1)
VOL
Low-level output voltage
(dual-voltage LVCMOS I/Os at 3.3V)
Low-level output voltage
(dual-voltage LVCMOS I/Os at 1.8V)
MIN
TYP
II
(2)
Input current
(dual-voltage LVCMOS I/Os)
UNIT
2.4
V
DVDD = 3.15V, IOH = -100 µA
2.95
V
DVDD-0.45
V
DVDD = 1.65V, IOH = -2 mA
DVDD = 3.15V, IOL = 4mA
0.4
V
DVDD = 3.15V, IOL = -100 µA
0.2
V
DVDD = 1.65V, IOL = 2mA
0.45
V
±9
µA
VI = VSS to DVDD without opposing
internal resistor
(1)
MAX
DVDD = 3.15V, IOH = -4 mA
VI = VSS to DVDD with opposing
internal pullup resistor (3)
70
310
µA
VI = VSS to DVDD with opposing
internal pulldown resistor (3)
-75
-270
µA
All peripherals
-6
mA
All peripherals
6
mA
(1)
IOH
High-level output current
(dual-voltage LVCMOS I/Os)
(1)
IOL
Low-level output current
(dual-voltage LVCMOS I/Os)
Input capacitance (dual-voltage LVCMOS)
Capacit
Output capacitance (dual-voltage
ance
LVCMOS)
(1)
(2)
(3)
3
pF
3
pF
These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR . DDR2/mDDR IOs are 1.8V IOs and
adhere to the JESD79-2A standard.
II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II
indicates the input leakage current and off-state (Hi-Z) output leakage current.
Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.
Submit Documentation Feedback
Device Operating Conditions
47
PRODUCT PREVIEW
PARAMETER
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6 Peripheral Information and Electrical Specifications
6.1 Parameter Information
6.1.1
Parameter Information Device-Specific Information
Tester Pin Electronics
42 Ω
3.5 nH
Transmission Line
PRODUCT PREVIEW
Z0 = 50 Ω
(see note)
4.0 pF
A.
1.85 pF
Data Sheet Timing Reference Point
Output
Under
Test
Device Pin
(see note)
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to
add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the
device pin.
Figure 6-1. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. This
load capacitance value does not indicate the maximum load the device is capable of driving.
6.1.1.1
Signal Transition Levels
All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O,
Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V.
Vref
Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks,
VOLMAX and VOH MIN for output clocks
Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels
48
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.2 Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic
manner.
6.3 Power Supplies
Power-on Sequence
The device should be powered-on in the following order:
• 1) RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other
supplies being applied. If the RTC is not used, RTC_CVDD should be connected to CVDD.
• 2a) All variable 1.2V - 1.0V core logic supplies (CVDD)
• 2b) All static 1.2V logic supplies (RVDD, VDDA_12_PLL0, VDDA_12_PLL1). If voltage scaling is not
used on the device, groups 2a) and 2b) can be controlled from the same power supply and powered
up together.
• 3) All static 1.8V IO supplies (DVDD18, DDR_DVDD18) and any of the LVCMOS IO supply groups
used at 1.8V nominal (DVDD3318_A, DVDD3318_B, or DVDD3318_C).
• 4)LVCMOS IO supply groups used at 3.3V nominal (DVDD3318_A, DVDD3318_B, or DVDD3318_C).
There is no specific required voltage ramp rate for any of the supplies as long as the LVCMOS supplies
operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed the STATIC 1.8V
supplies by more than 2 volts.
6.3.2
Power-off Sequence
The power supplies can be powered-off in any order as long as LVCMOS supplies operated at 3.3V
(DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed static 1.8V supplies by more than 2 volts.
There is no specific required voltage ramp down rate for any of the supplies (except as required to meet
the above mentioned voltage condition).
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
49
PRODUCT PREVIEW
6.3.1
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.4 Reset
6.4.1
Power-On Reset (POR)
A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On
Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal
logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active
through the reset sequence. RESETOUT is an output for use by other controllers in the system that
indicates the device is currently in reset.
PRODUCT PREVIEW
A summary of the effects of Power-On Reset is given below:
• All internal logic (including emulation logic and the PLL logic) is reset to its default state
• Internal memory is not maintained through a POR
• RESETOUT goes active
• All device pins go to a high-impedance state
• The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC
A watchdog reset triggers a POR.
6.4.2
Warm Reset
A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low
(TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their
default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which
remains active through the reset sequence. RESETOUT is an output for use by other controllers in the
system that indicates the device is currently in reset.
A summary of the effects of Warm Reset is given below:
• All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
• Internal memory is maintained through a warm reset
• RESETOUT goes active
• All device pins go to a high-impedance state
• The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the
RTC
50
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
6.4.3
SPRS587 – JUNE 2009
Reset Electrical Data Timings
Table 6-1 assumes testing over the recommended operating conditions.
NO.
(2)
)
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
UNIT
MAX
1
tw(RSTL)
Pulse width, RESET/TRST low
100
100
100
ns
2
tsu(BPV-RSTH)
Setup time, boot pins valid before RESET/TRST high
20
20
20
ns
3
th(RSTH-BPV)
Hold time, boot pins valid after RESET/TRST high
20
20
20
ns
4
5
(1)
(2)
(3)
td(RSTH-RESETOUTH) RESET high to RESETOUT high; Warm reset
td(RSTL-RESETOUTL)
14
16
20
RESET high to RESETOUT high; Power-on Reset
14
16
20
Delay time, RESET/TRST low to RESETOUT low
14
16
20
cycles (3)
ns
PRODUCT PREVIEW
Table 6-1. Reset Timing Requirements ( (1),
RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-4 for details.
For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this
table refer to RESET only (TRST is held high).
OSCIN cycles.
Power
Supplies
Ramping
Power Supplies Stable
Clock Source Stable
OSCIN
1
RESET
TRST
4
RESETOUT
3
2
Boot Pins
Config
Figure 6-4. Power-On Reset (RESET and TRST active) Timing
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
51
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Power Supplies Stable
OSCIN
TRST
1
RESET
5
4
RESETOUT
PRODUCT PREVIEW
3
2
Boot Pins
Driven or Hi-Z
Config
Figure 6-5. Warm Reset (RESET active, TRST high) Timing
52
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.5 Crystal Oscillator or External Clock Input
The device includes two choices to provide an external clock input, which is fed to the on-chip PLLs to
generate high-frequency system clocks. These options are illustrated in Figure 6-6 and Figure 6-7. For
input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For
input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended.
Typical C1, C2 values are 10-20 pF.
Figure 6-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. Figure 6-7
illustrates the option that uses an external 1.2V clock input.
C2
Clock Input
to PLL
OSCIN
PRODUCT PREVIEW
X1
OSCOUT
C1
OSCVSS
Figure 6-6. On-Chip Oscillator
Table 6-2. Oscillator Timing Requirements
PARAMETER
fosc
Oscillator frequency range (OSCIN/OSCOUT)
Submit Documentation Feedback
MIN
MAX
UNIT
12
30
MHz
Peripheral Information and Electrical Specifications
53
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
OSCIN
NC
Clock
Input
to PLL
OSCOUT
OSCVSS
PRODUCT PREVIEW
Figure 6-7. External 1.2V Clock Source
Table 6-3. OSCIN Timing Requirements for an Externally Driven Clock
PARAMETER
fCLKIN
OSCIN frequency range
tc(CLKIN)
Cycle time, external clock driven on OSCIN
MIN
MAX
UNIT
12
50
MHz
20
ns
tw(CLKINH) Pulse width high, external clock on OSCIN
0.4 tc(CLKIN)
ns
tw(CLKINL)
Pulse width low, external clock on OSCIN
0.4 tc(CLKIN)
ns
tt(CLKIN)
Transition time, OSCIN
5
ns
6.6 Clock PLLs
The device has two PLL controllers that provide clocks to different parts of the system. PLL0 provides
clocks (though various dividers) to most of the components of the device. PLL1 provides clocks to the
mDDR/DDR2 Controller and provides an alternate clock source for the ASYNC3 clock domain. This allows
the peripherals on the ASYNC3 clock domain to be immune to frequency scaling operation on PLL0.
The PLL controller provides the following:
• Glitch-Free Transitions (on changing clock settings)
• Domain Clocks Alignment
• Clock Gating
• PLL power down
The various clock outputs given by the controller are as follows:
• Domain Clocks: SYSCLK [1:n]
• Auxiliary Clock from reference clock source: AUXCLK
Various dividers that can be used are as follows:
• Post-PLL Divider: POSTDIV
• SYSCLK Divider: D1, , Dn
Various other controls supported are as follows:
• PLL Multiplier Control: PLLM
• Software programmable PLL Bypass: PLLEN
6.6.1
PLL Device-Specific Information
The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL.
54
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
The PLL requires some external filtering components to reduce power supply noise as shown in
Figure 6-8.
1.14V - 1.32V
50R
PLLn_VDDA
0.1
µF
VSS
50R
0.01
µF
PLLn_VSSA
Ferrite Bead: Murata BLM31PG500SN1L or Equivalent
The input to the PLL is either from the on-chip oscillator or from an external clock on the OSCIN pin. PLL0
outputs seven clocks that have programmable divider options. PLL1 outputs three clocks that have
programmable divider options. Figure 6-9 illustrates the high-level view of the PLL Topology.
The PLLs are disabled by default after a device reset. They must be configured by software according to
the allowable operating conditions listed in Table 6-4 before enabling the device to run from the PLL by
setting PLLEN = 1.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
55
PRODUCT PREVIEW
Figure 6-8. PLL External Filtering Components
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
PLL Controller 0
PLLCTL[EXTCLKSRC]
PLL1_SYSCLK3
1
PLLCTL[PLLEN]
PLLCTL[CLKMODE]
CLKIN
1
OSCIN
0
0
PREDIV
POSTDIV
PLL
0
PLLDIV1 (/1)
SYSCLK1
1
PLLDIV2 (/2)
SYSCLK2
PLLDIV4 (/4)
SYSCLK4
PLLDIV5 (/3)
SYSCLK5
PLLDIV6 (/1)
SYSCLK6
PLLDIV7 (/6)
SYSCLK7
PLLDIV3 (/3)
SYSCLK3
PLLM
PRODUCT PREVIEW
EMIFA
Internal
Clock
Source
0
DIV4.5
1
CFGCHIP3[EMA_CLKSRC]
AUXCLK
OBSCLK
(OBSCLK Pin)
DIV4.5
OSCDIV
PLL Controller 1
PLLCTL[PLLEN]
PLL
POSTDIV
PLLM
0
PLLDIV2 (/2)
SYSCLK2
1
PLLDIV3 (/3)
SYSCLK3
PLLDIV1 (/1)
SYSCLK1
DDR2/mDDR
Internal
Clock
Source
Figure 6-9. PLL Topology
56
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
NO.
1
PARAMETER
PLLRST: Assertion time during initialization
2
Lock time: The time that the application has to
wait for the PLL to acquire lock before setting
PLLEN, after changing PREDIV, PLLM, or
OSCIN
3
PREDIV: Pre-divider value
4
PLLREF: PLL input frequency
5
PLLM: PLL multiplier values
6
PLLOUT: PLL output frequency
7
(1)
POSTDIV: Post-divider value
Default
Value
MIN
MAX
UNIT
N/A
125
N/A
ns
N/A
2000 N
Max PLL Lock Time =
m
where N = Pre-Divider Ratio
M = PLL Multiplier
OSCIN
cycles
N/A
/1
/1
/32
ns
12
50
MHz
x20
x4
x32
N/A
400
600 (1)
MHz
/32
ns
/1
/2
(1)
PLL post divider / 2 must be used. The /4.5 clock path can be used to generate an EMIF clock from the undivided (i.e. 600 MHz) PLL
output clock.
6.6.2
Device Clock Generation
PLL0 is controlled by PLL Controller 0 and PLL1 is controlled by PLL Controller 1. PLLC0 and PLLC1
manage the clock ratios, alignment, and gating for the system clocks to the chip. The PLLCs are
responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock
inputs (PLLC0 only), multiply factors within the PLLs, and post-division for each of the chip-level clocks
from the PLLs outputs. PLLC0 also controls reset propagation through the chip, clock alignment, and test
points.
PLLC0 provides clocks for the majority of the system but PLLC1 provides clocks to the mDDR/DDR2
Controller and the ASYNC3 clock domain to provide frequency scaling immunity to a defined set or
peripherals. The ASYNC3 clock domain can either derive its clock from PLL1_SYSCLK2 (for frequency
scaling immunity from PLL0) or from PLL0_SYSCLK2 (for synchronous timing with PLL0) depending on
the application requirements. In addition, some peripherals have specific clock options independent of the
ASYNC clock domain.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
57
PRODUCT PREVIEW
Table 6-4. Allowed PLL Operating Conditions (PLL0 and PLL1)
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.7 Interrupts
The device has a large number of interrupts to service the needs of its many peripherals and subsystems.
PRODUCT PREVIEW
58
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
6.7.1
SPRS587 – JUNE 2009
DSP Interrupts
PRODUCT PREVIEW
The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for
each of the 12 CPU interrupts is user programmable and is listed in Table 6-5. Also, the interrupt
controller controls the generation of the CPU exceptions, NMI, and emulation interrupts. Table 6-6
summarizes the C674x interrupt controller registers and memory locations.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
59
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-5. C6742 DSP Interrupts
PRODUCT PREVIEW
60
EVT#
Interrupt Name
0
EVT0
Source
C674x Int Ctl 0
1
EVT1
C674x Int Ctl 1
2
EVT2
C674x Int Ctl 2
3
EVT3
C674x Int Ctl 3
4
T64P0_TINT12
5
SYSCFG_CHIPINT2
Timer64P0 - TINT12
6
-
7
EHRPWM0
8
EDMA3_0_CC0_INT1
9
EMU_DTDMA
C674x-ECM
10
EHRPWM0TZ
HiResTimer/PWM0 Trip Zone Interrupt
11
EMU_RTDXRX
C674x-RTDX
12
EMU_RTDXTX
C674x-RTDX
13
IDMAINT0
C674x-EMC
14
IDMAINT1
C674x-EMC
15
-
Reserved
16
-
Reserved
17
-
Reserved
18
EHRPWM1
19
-
Reserved
20
-
Reserved
21
-
Reserved
22
-
Reserved
23
EHRPWM1TZ
24
-
Reserved
25
-
Reserved
26
-
Reserved
27
-
Reserved
28
-
Reserved
29
-
Reserved
30
-
Reserved
31
-
Reserved
32
-
Reserved
33
-
Reserved
34
UHPI_DSPINT
35
-
36
IIC0_INT
SYSCFG CHIPSIG Register
Reserved
HiResTimer/PWM0 Interrupt
EDMA3_0 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt
HiResTimer/PWM1 Interrupt
HiResTimer/PWM1 Trip Zone Interrupt
UHPI DSP Interrupt
Reserved
I2C0
37
-
38
UART0_INT
39
-
40
T64P1_TINT12
Timer64P1 Interrupt 12
41
GPIO_B1INT
GPIO Bank 1 Interrupt
42
-
43
SPI1_INT
44
-
45
ECAP0
Peripheral Information and Electrical Specifications
Reserved
UART0
Reserved
Reserved
SPI1
Reserved
ECAP0
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-5. C6742 DSP Interrupts (continued)
EVT#
Interrupt Name
46
-
47
ECAP1
48
T64P1_TINT34
Timer64P1 Interrupt 34
49
GPIO_B2INT
GPIO Bank 2 Interrupt
50
ECAP2
52
GPIO_B3INT
53
-
54
GPIO_B4INT
Reserved
ECAP1
Reserved
ECAP2
GPIO Bank 3 Interrupt
Reserved
GPIO Bank 4 Interrupt
55
EMIFA_INT
56
EDMA3_0_CC0_ERRINT
EDMA3_0 Channel Controller 0 Error Interrupt
57
EDMA3_0_TC0_ERRINT
EDMA3_0 Transfer Controller 0 Error Interrupt
58
EDMA3_0_TC1_ERRINT
EDMA3_0 Transfer Controller 1 Error Interrupt
59
GPIO_B5INT
60
DDR2_MEMERR
61
MCASP0_INT
McASP0 Combined RX/TX Interrupts
62
GPIO_B6INT
GPIO Bank 6 Interrupt
63
RTC_IRQS
64
T64P0_TINT34
Timer64P0 Interrupt 34
65
GPIO_B0INT
GPIO Bank 0 Interrupt
66
-
67
SYSCFG_CHIPINT3
68
-
Reserved
69
-
Reserved
70
PSC0_ALLINT
PSC0
71
PSC1_ALLINT
PSC1
72
GPIO_B7INT
74
PROTERR
75
GPIO_B8INT
76
-
Reserved
77
-
Reserved
78
-
Reserved
79
-
Reserved
80
-
Reserved
81
-
Reserved
82
-
Reserved
83
-
Reserved
84
-
Reserved
85
-
Reserved
86
-
Reserved
87
-
Reserved
88
-
Reserved
89
MCBSP1_RINT
McBSP1 Receive Interrupt
90
MCBSP1_XINT
McBSP1 Transmit Interrupt
91
EDMA3_1_CC0_INT1
92
EDMA3_1_CC0_ERRINT
Submit Documentation Feedback
EMIFA
PRODUCT PREVIEW
51
Source
GPIO Bank 5 Interrupt
DDR2 Memory Error Interrupt
RTC Combined
Reserved
SYSCFG_CHIPSIG Register
GPIO Bank 7 Interrupt
SYSCFG Protection Shared Interrupt
GPIO Bank 8 Interrupt
EDMA3_1 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt
EDMA3_1 Channel Controller 0 Error Interrupt
Peripheral Information and Electrical Specifications
61
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-5. C6742 DSP Interrupts (continued)
PRODUCT PREVIEW
62
EVT#
Interrupt Name
93
EDMA3_1_TC0_ERRINT
94
-
Reserved
95
-
Reserved
96
INTERR
C674x-Int Ctl
97
EMC_IDMAERR
C674x-EMC
98
-
Reserved
99
-
Reserved
100
-
Reserved
101
-
Reserved
102
-
Reserved
103
-
Reserved
104
-
Reserved
105
-
Reserved
106
-
Reserved
107
-
Reserved
108
-
Reserved
109
-
Reserved
110
-
Reserved
111
-
Reserved
112
-
Reserved
113
PMC_ED
114
-
Reserved
115
-
Reserved
116
UMC_ED1
C674x-UMC
117
UMC_ED2
C674x-UMC
118
PDC_INT
C674x-PDC
119
SYS_CMPA
C674x-SYS
120
PMC_CMPA
C674x-PMC
121
PMC_CMPA
C674x-PMC
122
DMC_CMPA
C674x-DMC
123
DMC_CMPA
C674x-DMC
124
UMC_CMPA
C674x-UMC
125
UMC_CMPA
C674x-UMC
126
EMC_CMPA
C674x-EMC
127
EMC_BUSERR
C674x-EMC
Peripheral Information and Electrical Specifications
Source
EDMA3_1 Transfer Controller 0 Error Interrupt
C674x-PMC
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
BYTE ADDRESS
REGISTER NAME
DESCRIPTION
0x0180 0000
EVTFLAG0
Event flag register 0
0x0180 0004
EVTFLAG1
Event flag register 1
0x0180 0008
EVTFLAG2
Event flag register 2
0x0180 000C
EVTFLAG3
Event flag register 3
0x0180 0020
EVTSET0
Event set register 0
0x0180 0024
EVTSET1
Event set register 1
0x0180 0028
EVTSET2
Event set register 2
0x0180 002C
EVTSET3
Event set register 3
0x0180 0040
EVTCLR0
Event clear register 0
0x0180 0044
EVTCLR1
Event clear register 1
0x0180 0048
EVTCLR2
Event clear register 2
0x0180 004C
EVTCLR3
Event clear register 3
0x0180 0080
EVTMASK0
Event mask register 0
0x0180 0084
EVTMASK1
Event mask register 1
0x0180 0088
EVTMASK2
Event mask register 2
0x0180 008C
EVTMASK3
Event mask register 3
0x0180 00A0
MEVTFLAG0
Masked event flag register 0
0x0180 00A4
MEVTFLAG1
Masked event flag register 1
0x0180 00A8
MEVTFLAG2
Masked event flag register 2
0x0180 00AC
MEVTFLAG3
Masked event flag register 3
0x0180 00C0
EXPMASK0
Exception mask register 0
0x0180 00C4
EXPMASK1
Exception mask register 1
0x0180 00C8
EXPMASK2
Exception mask register 2
0x0180 00CC
EXPMASK3
Exception mask register 3
0x0180 00E0
MEXPFLAG0
Masked exception flag register 0
0x0180 00E4
MEXPFLAG1
Masked exception flag register 1
0x0180 00E8
MEXPFLAG2
Masked exception flag register 2
0x0180 00EC
MEXPFLAG3
Masked exception flag register 3
0x0180 0104
INTMUX1
Interrupt mux register 1
0x0180 0108
INTMUX2
Interrupt mux register 2
0x0180 010C
INTMUX3
Interrupt mux register 3
0x0180 0140 - 0x0180 0144
-
Reserved
0x0180 0180
INTXSTAT
Interrupt exception status
0x0180 0184
INTXCLR
Interrupt exception clear
0x0180 0188
INTDMASK
Dropped interrupt mask register
0x0180 01C0
EVTASRT
Event assert register
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
PRODUCT PREVIEW
Table 6-6. C674x DSP Interrupt Controller Registers
63
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.8 Power and Sleep Controller (PSC)
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off,
clock on/off, resets (device level and module level). It is used primarily to provide granular power control
for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of
Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for
each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC
and provides clock and reset control.
PRODUCT PREVIEW
The PSC includes the following features:
• Provides a software interface to:
– Control module clock enable/disable
– Control module reset
– Control CPU local reset
• Supports IcePick emulation features: power, clock and reset
PSC0 controls 16 local PSCs.
PSC1 controls 32 local PSCs.
Table 6-7. Power and Sleep Controller (PSC) Registers
PSC0 BYTE
ADDRESS
PSC1 BYTE
ADDRESS
0x01C1 0000
0x01E2 7000
REVID
Peripheral Revision and Class Information Register
0x01C1 0018
0x01E2 7018
INTEVAL
Interrupt Evaluation Register
0x01C1 0040
0x01E2 7040
MERRPR0
Module Error Pending Register 0 (module 0-15) (PSC0)
0x01C1 0050
0x01E2 7050
MERRCR0
0x01C1 0060
0x01E2 7060
PERRPR
Power Error Pending Register
0x01C1 0068
0x01E2 7068
PERRCR
Power Error Clear Register
0x01C1 0120
0x01E2 7120
PTCMD
Power Domain Transition Command Register
0x01C1 0128
0x01E2 7128
PTSTAT
Power Domain Transition Status Register
0x01C1 0200
0x01E2 7200
PDSTAT0
Power Domain 0 Status Register
0x01C1 0204
0x01E2 7204
PDSTAT1
Power Domain 1 Status Register
0x01C1 0300
0x01E2 7300
PDCTL0
Power Domain 0 Control Register
0x01C1 0304
0x01E2 7304
PDCTL1
Power Domain 1 Control Register
0x01C1 0400
0x01E2 7400
PDCFG0
Power Domain 0 Configuration Register
0x01C1 0404
0x01E2 7404
PDCFG1
Power Domain 1 Configuration Register
0x01C1 0800
0x01E2 7800
MDSTAT0
Module 0 Status Register
0x01C1 0804
0x01E2 7804
MDSTAT1
Module 1 Status Register
0x01C1 0808
0x01E2 7808
MDSTAT2
Module 2 Status Register
0x01C1 080C
0x01E2 780C
MDSTAT3
Module 3 Status Register
0x01C1 0810
0x01E2 7810
MDSTAT4
Module 4 Status Register
0x01C1 0814
0x01E2 7814
MDSTAT5
Module 5 Status Register
ACRONYM
REGISTER DESCRIPTION
Module Error Pending Register 0 (module 0-31) (PSC1)
Module Error Clear Register 0 (module 0-15) (PSC0)
Module Error Clear Register 0 (module 0-31) (PSC1)
64
0x01C1 0818
0x01E2 7818
MDSTAT6
Module 6 Status Register
0x01C1 081C
0x01E2 781C
MDSTAT7
Module 7 Status Register
0x01C1 0820
0x01E2 7820
MDSTAT8
Module 8 Status Register
0x01C1 0824
0x01E2 7824
MDSTAT9
Module 9 Status Register
0x01C1 0828
0x01E2 7828
MDSTAT10
Module 10 Status Register
0x01C1 082C
0x01E2 782C
MDSTAT11
Module 11 Status Register
0x01C1 0830
0x01E2 7830
MDSTAT12
Module 12 Status Register
0x01C1 0834
0x01E2 7834
MDSTAT13
Module 13 Status Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-7. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTE
ADDRESS
PSC1 BYTE
ADDRESS
0x01C1 0838
0x01E2 7838
MDSTAT14
Module 14 Status Register
0x01C1 083C
0x01E2 783C
MDSTAT15
Module 15 Status Register
-
0x01E2 7840
MDSTAT16
Module 16 Status Register
-
0x01E2 7844
MDSTAT17
Module 17 Status Register
-
0x01E2 7848
MDSTAT18
Module 18 Status Register
-
0x01E2 784C
MDSTAT19
Module 19 Status Register
-
0x01E2 7850
MDSTAT20
Module 20 Status Register
-
0x01E2 7854
MDSTAT21
Module 21 Status Register
-
0x01E2 7858
MDSTAT22
Module 22 Status Register
-
0x01E2 785C
MDSTAT23
Module 23 Status Register
-
0x01E2 7860
MDSTAT24
Module 24 Status Register
-
0x01E2 7864
MDSTAT25
Module 25 Status Register
-
0x01E2 7868
MDSTAT26
Module 26 Status Register
-
0x01E2 786C
MDSTAT27
Module 27 Status Register
-
0x01E2 7870
MDSTAT28
Module 28 Status Register
-
0x01E2 7874
MDSTAT29
Module 29 Status Register
-
0x01E2 7878
MDSTAT30
Module 30 Status Register
-
0x01E2 787C
MDSTAT31
Module 31 Status Register
0x01C1 0A00
0x01E2 7A00
MDCTL0
Module 0 Control Register
0x01C1 0A04
0x01E2 7A04
MDCTL1
Module 1 Control Register
0x01C1 0A08
0x01E2 7A08
MDCTL2
Module 2 Control Register
0x01C1 0A0C
0x01E2 7A0C
MDCTL3
Module 3 Control Register
0x01C1 0A10
0x01E2 7A10
MDCTL4
Module 4 Control Register
0x01C1 0A14
0x01E2 7A14
MDCTL5
Module 5 Control Register
REGISTER DESCRIPTION
0x01C1 0A18
0x01E2 7A18
MDCTL6
Module 6 Control Register
0x01C1 0A1C
0x01E2 7A1C
MDCTL7
Module 7 Control Register
0x01C1 0A20
0x01E2 7A20
MDCTL8
Module 8 Control Register
0x01C1 0A24
0x01E2 7A24
MDCTL9
Module 9 Control Register
0x01C1 0A28
0x01E2 7A28
MDCTL10
Module 10 Control Register
0x01C1 0A2C
0x01E2 7A2C
MDCTL11
Module 11 Control Register
0x01C1 0A30
0x01E2 7A30
MDCTL12
Module 12 Control Register
0x01C1 0A34
0x01E2 7A34
MDCTL13
Module 13 Control Register
0x01C1 0A38
0x01E2 7A38
MDCTL14
Module 14 Control Register
0x01C1 0A3C
0x01E2 7A3C
MDCTL15
Module 15 Control Register
-
0x01E2 7A40
MDCTL16
Module 16 Control Register
-
0x01E2 7A44
MDCTL17
Module 17 Control Register
-
0x01E2 7A48
MDCTL18
Module 18 Control Register
-
0x01E2 7A4C
MDCTL19
Module 19 Control Register
-
0x01E2 7A50
MDCTL20
Module 20 Control Register
-
0x01E2 7A54
MDCTL21
Module 21 Control Register
-
0x01E2 7A58
MDCTL22
Module 22 Control Register
-
0x01E2 7A5C
MDCTL23
Module 23 Control Register
-
0x01E2 7A60
MDCTL24
Module 24 Control Register
-
0x01E2 7A64
MDCTL25
Module 25 Control Register
-
0x01E2 7A68
MDCTL26
Module 26 Control Register
-
0x01E2 7A6C
MDCTL27
Module 27 Control Register
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
PRODUCT PREVIEW
ACRONYM
65
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-7. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTE
ADDRESS
PSC1 BYTE
ADDRESS
-
0x01E2 7A70
MDCTL28
Module 28 Control Register
-
0x01E2 7A74
MDCTL29
Module 29 Control Register
-
0x01E2 7A78
MDCTL30
Module 30 Control Register
-
0x01E2 7A7C
MDCTL31
Module 31 Control Register
6.8.1
ACRONYM
REGISTER DESCRIPTION
Power Domain and Module Topology
The device includes two PSC modules.
PRODUCT PREVIEW
Each PSC module controls clock states for several of the on chip modules, controllers and interconnect
components. Table 6-8 and Table 6-9 lists the set of peripherals/modules that are controlled by the PSC,
the power domain they are associated with, the LPSC assignment and the default (power-on reset)
module states. See the device-specific data manual for the peripherals available on a given device. The
module states and terminology are defined in Section 6.8.1.2.
Table 6-8. PSC0 Default Module Configuration
LPSC
Number
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
0
EDMA3 Channel Controller 0
AlwaysON (PD0)
SwRstDisable
—
1
EDMA3 Transfer Controller 0
AlwaysON (PD0)
SwRstDisable
—
2
EDMA3 Transfer Controller 1
AlwaysON (PD0)
SwRstDisable
—
3
EMIFA (Br7)
AlwaysON (PD0)
SwRstDisable
—
4
—
—
—
—
5
—
—
—
—
6
—
—
—
—
7
—
—
—
—
8
—
—
—
—
9
UART 0
AlwaysON (PD0)
SwRstDisable
—
10
SCR0 (Br 0, Br 1, Br 2, Br 8)
AlwaysON (PD0)
Enable
Yes
11
SCR1 (Br 4)
AlwaysON (PD0)
Enable
Yes
12
SCR2 (Br 3, Br 5, Br 6)
AlwaysON (PD0)
Enable
Yes
13
—
—
—
—
14
—
—
—
—
15
DSP
PD_DSP (PD1)
Enable
—
66
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
LPSC
Number
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
0
EDMA3 Channel Controller 1
AlwaysON (PD0)
SwRstDisable
—
1
—
—
—
—
2
—
—
—
—
3
GPIO
AlwaysON (PD0)
SwRstDisable
—
4
UHPI
AlwaysON (PD0)
SwRstDisable
—
5
—
—
—
—
6
DDR2 (and SCR_F3)
AlwaysON (PD0)
SwRstDisable
—
7
McASP0 ( + McASP0 FIFO)
AlwaysON (PD0)
SwRstDisable
—
8
—
—
—
—
9
—
—
—
—
10
SPI 1
AlwaysON (PD0)
SwRstDisable
—
11
—
—
—
—
12
—
—
—
—
13
—
—
—
—
14
—
—
—
—
15
McBSP1 ( + McBSP1 FIFO)
AlwaysON (PD0)
SwRstDisable
—
17
eHRPWM0/1
AlwaysON (PD0)
SwRstDisable
—
18
—
—
—
—
19
—
—
—
—
20
ECAP0/1/2
AlwaysON (PD0)
SwRstDisable
—
21
EDMA3 Transfer Controller 2
AlwaysON (PD0)
SwRstDisable
—
22
—
—
—
—
23
—
—
—
—
24
SCR_F0 (and bridge F0)
AlwaysON (PD0)
Enable
Yes
25
SCR_F1 (and bridge F1)
AlwaysON (PD0)
Enable
Yes
26
SCR_F2 (and bridge F2)
AlwaysON (PD0)
Enable
Yes
27
SCR_F6 (and bridge F3)
AlwaysON (PD0)
Enable
Yes
28
SCR_F7 (and bridge F4)
AlwaysON (PD0)
Enable
Yes
29
SCR_F8 (and bridge F5)
AlwaysON (PD0)
Enable
Yes
30
Bridge F7 (DDR Controller path)
AlwaysON (PD0)
Enable
Yes
31
—
—
—
—
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
PRODUCT PREVIEW
Table 6-9. PSC1 Default Module Configuration
67
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.8.1.1 Power Domain States
A power domain can only be in one of the two states: ON or OFF, defined as follows:
• ON: power to the domain is on
• OFF: power to the domain is off
For both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when
the chip is powered-on. This domain is not programmable to OFF state.
• On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories
6.8.1.2 Module States
The PSC defines several possible states for a module. This states are essentially a combination of the
module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are
defined in Table 6-10.
PRODUCT PREVIEW
Table 6-10. Module States
Module State
Module Reset
Module
Clock
Module State Definition
Enable
De-asserted
On
A module in the enable state has its module reset de-asserted and it has its clock on.
This is the normal operational state for a given module
Disable
De-asserted
Off
A module in the disabled state has its module reset de-asserted and it has its module
clock off. This state is typically used for disabling a module clock to save power. The
device is designed in full static CMOS, so when you stop a module clock, it retains the
module’s state. When the clock is restarted, the module resumes operating from the
stopping point.
SyncReset
Asserted
On
A module state in the SyncReset state has its module reset asserted and it has its
clock on. Generally, software is not expected to initiate this state
SwRstDisable
Asserted
Off
A module in the SwResetDisable state has its module reset asserted and it has its
clock disabled. After initial power-on, several modules come up in the SwRstDisable
state. Generally, software is not expected to initiate this state
Auto Sleep
De-asserted
Off
A module in the Auto Sleep state also has its module reset de-asserted and its module
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it can “automatically” transition to
“Enable” state whenever there is an internal read/write request made to it, and after
servicing the request it will “automatically” transition into the sleep state (with module
reset re de-asserted and module clock disabled), without any software intervention.
The transition from sleep to enabled and back to sleep state has some cycle latency
associated with it. It is not envisioned to use this mode when peripherals are fully
operational and moving data.
Auto Wake
De-asserted
Off
A module in the Auto Wake state also has its module reset de-asserted and its module
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it will “automatically” transition to
“Enable” state whenever there is an internal read/write request made to it, and will
remain in the “Enabled” state from then on (with module reset re de-asserted and
module clock on), without any software intervention. The transition from sleep to
enabled state has some cycle latency associated with it. It is not envisioned to use this
mode when peripherals are fully operational and moving data.
68
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.9 EDMA
The EDMA controller handles all data transfers between memories and the device slave peripherals on
the device. These data transfers include cache servicing, non-cacheable memory accesses,
user-programmed data transfers, and host accesses.
6.9.1
EDMA3 Channel Synchronization Events
Each EDMA channel controller supports up to 32 channels which service peripherals and memory.
Table 6-11lists the source of the EDMA synchronization events associated with each of the programmable
EDMA channels.
Table 6-11. EDMA Synchronization Events
Event Name / Source
Event
Event Name / Source
0
McASP0 Receive
16
Reserved
1
McASP0 Transmit
17
Reserved
2
Reserved
18
SPI1 Receive
3
Reserved
19
SPI1 Transmit
4
McBSP1 Receive
20
Reserved
5
McBSP1 Transmit
21
Reserved
6
GPIO Bank 0 Interrupt
22
GPIO Bank 2 Interrupt
7
GPIO Bank 1 Interrupt
23
GPIO Bank 3 Interrupt
8
UART0 Receive
24
I2C0 Receive
9
UART0 Transmit
25
I2C0 Transmit
10
Timer64P0 Event Out 12
26
Reserved
11
Timer64P0 Event Out 34
27
Reserved
12
Reserved
28
GPIO Bank 4 Interrupt
13
Reserved
29
GPIO Bank 5 Interrupt
14
Reserved
30
Reserved
15
Reserved
31
Reserved
PRODUCT PREVIEW
EDMA0 Channel Controller 0
Event
EDMA1 Channel Controller 1
Event
Event Name / Source
Event
Event Name / Source
0
Reserved
16
GPIO Bank 6 Interrupt
1
Reserved
17
GPIO Bank 7 Interrupt
2
Reserved
18
GPIO Bank 8 Interrupt
3
Reserved
19
Reserved
4
Reserved
20
Reserved
5
Reserved
21
Reserved
6
Reserved
22
Reserved
7
Reserved
23
Reserved
8
Reserved
24
Reserved
9
Reserved
25
Reserved
10
Reserved
26
Reserved
11
Reserved
27
Reserved
12
Reserved
28
Reserved
13
Reserved
29
Reserved
14
Reserved
30
Reserved
15
Reserved
31
Reserved
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
69
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
6.9.2
www.ti.com
EDMA Peripheral Register Descriptions
Table 6-12 is the list of EDMA3 Channel Controller Registers and Table 6-13 is the list of EDMA3 Transfer
Controller registers.
Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers
EDMA0 Channel Controller
0
BYTE ADDRESS
EDMA1 Channel Controller
0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 0000
0x01E3 0000
PID
0x01C0 0004
0x01E3 0004
CCCFG
0x01C0 0200
0x01E3 0200
QCHMAP0
QDMA Channel 0 Mapping Register
0x01C0 0204
0x01E3 0204
QCHMAP1
QDMA Channel 1 Mapping Register
Peripheral Identification Register
EDMA3CC Configuration Register
Global Registers
PRODUCT PREVIEW
0x01C0 0208
0x01E3 0208
QCHMAP2
QDMA Channel 2 Mapping Register
0x01C0 020C
0x01E3 020C
QCHMAP3
QDMA Channel 3 Mapping Register
0x01C0 0210
0x01E3 0210
QCHMAP4
QDMA Channel 4 Mapping Register
0x01C0 0214
0x01E3 0214
QCHMAP5
QDMA Channel 5 Mapping Register
0x01C0 0218
0x01E3 0218
QCHMAP6
QDMA Channel 6 Mapping Register
0x01C0 021C
0x01E3 021C
QCHMAP7
QDMA Channel 7 Mapping Register
0x01C0 0240
0x01E3 0240
DMAQNUM0
DMA Channel Queue Number Register 0
0x01C0 0244
0x01E3 0244
DMAQNUM1
DMA Channel Queue Number Register 1
0x01C0 0248
0x01E3 0248
DMAQNUM2
DMA Channel Queue Number Register 2
0x01C0 024C
0x01E3 024C
DMAQNUM3
DMA Channel Queue Number Register 3
0x01C0 0260
0x01E3 0260
QDMAQNUM QDMA Channel Queue Number Register
0x01C0 0284
0x01E3 0284
0x01C0 0300
0x01E3 0300
EMR
0x01C0 0308
0x01E3 0308
EMCR
Event Missed Clear Register
0x01C0 0310
0x01E3 0310
QEMR
QDMA Event Missed Register
0x01C0 0314
0x01E3 0314
QEMCR
QDMA Event Missed Clear Register
0x01C0 0318
0x01E3 0318
CCERR
EDMA3CC Error Register
0x01C0 031C
0x01E3 031C
CCERRCLR
0x01C0 0320
0x01E3 0320
EEVAL
Error Evaluate Register
0x01C0 0340
0x01E3 0340
DRAE0
DMA Region Access Enable Register for Region 0
0x01C0 0348
0x01E3 0348
DRAE1
DMA Region Access Enable Register for Region 1
0x01C0 0350
0x01E3 0350
DRAE2
DMA Region Access Enable Register for Region 2
0x01C0 0358
0x01E3 0358
DRAE3
DMA Region Access Enable Register for Region 3
0x01C0 0380
0x01E3 0380
QRAE0
QDMA Region Access Enable Register for Region 0
0x01C0 0384
0x01E3 0384
QRAE1
QDMA Region Access Enable Register for Region 1
0x01C0 0388
0x01E3 0388
QRAE2
QDMA Region Access Enable Register for Region 2
0x01C0 038C
0x01E3 038C
QRAE3
QDMA Region Access Enable Register for Region 3
0x01C0 0400 - 0x01C0 043C
0x01E3 0400 - 0x01E3 043C
Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15
0x01C0 0440 - 0x01C0 047C
0x01E3 0440 - 0x01E3 047C
Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15
0x01C0 0600
0x01E3 0600
0x01C0 0604
0x01C0 0620
0x01C0 0640
QUEPRI
Queue Priority Register (1)
Event Missed Register
EDMA3CC Error Clear Register
QSTAT0
Queue 0 Status Register
0x01E3 0604
QSTAT1
Queue 1 Status Register
0x01E3 0620
QWMTHRA
0x01E3 0640
CCSTAT
Queue Watermark Threshold A Register
EDMA3CC Status Register
Global Channel Registers
(1)
70
On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC
memory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the
System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
EDMA0 Channel Controller
0
BYTE ADDRESS
EDMA1 Channel Controller
0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 1000
0x01E3 1000
ER
0x01C0 1008
0x01E3 1008
ECR
Event Clear Register
0x01C0 1010
0x01E3 1010
ESR
Event Set Register
0x01C0 1018
0x01E3 1018
CER
Chained Event Register
0x01C0 1020
0x01E3 1020
EER
Event Enable Register
0x01C0 1028
0x01E3 1028
EECR
Event Enable Clear Register
0x01C0 1030
0x01E3 1030
EESR
Event Enable Set Register
0x01C0 1038
0x01E3 1038
SER
Secondary Event Register
0x01C0 1040
0x01E3 1040
SECR
0x01C0 1050
0x01E3 1050
IER
0x01C0 1058
0x01E3 1058
IECR
Interrupt Enable Clear Register
0x01C0 1060
0x01E3 1060
IESR
Interrupt Enable Set Register
0x01C0 1068
0x01E3 1068
IPR
Interrupt Pending Register
0x01C0 1070
0x01E3 1070
ICR
Interrupt Clear Register
0x01C0 1078
0x01E3 1078
IEVAL
0x01C0 1080
0x01E3 1080
QER
0x01C0 1084
0x01E3 1084
QEER
Event Register
PRODUCT PREVIEW
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
0x01C0 1088
0x01E3 1088
QEECR
QDMA Event Enable Clear Register
0x01C0 108C
0x01E3 108C
QEESR
QDMA Event Enable Set Register
0x01C0 1090
0x01E3 1090
QSER
QDMA Secondary Event Register
0x01C0 1094
0x01E3 1094
QSECR
QDMA Secondary Event Clear Register
Shadow Region 0 Channel Registers
0x01C0 2000
0x01E3 2000
ER
0x01C0 2008
0x01E3 2008
ECR
Event Register
Event Clear Register
0x01C0 2010
0x01E3 2010
ESR
Event Set Register
0x01C0 2018
0x01E3 2018
CER
Chained Event Register
0x01C0 2020
0x01E3 2020
EER
Event Enable Register
0x01C0 2028
0x01E3 2028
EECR
Event Enable Clear Register
0x01C0 2030
0x01E3 2030
EESR
Event Enable Set Register
0x01C0 2038
0x01E3 2038
SER
Secondary Event Register
0x01C0 2040
0x01E3 2040
SECR
0x01C0 2050
0x01E3 2050
IER
0x01C0 2058
0x01E3 2058
IECR
Interrupt Enable Clear Register
0x01C0 2060
0x01E3 2060
IESR
Interrupt Enable Set Register
0x01C0 2068
0x01E3 2068
IPR
Interrupt Pending Register
0x01C0 2070
0x01E3 2070
ICR
Interrupt Clear Register
0x01C0 2078
0x01E3 2078
IEVAL
0x01C0 2080
0x01E3 2080
QER
0x01C0 2084
0x01E3 2084
QEER
0x01C0 2088
0x01E3 2088
QEECR
QDMA Event Enable Clear Register
0x01C0 208C
0x01E3 208C
QEESR
QDMA Event Enable Set Register
0x01C0 2090
0x01E3 2090
QSER
QDMA Secondary Event Register
0x01C0 2094
0x01E3 2094
QSECR
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
QDMA Secondary Event Clear Register
Shadow Region 1 Channel Registers
0x01C0 2200
0x01E3 2200
ER
0x01C0 2208
0x01E3 2208
ECR
Submit Documentation Feedback
Event Register
Event Clear Register
Peripheral Information and Electrical Specifications
71
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
PRODUCT PREVIEW
EDMA0 Channel Controller
0
BYTE ADDRESS
EDMA1 Channel Controller
0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 2210
0x01E3 2210
ESR
Event Set Register
0x01C0 2218
0x01E3 2218
CER
Chained Event Register
0x01C0 2220
0x01E3 2220
EER
Event Enable Register
0x01C0 2228
0x01E3 2228
EECR
Event Enable Clear Register
0x01C0 2230
0x01E3 2230
EESR
Event Enable Set Register
0x01C0 2238
0x01E3 2238
SER
Secondary Event Register
0x01C0 2240
0x01E3 2240
SECR
0x01C0 2250
0x01E3 2250
IER
0x01C0 2258
0x01E3 2258
IECR
Interrupt Enable Clear Register
0x01C0 2260
0x01E3 2260
IESR
Interrupt Enable Set Register
0x01C0 2268
0x01E3 2268
IPR
Interrupt Pending Register
0x01C0 2270
0x01E3 2270
ICR
Interrupt Clear Register
0x01C0 2278
0x01E3 2278
IEVAL
0x01C0 2280
0x01E3 2280
QER
0x01C0 2284
0x01E3 2284
QEER
0x01C0 2288
0x01E3 2288
QEECR
QDMA Event Enable Clear Register
0x01C0 228C
0x01E3 228C
QEESR
QDMA Event Enable Set Register
0x01C0 2290
0x01E3 2290
QSER
QDMA Secondary Event Register
0x01C0 2294
0x01E3 2294
QSECR
0x01C0 4000 - 0x01C0 4FFF
0x01E3 4000 - 0x01E3 4FFF
—
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
QDMA Secondary Event Clear Register
Parameter RAM (PaRAM)
Table 6-13. EDMA3 Transfer Controller (EDMA3TC) Registers
EDMA0
Transfer
Controller 0
BYTE ADDRESS
EDMA0
Transfer
Controller 1
BYTE ADDRESS
EDMA1
Transfer
Controller 0
BYTE ADDRESS
0x01C0 8000
0x01C0 8400
0x01E3 8000
PID
Peripheral Identification Register
0x01C0 8004
0x01C0 8404
0x01E3 8004
TCCFG
EDMA3TC Configuration Register
0x01C0 8100
0x01C0 8500
0x01E3 8100
TCSTAT
EDMA3TC Channel Status Register
0x01C0 8120
0x01C0 8520
0x01E3 8120
ERRSTAT
Error Status Register
0x01C0 8124
0x01C0 8524
0x01E3 8124
ERREN
Error Enable Register
72
ACRONYM
REGISTER DESCRIPTION
0x01C0 8128
0x01C0 8528
0x01E3 8128
ERRCLR
Error Clear Register
0x01C0 812C
0x01C0 852C
0x01E3 812C
ERRDET
Error Details Register
0x01C0 8130
0x01C0 8530
0x01E3 8130
ERRCMD
Error Interrupt Command Register
0x01C0 8140
0x01C0 8540
0x01E3 8140
RDRATE
Read Command Rate Register
0x01C0 8240
0x01C0 8640
0x01E3 8240
SAOPT
Source Active Options Register
0x01C0 8244
0x01C0 8644
0x01E3 8244
SASRC
Source Active Source Address Register
0x01C0 8248
0x01C0 8648
0x01E3 8248
SACNT
Source Active Count Register
0x01C0 824C
0x01C0 864C
0x01E3 824C
SADST
Source Active Destination Address Register
0x01C0 8250
0x01C0 8650
0x01E3 8250
SABIDX
Source Active B-Index Register
0x01C0 8254
0x01C0 8654
0x01E3 8254
SAMPPRXY
Source Active Memory Protection Proxy Register
Source Active Count Reload Register
0x01C0 8258
0x01C0 8658
0x01E3 8258
SACNTRLD
0x01C0 825C
0x01C0 865C
0x01E3 825C
SASRCBREF
Source Active Source Address B-Reference Register
0x01C0 8260
0x01C0 8660
0x01E3 8260
SADSTBREF
Source Active Destination Address B-Reference Register
0x01C0 8280
0x01C0 8680
0x01E3 8280
DFCNTRLD
0x01C0 8284
0x01C0 8684
0x01E3 8284
DFSRCBREF
Peripheral Information and Electrical Specifications
Destination FIFO Set Count Reload Register
Destination FIFO Set Source Address B-Reference
Register
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-13. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)
EDMA0
Transfer
Controller 0
BYTE ADDRESS
EDMA0
Transfer
Controller 1
BYTE ADDRESS
EDMA1
Transfer
Controller 0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 8288
0x01C0 8688
0x01E3 8288
DFDSTBREF
0x01C0 8300
0x01C0 8700
0x01E3 8300
DFOPT0
Destination FIFO Options Register 0
0x01C0 8304
0x01C0 8704
0x01E3 8304
DFSRC0
Destination FIFO Source Address Register 0
0x01C0 8308
0x01C0 8708
0x01E3 8308
DFCNT0
Destination FIFO Count Register 0
0x01C0 830C
0x01C0 870C
0x01E3 830C
DFDST0
Destination FIFO Destination Address Register 0
0x01C0 8310
0x01C0 8710
0x01E3 8310
DFBIDX0
Destination FIFO B-Index Register 0
0x01C0 8314
0x01C0 8714
0x01E3 8314
DFMPPRXY0
0x01C0 8340
0x01C0 8740
0x01E3 8340
DFOPT1
Destination FIFO Options Register 1
0x01C0 8344
0x01C0 8744
0x01E3 8344
DFSRC1
Destination FIFO Source Address Register 1
Destination FIFO Set Destination Address B-Reference
Register
0x01C0 8348
0x01C0 8748
0x01E3 8348
DFCNT1
Destination FIFO Count Register 1
0x01C0 834C
0x01C0 874C
0x01E3 834C
DFDST1
Destination FIFO Destination Address Register 1
0x01C0 8350
0x01C0 8750
0x01E3 8350
DFBIDX1
Destination FIFO B-Index Register 1
0x01C0 8354
0x01C0 8754
0x01E3 8354
DFMPPRXY1
0x01C0 8380
0x01C0 8780
0x01E3 8380
DFOPT2
Destination FIFO Options Register 2
0x01C0 8384
0x01C0 8784
0x01E3 8384
DFSRC2
Destination FIFO Source Address Register 2
PRODUCT PREVIEW
Destination FIFO Memory Protection Proxy Register 0
Destination FIFO Memory Protection Proxy Register 1
0x01C0 8388
0x01C0 8788
0x01E3 8388
DFCNT2
Destination FIFO Count Register 2
0x01C0 838C
0x01C0 878C
0x01E3 838C
DFDST2
Destination FIFO Destination Address Register 2
0x01C0 8390
0x01C0 8790
0x01E3 8390
DFBIDX2
Destination FIFO B-Index Register 2
0x01C0 8394
0x01C0 8794
0x01E3 8394
DFMPPRXY2
0x01C0 83C0
0x01C0 87C0
0x01E3 83C0
DFOPT3
Destination FIFO Options Register 3
0x01C0 83C4
0x01C0 87C4
0x01E3 83C4
DFSRC3
Destination FIFO Source Address Register 3
0x01C0 83C8
0x01C0 87C8
0x01E3 83C8
DFCNT3
Destination FIFO Count Register 3
0x01C0 83CC
0x01C0 87CC
0x01E3 83CC
DFDST3
Destination FIFO Destination Address Register 3
0x01C0 83D0
0x01C0 87D0
0x01E3 83D0
DFBIDX3
Destination FIFO B-Index Register 3
0x01C0 83D4
0x01C0 87D4
0x01E3 83D4
DFMPPRXY3
Destination FIFO Memory Protection Proxy Register 2
Destination FIFO Memory Protection Proxy Register 3
Table 6-14 shows an abbreviation of the set of registers which make up the parameter set for each of 128
EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-15 shows the
parameter set entry registers with relative memory address locations within each of the parameter sets.
Table 6-14. EDMA Parameter Set RAM
EDMA0
Channel Controller 0
BYTE ADDRESS RANGE
EDMA1
Channel Controller 0
BYTE ADDRESS RANGE
0x01C0 4000 - 0x01C0 401F
0x01E3 4000 - 0x01E3 401F
Parameters Set 0 (8 32-bit words)
DESCRIPTION
0x01C0 4020 - 0x01C0 403F
0x01E3 4020 - 0x01E3 403F
Parameters Set 1 (8 32-bit words)
0x01C0 4040 - 0x01CC0 405F
0x01E3 4040 - 0x01CE3 405F
Parameters Set 2 (8 32-bit words)
0x01C0 4060 - 0x01C0 407F
0x01E3 4060 - 0x01E3 407F
Parameters Set 3 (8 32-bit words)
0x01C0 4080 - 0x01C0 409F
0x01E3 4080 - 0x01E3 409F
Parameters Set 4 (8 32-bit words)
0x01C0 40A0 - 0x01C0 40BF
0x01E3 40A0 - 0x01E3 40BF
Parameters Set 5 (8 32-bit words)
...
...
0x01C0 4FC0 - 0x01C0 4FDF
0x01E3 4FC0 - 0x01E3 4FDF
Parameters Set 126 (8 32-bit words)
0x01C0 4FE0 - 0x01C0 4FFF
0x01E3 4FE0 - 0x01E3 4FFF
Parameters Set 127 (8 32-bit words)
Submit Documentation Feedback
...
Peripheral Information and Electrical Specifications
73
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-15. Parameter Set Entries
OFFSET BYTE ADDRESS
WITHIN THE PARAMETER SET
ACRONYM
PARAMETER ENTRY
0x0000
OPT
Option
0x0004
SRC
Source Address
0x0008
A_B_CNT
0x000C
DST
0x0010
SRC_DST_BIDX
Source B Index, Destination B Index
0x0014
LINK_BCNTRLD
Link Address, B Count Reload
0x0018
SRC_DST_CIDX
Source C Index, Destination C Index
0x001C
CCNT
A Count, B Count
Destination Address
C Count
PRODUCT PREVIEW
74
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.10 External Memory Interface A (EMIFA)
EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to
support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However
on this device, EMIFA also provides a secondary interface to SDRAM.
6.10.1 EMIFA Asynchronous Memory Support
The EMIFA data bus width is up to 16-bits.The device supports up to 24 address lines and two external
wait/interrupt inputs. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]).
Each chip select has the following individually programmable attributes:
• Data Bus Width
• Read cycle timings: setup, hold, strobe
• Write cycle timings: setup, hold, strobe
• Bus turn around time
• Extended Wait Option With Programmable Timeout
• Select Strobe Option
• NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.
6.10.2 EMIFA Synchronous DRAM Memory Support
The device supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 6.10.1. It
has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are:
• One, Two, and Four Bank SDRAM devices
• Devices with Eight, Nine, Ten, and Eleven Column Address
• CAS Latency of two or three clock cycles
• Sixteen Bit Data Bus Width
Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown
Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory
contents; since the SDRAM will continue to refresh itself even without clocks from the device. Powerdown
mode achieves even lower power, except the device must periodically wake the SDRAM up and issue
refreshes if data retention is required.
Finally, note that the EMIFA does not support Mobile SDRAM devices.
Table 6-16 shows the supported SDRAM configurations for EMIFA.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
75
PRODUCT PREVIEW
EMIFA supports asynchronous:
• SRAM memories
• NAND Flash memories
• NOR Flash memories
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-16. EMIFA Supported SDRAM Configurations (1)
SDRAM
Memory
Data Bus
Width (bits)
16
PRODUCT PREVIEW
8
(1)
Number of
Memories
EMIFA Data
Bus Size
(bits)
Rows
Columns
Banks
Total
Memory
(Mbits)
Total
Memory
(Mbytes)
Memory
Density
(Mbits)
1
16
16
8
1
256
32
256
1
16
16
8
2
512
64
512
1
16
16
8
4
1024
128
1024
1
16
16
9
1
512
64
512
1
16
16
9
2
1024
128
1024
1
16
16
9
4
2048
256
2048
1
16
16
10
1
1024
128
1024
1
16
16
10
2
2048
256
2048
1
16
16
10
4
4096
512
4096
1
16
16
11
1
2048
256
2048
1
16
16
11
2
4096
512
4096
1
16
15
11
4
4096
512
4096
2
16
16
8
1
256
32
128
2
16
16
8
2
512
64
256
2
16
16
8
4
1024
128
512
2
16
16
9
1
512
64
256
2
16
16
9
2
1024
128
512
2
16
16
9
4
2048
256
1024
2
16
16
10
1
1024
128
512
2
16
16
10
2
2048
256
1024
2
16
16
10
4
4096
512
2048
2
16
16
11
1
2048
256
1024
2
16
16
11
2
4096
512
2048
2
16
15
11
4
4096
512
2048
The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of
supporting these densities are not available in the market.
6.10.3 EMIFA SDRAM Loading Limitations
EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads.
Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be
confirmed by board simulation using IBIS models.
76
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.10.5 External Memory Interface Register Descriptions
Table 6-17 is a list of the EMIF registers. For more information about these registers, see the C674x DSP
External Memory Interface (EMIF) User's Guide (literature number SPRUFL6).
Table 6-17. External Memory Interface (EMIFA) Registers
ACRONYM
REGISTER DESCRIPTION
0x6800 0000
MIDR
Module ID Register
0x6800 0004
AWCC
Asynchronous Wait Cycle Configuration Register
0x6800 0008
SDCR
SDRAM Configuration Register
0x6800 000C
SDRCR
SDRAM Refresh Control Register
0x6800 0010
CE2CFG
Asynchronous 1 Configuration Register
0x6800 0014
CE3CFG
Asynchronous 2 Configuration Register
0x6800 0018
CE4CFG
Asynchronous 3 Configuration Register
0x6800 001C
CE5CFG
Asynchronous 4 Configuration Register
0x6800 0020
SDTIMR
SDRAM Timing Register
0x6800 003C
SDSRETR
0x6800 0040
INTRAW
EMIFA Interrupt Raw Register
0x6800 0044
INTMSK
EMIFA Interrupt Mask Register
0x6800 0048
INTMSKSET
EMIFA Interrupt Mask Set Register
0x6800 004C
INTMSKCLR
EMIFA Interrupt Mask Clear Register
0x6800 0060
NANDFCR
NAND Flash Control Register
0x6800 0064
NANDFSR
NAND Flash Status Register
0x6800 0070
NANDF1ECC
NAND Flash 1 ECC Register (CS2 Space)
0x6800 0074
NANDF2ECC
NAND Flash 2 ECC Register (CS3 Space)
0x6800 0078
NANDF3ECC
NAND Flash 3 ECC Register (CS4 Space)
0x6800 007C
NANDF4ECC
NAND Flash 4 ECC Register (CS5 Space)
0x6800 00BC
NAND4BITECCLOAD
0x6800 00C0
NAND4BITECC1
NAND Flash 4-Bit ECC Register 1
0x6800 00C4
NAND4BITECC2
NAND Flash 4-Bit ECC Register 2
0x6800 00C8
NAND4BITECC3
NAND Flash 4-Bit ECC Register 3
0x6800 00CC
NAND4BITECC4
NAND Flash 4-Bit ECC Register 4
0x6800 00D0
NANDERRADD1
NAND Flash 4-Bit ECC Error Address Register 1
0x6800 00D4
NANDERRADD2
NAND Flash 4-Bit ECC Error Address Register 2
0x6800 00D8
NANDERRVAL1
NAND Flash 4-Bit ECC Error Value Register 1
0x6800 00DC
NANDERRVAL2
NAND Flash 4-Bit ECC Error Value Register 2
Submit Documentation Feedback
PRODUCT PREVIEW
BYTE ADDRESS
SDRAM Self Refresh Exit Timing Register
NAND Flash 4-Bit ECC Load Register
Peripheral Information and Electrical Specifications
77
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.10.6 EMIFA Electrical Data/Timing
Table 6-18 through Table 6-21 assume testing over recommended operating conditions.
Table 6-18. Timing Requirements for EMIFA SDRAM Interface
NO.
PARAMETER
19
tsu(EMA_DV-EM_CLKH)
Input setup time, read data valid on EMA_D[31:0] before
EMA_CLK rising
20
th(CLKH-DIV)
Input hold time, read data valid on EMA_D[31:0] after
EMA_CLK rising
1.2V
MIN
1.1V
MAX
MIN
MAX
1.0V
MIN
MAX
UNIT
2
3
3
ns
1.6
1.6
1.6
ns
Table 6-19. Switching Characteristics for EMIFA SDRAM Interface
PRODUCT PREVIEW
NO.
PARAMETER
1.2V
MIN
1.1V
MAX
MIN
MAX
1.0V
MIN
MAX
UNIT
1
tc(CLK)
Cycle time, EMIF clock EMA_CLK
10
15
20
ns
2
tw(CLK)
Pulse width, EMIF clock EMA_CLK high or low
3
5
8
ns
3
td(CLKH-CSV)
Delay time, EMA_CLK rising to EMA_CS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMA_CLK rising to EMA_CS[0] invalid
5
td(CLKH-DQMV)
Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0]
invalid
7
td(CLKH-AV)
Delay time, EMA_CLK rising to EMA_A[12:0] and
EMA_BA[1:0] valid
8
toh(CLKH-AIV)
Output hold time, EMA_CLK rising to EMA_A[12:0] and
EMA_BA[1:0] invalid
9
td(CLKH-DV)
Delay time, EMA_CLK rising to EMA_D[15:0] valid
10
toh(CLKH-DIV)
Output hold time, EMA_CLK rising to EMA_D[15:0] invalid
11
td(CLKH-RASV)
Delay time, EMA_CLK rising to EMA_RAS valid
12
toh(CLKH-RASIV)
Output hold time, EMA_CLK rising to EMA_RAS invalid
13
td(CLKH-CASV)
Delay time, EMA_CLK rising to EMA_CAS valid
14
toh(CLKH-CASIV)
Output hold time, EMA_CLK rising to EMA_CAS invalid
15
td(CLKH-WEV)
Delay time, EMA_CLK rising to EMA_WE valid
16
toh(CLKH-WEIV)
Output hold time, EMA_CLK rising to EMA_WE invalid
17
tdis(CLKH-DHZ)
Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated
18
tena(CLKH-DLZ)
Output hold time, EMA_CLK rising to EMA_D[15:0] driving
78
Peripheral Information and Electrical Specifications
7
1
9.5
1
7
1
9.5
1
7
1
9.5
7
1
1
1
1
1
1
7
1
1
1
7
1
ns
ns
13
1
ns
ns
13
9.5
1
ns
ns
13
9.5
ns
ns
13
9.5
ns
ns
13
9.5
7
1
1
1
7
ns
ns
13
9.5
ns
ns
13
1
1
1
13
1
ns
ns
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
1
BASIC SDRAM
WRITE OPERATION
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
PRODUCT PREVIEW
9
10
EMA_D[15:0]
11
12
EMA_RAS
13
EMA_CAS
15
16
EMA_WE
Figure 6-12. EMIFA Basic SDRAM Write Operation
BASIC SDRAM
READ OPERATION
1
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
19
17
20
2 EM_CLK Delay
18
EMA_D[15:0]
11
12
EMA_RAS
13
14
EMA_CAS
EMA_WE
Figure 6-13. EMIFA Basic SDRAM Read Operation
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
79
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
(1)
Table 6-20. Timing Requirements for EMIFA Asynchronous Memory Interface
NO.
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
UNIT
READS and WRITES
2
tw(EM_WAIT)
Pulse duration, EM_WAIT assertion and deassertion
2E
2E
2E
ns
READS
12
tsu(EMDV-EMOEH)
Setup time, EM_D[15:0] valid before EM_OE high
13
th(EMOEH-EMDIV)
Hold time, EM_D[15:0] valid after EM_OE high
tsu(EMOEL-EMWAIT)
Setup Time, EM_WAIT asserted before end of Strobe
Phase (2)
tsu(EMWEL-EMWAIT)
Setup Time, EM_WAIT asserted before end of Strobe
Phase (2)
14
3
TBD
TBD
ns
0.5
TBD
TBD
ns
4E+3
4E+3
4E+3
ns
4E+3
4E+3
4E+3
ns
WRITES
28
PRODUCT PREVIEW
(1)
(2)
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended
wait states. Figure 6-16 and Figure 6-17 describe EMIF transactions that include extended wait states inserted during the STROBE
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where
the HOLD phase would begin if there were no extended wait cycles.
Table 6-21. Switching Characteristics for EMIFA Asynchronous Memory Interface
NO
.
(1) (2) (3)
1.2V, 1.1V, 1.0V
PARAMETER
MIN
Nom
UNIT
MAX
READS and WRITES
1
td(TURNAROUND)
Turn around time
(TA)*E - 3
(TA)*E
(TA)*E + 3
ns
EMIF read cycle time (EW = 0)
(RS+RST+RH)*E
-3
(RS+RST+RH)*E
(RS+RST+RH)*E
+3
ns
EMIF read cycle time (EW = 1)
(RS+RST+RH+(E
WC*16))*E - 3
(RS+RST+RH+(EW (RS+RST+RH+(E
C*16))*E
WC*16))*E + 3
ns
READS
3
4
5
tc(EMRCYCLE)
tsu(EMCEL-EMOEL)
th(EMOEH-EMCEH)
Output setup time, EMA_CE[5:2] low to
EMA_OE low (SS = 0)
(RS)*E-3
(RS)*E
(RS)*E+3
ns
Output setup time, EMA_CE[5:2] low to
EMA_OE low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_OE high to
EMA_CE[5:2] high (SS = 0)
(RH)*E - 3
(RH)*E
(RH)*E + 3
ns
Output hold time, EMA_OE high to
EMA_CE[5:2] high (SS = 1)
-3
0
+3
ns
6
tsu(EMBAV-EMOEL)
Output setup time, EMA_BA[1:0] valid to
EMA_OE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
7
th(EMOEH-EMBAIV)
Output hold time, EMA_OE high to
EMA_BA[1:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
8
tsu(EMBAV-EMOEL)
Output setup time, EMA_A[13:0] valid to
EMA_OE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
9
th(EMOEH-EMAIV)
Output hold time, EMA_OE high to
EMA_A[13:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
EMA_OE active low width (EW = 0)
(RST)*E-3
(RST)*E
(RST)*E+3
ns
10
tw(EMOEL)
EMA_OE active low width (EW = 1)
(RST+(EWC*16))
*E-3
(RST+(EWC*16))*E
(RST+(EWC*16))
*E+3
ns
(1)
(2)
(3)
80
TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle
Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1],
WH[8-1], and MEW[1-256].
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that
the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-21. Switching Characteristics for EMIFA Asynchronous Memory Interface (continued)
NO
.
11
1.2V, 1.1V, 1.0V
PARAMETER
td(EMWAITHEMOEH)
MIN
Delay time from EMA_WAIT deasserted to
EMA_OE high
Nom
UNIT
MAX
3E-3
4E
4E+3
ns
EMIF write cycle time (EW = 0)
(WS+WST+WH)*
E-3
(WS+WST+WH)*E
(WS+WST+WH)*
E+3
ns
EMIF write cycle time (EW = 1)
(WS+WST+WH+(
EWC*16))*E - 3
(WS+WST+WH+(E (WS+WST+WH+(
WC*16))*E
EWC*16))*E + 3
ns
15
16
17
18
tc(EMWCYCLE)
tsu(EMCEL-EMWEL)
th(EMWEH-EMCEH)
tsu(EMDQMVEMWEL)
19
th(EMWEHEMDQMIV)
Output setup time, EMA_CE[5:2] low to
EMA_WE low (SS = 0)
(WS)*E - 3
(WS)*E
(WS)*E + 3
ns
Output setup time, EMA_CE[5:2] low to
EMA_WE low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_WE high to
EMA_CE[5:2] high (SS = 0)
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Output hold time, EMA_WE high to
EMA_CE[5:2] high (SS = 1)
-3
0
+3
ns
Output setup time, EMA_BA[1:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
Output hold time, EMA_WE high to
EMA_BA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
20
tsu(EMBAV-EMWEL)
Output setup time, EMA_BA[1:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
21
th(EMWEH-EMBAIV)
Output hold time, EMA_WE high to
EMA_BA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
22
tsu(EMAV-EMWEL)
Output setup time, EMA_A[13:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
23
th(EMWEH-EMAIV)
Output hold time, EMA_WE high to
EMA_A[13:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
EMA_WE active low width (EW = 0)
(WST)*E-3
(WST)*E
(WST)*E+3
ns
24
tw(EMWEL)
EMA_WE active low width (EW = 1)
(WST+(EWC*16))
*E-3
(WST+(EWC*16))
(WST+(EWC*16))*E
*E+3
ns
25
td(EMWAITHEMWEH)
Delay time from EMA_WAIT deasserted to
EMA_WE high
3E-3
4E
4E+3
ns
26
tsu(EMDV-EMWEL)
Output setup time, EMA_D[15:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
27
th(EMWEH-EMDIV)
Output hold time, EMA_WE high to
EMA_D[15:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
PRODUCT PREVIEW
WRITES
81
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
3
1
EMA_CE[5:2]
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE_DQM[1:0]
PRODUCT PREVIEW
4
8
5
9
6
29
7
30
10
EMA_OE
13
12
EMA_D[15:0]
EMA_WE
Figure 6-14. Asynchronous Memory Read Timing for EMIFA
15
1
EMA_CE[5:2]
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE_DQM[1:0]
16
17
18
19
20
22
24
21
23
EMA_WE
27
26
EMA_D[15:0]
EMA_OE
Figure 6-15. Asynchronous Memory Write Timing for EMIFA
82
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
EMA_CE[5:2]
SETUP
STROBE
Extended Due to EMA_WAIT
STROBE HOLD
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
14
11
EMA_OE
EMA_WAIT
Asserted
2
Deasserted
PRODUCT PREVIEW
2
Figure 6-16. EMA_WAIT Read Timing Requirements
EMA_CE[5:2]
SETUP
STROBE
Extended Due to EMA_WAIT
STROBE HOLD
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
28
25
EMA_WE
2
EMA_WAIT
Asserted
2
Deasserted
Figure 6-17. EMA_WAIT Write Timing Requirements
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
83
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.11 DDR2/mDDR Controller
The DDR2/mDDR Memory Controller is a dedicated interface to DDR2/mDDR SDRAM. It supports
JESD79D-2A standard compliant DDR2 SDRAM devices and compliant Mobile DDR SDRAM devices.
The DDR2/mDDR Memory Controller support the following features:
•
•
•
•
•
PRODUCT PREVIEW
•
•
•
•
•
•
•
•
•
•
•
•
•
JESD79D-2A standard compliant DDR2 SDRAM
Mobile DDR SDRAM
512 MByte memory space for DDR2
256 MByte memory space for mDDR
CAS latencies:
– DDR2: 2, 3, 4 and 5
– mDDR: 2 and 3
Internal banks:
– DDR2: 1, 2, 4 and 8
– mDDR:1, 2 and 4
Burst length: 8
Burst type: sequential
1 chip select (CS) signal
Page sizes: 256, 512, 1024 and 2048
SDRAM autoinitialization
Self-refresh mode
Partial array self-refresh (for mDDR)
Power down mode
Prioritized refresh
Programmable refresh rate and backlog counter
Programmable timing parameters
Little endian
6.11.1 DDR2/mDDR Memory Controller Electrical Data/Timing
Table 6-22. Switching Characteristics Over Recommended Operating Conditions for DDR2/mDDR
Memory Controller
No.
1
PARAMETER
tc(DDR_CLK)
Cycle time, DDR_CLKP / DDR_CLKN
(1)
DDR2 is not supported at this voltage operating point.
84
Peripheral Information and Electrical Specifications
1.2V
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
DDR2
125
150
125
150
— (1)
— (1)
mDDR
100
133
100
133
100
133
UNIT
MHz
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.11.2 DDR2/mDDR Controller Register Description(s)
Table 6-23. DDR2/mDDR Controller Registers
ACRONYM
REGISTER DESCRIPTION
0xB000 0000
REVID
Revision ID Register
0xB000 0004
SDRSTAT
SDRAM Status Register
0xB000 0008
SDCR
SDRAM Configuration Register
0xB000 000C
SDRCR
SDRAM Refresh Control Register
0xB000 0010
SDTIMR1
SDRAM Timing Register 1
0xB000 0014
SDTIMR2
SDRAM Timing Register 2
0xB000 001C
SDCR2
SDRAM Configuration Register 2
0xB000 0020
PBBPR
Peripheral Bus Burst Priority Register
0xB000 0040
PC1
Performance Counter 1 Registers
0xB000 0044
PC2
Performance Counter 2 Register
0xB000 0048
PCC
Performance Counter Configuration Register
0xB000 004C
PCMRS
Performance Counter Master Region Select Register
0xB000 0050
PCT
Performance Counter Time Register
0xB000 00C0
IRR
Interrupt Raw Register
0xB000 00C4
IMR
Interrupt Mask Register
0xB000 00C8
IMSR
Interrupt Mask Set Register
0xB000 00CC
IMCR
Interrupt Mask Clear Register
0xB000 00E4
DRPYC1R
DDR PHY Control Register 1
0x01E2 C000
VTPIO_CTL
VTP IO Control Register
6.11.3 DDR2/mDDR Interface
This section provides the timing specification for the DDR2/mDDR interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2/mDDR
memory system without the need for a complex timing closure process. For more information regarding
guidelines for using this DDR2/mDDR specification, Understanding TI's PCB Routing Rule-Based DDR2
Timing Specification (SPRAAV0).
6.11.3.1 DDR2/mDDR Interface Schematic
Figure 6-18 shows the DDR2/mDDR interface schematic for a single-memory DDR2/mDDR system. The
dual-memory system shown in Figure 6-19. Pin numbers for the device can be obtained from the pin
description section.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
85
PRODUCT PREVIEW
BYTE ADDRESS
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
DDR2/mDDR Memory Controller
DDR2/mDDR
ODT
DDR_D[0]
T
DQ0
DDR_D[7]
T
DQ7
DDR_DQM[0]
DDR_DQS[0]
T
T
LDM
LDQS
DDR_D[8]
T
LDQS
DQ8
DDR_D[15]
T
DQ15
DDR_DQM[1]
DDR_DQS[1]
T
UDM
UDQS
NC
PRODUCT PREVIEW
T
UDQS
50 Ω .5%
NC
DDR_BA[0]
T
BA0
DDR_BA[2]
T
BA2
DDR_A[0]
T
A0
DDR_A[13]
DDR_CS
DDR_CAS
DDR_RAS
DDR_WE
DDR_CKE
DDR_CLKP
DDR_CLKN
T
A13
T
CS
CAS
RAS
WE
CKE
CK
CK
T
T
T
T
T
T
DDR_ZP
DDR_DQGATE0
DDR_DQGATE1
T
(1)
DDR_DVDD18
T
0.1 μF
1 K Ω 1%
DDR_VREF
VREF
0.1 μF
T
(1)
0.1 μF
0.1 μF
VREF
0.1 μF
1 K Ω 1%
Terminator, if desired. See terminator comments.
See Figure 6-25 for DQGATE routing specifications.
Figure 6-18. DDR2/mDDR Single-Memory High Level Schematic
86
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
DDR2/mDDR Memory Controller
ODT
T
DQ0 - DQ7
BA0-BA2
A0-A13
DDR_DQM[0]
DDR_DQS[0]
T
DM
DQS
DQS
CK
CK
CS
CAS
RAS
WE
CKE
VREF
DDR_BA[0:2]
DDR_A[0:13]
T
T
DDR_CLKP
DDR_CLKN
DDR_CS
DDR_CAS
DDR_RAS
DDR_WE
DDR_CKE
T
DDR_DQM1
DDR_DQS1
T
T
T
T
T
T
T
T
NC
50 Ω .5%
DDR_D[8:15]
T
DDR_ZP
BA0-BA2
A0-A13
CK
CK
CS
CAS
RAS
WE
CKE
DM
DQS
DQS
DQ0 - DQ7
DDR_DVDD18
ODT
(1)
DDR_DQGATE0
DDR_DQGATE1
PRODUCT PREVIEW
NC
Upper Byte
DDR2/mDDR
T
Lower Byte
DDR2/mDDR
DDR_D[0:7]
T
VREF
T
0.1 μF
1 K Ω 1%
DDR_VREF
VREF
0.1 μF
T
(1)
0.1 μF
0.1 μF
0.1 μF
1 K Ω 1%
Terminator, if desired. See terminator comments.
See Figure 6-25 for DQGATE routing specifications.
Figure 6-19. DDR2/mDDR Dual-Memory High Level Schematic
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
87
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.11.3.2 Compatible JEDEC DDR2/mDDR Devices
Table 6-24 shows the parameters of the JEDEC DDR2/mDDR devices that are compatible with this
interface. Generally, the DDR2/mDDR interface is compatible with x16 DDR2/mDDR-400 speed grade
DDR2/mDDR devices.
The device also supports JEDEC DDR2/mDDR x8 devices in the dual chip configuration. In this case, one
chip supplies the upper byte and the second chip supplies the lower byte. Addresses and most control
signals are shared just like regular dual chip memory configurations.
Table 6-24. Compatible JEDEC DDR2/mDDR Devices
No.
Parameter
Min
Max
Unit
Notes
PRODUCT PREVIEW
1
JEDEC DDR2/mDDR Device Speed Grade
2
JEDEC DDR2/mDDR Device Bit Width
x8
x16
Bits
3
JEDEC DDR2/mDDR Device Count
1
2
Devices
(1)
DDR2/mDDR-400
See Note
(1)
Higher DDR2/mDDR speed grades are supported due to inherent JEDEC DDR2/mDDR backwards compatibility.
6.11.3.3 PCB Stackup
The minimum stackup required for routing the device is a six layer stack as shown in Table 6-25.
Additional layers may be added to the PCB stack up to accommodate other circuitry or to reduce the size
of the PCB footprint.Complete stack up specifications are provided in Table 6-26.
Table 6-25. C6742 Minimum PCB Stack Up
Layer
Type
Description
1
Signal
Top Routing Mostly Horizontal
2
Plane
Ground
3
Plane
Power
4
Signal
Internal Routing
5
Plane
Ground
6
Signal
Bottom Routing Mostly Vertical
Table 6-26. PCB Stack Up Specifications
No. Parameter
Min
Typ
Max
Unit
Notes
1
PCB Routing/Plane Layers
6
2
Signal Routing Layers
3
3
Full ground layers under DDR2/mDDR routing region
2
4
Number of ground plane cuts allowed within DDR routing region
5
Number of ground reference planes required for each DDR2/mDDR routing layer
6
Number of layers between DDR2/mDDR routing layer and reference ground plane
7
PCB Routing Feature Size
4
Mils
8
PCB Trace Width w
4
Mils
8
PCB BGA escape via pad size
18
Mils
9
PCB BGA escape via hole size
8
Mils
10
DSP Device BGA pad size
See Note
(1)
11
DDR2/mDDR Device BGA pad size
See Note
(2)
12
Single Ended Impedance, Zo
50
13
Impedance Control
Z-5
See Note
(3)
(1)
(2)
(3)
88
0
1
0
Z
75
Ω
Z+5
Ω
Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size.
Please refer to the DDR2/mDDR device manufacturer documentation for the DDR2/mDDR device BGA pad size.
Z is the nominal singled ended impedance selected for the PCB specified by item 12.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.11.3.4 Placement
Figure 6-19 shows the required placement for the C6742 device as well as the DDR2/mDDR devices. The
dimensions for Figure 6-20 are defined in Table 6-27. The placement does not restrict the side of the PCB
that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace
lengths and allow for proper routing space. For single-memory DDR2/mDDR systems, the second
DDR2/mDDR device is omitted from the placement.
X
Y
DDR2/mDDR
Device
Y
OFFSET
PRODUCT PREVIEW
Y
OFFSET
DDR2/mDDR
Controller
A1
A1
Recommended DDR2/mDDR
Device Orientation
Figure 6-20. C6742 and DDR2/mDDR Device Placement
Table 6-27. Placement Specifications
No.
1
Parameter
Min
X
Max
Unit
1750
Mils See Notes
Notes
(1) (2)
,
2
Y
1280
Mils See Notes
(1) (2)
3
Y Offset
650
Mils See Notes
(1) (2) (3)
4
(1)
(2)
(3)
(4)
Clearance from non-DDR2/mDDR signal to DDR2/mDDR Keepout Region
4
w
See Note
,
.
,
(4)
See Figure 6-20 for dimension definitions.
Measurements from center of device to center of DDR2/mDDR device.
For single memory systems it is recommended that Y Offset be as small as possible.
Non-DDR2/mDDR signals allowed within DDR2/mDDR keepout region provided they are separated from DDR2/mDDR routing layers by
a ground plane.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
89
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.11.3.5 DDR2/mDDR Keep Out Region
The region of the PCB used for the DDR2/mDDR circuitry must be isolated from other signals. The
DDR2/mDDR keep out region is defined for this purpose and is shown in Figure 6-21. The size of this
region varies with the placement and DDR routing. Additional clearances required for the keep out region
are shown in Table 6-27.
DDR2/mDDR
Device
PRODUCT PREVIEW
DDR2/mDDR
Controller
A1
A1
Region should encompass all DDR2/mDDR circuitry and varies
depending on placement. Non-DDR2/mDDR signals should not be
routed on the DDR signal layers within the DDR2/mDDR keep out
region. Non-DDR2/mDDR signals may be routed in the region
provided they are routed on layers separated from DDR2/mDDR
signal layers by a ground layer. No breaks should be allowed in the
reference ground layers in this region. In addition, the 1.8 V power
plane should cover the entire keep out region.
Figure 6-21. DDR2/mDDR Keepout Region
90
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.11.3.6 Bulk Bypass Capacitors
Bulk bypass capacitors are required for moderate speed bypassing of the DDR2/mDDR and other
circuitry. Table 6-28 contains the minimum numbers and capacitance required for the bulk bypass
capacitors. Note that this table only covers the bypass needs of the DSP and DDR2/mDDR interfaces.
Additional bulk bypass capacitance may be needed for other circuitry.
Table 6-28. Bulk Bypass Capacitors
Parameter
Min
Max
Unit
1
DDR_DVDD18 Supply Bulk Bypass Capacitor Count
3
2
DDR_DVDD18 Supply Bulk Bypass Total Capacitance
30
µF
3
DDR#1 Bulk Bypass Capacitor Count
1
Devices
4
DDR#1 Bulk Bypass Total Capacitance
22
µF
5
DDR#2 Bulk Bypass Capacitor Count
1
Devices
22
µF
6
(1)
(2)
DDR#2 Bulk Bypass Total Capacitance
Devices
Notes
See Note
(1)
See Note
(1)
See Notes
See Note
(1) (2)
,
(2)
These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed
(HS) bypass caps.
Only used on dual-memory systems
6.11.3.7 High-Speed Bypass Capacitors
High-speed (HS) bypass capacitors are critical for proper DDR2/mDDR interface operation. It is
particularly important to minimize the parasitic series inductance of the HS bypass cap, DSP/DDR2/mDDR
power, and DSP/DDR2/mDDR ground connections. Table 6-29 contains the specification for the HS
bypass capacitors as well as for the power connections on the PCB.
Table 6-29. High-Speed Bypass Capacitors
No.
Parameter
Min
Max
Unit
0402
10 Mils
1
HS Bypass Capacitor Package Size
2
Distance from HS bypass capacitor to device being bypassed
3
Number of connection vias for each HS bypass capacitor
2
4
Trace length from bypass capacitor contact to connection via
1
5
Number of connection vias for each DDR2/mDDR device power or
ground balls
6
Trace length from DDR2/mDDR device power ball to connection via
7
DDR_DVDD18 Supply HS Bypass Capacitor Count
10
8
DDR_DVDD18 Supply HS Bypass Capacitor Total Capacitance
0.6
µF
9
DDR#1 HS Bypass Capacitor Count
8
Devices
10
DDR#1 HS Bypass Capacitor Total Capacitance
11
DDR#2 HS Bypass Capacitor Count
12
(1)
(2)
(3)
(4)
DDR#2 HS Bypass Capacitor Total Capacitance
250
See Note
(1)
See Note
(2)
See Note
(3)
See Note
(3)
Mils
Vias
30
Notes
Mils
Vias
1
35
Mils
Devices
0.4
µF
8
Devices
0.4
µF
See Notes
See Note
(3) (4)
,
(4)
LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor
An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.
These devices should be placed as close as possible to the device being bypassed.
Only used on dual-memory systems
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
91
PRODUCT PREVIEW
No.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.11.3.8 Net Classes
Table 6-30 lists the clock net classes for the DDR2/mDDR interface. Table 6-31 lists the signal net
classes, and associated clock net classes, for the signals in the DDR2/mDDR interface. These net classes
are used for the termination and routing rules that follow.
Table 6-30. Clock Net Class Definitions
Clock Net Class
DSP Pin Names
CK
DDR_CLKP / DDR_CLKN
DQS0
DDR_DQS[0]
DQS1
DDR_DQS[1]
Table 6-31. Signal Net Class Definitions
PRODUCT PREVIEW
Clock Net Class
ADDR_CTRL
Associated Clock Net
Class
DSP Pin Names
CK
DDR_BA[2:0], DDR_A[13:0], DDR_CS, DDR_CAS, DDR_RAS, DDR_WE,
DDR_CKE
D0
DQS0
DDR_D[7:0], DDR_DQM0
D1
DQS1
DDR_D[15:8], DDR_DQM1
CK, DQS0, DQS1
DDR_DQGATE0, DDR_DQGATE1
DQGATE
6.11.3.9 DDR2/mDDR Signal Termination
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only
type permitted. Table 6-32 shows the specifications for the series terminators.
Table 6-32. DDR2/mDDR Signal Terminations
No.
Min
CK Net Class
0
2
ADDR_CTRL Net Class
0
Typ
22
Max
Unit
10
Ω
See Note
Notes
Zo
Ω
See Notes
(1) (2) (3)
(1)
,
,
3
Data Byte Net Classes (DQS[0], DQS[1], D0, D1)
0
22
Zo
Ω
See Notes
(1) (2) (3) (4)
4
DQGATE Net Class (DQGATE)
0
10
Zo
Ω
See Notes
(1) (2) (3)
(1)
(2)
(3)
(4)
92
Parameter
1
,
,
,
,
,
Only series termination is permitted, parallel or SST specifically disallowed.
Terminator values larger than typical only recommended to address EMI issues.
Termination value should be uniform across net class.
When no termination is used on data lines (0 Ω), the DDR2/mDDR devices must be programmed to operate in 60% strength mode.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.11.3.10 VREF Routing
VREF is used as a reference by the input buffers of the DDR2/mDDR memories as well as the C6742 .
VREF is intended to be half the DDR2/mDDR power supply voltage and should be created using a
resistive divider as shown in Figure 6-18. Other methods of creating VREF are not recommended.
Figure 6-22 shows the layout guidelines for VREF.
VREF Bypass Capacitor
DDR2/mDDR Device
A1
VREF Nominal Minimum
Trace Width is 20 Mils
PRODUCT PREVIEW
DDR2/mDDR
A1
Neck down to minimum in BGA escape
regions is acceptable. Narrowing to
accomodate via congestion for short
distances is also acceptable. Best
performance is obtained if the width
of VREF is maximized.
Figure 6-22. VREF Routing and Topology
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
93
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.11.3.11 DDR2/mDDR CK and ADDR_CTRL Routing
Figure 6-23 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A
should be maximized.
B
DDR2/mDDR
Controller
A1
T
C
A
PRODUCT PREVIEW
A1
Figure 6-23. CK and ADDR_CTRL Routing and Topology
Table 6-33. CK and ADDR_CTRL Routing Specification
No.
Parameter
Min
Typ
Max
Unit
25
Mils
25
Mils
(1)
See Note
(2)
See Note
(3)
4w
See Note
(2)
3w
See Note
(2)
See Note
(1)
CK A to B/A to C Skew Length Mismatch
2
CK B to C Skew Length Mismatch
3
Center to center CK to other DDR2/mDDR trace spacing
4
CK/ADDR_CTRL nominal trace length
5
6
7
Center to center ADDR_CTRL to other DDR2/mDDR trace spacing
8
Center to center ADDR_CTRL to other ADDR_CTRL trace spacing
9
ADDR_CTRL A to B/A to C Skew Length Mismatch
100
Mils
10
ADDR_CTRL B to C Skew Length Mismatch
100
Mils
(1)
(2)
(3)
94
Notes
See Note
1
4w
CACLM-50
CACLM
CACLM+50
Mils
ADDR_CTRL to CK Skew Length Mismatch
100
Mils
ADDR_CTRL to ADDR_CTRL Skew Length Mismatch
100
Mils
Series terminator, if used, should be located closest to DSP.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Figure 6-24 shows the topology and routing for the DQS and DQ net class; the routes are point to point.
Skew matching across bytes is not needed nor recommended.
E0
A1
T
A1
DDR2/mDDR
Controller
T
E1
Table 6-34. DQS and DQ Routing Specification
No.
(1)
(2)
(3)
(4)
(5)
Parameter
1
DQS E Skew Length Mismatch
2
Center to center DQS to other DDR2/mDDR trace
spacing
3
DQS/D nominal trace length
Min
Typ
Max
Unit
25
Mils
4w
DQLM-50
Notes
See Note
DQLM
DQLM+50
Mils
(1)
See Notes
(2) (3)
,
4
D to DQS Skew Length Mismatch
100
Mils
See Note
(3)
5
D to D Skew Length Mismatch
100
Mils
See Note
(3)
6
Center to center D to other DDR2/mDDR trace
spacing
4w
See Notes
(1) (4)
7
Center to Center D to other D trace spacing
3w
See Notes
(5) (1)
8
DQ/DQS E Skew Length Mismatch
100
Mils
See Note
,
,
(3)
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
Series terminator, if used, should be located closest to DDR.
There is no need and it is not recommended to skew match across data bytes, i.e., from DQS0 and data byte 0 to DQS1 and data byte
1.
D's from other DQS domains are considered other DDR2/mDDR trace.
DQLM is the longest Manhattan distance of each of the DQS and D net class.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
95
PRODUCT PREVIEW
Figure 6-24. DQS and DQ Routing and Topology
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Figure 6-25 shows the routing for the DQGATE net class. Table 6-35 contains the routing specification.
A1
T
DDR2/mDDR
Controller
F
T
A1
PRODUCT PREVIEW
Figure 6-25. DQGATE Routing
Table 6-35. DQGATE Routing Specification
No.
DQGATE Length F
2
Center to center DQGATE to any other trace spacing
3
DQS/D nominal trace length
4
DQGATE Skew
(1)
(2)
96
Parameter
1
Min
Typ
Max
Unit
CKB0B1
Notes
See Note
(1)
See Note
(2)
4w
DQLM-50
DQLM
DQLM+50
Mils
100
Mils
CKB0B1 is the sum of the length of the CK net plus the average length of the DQS0 and DQS1 nets.
Skew from CKB0B1
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
The McASP serial port is specifically designed for multichannel audio applications. Its key features are:
• Flexible clock and frame sync generation logic and on-chip dividers
• Up to sixteen transmit or receive data pins and serializers
• Large number of serial data format options, including:
– TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst)
– Time slots of 8,12,16, 20, 24, 28, and 32 bits
– First bit delay 0, 1, or 2 clocks
– MSB or LSB first bit order
– Left- or right-aligned data words within time slots
• DIT Mode with 384-bit Channel Status and 384-bit User Data registers
• Extensive error checking and mute generation logic
• All unused pins GPIO-capable
•
•
Transmit & Receive FIFO Buffers allow the McASP to operate at a higher sample rate by making it
more tolerant to DMA latency.
Dynamic Adjustment of Clock Dividers
– Clock Divider Value may be changed without resetting the McASP
Pins
Peripheral
Configuration
Bus
GIO
Control
DIT RAM
384 C
384 U
Optional
Tra n s m it
F o rm a tte r
McASP
DMA Bus
(Dedicated)
Receive
F o rm a tte r
Receive Logic
C lo ck /F ra m e G e n e ra to r
State Machine
Clock Check and
Error Detection
Function
AHCLKRx
Receive Master Clock
ACLKRx
Receive Bit Clock
AFSRx
R e c e iv e L e ft/R ig h t C lo ck o r F ra m e S y n c
AMUTEINx
The McASP DOES NOT have a
AMUTEx
dedicated AMUTEIN pin.
AFSXx
AHCLKXx
Tra n s m it L e ft/R ig h t C lo ck o r F ra m e S y n c
Tra n s m it B it C lo ck
Tra n s m it M a s te r C lo ck
Serializer 0
AXRx[0]
Tra n s m it/R e c e iv e S e ria l D a ta P in
Serializer 1
AXRx[1]
Tra n s m it/R e c e iv e S e ria l D a ta P in
Serializer y
AXRx[y]
Tra n s m it/R e c e iv e S e ria l D a ta P in
Tra n s m it L o g ic
C lo ck /F ra m e G e n e ra to r
State Machine
ACLKXx
McASP
Figure 6-26. McASP Block Diagram
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
97
PRODUCT PREVIEW
6.12 Multichannel Audio Serial Port (McASP)
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.12.1 McASP Peripheral Registers Description(s)
Registers for the McASP are summarized in Table 6-36. The registers are accessed through the
peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can
also be accessed through the DMA port, as listed in Table 6-37
Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-38. Note that the AFIFO Write
FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control
registers are accessed through the peripheral configuration port.
Table 6-36. McASP Registers Accessed Through Peripheral Configuration Port
PRODUCT PREVIEW
BYTE ADDRESS
ACRONYM
0x01D0 0000
REV
0x01D0 0010
PFUNC
Pin function register
0x01D0 0014
PDIR
Pin direction register
0x01D0 0018
PDOUT
0x01D0 001C
PDIN
Pin data output register
Read returns: Pin data input register
0x01D0 001C
PDSET
Writes affect: Pin data set register (alternate write address: PDOUT)
0x01D0 0020
PDCLR
Pin data clear register (alternate write address: PDOUT)
0x01D0 0044
GBLCTL
Global control register
0x01D0 0048
AMUTE
Audio mute control register
0x01D0 004C
DLBCTL
Digital loopback control register
0x01D0 0050
DITCTL
DIT mode control register
0x01D0 0060
RGBLCTL
0x01D0 0064
RMASK
0x01D0 0068
RFMT
Receiver global control register: Alias of GBLCTL, only receive bits are
affected - allows receiver to be reset independently from transmitter
Receive format unit bit mask register
Receive bit stream format register
0x01D0 006C
AFSRCTL
0x01D0 0070
ACLKRCTL
0x01D0 0074
AHCLKRCTL
0x01D0 0078
RTDM
0x01D0 007C
RINTCTL
0x01D0 0080
RSTAT
Receiver status register
0x01D0 0084
RSLOT
Current receive TDM time slot register
0x01D0 0088
RCLKCHK
Receive clock check control register
0x01D0 008C
REVTCTL
Receiver DMA event control register
XGBLCTL
Transmitter global control register. Alias of GBLCTL, only transmit bits are
affected - allows transmitter to be reset independently from receiver
0x01D0 00A0
98
REGISTER DESCRIPTION
Revision identification register
0x01D0 00A4
XMASK
0x01D0 00A8
XFMT
0x01D0 00AC
AFSXCTL
Receive frame sync control register
Receive clock control register
Receive high-frequency clock control register
Receive TDM time slot 0-31 register
Receiver interrupt control register
Transmit format unit bit mask register
Transmit bit stream format register
Transmit frame sync control register
0x01D0 00B0
ACLKXCTL
0x01D0 00B4
AHCLKXCTL
0x01D0 00B8
XTDM
Transmit TDM time slot 0-31 register
0x01D0 00BC
XINTCTL
Transmitter interrupt control register
0x01D0 00C0
XSTAT
Transmitter status register
0x01D0 00C4
XSLOT
Current transmit TDM time slot register
0x01D0 00C8
XCLKCHK
Transmit clock check control register
0x01D0 00CC
XEVTCTL
Transmitter DMA event control register
0x01D0 0100
DITCSRA0
Left (even TDM time slot) channel status register (DIT mode) 0
0x01D0 0104
DITCSRA1
Left (even TDM time slot) channel status register (DIT mode) 1
Peripheral Information and Electrical Specifications
Transmit clock control register
Transmit high-frequency clock control register
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-36. McASP Registers Accessed Through Peripheral Configuration Port (continued)
(1)
ACRONYM
0x01D0 0108
DITCSRA2
Left (even TDM time slot) channel status register (DIT mode) 2
REGISTER DESCRIPTION
0x01D0 010C
DITCSRA3
Left (even TDM time slot) channel status register (DIT mode) 3
0x01D0 0110
DITCSRA4
Left (even TDM time slot) channel status register (DIT mode) 4
0x01D0 0114
DITCSRA5
Left (even TDM time slot) channel status register (DIT mode) 5
0x01D0 0118
DITCSRB0
Right (odd TDM time slot) channel status register (DIT mode) 0
0x01D0 011C
DITCSRB1
Right (odd TDM time slot) channel status register (DIT mode) 1
0x01D0 0120
DITCSRB2
Right (odd TDM time slot) channel status register (DIT mode) 2
0x01D0 0124
DITCSRB3
Right (odd TDM time slot) channel status register (DIT mode) 3
0x01D0 0128
DITCSRB4
Right (odd TDM time slot) channel status register (DIT mode) 4
0x01D0 012C
DITCSRB5
Right (odd TDM time slot) channel status register (DIT mode) 5
0x01D0 0130
DITUDRA0
Left (even TDM time slot) channel user data register (DIT mode) 0
0x01D0 0134
DITUDRA1
Left (even TDM time slot) channel user data register (DIT mode) 1
0x01D0 0138
DITUDRA2
Left (even TDM time slot) channel user data register (DIT mode) 2
0x01D0 013C
DITUDRA3
Left (even TDM time slot) channel user data register (DIT mode) 3
0x01D0 0140
DITUDRA4
Left (even TDM time slot) channel user data register (DIT mode) 4
0x01D0 0144
DITUDRA5
Left (even TDM time slot) channel user data register (DIT mode) 5
0x01D0 0148
DITUDRB0
Right (odd TDM time slot) channel user data register (DIT mode) 0
0x01D0 014C
DITUDRB1
Right (odd TDM time slot) channel user data register (DIT mode) 1
0x01D0 0150
DITUDRB2
Right (odd TDM time slot) channel user data register (DIT mode) 2
0x01D0 0154
DITUDRB3
Right (odd TDM time slot) channel user data register (DIT mode) 3
0x01D0 0158
DITUDRB4
Right (odd TDM time slot) channel user data register (DIT mode) 4
0x01D0 015C
DITUDRB5
Right (odd TDM time slot) channel user data register (DIT mode) 5
0x01D0 0180
SRCTL0
Serializer control register 0
0x01D0 0184
SRCTL1
Serializer control register 1
0x01D0 0188
SRCTL2
Serializer control register 2
0x01D0 018C
SRCTL3
Serializer control register 3
0x01D0 0190
SRCTL4
Serializer control register 4
0x01D0 0194
SRCTL5
Serializer control register 5
0x01D0 0198
SRCTL6
Serializer control register 6
0x01D0 019C
SRCTL7
Serializer control register 7
0x01D0 01A0
SRCTL8
Serializer control register 8
0x01D0 01A4
SRCTL9
Serializer control register 9
0x01D0 01A8
SRCTL10
Serializer control register 10
0x01D0 01AC
SRCTL11
Serializer control register 11
0x01D0 01B0
SRCTL12
Serializer control register 12
0x01D0 01B4
SRCTL13
Serializer control register 13
0x01D0 01B8
SRCTL14
Serializer control register 14
0x01D0 01BC
SRCTL15
Serializer control register 15
0x01D0 0200
XBUF0 (1)
Transmit buffer register for serializer 0
0x01D0 0204
XBUF1
(1)
Transmit buffer register for serializer 1
0x01D0 0208
XBUF2 (1)
Transmit buffer register for serializer 2
0x01D0 020C
XBUF3 (1)
Transmit buffer register for serializer 3
0x01D0 0210
XBUF4
(1)
Transmit buffer register for serializer 4
0x01D0 0214
XBUF5 (1)
Transmit buffer register for serializer 5
0x01D0 0218
XBUF6 (1)
Transmit buffer register for serializer 6
0x01D0 021C
(1)
Transmit buffer register for serializer 7
XBUF7
PRODUCT PREVIEW
BYTE ADDRESS
Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
99
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-36. McASP Registers Accessed Through Peripheral Configuration Port (continued)
PRODUCT PREVIEW
(2)
BYTE ADDRESS
ACRONYM
0x01D0 0220
XBUF8 (1)
Transmit buffer register for serializer 8
REGISTER DESCRIPTION
0x01D0 0224
XBUF9 (1)
Transmit buffer register for serializer 9
0x01D0 0228
XBUF10
(1)
Transmit buffer register for serializer 10
0x01D0 022C
XBUF11 (1)
Transmit buffer register for serializer 11
0x01D0 0230
XBUF12 (1)
Transmit buffer register for serializer 12
0x01D0 0234
XBUF13
(1)
Transmit buffer register for serializer 13
0x01D0 0238
XBUF14 (1)
Transmit buffer register for serializer 14
0x01D0 023C
XBUF15 (1)
Transmit buffer register for serializer 15
0x01D0 0280
RBUF0 (2)
Receive buffer register for serializer 0
0x01D0 0284
RBUF1
(2)
Receive buffer register for serializer 1
0x01D0 0288
RBUF2 (2)
Receive buffer register for serializer 2
0x01D0 028C
RBUF3 (2)
Receive buffer register for serializer 3
0x01D0 0290
RBUF4
(2)
Receive buffer register for serializer 4
0x01D0 0294
RBUF5 (2)
Receive buffer register for serializer 5
0x01D0 0298
RBUF6 (2)
Receive buffer register for serializer 6
0x01D0 029C
RBUF7
(2)
Receive buffer register for serializer 7
0x01D0 02A0
RBUF8 (2)
Receive buffer register for serializer 8
0x01D0 02A4
RBUF9 (2)
Receive buffer register for serializer 9
0x01D0 02A8
RBUF10 (2)
Receive buffer register for serializer 10
0x01D0 02AC
RBUF11
(2)
Receive buffer register for serializer 11
0x01D0 02B0
RBUF12 (2)
Receive buffer register for serializer 12
0x01D0 02B4
RBUF13 (2)
Receive buffer register for serializer 13
0x01D0 02B8
RBUF14
(2)
Receive buffer register for serializer 14
0x01D0 02BC
RBUF15 (2)
Receive buffer register for serializer 15
Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.
Table 6-37. McASP Registers Accessed Through DMA Port
ACCESS TYPE
BYTE ADDRESS
ACRONYM
Read Accesses
0x01D0 2000
RBUF
REGISTER DESCRIPTION
Receive buffer DMA port address. Cycles through receive
serializers, skipping over transmit serializers and inactive
serializers. Starts at the lowest serializer at the beginning of each
time slot. Reads from DMA port only if XBUSEL = 0 in XFMT.
Write Accesses
0x01D0 2000
XBUF
Transmit buffer DMA port address. Cycles through transmit
serializers, skipping over receive and inactive serializers. Starts at
the lowest serializer at the beginning of each time slot. Writes to
DMA port only if RBUSEL = 0 in RFMT.
Table 6-38. McASP AFIFO Registers Accessed Through Peripheral Configuration Port
100
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01D0 1000
AFIFOREV
AFIFO revision identification register
0x01D0 1010
WFIFOCTL
Write FIFO control register
0x01D0 1014
WFIFOSTS
Write FIFO status register
0x01D0 1018
RFIFOCTL
Read FIFO control register
0x01D0 101C
RFIFOSTS
Read FIFO status register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.12.2 McASP Electrical Data/Timing
6.12.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
Table 6-39 and Table 6-41 assume testing over recommended operating conditions (see Figure 6-27 and
Figure 6-28).
Table 6-39. Timing Requirements for McASP0 (1.2V, 1.1V) (1) (2)
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
MAX
UNIT
1
tc(AHCLKRX)
Cycle time, AHCLKR/X
20
22
ns
2
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
10
11
ns
3
tc(ACLKRX)
Cycle time, ACLKR/X
AHCLKR/X ext
20 (3)
22 (3)
ns
4
tw(ACLKRX)
Pulse duration, ACLKR/W high or low
AHCLKR/X ext
10
11
ns
AHCLKR/X int
11.5
12
ns
4
5
ns
5
6
7
8
(1)
(2)
(3)
(4)
(5)
tsu(AFSRX-ACLKRX)
Setup time,
AFSR/X input to ACLKR/X
(4)
th(ACLKRX-AFSRX)
Hold time,
AFSR/X input after ACLKR/X (4)
tsu(AXR-ACLKRX)
Setup time,
AXR0[n] input to ACLKR/X (4) (5)
th(ACLKRX-AXR)
Hold time,
AXR0[n] input after ACLKR/X (4) (5)
AHCLKR/X ext input
AHCLKR/X ext output
4
5
ns
AHCLKR/X int
-1
-2
ns
AHCLKR/X ext input
0.4
1
ns
AHCLKR/X ext output
0.4
1
ns
AHCLKR/X int
11.5
12
ns
AHCLKR/X ext
4
5
ns
AHCLKR/X int
-1
-2
ns
AHCLKR/X ext input
0.4
1
ns
AHCLKR/X ext output
0.4
1
ns
ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
101
PRODUCT PREVIEW
NO.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-40. Timing Requirements for McASP0 (1.0V) (1) (2)
NO.
1.0V
PARAMETER
MIN
MAX
UNIT
1
tc(AHCLKRX)
Cycle time, AHCLKR/X
26.6
ns
2
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
13.3
ns
3
tc(ACLKRX)
Cycle time, ACLKR/X
AHCLKR/X ext
26.6 (3)
ns
4
tw(ACLKRX)
Pulse duration, ACLKR/W high or low
AHCLKR/X ext
13.3
ns
AHCLKR/X int
16
ns
AHCLKR/X ext input
5.5
ns
AHCLKR/X ext output
5.5
ns
5
6
PRODUCT PREVIEW
7
8
(1)
(2)
(3)
(4)
(5)
102
tsu(AFSRX-ACLKRX)
th(ACLKRX-AFSRX)
tsu(AXR-ACLKRX)
th(ACLKRX-AXR)
Setup time,
AFSR/X input to ACLKR/X
(4)
Hold time,
AFSR/X input after ACLKR/X (4)
Setup time,
AXR0[n] input to ACLKR/X (4) (5)
Hold time,
AXR0[n] input after ACLKR/X (4) (5)
AHCLKR/X int
-2
ns
AHCLKR/X ext input
1
ns
AHCLKR/X ext output
1
ns
AHCLKR/X int
16
ns
AHCLKR/X ext
5.5
ns
AHCLKR/X int
-2
ns
AHCLKR/X ext input
1
ns
AHCLKR/X ext output
1
ns
ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-41. Switching Characteristics for McASP0 (1.2V, 1.1V) (1)
9
tc(AHCLKRX)
Cycle time, AHCLKR/X
10
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
11
tc(ACLKRX)
Cycle time, ACLKR/X
12
tw(ACLKRX)
13
td(ACLKRX-AFSRX)
14
td(ACLKX-AXRV)
15
(1)
(2)
(3)
(4)
(5)
(6)
1.2V
PARAMETER
tdis(ACLKX-AXRHZ)
MIN
ACLKR/X int
Pulse duration, ACLKR/X high or low
Delay time, ACLKR/X transmit edge to
AFSX/R output valid (6)
Delay time, ACLKX transmit edge to
AXR output valid
ACLKR/X int
1.1V
MAX
MIN
MAX
UNIT
20
22
ns
AH – 2.5 (2)
AH – 2.5 (2)
ns
20 (3) (4)
22 (3) (4)
ns
A – 2.5
(5)
A – 2.5
(5)
ns
ACLKR/X int
0
6
0
8
ns
ACLKR/X ext input
2
13.5
2
14.5
ns
ACLKR/X ext output
2
13.5
2
14.5
ns
ACLKR/X int
0
6
0
8
ns
ACLKR/X ext input
2
13.5
2
14.5
ns
ACLKR/X ext output
2
13.5
2
14.5
ns
0
6
0
8
ns
2
13.5
2
14.5
ns
Disable time, ACLKR/X transmit edge to ACLKR/X int
AXR high impedance following last data
ACLKR/X ext
bit
McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
Table 6-42. Switching Characteristics for McASP0 (1.0V) (1)
NO.
9
tc(AHCLKRX)
Cycle time, AHCLKR/X
10
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
11
tc(ACLKRX)
Cycle time, ACLKR/X
12
1.0V
PARAMETER
tw(ACLKRX)
Pulse duration, ACLKR/X high or low
MIN
14
15
(1)
(2)
(3)
(4)
(5)
(6)
td(ACLKRX-AFSRX)
td(ACLKX-AXRV)
26.6
ns
ns
ACLKR/X int
26.6 (3) (4)
ns
ACLKR/X int
(5)
tdis(ACLKX-AXRHZ)
Disable time, ACLKR/X transmit edge to AXR high
impedance following last data bit
A – 2.5
ns
0
10
ns
2
19
ns
ACLKR/X ext output
2
19
ns
ACLKR/X int
0
10
ns
ACLKR/X ext input
2
19
ns
ACLKR/X ext output
2
19
ns
ACLKR/X int
0
10
ns
ACLKR/X ext
2
19
ns
Delay time, ACLKR/X transmit edge to AFSX/R output valid (6) ACLKR/X ext input
Delay time, ACLKX transmit edge to AXR output valid
UNIT
AH – 2.5 (2)
ACLKR/X int
13
MAX
McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
103
PRODUCT PREVIEW
NO.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
2
1
2
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
4
3
4
ACLKR/X (CLKRP = CLKXP = 0)(A)
ACLKR/X (CLKRP = CLKXP = 1)(B)
PRODUCT PREVIEW
6
5
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
8
7
AXR[n] (Data In/Receive)
A0
A1
A30 A31 B0 B1
B30 B31 C0 C1
C2 C3
C31
A.
For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
B.
For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
Figure 6-27. McASP Input Timings
104
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
10
10
9
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
12
11
12
ACLKR/X (CLKRP = CLKXP = 1)(A)
ACLKR/X (CLKRP = CLKXP = 0)(B)
PRODUCT PREVIEW
13
13
13
13
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
13
13
13
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
14
15
AXR[n] (Data Out/Transmit)
A0
A1
A30 A31 B0 B1
B30 B31 C0
C1 C2 C3
A.
For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
B.
For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
C31
Figure 6-28. McASP Output Timings
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
105
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.13 Multichannel Buffered Serial Port (McBSP)
The McBSP provides these functions:
• Full-duplex communication
• Double-buffered data registers, which allow a continuous data stream
• Independent framing and clocking for receive and transmit
• Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially
connected analog-to-digital (A/D) and digital-to-analog (D/A) devices
• External shift clock or an internal, programmable frequency shift clock for data transfer
• Transmit & Receive FIFO Buffers allow the McBSP to operate at a higher sample rate by making it
more tolerant to DMA latency
PRODUCT PREVIEW
If internal clock source is used, the CLKGDV field of the Sample Rate Generator Register (SRGR) must
always be set to a value of 1 or greater.
6.13.1 McBSP Peripheral Register Description(s)
Table 6-43. McBSP/FIFO Registers
McBSP1
BYTE
ADDRESS
ACRONYM
0x01D1 1000
DRR
McBSP Data Receive Register (read-only)
0x01D1 1004
DXR
McBSP Data Transmit Register
0x01D1 1008
SPCR
0x01D1 100C
RCR
McBSP Receive Control Register
0x01D1 1010
XCR
McBSP Transmit Control Register
0x01D1 1014
SRGR
REGISTER DESCRIPTION
McBSP Registers
McBSP Serial Port Control Register
McBSP Sample Rate Generator register
0x01D1 1018
MCR
0x01D1 101C
RCERE0
McBSP Multichannel Control Register
McBSP Enhanced Receive Channel Enable Register 0 Partition A/B
0x01D1 1020
XCERE0
McBSP Enhanced Transmit Channel Enable Register 0 Partition A/B
0x01D1 1024
PCR
0x01D1 1028
RCERE1
McBSP Pin Control Register
McBSP Enhanced Receive Channel Enable Register 1 Partition C/D
0x01D1 102C
XCERE1
McBSP Enhanced Transmit Channel Enable Register 1 Partition C/D
0x01D1 1030
RCERE2
McBSP Enhanced Receive Channel Enable Register 2 Partition E/F
0x01D1 1034
XCERE2
McBSP Enhanced Transmit Channel Enable Register 2 Partition E/F
0x01D1 1038
RCERE3
McBSP Enhanced Receive Channel Enable Register 3 Partition G/H
0x01D1 103C
XCERE3
McBSP Enhanced Transmit Channel Enable Register 3 Partition G/H
0x01D1 1800
BFIFOREV
BFIFO Revision Identification Register
0x01D1 1810
WFIFOCTL
Write FIFO Control Register
0x01D1 1814
WFIFOSTS
Write FIFO Status Register
0x01D1 1818
RFIFOCTL
Read FIFO Control Register
0x01D1 181C
RFIFOSTS
Read FIFO Status Register
McBSP FIFO Control and Status Registers
McBSP FIFO Data Registers
0x01F1 1000
RBUF
McBSP FIFO Receive Buffer
0x01F1 1000
XBUF
McBSP FIFO Transmit Buffer
106
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.13.2 McBSP Electrical Data/Timing
The following assume testing over recommended operating conditions.
6.13.2.1
Multichannel Buffered Serial Port (McBSP) Timing
Table 6-44. Timing Requirements for McBSP1 [1.2V, 1.1V] (1) (see Figure 6-29)
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X ext
2P or 20 (2) (3)
2P or 25 (2)
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X ext
P-1
P - 1 (4)
4
tt
Transition time, rising edge or falling edge
5
tsu(FRH-CKRL)
Setup time, external FSR high before CLKR
low
6
th(CKRL-FRH)
Hold time, external FSR high after CLKR low
7
tsu(DRV-CKRL) Setup time, DR valid before CLKR low
8
th(CKRL-DRV)
10
tsu(FXH-CKXL) Setup time, external FSX high before CLKX low
11
th(CKXL-FXH)
(1)
(2)
(3)
(4)
Hold time, DR valid after CLKR low
Hold time, external FSX high after CLKX low
5
MAX
UNIT
ns
ns
5
CLKR int
15
18
CLKR ext
5
5
CLKR int
6
6
CLKR ext
3
3
CLKR int
15
18
CLKR ext
5
5
CLKR int
3
3
CLKR ext
3
3
CLKX int
15
18
CLKX ext
5
5
CLKX int
6
6
CLKX ext
3
3
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
107
PRODUCT PREVIEW
NO.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-45. Timing Requirements for McBSP1 [1.0V] (1) (see Figure 6-29)
NO.
2
tc(CKRX)
Cycle time, CLKR/X
PRODUCT PREVIEW
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
4
tt
Transition time, rising edge or falling edge
5
tsu(FRH-CKRL) Setup time, external FSR high before CLKR low
6
th(CKRL-FRH)
7
tsu(DRV-CKRL) Setup time, DR valid before CLKR low
8
th(CKRL-DRV)
10
tsu(FXH-CKXL) Setup time, external FSX high before CLKX low
11
th(CKXL-FXH)
(1)
(2)
(3)
(4)
108
1.0V
PARAMETER
Hold time, external FSR high after CLKR low
Hold time, DR valid after CLKR low
Hold time, external FSX high after CLKX low
MIN
CLKR/X ext
CLKR/X ext
MAX
2P or
26.6 (2) (3)
P-1
UNIT
ns
(4)
ns
5
CLKR int
21
CLKR ext
10
CLKR int
6
CLKR ext
3
CLKR int
21
CLKR ext
10
CLKR int
3
CLKR ext
3
CLKX int
21
CLKX ext
10
CLKX int
6
CLKX ext
3
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-46. Switching Characteristics for McBSP1 [1.2V, 1.1V] (1) (2)
(see Figure 6-29)
1.2V
PARAMETER
1.1V
MIN
MAX
MIN
MAX
2.5
16.5
3
18
UNIT
1
td(CKSH-CKRXH)
Delay time, CLKS high to CLKR/X high for internal
CLKR/X generated from CLKS input
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or
20 (3) (4)
3
tw(CKRX)
Pulse duration, CLKR/X high or
CLKR/X low
CLKR/X int
C - 2 (5)
C + 2 (5)
C - 2 (5)
C + 2 (5)
ns
4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR
valid
CLKR int
-4
6.5
-4
13
ns
CLKR ext
2.5
16.5
2.5
18
9
td(CKXH-FXV)
Delay time, CLKX high to internal FSX
valid
CLKX int
-4
6.5
-4
13
CLKX ext
2.5
16.5
2.5
18
12
tdis(CKXH-DXHZ)
Disable time, DX high impedance
following last data bit from CLKX high
CLKX int
-4
6.5
-4
13
CLKX ext
-2
16.5
-2
18
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
CLKX int
-4 + D1 (6)
6.5 + D2 (6)
-4 + D1 (6)
13 + D2 (6)
CLKX ext
2.5 + D1 (6)
16.5 + D2 (6)
2.5 + D1 (6)
18 + D2 (6)
14
td(FXH-DXV)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
2P or
25 (3) (4)
ns
ns
Delay time, FSX high to DX valid
FSX int
-4 (7)
6.5 (7)
-4 (7)
13 (7)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (7)
16.5 (7)
-2 (7)
18
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
109
PRODUCT PREVIEW
NO.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-47. Switching Characteristics for McBSP1 [1.0V] (1) (2)
(see Figure 6-29)
NO.
1.0V
PARAMETER
MIN
MAX
3
23
UNIT
PRODUCT PREVIEW
1
td(CKSH-CKRXH)
Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from
CLKS input
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or
26.6 (3) (4) (5)
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X int
C - 2 (6)
C + 2 (6)
ns
CLKR int
-4
13
ns
CLKR ext
2.5
23
CLKX int
-4
13
CLKX ext
2.5
23
CLKX int
-4
13
CLKX ext
-2
23
CLKX int
-4 + D1
4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR valid
9
td(CKXH-FXV)
Delay time, CLKX high to internal FSX valid
12
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last data bit from CLKX
high
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
14
td(FXH-DXV)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
110
CLKX ext
2.5 + D1
(7)
ns
ns
13 + D2 (7)
23 + D2 (7)
Delay time, FSX high to DX valid
FSX int
-4 (8)
13 (8)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (8)
23 (8)
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
CLKS
1
2
3
3
CLKR
4
4
FSR (int)
5
6
FSR (ext)
7
8
DR
Bit(n1)
(n2)
(n3)
2
3
PRODUCT PREVIEW
3
CLKX
9
FSX (int)
11
10
FSX (ext)
FSX (XDATDLY=00b)
14
13 (A)
Bit(n1)
12
DX
Bit 0
13 (A)
(n2)
(n3)
Figure 6-29. McBSP Timing(B)
Table 6-48. Timing Requirements for McBSP1 FSR When GSYNC = 1 (see Figure 6-30)
NO.
1.2V
PARAMETER
MIN
MAX
1.1V
MIN
MAX
1.0V
MIN
MAX
UNIT
1
tsu(FRH-CKSH)
Setup time, FSR high before CLKS high
5
5
10
ns
2
th(CKSH-FRH)
Hold time, FSR high after CLKS high
4
4
4
ns
CLKS
1
2
FSR external
CLKR/X (no need to resync)
CLKR/X (needs resync)
Figure 6-30. FSR Timing When GSYNC = 1
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
111
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.14 Serial Peripheral Interface Ports (SPI1)
Figure 6-31 is a block diagram of the SPI module, which is a simple shift register and buffer plus control
logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end
of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives
the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many
data formatting options.
SPIx_SIMO
SPIx_SOMI
Peripheral
Configuration Bus
PRODUCT PREVIEW
Interrupt and
DMA Requests
16-Bit Shift Register
16-Bit Buffer
SPIx_ENA
State
GPIO
Machine SPIx_SCS
Control
(all pins) Clock SPIx_CLK
Control
Figure 6-31. Block Diagram of SPI Module
The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and
SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA).
The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are
other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin
when SPIx_SCS is held low.
In slave mode, SPIx_ENA is an optional output and can be driven in either a push-pull or open-drain
manner. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In
four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating
that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified
by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the
same SPI bus.
In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start
of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI
communications and, on average, increases SPI bus throughput since the master does not need to delay
each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer
can begin as soon as both the master and slave have actually serviced the previous SPI transfer.
112
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Optional − Slave Chip Select
SPIx_SCS
SPIx_SCS
SPIx_ENA
SPIx_ENA
SPIx_CLK
SPIx_CLK
SPIx_SOMI
SPIx_SOMI
SPIx_SIMO
SPIx_SIMO
MASTER SPI
SLAVE SPI
PRODUCT PREVIEW
Optional Enable (Ready)
Figure 6-32. Illustration of SPI Master-to-SPI Slave Connection
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
113
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.14.1 SPI Peripheral Registers Description(s)
Table 6-49is a list of the SPI registers.
Table 6-49. SPIx Configuration Registers
SPI1
BYTE ADDRESS
PRODUCT PREVIEW
114
REGISTER NAME
DESCRIPTION
0x01F0 E000
SPIGCR0
Global Control Register 0
0x01F0 E004
SPIGCR1
Global Control Register 1
0x01F0 E008
SPIINT0
Interrupt Register
0x01F0 E00C
SPILVL
Interrupt Level Register
0x01F0 E010
SPIFLG
Flag Register
0x01F0 E014
SPIPC0
Pin Control Register 0 (Pin Function)
0x01F0 E018
SPIPC1
Pin Control Register 1 (Pin Direction)
0x01F0 E01C
SPIPC2
Pin Control Register 2 (Pin Data In)
0x01F0 E020
SPIPC3
Pin Control Register 3 (Pin Data Out)
0x01F0 E024
SPIPC4
Pin Control Register 4 (Pin Data Set)
0x01F0 E028
SPIPC5
Pin Control Register 5 (Pin Data Clear)
0x01F0 E02C
Reserved
Reserved - Do not write to this register
0x01F0 E030
Reserved
Reserved - Do not write to this register
0x01F0 E034
Reserved
Reserved - Do not write to this register
0x01F0 E038
SPIDAT0
Shift Register 0 (without format select)
0x01F0 E03C
SPIDAT1
Shift Register 1 (with format select)
0x01F0 E040
SPIBUF
Buffer Register
0x01F0 E044
SPIEMU
Emulation Register
0x01F0 E048
SPIDELAY
Delay Register
0x01F0 E04C
SPIDEF
Default Chip Select Register
0x01F0 E050
SPIFMT0
Format Register 0
0x01F0 E054
SPIFMT1
Format Register 1
0x01F0 E058
SPIFMT2
Format Register 2
0x01F0 E05C
SPIFMT3
Format Register 3
0x01F0 E060
INTVEC0
Interrupt Vector for SPI INT0
0x01F0 E064
INTVEC1
Interrupt Vector for SPI INT1
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.14.2 SPI Electrical Data/Timing
6.14.2.1 Serial Peripheral Interface (SPI) Timing
The following tables and timing diagrams assume testing over recommended operating conditions (
Table 6-50. General Timing Requirements for SPI1 Master Modes (1)
1
1.2V
PARAMETER
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
20 (2)
256P
30 (2)
256P
40 (2)
256P
UNIT
tc(SPC)M
Cycle Time, SPI1_CLK, All Master Modes
2
tw(SPCH)M
Pulse Width High, SPI1_CLK, All Master
Modes
0.5M-1
0.5M-1
0.5M-1
ns
3
tw(SPCL)M
Pulse Width Low, SPI1_CLK, All Master
Modes
0.5M-1
0.5M-1
0.5M-1
ns
4,5
5
td(SIMO_SPC)M
td(SPC_SIMO)M
Delay, initial data
bit valid on
SPI1_SIMO to
initial edge on
SPI1_CLK (3)
Polarity = 0, Phase =
0,
to SPI1_CLK rising
5
5
6
Polarity = 0, Phase =
1,
to SPI1_CLK rising
-0.5M+5
-0.5M+5
-0.5M+6
Polarity = 1, Phase =
0,
to SPI1_CLK falling
5
5
6
Polarity = 1, Phase =
1,
to SPI1_CLK falling
-0.5M+5
-0.5M+5
-0.5M+6
Polarity = 0, Phase =
0,
from SPI1_CLK
rising
5
5
6
5
5
6
ns
Polarity = 0, Phase =
1,
Delay, subsequent from SPI1_CLK
bits valid on
falling
SPI1_SIMO after
Polarity = 1, Phase =
transmit edge of
0,
SPI1_CLK
from SPI1_CLK
falling
ns
Polarity = 1, Phase =
1,
from SPI1_CLK
rising
6
(1)
(2)
(3)
toh(SPC_SIMO)M
Output hold time,
SPI1_SIMO valid
after
receive edge of
SPI1_CLK
ns
5
5
6
5
5
6
Polarity = 0, Phase =
0,
from SPI1_CLK
falling
0.5M-3
0.5M-3
0.5M-3
Polarity = 0, Phase =
1,
from SPI1_CLK
rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase =
0,
from SPI1_CLK
rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase =
1,
from SPI1_CLK
falling
0.5M-3
0.5M-3
0.5M-3
ns
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
This timing is limited by the timing shown or 2P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
115
PRODUCT PREVIEW
NO.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-50. General Timing Requirements for SPI1 Master Modes (continued)
NO.
7
PRODUCT PREVIEW
8
116
1.2V
PARAMETER
tsu(SOMI_SPC)M
tih(SPC_SOMI)M
Input Setup Time,
SPI1_SOMI valid
before
receive edge of
SPI1_CLK
Input Hold Time,
SPI1_SOMI valid
after
receive edge of
SPI1_CLK
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
Polarity = 0, Phase =
0,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase =
1,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase =
0,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase =
1,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase =
0,
from SPI1_CLK
falling
4
5
6
Polarity = 0, Phase =
1,
from SPI1_CLK
rising
4
5
6
Polarity = 1, Phase =
0,
from SPI1_CLK
rising
4
5
6
Polarity = 1, Phase =
1,
from SPI1_CLK
falling
4
5
6
Peripheral Information and Electrical Specifications
MAX
UNIT
ns
ns
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-51. General Timing Requirements for SPI1 Slave Modes (1)
1.2V
PARAMETER
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
40 (2)
256P
50 (2)
256P
60 (2)
256P
UNIT
9
tc(SPC)S
Cycle Time, SPI1_CLK, All Slave Modes
10
tw(SPCH)S
Pulse Width High, SPI1_CLK, All Slave Modes
18
22
27
ns
11
tw(SPCL)S
Pulse Width Low, SPI1_CLK, All Slave Modes
18
22
27
ns
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P
2P
2P
Polarity = 0, Phase = 1,
to SPI1_CLK rising
2P
2P
2P
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P
2P
2P
Polarity = 1, Phase = 1,
to SPI1_CLK falling
2P
2P
2P
12
tsu(SOMI_SPC)S
Setup time, transmit data
written to SPI before initial
clock edge from
master. (3) (4)
ns
Polarity = 0, Phase = 0,
from SPI1_CLK rising
13
td(SPC_SOMI)S
Polarity = 0, Phase = 1,
Delay, subsequent bits valid from SPI1_CLK falling
on SPI1_SOMI after
transmit edge of SPI1_CLK Polarity = 1, Phase = 0,
from SPI1_CLK falling
14
15
16
(1)
(2)
(3)
(4)
toh(SPC_SOMI)S
tsu(SIMO_SPC)S
tih(SPC_SIMO)S
Input Setup Time,
SPI1_SIMO valid before
receive edge of SPI1_CLK
Input Hold Time,
SPI1_SIMO valid after
receive edge of SPI1_CLK
15
17
19
15
17
19
15
17
19
15
17
19
ns
Polarity = 1, Phase = 1,
from SPI1_CLK rising
Output hold time,
SPI1_SOMI valid after
receive edge of SPI1_CLK
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5S-4
0.5S-10
0.5S-12
Polarity = 0, Phase = 1,
from SPI1_CLK rising
0.5S-4
0.5S-10
0.5S-12
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5S-4
0.5S-10
0.5S-12
Polarity = 1, Phase = 1,
from SPI1_CLK falling
0.5S-4
0.5S-10
0.5S-12
Polarity = 0, Phase = 0,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 0,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
4
5
6
Polarity = 0, Phase = 1,
from SPI1_CLK rising
4
5
6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
4
5
6
Polarity = 1, Phase = 1,
from SPI1_CLK falling
4
5
6
ns
ns
ns
P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period)
This timing is limited by the timing shown or 2P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO.
Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
117
PRODUCT PREVIEW
NO.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-52. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2) (3)
NO.
17
td(EN
PRODUCT PREVIEW
18
(1)
(2)
(3)
(4)
(5)
1.2V
PARAMETER
A_SPC)M
td(SPC_ENA)M
Delay from slave
assertion of SPI1_ENA
active to first
SPI1_CLK from
master. (4)
Max delay for slave to
deassert SPI1_ENA
after final SPI1_CLK
edge to ensure master
does not begin the
next transfer. (5)
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
to SPI1_CLK rising
3P+5
3P+5
3P+6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
3P+5
3P+5
3P+6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
P+5
P+6
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-50).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA assertion.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Table 6-53. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2) (3)
NO.
19
20
(1)
(2)
(3)
(4)
(5)
(6)
(7)
118
PARAMETER
td(SCS_SPC)M
td(SPC_SCS)M
Delay from
SPI1_SCS active
to first
SPI1_CLK (4) (5)
Delay from final
SPI1_CLK edge to
master
deasserting
SPI1_SCS (6) (7)
1.2V
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P-1
2P-5
2P-6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P-1
2P-5
2P-6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P-1
P-5
P-6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P-1
P-5
P-6
MAX
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-50).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain
asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-54. Additional (1) SPI1 Master Timings, 5-Pin Option (2) (3)
NO.
18
20
21
22
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
1.2V
PARAMETER
td(SPC_ENA)M
td(SPC_SCS)M
MIN
Max delay for slave to deassert SPI1_ENA after final
SPI1_CLK edge to ensure master does not begin the next
transfer. (4)
Delay from final SPI1_CLK edge to
master deasserting SPI1_SCS (5) (6)
td(SCS_SPC)M
Delay from SPI1_SCS active to first SPI1_CLK
MAX
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
P+5
P+6
UNIT
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P-1
P-5
P-6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P-1
P-5
P-6
ns
Max delay for slave SPI to drive SPI1_ENA valid after master asserts SPI1_SCS to
td(SCSL_ENAL)M delay the
master from beginning the next transfer,
(7) (8) (9)
1.1V
C2TDELAY+P
C2TDELAY+P
C2TDELAY+P
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P-1
2P-5
2P-6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P-1
2P-5
2P-6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-51).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
119
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-54. Additional SPI1 Master Timings, 5-Pin Option (continued)
NO.
23
1.2V
PARAMETER
td(ENA_SPC)M
Delay from assertion of SPI1_ENA low to first SPI1_CLK
edge. (10)
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
to SPI1_CLK rising
3P+5
3P+5
3P+6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
3P+5
3P+5
3P+6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
UNIT
ns
(10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed.
120
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-55. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2) (3)
NO.
24
(1)
(2)
(3)
1.2V
PARAMETER
Delay from final
td(SPC_ENAH)S SPI1_CLK edge to slave
deasserting SPI1_ENA.
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI1_CLK falling
1.5P-3
2.5P+15
1.5P-10
2.5P+17
1.5P-12
2.5P+19
Polarity = 0, Phase = 1,
from SPI1_CLK falling
–0.5M+1.5P-3
–0.5M+2.5P+15
–0.5M+1.5P-10
–0.5M+2.5P+17
–0.5M+1.5P-12
–0.5M+2.5P+19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
1.5P-3
2.5P+15
1.5P-10
2.5P+17
1.5P-12
2.5P+19
Polarity = 1, Phase = 1,
from SPI1_CLK rising
–0.5M+1.5P-3
–0.5M+2.5P+15
–0.5M+1.5P-10
–0.5M+2.5P+17
–0.5M+1.5P-12
–0.5M+2.5P+19
UNIT
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-51).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
121
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-56. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2) (3)
NO.
25
26
1.2V
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave.
Required delay from final SPI1_CLK edge before
SPI1_SCS is deasserted.
1.1V
MAX
MIN
1.0V
MAX
MIN
P+1.5
P+1.5
P+1.5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+4
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+4
P+5
P+6
MAX
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid
P+15
P+17
P+19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI
P+15
P+17
P+19
ns
(1)
(2)
(3)
122
These parameters are in addition to the general timings for SPI slave modes (Table 6-51).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-57. Additional (1) SPI1 Slave Timings, 5-Pin Option (2) (3)
NO.
25
26
1.2V
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave.
Required delay from final SPI1_CLK edge before
SPI1_SCS is deasserted.
1.1V
MAX
MIN
1.0V
MAX
MIN
P+1.5
P+1.5
P+1.5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+4
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+4
P+5
P+6
MAX
UNIT
ns
ns
27
tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid
P+15
P+17
P+19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI
P+15
P+17
P+19
ns
29
tena(SCSL_ENA)S
Delay from master deasserting SPI1_SCS to slave driving SPI1_ENA valid
15
17
19
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
2.5P+15
2.5P+17
2.5P+19
Polarity = 0, Phase = 1,
from SPI1_CLK rising
2.5P+15
2.5P+17
2.5P+19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
2.5P+15
2.5P+17
2.5P+19
Polarity = 1, Phase = 1,
from SPI1_CLK falling
2.5P+15
2.5P+17
2.5P+19
30
(1)
(2)
(3)
(4)
tdis(SPC_ENA)S
Delay from final clock receive edge on SPI1_CLK to slave
3-stating or driving high SPI1_ENA. (4)
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-51).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor
should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
123
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
1
2
MASTER MODE
POLARITY = 0 PHASE = 0
3
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
6
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
PRODUCT PREVIEW
MASTER MODE
POLARITY = 0 PHASE = 1
4
SPIx_CLK
6
5
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(0)
MI(n)
4
MASTER MODE
POLARITY = 1 PHASE = 0
SPIx_CLK
5
SPIx_SIMO
6
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
MASTER MODE
POLARITY = 1 PHASE = 1
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MI(0)
6
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(n)
Figure 6-33. SPI Timings—Master Mode
124
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
9
12
10
SLAVE MODE
POLARITY = 0 PHASE = 0
11
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SI(n)
14
SO(1)
SO(n−1)
12
SO(n)
PRODUCT PREVIEW
SLAVE MODE
POLARITY = 0 PHASE = 1
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
13
SPIx_SOMI
SO(0)
SI(n−1)
SI(n)
SO(n−1)
SO(n)
14
SO(1)
SLAVE MODE
POLARITY = 1 PHASE = 0
12
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SI(n)
14
SO(1)
SO(n−1)
SO(n)
SLAVE MODE
POLARITY = 1 PHASE = 1
12
SPIx_CLK
15
16
SPIx_SIMO
SI(0)
SPIx_SOMI
SO(0)
SI(1)
13
SO(1)
SI(n−1)
SI(n)
14
SO(n−1)
SO(n)
Figure 6-34. SPI Timings—Slave Mode
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
125
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
MASTER MODE 4 PIN WITH ENABLE
17
18
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
MI(0)
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
MI(n)
SPIx_ENA
MASTER MODE 4 PIN WITH CHIP SELECT
19
20
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
PRODUCT PREVIEW
MI(0)
MO(1)
MO(n−1)
MO(n)
MI(1)
MI(n−1)
MI(n)
SPIx_SCS
MASTER MODE 5 PIN
22
20
MO(1)
23
18
SPIx_CLK
SPIx_SIMO
MO(0)
MO(n−1)
MO(n)
SPIx_SOMI
21
SPIx_ENA
MI(0)
MI(1)
MI(n−1)
MI(n)
DESEL(A)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 6-35. SPI Timings—Master Mode (4-Pin and 5-Pin)
126
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
SLAVE MODE 4 PIN WITH ENABLE
24
SPIx_CLK
SPIx_SOMI
SO(0)
SO(1)
SO(n−1)
SO(n)
SPIx_SIMO
SI(0)
SPIx_ENA
SI(1)
SI(n−1) SI(n)
SLAVE MODE 4 PIN WITH CHIP SELECT
26
25
SPIx_CLK
SPIx_SOMI
28
SO(n−1)
SO(0)
SO(1)
SO(n)
PRODUCT PREVIEW
27
SPIx_SIMO
SI(0)
SPIx_SCS
SI(1)
SI(n−1)
SI(n)
SLAVE MODE 5 PIN
26
30
25
SPIx_CLK
27
SPIx_SOMI
28
SO(1)
SO(0)
SO(n−1)
SO(n)
SPIx_SIMO
29
SPIx_ENA
DESEL(A)
SI(0)
SI(1)
SI(n−1)
SI(n)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 6-36. SPI Timings—Slave Mode (4-Pin and 5-Pin)
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
127
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.15 Inter-Integrated Circuit Serial Ports (I2C)
6.15.1 I2C Device-Specific Information
I2C port supports:
• Compatible with Philips® I2C Specification Revision 2.1 (January 2000)
• Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
• Noise Filter to Remove Noise 50 ns or less
• Seven- and Ten-Bit Device Addressing Modes
• Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
• Events: DMA, Interrupt, or Polling
• General-Purpose I/O Capability if not used as I2C
PRODUCT PREVIEW
Figure 6-37 is block diagram of the device I2C Module.
Clock Prescaler
I2CPSCx
Control
Prescaler
Register
I2CCOARx
Own Address
Register
I2CSARx
Slave Address
Register
Bit Clock Generator
I2Cx_SCL
Noise
Filter
I2CCLKHx
Clock Divide
High Register
I2CCMDRx
Mode Register
I2CCLKLx
Clock Divide
Low Register
I2CEMDRx
Extended Mode
Register
I2CCNTx
Data Count
Register
I2CPID1
Peripheral ID
Register 1
I2CPID2
Peripheral ID
Register 2
Transmit
I2Cx_SDA
Noise
Filter
I2CXSRx
Transmit Shift
Register
I2CDXRx
Transmit Buffer
Interrupt/DMA
Receive
I2CIERx
I2CDRRx
Receive Buffer
I2CSTRx
I2CRSRx
Receive Shift
Register
I2CSRCx
I2CPFUNC
Pin Function
Register
I2CPDOUT
Interrupt Enable
Register
Interrupt Status
Register
Interrupt Source
Register
Peripheral
Configuration
Bus
Interrupt DMA
Requests
Control
I2CPDIR
I2CPDIN
Pin Direction
Register
Pin Data In
Register
I2CPDSET
I2CPDCLR
Pin Data Out
Register
Pin Data Set
Register
Pin Data Clear
Register
Figure 6-37. I2C Module Block Diagram
128
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.15.2 I2C Peripheral Registers Description(s)
Table 6-58 is the list of the I2C registers.
Table 6-58. Inter-Integrated Circuit (I2C) Registers
I2C0
BYTE ADDRESS
ACRONYM
0x01C2 2000
ICOAR
I2C Own Address Register
0x01C2 2004
ICIMR
I2C Interrupt Mask Register
0x01C2 2008
ICSTR
I2C Interrupt Status Register
0x01C2 200C
ICCLKL
I2C Clock Low-Time Divider Register
0x01C2 2010
ICCLKH
I2C Clock High-Time Divider Register
0x01C2 2014
ICCNT
I2C Data Count Register
0x01C2 2018
ICDRR
I2C Data Receive Register
0x01C2 201C
ICSAR
I2C Slave Address Register
0x01C2 2020
ICDXR
I2C Data Transmit Register
0x01C2 2024
ICMDR
I2C Mode Register
0x01C2 2028
ICIVR
I2C Interrupt Vector Register
0x01C2 202C
ICEMDR
I2C Extended Mode Register
0x01C2 2030
ICPSC
I2C Prescaler Register
0x01C2 2034
REVID1
I2C Revision Identification Register 1
0x01C2 2038
REVID2
I2C Revision Identification Register 2
0x01C2 2048
ICPFUNC
I2C Pin Function Register
0x01C2 204C
ICPDIR
I2C Pin Direction Register
0x01C2 2050
ICPDIN
I2C Pin Data In Register
0x01C2 2054
ICPDOUT
I2C Pin Data Out Register
0x01C2 2058
ICPDSET
I2C Pin Data Set Register
0x01C2 205C
ICPDCLR
I2C Pin Data Clear Register
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
PRODUCT PREVIEW
REGISTER DESCRIPTION
129
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.15.3 I2C Electrical Data/Timing
6.15.3.1 Inter-Integrated Circuit (I2C) Timing
Table 6-59 and Table 6-60 assume testing over recommended operating conditions (see Figure 6-38 and
Figure 6-39).
Table 6-59. Timing Requirements for I2C Input
1.2V, 1.1V, 1.0V
NO.
PARAMETER
Standard Mode
MIN
MAX
Fast Mode
MIN
UNIT
MAX
PRODUCT PREVIEW
1
tc(SCL)
Cycle time, I2Cx_SCL
10
2.5
µs
2
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA low
4.7
0.6
µs
3
th(SCLL-SDAL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
4
0.6
µs
4
tw(SCLL)
Pulse duration, I2Cx_SCL low
4.7
1.3
µs
5
tw(SCLH)
Pulse duration, I2Cx_SCL high
4
0.6
µs
6
tsu(SDA-SCLH)
Setup time, I2Cx_SDA before I2Cx_SCL high
250
100
7
th(SDA-SCLL)
Hold time, I2Cx_SDA after I2Cx_SCL low
0
0
8
tw(SDAH)
Pulse duration, I2Cx_SDA high
4.7
1.3
ns
0.9
µs
µs
9
tr(SDA)
Rise time, I2Cx_SDA
1000
20 + 0.1Cb
300
ns
10
tr(SCL)
Rise time, I2Cx_SCL
1000
20 + 0.1Cb
300
ns
11
tf(SDA)
Fall time, I2Cx_SDA
300
20 + 0.1Cb
300
ns
12
tf(SCL)
Fall time, I2Cx_SCL
300
20 + 0.1Cb
300
ns
13
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA high
14
tw(SP)
Pulse duration, spike (must be suppressed)
15
Cb
Capacitive load for each bus line
4
0.6
N/A
0
µs
400
Table 6-60. Switching Characteristics for I2C
50
ns
400
pF
(1)
1.2V, 1.1V, 1.0V
NO.
PARAMETER
Standard Mode
MIN
MAX
Fast Mode
MIN
UNIT
MAX
16
tc(SCL)
Cycle time, I2Cx_SCL
10
2.5
µs
17
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA low
4.7
0.6
µs
18
th(SDAL-SCLL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
4
0.6
µs
19
tw(SCLL)
Pulse duration, I2Cx_SCL low
4.7
1.3
µs
20
tw(SCLH)
Pulse duration, I2Cx_SCL high
4
0.6
µs
21
tsu(SDAV-SCLH)
Setup time, I2Cx_SDA valid before I2Cx_SCL high
250
100
22
th(SCLL-SDAV)
Hold time, I2Cx_SDA valid after I2Cx_SCL low
0
0
23
tw(SDAH)
Pulse duration, I2Cx_SDA high
4.7
1.3
µs
28
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA high
4
0.6
µs
(1)
130
ns
0.9
µs
I2C must be configured correctly to meet the timings in Table 6-60.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
11
9
I2Cx_SDA
6
8
14
4
13
5
10
I2Cx_SCL
12
3
2
7
3
Stop
Start
Repeated
Start
Stop
PRODUCT PREVIEW
1
Figure 6-38. I2C Receive Timings
26
24
I2Cx_SDA
21
23
19
28
20
25
I2Cx_SCL
16
27
18
17
22
18
Stop
Start
Repeated
Start
Stop
Figure 6-39. I2C Transmit Timings
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
131
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
6.16
www.ti.com
Universal Asynchronous Receiver/Transmitter (UART)
PRODUCT PREVIEW
The UART has the following features:
• 16-byte storage space for both the transmitter and receiver FIFOs
• 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA
• DMA signaling capability for both received and transmitted data
• Programmable auto-rts and auto-cts for autoflow control
• Programmable Baud Rate up to 3MBaud
• Programmable Oversampling Options of x13 and x16
• Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates
• Prioritized interrupts
• Programmable serial data formats
– 5, 6, 7, or 8-bit characters
– Even, odd, or no parity bit generation and detection
– 1, 1.5, or 2 stop bit generation
• False start bit detection
• Line break generation and detection
• Internal diagnostic capabilities
– Loopback controls for communications link fault isolation
– Break, parity, overrun, and framing error simulation
• Modem control functions (CTS, RTS)
The UART registers are listed in Section 6.16.1
6.16.1 UART Peripheral Registers Description(s)
Table 6-61 is the list of UART registers.
Table 6-61. UART Registers
132
UART0
BYTE ADDRESS
ACRONYM
0x01C4 2000
RBR
Receiver Buffer Register (read only)
0x01C4 2000
THR
Transmitter Holding Register (write only)
0x01C4 2004
IER
Interrupt Enable Register
0x01C4 2008
IIR
Interrupt Identification Register (read only)
0x01C4 2008
FCR
FIFO Control Register (write only)
0x01C4 200C
LCR
Line Control Register
0x01C4 2010
MCR
Modem Control Register
0x01C4 2014
LSR
Line Status Register
0x01C4 2018
MSR
Modem Status Register
0x01C4 201C
SCR
Scratchpad Register
0x01C4 2020
DLL
Divisor LSB Latch
0x01C4 2024
DLH
Divisor MSB Latch
0x01C4 2028
REVID1
0x01C4 2030
PWREMU_MGMT
0x01C4 2034
MDR
Peripheral Information and Electrical Specifications
REGISTER DESCRIPTION
Revision Identification Register 1
Power and Emulation Management Register
Mode Definition Register
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.16.2 UART Electrical Data/Timing
Table 6-62. Timing Requirements for UART Receive (1) (see Figure 6-40)
NO.
1.2V, 1.1V, 1.0V
PARAMETER
MIN
MAX
UNIT
4
tw(URXDB)
Pulse duration, receive data bit (RXDn)
0.96U
1.05U
ns
5
tw(URXSB)
Pulse duration, receive start bit
0.96U
1.05U
ns
(1)
U = UART baud time = 1/programmed baud rate.
NO.
(1)
1.2V, 1.1V, 1.0V
PARAMETER
1
f(baud)
Maximum programmable baud rate
2
tw(UTXDB)
Pulse duration, transmit data bit (TXDn)
3
tw(UTXSB)
Pulse duration, transmit start bit
MIN
MAX
UNIT
3
MBaud
U-2
U+2
ns
U-2
U+2
ns
U = UART baud time = 1/programmed baud rate.
3
2
UART_TXDn
Start
Bit
Data Bits
5
4
UART_RXDn
Start
Bit
Data Bits
Figure 6-40. UART Transmit/Receive Timing
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
133
PRODUCT PREVIEW
Table 6-63. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1)
(see Figure 6-40)
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.17 Host-Port Interface (UHPI)
6.17.1 HPI Device-Specific Information
The device includes a user-configurable 16-bit Host-port interface (HPI16).
6.17.2 HPI Peripheral Register Description(s)
Table 6-64. HPI Control Registers
BYTE ADDRESS
ACRONYM
0x01E1 0000
PID
0x01E1 0004
PWREMU_MGMT
REGISTER DESCRIPTION
HPI power and emulation management register
GPIO_EN
0x01E1 0010
GPIO_DIR1
General Purpose IO Direction Register 1
0x01E1 0014
GPIO_DAT1
General Purpose IO Data Register 1
0x01E1 0018
GPIO_DIR2
General Purpose IO Direction Register 2
0x01E1 001C
GPIO_DAT2
General Purpose IO Data Register 2
0x01E1 0020
GPIO_DIR3
General Purpose IO Direction Register 3
0x01E1 0024
GPIO_DAT3
General Purpose IO Data Register 3
01E1 0028
-
Reserved
01E1 002C
-
Reserved
01E1 0030
HPIC
HPI control register
01E1 0034
HPIA
(HPIAW) (1)
HPI address register
(Write)
01E1 0038
HPIA
(HPIAR) (1)
HPI address register
(Read)
01E1 000C - 01E1 07FF
-
PRODUCT PREVIEW
0x01E1 0008
0x01E1 000C
(1)
134
COMMENTS
Peripheral Identification Register
The CPU has read/write access
to the PWREMU_MGMT register.
Reserved
General Purpose IO Enable Register
The Host and the CPU both have
read/write access to the HPIC
register.
The Host has read/write access
to the HPIA registers. The CPU
has only read access to the HPIA
registers.
Reserved
There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that
HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the
perspective of the Host. The CPU can access HPIAW and HPIAR independently.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.17.3 HPI Electrical Data/Timing
Table 6-65. Timing Requirements for Host-Port Interface [1.2V, 1.1V] (1) (2)
MIN
MAX
UNIT
1
tsu(SELV-HSTBL)
Setup time, select signals (3) valid before UHPI_HSTROBE low
5
ns
2
th(HSTBL-SELV)
Hold time, select signals (3) valid after UHPI_HSTROBE low
2
ns
3
tw(HSTBL)
Pulse duration, UHPI_HSTROBE active low
15
ns
4
tw(HSTBH)
Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses
2M
ns
9
tsu(SELV-HASL)
Setup time, selects signals valid before UHPI_HAS low
5
10
th(HASL-SELV)
Hold time, select signals valid after UHPI_HAS low
2
11
tsu(HDV-HSTBH)
Setup time, host data valid before UHPI_HSTROBE high
5
ns
12
th(HSTBH-HDV)
Hold time, host data valid after UHPI_HSTROBE high
2
ns
13
th(HRDYL-HSTBH)
Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE
should not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes
will not complete properly.
2
ns
16
tsu(HASL-HSTBL)
Setup time, UHPI_HAS low before UHPI_HSTROBE low
5
17
th(HSTBL-HASH)
Hold time, UHPI_HAS low after UHPI_HSTROBE low
2
(1)
(2)
(3)
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR
UHPI_HDS2)] OR UHPI_HCS.
M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns.
Select signals include: HCNTL[1:0], HR/W and HHWIL.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
135
PRODUCT PREVIEW
1.2V, 1.1V, 1.0V
NO.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-66. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface
[1.2V, 1.1V] (1) (2) (3)
NO.
PARAMETER
1.2V
MIN
1.1V
MAX
MIN
MAX
UNIT
PRODUCT PREVIEW
For HPI Write, HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, HRDY stays low (ready):
Case 1: Back-to-back HPIA writes (can
be either first or second half-word)
Case 2: HPIA write following a
PREFETCH command (can be either
first or second half-word)
Case 3: HPID write when FIFO is full or
flushing (can be either first or second
half-word)
Case 4: HPIA write and Write FIFO not
empty
For HPI Read, HRDY can go high (not
ready) for these HPI Read conditions:
Case 1: HPID read (with
auto-increment) and data not in Read
FIFO (can only happen to first half-word
of HPID access)
Case 2: First half-word access of HPID
Read without auto-increment
For HPI Read, HRDY stays low (ready)
for these HPI Read conditions:
Case 1: HPID read with auto-increment
and data is already in Read FIFO
(applies to either half-word of HPID
access)
Case 2: HPID read without
auto-increment and data is already in
Read FIFO (always applies to second
half-word of HPID access)
Case 3: HPIC or HPIA read (applies to
either half-word access)
5
td(HSTBL-HRDYV)
Delay time, HSTROBE low to
HRDY valid
5a
td(HASL-HRDYV)
Delay time, HAS low to HRDY valid
6
ten(HSTBL-HDLZ)
Enable time, HD driven from HSTROBE low
7
td(HRDYL-HDV)
Delay time, HRDY low to HD valid
8
toh(HSTBH-HDV)
Output hold time, HD valid after HSTROBE high
14
tdis(HSTBH-HDHZ)
Disable time, HD high-impedance from HSTROBE high
15
18
(1)
(2)
(3)
136
td(HSTBL-HDV)
td(HSTBH-HRDYV)
15
17
15
17
1.5
1.5
0
1.5
ns
ns
0
1.5
ns
ns
15
17
ns
Delay time, HSTROBE low to
HD valid
For HPI Read. Applies to conditions
where data is already residing in
HPID/FIFO:
Case 1: HPIC or HPIA read
Case 2: First half-word of HPID read
with auto-increment and data is already
in Read FIFO
Case 3: Second half-word of HPID read
with or without auto-increment
15
17
ns
Delay time, HSTROBE high to
HRDY valid
For HPI Write, HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, HRDY stays low (ready):
Case 1: HPID write when Write FIFO is
full (can happen to either half-word)
Case 2: HPIA write (can happen to
either half-word)
Case 3: HPID write without
auto-increment (only happens to
second half-word)
15
17
ns
M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low).
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-67. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface
[1.0V] (1) (2) (3)
NO.
1.0V
PARAMETER
MIN
MAX
UNIT
For HPI Read, HRDY can go high (not ready) for
these HPI Read conditions:
Case 1: HPID read (with auto-increment) and
data not in Read FIFO (can only happen to first
half-word of HPID access)
Case 2: First half-word access of HPID Read
without auto-increment
For HPI Read, HRDY stays low (ready) for these
HPI Read conditions:
Case 1: HPID read with auto-increment and data
is already in Read FIFO (applies to either
half-word of HPID access)
Case 2: HPID read without auto-increment and
data is already in Read FIFO (always applies to
second half-word of HPID access)
Case 3: HPIC or HPIA read (applies to either
half-word access)
5
td(HSTBL-HRDYV)
Delay time, HSTROBE low to HRDY
valid
5a
td(HASL-HRDYV)
Delay time, HAS low to HRDY valid
6
ten(HSTBL-HDLZ)
Enable time, HD driven from HSTROBE low
7
td(HRDYL-HDV)
Delay time, HRDY low to HD valid
8
toh(HSTBH-HDV)
Output hold time, HD valid after HSTROBE high
14
tdis(HSTBH-HDHZ)
Disable time, HD high-impedance from HSTROBE high
15
18
(1)
(2)
(3)
td(HSTBL-HDV)
td(HSTBH-HRDYV)
22
ns
22
1.5
ns
0
1.5
ns
ns
22
ns
Delay time, HSTROBE low to HD
valid
For HPI Read. Applies to conditions where data
is already residing in HPID/FIFO:
Case 1: HPIC or HPIA read
Case 2: First half-word of HPID read with
auto-increment and data is already in Read
FIFO
Case 3: Second half-word of HPID read with or
without auto-increment
22
ns
Delay time, HSTROBE high to HRDY
valid
For HPI Write, HRDY can go high (not ready) for
these HPI Write conditions; otherwise, HRDY
stays low (ready):
Case 1: HPID write when Write FIFO is full (can
happen to either half-word)
Case 2: HPIA write (can happen to either
half-word)
Case 3: HPID write without auto-increment (only
happens to second half-word)
22
ns
M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low).
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
137
PRODUCT PREVIEW
For HPI Write, HRDY can go high (not ready) for
these HPI Write conditions; otherwise, HRDY
stays low (ready):
Case 1: Back-to-back HPIA writes (can be either
first or second half-word)
Case 2: HPIA write following a PREFETCH
command (can be either first or second
half-word)
Case 3: HPID write when FIFO is full or flushing
(can be either first or second half-word)
Case 4: HPIA write and Write FIFO not empty
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
UHPI_HCS
UHPI_HAS(D)
2
2
1
1
UHPI_HCNTL[1:0]
2
1
2
1
UHPI_HR/W
2
2
1
1
UHPI_HHWIL
PRODUCT PREVIEW
4
3
3
UHPI_HSTROBE(A)(C)
15
15
14
14
6
8
8
6
UHPI_HD[15:0]
(output)
5
13
7
1st Half-Word
2nd Half-Word
UHPI_HRDY(B)
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1
XOR HDS2)] OR UHPI_HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with
auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or
UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE.
D The diagram above assumes UHPI_HAS has been pulled high.
Figure 6-41. UHPI Read Timing (HAS Not Used, Tied High)
138
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
UHPI_HAS(A)
17
10
17
9
10
9
UHPI_HCNTL[1:0]
10
10
9
9
UHPI_HR/W
10
10
9
9
UHPI_HHWIL
4
3
UHPI_HSTROBE(B)
14
UHPI_HD[15:0]
6
(output)
5a
8
1st half-word
14
15
7
PRODUCT PREVIEW
16
16
UHPI_HCS
8
2nd half-word
UHPI_HRDY
A.
For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.
B.
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Figure 6-42. UHPI Read Timing (HAS Used)
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
139
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
UHPI_HCS
UHPI_HAS(D)
1
1
2
2
UHPI_HCNTL[1:0]
1
1
2
2
UHPI_HR/W
1
1
2
2
PRODUCT PREVIEW
UHPI_HHWIL
3
3
4
UHPI_HSTROBE(A)(C)
11
UHPI_HD[15:0]
(input)
11
12
12
1st Half-Word
5
13
2nd Half-Word
18
13
18
5
UHPI_HRDY(B)
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR
UHPI_HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the
state of the FIFO, transitions on UHPI_HRDY may or may not occur.
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS
timing requirements are reflected by parameters for UHPI_HSTROBE.
D The diagram above assumes UHPI_HAS has been pulled high.
Figure 6-43. UHPI Write Timing (HAS Not Used, Tied High)
140
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
17
UHPI_HAS†
17
10
10
9
9
UHPI_HCNTL[1:0]
10
10
9
9
UHPI_HR/W
10
10
9
9
UHPI_HHWIL
3
4
16
16
UHPI_HCS
11
12
UHPI_HD[15:0]
(input)
1st half-word
5a
PRODUCT PREVIEW
UHPI_HSTROBE‡
11
12
2nd half-word
13
UHPI_HRDY
A.
For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.
B.
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Figure 6-44. UHPI Write Timing (HAS Used)
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
141
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.18 Enhanced Capture (eCAP) Peripheral
The device contains up to three enhanced capture (eCAP) modules. Figure 6-45 shows a functional block
diagram of a module.
Uses for ECAP include:
• Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors)
• Elapsed time measurements between position sensor triggers
• Period and duty cycle measurements of pulse train signals
• Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors
PRODUCT PREVIEW
The ECAP module described in this specification includes the following features:
• 32 bit time base
• 4 event time-stamp registers (each 32 bits)
• Edge polarity selection for up to 4 sequenced time-stamp capture events
• Interrupt on either of the 4 events
• Single shot capture of up to 4 event time-stamps
• Continuous mode capture of time-stamps in a 4 deep circular buffer
• Absolute time-stamp capture
• Difference mode time-stamp capture
• All the above resources are dedicated to a single input pin
The eCAP modules are clocked at the ASYNC3 clock domain rate.
The clock enable bits (ECAP1/2/3/4ENCLK) in the PCLKCR1 register are used to turn off the eCAP
modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK,
ECAP3ENCLK, and ECAP4EN CLK are set to low, indicating that the peripheral clock is off.
142
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
SYNC
www.ti.com
SYNCIn
SYNCOut
CTRPHS
(phase register−32 bit)
TSCTR
(counter−32 bit)
APWM mode
OVF
RST
CTR_OVF
Delta−mode
CTR [0−31]
PRD [0−31]
PWM
compare
logic
CMP [0−31]
32
CTR=PRD
CTR [0−31]
CTR=CMP
32
LD1
CAP1
(APRD active)
APRD
shadow
32
32
Polarity
select
LD
32
CMP [0−31]
CAP2
(ACMP active)
32
LD
LD2
Polarity
select
Event
qualifier
ACMP
shadow
32
CAP3
(APRD shadow)
LD
32
CAP4
(ACMP shadow)
LD
eCAPx
PRODUCT PREVIEW
32
MODE SELECT
PRD [0−31]
Event
Pre-scale
Polarity
select
LD3
LD4
Polarity
select
4
Capture events
4
CEVT[1:4]
to Interrupt
Controller
Interrupt
Trigger
and
Flag
control
CTR_OVF
Continuous /
Oneshot
Capture Control
CTR=PRD
CTR=CMP
Figure 6-45. eCAP Functional Block Diagram
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
143
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-68 is the list of the ECAP registers.
Table 6-68. ECAPx Configuration Registers
ECAP0
BYTE ADDRESS
ECAP1
BYTE ADDRESS
ECAP2
BYTE ADDRESS
0x01F0 6000
0x01F0 7000
0x01F0 8000
TSCTR
0x01F0 6004
0x01F0 7004
0x01F0 8004
CTRPHS
0x01F0 6008
0x01F0 7008
0x01F0 8008
CAP1
Capture 1 Register
0x01F0 600C
0x01F0 700C
0x01F0 800C
CAP2
Capture 2 Register
0x01F0 6010
0x01F0 7010
0x01F0 8010
CAP3
Capture 3 Register
0x01F0 6014
0x01F0 7014
0x01F0 8014
CAP4
Capture 4 Register
0x01F0 6028
0x01F0 7028
0x01F0 8028
ECCTL1
Capture Control Register 1
REGISTER NAME
DESCRIPTION
Time-Stamp Counter
Counter Phase Offset Value Register
PRODUCT PREVIEW
0x01F0 602A
0x01F0 702A
0x01F0 802A
ECCTL2
Capture Control Register 2
0x01F0 602C
0x01F0 702C
0x01F0 802C
ECEINT
Capture Interrupt Enable Register
0x01F0 602E
0x01F0 702E
0x01F0 802E
ECFLG
Capture Interrupt Flag Register
0x01F0 6030
0x01F0 7030
0x01F0 8030
ECCLR
Capture Interrupt Clear Register
0x01F0 6032
0x01F0 7032
0x01F0 8032
ECFRC
Capture Interrupt Force Register
0x01F0 605C
0x01F0 705C
0x01F0 805C
REVID
Revision ID
Table 6-69 shows the eCAP timing requirement and Table 6-70 shows the eCAP switching characteristics.
Table 6-69. Timing Requirements for Enhanced Capture (eCAP)
PARAMETER
TEST CONDITIONS
1.2V, 1.1V, 1.0V
MIN
tw(CAP)
Capture input pulse width
MAX
UNIT
Asynchronous
2tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Table 6-70. Switching Characteristics Over Recommended Operating Conditions for eCAP
PARAMETER
1.2V
MIN
tw(APWM)
144
Pulse duration, APWMx output high/low
Peripheral Information and Electrical Specifications
20
1.1V
MAX
MIN
20
1.0V
MAX
MIN
20
UNIT
MAX
ns
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.19 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)
The device contains two enhanced PWM Modules (eHRPWM). Figure 6-46 shows a block diagram of
multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM.
EPWMSYNCI
EPWM0INT
EPWM0SYNCI
EPWM0A
ePWM0 module
EPWM0B
PRODUCT PREVIEW
TZ
Interrupt
Controllers
EPWM0SYNCO
GPIO
MUX
EPWM1SYNCI
EPWM1INT
EPWM1A
ePWM1 module
EPWM1SYNCO
To eCAP0
module
(sync in)
EPWM1B
TZ
EPWMSYNCO
Peripheral Bus
Figure 6-46. Multiple PWM Modules in a C6742 System
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
145
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Time−base (TB)
Sync
in/out
select
Mux
CTR=ZERO
CTR=CMPB
Disabled
TBPRD shadow (16)
TBPRD active (16)
CTR=PRD
EPWMSYNCO
TBCTL[SYNCOSEL]
TBCTL[CNTLDE]
EPWMSYNCI
Counter
up/down
(16 bit)
CTR=ZERO
CTR_Dir
TBCNT
active (16)
TBPHSHR (8)
PRODUCT PREVIEW
16
8
TBPHS active (24)
Phase
control
Counter compare (CC)
CTR=CMPA
CMPAHR (8)
16
TBCTL[SWFSYNC]
(software forced sync)
Action
qualifier
(AQ)
CTR = PRD
CTR = ZERO
CTR = CMPA
CTR = CMPB
CTR_Dir
8
Event
trigger
and
interrupt
(ET)
EPWMxINT
HiRes PWM (HRPWM)
CMPA active (24)
EPWMA
EPWMxA
CMPA shadow (24)
CTR=CMPB
Dead
band
(DB)
16
PWM
chopper
(PC)
EPWMB
EPWMxB
CMPB active (16)
CMPB shadow (16)
Trip
zone
(TZ)
EPWMxTZINT
CTR = ZERO
TZ
Figure 6-47. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections
146
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-71. eHRPWM Module Control and Status Registers Grouped by Submodule
eHRPWM0
BYTE ADDRESS
eHRPWM1
BYTE ADDRESS
0x01F0 0000
0x01F0 2000
TBCTL
No
Time-Base Control Register
0x01F0 0002
0x01F0 2002
TBSTS
No
Time-Base Status Register
0x01F0 0004
0x01F0 2004
TBPHSHR
No
Extension for HRPWM Phase Register
0x01F0 0006
0x01F0 2006
TBPHS
No
Time-Base Phase Register
0x01F0 0008
0x01F0 2008
TBCNT
No
Time-Base Counter Register
0x01F0 000A
0x01F0 200A
TBPRD
Yes
Time-Base Period Register
0x01F0 000E
0x01F0 200E
CMPCTL
No
Counter-Compare Control Register
0x01F0 0010
0x01F0 2010
CMPAHR
No
Extension for HRPWM Counter-Compare A Register
0x01F0 0012
0x01F0 2012
CMPA
Yes
Counter-Compare A Register
0x01F0 0014
0x01F0 2014
CMPB
Yes
Counter-Compare B Register
Acronym
Shadow
Register Description
Time-Base Submodule Registers
(1)
(1)
Action-Qualifier Submodule Registers
0x01F0 0016
0x01F0 2016
AQCTLA
No
Action-Qualifier Control Register for Output A (eHRPWMxA)
0x01F0 0018
0x01F0 2018
AQCTLB
No
Action-Qualifier Control Register for Output B (eHRPWMxB)
0x01F0 001A
0x01F0 201A
AQSFRC
No
Action-Qualifier Software Force Register
0x01F0 001C
0x01F0 201C
AQCSFRC
Yes
Action-Qualifier Continuous S/W Force Register Set
0x01F0 001E
0x01F0 201E
DBCTL
No
Dead-Band Generator Control Register
0x01F0 0020
0x01F0 2020
DBRED
No
Dead-Band Generator Rising Edge Delay Count Register
0x01F0 0022
0x01F0 2022
DBFED
No
Dead-Band Generator Falling Edge Delay Count Register
Dead-Band Generator Submodule Registers
PWM-Chopper Submodule Registers
0x01F0 003C
0x01F0 203C
PCCTL
No
PWM-Chopper Control Register
Trip-Zone Submodule Registers
0x01F0 0024
0x01F0 2024
TZSEL
No
Trip-Zone Select Register
0x01F0 0028
0x01F0 2028
TZCTL
No
Trip-Zone Control Register
0x01F0 002A
0x01F0 202A
TZEINT
No
Trip-Zone Enable Interrupt Register
0x01F0 002C
0x01F0 202C
TZFLG
No
Trip-Zone Flag Register
0x01F0 002E
0x01F0 202E
TZCLR
No
Trip-Zone Clear Register
0x01F0 0030
0x01F0 2030
TZFRC
No
Trip-Zone Force Register
0x01F0 0032
0x01F0 2032
ETSEL
No
Event-Trigger Selection Register
0x01F0 0034
0x01F0 2034
ETPS
No
Event-Trigger Pre-Scale Register
0x01F0 0036
0x01F0 2036
ETFLG
No
Event-Trigger Flag Register
0x01F0 0038
0x01F0 2038
ETCLR
No
Event-Trigger Clear Register
0x01F0 003A
0x01F0 203A
ETFRC
No
Event-Trigger Force Register
Event-Trigger Submodule Registers
High-Resolution PWM (HRPWM) Submodule Registers
0x01F0 1020
(1)
0x01F0 3020
HRCNFG
No
HRPWM Configuration Register
(1)
These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these
locations are reserved.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
147
PRODUCT PREVIEW
Counter-Compare Submodule Registers
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.19.1 Enhanced Pulse Width Modulator (eHRPWM) Timing
PWM refers to PWM outputs on eHRPWM1-6. Table 6-72 shows the PWM timing requirements and
Table 6-73, switching characteristics.
Table 6-72. Timing Requirements for eHRPWM
PARAMETER
TEST CONDITIONS
1.2V, 1.1V, 1.0V
MIN
tw(SYNCIN)
Sync input pulse width
UNIT
MAX
Asynchronous
2tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Table 6-73. Switching Characteristics Over Recommended Operating Conditions for eHRPWM
PRODUCT PREVIEW
PARAMETER
tw(PWM)
Pulse duration, PWMx output
high/low
tw(SYNCOUT)
Sync output pulse width
td(PWM)TZA
Delay time, trip input active to
PWM forced high
Delay time, trip input active to
PWM forced low
td(TZ-PWM)HZ
148
TEST
CONDITIONS
1.2V
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
20
TBD
TBD
8tc(SCO)
8tc(SCO)
8tc(SCO)
UNIT
MAX
ns
cycles
no pin load
Delay time, trip input active to
PWM Hi-Z
Peripheral Information and Electrical Specifications
ns
25
TBD
TBD
20
TBD
TBD
ns
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.19.2 Trip-Zone Input Timing
tw(TZ)
TZ
td(TZ-PWM)HZ
PWM(A)
A.
PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM
recovery software.
Table 6-74. Trip-Zone input Timing Requirements
PARAMETER
TEST CONDITIONS
1.2V, 1.1V, 1.0V
MIN
tw(TZ)
Pulse duration, TZx input low
MAX
UNIT
Asynchronous
1tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Table 6-75 shows the high-resolution PWM switching characteristics.
Table 6-75. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz)
PARAMETER
1.2V
MIN
Micro Edge Positioning (MEP) step size (1)
(1)
TYP
200
1.1V
MAX
MIN
TYP
TBD
1.0V
MAX
MIN
TYP
MAX UNIT
TBD
ps
Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase
with low voltage and high temperature and decrease with voltage and cold temperature.
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per
SYSCLKOUT period dynamically while the HRPWM is in operation.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
149
PRODUCT PREVIEW
Figure 6-48. PWM Hi-Z Characteristics
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.20 Timers
The timers support the following features:
• Configurable as single 64-bit timer or two 32-bit timers
• Period timeouts generate interrupts, DMA events or external pin events
• 8 32-bit compare registers
• Compare matches generate interrupt events
• Capture capability
• 64-bit Watchdog capability (Timer64P1 only)
Table 6-76 lists the timer registers.
Table 6-76. Timer Registers
PRODUCT PREVIEW
TIMER64P 0 BYTE
ADDRESS
TIMER64P 1 BYTE
ADDRESS
ACRONYM
0x01C2 0000
0x01C2 1000
REV
0x01C2 0004
0x01C2 1004
EMUMGT
0x01C2 0008
0x01C2 1008
GPINTGPEN
0x01C2 000C
0x01C2 100C
GPDATGPDIR
0x01C2 0010
0x01C2 1010
TIM12
Timer Counter Register 12
0x01C2 0014
0x01C2 1014
TIM34
Timer Counter Register 34
0x01C2 0018
0x01C2 1018
PRD12
Timer Period Register 12
0x01C2 001C
0x01C2 101C
PRD34
Timer Period Register 34
0x01C2 0020
0x01C2 1020
TCR
0x01C2 0024
0x01C2 1024
TGCR
0x01C2 0028
0x01C2 1028
WDTCR
0x01C2 0034
0x01C2 1034
REL12
Timer Reload Register 12
0x01C2 0038
0x01C2 1038
REL34
Timer Reload Register 34
0x01C2 003C
0x01C2 103C
CAP12
Timer Capture Register 12
0x01C2 0040
0x01C2 1040
CAP34
Timer Capture Register 34
0x01C2 0044
0x01C2 1044
INTCTLSTAT
0x01C2 0060
0x01C2 1060
CMP0
Compare Register 0
0x01C2 0064
0x01C2 1064
CMP1
Compare Register 1
0x01C2 0068
0x01C2 1068
CMP2
Compare Register 2
0x01C2 006C
0x01C2 106C
CMP3
Compare Register 3
0x01C2 0070
0x01C2 1070
CMP4
Compare Register 4
0x01C2 0074
0x01C2 1074
CMP5
Compare Register 5
0x01C2 0078
0x01C2 1078
CMP6
Compare Register 6
0x01C2 007C
0x01C2 107C
CMP7
Compare Register 7
150
Peripheral Information and Electrical Specifications
REGISTER DESCRIPTION
Revision Register
Emulation Management Register
GPIO Interrupt and GPIO Enable Register
GPIO Data and GPIO Direction Register
Timer Control Register
Timer Global Control Register
Watchdog Timer Control Register
Timer Interrupt Control and Status Register
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
6.20.1
SPRS587 – JUNE 2009
Timer Electrical Data/Timing
Table 6-77. Timing Requirements for Timer Input (1) (2) (see Figure 6-49)
NO.
1.2V, 1.1V, 1.0V
PARAMETER
MIN
MAX
1
tc(TM64Px_IN12) Cycle time, TM64Px_IN12
2
tw(TINPH)
Pulse duration, TM64Px_IN12 high
0.45C
0.55C
ns
3
tw(TINPL)
Pulse duration, TM64Px_IN12 low
0.45C
0.55C
ns
4
tt(TM64Px_IN12)
Transition time, TM64Px_IN12
0.05C
ns
ns
P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns.
C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.037 ns
1
2
3
4
4
TM64P0_IN12
Figure 6-49. Timer Timing
Table 6-78. Switching Characteristics Over Recommended Operating Conditions for Timer Output
NO.
5
6
(1)
1.2V, 1.1V, 1.0V
PARAMETER
MIN
MAX
(1)
UNIT
tw(TOUTH)
Pulse duration, TM64P0_OUT12 high
4P
ns
tw(TOUTL)
Pulse duration, TM64P0_OUT12 low
4P
ns
P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns.
5
6
TM64P0_OUT12
Figure 6-50. Timer Timing
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
151
PRODUCT PREVIEW
(1)
(2)
4P
UNIT
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.21 Real Time Clock (RTC)
The RTC provides a time reference to an application running on the device. The current date and time is
tracked in a set of counter registers that update once per second. The time can be represented in 12-hour
or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do
not interfere with the accuracy of the time and date.
Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once
per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time
registers are updated, or at programmable periodic intervals.
PRODUCT PREVIEW
The real-time clock (RTC) provides the following features:
• 100-year calendar (xx00 to xx99)
• Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation
• Binary-coded-decimal (BCD) representation of time, calendar, and alarm
• 12-hour clock mode (with AM and PM) or 24-hour clock mode
• Alarm interrupt
• Periodic interrupt
• Single interrupt to the CPU
• Supports external 32.768-kHz crystal or external clock source of the same frequency
• Separate isolated power supply
Figure 6-51 shows a block diagram of the RTC.
RTC_XI
Counter
32 kHz
Oscillator
Compensation
Seconds
Minutes
Week
Days
XTAL
RTC_XO
Hours
Days
Months
Years
Oscillator
Alarm
Alarm
Interrupts
Timer
Periodic
Interrupts
Figure 6-51. Real-Time Clock Block Diagram
152
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.21.1 Clock Source
The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same
frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When
the CPU and other peripherals are without power, the RTC can remain powered to preserve the current
time and calendar information. Even if the RTC is not used, it must remain powered when the rest of the
device is powered.
The source for the RTC reference clock may be provided by a crystal or by an external clock source. The
RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected
between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the
output from the oscillator back to the crystal.
If the RTC is not used, the RTC_XI pin should be held either low or high, RTC_XO should be left
unconnected, RTC_CVDD should be connected to the device CVDD and RTC_VSS should remain
grounded.
Switch for Device
Core Power
+1.2V
CVDD
Real Time Clock
C2
XTAL
32.768
kHz
RTC_CVDD
RTC_X1
RTC_X0
32K
OSC
C1
Real
Time
Clock
(RTC)
Module
RTC_VSS
Isolated RTC
Power Domain
Figure 6-52. Clock Source
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
153
PRODUCT PREVIEW
An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is
connected to RTC_XI, and RTC_XO is left unconnected.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.21.2 Registers
Table 6-79 lists the memory-mapped registers for the RTC. See the device-specific data manual for the
memory address of these registers.
Table 6-79. Real-Time Clock (RTC) Registers
BYTE ADDRESS
ACRONYM
0x01C2 3000
SECOND
Seconds Register
0x01C2 3004
MINUTE
Minutes Register
PRODUCT PREVIEW
154
0x01C2 3008
HOUR
0x01C2 300C
DAY
0x01C2 3010
MONTH
REGISTER DESCRIPTION
Hours Register
Day of the Month Register
Month Register
0x01C2 3014
YEAR
Year Register
0x01C2 3018
DOTW
Day of the Week Register
0x01C2 3020
ALARMSECOND
Alarm Seconds Register
0x01C2 3024
ALARMMINUTE
Alarm Minutes Register
0x01C2 3028
ALARMHOUR
Alarm Hours Register
0x01C2 302C
ALARMDAY
Alarm Days Register
0x01C2 3030
ALARMMONTH
0x01C2 3034
ALARMYEAR
0x01C2 3040
CTRL
Control Register
0x01C2 3044
STATUS
Status Register
Alarm Months Register
Alarm Years Register
0x01C2 3048
INTERRUPT
0x01C2 304C
COMPLSB
Interrupt Enable Register
Compensation (LSB) Register
0x01C2 3050
COMPMSB
Compensation (MSB) Register
0x01C2 3054
OSC
0x01C2 3060
SCRATCH0
Scratch 0 (General-Purpose) Register
0x01C2 3064
SCRATCH1
Scratch 1 (General-Purpose) Register
0x01C2 3068
SCRATCH2
Scratch 2 (General-Purpose) Register
0x01C2 306C
KICK0
Kick 0 (Write Protect) Register
0x01C2 3070
KICK1
Kick 1 (Write Protect) Register
Oscillator Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.22 General-Purpose Input/Output (GPIO)
The device GPIO peripheral supports the following:
• Up to 144 Pins configurable as GPIO
• External Interrupt and DMA request Capability
– Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or
falling edges on the pin.
– The interrupt requests within each bank are combined (logical or) to create eight unique bank level
interrupt requests.
– The bank level interrupt service routine may poll the INTSTATx register for its bank to determine
which pin(s) have triggered the interrupt.
– GPIO Banks 0, 1, 2, 3, 4, 5, 6, 7 and 8 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59,
62, 72 and 75 respectively
– GPIO Banks 0, 1, 2, 3, 4, and 5 are assigned to EDMA events 6, 7, 22, 23, 28, 29, and 29
respectively on Channel Controller 0 and GPIO Banks 6, 7, and 8 are assigned to EDMA events
16, 17, and 18 respectively on Channel Controller 1.
• Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO
signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section
protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to
anther process during GPIO programming).
• Separate Input/Output registers
• Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can
be toggled by direct write to the output register(s).
• Output register, when read, reflects output drive status. This, in addition to the input register reflecting
pin status and open-drain I/O cell, allows wired logic be implemented.
The memory map for the GPIO registers is shown in Table 6-80.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
155
PRODUCT PREVIEW
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.
When configured as an output, a write to an internal register can control the state driven on the output pin.
When configured as an input, the state of the input is detectable by reading the state of an internal
register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different
interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices.
The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
6.22.1 GPIO Register Description(s)
Table 6-80. GPIO Registers
BYTE ADDRESS
ACRONYM
0x01E2 6000
REV
0x01E2 6004
RESERVED
0x01E2 6008
BINTEN
REGISTER DESCRIPTION
Peripheral Revision Register
Reserved
GPIO Interrupt Per-Bank Enable Register
GPIO Banks 0 and 1
0x01E2 6010
DIR01
0x01E2 6014
OUT_DATA01
GPIO Banks 0 and 1 Direction Register
GPIO Banks 0 and 1 Output Data Register
PRODUCT PREVIEW
0x01E2 6018
SET_DATA01
GPIO Banks 0 and 1 Set Data Register
0x01E2 601C
CLR_DATA01
GPIO Banks 0 and 1 Clear Data Register
0x01E2 6020
IN_DATA01
GPIO Banks 0 and 1 Input Data Register
0x01E2 6024
SET_RIS_TRIG01
GPIO Banks 0 and 1 Set Rising Edge Interrupt Register
0x01E2 6028
CLR_RIS_TRIG01
GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register
0x01E2 602C
SET_FAL_TRIG01
GPIO Banks 0 and 1 Set Falling Edge Interrupt Register
0x01E2 6030
CLR_FAL_TRIG01
GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register
0x01E2 6034
INTSTAT01
GPIO Banks 0 and 1 Interrupt Status Register
GPIO Banks 2 and 3
0x01E2 6038
DIR23
GPIO Banks 2 and 3 Direction Register
0x01E2 603C
OUT_DATA23
GPIO Banks 2 and 3 Output Data Register
0x01E2 6040
SET_DATA23
GPIO Banks 2 and 3 Set Data Register
0x01E2 6044
CLR_DATA23
GPIO Banks 2 and 3 Clear Data Register
GPIO Banks 2 and 3 Input Data Register
0x01E2 6048
IN_DATA23
0x01E2 604C
SET_RIS_TRIG23
GPIO Banks 2 and 3 Set Rising Edge Interrupt Register
0x01E2 6050
CLR_RIS_TRIG23
GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register
0x01E2 6054
SET_FAL_TRIG23
GPIO Banks 2 and 3 Set Falling Edge Interrupt Register
0x01E2 6058
CLR_FAL_TRIG23
GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register
0x01E2 605C
INTSTAT23
GPIO Banks 2 and 3 Interrupt Status Register
GPIO Banks 4 and 5
0x01E2 6060
DIR45
0x01E2 6064
OUT_DATA45
GPIO Banks 4 and 5 Direction Register
GPIO Banks 4 and 5 Output Data Register
0x01E2 6068
SET_DATA45
GPIO Banks 4 and 5 Set Data Register
0x01E2 606C
CLR_DATA45
GPIO Banks 4 and 5 Clear Data Register
0x01E2 6070
IN_DATA45
GPIO Banks 4 and 5 Input Data Register
0x01E2 6074
SET_RIS_TRIG45
GPIO Banks 4 and 5 Set Rising Edge Interrupt Register
0x01E2 6078
CLR_RIS_TRIG45
GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register
0x01E2 607C
SET_FAL_TRIG45
GPIO Banks 4 and 5 Set Falling Edge Interrupt Register
0x01E2 6080
CLR_FAL_TRIG45
GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register
0x01E2 6084
INTSTAT45
0x01E2 6088
DIR67
0x01E2 608C
OUT_DATA67
GPIO Banks 6 and 7 Output Data Register
0x01E2 6090
SET_DATA67
GPIO Banks 6 and 7 Set Data Register
0x01E2 6094
CLR_DATA67
GPIO Banks 6 and 7 Clear Data Register
0x01E2 6098
IN_DATA67
GPIO Banks 6 and 7 Input Data Register
GPIO Banks 4 and 5 Interrupt Status Register
GPIO Banks 6 and 7
156
GPIO Banks 6 and 7 Direction Register
0x01E2 609C
SET_RIS_TRIG67
GPIO Banks 6 and 7 Set Rising Edge Interrupt Register
0x01E2 60A0
CLR_RIS_TRIG67
GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register
0x01E2 60A4
SET_FAL_TRIG67
GPIO Banks 6 and 7 Set Falling Edge Interrupt Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
Table 6-80. GPIO Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E2 60A8
CLR_FAL_TRIG67
REGISTER DESCRIPTION
0x01E2 60AC
INTSTAT67
0x01E2 60B0
DIR8
0x01E2 60B4
OUT_DATA8
GPIO Bank 8 Output Data Register
GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register
GPIO Banks 6 and 7 Interrupt Status Register
GPIO Bank 8
0x01E2 60B8
SET_DATA8
GPIO Bank 8 Set Data Register
0x01E2 60BC
CLR_DATA8
GPIO Bank 8 Clear Data Register
0x01E2 60C0
IN_DATA8
GPIO Bank 8 Input Data Register
0x01E2 60C4
SET_RIS_TRIG8
GPIO Bank 8 Set Rising Edge Interrupt Register
0x01E2 60C8
CLR_RIS_TRIG8
GPIO Bank 8 Clear Rising Edge Interrupt Register
0x01E2 60CC
SET_FAL_TRIG8
GPIO Bank 8 Set Falling Edge Interrupt Register
0x01E2 60D0
CLR_FAL_TRIG8
GPIO Bank 8 Clear Falling Edge Interrupt Register
0x01E2 60D4
INTSTAT8
Submit Documentation Feedback
PRODUCT PREVIEW
GPIO Bank 8 Direction Register
GPIO Bank 8 Interrupt Status Register
Peripheral Information and Electrical Specifications
157
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
6.22.2
www.ti.com
GPIO Peripheral Input/Output Electrical Data/Timing
Table 6-81. Timing Requirements for GPIO Inputs (1) (see Figure 6-53)
1.2V, 1.1V, 1.0V
NO.
1
tw(GPIH)
2
(1)
MIN
tw(GPIL)
Pulse duration, GPn[m] as input high
Pulse duration, GPn[m] as input low
MAX
UNIT
2C (1) (2)
ns
(1) (2)
ns
2C
The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device
recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device
enough time to access the GPIO register through the internal bus.
C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns
(2)
PRODUCT PREVIEW
Table 6-82. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs
(see Figure 6-53)
NO.
3
tw(GPOH)
4
(1)
1.2V, 1.1V, 1.0V
PARAMETER
tw(GPOL)
MIN
2C (1)
Pulse duration, GPn[m] as output high
Pulse duration, GPn[m] as output low
2C
MAX
UNIT
(2)
ns
(1) (2)
ns
This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the
GPIO is dependent upon internal bus activity.
C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns
(2)
2
1
GPn[m]
as input
4
3
GPn[m]
as output
Figure 6-53. GPIO Port Timing
6.22.3
GPIO Peripheral External Interrupts Electrical Data/Timing
Table 6-83. Timing Requirements for External Interrupts (1) (see Figure 6-54)
1.2V, 1.1V, 1.0V
NO.
MIN
MAX
UNIT
1
tw(ILOW)
Width of the external interrupt pulse low
2C (1) (2)
ns
2
tw(IHIGH)
Width of the external interrupt pulse high
2C (1) (2)
ns
(1)
(2)
The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the
GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to
access the GPIO register through the internal bus.
C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns
2
GPn[m]
as input
1
Figure 6-54. GPIO External Interrupt Timing
158
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
6.23 Emulation Logic
The debug capabilities and features for DSP are as shown below.
PRODUCT PREVIEW
DSP:
• Basic Debug
– Execution Control
– System Visibility
• Real-Time Debug
– Interrupts serviced while halted
– Low/non-intrusive system visibility while running
• Advanced Debug
– Global Start
– Global Stop
– Specify targeted memory level(s) during memory accesses
– HSRTDX (High Speed Real Time Data eXchange)
• Advanced System Control
– Subsystem reset via debug
– Peripheral notification of debug events
– Cache-coherent debug accesses
• Analysis Actions
– Stop program execution
– Generate debug interrupt
– Benchmarking with counters
– External trigger generation
– Debug state machine state transition
– Combinational and Sequential event generation
• Analysis Events
– Program event detection
– Data event detection
– External trigger Detection
– System event detection (i.e. cache miss)
– Debug state machine state detection
• Analysis Configuration
– Application access
– Debugger access
Table 6-84. DSP Debug Features
Category
Hardware Feature
Availability
Software breakpoint
Unlimited
Up to 10 HWBPs, including:
Basic Debug
Hardware breakpoint
4 precise (1) HWBPs inside DSP core and one of them is associated with a counter.
2 imprecise (1) HWBPs from AET.
4 imprecise
(1)
(1)
HWBPs from AET which are shared for watch point.
Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints
will halt the processor some number of cycles after the selected instruction depending on device conditions.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
159
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
Table 6-84. DSP Debug Features (continued)
Category
Analysis
Hardware Feature
Availability
Watch point
Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch
points with data (32 bits)
Watch point with Data
Up to 2, Which can also be used as 4 watch points.
Counters/timers
1x64-bits (cycle only) + 2x32-bits (water mark counters)
External Event Trigger In
1
External Event Trigger Out
1
6.23.1 JTAG Port Description
The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS,
TDI, and TDO).
PRODUCT PREVIEW
TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its
default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device
functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be
driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed
while the TRST pin is pulled low.
Table 6-85. JTAG Port Description
PIN
TYPE
NAME
DESCRIPTION
TRST
I
Test Logic Reset
When asserted (active low) causes all test and debug logic in the device to be reset
along with the IEEE 1149.1 interface
TCK
I
Test Clock
This is the test clock used to drive an IEEE 1149.1 TAP state machine and logic.
TMS
I
Test Mode Select
Directs the next state of the IEEE 1149.1 test access port state machine
TDI
I
Test Data Input
Scan data input to the device
TDO
O
Test Data Output
Scan data output of the device
EMU0
I/O
Emulation 0
Channel 0 trigger + HSRTDX
EMU1
I/O
Emulation 1
Channel 1 trigger + HSRTDX
6.23.2 Scan Chain Configuration Parameters
Table 6-86 shows the TAP configuration details required to configure the router/emulator for this device.
Table 6-86. JTAG Port Description
Router Port ID
Default TAP
TAP Name
Tap IR Length
17
No
C674x
38
19
No
ETB
4
The router is revision C and has a 6-bit IR length.
6.23.3 Initial Scan Chain Configuration
The first level of debug interface that sees the scan controller is the TAP router module. The debugger
can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of
the TAP controllers without disrupting the IR state of the other TAPs.
160
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
7 Mechanical Packaging and Orderable Information
This section describes the device orderable part numbers, packaging options, materials, thermal and
mechanical parameters.
7.1 Device Support
7.1.1
Development Support
TI offers an extensive line of development tools for the device platform, including tools to evaluate the
performance of the processors, generate code, develop algorithm implementations, and fully integrate and
debug software and hardware modules. The tool's support documentation is electronically available within
the Code Composer Studio™ Integrated Development Environment (IDE).
Software Development Tools:
Code Composer Studio™ Integrated Development Environment (IDE): including Editor
C/C++/Assembly Code Generation, and Debug plus additional development tools
Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target
software needed to support any application.
Hardware Development Tools:
Extended Development System (XDS™) Emulator
For a complete listing of development-support tools for the device, visit the Texas Instruments web site
on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing
and availability, contact the nearest TI field sales office or authorized distributor.
7.1.2
Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,
TMP, or TMS (e.g., TMS320C6745). Texas Instruments recommends two of three possible prefix
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (TMX/TMDX) through fully qualified production
devices/tools (TMS/TMDS).
Device development evolutionary flow:
Support tool development evolutionary flow:
TMDX
Development-support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS
Fully qualified development-support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
"Developmental product is intended for internal evaluation purposes."
TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.
Submit Documentation Feedback
Mechanical Packaging and Orderable Information
161
PRODUCT PREVIEW
The following products support development of the device applications:
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, ZWT), the temperature range (for example, "Blank" is the commercial
temperature range), and the device speed range in megahertz (for example, "Blank" is the default).
Figure 7-1 provides a legend for reading the complete device.
TMS
320
C6742
PREFIX
TMX = Experimental Device
TMS = Qualified Device
( )
ZWT
( )
( )
DEVICE SPEED RANGE
3 = 300 Mhz
DEVICE FAMILY
320 = TMS320™ DSP Family
PRODUCT PREVIEW
TEMPERATURE RANGE (JUNCTION)
Blank = 0°C to 90°C, Commercial Grade
A
= –40°C to 105°C, Industrial Grade
DEVICE
C6742
PACKAGE TYPE(A)
ZCE = 361-Pin Plastic BGA, with Pb-free Soldered
Balls [Green], 0.65 mm Ball Pitch
ZWT = 361-Pin Plastic BGA, with PB-free Soldered
Balls [Green], 0.8 mm Ball Pitch
SILICON REVISION
Blank = Revision 1.0
Figure 7-1. Device Nomenclature
162
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
TMS320C6742 Fixed/Floating-Point DSP
www.ti.com
SPRS587 – JUNE 2009
7.2 Thermal Data for ZCE Package
The following table(s) show the thermal resistance characteristics for the PBGA–ZCE mechanical
package.
Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZCE]
1
RΘJC
Junction-to-case
7.6
N/A
2
RΘJB
Junction-to-board
11.3
N /A
3
RΘJA
Junction-to-free air
23.9
0.00
21.2
0.50
20.3
1.00
19.5
2.00
7
18.6
4.00
8
0.2
0.00
9
0.3
0.50
0.3
1.00
11
0.4
2.00
12
0.5
4.00
13
11.2
0.00
14
11.1
0.50
4
5
6
10
15
(1)
(2)
AIR FLOW (m/s) (2)
RΘJMA
PsiJT
PsiJB
Junction-to-moving air
Junction-to-package top
11.1
1.00
16
Junction-to-board
11.0
2.00
17
10.9
4.00
These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application.
For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment
Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount
Packages. Power dissipation of 500 mW and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness
and 1.5oz (50um) inner copper thickness
m/s = meters per second
Submit Documentation Feedback
Mechanical Packaging and Orderable Information
163
PRODUCT PREVIEW
°C/W (1)
NO.
TMS320C6742 Fixed/Floating-Point DSP
SPRS587 – JUNE 2009
www.ti.com
7.3 Thermal Data for ZWT Package
The following table(s) show the thermal resistance characteristics for the PBGA–ZWT mechanical
package.
Table 7-2. Thermal Resistance Characteristics (PBGA Package) [ZWT]
°C/W (1)
NO.
AIR FLOW (m/s) (2)
1
RΘJC
Junction-to-case
7.3
N/A
2
RΘJB
Junction-to-board
12.4
N /A
3
RΘJA
Junction-to-free air
23.7
0.00
21.0
0.50
20.1
1.00
19.3
2.00
7
18.4
4.00
8
0.2
0.00
9
0.3
0.50
0.3
1.00
11
0.4
2.00
12
0.5
4.00
13
12.3
0.00
14
12.2
0.50
4
5
6
PRODUCT PREVIEW
10
15
RΘJMA
PsiJT
Junction-to-package top
12.1
1.00
16
12.0
2.00
17
11.9
4.00
(1)
(2)
164
PsiJB
Junction-to-moving air
Junction-to-board
These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application.
For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment
Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount
Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and
1.5oz (50um) inner copper thickness
m/s = meters per second
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated