TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 1 TMS320C6745/6747 Floating-point Digital Signal Processor 1.1 Features • • • • • • Applications – Industrial Control – USB, Networking – High-Speed Encoding – Professional Audio Software Support – TI DSP/BIOS™ – Chip Support Library and DSP Library 300-MHz C674x VLIW DSP C674x Instruction Set Features – Superset of the C67x+™ and C64x+™ ISAs – 2400/1800 C674x MIPS/MFLOPS – Byte-Addressable (8-/16-/32-/64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions C674x Two Level Cache Memory Architecture – 32K-Byte L1P Program RAM/Cache – 32K-Byte L1D Data RAM/Cache – 256K-Byte L2 Unified Mapped RAM/Cache – Flexible RAM/Cache Partition (L1 and L2) – 1024K-Byte L2 ROM Enhanced Direct-Memory-Access Controller 3 (EDMA3): – 2 Transfer Controllers – 32 Independent DMA Channels – 8 Quick DMA Channels – Programmable Transfer Burst Size TMS320C674x Floating Point VLIW DSP Core – Load-Store Architecture With Non-Aligned Support – 64 General-Purpose Registers (32 Bit) – Six ALU (32-/40-Bit) Functional Units • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks • Supports up to Two Floating Point (SP or DP) Approximate Reciprocal or Square Root Operations Per Cycle – Two Multiply Functional Units • • • • • • • • • • Mixed-Precision IEEE Floating Point Multiply Supported up to: – 2 SP x SP -> SP Per Clock – 2 SP x SP -> DP Every Two Clocks – 2 SP x DP -> DP Every Three Clocks – 2 DP x DP -> DP Every Four Clocks • Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples – Instruction Packing Reduces Code Size – All Instructions Conditional – Hardware Support for Modulo Loop Operation – Protected Mode Operation – Exceptions Support for Error Detection and Program Redirection 128K-Byte RAM Shared Memory (C6747 Only) 3.3V LVCMOS IOs (except for USB interfaces) Two External Memory Interfaces: – EMIFA • NOR (8-/16-Bit-Wide Data) • NAND (8-/16-Bit-Wide Data) • 16-Bit SDRAM With 128MB Address Space – EMIFB • 32-Bit or 16-Bit SDRAM With 256MB Address Space (C6747) • 16-Bit SDRAM With 256MB Address Space (C6745) Three Configurable 16550 type UART Modules: – UART0 With Modem Control Signals – 16-byte FIFO – 16x or 13x Oversampling Option LCD Controller (C6747 Only) Two Serial Peripheral Interfaces (SPI) Each With One Chip-Select Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Two Master/Slave Inter-Integrated Circuit (I2C Bus™) One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth (C6747 only) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document. TMS320C6000, C6000 are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice. Copyright © 2008–2008, Texas Instruments Incorporated ADVANCE INFORMATION • TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 • • ADVANCE INFORMATION • • • • 2 USB 1.1 OHCI (Host) With Integrated PHY (USB1) (C6747 Only) USB 2.0 OTG Port With Integrated PHY (USB0) – USB 2.0 High-/Full-Speed Client (C6747) – USB 2.0 Full-Speed Client (C6745) – USB 2.0 High-/Full-/Low-Speed Host (C6747) – USB 2.0 Full-/Low-Speed Host (C6745) – High-speed Functionality Available on C6747 Device Only – End Point 0 (Control) – End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx Three Multichannel Audio Serial Ports: – Transmit/Receive Clocks up to 50 MHz – Six Clock Zones and 28 Serial Data Pins – Supports TDM, I2S, and Similar Formats – DIT-Capable (McASP2) – FIFO buffers for Transmit and Receive 10/100 Mb/s Ethernet MAC (EMAC): – IEEE 802.3 Compliant (3.3-V I/O Only) – RMII Media Independent Interface – Management Data I/O (MDIO) Module Real-Time Clock With 32 KHz Oscillator and Separate Power Rail (C6747 Only) One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers) TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com • • • • • • • One 64-Bit General-Purpose Timer (Watch Dog) Three Enhanced Pulse Width Modulators (eHRPWM): – Dedicated 16-Bit Time-Base Counter With Period And Frequency Control – 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs – Dead-Band Generation – PWM Chopping by High-Frequency Carrier – Trip Zone Input Three 32-Bit Enhanced Capture Modules (eCAP): – Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) outputs – Single Shot Capture of up to Four Event Time-Stamps Two 32-Bit Enhanced Quadrature Encoder Pulse Modules (eQEP) C6747 Device: – 256-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZKB Suffix], 1.0-mm Ball Pitch C6745 Device – 176-Pin Thin Quad Flat Pack (TQFP) [PTP Suffix], 0.5-mm Pin Pitch Commercial or Automotive Temperature Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 1.2 Trademarks DSP/BIOS, TMS320C6000, C6000, TMS320, TMS320C62x, and TMS320C67x are trademarks of Texas Instruments. ADVANCE INFORMATION All trademarks are the property of their respective owners. Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor 3 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 1.3 Description The C6745/6747 is a Low-power digital signal processor based on C674x DSP core. It provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The C6745/6747 enables OEMs and ODMs to quickly bring to market devices featuring high processing performance . ADVANCE INFORMATION The C6745/6747 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 also has a 1024KB ROM. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB RAM shared memory ( C6747 only) is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; two inter-integrated circuit (I2C) Bus interfaces; 3 multichannel audio serial port (McASP) with 16/9 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) [C6747 only]; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6745/6747 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. 4 TMS320C6745/6747 Floating-point Digital Signal Processor Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 1.4 Functional Block Diagram JTAG Interface DSP Subsystem System Control C674x™ DSP CPU PLL/Clock Generator w/OSC AET GeneralPurpose Timer GeneralPurpose Timer (Watchdog) 32 KB L1 Pgm Power/Sleep Controller 32 KB L1 RAM 256 KB L2 RAM RTC/ Pin 32-KHz Multiplexing OSC 1024 KB L2 ROM ADVANCE INFORMATION Input Clock(s) Switched Central Resource (SCR) Peripherals DMA Audio Ports EDMA3 McASP w/FIFO (3) I2C (2) eCAP (3) SPI (2) UART (3) LCD Ctlr Connectivity Control Timers eHRPWM (3) Display Serial Interfaces eQEP (2) USB2.0 OTG Ctlr PHY USB1.1 OHCI Ctlr PHY (10/100) EMAC (RMII) MDIO Internal Memory 128 KB RAM External Memory Interfaces HPI MMC/SD (8b) EMIFA(8b/16B) NAND/Flash 16b SDRAM EMIFB SDRAM Only (16b/32b) Note: Not all peripherals are available at the same time due to multiplexing. See Table 3-1 for details on which device components are available on each device. Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor 5 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Contents 1 2 3 1.1 Features .............................................. 1 1.2 Trademarks ........................................... 3 1.3 Description ............................................ 4 1.4 Functional Block Diagram ............................ 5 Revision History ......................................... 7 Device Overview ......................................... 8 ADVANCE INFORMATION 5 6 6 Interrupts ............................................ 68 6.8 General-Purpose Input/Output (GPIO) .............. 74 ............................................... External Memory Interface B (EMIFB) .............. 92 MMC / SD / SDIO (MMCSD) ........................ 97 16 6.13 Ethernet Media Access Controller (EMAC) ........ 100 19 6.14 6.15 Management Data Input/Output (MDIO) ........... 106 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) ...................................... 108 38 6.16 Serial Peripheral Interface Ports (SPI0, SPI1) ..... 124 38 6.17 6.18 Enhanced Capture (eCAP) Peripheral ............. 142 Enhanced Quadrature Encoder (eQEP) Peripheral .......................................... 145 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) ......................................... 147 21 38 38 39 6.19 41 4.6 Chip Configuration Registers (CFGCHIP and SUSPSRC) .......................................... 45 4.7 DSP Communication Registers ..................... 52 4.8 Device Support ...................................... 53 4.9 Documentation Support ............................. 54 Device Operating Conditions ........................ 56 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted) .......................... 56 Recommended Operating Conditions ............... 57 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) ............ 58 Peripheral Information and Electrical Specifications ........................................... 59 Parameter Information .............................. 59 Recommended Clock and Control Signal Transition Contents Clock PLLs .......................................... 65 6.7 6.12 DSP Subsystem ..................................... 10 6.1 6.2 Crystal Oscillator or External Clock Input ........... 64 6.6 6.11 Device Compatibility .................................. 9 5.2 5.3 Reset ................................................ 61 6.5 EDMA 3.3 5.1 6.4 External Memory Interface A (EMIFA) .............. 82 3.2 ............................. 3.5 Pin Assignments .................................... 3.6 Terminal Functions .................................. Device Configuration .................................. 4.1 Introduction .......................................... 4.2 Boot Modes Supported .............................. 4.3 SYSCFG Module .................................... 4.4 Pin Multiplexing Control Registers .................. 4.5 Bus Master Priority Configuration ................... Power Supplies ...................................... 61 6.10 Device Characteristics ................................ 8 Memory Map Summary 6.3 6.9 3.1 3.4 4 Behavior ............................................. 60 TMS320C6745/6747 Floating-point Digital Signal Processor ................................................. 1 7 77 6.20 LCD Controller ..................................... 151 6.21 Timers .............................................. 166 6.22 6.23 Inter-Integrated Circuit Serial Ports (I2C0, I2C1) .. 168 Universal Asynchronous Receiver/Transmitter (UART) ............................................. 172 6.24 USB1 Host Controller Registers (USB1.1 OHCI) .. 174 6.25 USB0 OTG (USB2.0 OTG) 6.26 Host-Port Interface (UHPI) ......................... 183 6.27 Power and Sleep Controller (PSC) 6.28 Emulation Logic .................................... 192 6.29 Real Time Clock (RTC) ............................ 194 ........................ ................ 175 190 Mechanical Packaging and Orderable Information ............................................. 198 7.1 Thermal Data for ZKB.............................. 198 7.2 Thermal Data for PTP.............................. 199 7.3 Mechanical Drawings .............................. 199 Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. This data manual revision history highlights the changes made to the SPRS377A device-specific data manual to make it an SPRS377B revision. Table 2-1. Revision History ADDITIONS/MODIFICATIONS/DELETIONS Global: Document status updated from "Product Preview" To "Advance Information". Global: Updated the document to correct typos. ADVANCE INFORMATION Global: Deleted references to PLLDIV9, SYSCLK9. Global: Updates done to include RAM suppply for voltage scaling. Global: Updated "ePWM" to "eHRPWM". Global: Updates done to highlight the differences between C6745 and C6747. Global: Updated SYSCLK dividers max frequency to 400mhz. • Added the following new sections: – Section 6.4, Reset – Section 6.26, UHPI • Updated the following tables and sections for Emulation related changes : – Table 3-4, Reset and JTAG Terminal Function – Table 6-99, DSP Debug Features – Section 6.28.1, JTAG Port Description – Table 4-10, SUSPSRC Field Descriptions – Section 4.3, SYSCFG Module Deleted Section 4.5 ( in the earlier revision), Pin Multiplexing Control Registers since it is covered in detail in the System Reference Guide Section 1.1, Added a bullet - "3.3V LVCMOS IOs (except for USB interfaces)". Figure 3-4, Pin Map (PTP) - Updated Pin 124 to "AXR0[11]/AXR2[0]/GP3[11]" Table 3-4, Reset and JTAG Terminal Functions table - Updated TDO PULL from "IPU" to IPD" Table 3-18, Multichannel Audio Serial Ports (McASPs) Terminal Functions - Updated "UART1_TXD/AXR2[0]AXR0[11]/GP3[11]" to "UART1_TXD/AXR0[10]/GP3[10]" Section 5.2, Recommended Operating Conditions - Updated the table with values for VIH Updated Table 6-26, Timing requirements for MMCSD Updated Table 6-27, Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module Table 6-85, UART Registers - Added Modem Status Register and Scratchpad Register Submit Documentation Feedback Revision History 7 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 3 Device Overview 3.1 Device Characteristics Table 3-1 provides an overview of the C6745/6747 Low power digital signal processor. The table shows significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count. Table 3-1. Characteristics of the C6745/C6747 Processor HARDWARE FEATURES ADVANCE INFORMATION C6745 C6747 EMIFB SDRAM only, 16-bit bus width SDRAM only, 16/32-bit bus width EMIFA Asynchronous (8-bit bus width) RAM, Flash, NOR, NAND Asynchronous (8/16-bit bus width) RAM, Flash, 16-bit SDRAM, NOR, NAND Flash Card Interface MMC and SD cards supported. EDMA3 32 independent channels, 8 QDMA channels, 2 Transfer controllers Timers 2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable as Watch Dog) UART 3 (one with RTS and CTS flow control) SPI 2 (Each with one hardware chip select) I2C Peripherals Not all peripherals pins are available at the same time (for more detail, see the Device Configurations section). Multichannel Audio Serial Port [McASP] 2 (both Master/Slave) 2 (each with transmit/receive, FIFO buffer, 16/9 serializers) 10/100 Ethernet MAC with Management Data I/O eHRPWM eCAP 1 (RMII Interface) 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs eQEP UHPI 2 32-bit QEP channels with 4 inputs/channel - 1 (16-bit multiplexed address/data) USB 2.0 (USB0) Full Speed Host Or Device with On-Chip PHY High-Speed OTG Controller with on-chip OTG PHY USB 1.1 (USB1) - Full-Speed OHCI (as host) with on-chip PHY General-Purpose Input/Output Port 8 banks of 16-bit LCD Controller - 1 RTC - 1 (32 KHz oscillator and seperate power trail. Provides time and date tracking and alarm capability.) Size (Bytes) On-Chip Memory 3 (each with transmit/receive, FIFO buffer, 16/9 serializers) Organization 488KB RAM, 1088KB ROM DSP 32KB L1 Program (L1P)/Cache (up to 32KB) 32KB L1 Data (L1D)/Cache (up to 32KB) 256KB Unified Mapped RAM/Cache (L2) 1024KB ROM (L2) DSP Memories can be made accessible to EDMA3, and other peripherals. ADDITIONAL SHARED MEMORY 128KB RAM C674x CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) 0x1400 C674x Megamodule Revision Revision ID Register (MM_REVID[15:0]) 0x0000 JTAG BSDL_ID JTAGID Register CPU Frequency MHz Cycle Time ns 8 Device Overview 0x0B7D_F02F 674x DSP 300 MHz 674x DSP 3.33 ns Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 3-1. Characteristics of the C6745/C6747 Processor (continued) Voltage (1) C6747 1.2 V I/O (V) 3.3 V 24 mm x 24 mm, 176-Pin, 0.5 mm pitch, TQFP (PTP) Package Product Status (1) C6745 Core (V) Product Preview (PP), Advance Information (AI), or Production Data (PD) 17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB) AI ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice. 3.2 Device Compatibility The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both the C64x+ and C67x+ DSP families. Submit Documentation Feedback Device Overview 9 ADVANCE INFORMATION HARDWARE FEATURES TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 3.3 DSP Subsystem The DSP Subsystem includes the following features: • C674x DSP CPU • 32KB L1 Program (L1P)/Cache (up to 32KB) • 32KB L1 Data (L1D)/Cache (up to 32KB) • 256KB Unified Mapped RAM/Cache (L2) • 1MB Mask-programmable ROM • Little endian ADVANCE INFORMATION 32K Bytes L1P RAM/ Cache 256K Bytes L2 RAM 256 256 256 Cache Control Memory Protect 1M Byte L2 ROM 256 Cache Control Memory Protect L1P Bandwidth Mgmt L2 Bandwidth Mgmt 256 256 256 Instruction Fetch 256 Power Down Interrupt Controller C674x Fixed/Floating Point CPU IDMA Register File A Register File B 64 64 256 CFG Bandwidth Mgmt Memory Protect Cache Control 8 x 32 EMC L1D MDMA 64 32K Bytes L1D RAM/ Cache 32 Configuration Peripherals Bus SDMA 64 64 64 High Performance Switch Fabric Figure 3-1. C674x Megamodule Block Diagram 10 Device Overview Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com 3.3.1 SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 C674x DSP CPU Description The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory. The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x+ core. Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on a variety of signed and unsigned 32-bit data types. The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions. The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support. Other new features include: • SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible. • Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools. • Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication. • Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration). • Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions. Submit Documentation Feedback Device Overview 11 ADVANCE INFORMATION The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register). TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 • www.ti.com Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls. For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents: • TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732) • TMS320C64x Technical Overview (literature number SPRU395) ADVANCE INFORMATION 12 Device Overview Submit Documentation Feedback ÁÁ ÁÁ ÁÁ Á ÁÁ Á ÁÁ Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 src1 Odd register file A (A1, A3, A5...A31) src2 .L1 odd dst Even register file A (A0, A2, A4...A30) (D) even dst long src ST1b ST1a 32 MSB 32 LSB long src Data path A .S1 8 8 even dst odd dst src1 (D) LD1b LD1a 32 LSB DA2 32 32 src2 32 MSB DA1 LD2a LD2b Á Á Á Á Á Á .M1 dst2 dst1 src1 ADVANCE INFORMATION src2 (A) (B) (C) dst .D1 src1 src2 2x 1x Odd register file B (B1, B3, B5...B31) src2 .D2 32 LSB 32 MSB src1 dst src2 .M2 Even register file B (B0, B2, B4...B30) (C) src1 dst2 32 (B) dst1 32 (A) src2 src1 .S2 odd dst even dst long src Data path B ST2a ST2b 32 MSB 32 LSB long src even dst .L2 (D) 8 8 (D) odd dst src2 src1 Control Register A. B. C. D. On .M unit, dst2 is 32 MSB. On .M unit, dst1 is 32 LSB. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files. Figure 3-2. TMS320C674x CPU (DSP Core) Data Paths Submit Documentation Feedback Device Overview 13 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 3.3.2 www.ti.com DSP Memory Mapping The DSP memory map is shown in Section 3.4. 3.3.2.1 External Memories The DSP has access to the following External memories: • Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA) • SDRAM (EMIFB) 3.3.2.2 DSP Internal Memories ADVANCE INFORMATION The DSP has access to the following DSP memories: • L2 RAM • L1P RAM • L1D RAM 3.3.2.3 C674x CPU The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. Table 3-2 shows a memory map of the C674x CPU cache registers for the device. Table 3-2. C674x Cache Registers HEX ADDRESS RANGE REGISTER ACRONYM 0x0184 0000 L2CFG 0x0184 0020 L1PCFG 0x0184 0024 L1PCC 0x0184 0040 L1DCFG 0x0184 0044 L1DCC 0x0184 0048 - 0x0184 0FFC - 0x0184 1000 EDMAWEIGHT DESCRIPTION L2 Cache configuration register L1P Size Cache configuration register L1P Freeze Mode Cache configuration register L1D Size Cache configuration register L1D Freeze Mode Cache configuration register Reserved L2 EDMA access control register 0x0184 1004 - 0x0184 1FFC - 0x0184 2000 L2ALLOC0 Reserved L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2 0x0184 200C L2ALLOC3 L2 allocation register 3 0x0184 2010 - 0x0184 3FFF - 0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register 0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 14 Reserved 0x0184 4018 L2IBAR L2 invalidate base address register 0x0184 401C L2IWC L2 invalidate word count register 0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register 0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - 0x0184 4040 L1DWBAR L1D Block Writeback 0x0184 4044 L1DWWC L1D Block Writeback 0x0184 4048 L1DIBAR L1D invalidate base address register Device Overview Reserved Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 3-2. C674x Cache Registers (continued) REGISTER ACRONYM 0x0184 404C L1DIWC 0x0184 4050 - 0x0184 4FFF - 0x0184 5000 L2WB 0x0184 5004 L2WBINV 0x0184 5008 L2INV DESCRIPTION L1D invalidate word count register Reserved L2 writeback all register L2 writeback invalidate all register L2 Global Invalidate without writeback 0x0184 500C - 0x0184 5027 - 0x0184 5028 L1PINV Reserved 0x0184 502C - 0x0184 5039 - 0x0184 5040 L1DWB 0x0184 5044 L1DWBINV 0x0184 5048 L1DINV L1D Global Invalidate without writeback 0x0184 8000 – 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 – 0x3FFF FFFF 0x0184 8100 – 0x0184 817F MAR64 – MAR95 Memory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 – 0x5FFF FFFF 0x0184 8180 – 0x0184 8187 MAR96 - MAR97 Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 – 0x61FF FFFF 0x0184 8188 – 0x0184 818F MAR98 – MAR99 Memory Attribute Registers for EMIFA Async Data (CS3) 0x6200 0000 – 0x63FF FFFF 0x0184 8190 – 0x0184 8197 MAR100 – MAR101 Memory Attribute Registers for EMIFA Async Data (CS4) 0x6400 0000 – 0x65FF FFFF 0x0184 8198 – 0x0184 819F MAR102 – MAR103 Memory Attribute Registers for EMIFA Async Data (CS5) 0x6600 0000 – 0x67FF FFFF 0x0184 81A0 – 0x0184 81FF MAR104 – MAR127 Reserved 0x6800 0000 – 0x7FFF FFFF 0x0184 8200 MAR128 0x0184 8204 – 0x0184 82FF MAR129 – MAR191 Reserved 0x8200 0000 – 0xBFFF FFFF 0x0184 8300 – 0x0184 837F MAR192 – MAR223 Memory Attribute Registers for EMIFB SDRAM Data (CS2) 0xC000 0000 – 0xDFFF FFFF 0x0184 8380 – 0x0184 83FF MAR224 – MAR255 Reserved 0xE000 0000 – 0xFFFF FFFF L1P Global Invalidate Reserved L1D Global Writeback L1D Global Writeback with Invalidate Memory Attribute Register for Shared RAM 0x8000 0000 – 0x8001 FFFF Reserved 0x8002 0000 – 0x81FF FFFF See Table 3-3 for a detailed top level C6745/6747memory map that includes the DSP memory space. Submit Documentation Feedback Device Overview 15 ADVANCE INFORMATION HEX ADDRESS RANGE TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 3.4 Memory Map Summary Table 3-3. C6745/6747 Top Level Memory Map ADVANCE INFORMATION 16 Start Address End Address Size DSP Mem Map EDMA Mem Map Master Peripheral Mem Map 0x0000 0000 0x006F FFFF 6M + 1024K 0x0070 0000 0x007F FFFF 1024K DSP L2 ROM - 0x0080 0000 0x0083 FFFF 256K DSP L2 RAM - 0x0084 0000 0x00DF FFFF 5M + 768K 0x00E0 0000 0x00E0 7FFF 32K 0x00E0 8000 0x00EF FFFF 992K 0x00F0 0000 0x00F0 7FFF 32K 0x00F0 8000 0x017F FFFF 8M + 992K 0x0180 0000 0x0180 FFFF 0x0181 0000 LCDC Mem Map - DSP L1P RAM - DSP L1D RAM - 64K DSP Interrupt Controller - 0x0181 0FFF 4K DSP Powerdown Controller - 0x0181 1000 0x0181 1FFF 4K DSP Security ID - 0x0181 2000 0x0181 2FFF 4K DSP Revision ID - 0x0181 3000 0x0181 FFFF 52K - - 0x0182 0000 0x0182 FFFF 64K DSP EMC - 0x0183 0000 0x0183 FFFF 64K DSP Internal Reserved - 0x0184 0000 0x0184 FFFF 64K DSP Memory System - 0x0185 0000 0x01BB FFFF 3M + 600K 0x01BC 0000 0x01BC 0FFF 4K - 0x01BC 1000 0x01BC 17FF 2K - 0x01BC 1900 0x01BC 18FF 256 - 0x01BC 0500 0x01BF FFFF 260K 0x01C0 0000 0x01C0 7FFF 32K EDMA3 CC - 0x01C0 8000 0x01C0 83FF 1024 EDMA3 TC0 - 0x01C0 8400 0x01C0 87FF 1024 EDMA3 TC1 - 0x01C0 8800 0x01C0 FFFF 30K 0x01C1 0000 0x01C1 0FFF 4K PSC 0 - 0x01C1 1000 0x01C1 1FFF 4K PLL Controller - 0x01C1 2000 0x01C1 3FFF 8K 0x01C1 4000 0x01C1 4FFF 4K SYSCFG - 0x01C1 5000 0x01C1 5FFF 4K - 0x01C1 6000 0x01C1 6FFF 4K - 0x01C1 7000 0x01C1 7FFF 4K - 0x01C1 8000 0x01C1 FFFF 32K - 0x01C2 0000 0x01C2 0FFF 4K Timer64P 0 - 0x01C2 1000 0x01C2 1FFF 4K Timer64P 1 - 0x01C2 2000 0x01C2 2FFF 4K I2C 0 - 0x01C2 3000 0x01C2 3FFF 4K RTC - 0x01C2 4000 0x01C2 4FFF 4K Device Overview - Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 3-3. C6745/6747 Top Level Memory Map (continued) Start Address End Address Size EDMA Mem Map Master Peripheral Mem Map LCDC Mem Map 0x01C2 5000 0x01C3 FFFF 110K 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 - 0x01C4 1000 0x01C4 1FFF 4K SPI 0 - 0x01C4 2000 0x01C4 2FFF 4K UART 0 - 0x01C4 3000 0x01CF FFFF 774K 0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control - 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Ctrl - 0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data - 0x01D0 3000 0x01D0 3FFF 4K 0x01D0 4000 0x01D0 4FFF 4K McASP 1 Control - 0x01D0 5000 0x01D0 5FFF 4K McASP 1 AFIFO Ctrl - 0x01D0 6000 0x01D0 6FFF 4K McASP 1 Data - 0x01D0 7000 0x01D0 7FFF 4K 0x01D0 8000 0x01D0 8FFF 4K McASP 2 Control - - - - - 0x01D0 9000 0x01D0 9FFF 4K McASP 2 AFIFO Ctrl - 0x01D0 A000 0x01D0 AFFF 4K McASP 2 Data - 0x01D0 B000 0x01D0 BFFF 4K 0x01D0 C000 0x01D0 CFFF 4K UART 1 - 0x01D0 D000 0x01D0 DFFF 4K UART 2 - 0x01D0 E000 0x01D0 EFFF 4K IOPU 4 - 0x01D0 F000 0x01DF FFFF 964K 0x01E0 0000 0x01E0 FFFF 64K USB0 0x01E1 0000 0x01E1 0FFF 4K UHPI 0x01E1 1000 0x01E1 1FFF 4K 0x01E1 2000 0x01E1 2FFF 4K SPI 1 0x01E1 3000 0x01E1 3FFF 4K LCD Controller 0x01E1 4000 0x01E1 4FFF 4K - - - 0x01E1 5000 0x01E1 5FFF 4K 0x01E1 6000 0x01E1 FFFF 40K 0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM - 0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers - 0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers - 0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port - 0x01E2 5000 0x01E2 5FFF 4K USB1 - 0x01E2 6000 0x01E2 6FFF 4K GPIO - 0x01E2 7000 0x01E2 7FFF 4K PSC 1 - 0x01E2 8000 0x01E2 8FFF 4K I2C 1 - 0x01E2 9000 0x01E2 9FFF 4K 0x01E2 A000 0x01EF FFFF 856K 0x01F0 0000 0x01F0 0FFF 4K 0x01F0 1000 0x01F0 1FFF 0x01F0 2000 0x01F0 2FFF 0x01F0 3000 - eHRPWM 0 - 4K HRPWM 0 - 4K eHRPWM 1 - 0x01F0 3FFF 4K HRPWM 1 - 0x01F0 4000 0x01F0 4FFF 4K eHRPWM 2 - 0x01F0 5000 0x01F0 5FFF 4K HRPWM 2 - 0x01F0 6000 0x01F0 6FFF 4K ECAP 0 - Submit Documentation Feedback ADVANCE INFORMATION DSP Mem Map Device Overview 17 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 3-3. C6745/6747 Top Level Memory Map (continued) ADVANCE INFORMATION 18 Start Address End Address Size DSP Mem Map EDMA Mem Map Master Peripheral Mem Map LCDC Mem Map 0x01F0 7000 0x01F0 7FFF 4K ECAP 1 - 0x01F0 8000 0x01F0 8FFF 4K ECAP 2 - 0x01F0 9000 0x01F0 9FFF 4K EQEP 0 - 0x01F0 A000 0x01F0 AFFF 4K EQEP 1 - 0x01F0 B000 0x01F0 BFFF 4K - 0x01F0 C000 0x116F FFFF 247M + 976K - 0x1170 0000 0x117F FFFF 1024K DSP L2 ROM - 0x1180 0000 0x1183 FFFF 256K DSP L2 RAM - 0x1184 0000 0x11DF FFFF 5M + 768K - 0x11E0 0000 0x11E0 7FFF 32K 0x11E0 8000 0x11EF FFFF 992K 0x11F0 0000 0x11F0 7FFF 32K 0x11F0 8000 0x3FFF FFFF 736M + 992K 0x4000 0000 0x5FFF FFFF 512M EMIFA SDRAM data (CS0) - 0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2) - 0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3) - 0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4) - 0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5) - EMIFA Control Regs - 0x6800 0000 0x6800 7FFF 32K 0x6800 8000 0x7FFF FFFF 383M + 992K DSP L1P RAM DSP L1D RAM - - - 0x8000 0000 0x8001 FFFF 128K 0x8002 0000 0xAFFF FFFF 767M + 896K - 0xB000 0000 0xB000 7FFF 32K EMIFB Control Regs 0xB000 8000 0xBFFF FFFF 255M + 992K - 0xC000 0000 0xDFFF FFFF 512M EMIFB SDRAM Data 0xE000 0000 0xFFFC FFFF 511M + 832K - 0xFFFD 0000 0xFFFD FFFF 64K - 0xFFFE 0000 0xFFFE DFFF 56K - 0xFFFE E000 0xFFFE FFFF 8K - 0xFFFF 0000 0xFFFF 1FFF 8K - 0xFFFF 2000 0xFFFF FFFF 56K - Device Overview - - Shared RAM - Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 3.5 Pin Assignments Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. 3.5.1 Pin Map (Bottom View) 1 2 4 5 6 7 8 9 10 AXR1[11]/ GP5[11] SPI0_CLK/ EQEP1I/ GP5[2]/ BOOT[2] SPI1_CLK/ EQEP1S/ GP5[7]/ BOOT[7] EMA_CS[3]/ AMUTE2/ GP2[6] EMA_CS[0]/ UHPI_HAS/ GP2[4] EMA_A[0]/ LCD_D[7]/ GP1[0] EMA_A[4]/ LCD_D[3]/ GP1[4] 3 T VSS VSS AXR1[0]/ GP4[0] R DVDD AXR1[1]/ GP4[1] UART0_RXD/ I2C0_SDA/ TM64P0_IN12/ GP5[8]/ BOOT[8] P AXR1[3]/ EQEP1A/ GP4[3] AXR1[2]/ GP4[2] N AXR1[5]/ EPWM2B/ GP4[5] AXR1[4]/ EQEP1B/ GP4[4] AXR1[10]/ GP5[10] M AXR1[9]/ GP4[9] AXR1[8]/ EPWM1A/ GP4[8] AXR1[7]/ EPWM1B/ GP4[7] AXR1[6]/ EPWM2A/ GP4[6] DVDD VSS VSS L AHCLKR1/ GP4[11] ACLKR1/ ECAP2/ APWM2/ GP4[12] AFSR1/ GP4[13] AMUTE0/ RESETOUT DVDD CVDD K RTCK AHCLKX1/ EPWM0B/ GP3[14] ACLKX1/ EPWM0A/ GP3[15] AFSX1/ EPWMSYNCI/ EPWMSYNCO/ GP4[10] DVDD J TMS TDI TDO TRST H RTC_XI RTC_XO TCK G RTC_CVDD RTC_VSS F OSCOUT E SPI0_ENA/ SPIO_SOMI[0]/ EMA_OE/ SPI1_ENA/ UART0_CTS/ EQEPOI/ UHPI_HDS1/ UART2_RXD/ EQEP0A/ GP5[0]/ AXR0[13]/ GP5[3]/ GP5[12] BOOT[0] GP2[7] BOOT[3] 11 12 13 14 EMA_D[0]/ EMA_D[9]/ EMA_A[8]/ EMA_SDCKE/ MMCSD_DAT[0]/ UHPI_HD[9]/ UHPI_HD[0]/ LCD_PCLK/ GP2[0] LCD_D[9]/ GP0[0]/ GP1[8] GP0[9] BOOT[12] EMA_CLK/ OBSCLK/ AHCLKR2/ GP1[15] 15 16 VSS VSS T DVDD R EMA_A[1]/ EMA_BA[0]/ MMCSD_CLK/ LCD_D[4]/ UHPI_HCNTL0/ GP1[14] GP1[1] EMA_A[5]/ LCD_D[2]/ GP1[5] EMA_A[9]/ LCD_HSYNC/ GP1[9] EMA_D[2]/ EMA_D[10]/ EMA_D[1]/ MMCSD_DAT[2]/ UHPI_HD[10]/ MMCSD_DAT[1]/ UHPI_HD[2]/ LCD_D[10]/ UHPI_HD[1]/ GP0[2] GP0[10] GP0[1] UART0_TXD/ EMA_A[2]/ SPI1_SOMI[0]/ SPI0_SIMO[0]/ EMA_CS[2]/ EMA_BA[1]/ SPI1_SCS[0]/ I2C0_SCL/ I2C1_SCL/ EQEP0S/ UHPI_HCS/ LCD_D[5]/ MMCSD_CMD/ TM64P0_OUT12/ UART2_TXD/ UHPI_HHWIL/ UHPI_HCNTL1/ GP5[5]/ GP5[1]/ GP2[5]/ GP5[9]/ GP5[13] GP1[13] GP1[2] BOOT[5] BOOT[1] BOOT[15] BOOT[9] EMA_A[6]/ LCD_D[1]/ GP1[6] EMA_A[11]/ LCD_AC_ ENB_CS/ GP1[11] EMA_WE_ EMA_D[4]/ EMA_D[12]/ EMA_D[3]/ EMA_D[11]/ DQM[1]/ MMCSD_DAT[4]/ UHPI_HD[12]/ MMCSD_DAT[3]/ UHPI_HD[11]/ UHPI_HDS2/ UHPI_HD[4]/ LCD_D[12]/ UHPI_HD[3]/ LCD_D[11] AXR0[14]/ GP0[4] GP0[12] GP0[3] GP0[11] GP2[8] P SPI0_SCS[0]/ SPI1_SIMO[0]/ UART0_RTS/ I2C1_SDA/ EMA_WAIT[0]/ EMA_RAS/ EMA_A[10]/ UHPI_HRDY/ EMA_CS[5]/ LCD_VSYNC/ EQEP0B/ GP5[6]/ GP5[4]/ GP2[10] GP2[2] GP1[10] BOOT[6] BOOT[4] EMA_A[3]/ LCD_D[6]/ GP1[3] EMA_A[7]/ LCD_D[0]/ GP1[7] EMA_A[12]/ LCD_MCLK/ GP1[12] EMA_D[8]/ EMA_D[6]/ EMA_D[14]/ EMA_D[5]/ EMA_D[13]/ UHPI_HD[8]/ MMCSD_DAT[6]/ UHPI_HD[14]/ MMCSD_DAT[5]/ UHPI_HD[13]/ LCD_D[8]/ UHPI_HD[6]/ LCD_D[14]/ UHPI_HD[5]/ LCD_D[13]/ GP0[14] GP0[5] GP0[13] GP0[8] GP0[6] N DVDD DVDD VSS VSS DVDD EMA_WE/ UHPI_HRW/ AXR0[12]/ GP2[3]/ BOOT[14]] EMA_D[7]/ EMA_WE_ EMA_D[15]/ MMCSD_DAT[7]/ DQM[0]/ UHPI_HD[15]/ UHPI_HINT/ UHPI_HD[7]/ LCD_D[15]/ AXR0[15]/ GP0[7]/ GP0[15] GP2[9] BOOT[13] M VSS VSS VSS VSS DVDD DVDD EMB_CAS EMB_D[22] EMB_D[23] EMA_CAS/ EMA_CS[4]/ GP2[1] L CVDD CVDD VSS VSS CVDD CVDD DVDD EMB_D[20] EMB_WE_ DQM[0]/ GP5[15] EMB_WE EMB_D[21] K EMU0 CVDD CVDD VSS VSS CVDD CVDD CVDD EMB_D[5]/ GP6[5] EMB_D[19] EMB_D[6]/ GP6[6] EMB_D[7]/ GP6[7] J USB0_ VSSA33 USB0_ VDDA33 RVDD CVDD VSS VSS CVDD CVDD RVDD EMB_D[3]/ GP6[3] EMB_D[17] EMB_D[18] EMB_D[4]/ GP6[4] H RESET USB0_DM DVDD CVDD CVDD VSS VSS CVDD CVDD DVDD EMB_D[1]/ GP6[1] EMB_D[31] EMB_D[16] EMB_D[2]/ GP6[2] G OSCIN USB0_VSSA USB0_DP DVDD CVDD RSV1 VSS VSS VSS DVDD DVDD EMB_D[15]/ GP6[15] EMB_D[29] EMB_D[30] EMB_D[0]/ GP6[0] F PLL0_VSSA OSCVSS USB0_ VDDA18 USB0_ DRVVBUS/ GP4[15] DVDD VSS VSS DVDD DVDD VSS VSS DVDD EMB_D[13]/ GP6[13] EMB_D[27] EMB_D[28] EMB_D[14]/ GP6[14] E D PLL0_VDDA USB0_ID C USB1_ VDDA33 USB1_ VDDA18 USB0_ VDDA12 B RSV2 VSS A VSS 1 AFSX0/ GP2[13]/ BOOT[10] AXR0[6]/ UART1_TXD/ RMII_RXER/ AXR0[10]/ ACLKR2/ GP3[10] GP3[6] AXR0[2]/ RMII_TXEN/ AXR2[3]/ GP3[2] EMB_CS[0] EMB_A[0]/ GP7[2] EMB_A[4]/ GP7[6] EMB_A[8]/ GP7[10] EMB_D[9]/ GP6[9] EMB_D[10]/ GP6[10] EMB_D[11]/ GP6[11] EMB_D[12]/ GP6[12] D AFSR0/ GP3[12] ACLKX0/ ECAP0/ APWM0/ GP2[12] AXR0[5]/ AXR0[1]/ UART1_RXD/ RMII_RXD[1]/ RMII_TXD[1]/ AXR0[9]/ AFSX2/ ACLKX2/ GP3[9] GP3[5] GP3[1] EMB_BA[0]/ GP7[1] EMB_A[1]/ GP7[3] EMB_A[5]/ GP7[7] EMB_A[9]/ GP7[11] EMB_SDCKE EMB_CLK EMB_WE_ DQM[1]/ GP5[14] EMB_D[8]/ GP6[8] C USB1_DM ACLKR0/ ECAP1/ APWM1/ GP2[15] AHLKX0/ AHCLKX2/ USB_ REFCLKIN/ GP2[11] AXR0[8]/ MDIO_D/ GP3[8] AXR0[4]/ AXR0[0]/ RMII_RXD[0]/ RMII_TXD[0]/ AXR2[1]/ AFSR2/ GP3[4] GP3[0] EMB_BA[1]/ GP7[0] EMB_A[2]/ GP7[4] EMB_A[6]/ GP7[8] EMB_A[11]/ GP7[13] EMB_WE_ DQM[2] EMB_D[25] EMB_A[12]/ GP3[13] DVDD B VSS USB1_DP AHCLKR0/ RMII_MHZ_ 50_CLK/ GP2[14]/ BOOT[11] AXR0[11]/ AXR2[0]/ GP3[11] AXR0[7]/ MDIO_CLK/ GP3[7] AXR0[3]/ RMII_CRS_DV/ AXR2[2]/ GP3[3] EMB_RAS EMB_A[10]/ GP7[12] EMB_A[3]/ GP7[5] EMB_A[7]/ GP7[9] EMB_WE_ DQM[3] EMB_D[24] EMB_D[26] VSS VSS A 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 AMUTE1/ USB0_VBUS EHRPWMTZ/ GP4[14] ADVANCE INFORMATION Figure 3-3 and Figure 3-4 show the pin assignments for BGA package and PTP package respectively.Note that micro-vias are not required. Contact your TI representative for routing recommendations. Figure 3-3. Pin Map (BGA) Submit Documentation Feedback Device Overview 19 RSV2 USB0_VDDA12 USB0_VDDA18 USB0_VSSA USB0_DP USB0_DM USB0_VSSA33 USB0_VDDA33 PLL0_VDDA PLL0_VSSA OSCIN OSCVSS OSCOUT RESET CVDD RSV4 RSV3 TRST DVDD TMS TDI CVDD TCK TDO GP7[14] DVDD RVDD AHCLKX1/EPWM0B/GP3[14] CVDD ACLKX1/EPWM0A/GP3[15] AFSX1/EPWMSYNCI/EPWMSYNC0/GP4[10] DVDD ACLKR1/ECAP2/APWM2/GP4[12] AFSR1/GP4[13] CVDD AXR1[8]/EPWM1A/GP4[8] AXR1[7]/EPWM1B/GP4[7] AXR1[6]/EPWM2A/GP4[6] AXR1[5]/EPWM2B/GP4[5] DVDD AXR1[4]/EQEP1B/GP4[4] AXR1[3]/EQEP1A/GP4[3] AXR1[2]/GP4[2] AXR1[1]/GP4[1] 20 Device Overview 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 CVDD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] DVDD SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] EMA_WAIT[0]/GP2[10] CVDD EMA_CS[3]/GP2[6] EMA_OE//AXR0[13]/GP2[7] EMA_CS[2]/GP2[5]/BOOT[15] DVDD EMA_BA[0]/GP1[14] EMA_BA[1]/GP1[13] EMA_A[10]/GP1[10] CVDD EMA_A[0]/GP1[0] EMA_A[1]/MMCSD_CLK/GP1[1] EMA_A[2]/MMCSD_CMD/GP1[2] EMA_A[3]/GP1[3] DVDD EMA_A[4]/GP1[4] EMA_A[5]/GP1[5] EMA_A[6]/GP1[6] EMA_A[7]/GP1[7] CVDD EMA_A[8]/GP1[8] EMA_A[9]/GP1[9] EMA_A[11]/GP1[11] EMA_A[12]/GP1[12] DVDD EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ADVANCE INFORMATION AXR1[0]/GP4[0] UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT8 UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] GP5[10] DVDD GP5[11] SPI1_ENA/UART2_RXD/GP5[12] SPI1_SCS[0]/UART2_TXD/GP5[13] SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 AMUTE1/EHRPWMTZ/GP4[14] AFSR0/GP3[12] ACLKR0/ECAP1/APWM1/GP2[15] AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] DVDD AFSX0/GP2[13]/BOOT[10] ACLKX0/ECAP0/APWM0/GP2[12] AHCLKX0/USB_REFCLKIN/GP2[11] AXR0[11]/AXR2[0]/GP3[11] UART1_TXD/AXR0[10]/GP3[10] UART1_RXD/AXR0[9]/GP3[9] AXR0[8]/MDIO_D/GP3[8] AXR0[7]/MDIO_CLK/GP3[7] DVDD AXR0[6]/RMII_RXER/GP3[6] AXR0[5]/RMII_RXD[1]/GP3[5] AXR0[4]/RMII_RXD[0]/GP3[4] AXR0[3]/RMII_CRS_DV/GP3[3] CVDD AXR0[2]/RMII_TXEN/GP3[2] AXR0[1]/RMII_TXD[1]/GP3[1] AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] EMB_RAS DVDD EMB_CS[0] EMB_BA[0]/GP7[1] EMB_BA[1]/GP7[0] EMB_A[10]/GP7[12] CVDD EMB_A[0]/GP7[2] EMB_A[1]/GP7[3] EMB_A[2]/GP7[4] EMB_A[3]/GP7[5] DVDD EMB_A[4]/GP7[6] EMB_A[5]/GP7[7] EMB_A[6]/GP7[8] EMB_A[7]/GP7[9] EMB_A[8]/GP7[10] CVDD EMB_A[9]/GP7[11] EMB_A[11]/GP7[13] DVDD EMB_A[12]/GP3[13] TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com VSS (177) Thermal Pad 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 EMB_SDCKE DVDD EMB_CLK EMB_WE_DQM[1]/GP5[14] EMB_D[8]/GP6[8] EMB_D[9]/GP6[9] EMB_D[10]/GP6[10] DVDD EMB_D[11]/GP6[11] EMB_D[12]/GP6[12] EMB_D[13]/GP6[13] CVDD EMB_D[14]/GP6[14] DVDD EMB_D[15]/GP6[15] EMB_D[0]/GP6[0] EMB_D[1]/GP6[1] DVDD EMB_D2/GP6[2] CVDD EMB_D[3]/GP6[3] RVDD EMB_D[4]/GP6[4] DVDD EMB_D[5]/GP6[5] EMB_D[6]/GP6[6] EMB_D[7]/GP6[7] CVDD EMB_WE_DQM[0]/GP5[15] EMB_WE DVDD EMB_CAS CVDD EMA_WE/AXR0[12]/GP2[3]/BOOT[14] EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] DVDD EMA_D[6]/MMCSD_DAT[6]/GP0[6] EMA_D[5]/MMCSD_DAT[5]/GP0[5] CVDD EMA_D[4]/MMCSD_DAT[4]/GP0[4] EMA_D[3]/MMCSD_DAT[3]/GP0[3] DVDD EMA_D[2]/MMCSD_DAT[2]/GP0[2] EMA_D[1]/MMCSD_DAT[1]/GP0[1] Figure 3-4. Pin Map (PTP) Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 3.6 Terminal Functions to identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description. 3.6.1 Device Reset and JTAG Table 3-4. Reset and JTAG Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) DESCRIPTION PTP ZKB 146 G3 I - L4 O (3) TMS 152 J1 I IPU JTAG test mode select TDI 153 J2 I IPU JTAG test data input TDO 156 J3 O IPD JTAG test data output TCK 155 H3 I IPU JTAG test clock TRST 150 J4 I IPD JTAG test reset EMU[0] - J5 I/O IPU Miscellaneous emulation pin. GP7[14] 157 K1 I/O IPU General-Purpose IO signal. AMUTE0/RESETOUT Device reset input IPD Reset output. Multiplexed with McASP0 mute output. JTAG (1) (2) (3) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Open drain mode for RESETOUT function. 3.6.2 High-Frequency Oscillator and PLL Table 3-5. High-Frequency Oscillator and PLL Terminal Functions SIGNAL NAME EMA_CLK/OBSCLK/AHCLKR 2/GP1[15] PIN NO PTP ZKB - R12 TYPE (1) PULL (2) O IPU DESCRIPTION PLL Observation Clock 1.2-V OSCILLATOR OSCIN 143 F2 I Oscillator input OSCOUT 145 F1 O Oscillator output OSCVSS 144 E2 GND PLL0_VDDA 141 D1 PWR PLL analog VDD (1.2-V filtered supply) PLL0_VSSA 142 E1 GND PLL analog VSS (for filter) Oscillator ground (for filter only) 1.2-V PLL (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Submit Documentation Feedback Device Overview 21 ADVANCE INFORMATION RESET RESET TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 3.6.3 www.ti.com Real-Time Clock and 32-kHz Oscillator Table 3-6. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions SIGNAL NAME PIN NO TYPE (1) PULL (2) DESCRIPTION PTP ZKB RTC_CVDD - G1 RTC_XI - H1 I Low-frequency (32-kHz) oscillator receiver for real-time clock RTC_XO - H2 O Low-frequency (32-kHz) oscillator driver for real-time clock RTC_Vss - G2 GND (1) ADVANCE INFORMATION (2) PWR RTC module core power ( isolated from rest of chip CVDD) Oscillator ground (for filter) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 3.6.4 External Memory Interface A (ASYNC, SDRAM) Table 3-7. External Memory Interface A (EMIFA) Terminal Functions PIN NO TYPE (1) PULL (2) M16 I/O IPD N14 I/O IPD - N16 I/O IPD - P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11] - P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] - R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] - T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] - N12 I/O IPD EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] 54 M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] 52 N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] 51 N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] 49 P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] 48 P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] 46 R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] 45 R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] 44 T13 I/O IPU SIGNAL NAME PTP ZKB EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15] - EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] - EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] (1) (2) 22 MUXED DESCRIPTION UHPI, LCD, GPIO MMC/SD, UHPI, GPIO, BOOT EMIFA data bus MMC/SD, UHPI, GPIO MMC/SD, UHPI, GPIO, BOOT I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 3-7. External Memory Interface A (EMIFA) Terminal Functions (continued) PULL (2) N11 O IPU 41 P11 O IPU 27 N8 O IPU EMA_A[9]/LCD_HSYNC/GP1[9] 40 R11 O IPU EMA_A[8]/LCD_PCLK/GP1[8] 39 T11 O IPU EMA_A[7]/LCD_D[0]/GP1[7] 37 N10 O IPD EMA_A[6]/LCD_D[1]/GP1[6] 36 P10 O IPD EMA_A[5]/LCD_D[2]/GP1[5] 35 R10 O IPD EMA_A[4]/LCD_D[3]/GP1[4] 34 T10 O IPD EMA_A[3]/LCD_D[6]/GP1[3] 32 N9 O IPD EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] 31 P9 O IPU EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] 30 R9 O EMA_A[0]/LCD_D[7]/GP1[0] 29 T9 EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] 26 EMA_BA[0]/LCD_D[4]/GP1[14] PTP ZKB EMA_A[12]/LCD_MCLK/GP1[12] 42 EMA_A[11]/LCD_AC_ENB_CS/GP1[11] EMA_A[10]/LCD_VSYNC/GP1[10] MUXED DESCRIPTION LCD, GPIO EMIFA address bus IPU MMCSD, UHPI, GPIO EMIFA address bus. O IPD LCD, GPIO P8 O IPU LCD, UHPI, GPIO 25 R8 O IPU LCD, GPIO EMA_CLK/OBSCLK/AHCLKR2/GP1[15] - R12 O IPU McASP2, GPIO EMIFA clock. EMA_SDCKE/GP2[0] - T12 O IPU GPIO EMIFA SDRAM clock enable. EMA_RAS/EMA_CS[5]/GP2[2] - N7 O IPU EMA_CAS/EMA_CS[4]/GP2[1] - EMA_RAS/EMA_CS[5]/GP2[2] EMA_CAS/EMA_CS[4]/GP2[1] EMIFA bank address EMIFA SDRAM row address strobe. EMIF A chip select, GPIO EMIFA SDRAM column address strobe. L16 O IPU - N7 O IPU - L16 O IPU EMA_CS[3]/AMUTE2/GP2[6] 21 T7 O IPU McASP2, GPIO EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15] 25 P7 O IPU UHPI, GPIO, BOOT - T8 O IPU UHPI, GPIO EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] 55 M13 O IPU UHPI, EMIFA SDRAM write MCASP0, enable. GOPIO, BOOT EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8] - P12 O IPU EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9] - M14 O IPU EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7] 22 R7 O IPU UHPI, McASP0, GPIO EMIFA output enable. EMA_WAIT[0]/UHPI_HRDY/GP2[10] 19 N6 I IPU UHPI, GPIO EMIFA wait input/interrupt. EMA_CS[0]/UHPI_HAS/GP2[4] Submit Documentation Feedback EMIF A SDRAM, GPIO EMIFA Async Chip Select EMIFA write enable/data mask for UHPI, McASP, EMA_D[15:8] GPIO EMIFA write enable/data mask for EMA_D[7:0]. Device Overview 23 ADVANCE INFORMATION PIN NO TYPE (1) SIGNAL NAME TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 3.6.5 www.ti.com External Memory Interface B (only SDRAM ) Table 3-8. External Memory Interface B (EMIFB) Terminal Functions PIN NO TYPE (1) PULL (2) G14 I/O IPD - F15 I/O IPD - F14 I/O IPD EMB_D[28] - E15 I/O IPD EMB_D[27] - E14 I/O IPD EMB_D[26] - A14 I/O IPD EMB_D[25] - B14 I/O IPD EMB_D[24] - A13 I/O IPD EMB_D[23] - L15 I/O IPD EMB_D[22] - L14 I/O IPD EMB_D[21] - K16 I/O IPD EMB_D[20] - K13 I/O IPD EMB_D[19] - J14 I/O IPD EMB_D[18] - H15 I/O IPD EMB_D[17] - H14 I/O IPD SIGNAL NAME PTP ZKB EMB_D[31] - EMB_D[30] EMB_D[29] ADVANCE INFORMATION EMB_D[16] - G15 I/O IPD EMB_D[15]/GP6[15] 74 F13 I/O IPD EMB_D[14]/GP6[14] 76 E16 I/O IPD EMB_D[13]/GP6[13] 78 E13 I/O IPD EMB_D[12]/GP6[12] 79 D16 I/O IPD EMB_D[11]/GP6[11] 80 D15 I/O IPD EMB_D[10]/GP6[10] 82 D14 I/O IPD EMB_D[9]/GP6[9] 83 D13 I/O IPD EMB_D[8]/GP6[8] 84 C16 I/O IPD EMB_D[7]/GP6[7] 62 J16 I/O IPD EMB_D[6]/GP6[6] 63 J15 I/O IPD EMB_D[5]/GP6[5] 64 J13 I/O IPD EMB_D[4]/GP6[4] 66 H16 I/O IPD EMB_D[3]/GP6[3] 68 H13 I/O IPD EMB_D[2]/GP6[2] 70 G16 I/O IPD EMB_D[1]/GP6[1] 72 G13 I/O IPD EMB_D[0]/GP6[0] 73 F16 I/O IPD EMB_A[12]/GP3[13] 89 B15 O IPD EMB_A[11]/GP7[13] 91 B12 O IPD EMB_A[10]/GP7[12] 105 A9 O IPD EMB_A[9]/GP7[11] 92 C12 O IPD EMB_A[8]/GP7[10] 94 D12 O IPD EMB_A[7]/GP7[9] 95 A11 O IPD EMB_A[6]/GP7[8] 96 B11 O IPD EMB_A[5]/GP7[7] 97 C11 O IPD (1) (2) 24 MUXED DESCRIPTION EMIFB SDRAM data bus. GPIO GPIO EMIFB SDRAM row/column address bus. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 3-8. External Memory Interface B (EMIFB) Terminal Functions (continued) PULL (2) D11 O IPD 100 A10 O IPD 101 B10 O IPD EMB_A[1]/GP7[3] 102 C10 O IPD EMB_A[0]/GP7[2] 103 D10 O IPD EMB_BA[1]/GP7[0] 106 B9 O IPU EMB_BA[0]/GP7[1] 107 C9 O IPU EMIFB SDRAM band address. EMB_CLK 86 C14 O IPU EMIF SDRAM clock. EMB_SDCKE 88 C13 I/O IPU EMIFB SDRAM clock enable. EMB_WE 59 K15 O IPU EMIFB write enable EMB_RAS 110 A8 O IPU EMIFB SDRAM row address strobe. EMB_CAS 57 L13 O IPU EMIFB column address strobe. EMB_CS[0] 108 D9 O IPU EMIFB SDRAM chip select 0. EMB_WE_DQM[3] - A12 O IPU EMB_WE_DQM[2] - B13 O IPU EMB_WE_DQM[1]/GP5[14] 85 C15 O IPU EMB_WE_DQM[0]/GP5[15] 60 K14 O IPU PTP ZKB EMB_A[4]/GP7[6] 98 EMB_A[3]/GP7[5] EMB_A[2]/GP7[4] 3.6.6 MUXED DESCRIPTION EMIFB SDRAM row/column address. GPIO EMIFB write enable/data mask for EMB_D. GPIO Serial Peripheral Interface Modules (SPI0, SPI1) Table 3-9. Serial Peripheral Interface (SPI) Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION SPI0 SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 N4 I/O IPU UART0, EQEP0B, GPIO, BOOT SPI0 chip select. SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 R5 I/O IPU UART0, EQEP0A, GPIO, BOOT SPI0 enable. SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 T5 I/O IPD eQEP1, GPIO, BOOT SPI0 clock. SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 P6 I/O IPD eQEP0, GPIO, BOOT SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 R6 I/O IPD SPI0 data slave-in-masterout. SPI0 data slave-out-masterin. SPI1 SPI1_SCS[0]/UART2_TXD/GP5[13] 8 P4 I/O IPU SPI1_ENA/UART2_RXD/GP5[12] 7 R4 I/O IPU SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 T6 I/O IPD (1) (2) UART2, GPIO SPI1 chip select. SPI1 enable. eQEP1, GPIO, BOOT SPI1 clock. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Submit Documentation Feedback Device Overview 25 ADVANCE INFORMATION PIN NO TYPE (1) SIGNAL NAME TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 3-9. Serial Peripheral Interface (SPI) Terminal Functions (continued) SIGNAL NAME PIN NO TYPE (1) PULL (2) N5 I/O IPU P5 I/O IPU PTP ZKB SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 MUXED I2C1, GPIO, BOOT DESCRIPTION SPI1 data slave-in-masterout. SPI1 data slave-out-masterin. ADVANCE INFORMATION 26 Device Overview Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com 3.6.7 SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2) The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed. Table 3-10. Enhanced Capture Module (eCAP) Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) I/O IPD McASP0, GPIO enhanced capture 0 input or auxiliary PWM 0 output. I/O IPD McASP0, GPIO enhanced capture 1 input or auxiliary PWM 1 output. I/O IPD McASP1, GPIO enhanced capture 2 input or auxiliary PWM 2 output. MUXED DESCRIPTION ACLKX0/ECAP0/APWM0/GP2[12] 126 C5 eCAP1 ACLKR0/ECAP1/APWM1/GP2[15] 130 B4 eCAP2 ACLKR1/ECAP2/APWM2/GP4[12] (1) (2) 165 L2 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 3.6.8 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2) Table 3-11. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION eHRPWM0 ACLKX1/EPWM0A/GP3[15] 162 K3 I/O eHRPWM0 A output (with high-resolution). IPD McASP1, GPIO eHRPWM0 B output. AHCLKX1/EPWM0B/GP3[14] 160 K2 I/O IPD AMUTE1/EPWMTZ/GP4[14] - D4 I/O IPD McASP1, eHRPWM1, GPIO, eHRPWM2 eHRPWM0 trip zone input. 163 K4 I/O IPD McASP1, eHRPWM0, GPIO Sync input to eHRPWM0 module or sync output to external PWM. AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] eHRPWM1 AXR1[8]/EPWM1A/GP4[8] 168 M2 I/O IPD AXR1[7]/EPWM1B/GP4[7] 169 M3 I/O IPD - D4 I/O IPD eHRPWM1 A (with high-resolution). McASP1, GPIO AMUTE1/EPWMTZ/GP4[14] (1) (2) eHRPWM1 B output. McASP1, eHRPWM0, GPIO, eHRPWM2 eHRPWM1 trip zone input. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Submit Documentation Feedback Device Overview 27 ADVANCE INFORMATION eCAP0 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 3-11. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions (continued) PIN NO SIGNAL NAME PTP TYPE (1) ZKB PULL (2) MUXED DESCRIPTION eHRPWM2 AXR1[6]/EPWM2A/GP4[6] 170 M4 I/O IPD AXR1[5]/EPWM2B/GP4[5] 171 N1 I/O IPD - D4 I/O IPD McASP1, GPIO AMUTE1/EPWMTZ/GP4[14] ADVANCE INFORMATION 3.6.9 McASP1, eHRPWM0, GPIO, eHRPWM2 eHRPWM2 A (with high-resolution). eHRPWM2 B output. eHRPWM2 trip zone input. Enhanced Quadrature Encoder Pulse Module (eQEP) Table 3-12. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions PIN NO SIGNAL NAME PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION eQEP0 SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 R5 I IPU SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 N4 I IPU SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 R6 I IPD SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 P6 I IPD SPIO, UART0, GPIO, BOOT SPI0, GPIO, BOOT eQEP0A quadrature input. eQEP0B quadrature input. eQEP0 index. eQEP0 strobe. eQEP1 eQEP1A quadrature input. AXR1[3]/EQEP1A/GP4[3] 174 P1 I IPD AXR1[4]/EQEP1B/GP4[4] 173 N2 I IPD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 174 T5 I IPD SPI0, GPIO, BOOT eQEP1 index. SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 T6 I IPD SPI1, GPIO, BOOT eQEP1 strobe. McASP1, GPIO (1) (2) eQEP1B quadrature input. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 3.6.10 Boot Table 3-13. Boot Terminal Functions (1) SIGNAL NAME EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15] PIN NO PTP ZKB 23 P7 TYPE (2) PULL (3) MUXED I IPU EMIFA, UHPI, GPIO BOOT[15]. EMIFA, UHPI, McASP0, GPIO BOOT[14]. EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] 55 M13 I IPU EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] 54 M15 I IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] 44 T13 I IPU (1) (2) (3) 28 EMIFA, MMC/SD, UHPI, GPIO DESCRIPTION BOOT[13]. BOOT[12]. Boot decoding will be defined in the ROM datasheet. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 3-13. Boot Terminal Functions (continued) PIN NO TYPE (2) PULL (3) A4 I IPD McASP0, EMAC, GPIO BOOT[11]. D5 I IPD McASP0, GPIO BOOT[10]. BOOT[9]. PTP ZKB AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 AFSX0/GP2[13]/BOOT[10] 127 MUXED DESCRIPTION UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 P3 I IPU UART0, I2C0, Timer0, GPIO UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 R3 I IPU UART0, I2C0, Timer0, GPIO BOOT[8]. SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 T6 I IPD SPI1, eQEP1, GPIO BOOT[7]. SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 N5 I IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 P5 I IPU SPI1, I2C1, GPIO BOOT[6]. BOOT[5]. SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 N4 I IPU SPI0, UART0, eQEP0, GPIO SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 R5 I IPU SPI0, UART0, eQEP0, GPIO SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 T5 I IPD SPIO, eQEP1, GPIO BOOT[2]. SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 P6 I IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 R6 I IPD SPI0, eQEP0, GPIO ADVANCE INFORMATION SIGNAL NAME BOOT[4]. BOOT[3]. BOOT[1]. BOOT[0]. 3.6.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2) Table 3-14. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION UART0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 R3 I IPU I2C0, BOOT, Timer0, GPIO, UART0 receive data. UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 P3 O IPU I2C0, Timer0, GPIO, BOOT UART0 transmit data. SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 N4 O IPU SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 R5 I IPU UART0 clear-to-send input UART1 receive data. UART0 ready-to-send output SPIO, eQEP0, GPIO, BOOT UART1 UART1_RXD/AXR0[9]/GP3[9] 122 C6 I IPD UART1_TXD/AXR0[10]/GP3[10] 123 D6 O IPD UART1 transmit data. UART2 receive data. McASP0, GPIO UART2 SPI1_ENA/UART2_RXD/GP5[12] 7 R4 I IPU SPI1_SCS[0]/UART2_TXD/GP5[13] 8 P4 O IPU SPI1, GPIO (1) (2) UART2 transmit data. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Submit Documentation Feedback Device Overview 29 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 3.6.12 Inter-Integrated Circuit Modules(I2C0, I2C1) Table 3-15. Inter-Integrated Circuit (I2C) Terminal Functions PIN NO SIGNAL NAME PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION I2C0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 R3 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial data. UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 P3 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial clock. SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 N5 I/O IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 P5 I/O IPU I2C1 ADVANCE INFORMATION (1) (2) SPI1, GPIO, BOOT I2C1 serial Data. I2C1 serial clock. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 3.6.13 Timers Table 3-16. Timers Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION TIMER0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 R3 I IPU UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 P3 O IPU UART0, I2C0, GPIO, BOOT Timer0 lower input. Timer0 lower output TIMER1 (Watchdog ) No external pins. The Timer1 peripheral pins are not pinned out as external pins. (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 3.6.14 Universal Host-Port Interface (UHPI) Note: The UHPI module requires 16 data pins for the host port interface to function. Therefore on the PTP, only the GPIO pin capability is supported on the UHPI peripherals. 30 Device Overview Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 3-17. Universal Host-Port Interface (UHPI) Terminal Functions TYPE ( PULL (2) M16 I/O IPD N14 I/O IPD - N16 I/O IPD EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] - P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11] - P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] - R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] - T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] - N12 I/O IPD EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/ BOOT[13] - M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] - N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] - N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] - P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] - P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] - R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] - R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/ BOOT[12] - T13 I/O IPU EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] - P9 I/O IPU EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] - R9 I/O EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] - P8 EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] - EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15] PTP ZKB EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15] - EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] - EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] MUXED DESCRIPTION EMIFA, LCD, GPIO EMIFA, MMC/SD, GPIO, BOOT UHPI data bus. EMIFA, MMC/SD, GPIO EMIFA, MMC/SD, GPIO, BOOT IPU EMIFA, MMCSD_CMD, GPIO UHPI access control. I/O IPU EMIFA, LCD, GPIO UHPI half-word identification control. M13 I/O IPU EMIFA, McASP, GPIO, BOOT UHPI read/write. - P7 I/O IPU EMIFA, GPIO, BOOT UHPI chip select. EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8] - P12 I/O IPU EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7] - R7 I/O IPU EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9] - M14 I/O IPU EMA_WAIT[0]/UHPI_HRDY/GP2[10] - N6 I/O IPU EMA_CS[0]/UHPI_HAS/GP2[4] (1) (2) - T8 I/O IPU EMIFA, McASP0, GPIO UHPI data strobe. UHPI host interrupt. UHPI ready. EMIFA, GPIO UHPI address strobe. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Submit Documentation Feedback Device Overview 31 ADVANCE INFORMATION PIN NO 1) SIGNAL NAME TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 3.6.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2) Table 3-18. Multichannel Audio Serial Ports (McASPs) Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION McASP0 ADVANCE INFORMATION EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9] - M14 I/O IPU EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8] - P12 I/O IPU EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7] 24 R7 I/O IPU EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] 55 M13 I/O IPU EMIFA, UHPI, GPIO, BOOT AXR0[11]/AXR2[0]/GP3[11] 124 A5 I/O IPD McASP2, GPIO AXR0[10]/UART1_TXD/GP3[10] 123 D6 I/O IPD GPIO AXR0[9]/GP3[9] 122 C6 I/O IPD GPIO AXR0[8]/MDIO_D/GP3[8] 121 B6 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 A6 I/O IPD AXR0[6]/RMII_RXER/ACLKR2/GP3[6] 118 D7 I/O IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] 117 C7 I/O IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] 116 B7 I/O IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] 115 A7 I/O IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] 113 D8 I/O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] 112 C8 I/O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] 111 B8 I/O IPD AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] 125 B5 I/O IPD McASP0 McASP2, USB, transmit master GPIO clock. ACLKX0/ECAP0/APWM0/GP2[12] 126 C5 I/O IPD eCAP0, GPIO McASP0 transmit bit clock. AFSX0/GP2[13]/BOOT[10] 127 D5 I/O IPD GPIO, BOOT McASP0 transmit frame sync. AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 A4 I/O IPD EMAC, GPIO, BOOT McASP0 receive master clock. ACLKR0/ECAP1/APWM1/GP2[15] 130 B4 I/O IPD eCAP1, GPIO McASP0 receive bit clock. AFSR0/GP3[12] 131 C4 I/O IPD GPIO McASP0 receive frame sync. - L4 O IPD RESETOUT McASP0 mute output. AMUTE0/RESETOUT (1) (2) 32 EMIFA, UHPI, GPIO MDIO, GPIO McASP0 serial data. EMAC, McASP2, GPIO I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 3-18. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued) SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION McASP1 AXR1[11]/GP5[11] - T4 I/O IPU AXR1[10]/GP5[10] - N3 I/O IPU AXR1[9]/GP4[9] - M1 I/O IPD AXR1[8]/EPWM1A/GP4[8] 168 M2 I/O IPD eHRPWM1 A, GPIO AXR1[7]/EPWM1B/GP4[7] 169 M3 I/O IPD eHRPWM1 B, GPIO AXR1[6]/EPWM2A/GP4[6] 170 M4 I/O IPD eHRPWM2 A, GPIO AXR1[5]/EPWM2B/GP4[5] 171 N1 I/O IPD eHRPWM2 B, GPIO AXR1[4]/EQEP1B/GP4[4] 173 N2 I/O IPD AXR1[3]/EQEP1A/GP4[3] 174 P1 I/O IPD AXR1[2]/GP4[2] 175 P2 I/O IPD AXR1[1]/GP4[1] 176 R2 I/O IPD AXR1[0]/GP4[0] 1 T3 I/O IPD AHCLKX1/EPWM0B/GP3[14] 160 K2 I/O IPD eHRPWM0, GPIO McASP1 transmit master clock. ACLKX1/EPWM0A/GP3[15] 162 K3 I/O IPD eHRPWM0, GPIO McASP1 transmit bit clock. AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] 163 K4 I/O IPD eHRPWM0, GPIO McASP1 transmit frame sync. - L1 I/O IPD GPIO McASP1 receive master clock. ACLKR1/ECAP2/APWM2/GP4[12] 165 L2 I/O IPD eCAP2, GPIO McASP1 receive bit clock. AFSR1/GP4[13] 166 L3 I/O IPD GPIO McASP1 receive frame sync. eHRPWM0, eHRPWM1, GPIO, eHRPWM2 McASP1 mute output. McASP0, EMAC, GPIO McASP2 serial data. AMUTE1/EPWMTZ/GP4[14] 132 D4 O IPD McASP1 serial data. eQEP, GPIO GPIO McASP2 AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] - D8 I/O IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] - A7 I/O IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] - B7 I/O IPD AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] - B5 I/O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] - C8 I/O IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] - C7 I/O IPD McASP0, EMAC, GPIO McASP2 transmit frame sync. EMA_CLK/OBSCLK/AHCLKR2/GP1[15] - R12 I/O IPU EMIFA, GPIO McASP2 receive master clock. AXR0[6]/RMII_RXER/ACLKR2/GP3[6] - D7 I/O IPD McASP0, EMAC, GPIO McASP2 receive bit clock. Submit Documentation Feedback McASP2 transmit master McASP0, USB, clock. GPIO McASP2 transmit bit clock. Device Overview 33 ADVANCE INFORMATION AHCLKR1/GP4[11] GPIO TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 3-18. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued) PIN NO SIGNAL NAME PTP ZKB - T7 EMA_CS[3]/AMUTE2/GP2[6] TYPE (1) PULL (2) O IPU MUXED DESCRIPTION McASP2 mute output. EMIFA, GPIO 3.6.16 Universal Serial Bus Modules (USB0, USB1) Table 3-19. Universal Serial Bus (USB) Terminal Functions SIGNAL NAME PIN NO PTP TYPE (1) PULL (2) ZKB DESCRIPTION ADVANCE INFORMATION USB0 2.0 OTG (USB0) USB0_DM 138 USB0_DP 137 USB0_VDDA33 140 USB0_VSSA33 139 USB0_VDDA18 A USB0 PHY data minus F4 A USB0 PHY data plus H5 PWR USB0 PHY 3.3-V supply H4 PWR USB0 PHY 3.3-V supply reference 135 E3 PWR USB0 PHY 1.8-V supply input 134 C3 PWR USB0 PHY 1.2-V LDO output for bypass cap 136 F3 PWR USB0 PHY 1.8-V and 1.2-V supply reference USB0_ID - D2 A USB0 PHY identification (mini-A or mini-B plug) USB0_VBUS - D3 A USB0 bus voltage USB0_DRVVBUS/GP4[15] - E4 0 IPD USB0 controller VBUS control output. Multiplexed with GPIO bank 4 pin 15. 125 B5 I IPD USB_REFCLKIN. Optional clock input. USB0_VDDA12 (3) USB0_VSSA AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] G4 USB1 1.1 OHCI (USB1) USB1_DM - B3 A USB1 PHY data minus USB1_DP - A3 A USB1 PHY data plus USB1_VDDA33 - C1 PWR USB1_VDDA18 - C2 PWR 125 B5 I AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] (1) (2) (3) USB1 PHY 3.3-V supply USB1 PHY 1.8-V supply IPD USB_REFCLKIN. Optional clock input. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Core power supply LDO output for USB PHY. This pin must be connected via a 0.22 -µF capacitor to VSS. When the USB peripheral is not used, the USB_VDDA12 signal should still be connected via a 1-µF capacitor to VSS. 3.6.17 Ethernet Media Access Controller (EMAC) Table 3-20. Ethernet Media Access Controller (EMAC) Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION RMII AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] (1) (2) 34 129 A4 I/O IPD McASP0, GPIO, BOOT EMAC 50-MHz clock input or output. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 3-20. Ethernet Media Access Controller (EMAC) Terminal Functions (continued) PIN NO TYPE (1) PULL (2) PTP ZKB AXR0[6]/RMII_RXER/ACLKR2/GP3[6] 118 D7 I IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] 117 C7 I IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] 116 B7 I IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] 115 A7 I IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] 113 D8 O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] 112 C8 O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] 111 B8 O IPD MUXED DESCRIPTION EMAC RMII receiver error. EMAC RMII receive data. McASP0, McASP2, GPIO EMAC RMII carrier sense data valid. EMAC RMII transmit enable. EMAC RMII trasmit data. MDIO AXR0[8]/MDIO_D/GP3[8] 121 B6 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 A6 O IPD McASP0, GPIO MDIO data clock. 3.6.18 Multimedia Card/Secure Digital (MMC/SD) Table 3-21. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions PIN NO TYPE (1) PULL (2) R9 O IPU P9 I/O IPU 54 M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] 52 N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] 51 N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] 49 P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] 48 P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] 46 R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] 45 R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] 44 T13 I/O IPU SIGNAL NAME PTP ZKB EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] 30 EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] 31 EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] (1) (2) MUXED DESCRIPTION EMIFA, UHPI, GPIO MMCSD_CLK. MMCSD_CMD. EMIFA, UHPI, GPIO, BOOT EMIFA, UHPI, GPIO MMC/SD data. EMIFA, UHPI, GPIO, BOOT I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Submit Documentation Feedback Device Overview 35 ADVANCE INFORMATION SIGNAL NAME TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 3.6.19 www.ti.com Liquid Crystal Display Controller(LCD) Table 3-22. Liquid Crystal Display Controller (LCD) Terminal Functions PIN NO TYPE (1) PULL (2) M16 I/O IPD - N14 I/O IPD - N16 I/O IPD EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] - P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11] - P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] - R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] - T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] - N12 I/O IPD EMA_A[0]/LCD_D[7]/GP1[0] - T9 I/O IPD EMA_A[3]/LCD_D[6]/GP1[3] - N9 I/O IPD EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] - P8 I/O IPU EMA_BA[0]/LCD_D[4]/GP1[14] - R8 I/O IPU EMA_A[4]/LCD_D[3]/GP1[4] - T10 I/O IPD EMA_A[5]/LCD_D[2]/GP1[5] - R10 I/O IPD EMA_A[6]/LCD_D[1]/GP1[6] - P10 I/O IPD EMA_A[7]/LCD_D[0]/GP1[7] - N10 I/O IPD EMA_A[8]/LCD_PCLK/GP1[8] - T11 O IPU EMA_A[9]/LCD_HSYNC/GP1[9] - R11 O IPU LCD horizontal sync. EMA_A[10]/LCD_VSYNC/GP1[10] - N8 O IPU LCD vertical sync. EMA_A[11]/LCD_AC_ENB_CS/GP1[11] - P11 O IPU LCD AC bias enable chip select. EMA_A[12]/LCD_MCLK/GP1[12] - N11 O IPU LCD memory clock. SIGNAL NAME PTP ZKB EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15] - EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] ADVANCE INFORMATION (1) (2) MUXED DESCRIPTION EMIFA, UHPI, GPIO LCD data bus. EMIFA, GPIO EMIFA, UHPI, GPIO EMIFA, GPIO LCD pixel clock. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 3.6.20 Reserved Table 3-23. Reserved Terminal Functions SIGNAL NAME PIN NO TYPE (1) DESCRIPTION PTP ZKB RSV1 - F7 PWR Reserved. (Leave unconnected, do not connect to power or ground.) RSV2 133 B1 PWR Reserved. For proper device operation, this pin must be tied directly to CVDD. RSV3 149 - PWR Reserved. For proper device operation, this pin must be tied directly to CVDD. RSV4 148 - PWR Reserved. For proper operation, this pin must be tied low." (1) PWR = Supply voltage. 36 Device Overview Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 3.6.21 Supply and Ground Table 3-24. Supply and Ground Terminal Functions PTP ZKB F6,G6, G7, G10, G11, H7, H10, H11, J6, J7, J10, J11, J12, K6, K7, K10, K11,L6 CVDD (Core supply) 10, 20, 28, 38, 50, 56, 61, 69, 77, 93, 104, 114, 147, 154, 161, 167, RVDD (Internal RAM supply) 67, 159 DVDD (I/O supply) 5, 15, 24, 33, 43, 47, 53, 58, 65, 71, 75, 81, 87, 90, 99, 109, 119, 128, 151, 158, 164, 172, 177 A1, A2, A15, A16, B2, E6, E7, E10, E11, F8, F9, F10, G8, G9, H8, H9, J8, J9, K8, K9, L7, L8, L9, L10, M6, M7, M10, M11, T1, T2, T15, T16 VSS (Ground) (1) TYPE (1) DESCRIPTION PWR 1.2-V core supply voltage pins H6, H12 PWR 1.2V internal ram supply voltage pins B16, E5, E8, E9, E12, F5, F11, F12, G5, G12, K5, K12, L5, L11, L12, M5, M8, M9, M12, R1, R16 PWR 3.3-V I/O supply voltage pins. GND Ground pins. ADVANCE INFORMATION PIN NO SIGNAL NAME PWR = Supply voltage, GND - Ground. Submit Documentation Feedback Device Overview 37 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 4 Device Configuration 4.1 Introduction This device supports a variety of boot modes through an internal DSP ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal DSP ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins. See Using the D800K001 Bootloader Application Report (SPRAB04) for more details on the ROM Boot Loader. ADVANCE INFORMATION 4.2 Boot Modes Supported The following boot modes are supported: • NAND Flash boot – 8-bit NAND – 16-bit NAND • NOR Flash boot – NOR Direct boot – NOR Legacy boot – NOR AIS boot • HPI Boot • I2C0/I2C1 Boot – Master boot – Slave boot • SPI0/SPI1 Boot – Master boot – Slave boot For more details on the boot mode selection, see TMS320C6745/C6747 DSP System Reference Guide SPRUFK4. 4.3 SYSCFG Module The following system level features of the chip are controlled by the SYSCFG peripheral: • Readable Device, Die, and Chip Revision ID • Control of Pin Multiplexing • Priority of bus accesses different bus masters in the system • Capture at power on reset the chip BOOT[15:0] pin values and make them available to software • Special case settings for peripherals: – Locking of PLL controller settings – Default burst sizes for EDMA3 TC0 and TC1 – Selection of the source for the eCAP module input capture (including on chip sources) – McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals – Control of the reference clock source and other side-band signals for both of the integrated USB PHYs – Clock source selection for EMIFA and EMIFB • Selects the source of emulation suspend signal (from DSP) of peripherals supporting this function. The emulation suspend signal is active anytime the core processor is halted. Some peripherals support operation options when the emulation suspend signal is active, such as halting with the processor, 38 Device Configuration Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Since the SYSCFG peripheral controls global operation of the device, its registers are protected against erroneous accesses by several mechanisms: • A special key sequence must be written to KICK0, KICK1 registers before any other registers are writeable. – Unlock sequence: write 0x83e70b13 to KICK0, then write 0x95A4F1E0 to KICK1 – SYSCFG remains unlocked after the unlock sequence until locked again. – Any number of accesses may be performed while the module is unlocked – Locking the module is accomplished by writing any other value to either KICK0 or KICK1 • Additionally, many registers are accessible only by a host (DSP) when it is operating in its privileged mode. (ex. from the kernel, but not from user space code). Table 4-1. System Configuration (SYSCFG) Module Register Access Acronym Register Description 0x01C1 4000 Offset REVID Revision Identification Register Access — 0x01C14008 – 0x01C1 4014 DIEIDR0-DIEDR3 Device Identification Register 0 - 3 — 0x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode 0x01C1 4038 KICK0R Kick 0 Register Privileged mode 0x01C1 403C KICK1R Kick 1 Register Privileged mode 0x01C1 4040 HOST0CFG Host 0 Configuration Register 0x01C1 4044 HOST1CFG Host 1 Configuration Register 0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode 0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode — — 0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode 0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode 0x01C1 40F0 EOI End of Interrupt Register Privileged mode 0x01C1 40F4 FLTADDRR Fault Address Register Privileged mode 0x01C1 40F8 FLTSTAT Fault Status Register — 0x01C1 MSTPRI0-MSTPRI2 4110-0x01C1 4118 Master Priority 0-2 Registers Privileged mode 0x01C1 PINMUX0-PINMUX19 4120-0x01C1 416C Pin Multiplexing Control 0-19 Registers Privileged mode Privileged mode 0x01C1 4170 SUSPSRC Suspend Source Register 0x01C1 4174 CHIPSIG Chip Signal Register 0x01C1 4178 CHIPSIG_CLR Chip Signal Clear Register 0x01C1 417C-0x01C1 418C CFGCHIP0-CFGCHIP4 Chip Configuration 0-4 Registers — — Privileged mode 4.4 Pin Multiplexing Control Registers Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module. For the 674x device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed with several different functions has a corresponding 4-bit field in one of the PINMUX registers. Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data and output enable values only. The default pin multiplexing control for almost every pin is to select 'none' of the peripheral functions in which case the pin's IO buffer is held tri-stated. Submit Documentation Feedback Device Configuration 39 ADVANCE INFORMATION completing the current operation then halting, or continuing operation. See the appropriate peripheral documentation for specific details. TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX registers have no effect on input from a pin. This feature allows a pin such as AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] to be used as both the McASP0 AHCLKX0 (output) pin, and the McASP2 AHCLKX2 master clock (input) pin simultaneously. For more details, refer TMS320C6745/C6747 DSP System Reference Guide, Literature Number SPRUFK4 ADVANCE INFORMATION 40 Device Configuration Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 4.5 Bus Master Priority Configuration ADVANCE INFORMATION The on chip switch fabric performs priority based arbitration among the various bus masters on the device. The priority of each master is controlled by the MSTPRI0, MSTPRI1, and MSTPRI2 registers and may be adjusted as required to suite a particular application. Section 4.5.1 through Section 4.5.3 give provide a detailed description of these registers. Submit Documentation Feedback Device Configuration 41 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 4.5.1 31 www.ti.com MSTPRI0 Register Definition (0x01C1 4110) 30 29 28 27 26 25 24 23 22 21 20 19 18 17 RSV RSV RSV RSV RSV RSV RSV RSV R/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-100 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 RSV DSP_CFG RSV DSP_MDMA RSV RSV RSV RSV R/W-0 R/W-010 R/W-0 R/W-010 R/W-0 R/W-010 R/W-0 R/W-010 16 0 LEGEND: R = Read, W = Write, n = value at reset Figure 4-1. MSTPRI0 Bit Description ADVANCE INFORMATION Table 4-2. MSTPRI0 Field Descriptions Bit Field Description 31 RSV Reserved - Write 0 to this Field when modifying this register. 30:28 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 27 RSV Reserved - Write 0 to this Field when modifying this register. 26:24 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 23 RSV Reserved - Write 0 to this Field when modifying this register. 22:20 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 19 RSV Reserved - Write 0 to this Field when modifying this register. 18:16 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100 15 14:12 11 10:8 42 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) RSV Reserved - Write 0 to this Field when modifying this register. DSP_CFG Bus Priority for Bus Master DSP - Configuration Bus - Default Value is 010 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) RSV Reserved - Write 0 to this Field when modifying this register. DSP_MDMA Bus Priority for Bus Master DSP - DMA Bus - Default Value is 010 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 7 RSV Reserved - Write 0 to this Field when modifying this register. 6:0 RSV Reserved - Write 0 to this Field when modifying this register. Device Configuration Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com 4.5.2 31 SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 MSTPRI1 Register Definition (0x01C1 4114) 30 29 28 27 26 25 24 23 22 21 20 19 18 17 RSV RSV RSV RSV RSV RSV RSV RSV R/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-100 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 RSV TC1 RSV TC0 RSV RSV RSV RSV R/W-0 R/W-000 R/W-0 R/W-000 R/W-0 R/W-000 R/W-0 R/W-000 16 0 Figure 4-2. MSTPRI1 Bit Description Table 4-3. MSTPRI1 Field Descriptions Bit Field Description 31 RSV Reserved - Write 0 to this Field when modifying this register. 30:28 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 27 RSV Reserved - Write 0 to this Field when modifying this register. 26:24 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 23 RSV Reserved - Write 0 to this Field when modifying this register. 22:20 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 19 RSV Reserved - Write 0 to this Field when modifying this register. 18:16 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 15 RSV Reserved - Write 0 to this Field when modifying this register. 14:12 TC1 Bus Priority for Bus Master EDMA3 TC1 - Default Value is 000 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 11 RSV Reserved - Write 0 to this Field when modifying this register. 10:8 TC0 Bus Priority for Bus Master EDMA3 TC0 - Default Value is 000 7:0 RSV 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) Reserved - Write 0 to this Field when modifying this register. Submit Documentation Feedback Device Configuration 43 ADVANCE INFORMATION LEGEND: R = Read, W = Write, n = value at reset TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 4.5.3 31 www.ti.com MSTPRI2 Register Definition (0x01C1 4118) 30 29 28 27 26 25 24 23 22 21 20 19 18 17 RSV LCDC RSV USB1 RSV UHPI RSV RSV R/W-0 R/W-101 R/W-0 R/W-100 R/W-0 R/W-110 R/W-0 R/W-000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 RSV USB0CDMA RSV USB0VBUSP RSV RSV RSV EMAC R/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-000 R/W-0 R/W-100 16 0 LEGEND: R = Read, W = Write, n = value at reset. In a loaded system, the LCDC default priority value of 5 might not be a good default and may need to be changed. ADVANCE INFORMATION Figure 4-3. MSTPRI2 Bit Description Table 4-4. MSTPRI2 Field Descriptions Bit Field Description 31 RSV Reserved - Write 0 to this Field when modifying this register. LCDC Bus Priority for Bus Master LCDC - Default Value is 101 30:28 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 27 RSV Reserved - Write 0 to this Field when modifying this register. 26:24 USB1 Bus Priority for Bus Master USB1 - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 23 RSV Reserved - Write 0 to this Field when modifying this register. 22:20 UHPI Bus Priority for Bus Master UHPI - Default Value is 110 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 19 RSV Reserved - Write 0 to this Field when modifying this register. 18:16 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 000 15 14:12 11 10:8 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) RSV Reserved - Write 0 to this Field when modifying this register. USB0CDMA Bus Priority for Bus Master USB0 - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) RSV Reserved - Write 0 to this Field when modifying this register. USB0VBUSP Bus Priority for Bus Master USB0 - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) 7 RSV Reserved - Write 0 to this Field when modifying this register. 6:4 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 000 3 2:0 44 000 = Priority 0 (Highest) 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) RSV Reserved - Write 0 to this Field when modifying this register. EMAC Bus Priority for Bus Master EMAC - Default Value is 100 000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6 001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest) Device Configuration Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 4.6 Chip Configuration Registers (CFGCHIP and SUSPSRC) These registers control EDMA3 default transfer burst sizes, clock muxing, McASP AMUTE and eCAP sources, UHPI enable and configuration, and USB PHY settings 4.6.1 31 CFGCHIP0 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1 0 Reserved R-n/a 14 13 12 11 10 9 8 7 Reserved 6 5 Reserved R-n/a R/W-1 4 3 PLL_MASTER_LOCK R/W-000 R/W-0 2 TC1DBS R/W-00 TC0DBS ADVANCE INFORMATION 15 R/W-00 LEGEND: R = Read, W = Write, n = value at reset Figure 4-4. CFGCHIP0 Register Bit Layout Table 4-5. CFGCHIP0 Field Description Bit Field 31:5 Reserved Reserved Description 4 PLL_MASTER_LOCK This bit is used to lock the PLL MMRs 0 = PLLCTRL MMR registers are freely accessible. 1 = PLLCTRL MMR registers are locked. 3:2 TC1DBS EDMA3 TC1 Default Burst Size 00 01 10 11 1:0 TC0DBS 16 byte 32 byte 64 byte Reserved EDMA3 TC1 Default Burst Size 00 01 10 11 Submit Documentation Feedback = = = = = = = = 16 byte 32 byte 64 byte Reserved Device Configuration 45 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 4.6.2 www.ti.com CFGCHIP1 31 30 29 28 27 26 25 CAP2SRC 24 R/W-0 15 14 HPIENA R/W-0 22 21 20 19 13 12 11 TBCLKSYNC R/W-0 10 18 17 16 CAP0SRC R/W-0 Rsvd R/W-0 23 CAP1SRC HPIBYTEAD R/W-0 9 8 AMUTESEL2 7 6 5 4 AMUTESEL1 R/W-0 R/W-0 3 2 1 0 AMUTESEL0 R/W-0 R/W-0 LEGEND: R = Read, W = Write, n = value at reset Figure 4-5. CFGCHIP1 Register Bit Layout ADVANCE INFORMATION Table 4-6. CFGCHIP1 Field Description Bit Field 31:27 CAP2SRC eCAP2 Module Event Input Select Description 26:22 CAP1SRC eCAP1 Module Event Input Select 21:17 CAP0SRC eCAP0 Module Event Input Select For each eCAPx (x=0,1,2): 00000 = eCAPx Pin Input 00001 = McASP0 TX DMA Event 00010 = McASP0 RX DMA Event 00011 = McASP1 TX DMA Event 00100 = McASP1 RX DMA Event 00101 = McASP2 TX DMA Event 00110 = McASP2 RX DMA Event 00111 = EMAC C0 RX Threshold Pulse Interrupt 01000 = EMAC C0 RX Pulse Interrupt 01001 = EMAC C0 TX Pulse Interrupt 01010 = EMAC C0 Misc Interrupt01011 = EMAC C1 RX Threshold Pulse Interrupt 01100 = EMAC C1 RX Pulse Interrupt 01101 = EMAC C1 TX Pulse Interrupt 01110 = EMAC C1 Misc Interrupt 01111 = EMAC C2 RX Threshold Pulse Interrupt 10000 = EMAC C2 RX Pulse Interrupt 10001 = EMAC C2 TX Pulse Interrupt 10010 = EMAC C2 Misc Interrupt 10011 - 11111 = Reserved 16 HPIBYTEAD HPI Module Byte / Word Address Mode 15 HPIENA 14:13 Reserved Reserved 12 TBCLKSYNC eHRPWM Module Time Base Clock Sync 0 = Host Address is a word address 0 = HPI Disabled 0 (default) = The TBCLK (Time Base Clock) within each enabled eHRPWM is stopped. 11:8 AMUTESEL2 Selects the source of the McASP2 AMUTEIN signal 7:4 AMUTESEL1 Selects the source of the McASP1 AMUTEIN signal 3:0 AMUTESEL0 Selects the source of the McASP0 AMUTEIN signal 46 1 = Host Address is a byte address HPI Enable Bit Device Configuration 1 = HPI Enabled 1 = All enabled eHRPWM module clocks are started with the first rising edge of TBCLK aligned. Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 4-6. CFGCHIP1 Field Description (continued) Bit Field Description ADVANCE INFORMATION For each McASPx (x=0,1,2) 0000 = Drive McASPx AMUTEIN Low 0001 = McASPx AMUTEIN source is GPIO Interrupt from Bank 0 0010 = McASPx AMUTEIN source is GPIO Interrupt from Bank 1 0011 = McASPx AMUTEIN source is GPIO Interrupt from Bank 2 0100 = McASPx AMUTEIN source is GPIO Interrupt from Bank 3 0101 = McASPx AMUTEIN source is GPIO Interrupt from Bank 4 0110 = McASPx AMUTEIN source is GPIO Interrupt from Bank 5 0111 =McASPx AMUTEIN source is GPIO Interrupt from Bank 6 1000 = McASPx AMUTEIN source is GPIO Interrupt from Bank 7 1001 - 1111 are reserved Submit Documentation Feedback Device Configuration 47 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 4.6.3 www.ti.com CFGCHIP2 31 30 29 28 27 26 25 24 RESERVED R-n/a 23 22 21 20 19 18 RESERVED 17 16 USB0PHYCLKGD USB0VBUSSENSE R-n/a 15 14 ADVANCE INFORMATION RESET 13 USB0OTGMODE R/W-1 12 R/W-11 7 11 USB1PHYCLKMUX R/W-0 6 USB1SUSPENDM USB0PHY_PLLON R/W-0 R/W-0 10 USB0PHYCLKMUX R/W-1 5 USB0SESNDEN 9 R/W-1 4 3 R/W-1 2 USB0VBDTCTEN R/W-0 8 USB0PHYPWDN USB0OTGPWRDN USB0DATPO L R/W-1 1 0 USB0REF-FREQ[3:0] R/W-0 R/W-0000 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 4-6. CFGCHIP2 Register Bit Layout Table 4-7. CFGCHIP2 Field Description Bit Field 31:8 Reserved Reserved Description 17 USB0PHYCLKGD Indicates clock is present, power is good and phy PLL is locked. 16 USB0VBUSSENSE Indicates status of VBUS detection. 15 RESET When '1' drives 'phy_reset' active to put the phy UTMI+ interface in reset. 14:13 USB0OTGMODE OTGMODE = 00. Do not override phy values. Let PHY drive signals to controller based on its comparators for the VBUS and ID pins. OTGMODE = 01. Override phy values to force USB Host Operation. Force VBUSVALID = 1, SESSVALID = 1, SESSEND = 0, IDDIG = 0 OTGMODE = 10. Override phy values to force USB Device Operation. Force VBUSVALID = 1, SESSVALID = 1, SESSEND = 0, IDDIG = 1 OTGMODE = 11. Override phy values to force USB Host Operation with VBUS low. Force VBUSVALID = 0, SESSVALID = 0, SESSEND = 1, IDDIG = 0 12 USB1PHYCLKMUX USB1 PHY Clock Source. 1 = USB1 Phy Clock (48 MHz) is sourced by an external pin. 0 = USB1 Phy Clock (48 MHz) is sourced by the 48 MHz output of the USB0 PHY. 11 USB0PHYCLKMUX USB0 PHY Clock Source. 1 = USB0 Phy reference clock internally generated. 0 = USB0 Phy reference clock comes from pin. 10 USB0PHYPWDN Phy Powerdown, 0=Phy is powered up, 1=Phy is powered down. 9 USB0OTGPWRDN OTG Analog Module Powerdown, 0=OTG Analog Module is powered up, 1=OTG Analog Module is powered down. 8 USB0DATPOL USB0 Data Polarity, 0 = Reversed DP/DM polarity, 1 = Normal DP/DM polarity. 7 USB1SUSPENDM USB1 Phy Suspend, Program to '0' if USB1 is not used, Program to '1' if USB1 is used. 6 USB0PHY_PLLON USB0 Phy PLL On, 0 = Normal USB Behavior, 1 = Override USB SUSPEND behavior and release PLL from SUSPEND state. 5 USB0SESNDEN Turns on session end comparator. 4 USB0VBDTCTEN Turns on all VBUS line comparators. 48 Device Configuration Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 4-7. CFGCHIP2 Field Description (continued) Field 3:0 USB0REF-FREQ[3:0] 4.6.4 31 Description USB0 Phy Clock Input Select. 0000 = Reserved 0001 = 12 MHz 0010 = 24 MHz 0011 = 48 MHz 0100 = 19.2 MHz 0101 = 38.4 MHz 0110 = 13 MHz 0111 = 26 MHz 1000 = 20 MHz 1001 = 40 MHz 1010 = Reserved 1011 = Reserved 1100 = Reserved 1101 = Reserved 1110 = Reserved 1111 = Reserved CFGCHIP3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Reserved R-n/a 15 14 13 12 2 1 0 Reserved 11 10 9 8 7 6 Reserved 5 4 3 DIV4P5EN A EMA_CL KSRC EMB_C LKSRC R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R = Read, W = Write, n = value at reset Figure 4-7. CFGCHIP3 Register Bit Layout Table 4-8. CFGCHIP3 Field Description Bit Field 31:16 Reserved Reserved 15:8 Reserved Reserved 7:3 Reserved Reserved 2 DIV4P5ENA Fixed 4.5 divider Enable. 0 = Divide by 4.5 is Disabled. 1 = Divide by 4.5 is Enabled. 1 EMA_CLKSRC EMIF A Memory Clock Source Select. 0 = EMIFA clock domain is driven by the PLLCTRL SYSCLK3 output. 1 = EMIFA clock domain is driven by the fixed / 4.5 PLL output. 0 EMB_CLKSRC EMIF B Memory Clock Source Select. 0 = EMIFB SDRAM clock domain is driven by the PLLCTRL SYSCLK5 output. 1 = EMIFB SDRAM clock domain is driven by the fixed / 4.5 PLL output. Submit Documentation Feedback Description Device Configuration 49 ADVANCE INFORMATION Bit TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 4.6.5 www.ti.com CFGCHIP4 31 30 29 28 27 26 25 24 23 22 21 20 19 5 4 3 18 17 16 Reserved R-n/a 15 14 13 12 2 1 0 Reserved 11 10 9 8 7 6 Reserved AMUT ECLR 2 AMUT ECLR 1 AMUT ECLR 0 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R = Read, W = Write, n = value at reset ADVANCE INFORMATION Figure 4-8. CFGCHIP4 Register Bit Layout Table 4-9. CFGCHIP4 Field Description Bit Field 31:16 Reserved Reserved 15:8 Reserved Reserved 7:3 Reserved Reserved 2 AMUTECLR2 Write 1 causes a single pulse that clears the 'latched' GPIO interrupt for AMUTEIN of McASP2 when '1'. Always reads back '0'. 1 AMUTECLR1 Write 1 causes a single pulse that clears the 'latched' GPIO interrupt for AMUTEIN of McASP1 when '1'. Always reads back '0'. 0 AMUTECLR0 Write 1 causes a single pulse that clears the 'latched' GPIO interrupt for AMUTEIN of McASP1 when '1'. Always reads back '0'. 4.6.6 Description SUSPSRC The SUSPSRC register allows selection of the emulation suspend signal assigned to a peripheral. The emulation suspend signal is active anytime the core processor is halted. Some peripherals support operation options when the emulation suspend signal is active, such as halting with the processor, completing the current operation then halting, or continuing operation. See the appropriate peripheral documentation for specific details. 31 30 29 Reserved 28 27 26 25 24 23 TIMER TIMER GPIOS ePWM ePWM ePWM 64P1 64P0 RC 2SRC 1SRC 0SRC 22 21 20 19 18 17 16 SPI1 SRC SPI0 SRC UART 2SRC UART 1 SRC UART 0SRC I2C1 SRC I2C0 SRC 4 3 2 1 0 R/W-1 15 14 MMC / SD / SRC 13 Reserved 12 11 10 9 HPI SRC RSV USB1 SRC USB0 SRC 8 7 Reserved 6 5 RSV EMAC SRC eQEP eQEP eCAP2 eCAP1 eCAP0 1 SRC 0 SRC SRC SRC SRC R/W-1 LEGEND: R = Read, W = Write, n = value at reset Figure 4-9. SUSPSRC Register Bit Layout Table 4-10. SUSPSRC Field Descriptions Bit Field Description 31: RSV 29 Reserved 50 Device Configuration Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 4-10. SUSPSRC Field Descriptions (continued) Bit Field Description 28 TIMER64P1 Suspend Source. TIMER64P1 0 = NO emulation suspend, 1 = DSP emulation suspend 27 TIMER64P0 26 GPIOSRC 25 ePWM2SRC 24 ePWM1SRC 23 ePWM0SRC TIMER64P0 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend GPIO Module Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend ePWM2 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend ADVANCE INFORMATION ePWM1 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend ePWM0 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend 22 SPI1 SRC 21 SPI0 SRC 20 UART2 SRC 19 UART1 SRC 18 UART0 SRC SPI1 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend SPI0 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend UART2 SRC Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend UART1 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend UART0 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend 17 I2C1 SRC 16 I2C0 SRC 15 MMC/SD SRC I2C1 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend I2C0 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend MMC /SD Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend 14: Reserved 13 Reserved 12 HPI Suspend Source HPI SRC 0 = NO emulation suspend, 1 = DSP emulation suspend 11 Reserved Reserved 10 USB1 SRC USB1 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend 9 USB0 SRC USB0 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend 8:6 Reserved 5 EMACSRC 4 eQEP1SRC Reserved EMAC Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend eQEP1 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend 3 eQEP0SRC 2 eCAP2SRC eQEP0 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend eCAP2 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend Submit Documentation Feedback Device Configuration 51 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 4-10. SUSPSRC Field Descriptions (continued) Bit Field 1 Description eCAP1SRC eCAP1 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend 0 eCAP0SRC eCAP0 Suspend Source 0 = NO emulation suspend, 1 = DSP emulation suspend 4.7 DSP Communication Registers 4.7.1 CHIPSIG ADVANCE INFORMATION The CHIPSIG register provides a signaling mechanism for the DSP.Writing a '1' to a bit causes the corresponding interrupt to be asserted. Writing a '0' has no effect. Reads return the value of the bit. 31 30 29 28 27 26 25 24 23 22 21 20 19 7 6 5 4 3 18 17 16 2 1 0 Rsvd R-0 15 14 13 12 11 10 9 8 Rsvd CHIPSIG[4:0] R-0 W-0 LEGEND: R = Read, W = Write, n = value at reset Figure 4-10. CHIPSIG Register Bit Layout Table 4-11. CHIPSIG Field Description Bit Field 31:5 Reserved Reserved 4 CHIPSIG[4] Asserts DSP NMI Interrupt. 3 CHIPSIG[3] Asserts DSP Interrupt CHIPSIG[3]. 2 CHIPSIG[2] Asserts DSP Interrupt CHIPSIG[2]. 1 CHIPSIG[1] Reserved. 0 CHIPSIG[0] Reserved. 4.7.2 Description CHIPSIG_CLR The CHIPSIG_CLR register clears interrupts that have been initiated using the CHIPSIG register. Writing a '1' to a bit clears the corresponding interrupt. Writing a '0' has no effect. Reads return the value of the bit. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 7 6 5 4 3 2 1 0 Rsvd R-0 15 14 13 12 11 10 9 8 Rsvd CHIPSIG[4:0] R-0 W-0 LEGEND: R = Read, W = Write, n = value at reset Figure 4-11. CHIPSIG_CLR Register Bit Layout 52 Device Configuration Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 4-12. CHIPSIG_CLR Field Description Bit Field 31:5 Reserved Reserved Description 4 CHIPSIG[4] Clears DSP NMI Interrupt. 3 CHIPSIG[3] Clears DSP Interrupt CHIPSIG[3]. 2 CHIPSIG[2] Clears DSP Interrupt CHIPSIG[2]. 1 CHIPSIG[1] Reserved. 0 CHIPSIG[0] Reserved. 4.8.1 Development Support TI offers an extensive line of development tools for the TMS320C6745/47 platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). The following products support development of TMS320C6745/47 applications: Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any application. Hardware Development Tools: Extended Development System (XDS™) Emulator For a complete listing of development-support tools for TMS320C6745/47 , visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 4.8.2 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320C6745). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications. TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification. TMS Fully-qualified production device. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product. Submit Documentation Feedback Device Configuration 53 ADVANCE INFORMATION 4.8 Device Support TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. ADVANCE INFORMATION TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZWT), the temperature range (for example, "Blank" is the commercial temperature range), and the device speed range in megahertz (for example, "Blank" is the default). Figure 4-12 provides a legend for reading the complete device name for any TMS320C674x member. TMS 320 C6747 ( ) ZKB ( ) ( ) PREFIX TMX = Experimental Device TMS = Qualified Device DEVICE FAMILY 320 = TMS320™ DSP Family DEVICE C64x+™ C6747 C6745 SILICON REVISION Blank = Revision 1.0 DEVICE SPEED RANGE 2 = 200 MHz 3 = 300 MHz(B) TEMPERATURE RANGE (JUNCTION) Blank = 0°C to 85°C, Commercial Grade T = –40°C to 105°C, Automotive Grade PACKAGE TYPE(A) ZKB = 256-Pin Plastic BGA, with Pb-free Soldered Balls [Green] PTP = 176-Pin Thin Quad Flat Pack (TQFP) [PTP Suffix], 0.5 mm Pin Pitch A. BGA = Ball Grid Array B. The device speed range symbolization indicates the maximum CPU frequency when the core voltage CVDD is set to 1.2 V. Figure 4-12. Device Nomenclature 4.9 Documentation Support 4.9.1 Related Documentation From Texas Instruments The following documents describe the TMS320C6745/47 Low-power digital signal processor. Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com. DSP Reference Guides SPRUG82 TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches and describes how the two-level cache-based internal memory architecture in the TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications. Shows how to maintain coherence with external memory, how to use DMA to reduce memory latencies, and how to optimize your code to improve cache efficiency. The internal memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external memory. 54 Device Configuration Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 SPRUFE8 TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with added functionality and an expanded instruction set. SPRUFK4 TMS320C6747 DSP System Reference Guide. Describes the System-on-Chip (SoC) including the DSP subsystem, system memory, device clocking, phase-locked loop controller (PLLC), power and sleep controller (PSC), power management, and system configuration module. SPRUG83 TMS320C6745 DSP System Reference Guide. Describes the System-on-Chip (SoC) including the DSP subsystem, system memory, device clocking, phase-locked loop controller (PLLC), power and sleep controller (PSC), power management, and system configuration module. SPRUFK5 TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache. SPRUFK9 TMS320C6745/C6747 DSP Peripherals Overview Reference Guide. Provides an overview and briefly describes the peripherals available on the TMS320C6745/C6747 DSP. Submit Documentation Feedback Device Configuration 55 ADVANCE INFORMATION www.ti.com TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 5 Device Operating Conditions 5.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted) (1) Core (CVDD, RVDD, RTC_CVDD, PLL0_VDDA , USB0_VDDA12 (2), ) Supply voltage ranges I/O, 1.8V (USB0_VDDA18, USB1_VDDA18) -0.5 V to 3.8V (3) ADVANCE INFORMATION VI I/O, 1.2V (OSCIN, RTC_XI) -0.3 V to CVDD + 0.3V VI I/O, 3.3V (Steady State) -0.3V to DVDD + 0.3V VI I/O, 3.3V (Transient) DVDD + 20% up to 20% of Signal Period VI I/O, USB 5V Tolerant Pins: (USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP) 5.25V (4) VI I/O, USB0 VBUS 5.50V (4) VO I/O, 3.3V (Steady State) Output voltage ranges Clamp Current -0.5 V to 1.4 V -0.5 V to 2 V (3) I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) Input voltage ranges (3) -0.5 V to DVDD + 0.3V VO I/O, 3.3V (Transient) DVDD + 20% up to 20% of Signal Period Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode protection cells. ±20mA Operating Junction Temperature ranges, TJ (default) (T version) -40°C to 125°C Storage temperature range, Tstg (default) -55°C to 150°C (1) (2) (3) (4) 56 0°C to 105°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. This pin is an internal LDO output and connected via 0.22 F capacitor to VSS All voltage values are with respect to VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS, RTC_VSS Up to a max of 24 hours. Device Operating Conditions Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 MIN NOM MAX UNIT 1.14 1.2 or 1.26 1.32 V CVDD Supply voltage, Core (CVDD, RTC_CVDD, PLL0_VDDA , USB0_VDDA12 (1)) RVDD Supply Voltage, Internal RAM 1.14 1.2 or 1.26 1.32 V Supply voltage, I/O, 1.8V (USB0_VDDA18, USB1_VDDA18) 1.71 1.8 1.89 V Supply voltage, I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) 3.15 3.3 3.45 V 0 0 0 V DVDD (2) Supply ground (VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS (3), RTC_VSS (3)) VSS High-level input voltage, I/O, 3.3V VIH High-level input voltage, RTC_XI High-level input voltage, OSCIN 2 V 0.8*RTC_CVDD V 0.8*CVDD Low-level input voltage, I/O, 3.3V VIL Low-level input voltage, RTC_XI Low-level input voltage, OSCIN VHYS Input Hysteresis tt Transition time, 10%-90%, All Inputs Operating ambient temperature range FSYSCLK1,6 DSP and ARM Operating Frequency (SYSCLK1,6) (1) (2) (3) V V 0.2*CVDD 0.1DVDD 10 ns 0 70 °C -40 105 °C Default 0 300 MHz Automotive (T suffix) 0 300 MHz Default TA 0.8 0.2*RTC_CVDD Automotive (T suffix) This pin is an internal LDO output and connected via 0.22 F capacitor to VSS Future variants of TI devices may operate at CVDD voltages ranging from 1.0 V to 1.32 V to provide a range of system power/ performance options. TI highly recommends that users design-in a supply that can handle multiple voltages within this range (i.e., 1.0 V, 1.1 V, 1.2, 1.26 V with ±5% tolerances) by implementing simple board changes such as reference resistor values or input pin configuration modifications. Not incorporating a flexible supply may limit the system's ability to easily adapt to future versions of TI devices. RVDD and PLL0_VDDA must always be maintained at the voltages shown. (1.14 V - 1.32 V). Oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board. Submit Documentation Feedback Device Operating Conditions 57 ADVANCE INFORMATION 5.2 Recommended Operating Conditions TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) PARAMETER VOH ADVANCE INFORMATION (1) TYP MAX USB0_VDDA33 High speed: USB_DM and USB_DP 360 440 Low/full speed: USB1_DM and USB1_DP 2.8 USB1_VDDA33 DVDD = 3.15V, IOH = -4 mA DVDD = 3.15V, IOH = -100 µA UNIT V mV V 2.4 V 2.95 V Low/full speed: USB_DM and USB_DP 0.0 0.3 V High speed: USB_DM and USB_DP -10 10 mV DVDD = 3.15V, IOL = 4mA 0.4 V DVDD = 3.15V, IOL = -100 µA 0.2 V VI = VSS to DVDD without opposing internal resistor ±35 µA Low-level output voltage (3.3V I/O) II MIN 2.8 High-level output voltage (3.3V I/O) VOL TEST CONDITIONS Low/full speed: USB0_DM and USB0_DP Input current VI = VSS to DVDD with opposing internal pullup resistor (2) 30 200 µA VI = VSS to DVDD with opposing internal pulldown resistor (2) -50 -250 µA IOH High-level output current All peripherals -4 mA IOL Low-level output current All peripherals 4 mA (1) (2) 58 II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II indicates the input leakage current and off-state (Hi-Z) output leakage current. Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. Device Operating Conditions Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6 Peripheral Information and Electrical Specifications 6.1 Parameter Information Parameter Information Device-Specific Information Tester Pin Electronics 42 Ω 3.5 nH Transmission Line Z0 = 50 Ω (see note) 4.0 pF A. 1.85 pF Data Sheet Timing Reference Point Output Under Test Device Pin (see note) The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin. Figure 6-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 6.1.1.1 Signal Transition Levels All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O, Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V. Vref Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOLMAX and VOH MIN for output clocks. Vref = VIH MIN (or VOH MIN) Vref = VIL MAX (or VOL MAX) Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels Submit Documentation Feedback Peripheral Information and Electrical Specifications 59 ADVANCE INFORMATION 6.1.1 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.2 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. ADVANCE INFORMATION 60 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.3 Power Supplies 6.3.1 Power-on Sequence 674x devices include on chip logic that ensures I/O pins are tri-stated during the power on ramp, as long as the RESET pin is asserted. This is true even if the core voltage (CVDD) has not yet ramped. However, if the on chip USB modules are used; then to limit any noise on the USB0_DM, USB0_DP, USB1_DM, and USB1_DP pins to less than 200mV during the power on ramp, the sequence illustrated in Figure 6-4 must be followed. The requirement is that the core supply (CVDD) must ramp to at least 0.9V (1) before the IO supply (DVDD) reaches the 1.65V point in its ramp (2). And as is always the case, RESET and TRST must remain asserted during the power on ramp and released only after CVDD and DVDD are within their specified ranges. (2) 1.65 V DVDD (3) (1) CVDD RESET, TRST USB0_DM, USB0_DP USB1_DM, USB1_DP 900 mV VIL 200 mV Figure 6-4. Power Sequence 6.4 Reset 6.4.1 Power-On Reset (POR) A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. A summary of the effects of Power-On Reset is given below: • All internal logic (including emulation logic and the PLL logic) is reset to its default state • Internal memory is not maintained through a POR • RESETOUT goes active • All device pins go to a high-impedance state • The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC A watchdog reset triggers a POR. Submit Documentation Feedback Peripheral Information and Electrical Specifications 61 ADVANCE INFORMATION Normally, the only requirement during the power on ramp is that both the RESET and TRST pins remain asserted (low) until after the power supply rails have fully ramped. TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.4.2 www.ti.com Warm Reset A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. ADVANCE INFORMATION A summary of the effects of Warm Reset is given below: • All internal logic (except for the emulation logic and the PLL logic) is reset to its default state • Internal memory is maintained through a warm reset • RESETOUT goes active • All device pins go to a high-impedance state • The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the RTC 6.4.3 Reset Electrical Data Timings Table 6-1 assumes testing over the recommended operating conditions. Table 6-1. Reset Timing Requirements ( (1), (2) NO ) MIN 1 tw(RSTL) Pulse width, RESET/TRST low 2 tsu(BPV-RSTH) Setup time, boot pins valid before RESET/TRST high 3 th(RSTH-BPV) Hold time, boot pins valid after RESET/TRST high 4 td(RSTH- RESET high to RESETOUT high; Warm reset 4096 RESETOUTH) RESET high to RESETOUT high; Power-on Reset 6192 5 (1) (2) (3) MAX UNIT 100 ns 20 ns 20 td(RSTL-RESETOUTL) Delay time, RESET/TRST low to RESETOUT low ns cycles (3) TBD ns RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-4 for details. For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this table refer to RESET only (TRST is held high). OSCIN cycles. Power Supplies Ramping Power Supplies Stable Clock Source Stable OSCIN 1 RESET TRST 4 RESETOUT 3 2 Boot Pins Config Figure 6-5. Power-On Reset (RESET and TRST active) Timing 62 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Power Supplies Stable OSCIN TRST 1 RESET 5 4 3 2 Boot Pins Driven or Hi-Z ADVANCE INFORMATION RESETOUT Config Figure 6-6. Warm Reset (RESET active, TRST high) Timing Submit Documentation Feedback Peripheral Information and Electrical Specifications 63 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.5 Crystal Oscillator or External Clock Input The C6745/6747 device includes two choices to provide an external clock input, which is fed to the on-chip PLL to generate high-frequency system clocks. These options are illustrated in Figure 6-7 and Figure 6-8. • Figure 6-7 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. • Figure 6-8 illustrates the option that uses an external 1.2V clock input. C2 OSCIN Clock Input to PLL X1 ADVANCE INFORMATION OSCOUT C1 OSCVSS Figure 6-7. On-Chip 1.2V Oscillator OSCIN NC Clock Input to PLL OSCOUT OSCVSS Figure 6-8. External 1.2V Clock Source Table 6-2. CLKIN Timing Requirements MIN MAX UNIT fosc Oscillator frequency range (OSCIN/OSCOUT) 12 30 MHz fPLL Freuency range of PLL input , external clock source only 12 50 MHz tc(CLKIN) Cycle time, external clock driven on OSCIN 20 ns tw(CLKINH) Pulse width high, external clock on OSCIN 0.4 ns tc(CLKIN) tw(CLKINL) Pulse width low, external clock on OSCIN tt(CLKIN) Transition time, CLKIN 64 Peripheral Information and Electrical Specifications 0.4 tc(CLKIN) ns 5 ns Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.6 Clock PLLs The C6745/6747 has one PLL controller that provides clock to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device. The various clock outputs given by the controller are as follows: • Domain Clocks: SYSCLK [1:n] • Auxiliary Clock from reference clock source: AUXCLK Various dividers that can be used are as follows: • Post-PLL Divider: POSTDIV • SYSCLK Divider: D1, , Dn Various other controls supported are as follows: • PLL Multiplier Control: PLLM • Software programmable PLL Bypass: PLLEN 6.6.1 PLL Device-Specific Information The C6745/6747 DSP generates the high-frequency internal clocks it requires through an on-chip PLL. The PLL requires some external filtering components to reduce power supply noise as shown in Figure 6-9. 1.14V - 1.32V 50R PLL0_VDDA 0.1 µF VSS 50R 0.01 µF PLL0_VSSA Ferrite Bead: Murata BLM31PG500SN1L or Equivalent Figure 6-9. PLL External Filtering Components The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the CLKIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 6-10 illustrates the PLL Topology. The PLL is disabled by default after a device reset. It must be configured by software according to the allowable operating conditions listed in Table 6-3 before enabling the DSP to run from the PLL by setting PLLEN = 1. Submit Documentation Feedback Peripheral Information and Electrical Specifications 65 ADVANCE INFORMATION The PLL controller provides the following: • Glitch-Free Transitions (on changing clock settings) • Domain Clocks Alignment • Clock Gating • PLL power down TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com DIV4p5 (/4.5) Clock Input from CLKIN or OSCIN PREDIV (/1 to /32) PLLREF PLLOUT PLLM (x4 to x32) POSTDIV (/2 to /32) 1 0 PLLEN (PLL_CSR[0]) ADVANCE INFORMATION PLLDIV1 (/1, /2, ... /32) SYSCLK1 PLLDIV2 (/1, /2, ... /32) SYSCLK2 PLLDIV3 (/1, /2, ... /32) SYSCLK3 PLLDIV4 (/1, /2, ... /32) SYSCLK4 PLLDIV7 (/1, /2, ... /32) SYSCLK7 AUXCLK Figure 6-10. PLL Topology Table 6-3. Allowed PLL Operating Conditions NO PARAMETER MIN MAX UNIT 1 PLLRST: Assertion time during initialization 125 N/A ns 2 Lock time: The time that the application has to wait for the PLL to acquire locks before setting PLLEN, after changing PREDIV, PLLM, or OSCIN N/A 3 PLL input frequency ( PLLREF after D0) 12 50 x4 x32 400 600 (2) 4 5 (1) (2) 66 PLL multiplier values (PLLM) (1) PLL output frequency. ( PLLOUT before dividers D1, D2, D3, ....) 2000 N m where N = Pre-Divider Ratio M = PLL Multiplier Max PLL Lock Time = ns MHz MHz The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 400 and 1000 MHz, but the frequency going into the SYSCLK dividers (after the post divider) cannot exceed 400 MHz. If the PLLOUT exceeds 400 MHz the post divider must be used to divide it down. The Post Divider and SYSCLK divider values must be chosen such that the CPU clocks do not exceed 300 MHz. PLL post divider / 2 must be used. The /4.5 clock path can be used to generate an EMIF clock from the undivided (i.e. 600 MHz) PLL output clock. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com 6.6.2 SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Device Clock Generation PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock alignment, and test points. PLLC0 generates several clocks from the PLL0 output clock for use by the various processors and modules. These are summarized in Table 6-4. The clock ratios between SYSCLK1, SYSCLK2, SYSCLK4 and SYSCLK6 must always be maintained as shown in the table. Output Clock Used by Default Ratio (relative to SYSCLK1) Notes SYSCLK1 DSP /1 No Required Ratio SYSCLK2 EDMA, DSP ports, EMIFB (ports to switch fabric), ECAP 0/1/2, EHRPWM 0/1/2, EQEP 0/1, Shared RAM, LCDC, McASP/FIFO 0/1/2, SPI 1, UHPI, USB2.0 (logic), UART 1/2, HRPWM 0/1/2 /2 SYSCLK1 / 2 SYSCLK3 EMIFA /3 No Required Ratio SYSCLK4 SYSCFG, Interrupt Controller, PLLC0, PSC 0, EMAC/MDIO, GPIO, I2C 1, PSC 1, USB1.1 /4 SYSCLK1 / 4 SYSCLK5 EMIFB /3 No Required Ratio SYSCLK7 RMII clock to EMAC /6 No Required Ratio ; Should be set to 50 MHz AUXCLK McASP AuxClk,RTC,Timer64P0,Timer64P1 N/A No Required Ratio USB48 USB2.0 Phy, USB1.1 logic N/A No Required Ratio; Should be set to 48 MHz USB12 USB2.0 Phy, USB1.1 logic N/A No Required Ratio; 12 MHz, generated by the USB1 Module by dividing USB48 by 4. DIV4p5 133MHz clock source for EMIFB PLL output/4.5 No Required Ratio • • • The divide values in the PLL Controller 0 for SYSCLK1/SYSCLK6, SYSCLK2 and SYSCLK4 are not fixed so that user can change the divide values for power saving reasons. But users are responsible to guarantee that the divide ratios between these clock domains must be fixed to 1:2:4. Although the PLL is capable of running at 600 MHz, the SYSCLK dividers in the PLLC0 are not (maximum 400 MHz). For this reason, the post-divider in the PLLC0 should be configured for /2 to provide 300 MHz to each of the SYSCLK dividers. The DIV4p5 (/4.5) hardware clock divider is provided to generate 133 MHz from the 600 MHz PLL clock for use as clocks to the EMIFs. Submit Documentation Feedback Peripheral Information and Electrical Specifications 67 ADVANCE INFORMATION Table 6-4. System PLLC0 Output Clocks TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.7 Interrupts The C6745/6747devices have a large number of interrupts to service the needs of its many peripherals and subsystems. ADVANCE INFORMATION 68 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com 6.7.1 SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 DSP Interrupts ADVANCE INFORMATION The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for each of the 12 CPU interrupts is user programmable and is listed in Table 6-5. Also, the interrupt controller controls the generation of the CPU exception, NMI, and emulation interrupts. Table 6-6 summarizes the C674x interrupt controller registers and memory locations. Submit Documentation Feedback Peripheral Information and Electrical Specifications 69 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-5. C6745/6747 DSP Interrupts ADVANCE INFORMATION 70 EVT# Interrupt Name 0 EVT0 Source C674x Int Ctl 0 1 EVT1 C674x Int Ctl 1 2 EVT2 C674x Int Ctl 2 3 EVT3 C674x Int Ctl 3 4 T64P0_TINT12 5 SYSCFG_CHIPINT2 Timer64P0 - TINT12 6 - 7 EHRPWM0 8 EDMA3_CC0_INT1 9 EMU-DTDMA C674x-ECM 10 EHRPWM0TZ HiResTimer/PWM0 Trip Zone Interrupt 11 EMU-RTDXRX C674x-RTDX 12 EMU-RTDXTX C674x-RTDX 13 IDMAINT0 C674x-EMC 14 IDMAINT1 C674x-EMC 15 MMCSD_INT0 MMCSD MMC/SD Interrupt 16 MMCSD_INT1 MMCSD SDIO Interrupt 17 - 18 EHRPWM1 HiResTimer/PWM1 Interrupt 19 USB0_INT USB0 Interrupt 20 USB1_HCINT 21 USB1_RWAKEUP 22 - 23 EHRPWM1TZ SYSCFG_CHIPSIG Register Reserved HiResTimer/PWM0 Interrupt EDMA3 CC0 Region 1 interrupt Reserved USB1 OHCI Host Controller Interrupt USB1 Remote Wakeup Interrupt Reserved HiResTimer/PWM1 Trip Zone Interrupt 24 EHRPWM2 25 EHRPWM2TZ HiResTimer/PWM2 Interrupt 26 EMAC_C0RXTHRESH 27 EMAC_C0RX EMAC - Core 0 Receive Interrupt 28 EMAC_C0TX EMAC - Core 0 Transmit Interrupt 29 EMAC_C0MISC 30 EMAC_C1RXTHRESH 31 EMAC_C1RX EMAC - Core 1 Receive Interrupt 32 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 33 EMAC_C1MISC 34 UHPI_DSPINT 35 - 36 IIC0_INT I2C0 37 SP0_INT SPI0 38 UART0_INT 39 - 40 T64P1_TINT12 Timer64P1 Interrupt 12 41 GPIO_B1INT GPIO Bank 1 Interrupt 42 IIC1_INT I2C1 43 SPI1_INT SPI1 HiResTimer/PWM2 Trip Zone Interrupt EMAC - Core 0 Receive Threshold Interrupt EMAC - Core 0 Miscellaneous Interrupt EMAC - Core 1 Receive Threshold Interrupt EMAC - Core 1 Miscellaneous Interrupt UHPI DSP Interrupt Reserved UART0 Reserved 44 - 45 ECAP0 ECAP0 46 UART_INT1 UART1 Peripheral Information and Electrical Specifications Reserved Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-5. C6745/6747 DSP Interrupts (continued) EVT# Interrupt Name Source 47 ECAP1 ECAP1 48 T64P1_TINT34 Timer64P1 Interrupt 34 49 GPIO_B2INT GPIO Bank 2 Interrupt 50 - 51 ECAP2 52 GPIO_B3INT 53 EQEP1 54 GPIO_B4INT 55 EMIFA_INT 56 EDMA3_CC0_ERRINT EDMA3 Channel Controller 0 57 EDMA3_TC0_ERRINT EDMA3 Transfer Controller 0 58 EDMA3_TC1_ERRINT EDMA3 Transfer Controller 1 59 GPIO_B5INT 60 EMIFB_INT EMIFB Memory Error Interrupt 61 MCASP_INT McASP0,1,2 Combined RX/TX Interrupts 62 GPIO_B6INT GPIO Bank 6 Interrupt 63 RTC_IRQS 64 T64P0_TINT34 Timer64P0 Interrupt 34 65 GPIO_B0INT GPIO Bank 0 Interrupt Reserved ECAP2 GPIO Bank 3 Interrupt EQEP1 GPIO Bank 4 Interrupt GPIO Bank 5 Interrupt RTC Combined 66 - 67 SYSCFG_CHIPINT3 68 EQEP0 EQEP0 69 UART2_INT UART2 70 PSC0_ALLINT PSC0 71 PSC1_ALLINT PSC1 72 GPIO_B7INT 73 LCDC_INT LDC Controller 74 PROTERR SYSCFG Protection Shared Interrupt 75 - Reserved 76 - Reserved 77 - Reserved 78 T64P0_CMPINT0 Timer64P0 - Compare 0 79 T64P0_CMPINT1 Timer64P0 - Compare 1 80 T64P0_CMPINT2 Timer64P0 - Compare 2 81 T64P0_CMPINT3 Timer64P0 - Compare 3 82 T64P0_CMPINT4 Timer64P0 - Compare 4 83 T64P0_CMPINT5 Timer64P0 - Compare 5 84 T64P0_CMPINT6 Timer64P0 - Compare 6 85 T64P0_CMPINT7 Timer64P0 - Compare 7 86 T64P1_CMPINT0 Timer64P1 - Compare 0 87 T64P1_CMPINT1 Timer64P1 - Compare 1 88 T64P1_CMPINT2 Timer64P1 - Compare 2 89 T64P1_CMPINT3 Timer64P1 - Compare 3 90 T64P1_CMPINT4 Timer64P1 - Compare 4 91 T64P1_CMPINT5 Timer64P1 - Compare 5 92 T64P1_CMPINT6 Timer64P1 - Compare 6 93 T64P1_CMPINT7 Timer64P1 - Compare 7 Submit Documentation Feedback ADVANCE INFORMATION EMIFA Reserved SYSCFG_CHIPSIG Register GPIO Bank 7 Interrupt Peripheral Information and Electrical Specifications 71 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-5. C6745/6747 DSP Interrupts (continued) ADVANCE INFORMATION 72 EVT# Interrupt Name 94 - Source Reserved 95 - Reserved 96 INTERR C674x-Int Ctl 97 EMC_IDMAERR C674x-EMC 98 - Reserved 99 - Reserved 100 - Reserved 101 - Reserved 102 - Reserved 103 - Reserved 104 - Reserved 105 - Reserved 106 - Reserved 107 - Reserved 108 - Reserved 109 - Reserved 110 - Reserved 111 - Reserved 112 - Reserved 113 PMC_ED 114 - Reserved 115 - Reserved 116 UMC_ED1 C674x-UMC 117 UMC_ED2 C674x-UMC 118 PDC_INT C674x-PDC 119 SYS_CMPA C674x-SYS 120 PMC_CMPA C674x-PMC 121 PMC_CMPA C674x-PMC 122 DMC_CMPA C674x-DMC 123 DMC_CMPA C674x-DMC 124 UMC_CMPA C674x-UMC 125 UMC_CMPA C674x-UMC 126 EMC_CMPA C674x-EMC 127 EMC_BUSERR C674x-EMC Peripheral Information and Electrical Specifications C674x-PMC Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 BYTE ADDRESS REGISTER NAME DESCRIPTION 0x0180 0000 EVTFLAG0 Event flag register 0 0x0180 0004 EVTFLAG1 Event flag register 1 0x0180 0008 EVTFLAG2 Event flag register 2 0x0180 000C EVTFLAG3 Event flag register 3 0x0180 0020 EVTSET0 Event set register 0 0x0180 0024 EVTSET1 Event set register 1 0x0180 0028 EVTSET2 Event set register 2 0x0180 002C EVTSET3 Event set register 3 0x0180 0040 EVTCLR0 Event clear register 0 0x0180 0044 EVTCLR1 Event clear register 1 0x0180 0048 EVTCLR2 Event clear register 2 0x0180 004C EVTCLR3 Event clear register 3 0x0180 0080 EVTMASK0 Event mask register 0 0x0180 0084 EVTMASK1 Event mask register 1 0x0180 0088 EVTMASK2 Event mask register 2 0x0180 008C EVTMASK3 Event mask register 3 0x0180 00A0 MEVTFLAG0 Masked event flag register 0 0x0180 00A4 MEVTFLAG1 Masked event flag register 1 0x0180 00A8 MEVTFLAG2 Masked event flag register 2 0x0180 00AC MEVTFLAG3 Masked event flag register 3 0x0180 00C0 EXPMASK0 Exception mask register 0 0x0180 00C4 EXPMASK1 Exception mask register 1 0x0180 00C8 EXPMASK2 Exception mask register 2 0x0180 00CC EXPMASK3 Exception mask register 3 0x0180 00E0 MEXPFLAG0 Masked exception flag register 0 0x0180 00E4 MEXPFLAG1 Masked exception flag register 1 0x0180 00E8 MEXPFLAG2 Masked exception flag register 2 0x0180 00EC MEXPFLAG3 Masked exception flag register 3 0x0180 0104 INTMUX1 Interrupt mux register 1 0x0180 0108 INTMUX2 Interrupt mux register 2 0x0180 010C INTMUX3 Interrupt mux register 3 0x0180 0140 - 0x0180 0144 - Reserved 0x0180 0180 INTXSTAT Interrupt exception status 0x0180 0184 INTXCLR Interrupt exception clear 0x0180 0188 INTDMASK Dropped interrupt mask register 0x0180 01C0 EVTASRT Event assert register Submit Documentation Feedback Peripheral Information and Electrical Specifications ADVANCE INFORMATION Table 6-6. C674x DSP Interrupt Controller Registers 73 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.8 General-Purpose Input/Output (GPIO) The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]). ADVANCE INFORMATION The C6745/6747 GPIO peripheral supports the following: • Up to 128 Pins on ZKB and up to 109 Pins on PTP package configurable as GPIO • External Interrupt and DMA request Capability – Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or falling edges on the pin. – The interrupt requests within each bank are combined (logical or) to create eight unique bank level interrupt requests. – The bank level interrupt service routine may poll the INTSTATx register for its bank to determine which pin(s) have triggered the interrupt. – GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62 and 72 respectively – Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28, and 29 respectively. • Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming). • Separate Input/Output registers • Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s). • Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain I/O cell, allows wired logic be implemented. The memory map for the GPIO registers is shown in Table 6-7. See the TMS320C6745/C6747 DSP Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. 6.8.1 GPIO Register Description(s) Table 6-7. GPIO Registers GPIO BYTE ADDRESS Acronym Register Description 0x01E2 6000 REV Peripheral Revision Register 0x01E2 6004 RESERVED Reserved 0x01E2 6008 BINTEN GPIO Interrupt Per-Bank Enable Register GPIO Banks 0 and 1 74 0x01E2 6010 DIR01 GPIO Banks 0 and 1 Direction Register 0x01E2 6014 OUT_DATA01 GPIO Banks 0 and 1 Output Data Register 0x01E2 6018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register 0x01E2 601C CLR_DATA01 GPIO Banks 0 and 1 Clear Data Register 0x01E2 6020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register 0x01E2 6024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register 0x01E2 6028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register 0x01E2 602C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-7. GPIO Registers (continued) GPIO BYTE ADDRESS Acronym Register Description 0x01E2 6030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register 0x01E2 6034 INTSTAT01 GPIO Banks 0 and 1 Interrupt Status Register 0x01E2 6038 DIR23 GPIO Banks 2 and 3 Direction Register 0x01E2 603C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register 0x01E2 6040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register 0x01E2 6044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register 0x01E2 6048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register 0x01E2 604C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register 0x01E2 6050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register 0x01E2 6054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register 0x01E2 6058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register 0x01E2 605C INTSTAT23 ADVANCE INFORMATION GPIO Banks 2 and 3 GPIO Banks 2 and 3 Interrupt Status Register GPIO Banks 4 and 5 0x01E2 6060 DIR45 GPIO Banks 4 and 5 Direction Register 0x01E2 6064 OUT_DATA45 GPIO Banks 4 and 5 Output Data Register 0x01E2 6068 SET_DATA45 GPIO Banks 4 and 5 Set Data Register 0x01E2 606C CLR_DATA45 GPIO Banks 4 and 5 Clear Data Register 0x01E2 6070 IN_DATA45 GPIO Banks 4 and 5 Input Data Register 0x01E2 6074 SET_RIS_TRIG45 GPIO Banks 4 and 5 Set Rising Edge Interrupt Register 0x01E2 6078 CLR_RIS_TRIG45 GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register 0x01E2 607C SET_FAL_TRIG45 GPIO Banks 4 and 5 Set Falling Edge Interrupt Register 0x01E2 6080 CLR_FAL_TRIG45 GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register 0x01E2 6084 INTSTAT45 GPIO Banks 4 and 5 Interrupt Status Register 0x01E2 6088 DIR67 GPIO Banks 6 and 7 Direction Register 0x01E2 608C OUT_DATA67 GPIO Banks 6 and 7 Output Data Register 0x01E2 6090 SET_DATA67 GPIO Banks 6 and 7 Set Data Register 0x01E2 6094 CLR_DATA67 GPIO Banks 6 and 7 Clear Data Register 0x01E2 6098 IN_DATA67 GPIO Banks 6 and 7 Input Data Register 0x01E2 609C SET_RIS_TRIG67 GPIO Banks 6 and 7 Set Rising Edge Interrupt Register 0x01E2 60A0 CLR_RIS_TRIG67 GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register 0x01E2 60A4 SET_FAL_TRIG67 GPIO Banks 6 and 7 Set Falling Edge Interrupt Register 0x01E2 60A8 CLR_FAL_TRIG67 GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register 0x01E2 60AC INTSTAT67 GPIO Banks 6 and 7 Interrupt Status Register GPIO Banks 6 and 7 6.8.2 GPIO Peripheral Input/Output Electrical Data/Timing Table 6-8. Timing Requirements for GPIO Inputs (1) (see Figure 6-11) NO. (1) (2) MIN MAX UNIT (1) (2) ns ns 1 tw(GPIH) Pulse duration, GPIx high 2C 2 tw(GPIL) Pulse duration, GPIx low 2C (1) (2) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have C6745/6747 recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow C6745/6747 enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns Submit Documentation Feedback Peripheral Information and Electrical Specifications 75 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-9. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see Figure 6-11) NO. 3 4 (1) PARAMETER tw(GPOH) tw(GPOL) MIN 2C (1) Pulse duration, GPOx high Pulse duration, GPOx low 2C MAX UNIT (2) ns (1) (2) ns This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity. C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns (2) 2 1 GPIx ADVANCE INFORMATION 4 3 GPOx Figure 6-11. GPIO Port Timing 6.8.3 GPIO Peripheral External Interrupts Electrical Data/Timing Table 6-10. Timing Requirements for External Interrupts (1) (see Figure 6-12) NO. MIN 1 tw(ILOW) Width of the external interrupt pulse low 2C (1) (2) ns 2 tw(IHIGH) Width of the external interrupt pulse high 2C (1) (2) ns (1) (2) MAX UNIT The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have C6745/6747 recognize the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow C6745/6747 enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns 2 1 EXT_INTx Figure 6-12. GPIO External Interrupt Timing 76 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.9 EDMA Table 6-11 is the list of EDMA3 Channel Contoller Registers and Table 6-12 is the list of EDMA3 Transfer Controller registers. Table 6-11. EDMA3 Channel Controller (EDMA3CC) Registers BYTE ADDRESS Acronym Register Description 0x01C0 0000 PID Peripheral Identification Register 0x01C0 0004 CCCFG EDMA3CC Configuration Register 0x01C0 0200 QCHMAP0 QDMA Channel 0 Mapping Register 0x01C0 0204 QCHMAP1 QDMA Channel 1 Mapping Register 0x01C0 0208 QCHMAP2 QDMA Channel 2 Mapping Register 0x01C0 020C QCHMAP3 QDMA Channel 3 Mapping Register 0x01C0 0210 QCHMAP4 QDMA Channel 4 Mapping Register 0x01C0 0214 QCHMAP5 QDMA Channel 5 Mapping Register 0x01C0 0218 QCHMAP6 QDMA Channel 6 Mapping Register 0x01C0 021C QCHMAP7 QDMA Channel 7 Mapping Register 0x01C0 0240 DMAQNUM0 DMA Channel Queue Number Register 0 0x01C0 0244 DMAQNUM1 DMA Channel Queue Number Register 1 0x01C0 0248 DMAQNUM2 DMA Channel Queue Number Register 2 0x01C0 024C DMAQNUM3 DMA Channel Queue Number Register 3 0x01C0 0260 QDMAQNUM QDMA Channel Queue Number Register 0x01C0 0284 QUEPRI Queue Priority Register (1) 0x01C0 0300 EMR Event Missed Register 0x01C0 0308 EMCR Event Missed Clear Register 0x01C0 0310 QEMR QDMA Event Missed Register 0x01C0 0314 QEMCR QDMA Event Missed Clear Register 0x01C0 0318 CCERR EDMA3CC Error Register 0x01C0 031C CCERRCLR EDMA3CC Error Clear Register 0x01C0 0320 EEVAL Error Evaluate Register 0x01C0 0340 DRAE0 DMA Region Access Enable Register for Region 0 0x01C0 0348 DRAE1 DMA Region Access Enable Register for Region 1 0x01C0 0350 DRAE2 DMA Region Access Enable Register for Region 2 0x01C0 0358 DRAE3 DMA Region Access Enable Register for Region 3 0x01C0 0380 QRAE0 QDMA Region Access Enable Register for Region 0 0x01C0 0384 QRAE1 QDMA Region Access Enable Register for Region 1 0x01C0 0388 QRAE2 QDMA Region Access Enable Register for Region 2 0x01C0 038C QRAE3 QDMA Region Access Enable Register for Region 3 0x01C0 0400 - 0x01C0 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15 0x01C0 0440 - 0x01C0 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15 0x01C0 0600 QSTAT0 Queue 0 Status Register 0x01C0 0604 QSTAT1 Queue 1 Status Register 0x01C0 0620 QWMTHRA Queue Watermark Threshold A Register 0x01C0 0640 CCSTAT ADVANCE INFORMATION Global Registers EDMA3CC Status Register Global Channel Registers (1) 0x01C0 1000 ER Event Register 0x01C0 1008 ECR Event Clear Register On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority. Submit Documentation Feedback Peripheral Information and Electrical Specifications 77 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-11. EDMA3 Channel Controller (EDMA3CC) Registers (continued) BYTE ADDRESS Acronym 0x01C0 1010 ESR Register Description Event Set Register 0x01C0 1018 CER Chained Event Register 0x01C0 1020 EER Event Enable Register 0x01C0 1028 EECR Event Enable Clear Register 0x01C0 1030 EESR Event Enable Set Register 0x01C0 1038 SER Secondary Event Register 0x01C0 1040 SECR Secondary Event Clear Register ADVANCE INFORMATION 0x01C0 1050 IER Interrupt Enable Register 0x01C0 1058 IECR Interrupt Enable Clear Register 0x01C0 1060 IESR Interrupt Enable Set Register 0x01C0 1068 IPR Interrupt Pending Register 0x01C0 1070 ICR Interrupt Clear Register 0x01C0 1078 IEVAL Interrupt Evaluate Register 0x01C0 1080 QER QDMA Event Register 0x01C0 1084 QEER QDMA Event Enable Register 0x01C0 1088 QEECR QDMA Event Enable Clear Register 0x01C0 108C QEESR QDMA Event Enable Set Register 0x01C0 1090 QSER QDMA Secondary Event Register 0x01C0 1094 QSECR QDMA Secondary Event Clear Register 0x01C0 2000 ER Event Register 0x01C0 2008 ECR Event Clear Register Shadow Region 0 Channel Registers 0x01C0 2010 ESR Event Set Register 0x01C0 2018 CER Chained Event Register 0x01C0 2020 EER Event Enable Register 0x01C0 2028 EECR Event Enable Clear Register 0x01C0 2030 EESR Event Enable Set Register 0x01C0 2038 SER Secondary Event Register 0x01C0 2040 SECR Secondary Event Clear Register 0x01C0 2050 IER Interrupt Enable Register 0x01C0 2058 IECR Interrupt Enable Clear Register 0x01C0 2060 IESR Interrupt Enable Set Register 0x01C0 2068 IPR Interrupt Pending Register 0x01C0 2070 ICR Interrupt Clear Register 0x01C0 2078 IEVAL Interrupt Evaluate Register 0x01C0 2080 QER QDMA Event Register 0x01C0 2084 QEER QDMA Event Enable Register 0x01C0 2088 QEECR QDMA Event Enable Clear Register 0x01C0 208C QEESR QDMA Event Enable Set Register 0x01C0 2090 QSER QDMA Secondary Event Register 0x01C0 2094 QSECR QDMA Secondary Event Clear Register Shadow Region 1 Channel Registers 78 0x01C0 2200 ER Event Register 0x01C0 2208 ECR Event Clear Register 0x01C0 2210 ESR Event Set Register 0x01C0 2218 CER Chained Event Register 0x01C0 2220 EER Event Enable Register Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 BYTE ADDRESS Acronym Register Description 0x01C0 2228 EECR Event Enable Clear Register 0x01C0 2230 EESR Event Enable Set Register 0x01C0 2238 SER Secondary Event Register 0x01C0 2240 SECR Secondary Event Clear Register 0x01C0 2250 IER Interrupt Enable Register 0x01C0 2258 IECR Interrupt Enable Clear Register 0x01C0 2260 IESR Interrupt Enable Set Register 0x01C0 2268 IPR Interrupt Pending Register 0x01C0 2270 ICR Interrupt Clear Register 0x01C0 2278 IEVAL Interrupt Evaluate Register 0x01C0 2280 QER QDMA Event Register 0x01C0 2284 QEER QDMA Event Enable Register 0x01C0 2288 QEECR QDMA Event Enable Clear Register 0x01C0 228C QEESR QDMA Event Enable Set Register 0x01C0 2290 QSER QDMA Secondary Event Register 0x01C0 2294 QSECR QDMA Secondary Event Clear Register 0x01C0 4000 - 0x01C0 4FFF — Parameter RAM (PaRAM) ADVANCE INFORMATION Table 6-11. EDMA3 Channel Controller (EDMA3CC) Registers (continued) Table 6-12. EDMA3 Transfer Controller (EDMA3TC) Registers Offset Transfer Controller 0 BYTE ADDRESS Transfer Controller 1 BYTE ADDRESS Acronym Register Description 0h 0x01C0 8000 0x01C0 8400 PID Peripheral Identification Register 4h 0x01C0 8004 0x01C0 8404 TCCFG EDMA3TC Configuration Register 100h 0x01C0 8100 0x01C0 8500 TCSTAT EDMA3TC Channel Status Register 120h 0x01C0 8120 0x01C0 8520 ERRSTAT Error Status Register 124h 0x01C0 8124 0x01C0 8524 ERREN Error Enable Register 128h 0x01C0 8128 0x01C0 8528 ERRCLR Error Clear Register 12Ch 0x01C0 812C 0x01C0 852C ERRDET Error Details Register 130h 0x01C0 8130 0x01C0 8530 ERRCMD Error Interrupt Command Register 140h 0x01C0 8140 0x01C0 8540 RDRATE Read Command Rate Register 240h 0x01C0 8240 0x01C0 8640 SAOPT Source Active Options Register 244h 0x01C0 8244 0x01C0 8644 SASRC Source Active Source Address Register 248h 0x01C0 8248 0x01C0 8648 SACNT Source Active Count Register 24Ch 0x01C0 824C 0x01C0 864C SADST Source Active Destination Address Register 250h 0x01C0 8250 0x01C0 8650 SABIDX Source Active B-Index Register 254h 0x01C0 8254 0x01C0 8654 SAMPPRXY Source Active Memory Protection Proxy Register 258h 0x01C0 8258 0x01C0 8658 SACNTRLD Source Active Count Reload Register 25Ch 0x01C0 825C 0x01C0 865C SASRCBREF Source Active Source Address B-Reference Register 260h 0x01C0 8260 0x01C0 8660 SADSTBREF Source Active Destination Address B-Reference Register 280h 0x01C0 8280 0x01C0 8680 DFCNTRLD 284h 0x01C0 8284 0x01C0 8684 DFSRCBREF Destination FIFO Set Source Address B-Reference Register 288h 0x01C0 8288 0x01C0 8688 DFDSTBREF Destination FIFO Set Destination Address B-Reference Register 300h 0x01C0 8300 0x01C0 8700 DFOPT0 Destination FIFO Options Register 0 304h 0x01C0 8304 0x01C0 8704 DFSRC0 Destination FIFO Source Address Register 0 Destination FIFO Set Count Reload Register 308h 0x01C0 8308 0x01C0 8708 DFCNT0 Destination FIFO Count Register 0 30Ch 0x01C0 830C 0x01C0 870C DFDST0 Destination FIFO Destination Address Register 0 Submit Documentation Feedback Peripheral Information and Electrical Specifications 79 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-12. EDMA3 Transfer Controller (EDMA3TC) Registers (continued) Offset Transfer Controller 0 BYTE ADDRESS Transfer Controller 1 BYTE ADDRESS Acronym Register Description 310h 0x01C0 8310 314h 0x01C0 8314 0x01C0 8710 DFBIDX0 Destination FIFO B-Index Register 0 0x01C0 8714 DFMPPRXY0 340h 0x01C0 8340 0x01C0 8740 DFOPT1 344h Destination FIFO Options Register 1 0x01C0 8344 0x01C0 8744 DFSRC1 Destination FIFO Source Address Register 1 Destination FIFO Memory Protection Proxy Register 0 ADVANCE INFORMATION 348h 0x01C0 8348 0x01C0 8748 DFCNT1 Destination FIFO Count Register 1 34Ch 0x01C0 834C 0x01C0 874C DFDST1 Destination FIFO Destination Address Register 1 350h 0x01C0 8350 0x01C0 8750 DFBIDX1 Destination FIFO B-Index Register 1 354h 0x01C0 8354 0x01C0 8754 DFMPPRXY1 380h 0x01C0 8380 0x01C0 8780 DFOPT2 Destination FIFO Options Register 2 384h 0x01C0 8384 0x01C0 8784 DFSRC2 Destination FIFO Source Address Register 2 Destination FIFO Memory Protection Proxy Register 1 388h 0x01C0 8388 0x01C0 8788 DFCNT2 Destination FIFO Count Register 2 38Ch 0x01C0 838C 0x01C0 878C DFDST2 Destination FIFO Destination Address Register 2 390h 0x01C0 8390 0x01C0 8790 DFBIDX2 Destination FIFO B-Index Register 2 394h 0x01C0 8394 0x01C0 8794 DFMPPRXY2 3C0h 0x01C0 83C0 0x01C0 87C0 DFOPT3 Destination FIFO Options Register 3 3C4h 0x01C0 83C4 0x01C0 87C4 DFSRC3 Destination FIFO Source Address Register 3 3C8h 0x01C0 83C8 0x01C0 87C8 DFCNT3 Destination FIFO Count Register 3 3CCh 0x01C0 83CC 0x01C0 87CC DFDST3 Destination FIFO Destination Address Register 3 3D0h 0x01C0 83D0 0x01C0 87D0 DFBIDX3 Destination FIFO B-Index Register 3 3D4h 0x01C0 83D4 0x01C0 87D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy Register 2 Destination FIFO Memory Protection Proxy Register 3 Table 6-13 shows an abbreviation of the set of registers which make up the parameter set for each of 128 EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-14 shows the parameter set entry registers with relative memory address locations within each of the parameter sets. Table 6-13. EDMA Parameter Set RAM HEX ADDRESS RANGE DESCRIPTION 0x01C0 4000 - 0x01C0 401F Parameters Set 0 (8 32-bit words) 0x01C0 4020 - 0x01C0 403F Parameters Set 1 (8 32-bit words) 0x01C0 4040 - 0x01cC0 405F Parameters Set 2 (8 32-bit words) 0x01C0 4060 - 0x01C0 407F Parameters Set 3 (8 32-bit words) 0x01C0 4080 - 0x01C0 409F Parameters Set 4 (8 32-bit words) 0x01C0 40A0 - 0x01C0 40BF Parameters Set 5 (8 32-bit words) ... ... 0x01C0 4FC0 - 0x01C0 4FDF Parameters Set 126 (8 32-bit words) 0x01C0 4FE0 - 0x01C0 4FFF Parameters Set 127 (8 32-bit words) Table 6-14. Parameter Set Entries HEX OFFSET ADDRESS WITHIN THE PARAMETER SET 80 ACRONYM PARAMETER ENTRY 0x0000 OPT Option 0x0004 SRC Source Address 0x0008 A_B_CNT A Count, B Count 0x000C DST 0x0010 SRC_DST_BIDX Source B Index, Destination B Index 0x0014 LINK_BCNTRLD Link Address, B Count Reload Peripheral Information and Electrical Specifications Destination Address Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-14. Parameter Set Entries (continued) HEX OFFSET ADDRESS WITHIN THE PARAMETER SET ACRONYM 0x0018 SRC_DST_CIDX 0x001C CCNT PARAMETER ENTRY Source C Index, Destination C Index C Count Table 6-15. EDMA Events Event Name / Source Event 0 McASP0 Receive 16 MMCSD Receive 1 McASP0 Transmit 17 MMCSD Transmit 2 McASP1 Receive 18 SPI1 Receive 3 McASP1 Transmit 19 SPI1 Transmit 4 McASP2 Receive 20 Reserved 5 McASP2 Transmit 21 Reserved 6 GPIO Bank 0 Interrupt 22 GPIO Bank 2 Interrupt 7 GPIO Bank 1 Interrupt 23 GPIO Bank 3 Interrupt 8 UART0 Receive 24 I2C0 Receive 9 UART0 Transmit 25 I2C0 Transmit 10 Timer64P0 Event Out 12 26 I2C1 Receive 11 Timer64P0 Event Out 34 27 I2C1 Transmit 12 UART1 Receive 28 GPIO Bank 4 Interrupt 13 UART1 Transmit 29 GPIO Bank 5 Interrupt 14 SPI0 Receive 30 UART2 Receive 15 SPI0 Transmit 31 UART2 Transmit Submit Documentation Feedback Event Name / Source Peripheral Information and Electrical Specifications ADVANCE INFORMATION Event 81 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.10 External Memory Interface A (EMIFA) EMIFA is one of two external memory interfaces supported on the C6745/6747. It is primarily intended to support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However on C6745/6747 EMIFA also provides a secondary interface to SDRAM. 6.10.1 EMIFA Asynchronous Memory Support EMIFA supports asynchronous: • SRAM memories • NAND Flash memories • NOR Flash memories ADVANCE INFORMATION The EMIFA data bus width is up to 16-bits on the ZKB package and 8 bits on the PTP package. Both devices support up to fifteen address lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]) . All four chip selects are available on the ZKB package. Two of the four are available on the PTP package (EMA_CS[3:2]). Each chip select has the following individually programmable attributes: • Data Bus Width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turn around time • Extended Wait Option With Programmable Timeout • Select Strobe Option • NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes. 6.10.2 EMIFA Synchronous DRAM Memory Support The C6745/6747 ZKB package supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 6.10.1. It has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are: • One, Two, and Four Bank SDRAM devices • Devices with Eight, Nine, Ten, and Eleven Column Address • CAS Latency of two or three clock cycles • Sixteen Bit Data Bus Width • 3.3V LVCMOS Interface Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory contents; since the SDRAM will continue to refresh itself even without clocks from the DSP. Powerdown mode achieves even lower power, except the DSP must periodically wake the SDRAM up and issue refreshes if data retention is required. Finally, note that the EMIFA does not support Mobile SDRAM devices. 6.10.3 EMIFA Connection Examples Figure 6-13 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to EMIFA of a C6745/6747 device simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note that any type of asynchronous memory may be connected to EMA_CS[5:2]. 82 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 EMA_CS[0] EMA_CAS EMIFA EMA_RAS EMA_WE EMA_CLK EMA_SDCKE EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[0] EMA_WE_DQM[1] EMA_D[15:0] EMA_CS[2] EMA_CS[3] EMA_WAIT EMA_OE RESET EMA_BA[1] A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 6-14. This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to bootload it. Note that this example could also apply to the C6745 device; except only one multiplane NAND could be supported with only EMA_CS[3:2] available. GPIO (6 Pins) RESET ... CE CAS RAS WE SDRAM 2M x 16 x 4 CLK Bank CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] A[0] A[12:1] DQ[15:0] NOR CE FLASH WE 512K x 16 OE RESET A[18:13] RY/BY EMA_A[1] EMA_A[2] DVDD ALE CLE DQ[15:0] NAND FLASH CE 1Gb x 16 WE RE RB Figure 6-13. C6745/6747 Connection Diagram: SDRAM, NOR, NAND Submit Documentation Feedback Peripheral Information and Electrical Specifications 83 ADVANCE INFORMATION The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects, but this must be supported by second stage boot code stored in the external flash. TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com EMA_A[1] EMA_A[2] EMA_D[7:0] EMA_CS[2] EMA_CS[3] EMA_WE EMA_OE EMIFA EMA_WAIT ADVANCE INFORMATION ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane DVDD EMA_CS[4] EMA_CS[5] Figure 6-14. C6745/6747 EMIFA Connection Diagram: Multiple NAND Flash Planes 6.10.4 External Memory Interface (EMIF) Table 6-16 is a list of the EMIF registers. For more information about these registers, see the C674x DSP External Memory Interface (EMIF) User's Guide (literature number SPRU711). Table 6-16. External Memory Interface (EMIFA) Registers BYTE ADDRESS 84 Register Name Register Description 0x6800 0000 MIDR Module ID Register 0x6800 0004 AWCC Asynchronous Wait Cycle Configuration Register 0x6800 0008 SDCR SDRAM Configuration Register 0x6800 000C SDRCR SDRAM Refresh Control Register 0x6800 0010 CE2CFG Asynchronous 1 Configuration Register 0x6800 0014 CE3CFG Asynchronous 2 Configuration Register 0x6800 0018 CE4CFG Asynchronous 3 Configuration Register 0x6800 001C CE5CFG Asynchronous 4 Configuration Register 0x6800 0020 SDTIMR SDRAM Timing Register 0x6800 003C SDSRETR SDRAM Self Refresh Exit Timing Register 0x6800 0040 INTRAW EMIFA Interrupt Raw Register 0x6800 0044 INTMSK EMIFA Interrupt Mask Register 0x6800 0048 INTMSKSET EMIFA Interrupt Mask Set Register 0x6800 004C INTMSKCLR EMIFA Interrupt Mask Clear Register 0x6800 0060 NANDFCR NAND Flash Control Register 0x6800 0064 NANDFSR NAND Flash Status Register 0x6800 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space) 0x6800 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space) 0x6800 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space) 0x6800 007C NANDF4ECC NAND Flash 4 ECC Register (CS5 Space) 0x6800 00BC NAND4BITECCLOAD NAND Flash 4-Bit ECC Load Register 0x6800 00C0 NAND4BITECC1 NAND Flash 4-Bit ECC Register 1 0x6800 00C4 NAND4BITECC2 NAND Flash 4-Bit ECC Register 2 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-16. External Memory Interface (EMIFA) Registers (continued) Register Name Register Description 0x6800 00C8 NAND4BITECC3 NAND Flash 4-Bit ECC Register 3 0x6800 00CC NAND4BITECC4 NAND Flash 4-Bit ECC Register 4 0x6800 00D0 NANDERRADD1 NAND Flash 4-Bit ECC Error Address Register 1 0x6800 00D4 NANDERRADD2 NAND Flash 4-Bit ECC Error Address Register 2 0x6800 00D8 NANDERRVAL1 NAND Flash 4-Bit ECC Error Value Register 1 0x6800 00DC NANDERRVAL2 NAND Flash 4-Bit ECC Error Value Register 2 ADVANCE INFORMATION BYTE ADDRESS Submit Documentation Feedback Peripheral Information and Electrical Specifications 85 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.10.5 EMIFA Electrical Data/Timing Table 6-17 through Table 6-20 assume testing over recommended operating conditions. Table 6-17. EMIFA SDRAM Interface Timing Requirements NO. MIN 19 tsu(EMA_DV-EM_CLKH) Input setup time, read data valid on EMA_D[31:0] before EMA_CLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMA_D[31:0] after EMA_CLK rising MAX UNIT 1 ns 1.5 ns Table 6-18. EMIFA SDRAM Interface Switching Characteristics ADVANCE INFORMATION NO. PARAMETER MIN 1 tc(CLK) Cycle time, EMIF clock EMA_CLK 2 tw(CLK) Pulse width, EMIF clock EMA_CLK high or low 3 td(CLKH-CSV) Delay time, EMA_CLK rising to EMA_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMA_CLK rising to EMA_CS[0] invalid 5 td(CLKH-DQMV) Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid 7 td(CLKH-AV) Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] invalid 9 td(CLKH-DV) Delay time, EMA_CLK rising to EMA_D[15:0] valid 10 toh(CLKH-DIV) Output hold time, EMA_CLK rising to EMA_D[15:0] invalid 11 td(CLKH-RASV) Delay time, EMA_CLK rising to EMA_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMA_CLK rising to EMA_RAS invalid 13 td(CLKH-CASV) Delay time, EMA_CLK rising to EMA_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMA_CLK rising to EMA_CAS invalid 15 td(CLKH-WEV) Delay time, EMA_CLK rising to EMA_WE valid 16 toh(CLKH-WEIV) Output hold time, EMA_CLK rising to EMA_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated 18 tena(CLKH-DLZ) Output hold time, EMA_CLK rising to EMA_D[15:0] driving MAX UNIT 10 ns 3 ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns Table 6-19. EMIFA Asynchronous Memory Timing Requirements (1) C6745/6747 NO . MIN Nom MAX UNIT READS and WRITES 2 tw(EM_WAIT) Pulse duration, EM_WAIT assertion and deassertion 2E ns READS 12 tsu(EMDV-EMOEH) Setup time, EM_D[15:0] valid before EM_OE high 3 ns 13 th(EMOEH-EMDIV) Hold time, EM_D[15:0] valid after EM_OE high 0.5 ns 14 tsu(EMOEL- Setup Time, EM_WAIT asserted before end of Strobe Phase (2) 4E+3 ns EMWAIT) WRITES (1) (2) 86 E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended wait states. Figure 6-19 and Figure 6-20 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-19. EMIFA Asynchronous Memory Timing Requirements (continued) C6745/6747 NO . 28 MIN tsu(EMWEL- Setup Time, EM_WAIT asserted before end of Strobe Phase (2) EMWAIT) Nom UNIT MAX 4E+3 ns Table 6-20. EMIFA Asynchronous Memory Switching Characteristics (1) (2) (3) NO . C6745/6747 PARAMETER UNIT MIN Nom MAX (TA)*E - 3 (TA)*E (TA)*E + 3 ns EMIF read cycle time (EW = 0) (RS+RST+RH)*E -3 (RS+RST+RH)*E (RS+RST+RH)*E +3 ns EMIF read cycle time (EW = 1) (RS+RST+RH+(E WC*16))*E - 3 (RS+RST+RH+(EW (RS+RST+RH+(E C*16))*E WC*16))*E + 3 ns td(TURNAROUND) Turn around time ADVANCE INFORMATION READS and WRITES 1 READS 3 4 5 tc(EMRCYCLE) tsu(EMCEL-EMOEL) th(EMOEH-EMCEH) Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0) (RS)*E-3 (RS)*E (RS)*E+3 ns Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1) -3 0 +3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0) (RH)*E - 3 (RH)*E (RH)*E + 3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns 6 tsu(EMBAV-EMOEL) Output setup time, EMA_BA[1:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 7 th(EMOEH-EMBAIV) Output hold time, EMA_OE high to EMA_BA[1:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns 8 tsu(EMBAV-EMOEL) Output setup time, EMA_A[13:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 9 th(EMOEH-EMAIV) Output hold time, EMA_OE high to EMA_A[13:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns EMA_OE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns 10 tw(EMOEL) EMA_OE active low width (EW = 1) (RST+(EWC*16)) *E-3 (RST+(EWC*16))*E (RST+(EWC*16)) *E+3 ns 11 td(EMWAITH- 3E-3 4E 4E+3 ns EMIF write cycle time (EW = 0) (WS+WST+WH)* E-3 (WS+WST+WH)*E (WS+WST+WH)* E+3 ns EMIF write cycle time (EW = 1) (WS+WST+WH+( EWC*16))*E - 3 (WS+WST+WH+(E (WS+WST+WH+( WC*16))*E EWC*16))*E + 3 ns EMOEH) Delay time from EMA_WAIT deasserted to EMA_OE high WRITES 15 16 (1) (2) (3) tc(EMWCYCLE) tsu(EMCEL-EMWEL) Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0) (WS)*E - 3 (WS)*E (WS)*E + 3 ns Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1) -3 0 +3 ns TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256]. See the C6745/6747 Asynchronous External Memory Interface (EMIF) User's Guide (SPRUED1) for more information. E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the C6745/6747 Asynchronous External Memory Interface (EMIF) User's Guide (SPRUED1) for more information. Submit Documentation Feedback Peripheral Information and Electrical Specifications 87 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-20. EMIFA Asynchronous Memory Switching Characteristics (continued) NO . 17 18 th(EMWEH-EMCEH) tsu(EMDQMVEMWEL) 19 C6745/6747 PARAMETER th(EMWEHEMDQMIV) UNIT MIN Nom MAX Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0) (WH)*E-3 (WH)*E (WH)*E+3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns ADVANCE INFORMATION 20 tsu(EMBAV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 21 th(EMWEH-EMBAIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 22 tsu(EMAV-EMWEL) Output setup time, EMA_A[13:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 23 th(EMWEH-EMAIV) Output hold time, EMA_WE high to EMA_A[13:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns EMA_WE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns 24 tw(EMWEL) EMA_WE active low width (EW = 1) (WST+(EWC*16)) *E-3 (WST+(EWC*16)) (WST+(EWC*16))*E *E+3 ns 25 td(EMWAITHEMWEH) Delay time from EMA_WAIT deasserted to EMA_WE high 3E-3 4E 4E+3 ns 26 tsu(EMDV-EMWEL) Output setup time, EMA_D[15:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 27 th(EMWEH-EMDIV) Output hold time, EMA_WE high to EMA_D[15:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns BASIC SDRAM WRITE OPERATION 1 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 EMA_BA[1:0] EMA_A[12:0] 9 10 EMA_D[15:0] 11 12 EMA_RAS 13 EMA_CAS 15 16 EMA_WE Figure 6-15. EMIFA Basic SDRAM Write Operation 88 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 BASIC SDRAM READ OPERATION 1 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 ADVANCE INFORMATION EMA_BA[1:0] EMA_A[12:0] 19 17 2 EM_CLK Delay 20 18 EMA_D[15:0] 11 12 EMA_RAS 13 14 EMA_CAS EMA_WE Figure 6-16. EMIFA Basic SDRAM Read Operation 3 1 EMA_CE[5:2] EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[1:0] 4 8 5 9 6 29 7 30 10 EMA_OE 13 12 EMA_D[15:0] EMA_WE Figure 6-17. Asynchronous Memory Read Timing for EMIFA Submit Documentation Feedback Peripheral Information and Electrical Specifications 89 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 15 1 EMA_CE[5:2] EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[1:0] ADVANCE INFORMATION 16 17 18 19 20 21 24 22 23 EMA_WE 27 26 EMA_D[15:0] EMA_OE Figure 6-18. Asynchronous Memory Write Timing for EMIFA EMA_CE[5:2] SETUP STROBE Extended Due to EMA_WAIT STROBE HOLD EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] 14 11 EMA_OE 2 EMA_WAIT Asserted 2 Deasserted Figure 6-19. EMA_WAIT Read Timing Requirements 90 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 EMA_CE[5:2] SETUP STROBE Extended Due to EMA_WAIT STROBE HOLD EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] 28 25 2 EMA_WAIT Asserted ADVANCE INFORMATION EMA_WE 2 Deasserted Figure 6-20. EMA_WAIT Write Timing Requirements Submit Documentation Feedback Peripheral Information and Electrical Specifications 91 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.11 External Memory Interface B (EMIFB) Figure 6-21, EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and its connections within the device. Multiple requesters have access to EMIFB through a switched central resource (indicated as crossbar in the figure). The EMIFB implements a split transaction internal bus, allowing concurrence between reads and writes from the various requesters. EMIFB Registers CPU ADVANCE INFORMATION EDMA Crossbar Master Peripherals (USB, UHPI...) EMB_CS EMB_CAS Cmd/Write EMB_RAS FIFO EMB_WE EMB_CLK EMB_SDCKE Read EMB_BA[1:0] FIFO EMB_A[x:0] EMB_D[x:0] EMB_WE_DQM[x:0] SDRAM Interface Figure 6-21. EMIFB Functional Block Diagram 92 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.11.1 Interfacing to SDRAM Figure 6-22 shows an interface between the EMIFB and a 2M × 16 × 4 bank SDRAM device. In addition, Figure 6-23 shows an interface between the EMIFB and a 2M × 32 × 4 bank SDRAM device and Figure 6-24 shows an interface between the EMIFB and two 4M × 16 × 4 bank SDRAM devices. Refer to Table 6-21, as an example that shows additional list of commonly-supported SDRAM devices and the required connections for the address pins. Note that in Table 6-21, page size/column size (not indicated in the table) is varied to get the required addressability range. EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[11:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] SDRAM 2M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] Figure 6-22. EMIFB to 2M × 16 × 4 bank SDRAM Interface EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[11:0] EMB_WE_DQM[3:0] EMB_D[31:0] SDRAM 2M x 32 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[11:0] DQM[3:0] DQ[31:0] Figure 6-23. EMIFB to 2M × 32 × 4 bank SDRAM Interface Submit Documentation Feedback Peripheral Information and Electrical Specifications 93 ADVANCE INFORMATION The EMIFB supports a glueless interface to SDRAM devices with the following characteristics: • Pre-charge bit is A[10] • The number of column address bits is 8, 9, 10 or 11 • The number of row address bits is 13 (in case of mobile SDR, number of row address bits can be 9, 10, 11, 12, or 13) • The number of internal banks is 1, 2 or 4 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com SDRAM 4M x 16 x 4 Bank EMIFB ADVANCE INFORMATION EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[12:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] EMB_WE_DQM[2] EMB_WE_DQM[3] EMB_D[31:16] CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] SDRAM 4M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] Figure 6-24. EMIFB to Dual 4M × 16 × 4 bank SDRAM Interface Table 6-21. Example of 16/32-bit EMIFB Address Pin Connections SDRAM Size Width Banks 64M bits ×16 4 ×32 128M bits 256M bits ×16 4 SDRAM A[11:0] EMIFB EMB_A[11:0] SDRAM A[10:0] EMIFB EMB_A[10:0] SDRAM A[11:0] EMIFB EMB_A[11:0] ×32 4 SDRAM A[11:0] EMIFB EMB_A[11:0] ×16 4 SDRAM A[12:0] EMIFB EMB_A[12:0] ×32 512M bits 4 Address Pins ×16 ×32 4 4 4 SDRAM A[11:0] EMIFB EMB_A[11:0] SDRAM A[12:0] EMIFB EMB_A[12:0] SDRAM A[12:0] EMIFB EMB_A[12:0] Table 6-22 is a list of the EMIFB registers. 94 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 BYTE ADDRESS Acronym Register 0xB000 0000 MIDR Module ID Register 0xB000 0008 SDCFG SDRAM Configuration Register 0xB000 000C SDRFC SDRAM Refresh Control Register 0xB000 0010 SDTIM1 SDRAM Timing Register 1 0xB000 0014 SDTIM2 SDRAM Timing Register 2 0xB000 001C SDCFG2 SDRAM Configuration 2 Register 0xB000 0020 BPRIO Peripheral Bus Burst Priority Register 0xB000 0040 PC1 Performance Counter 1 Register 0xB000 0044 PC2 Performance Counter 2 Register 0xB000 0048 PCC Performance Counter Configuration Register 0xB000 004C PCMRS Performance Counter Master Region Select Register 0xB000 0050 PCT Performance Counter Time Register 0xB000 00C0 IRR Interrupt Raw Register 0xB000 00C4 IMR Interrupt Mask Register 0xB000 00C8 IMSR Interrupt Mask Set Register 0xB000 00CC IMCR Interrupt Mask Clear Register 6.11.2 EMIFB Electrical Data/Timing Table 6-23. EMIFB SDRAM Interface Timing Requirements NO. MIN 19 tsu(EMA_DV-EM_CLKH) Input setup time, read data valid on EMB_D[31:0] before EMB_CLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMB_D[31:0] after EMB_CLK rising MAX UNIT 0.5 ns 1.5 ns Table 6-24. EMIFB SDRAM Interface Switching Characteristics NO. PARAMETER MIN 1 tc(CLK) Cycle time, EMIF clock EMB_CLK 2 tw(CLK) Pulse width, EMIF clock EMB_CLK high or low 3 td(CLKH-CSV) Delay time, EMB_CLK rising to EMB_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMB_CLK rising to EMB_CS[0] invalid 5 td(CLKH-DQMV) Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid 7 td(CLKH-AV) Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] invalid 7.5 9 td(CLKH-DV) Delay time, EMB_CLK rising to EMB_D[31:0] valid 10 toh(CLKH-DIV) Output hold time, EMB_CLK rising to EMB_D[31:0] invalid 11 td(CLKH-RASV) Delay time, EMB_CLK rising to EMB_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMB_CLK rising to EMB_RAS invalid 13 td(CLKH-CASV) Delay time, EMB_CLK rising to EMB_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMB_CLK rising to EMB_CAS invalid 15 td(CLKH-WEV) Delay time, EMB_CLK rising to EMB_WE valid 16 toh(CLKH-WEIV) Output hold time, EMB_CLK rising to EMB_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated 18 tena(CLKH-DLZ) Output hold time, EMB_CLK rising to EMB_D[31:0] driving Submit Documentation Feedback MAX UNIT ns 3 ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 Peripheral Information and Electrical Specifications ns ns 95 ADVANCE INFORMATION Table 6-22. EMIFB Base Controller Registers TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 1 BASIC SDRAM WRITE OPERATION 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] ADVANCE INFORMATION EMB_A[12:0] 9 10 EMB_D[31:0] 11 12 EMB_RAS 13 EMB_CAS 15 16 EMB_WE Figure 6-25. EMIFB Basic SDRAM Write Operation BASIC SDRAM READ OPERATION 1 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] EMB_A[12:0] 19 17 20 2 EM_CLK Delay 18 EMB_D[31:0] 11 12 EMB_RAS 13 14 EMB_CAS EMB_WE Figure 6-26. EMIFB Basic SDRAM Read Operation 96 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.12 MMC / SD / SDIO (MMCSD) 6.12.1 MMCSD Peripheral Description The C6745/6747 includes an MMCSD controller which is compliant with MMC V3.31, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications. ADVANCE INFORMATION The MMC/SD Controller has following features: • MultiMediaCard (MMC). • Secure Digital (SD) Memory Card. • MMC/SD protocol support. • SDIO protocol support. • Programmable clock frequency. • 512 bit Read/Write FIFO to lower system overhead. • Slave EDMA transfer capability. The C6745/6747 MMC/SD Controller does not support SPI mode. 6.12.2 MMCSD Peripheral Register Description(s) Table 6-25. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers Offset Acronym Register Description 0x01C4 0000 MMCCTL MMC Control Register 0x01C4 0004 MMCCLK MMC Memory Clock Control Register MMC Status Register 0 0x01C4 0008 MMCST0 0x01C4 000C MMCST1 MMC Status Register 1 0x01C4 0010 MMCIM MMC Interrupt Mask Register 0x01C4 0014 MMCTOR MMC Response Time-Out Register 0x01C4 0018 MMCTOD MMC Data Read Time-Out Register 0x01C4 001C MMCBLEN MMC Block Length Register 0x01C4 0020 MMCNBLK MMC Number of Blocks Register 0x01C4 0024 MMCNBLC MMC Number of Blocks Counter Register 0x01C4 0028 MMCDRR MMC Data Receive Register 0x01C4 002C MMCDXR MMC Data Transmit Register 0x01C4 0030 MMCCMD MMC Command Register 0x01C4 0034 MMCARGHL MMC Argument Register 0x01C4 0038 MMCRSP01 MMC Response Register 0 and 1 0x01C4 003C MMCRSP23 MMC Response Register 2 and 3 0x01C4 0040 MMCRSP45 MMC Response Register 4 and 5 0x01C4 0044 MMCRSP67 MMC Response Register 6 and 7 0x01C4 0048 MMCDRSP MMC Data Response Register 0x01C4 0050 MMCCIDX MMC Command Index Register 0x01C4 0064 SDIOCTL SDIO Control Register 0x01C4 0068 SDIOST0 SDIO Status Register 0 0x01C4 006C SDIOIEN SDIO Interrupt Enable Register 0x01C4 0070 SDIOIST SDIO Interrupt Status Register 0x01C4 0074 MMCFIFOCTL MMC FIFO Control Register Submit Documentation Feedback Peripheral Information and Electrical Specifications 97 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.12.3 MMC/SD Electrical Data/Timing Table 6-26. Timing Requirements for MMC/SD Module (see Figure 6-28 and Figure 6-30) NO. MIN MAX UNIT 1 tsu(CMDV-CLKH) Setup time, MMCSD_CMD valid before MMCSD_CLK high 3.2 ns 2 th(CLKH-CMDV) Hold time, MMCSD_CMD valid after MMCSD_CLK high 1.5 ns 3 tsu(DATV-CLKH) Setup time, MMCSD_DATx valid before MMCSD_CLK high 3.2 ns 4 th(CLKH-DATV) Hold time, MMCSD_DATx valid after MMCSD_CLK high 1.5 ns ADVANCE INFORMATION Table 6-27. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module (see Figure 6-27 through Figure 6-30) NO. PARAMETER MIN MAX UNIT 7 f(CLK) Operating frequency, MMCSD_CLK 0 52 MHz 8 f(CLK_ID) Identification mode frequency, MMCSD_CLK 0 400 KHz 9 tW(CLKL) Pulse width, MMCSD_CLK low 6.5 10 tW(CLKH) Pulse width, MMCSD_CLK high 6.5 ns 11 tr(CLK) Rise time, MMCSD_CLK 3 ns 12 tf(CLK) Fall time, MMCSD_CLK 3 ns 13 td(CLKL-CMD) Delay time, MMCSD_CLK low to MMCSD_CMD transition -4.5 2 ns 14 td(CLKL-DAT) Delay time, MMCSD_CLK low to MMCSD_DATx transition -4.5 2 ns ns 10 9 7 MMCSD_CLK 13 13 START MMCSD_CMD 13 XMIT Valid Valid 13 Valid END Figure 6-27. MMC/SD Host Command Timing 9 7 10 MMCSD_CLK 1 2 START MMCSD_CMD XMIT Valid Valid Valid END Figure 6-28. MMC/SD Card Response Timing 10 9 7 MMCSD_CLK 14 MMCSD_DATx 14 START 14 D0 D1 Dx 14 END Figure 6-29. MMC/SD Host Write Timing 98 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 9 10 7 MMCSD_CLK 4 4 3 Start MMCSD_DATx 3 D0 D1 Dx End ADVANCE INFORMATION Figure 6-30. MMC/SD Host Read and Card CRC Status Timing Submit Documentation Feedback Peripheral Information and Electrical Specifications 99 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.13 Ethernet Media Access Controller (EMAC) The Ethernet Media Access Controller (EMAC) provides an efficient interface between C6745/6747 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The EMAC controls the flow of packet data from the C6745/6747 device to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the C6745/6747 device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. ADVANCE INFORMATION 6.13.1 EMAC Peripheral Register Description(s) Table 6-28. Ethernet Media Access Controller (EMAC) Registers Offset BYTE ADDRESS REGISTER Register Description 0h 0x01E2 3000 TXREV Transmit Revision Register 4h 0x01E2 3004 TXCONTROL Transmit Control Register 8h 0x01E2 3008 TXTEARDOWN Transmit Teardown Register 10h 0x01E2 3010 RXREV Receive Revision Register 14h 0x01E2 3014 RXCONTROL Receive Control Register 18h 0x01E2 3018 RXTEARDOWN Receive Teardown Register 80h 0x01E2 3080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register 84h 0x01E2 3084 TXINTSTATMASKED Transmit Interrupt Status (Masked) Register 88h 0x01E2 3088 TXINTMASKSET Transmit Interrupt Mask Set Register 8Ch 0x01E2 308C TXINTMASKCLEAR Transmit Interrupt Clear Register 90h 0x01E2 3090 MACINVECTOR MAC Input Vector Register 94h 0x01E2 3094 MACEOIVECTOR MAC End Of Interrupt Vector Register A0h 0x01E2 30A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) Register A4h 0x01E2 30A4 RXINTSTATMASKED Receive Interrupt Status (Masked) Register A8h 0x01E2 30A8 RXINTMASKSET Receive Interrupt Mask Set Register ACh 0x01E2 30AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register B0h 0x01E2 30B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register B4h 0x01E2 30B4 MACINTSTATMASKED MAC Interrupt Status (Masked) Register B8h 0x01E2 30B8 MACINTMASKSET MAC Interrupt Mask Set Register BCh 0x01E2 30BC MACINTMASKCLEAR MAC Interrupt Mask Clear Register 100h 0x01E2 3100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register 104h 0x01E2 3104 RXUNICASTSET Receive Unicast Enable Set Register 108h 0x01E2 3108 RXUNICASTCLEAR Receive Unicast Clear Register 10Ch 0x01E2 310C RXMAXLEN Receive Maximum Length Register 110h 0x01E2 3110 RXBUFFEROFFSET Receive Buffer Offset Register 114h 0x01E2 3114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register 120h 0x01E2 3120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register 124h 0x01E2 3124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register 128h 0x01E2 3128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register 12Ch 0x01E2 312C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register 130h 0x01E2 3130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register 134h 0x01E2 3134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register 138h 0x01E2 3138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register 13Ch 0x01E2 313C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register 100 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Offset BYTE ADDRESS REGISTER Register Description 140h 0x01E2 3140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register 144h 0x01E2 3144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register 148h 0x01E2 3148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register 14Ch 0x01E2 314C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register 150h 0x01E2 3150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register 154h 0x01E2 3154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register 158h 0x01E2 3158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register 15Ch 0x01E2 315C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register 160h 0x01E2 3160 MACCONTROL MAC Control Register 164h 0x01E2 3164 MACSTATUS MAC Status Register 168h 0x01E2 3168 EMCONTROL Emulation Control Register 16Ch 0x01E2 316C FIFOCONTROL FIFO Control Register 170h 0x01E2 3170 MACCONFIG MAC Configuration Register 174h 0x01E2 3174 SOFTRESET Soft Reset Register 1D0h 0x01E2 31D0 MACSRCADDRLO MAC Source Address Low Bytes Register 1D4h 0x01E2 31D4 MACSRCADDRHI MAC Source Address High Bytes Register 1D8h 0x01E2 31D8 MACHASH1 MAC Hash Address Register 1 1DCh 0x01E2 31DC MACHASH2 MAC Hash Address Register 2 1E0h 0x01E2 31E0 BOFFTEST Back Off Test Register 1E4h 0x01E2 31E4 TPACETEST Transmit Pacing Algorithm Test Register 1E8h 0x01E2 31E8 RXPAUSE Receive Pause Timer Register 1ECh 0x01E2 31EC TXPAUSE Transmit Pause Timer Register 0x01E2 3200 - 0x01E2 32FC (see Table 6-29) 0x01E2 3500 MACADDRLO MAC Address Low Bytes Register, Used in Receive Address Matching MACADDRHI MAC Address High Bytes Register, Used in Receive Address Matching 500h 504h 0x01E2 3504 EMAC Statistics Registers 508h 0x01E2 3508 MACINDEX MAC Index Register 600h 0x01E2 3600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register 604h 0x01E2 3604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register 608h 0x01E2 3608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 60Ch 0x01E2 360C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register 610h 0x01E2 3610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register 614h 0x01E2 3614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register 618h 0x01E2 3618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 61Ch 0x01E2 361C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register 620h 0x01E2 3620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register 624h 0x01E2 3624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register 628h 0x01E2 3628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register 62Ch 0x01E2 362C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register 630h 0x01E2 3630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register 634h 0x01E2 3634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register 638h 0x01E2 3638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register 63Ch 0x01E2 363C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register 640h 0x01E2 3640 TX0CP Transmit Channel 0 Completion Pointer Register 644h 0x01E2 3644 TX1CP Transmit Channel 1 Completion Pointer Register 648h 0x01E2 3648 TX2CP Transmit Channel 2 Completion Pointer Register 64Ch 0x01E2 364C TX3CP Transmit Channel 3 Completion Pointer Register Submit Documentation Feedback Peripheral Information and Electrical Specifications 101 ADVANCE INFORMATION Table 6-28. Ethernet Media Access Controller (EMAC) Registers (continued) TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-28. Ethernet Media Access Controller (EMAC) Registers (continued) Offset BYTE ADDRESS REGISTER Register Description 650h 0x01E2 3650 TX4CP Transmit Channel 4 Completion Pointer Register 654h 0x01E2 3654 TX5CP Transmit Channel 5 Completion Pointer Register ADVANCE INFORMATION 658h 0x01E2 3658 TX6CP Transmit Channel 6 Completion Pointer Register 65Ch 0x01E2 365C TX7CP Transmit Channel 7 Completion Pointer Register 660h 0x01E2 3660 RX0CP Receive Channel 0 Completion Pointer Register 664h 0x01E2 3664 RX1CP Receive Channel 1 Completion Pointer Register 668h 0x01E2 3668 RX2CP Receive Channel 2 Completion Pointer Register 66Ch 0x01E2 366C RX3CP Receive Channel 3 Completion Pointer Register 670h 0x01E2 3670 RX4CP Receive Channel 4 Completion Pointer Register 674h 0x01E2 3674 RX5CP Receive Channel 5 Completion Pointer Register 678h 0x01E2 3678 RX6CP Receive Channel 6 Completion Pointer Register 67Ch 0x01E2 367C RX7CP Receive Channel 7 Completion Pointer Register Table 6-29. EMAC Statistics Registers 102 HEX ADDRESS RANGE ACRONYM 0x01E2 3200 RXGOODFRAMES REGISTER NAME Good Receive Frames Register 0x01E2 3204 RXBCASTFRAMES Broadcast Receive Frames Register (Total number of good broadcast frames received) 0x01E2 3208 RXMCASTFRAMES Multicast Receive Frames Register (Total number of good multicast frames received) 0x01E2 320C RXPAUSEFRAMES Pause Receive Frames Register 0x01E2 3210 RXCRCERRORS 0x01E2 3214 RXALIGNCODEERRORS 0x01E2 3218 RXOVERSIZED 0x01E2 321C RXJABBER 0x01E2 3220 RXUNDERSIZED Receive Undersized Frames Register (Total number of undersized frames received) 0x01E2 3224 RXFRAGMENTS Receive Frame Fragments Register 0x01E2 3228 RXFILTERED 0x01E2 322C RXQOSFILTERED 0x01E2 3230 RXOCTETS 0x01E2 3234 TXGOODFRAMES Good Transmit Frames Register (Total number of good frames transmitted) Receive CRC Errors Register (Total number of frames received with CRC errors) Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors) Receive Oversized Frames Register (Total number of oversized frames received) Receive Jabber Frames Register (Total number of jabber frames received) Filtered Receive Frames Register Received QOS Filtered Frames Register Receive Octet Frames Register (Total number of received bytes in good frames) 0x01E2 3238 TXBCASTFRAMES Broadcast Transmit Frames Register 0x01E2 323C TXMCASTFRAMES Multicast Transmit Frames Register 0x01E2 3240 TXPAUSEFRAMES Pause Transmit Frames Register 0x01E2 3244 TXDEFERRED Deferred Transmit Frames Register 0x01E2 3248 TXCOLLISION Transmit Collision Frames Register 0x01E2 324C TXSINGLECOLL 0x01E2 3250 TXMULTICOLL 0x01E2 3254 TXEXCESSIVECOLL 0x01E2 3258 TXLATECOLL 0x01E2 325C TXUNDERRUN 0x01E2 3260 TXCARRIERSENSE 0x01E2 3264 TXOCTETS Peripheral Information and Electrical Specifications Transmit Single Collision Frames Register Transmit Multiple Collision Frames Register Transmit Excessive Collision Frames Register Transmit Late Collision Frames Register Transmit Underrun Error Register Transmit Carrier Sense Errors Register Transmit Octet Frames Register Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-29. EMAC Statistics Registers (continued) HEX ADDRESS RANGE ACRONYM REGISTER NAME 0x01E2 3268 FRAME64 Transmit and Receive 64 Octet Frames Register 0x01E2 326C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register 0x01E2 3270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 0x01E2 3274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 0x01E2 3278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 0x01E2 327C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register 0x01E2 3280 NETOCTETS 0x01E2 3284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register 0x01E2 3288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register 0x01E2 328C RXDMAOVERRUNS Receive DMA Start of Frame and Middle of Frame Overruns Register Table 6-30. EMAC Control Module Registers BYTE ADDRESS Acronym Register Description 0x01E2 2000 REV EMAC Control Module Revision Register 0x01E2 2004 SOFTRESET EMAC Control Module Software Reset Register 0x01E2 200C INTCONTROL EMAC Control Module Interrupt Control Register 0x01E2 2010 C0RXTHRESHEN EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register 0x01E2 2014 C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register 0x01E2 2018 C0TXEN EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register 0x01E2 201C C0MISCEN EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register 0x01E2 2020 C1RXTHRESHEN EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register 0x01E2 2024 C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register 0x01E2 2028 C1TXEN EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register 0x01E2 202C C1MISCEN EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register 0x01E2 2030 C2RXTHRESHEN EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register 0x01E2 2034 C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register 0x01E2 2038 C2TXEN EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register 0x01E2 203C C2MISCEN EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register 0x01E2 2040 C0RXTHRESHSTAT EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register 0x01E2 2044 C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register 0x01E2 2048 C0TXSTAT EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register 0x01E2 204C C0MISCSTAT EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register 0x01E2 2050 C1RXTHRESHSTAT EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register 0x01E2 2054 C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register 0x01E2 2058 C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register 0x01E2 205C C1MISCSTAT EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register 0x01E2 2060 C2RXTHRESHSTAT EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register 0x01E2 2064 C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register 0x01E2 2068 C2TXSTAT EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register Submit Documentation Feedback Peripheral Information and Electrical Specifications 103 ADVANCE INFORMATION Network Octet Frames Register TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-30. EMAC Control Module Registers (continued) BYTE ADDRESS ADVANCE INFORMATION Acronym Register Description 0x01E2 206C C2MISCSTAT EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register 0x01E2 2070 C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register 0x01E2 2074 C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register 0x01E2 2078 C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register 0x01E2 207C C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register 0x01E2 2080 C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register 0x01E2 2084 C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register Table 6-31. EMAC Control Module RAM HEX ADDRESS RANGE ACRONYM 0x01E2 0000 - 0x01E2 1FFF REGISTER NAME EMAC Local Buffer Descriptor Memory Table 6-32. RMII Timing Requirements NO. PARAMETER MIN TYP MAX 20 UNIT 1 tc(REFCLK) Cycle Time, REF_CLK 2 tw(REFCLKH) Pulse Width, REF_CLK High 7 13 ns ns 3 tw(REFCLKL) Pulse Width, REF_CLK Low 7 13 ns 6 tsu(RXD-REFCLK) Input Setup Time, RXD Valid before REF_CLK High 4 ns 7 th(REFCLK-RXD) Input Hold Time, RXD Valid after REF_CLK High 2 ns 8 tsu(CRSDV-REFCLK) Input Setup Time, CRSDV Valid before REF_CLK High 4 ns 9 th(REFCLK-CRSDV) Input Hold Time, CRSDV Valid after REF_CLK High 2 ns 10 tsu(RXER-REFCLK) Input Setup Time, RXER Valid before REF_CLK High 4 ns 11 th(REFCLKR-RXER) Input Hold Time, RXER Valid after REF_CLK High 2 ns Table 6-33. RMII Timing Requirements NO. 104 PARAMETER MIN TYP MAX UNIT 4 td(REFCLK-TXD) Output Delay Time, REF_CLK High to TXD Valid 2.5 13 ns 5 td(REFCLK-TXEN) Output Delay Time, REF_CLK High to TXEN Valid 2.5 13 ns Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 1 2 3 RMII_MHz_50_CLK 5 5 RMII_TXEN 4 RMII_TXD[1:0] 6 7 8 ADVANCE INFORMATION RMII_RXD[1:0] 9 RMII_CRS_DV 10 11 RMII_RXER Figure 6-31. RMII Timing Diagram Submit Documentation Feedback Peripheral Information and Electrical Specifications 105 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.14 Management Data Input/Output (MDIO) The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time. ADVANCE INFORMATION For more detailed information on the MDIO peripheral, see the TMS320C6745/C6747 DSP Peripherals Overview Reference Guide. – Literature Number SPRUFK9. 6.14.1 MDIO Registers For a list of supported MDIO registers see Table 6-34 [MDIO Registers]. Table 6-34. MDIO Register Memory Map HEX ADDRESS RANGE ACRONYM 0x01E2 4000 REV 0x01E2 4004 CONTROL REGISTER NAME Revision Identification Register MDIO Control Register 0x01E2 4008 ALIVE MDIO PHY Alive Status Register 0x01E2 400C LINK MDIO PHY Link Status Register 0x01E2 4010 LINKINTRAW 0x01E2 4014 LINKINTMASKED 0x01E2 4018 – 0x01E2 4020 USERINTRAW 0x01E2 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register MDIO User Command Complete Interrupt Mask Set Register MDIO Link Status Change Interrupt (Unmasked) Register MDIO Link Status Change Interrupt (Masked) Register Reserved MDIO User Command Complete Interrupt (Unmasked) Register 0x01E2 4028 USERINTMASKSET 0x01E2 402C USERINTMASKCLEAR 0x01E2 4030 - 0x01E2 407C – 0x01E2 4080 USERACCESS0 MDIO User Access Register 0 0x01E2 4084 USERPHYSEL0 MDIO User PHY Select Register 0 0x01E2 4088 USERACCESS1 MDIO User Access Register 1 0x01E2 408C USERPHYSEL1 MDIO User PHY Select Register 1 0x01E2 4090 - 0x01E2 47FF – MDIO User Command Complete Interrupt Mask Clear Register Reserved Reserved 6.14.2 Management Data Input/Output (MDIO) Electrical Data/Timing Table 6-35. Timing Requirements for MDIO Input (see Figure 6-32 and Figure 6-33) NO. MIN MAX UNIT 1 tc(MDCLK) Cycle time, MDCLK 400 ns 2 tw(MDCLK) Pulse duration, MDCLK high/low 180 ns 3 tt(MDCLK) Transition time, MDCLK 4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high 10 ns 5 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high 10 ns 106 Peripheral Information and Electrical Specifications 5 ns Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 1 3 3 MDCLK 4 5 MDIO (input) Table 6-36. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see Figure 6-33) NO. 7 td(MDCLKL-MDIO) Delay time, MDCLK low to MDIO data output valid MIN MAX UNIT 0 100 ns 1 MDCLK 7 MDIO (output) Figure 6-33. MDIO Output Timing Submit Documentation Feedback Peripheral Information and Electrical Specifications 107 ADVANCE INFORMATION Figure 6-32. MDIO Input Timing TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.15 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) ADVANCE INFORMATION The McASP serial port is specifically designed for multichannel audio applications. Its key features are: • Flexible clock and frame sync generation logic and on-chip dividers • Up to sixteen transmit or receive data pins and serializers • Large number of serial data format options, including: – TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst) – Time slots of 8,12,16, 20, 24, 28, and 32 bits – First bit delay 0, 1, or 2 clocks – MSB or LSB first bit order – Left- or right-aligned data words within time slots • DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers • Extensive error checking and mute generation logic • All unused pins GPIO-capable Additionally, while the 674x McASP modules are backward compatible with the McASP on previous devices; the 674x McASP includes the following new features: • Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample rate by making it more tolerant to DMA latency. • Dynamic Adjustment of Clock Dividers – Clock Divider Value may be changed without resetting the McASP The three McASPs on the C6745/6747 are configured with the following options: Table 6-37. C6745/6747 McASP Configurations (1) Module (1) Serializers AFIFO DIT C6745/6747 Pins N AXR0[15:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0, AMUTE0 McASP0 16 64 Word RX 64 Word TX McASP1 12 64 Word RX 64 Word TX N AXR1[11:10], AXR1[8:0], AHCLKR1, ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1 McASP2 4 16 Word RX 16 Word TX Y AXR2[3:0], AHCLKR2, ACLKR2, AFSR2, AHCLKX2, ACLKX2, AFSX2, AMUTE2 Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing. Pins Peripheral Configuration Bus GIO Control DIT RAM 384 C 384 U Optional McASP DMA Bus (Dedicated) Transmit Formatter Receive Formatter Function Receive Logic Clock/Frame Generator State Machine AHCLKRx ACLKRx AFSRx Receive Master Clock Receive Bit Clock Receive Left/Right Clock or Frame Sync Clock Check and Error Detection AMUTEINx AMUTEx The McASPs DO NOT have dedicated AMUTEINx pins. Transmit Logic Clock/Frame Generator State Machine AFSXx ACLKXx AHCLKXx Transmit Left/Right Clock or Frame Sync Transmit Bit Clock Transmit Master Clock Serializer 0 AXRx[0] Transmit/Receive Serial Data Pin Serializer 1 AXRx[1] Transmit/Receive Serial Data Pin Serializer y AXRx[y] Transmit/Receive Serial Data Pin McASPx (x = 0, 1, 2) Figure 6-34. McASP Block Diagram 108 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.15.1 McASP Peripheral Registers Description(s) Registers for the McASP are summarized in Table 6-38. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 6-39 Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-40. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port. Table 6-38. McASP Registers Accessed Through Peripheral Configuration Port McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS Acronym Register Description 0h 0x01D0 0000 0x01D0 4000 0x01D0 8000 REV 10h 0x01D0 0010 0x01D0 4010 0x01D0 8010 PFUNC Revision identification register Pin function register 14h 0x01D0 0014 0x01D0 4014 0x01D0 8014 PDIR Pin direction register 18h 0x01D0 0018 0x01D0 4018 0x01D0 8018 PDOUT 1Ch 0x01D0 001C 0x01D0 401C 0x01D0 801C PDIN 1Ch 0x01D0 001C 0x01D0 401C 0x01D0 801C PDSET Writes affect: Pin data set register (alternate write address: PDOUT) 20h 0x01D0 0020 0x01D0 4020 0x01D0 8020 PDCLR Pin data clear register (alternate write address: PDOUT) 44h 0x01D0 0044 0x01D0 4044 0x01D0 8044 GBLCTL Global control register 48h 0x01D0 0048 0x01D0 4048 0x01D0 8048 AMUTE Audio mute control register 4Ch 0x01D0 004C 0x01D0 404C 0x01D0 804C DLBCTL Digital loopback control register 50h 0x01D0 0050 0x01D0 4050 0x01D0 8050 DITCTL 60h 0x01D0 0060 0x01D0 4060 0x01D0 8060 RGBLCTL 64h 0x01D0 0064 0x01D0 4064 0x01D0 8064 RMASK 68h 0x01D0 0068 0x01D0 4068 0x01D0 8068 RFMT 6Ch 0x01D0 006C 0x01D0 406C 0x01D0 806C AFSRCTL 70h 0x01D0 0070 0x01D0 4070 0x01D0 8070 ACLKRCTL 74h 0x01D0 0074 0x01D0 4074 0x01D0 8074 AHCLKRCTL 78h 0x01D0 0078 0x01D0 4078 0x01D0 8078 RTDM 7Ch 0x01D0 007C 0x01D0 407C 0x01D0 807C RINTCTL 80h 0x01D0 0080 0x01D0 4080 0x01D0 8080 RSTAT Receiver status register 84h 0x01D0 0084 0x01D0 4084 0x01D0 8084 RSLOT Current receive TDM time slot register Pin data output register Read returns: Pin data input register DIT mode control register Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows receiver to be reset independently from transmitter Receive format unit bit mask register Receive bit stream format register Receive frame sync control register Receive clock control register Receive high-frequency clock control register Receive TDM time slot 0-31 register Receiver interrupt control register 88h 0x01D0 0088 0x01D0 4088 0x01D0 8088 RCLKCHK Receive clock check control register 8Ch 0x01D0 008C 0x01D0 408C 0x01D0 808C REVTCTL Receiver DMA event control register ACh 0x01D0 00A0 0x01D0 40A0 0x01D0 80A0 XGBLCTL Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows transmitter to be reset independently from receiver A4h 0x01D0 00A4 0x01D0 40A4 0x01D0 80A4 XMASK A8h 0x01D0 00A8 0x01D0 40A8 0x01D0 80A8 XFMT ACh 0x01D0 00AC 0x01D0 40AC 0x01D0 80AC AFSXCTL B0h 0x01D0 00B0 0x01D0 40B0 0x01D0 80B0 ACLKXCTL B4h 0x01D0 00B4 0x01D0 40B4 0x01D0 80B4 AHCLKXCTL Transmit format unit bit mask register Transmit bit stream format register Transmit frame sync control register Transmit clock control register Transmit high-frequency clock control register B8h 0x01D0 00B8 0x01D0 40B8 0x01D0 80B8 XTDM Transmit TDM time slot 0-31 register BCh 0x01D0 00BC 0x01D0 40BC 0x01D0 80BC XINTCTL Transmitter interrupt control register C0h 0x01D0 00C0 0x01D0 40C0 0x01D0 80C0 XSTAT Transmitter status register C4h 0x01D0 00C4 0x01D0 40C4 0x01D0 80C4 XSLOT Current transmit TDM time slot register C8h 0x01D0 00C8 0x01D0 40C8 0x01D0 80C8 XCLKCHK Submit Documentation Feedback Transmit clock check control register Peripheral Information and Electrical Specifications 109 ADVANCE INFORMATION Offset TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-38. McASP Registers Accessed Through Peripheral Configuration Port (continued) Offset McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS Acronym Register Description ADVANCE INFORMATION CCh 0x01D0 00CC 0x01D0 40CC 0x01D0 80CC XEVTCTL Transmitter DMA event control register 100h 0x01D0 0100 0x01D0 4100 0x01D0 8100 DITCSRA0 Left (even TDM time slot) channel status register (DIT mode) 0 104h 0x01D0 0104 0x01D0 4104 0x01D0 8104 DITCSRA1 Left (even TDM time slot) channel status register (DIT mode) 1 108h 0x01D0 0108 0x01D0 4108 0x01D0 8108 DITCSRA2 Left (even TDM time slot) channel status register (DIT mode) 2 10Ch 0x01D0 010C 0x01D0 410C 0x01D0 810C DITCSRA3 Left (even TDM time slot) channel status register (DIT mode) 3 110h 0x01D0 0110 0x01D0 4110 0x01D0 8110 DITCSRA4 Left (even TDM time slot) channel status register (DIT mode) 4 114h 0x01D0 0114 0x01D0 4114 0x01D0 8114 DITCSRA5 Left (even TDM time slot) channel status register (DIT mode) 5 118h 0x01D0 0118 0x01D0 4118 0x01D0 8118 DITCSRB0 Right (odd TDM time slot) channel status register (DIT mode) 0 11Ch 0x01D0 011C 0x01D0 411C 0x01D0 811C DITCSRB1 Right (odd TDM time slot) channel status register (DIT mode) 1 120h 0x01D0 0120 0x01D0 4120 0x01D0 8120 DITCSRB2 Right (odd TDM time slot) channel status register (DIT mode) 2 124h 0x01D0 0124 0x01D0 4124 0x01D0 8124 DITCSRB3 Right (odd TDM time slot) channel status register (DIT mode) 3 128h 0x01D0 0128 0x01D0 4128 0x01D0 8128 DITCSRB4 Right (odd TDM time slot) channel status register (DIT mode) 4 12Ch 0x01D0 012C 0x01D0 412C 0x01D0 812C DITCSRB5 Right (odd TDM time slot) channel status register (DIT mode) 5 130h 0x01D0 0130 0x01D0 4130 0x01D0 8130 DITUDRA0 Left (even TDM time slot) channel user data register (DIT mode) 0 134h 0x01D0 0134 0x01D0 4134 0x01D0 8134 DITUDRA1 Left (even TDM time slot) channel user data register (DIT mode) 1 138h 0x01D0 0138 0x01D0 4138 0x01D0 8138 DITUDRA2 Left (even TDM time slot) channel user data register (DIT mode) 2 13Ch 0x01D0 013C 0x01D0 413C 0x01D0 813C DITUDRA3 Left (even TDM time slot) channel user data register (DIT mode) 3 140h 0x01D0 0140 0x01D0 4140 0x01D0 8140 DITUDRA4 Left (even TDM time slot) channel user data register (DIT mode) 4 144h 0x01D0 0144 0x01D0 4144 0x01D0 8144 DITUDRA5 Left (even TDM time slot) channel user data register (DIT mode) 5 148h 0x01D0 0148 0x01D0 4148 0x01D0 8148 DITUDRB0 Right (odd TDM time slot) channel user data register (DIT mode) 0 14Ch 0x01D0 014C 0x01D0 414C 0x01D0 814C DITUDRB1 Right (odd TDM time slot) channel user data register (DIT mode) 1 150h 0x01D0 0150 0x01D0 4150 0x01D0 8150 DITUDRB2 Right (odd TDM time slot) channel user data register (DIT mode) 2 154h 0x01D0 0154 0x01D0 4154 0x01D0 8154 DITUDRB3 Right (odd TDM time slot) channel user data register (DIT mode) 3 158h 0x01D0 0158 0x01D0 4158 0x01D0 8158 DITUDRB4 Right (odd TDM time slot) channel user data register (DIT mode) 4 15Ch 0x01D0 015C 0x01D0 415C 0x01D0 815C DITUDRB5 Right (odd TDM time slot) channel user data register (DIT mode) 5 180h 0x01D0 0180 0x01D0 4180 0x01D0 8180 SRCTL0 Serializer control register 0 184h 0x01D0 0184 0x01D0 4184 0x01D0 8184 SRCTL1 Serializer control register 1 188h 0x01D0 0188 0x01D0 4188 0x01D0 8188 SRCTL2 Serializer control register 2 18Ch 0x01D0 018C 0x01D0 418C 0x01D0 818C SRCTL3 Serializer control register 3 110 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Offset McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS Acronym Register Description 190h 0x01D0 0190 0x01D0 4190 0x01D0 8190 SRCTL4 Serializer control register 4 194h 0x01D0 0194 0x01D0 4194 0x01D0 8194 SRCTL5 Serializer control register 5 198h 0x01D0 0198 0x01D0 4198 0x01D0 8198 SRCTL6 Serializer control register 6 19Ch 0x01D0 019C 0x01D0 419C 0x01D0 819C SRCTL7 Serializer control register 7 1A0h 0x01D0 01A0 0x01D0 41A0 0x01D0 81A0 SRCTL8 Serializer control register 8 1A4h 0x01D0 01A4 0x01D0 41A4 0x01D0 81A4 SRCTL9 Serializer control register 9 1A8h 0x01D0 01A8 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 10 1ACh 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 11 1B0h 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 1B4h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 Serializer control register 14 (1) (2) 1B8h 0x01D0 01B8 0x01D0 41B8 0x01D0 81B8 SRCTL14 1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 (1) Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 (1) Transmit buffer register for serializer 1 (1) Transmit buffer register for serializer 2 208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 (1) Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 (1) Transmit buffer register for serializer 4 (1) Transmit buffer register for serializer 5 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 (1) Transmit buffer register for serializer 6 21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 (1) Transmit buffer register for serializer 7 (1) Transmit buffer register for serializer 8 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 (1) Transmit buffer register for serializer 9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 (1) Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 (1) Transmit buffer register for serializer 11 (1) Transmit buffer register for serializer 12 230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 234h 0x01D0 0234 0x01D0 4234 0x01D0 8234 XBUF13 (1) Transmit buffer register for serializer 13 238h 0x01D0 0238 0x01D0 4238 0x01D0 8238 XBUF14 (1) Transmit buffer register for serializer 14 (1) Transmit buffer register for serializer 15 23Ch 0x01D0 023C 0x01D0 423C 0x01D0 823C XBUF15 280h 0x01D0 0280 0x01D0 4280 0x01D0 8280 RBUF0 (2) Receive buffer register for serializer 0 284h 0x01D0 0284 0x01D0 4284 0x01D0 8284 RBUF1 (2) Receive buffer register for serializer 1 (2) Receive buffer register for serializer 2 288h 0x01D0 0288 0x01D0 4288 0x01D0 8288 RBUF2 28Ch 0x01D0 028C 0x01D0 428C 0x01D0 828C RBUF3 (2) Receive buffer register for serializer 3 290h 0x01D0 0290 0x01D0 4290 0x01D0 8290 RBUF4 (2) Receive buffer register for serializer 4 294h 0x01D0 0294 0x01D0 4294 0x01D0 8294 RBUF5 (2) Receive buffer register for serializer 5 (2) Receive buffer register for serializer 6 298h 0x01D0 0298 0x01D0 4298 0x01D0 8298 RBUF6 29Ch 0x01D0 029C 0x01D0 429C 0x01D0 829C RBUF7 (2) Receive buffer register for serializer 7 2A0h 0x01D0 02A0 0x01D0 42A0 0x01D0 82A0 RBUF8 (2) Receive buffer register for serializer 8 (2) 2A4h 0x01D0 02A4 0x01D0 42A4 0x01D0 82A4 RBUF9 2A8h 0x01D0 02A8 0x01D0 42A8 0x01D0 82A8 RBUF10 (2) Receive buffer register for serializer 10 2ACh 0x01D0 02AC 0x01D0 42AC 0x01D0 82AC RBUF11 (2) Receive buffer register for serializer 11 (2) Receive buffer register for serializer 12 ADVANCE INFORMATION Table 6-38. McASP Registers Accessed Through Peripheral Configuration Port (continued) Receive buffer register for serializer 9 2B0h 0x01D0 02B0 0x01D0 42B0 0x01D0 82B0 RBUF12 2B4h 0x01D0 02B4 0x01D0 42B4 0x01D0 82B4 RBUF13 (2) Receive buffer register for serializer 13 2B8h 0x01D0 02B8 0x01D0 42B8 0x01D0 82BB RBUF14 (2) Receive buffer register for serializer 14 2BCh 0x01D0 02BC 0x01D0 42BC 0x01D0 82BC RBUF15 (2) Receive buffer register for serializer 15 Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT. Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. Submit Documentation Feedback Peripheral Information and Electrical Specifications 111 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-39. McASP Registers Accessed Through DMA Port Hex Address Register Name Register Description Read Accesses RBUF Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if XBUSEL = 0 in XFMT. Write Accesses XBUF Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0 in RFMT. Table 6-40. McASP AFIFO Registers Accessed Through Peripheral Configuration Port ADVANCE INFORMATION 112 McASP0 BYTE ADDRESS McASP0 BYTE ADDRESS McASP0 BYTE ADDRESS Acronym Register Description 0x01D0 1000 0x01D0 5000 0x01D0 9000 AFIFOREV AFIFO revision identification register 0x01D0 1010 0x01D0 1014 0x01D0 5010 0x01D0 9010 WFIFOCTL Write FIFO control register 0x01D0 5014 0x01D0 9014 WFIFOSTS Write FIFO status register 0x01D0 1018 0x01D0 5018 0x01D0 9018 RFIFOCTL Read FIFO control register 0x01D0 101C 0x01D0 501C 0x01D0 901C RFIFOSTS Read FIFO status register Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.15.2 McASP Electrical Data/Timing 6.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing Table 6-41 and Table 6-42 assume testing over recommended operating conditions (see Figure 6-35 and Figure 6-36). Table 6-41. McASP0 Timing Requirements (1) (2) MIN 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) Cycle time, AHCLKR0 external, AHCLKR0 input 20 Cycle time, AHCLKX0 external, AHCLKX0 input 20 Pulse duration, AHCLKR0 external, AHCLKR0 input 10 Pulse duration, AHCLKX0 external, AHCLKX0 input 10 Cycle time, ACLKR0 external, ACLKR0 input greater of 2P or 20 Cycle time, ACLKX0 external, ACLKX0 input greater of 2P or 20 Pulse duration, ACLKR0 external, ACLKR0 input 10 Pulse duration, ACLKX0 external, ACLKX0 input 10 Setup time, AFSR0 input to ACLKR0 internal (3) 9.4 Setup time, AFSR0 input to ACLKX0 internal (4) 9.4 Setup time, AFSX0 input to ACLKX0 internal tsu(AFSRX-ACLKRX) 2.9 Setup time, AFSR0 input to ACLKX0 external input (4) 2.9 Setup time, AFSX0 input to ACLKX0 external input 2.9 Setup time, AFSR0 input to ACLKR0 external output (3) 2.9 Setup time, AFSR0 input to ACLKX0 external output (4) 2.9 Setup time, AFSX0 input to ACLKX0 external output 2.9 (3) -2.1 Hold time, AFSR0 input after ACLKX0 internal (4) -2.1 Hold time, AFSX0 input after ACLKX0 internal -2.1 Hold time, AFSR0 input after ACLKR0 internal Hold time, AFSR0 input after ACLKR0 external input (3) 0.4 (4) 0.4 Hold time, AFSR0 input after ACLKX0 external input 6 th(ACLKRX-AFSRX) Hold time, AFSX0 input after ACLKX0 external input 0.4 Hold time, AFSR0 input after ACLKR0 external output (3) 0.4 Hold time, AFSR0 input after ACLKX0 external output (4) 0.4 Hold time, AFSX0 input after ACLKX0 external output 0.4 (3) 9.4 Setup time, AXR0[n] input to ACLKX0 internal (4) 9.4 Setup time, AXR0[n] input to ACLKR0 internal 7 (1) (2) (3) (4) tsu(AXR-ACLKRX) UNIT ns ns ns ns 9.4 (3) Setup time, AFSR0 input to ACLKR0 external input 5 MAX ADVANCE INFORMATION NO. Setup time, AXR0[n] input to ACLKR0 external input (3) 2.9 (4) 2.9 Setup time, AXR0[n] input to ACLKX0 external input Setup time, AXR0[n] input to ACLKR0 external output (3) 2.9 Setup time, AXR0[n] input to ACLKX0 external output (4) 2.9 ns ns ns ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 Submit Documentation Feedback Peripheral Information and Electrical Specifications 113 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-41. McASP0 Timing Requirements (continued) NO. 8 MIN th(ACLKRX-AXR) Hold time, AXR0[n] input after ACLKR0 internal (3) -2.1 Hold time, AXR0[n] input after ACLKX0 internal (4) -2.1 Hold time, AXR0[n] input after ACLKR0 external input (3) 0.4 Hold time, AXR0[n] input after ACLKX0 external input (4) 0.4 Hold time, AXR0[n] input after ACLKR0 external output (3) 0.4 Hold time, AXR0[n] input after ACLKX0 external output (4) 0.4 MAX UNIT ns ADVANCE INFORMATION 114 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-42. McASP0 Switching Characteristics (1) 9 10 11 12 PARAMETER tc(AHCLKRX) tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) 20 Cycle time, AHCLKR0 external, AHCLKR0 output 20 Cycle time, AHCLKX0 internal, AHCLKX0 output 20 Cycle time, AHCLKX0 external, AHCLKX0 output 20 Pulse duration, AHCLKR0 internal, AHCLKR0 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKR0 external, AHCLKR0 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX0 internal, AHCLKX0 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX0 external, AHCLKX0 output (AHX/2) – 2.5 (3) Cycle time, ACLKR0 internal, ACLKR0 output greater of 2P or 20 ns (4) Cycle time, ACLKR0 external, ACLKR0 output greater of 2P or 20 ns (4) Cycle time, ACLKX0 internal, ACLKX0 output greater of 2P or 20 ns (4) Cycle time, ACLKX0 external, ACLKX0 output greater of 2P or 20 ns (4) 14 15 (1) (2) (3) (4) (5) (6) (7) (8) td(ACLKRX-AFSRX) td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) MAX UNIT ns ns Pulse duration, ACLKR0 internal, ACLKR0 output (AR/2) – 2.5 (5) Pulse duration, ACLKR0 external, ACLKR0 output (AR/2) – 2.5 (5) Pulse duration, ACLKX0 internal, ACLKX0 output (AX/2) – 2.5 (6) Pulse duration, ACLKX0 external, ACLKX0 output (AX/2) – 2.5 (6) ns ns (7) 0 5.8 Delay time, ACLKX0 internal, AFSR output (8) 0 5.8 Delay time, ACLKX0 internal, AFSX output 0 5.8 Delay time, ACLKR0 external input, AFSR output (7) 3 11.6 Delay time, ACLKX0 external input, AFSR output (8) 3 11.6 Delay time, ACLKX0 external input, AFSX output 3 11.6 Delay time, ACLKR0 external output, AFSR output (7) 3 11.6 Delay time, ACLKX0 external output, AFSR output (8) 3 11.6 Delay time, ACLKX0 external output, AFSX output 3 11.6 Delay time, ACLKX0 internal, AXR0[n] output 0 5.8 Delay time, ACLKX0 external input, AXR0[n] output 3 11.6 Delay time, ACLKX0 external output, AXR0[n] output 3 11.6 Disable time, ACLKX0 internal, AXR0[n] output 0 5.8 Disable time, ACLKX0 external input, AXR0[n] output 3 11.6 Disable time, ACLKX0 external output, AXR0[n] output 3 11.6 Delay time, ACLKR0 internal, AFSR output 13 MIN Cycle time, AHCLKX0 internal, AHCLKR0 output ADVANCE INFORMATION NO. ns ns ns McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR0. AHX - Cycle time, AHCLKX0. P = SYSCLK2 period AR - ACLKR0 period. AX - ACLKX0 period. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 Submit Documentation Feedback Peripheral Information and Electrical Specifications 115 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.15.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing Table 6-43 and Table 6-44 assume testing over recommended operating conditions (see Figure 6-35 and Figure 6-36). Table 6-43. McASP1 Timing Requirements (1) (2) NO. MIN ADVANCE INFORMATION 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) Cycle time, AHCLKR1 external, AHCLKR1 input 20 Cycle time, AHCLKX1 external, AHCLKX1 input 20 Pulse duration, AHCLKR1 external, AHCLKR1 input 10 Pulse duration, AHCLKX1 external, AHCLKX1 input 10 Cycle time, ACLKR1 external, ACLKR1 input greater of 2P or 20 Cycle time, ACLKX1 external, ACLKX1 input greater of 2P or 20 Pulse duration, ACLKR1 external, ACLKR1 input 10 Pulse duration, ACLKX1 external, ACLKX1 input 10 Setup time, AFSR1 input to ACLKR1 internal (3) 10.4 (4) 10.4 Setup time, AFSR1 input to ACLKX1 internal Setup time, AFSX1 input to ACLKX1 internal 5 tsu(AFSRX-ACLKRX) th(ACLKRX-AFSRX) 2.6 Setup time, AFSR1 input to ACLKX1 external input (4) 2.6 Setup time, AFSX1 input to ACLKX1 external input 2.6 Setup time, AFSR1 input to ACLKR1 external output (3) 2.6 Setup time, AFSR1 input to ACLKX1 external output (4) 2.6 -2.6 Hold time, AFSR1 input after ACLKX1 internal (4) -2.6 Hold time, AFSX1 input after ACLKX1 internal -2.6 Hold time, AFSR1 input after ACLKR1 external input (3) 0.3 Hold time, AFSR1 input after ACLKX1 external input (4) 0.3 Hold time, AFSX1 input after ACLKX1 external input 0.3 Hold time, AFSR1 input after ACLKR1 external output (3) 0.3 Hold time, AFSR1 input after ACLKX1 external output (4) 0.3 Hold time, AFSX1 input after ACLKX1 external output Setup time, AXR1[n] input to ACLKR1 internal (3) (1) (2) (3) (4) 116 tsu(AXR-ACLKRX) ns ns ns ns ns 0.3 10.4 Setup time, AXR1[n] input to ACLKX1 internal (4) 7 ns 2.6 Hold time, AFSR1 input after ACLKR1 internal (3) 10.4 (3) 2.6 Setup time, AXR1[n] input to ACLKX1 external input (4) 2.6 Setup time, AXR1[n] input to ACLKR1 external output (3) 2.6 Setup time, AXR1[n] input to ACLKX1 external output (4) 2.6 Setup time, AXR1[n] input to ACLKR1 external input UNIT 10.4 Setup time, AFSR1 input to ACLKR1 external input (3) Setup time, AFSX1 input to ACLKX1 external output 6 MAX ns ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-43. McASP1 Timing Requirements (continued) NO. th(ACLKRX-AXR) -2.6 Hold time, AXR1[n] input after ACLKX1 internal (4) -2.6 Hold time, AXR1[n] input after ACLKR1 external input (3) 0.3 Hold time, AXR1[n] input after ACLKX1 external input (4) 0.3 Hold time, AXR1[n] input after ACLKR1 external output (3) 0.3 Hold time, AXR1[n] input after ACLKX1 external output (4) 0.3 MAX UNIT ns ADVANCE INFORMATION 8 MIN Hold time, AXR1[n] input after ACLKR1 internal (3) Submit Documentation Feedback Peripheral Information and Electrical Specifications 117 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-44. McASP1 Switching Characteristics (1) NO. 9 10 ADVANCE INFORMATION 11 12 PARAMETER tc(AHCLKRX) tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) 20 Cycle time, AHCLKR1 external, AHCLKR1 output 20 Cycle time, AHCLKX1 internal, AHCLKX1 output 20 Cycle time, AHCLKX1 external, AHCLKX1 output 20 Pulse duration, AHCLKR1 internal, AHCLKR1 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKR1 external, AHCLKR1 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX1 internal, AHCLKX1 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX1 external, AHCLKX1 output (AHX/2) – 2.5 (3) Cycle time, ACLKR1 internal, ACLKR1 output greater of 2P or 20 ns (4) Cycle time, ACLKR1 external, ACLKR1 output greater of 2P or 20 ns (4) Cycle time, ACLKX1 internal, ACLKX1 output greater of 2P or 20 ns (4) Cycle time, ACLKX1 external, ACLKX1 output greater of 2P or 20 ns (4) 14 15 (1) (2) (3) (4) (5) (6) (7) (8) 118 td(ACLKRX-AFSRX) td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) MAX UNIT ns ns Pulse duration, ACLKR1 internal, ACLKR1 output (AR/2) – 2.5 (5) Pulse duration, ACLKR1 external, ACLKR1 output (AR/2) – 2.5 (5) Pulse duration, ACLKX1 internal, ACLKX1 output (AX/2) – 2.5 (6) Pulse duration, ACLKX1 external, ACLKX1 output (AX/2) – 2.5 (6) ns ns (7) 0.5 6.7 Delay time, ACLKX1 internal, AFSR output (8) 0.5 6.7 Delay time, ACLKX1 internal, AFSX output 0.5 6.7 Delay time, ACLKR1 external input, AFSR output (7) 3.9 13.8 Delay time, ACLKX1 external input, AFSR output (8) 3.9 13.8 Delay time, ACLKX1 external input, AFSX output 3.9 13.8 Delay time, ACLKR1 external output, AFSR output (7) 3.9 13.8 Delay time, ACLKX1 external output, AFSR output (8) 3.9 13.8 Delay time, ACLKX1 external output, AFSX output 3.9 13.8 Delay time, ACLKX1 internal, AXR1[n] output 0.5 6.7 Delay time, ACLKX1 external input, AXR1[n] output 3.9 13.8 Delay time, ACLKX1 external output, AXR1[n] output 3.9 13.8 Disable time, ACLKX1 internal, AXR1[n] output 0.5 6.7 Disable time, ACLKX1 external input, AXR1[n] output 3.9 13.8 Disable time, ACLKX1 external output, AXR1[n] output 3.9 13.8 Delay time, ACLKR1 internal, AFSR output 13 MIN Cycle time, AHCLKX1 internal, AHCLKR1 output ns ns ns McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1 McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR1. AHX - Cycle time, AHCLKX1. P = SYSCLK2 period AR - ACLKR1 period. AX - ACLKX1 period. McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.15.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing Table 6-45 and Table 6-46 assume testing over recommended operating conditions (see Figure 6-35 and Figure 6-36). Table 6-45. McASP2 Timing Requirements (1) (2) MIN 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) Cycle time, AHCLKR2 external, AHCLKR2 input 13 Cycle time, AHCLKX2 external, AHCLKX2 input 13 Pulse duration, AHCLKR2 external, AHCLKR2 input 6.5 Pulse duration, AHCLKX2 external, AHCLKX2 input 6.5 Cycle time, ACLKR2 external, ACLKR2 input greater of 2P or 13 Cycle time, ACLKX2 external, ACLKX2 input greater of 2P or 13 Pulse duration, ACLKR2 external, ACLKR2 input 6.5 Pulse duration, ACLKX2 external, ACLKX2 input 6.5 Setup time, AFSR2 input to ACLKR2 internal (3) 10 (4) 10 Setup time, AFSR2 input to ACLKX2 internal 5 tsu(AFSRX-ACLKRX) Setup time, AFSX2 input to ACLKX2 internal 10 Setup time, AFSR2 input to ACLKR2 external input (3) 1.6 Setup time, AFSR2 input to ACLKX2 external input (4) 1.6 Setup time, AFSX2 input to ACLKX2 external input 1.6 Setup time, AFSR2 input to ACLKR2 external output (3) 1.6 Setup time, AFSR2 input to ACLKX2 external output (4) 1.6 Setup time, AFSX2 input to ACLKX2 external output 6 th(ACLKRX-AFSRX) -2.2 Hold time, AFSR2 input after ACLKX2 internal (4) -2.2 Hold time, AFSX2 input after ACLKX2 internal -2.2 Hold time, AFSR2 input after ACLKR2 external input (3) 1.3 Hold time, AFSR2 input after ACLKX2 external input (4) 1.3 Hold time, AFSX2 input after ACLKX2 external input 1.3 Hold time, AFSR2 input after ACLKR2 external output (3) 1.3 Hold time, AFSR2 input after ACLKX2 external output (4) 1.3 Hold time, AFSX2 input after ACLKX2 external output 1.3 Setup time, AXR2[n] input to ACLKR2 internal (3) 10 Setup time, AXR2[n] input to ACLKX2 internal (4) 7 (1) (2) (3) (4) tsu(AXR-ACLKRX) UNIT ns ns ns ns ns 1.6 Hold time, AFSR2 input after ACLKR2 internal (3) ns 10 (3) 1.6 Setup time, AXR2[n] input to ACLKX2 external input (4) 1.6 Setup time, AXR2[n] input to ACLKR2 external output (3) 1.6 Setup time, AXR2[n] input to ACLKX2 external output (4) 1.6 Setup time, AXR2[n] input to ACLKR2 external input MAX ADVANCE INFORMATION NO. ns ACLKX2 internal – McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX2 external input – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX2 external output – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR2 internal – McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR2 external input – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR2 external output – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2 McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2 Submit Documentation Feedback Peripheral Information and Electrical Specifications 119 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-45. McASP2 Timing Requirements (continued) NO. 8 MIN th(ACLKRX-AXR) Hold time, AXR2[n] input after ACLKR2 internal (3) -2.2 Hold time, AXR2[n] input after ACLKX2 internal (4) -2.2 Hold time, AXR2[n] input after ACLKR2 external input (3) 1.3 Hold time, AXR2[n] input after ACLKX2 external input (4) 1.3 Hold time, AXR2[n] input after ACLKR2 external output (3) 1.3 Hold time, AXR2[n] input after ACLKX2 external output (4) 1.3 MAX UNIT ns ADVANCE INFORMATION 120 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-46. McASP2 Switching Characteristics (1) 9 10 11 12 PARAMETER tc(AHCLKRX) tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) 13 Cycle time, AHCLKR2 external, AHCLKR2 output 13 Cycle time, AHCLKX2 internal, AHCLKX2 output 13 Cycle time, AHCLKX2 external, AHCLKX2 output 13 Pulse duration, AHCLKR2 internal, AHCLKR2 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKR2 external, AHCLKR2 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX2 internal, AHCLKX2 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX2 external, AHCLKX2 output (AHX/2) – 2.5 (3) Cycle time, ACLKR2 internal, ACLKR2 output greater of 2P or 13 ns (4) Cycle time, ACLKR2 external, ACLKR2 output greater of 2P or 13 ns (4) Cycle time, ACLKX2 internal, ACLKX2 output greater of 2P or 13 ns (4) Cycle time, ACLKX2 external, ACLKX2 output greater of 2P or 13 ns (4) td(ACLKRX-AFSRX) (AR/2) – 2.5 (5) Pulse duration, ACLKR2 external, ACLKR2 output (AR/2) – 2.5 (5) Pulse duration, ACLKX2 internal, ACLKX2 output (AX/2) – 2.5 (6) Pulse duration, ACLKX2 external, ACLKX2 output (AX/2) – 2.5 (6) 15 (1) (2) (3) (4) (5) (6) (7) (8) tdis(ACLKX-AXRHZ) ns ns -1.4 2.8 Delay time, ACLKX2 internal, AFSR output (8) -1.4 2.8 Delay time, ACLKX2 internal, AFSX output -1.4 2.8 Delay time, ACLKR2 external input, AFSR output (7) 2.9 10 Delay time, ACLKX2 external input, AFSR output (8) 2.9 10 Delay time, ACLKX2 external input, AFSX output 2.9 10 Delay time, ACLKR2 external output, AFSR output (7) 2.9 10 Delay time, ACLKX2 external output, AFSR output (8) 2.9 10 2.9 10 -1.4 2.8 Delay time, ACLKX2 external input, AXR2[n] output 2.9 10 Delay time, ACLKX2 external output, AXR2[n] output 2.9 10 Disable time, ACLKX2 internal, AXR2[n] output -1.4 2.8 Disable time, ACLKX2 external input, AXR2[n] output 2.9 10 Disable time, ACLKX2 external output, AXR2[n] output 2.9 10 Delay time, ACLKX2 internal, AXR2[n] output td(ACLKX-AXRV) UNIT ns (7) Delay time, ACLKX2 external output, AFSX output 14 MAX ns Pulse duration, ACLKR2 internal, ACLKR2 output Delay time, ACLKR2 internal, AFSR output 13 MIN Cycle time, AHCLKX2 internal, AHCLKR2 output ADVANCE INFORMATION NO. ns ns ns McASP2 ACLKX2 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP2 ACLKX2 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP2 ACLKX2 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP2 ACLKR2 internal – ACLKR2CTL.CLKRM = 1, PDIR.ACLKR =1 McASP2 ACLKR2 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP2 ACLKR2 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR2. AHX - Cycle time, AHCLKX2. P = SYSCLK2 period AR - ACLKR2 period. AX - ACLKX2 period. McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2 McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2 Submit Documentation Feedback Peripheral Information and Electrical Specifications 121 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 2 1 2 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 4 3 4 ACLKR/X (CLKRP = CLKXP = 0)(A) ACLKR/X (CLKRP = CLKXP = 1)(B) ADVANCE INFORMATION 6 5 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 8 7 AXR[n] (Data In/Receive) A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in). B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in). Figure 6-35. McASP Input Timings 122 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 10 10 9 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 12 11 12 ACLKR/X (CLKRP = CLKXP = 1)(A) ADVANCE INFORMATION ACLKR/X (CLKRP = CLKXP = 0)(B) 13 13 13 13 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) 13 13 13 AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 14 15 AXR[n] (Data Out/Transmit) A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in). B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in). C31 Figure 6-36. McASP Output Timings Submit Documentation Feedback Peripheral Information and Electrical Specifications 123 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.16 Serial Peripheral Interface Ports (SPI0, SPI1) Figure 6-37 is a block diagram of the SPI module, which is a simple shift register and buffer plus control logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options. SPIx_SIMO SPIx_SOMI Peripheral Configuration Bus ADVANCE INFORMATION Interrupt and DMA Requests 16-Bit Shift Register 16-Bit Buffer SPIx_ENA State GPIO Machine SPIx_SCS Control (all pins) Clock SPIx_CLK Control Figure 6-37. Block Diagram of SPI Module The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA). The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The C6745/6747 will only shift data and drive the SPIx_SOMI pin when SPIx_SCS is held low. In slave mode, SPIx_ENA is an optional output and can be driven in either a push-pull or open-drain manner. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus. In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer. 124 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Optional − Slave Chip Select SPIx_SCS SPIx_SCS SPIx_ENA SPIx_ENA SPIx_CLK SPIx_CLK SPIx_SOMI SPIx_SOMI SPIx_SIMO SPIx_SIMO MASTER SPI SLAVE SPI ADVANCE INFORMATION Optional Enable (Ready) Figure 6-38. Illustration of SPI Master-to-SPI Slave Connection 6.16.1 SPI Peripheral Registers Description(s) Table 6-47 is a list of the SPI registers. Table 6-47. SPIx Configuration Registers SPI0 BYTE ADDRESS SPI1 BYTE ADDRESS 0x01C4 1000 0x01E1 2000 SPIGCR0 Global Control Register 0 0x01C4 1004 0x01E1 2004 SPIGCR1 Global Control Register 1 0x01C4 1008 0x01E1 2008 SPIINT0 Interrupt Register 0x01C4 100C 0x01E1 200C SPILVL Interrupt Level Register 0x01C4 1010 0x01E1 2010 SPIFLG Flag Register 0x01C4 1014 0x01E1 2014 SPIPC0 Pin Control Register 0 (Pin Function) REGISTER NAME DESCRIPTION 0x01C4 1018 0x01E1 2018 SPIPC1 Pin Control Register 1 (Pin Direction) 0x01C4 101C 0x01E1 201C SPIPC2 Pin Control Register 2 (Pin Data In) 0x01C4 1020 0x01E1 2020 SPIPC3 Pin Control Register 3 (Pin Data Out) 0x01C4 1024 0x01E1 2024 SPIPC4 Pin Control Register 4 (Pin Data Set) 0x01C4 1028 0x01E1 2028 SPIPC5 Pin Control Register 5 (Pin Data Clear) 0x01C4 102C 0x01E1 202C Reserved Reserved - Do not write to this register 0x01C4 1030 0x01E1 2030 Reserved Reserved - Do not write to this register 0x01C4 1034 0x01E1 2034 Reserved Reserved - Do not write to this register 0x01C4 1038 0x01E1 2038 SPIDAT0 Shift Register 0 (without format select) 0x01C4 103C 0x01E1 203C SPIDAT1 Shift Register 1 (with format select) 0x01C4 1040 0x01E1 2040 SPIBUF Buffer Register 0x01C4 1044 0x01E1 2044 SPIEMU Emulation Register Submit Documentation Feedback Peripheral Information and Electrical Specifications 125 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-47. SPIx Configuration Registers (continued) SPI0 BYTE ADDRESS SPI1 BYTE ADDRESS 0x01C4 1048 0x01E1 2048 SPIDELAY Delay Register 0x01C4 104C 0x01E1 204C SPIDEF Default Chip Select Register 0x01C4 1050 0x01E1 2050 SPIFMT0 Format Register 0 0x01C4 1054 0x01E1 2054 SPIFMT1 Format Register 1 REGISTER NAME DESCRIPTION 0x01C4 1058 0x01E1 2058 SPIFMT2 Format Register 2 0x01C4 105C 0x01E1 205C SPIFMT3 Format Register 3 0x01C4 1060 0x01E1 2060 INTVEC0 Interrupt Vector for SPI INT0 0x01C4 1064 0x01E1 2064 INTVEC1 Interrupt Vector for SPI INT1 ADVANCE INFORMATION 126 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.16.2 SPI Electrical Data/Timing 6.16.2.1 Serial Peripheral Interface (SPI) Timing Table 6-48 through Table 6-63 assume testing over recommended operating conditions (see Figure 6-39 through Figure 6-42). Table 6-48. General Timing Requirements for SPI0 Master Modes (1) Cycle Time, SPI0_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 3 tw(SPCL)M Pulse Width Low, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 5 6 7 8 td(SIMO_SPC)M td(SPC_SIMO)M toh(SPC_SIMO)M tsu(SOMI_SPC)M tih(SPC_SOMI)M Delay, initial data bit valid on SPI0_SIMO to initial edge on SPI0_CLK (2) Delay, subsequent bits valid on SPI0_SIMO after transmit edge of SPI0_CLK Output hold time, SPI0_SIMO valid after receive edge of SPI0_CLK Input Setup Time, SPI0_SOMI valid before receive edge of SPI0_CLK Input Hold Time, SPI0_SOMI valid after receive edge of SPI0_CLK greater of 2P or 20 ns MAX UNIT tc(SPC)M 4,5 (1) (2) MIN 1 Polarity = 0, Phase = 0, to SPI0_CLK rising 5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M - 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M - 5 256P ns ns Polarity = 0, Phase = 0, from SPI0_CLK rising 5 Polarity = 0, Phase = 1, from SPI0_CLK falling 5 Polarity = 1, Phase = 0, from SPI0_CLK falling 5 Polarity = 1, Phase = 1, from SPI0_CLK rising 5 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 0, to SPI0_CLK falling 0 Polarity = 0, Phase = 1, to SPI0_CLK rising 0 Polarity = 1, Phase = 0, to SPI0_CLK rising 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns ns ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI. Submit Documentation Feedback Peripheral Information and Electrical Specifications 127 ADVANCE INFORMATION NO. TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-49. General Timing Requirements for SPI0 Slave Modes (1) NO. MIN greater of 2P or 20 ns MAX UNIT 9 tc(SPC)S Cycle Time, SPI0_CLK, All Slave Modes 10 tw(SPCH)S Pulse Width High, SPI0_CLK, All Slave Modes 10 ns 11 tw(SPCL)S Pulse Width Low, SPI0_CLK, All Slave Modes 10 ns 12 ADVANCE INFORMATION 13 14 15 16 (1) (2) (3) 128 tsu(SOMI_SPC)S td(SPC_SOMI)S toh(SPC_SOMI)S tsu(SIMO_SPC)S tih(SPC_SIMO)S Setup time, transmit data written to SPI before initial clock edge from master. (2) (3) Delay, subsequent bits valid on SPI0_SOMI after transmit edge of SPI0_CLK Output hold time, SPI0_SOMI valid after receive edge of SPI0_CLK Input Setup Time, SPI0_SIMO valid before receive edge of SPI0_CLK Input Hold Time, SPI0_SIMO valid after receive edge of SPI0_CLK Polarity = 0, Phase = 0, to SPI0_CLK rising 2P Polarity = 0, Phase = 1, to SPI0_CLK rising 2P Polarity = 1, Phase = 0, to SPI0_CLK falling 2P Polarity = 1, Phase = 1, to SPI0_CLK falling 2P 256P ns ns Polarity = 0, Phase = 0, from SPI0_CLK rising 9 Polarity = 0, Phase = 1, from SPI0_CLK falling 9 Polarity = 1, Phase = 0, from SPI0_CLK falling 9 Polarity = 1, Phase = 1, from SPI0_CLK rising 9 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 0, to SPI0_CLK falling 0 Polarity = 0, Phase = 1, to SPI0_CLK rising 0 Polarity = 1, Phase = 0, to SPI0_CLK rising 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns ns ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-50. Additional (1) SPI0 Master Timings, 4-Pin Enable Option (2) (3) 17 td(ENA_SPC)M 18 (1) (2) (3) (4) (5) MIN td(SPC_ENA)M Delay from slave assertion of SPI0_ENA active to first SPI0_CLK from master. (4) Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (5) MAX UNIT Polarity = 0, Phase = 0, to SPI0_CLK rising 3P + 5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 5 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M Polarity = 0, Phase = 1, from SPI0_CLK falling 0 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M Polarity = 1, Phase = 1, from SPI0_CLK rising 0 ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-48). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA assertion. In the case where the master SPI is ready with new data before SPI0_EN A deassertion. Table 6-51. Additional (1) SPI0 Master Timings, 4-Pin Chip Select Option (2) (3) NO. 19 20 (1) (2) (3) (4) (5) (6) (7) MIN td(SCS_SPC)M td(SPC_SCS)M Delay from SPI0_SCS active to first SPI0_CLK (4) (5) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (6) (7) Polarity = 0, Phase = 0, to SPI0_CLK rising 2P -3 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 2P -3 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P -3 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 2P -3 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M Polarity = 0, Phase = 1, from SPI0_CLK falling 0 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M Polarity = 1, Phase = 1, from SPI0_CLK rising 0 MAX UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-48). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Submit Documentation Feedback Peripheral Information and Electrical Specifications 129 ADVANCE INFORMATION NO. TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-52. Additional (1) SPI0 Master Timings, 5-Pin Option (2) (3) NO. 18 ADVANCE INFORMATION 20 21 22 23 MIN td(SPC_ENA)M td(SPC_SCS)M td(SCSL_ENAL)M td(SCS_SPC)M td(ENA_SPC)M Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (4) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (5) (6) P+5 Polarity = 0, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 0, from SPI0_CLK rising P+5 Polarity = 1, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M Polarity = 0, Phase = 1, from SPI0_CLK falling 0 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M Polarity = 1, Phase = 1, from SPI0_CLK rising 0 ns Max delay for slave SPI to drive SPI0_ENA valid after master asserts SPI0_SCS to delay the master from beginning the next transfer, Delay from SPI0_SCS active to first SPI0_CLK (7) (8) (9) Delay from assertion of SPI0_ENA low to first SPI0_CLK edge. (10) MAX UNIT Polarity = 0, Phase = 0, from SPI0_CLK falling C2TDELAY + P Polarity = 0, Phase = 0, to SPI0_CLK rising 2P -3 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 2P -3 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P -3 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 2P -3 ns ns Polarity = 0, Phase = 0, to SPI0_CLK rising 3P + 5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 5 ns (1) (2) (3) (4) (5) These parameters are in addition to the general timings for SPI master modes (Table 6-49). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. (6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. (7) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA. (8) In the case where the master SPI is ready with new data before SPI0_SCS assertion. (9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. (10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed. 130 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-53. Additional (1) SPI0 Slave Timings, 4-Pin Enable Option (2) (3) NO. (1) (2) (3) Delay from final SPI0_CLK edge to slave deasserting SPI0_ENA. td(SPC_ENAH)S MAX UNIT 1.5 P -3 2.5 P + 9 Polarity = 0, Phase = 1, from SPI0_CLK falling – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 9 Polarity = 1, Phase = 0, from SPI0_CLK rising 1.5 P -3 2.5 P + 9 Polarity = 1, Phase = 1, from SPI0_CLK rising – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 9 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-49). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 6-54. Additional (1) SPI0 Slave Timings, 4-Pin Chip Select Option (2) (3) NO. 25 26 (1) (2) (3) MIN td(SCSL_SPC)S td(SPC_SCSH)S Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. MAX P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + 0 Polarity = 0, Phase = 1, from SPI0_CLK falling 0 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + 0 Polarity = 1, Phase = 1, from SPI0_CLK rising 0 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P+9 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P+9 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-49). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Submit Documentation Feedback Peripheral Information and Electrical Specifications 131 ADVANCE INFORMATION 24 MIN Polarity = 0, Phase = 0, from SPI0_CLK falling TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-55. Additional (1) SPI0 Slave Timings, 5-Pin Option (2) (3) NO. 25 26 MIN td(SCSL_SPC)S td(SPC_SCSH)S Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. MAX UNIT P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + 0 Polarity = 0, Phase = 1, from SPI0_CLK falling 0 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + 0 Polarity = 1, Phase = 1, from SPI0_CLK rising 0 ns ns ADVANCE INFORMATION 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P+9 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P+9 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI0_SCS to slave driving SPI0_ENA valid 9 ns 30 (1) (2) (3) (4) tdis(SPC_ENA)S Delay from final clock receive edge on SPI0_CLK to slave 3-stating or driving high SPI0_ENA. (4) Polarity = 0, Phase = 0, from SPI0_CLK falling 2.5 P + 9 Polarity = 0, Phase = 1, from SPI0_CLK rising 2.5 P + 9 Polarity = 1, Phase = 0, from SPI0_CLK rising 2.5 P + 9 Polarity = 1, Phase = 1, from SPI0_CLK falling 2.5 P + 9 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-49). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Table 6-56. General Timing Requirements for SPI1 Master Modes (1) NO. MIN 1 tc(SPC)M Cycle Time, SPI1_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI1_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 3 tw(SPCL)M Pulse Width Low, SPI1_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 4,5 5 (1) (2) 132 td(SIMO_SPC)M td(SPC_SIMO)M Delay, initial data bit valid on SPI1_SIMO to initial edge on SPI1_CLK (2) Delay, subsequent bits valid on SPI1_SIMO after transmit edge of SPI1_CLK greater of 2P or 20 ns MAX UNIT Polarity = 0, Phase = 0, to SPI1_CLK rising 5 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M - 5 Polarity = 1, Phase = 0, to SPI1_CLK falling 5 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M - 5 256P ns ns Polarity = 0, Phase = 0, from SPI1_CLK rising 5 Polarity = 0, Phase = 1, from SPI1_CLK falling 5 Polarity = 1, Phase = 0, from SPI1_CLK falling 5 Polarity = 1, Phase = 1, from SPI1_CLK rising 5 ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-56. General Timing Requirements for SPI1 Master Modes (continued) 6 MIN toh(SPC_SIMO)M 7 tsu(SOMI_SPC)M 8 tih(SPC_SOMI)M Output hold time, SPI1_SIMO valid after receive edge of SPI1_CLK Input Setup Time, SPI1_SOMI valid before receive edge of SPI1_CLK Input Hold Time, SPI1_SOMI valid after receive edge of SPI1_CLK Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 0, to SPI1_CLK falling 0 Polarity = 0, Phase = 1, to SPI1_CLK rising 0 Polarity = 1, Phase = 0, to SPI1_CLK rising 0 Polarity = 1, Phase = 1, to SPI1_CLK falling 0 Polarity = 0, Phase = 0, from SPI1_CLK falling 5 Polarity = 0, Phase = 1, from SPI1_CLK rising 5 Polarity = 1, Phase = 0, from SPI1_CLK rising 5 Polarity = 1, Phase = 1, from SPI1_CLK falling 5 MAX UNIT ns ns ns Table 6-57. General Timing Requirements for SPI1 Slave Modes (1) NO. MIN greater of 2P or 20 ns MAX UNIT 9 tc(SPC)S Cycle Time, SPI1_CLK, All Slave Modes 10 tw(SPCH)S Pulse Width High, SPI1_CLK, All Slave Modes 10 ns 11 tw(SPCL)S Pulse Width Low, SPI1_CLK, All Slave Modes 10 ns 12 13 (1) (2) (3) tsu(SOMI_SPC)S td(SPC_SOMI)S Setup time, transmit data written to SPI before initial clock edge from master. (2) (3) Delay, subsequent bits valid on SPI1_SOMI after transmit edge of SPI1_CLK Polarity = 0, Phase = 0, to SPI1_CLK rising 2P Polarity = 0, Phase = 1, to SPI1_CLK rising 2P Polarity = 1, Phase = 0, to SPI1_CLK falling 2P Polarity = 1, Phase = 1, to SPI1_CLK falling 2P 256P ns ns Polarity = 0, Phase = 0, from SPI1_CLK rising 9.7 Polarity = 0, Phase = 1, from SPI1_CLK falling 9.7 Polarity = 1, Phase = 0, from SPI1_CLK falling 9.7 Polarity = 1, Phase = 1, from SPI1_CLK rising 9.7 ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU. Submit Documentation Feedback Peripheral Information and Electrical Specifications 133 ADVANCE INFORMATION NO. TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-57. General Timing Requirements for SPI1 Slave Modes (continued) NO. 14 MIN toh(SPC_SOMI)S ADVANCE INFORMATION 15 tsu(SIMO_SPC)S 16 tih(SPC_SIMO)S Output hold time, SPI1_SOMI valid after receive edge of SPI1_CLK Input Setup Time, SPI1_SIMO valid before receive edge of SPI1_CLK Input Hold Time, SPI1_SIMO valid after receive edge of SPI1_CLK Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 0, to SPI1_CLK falling 0 Polarity = 0, Phase = 1, to SPI1_CLK rising 0 Polarity = 1, Phase = 0, to SPI1_CLK rising 0 Polarity = 1, Phase = 1, to SPI1_CLK falling 0 Polarity = 0, Phase = 0, from SPI1_CLK falling 5 Polarity = 0, Phase = 1, from SPI1_CLK rising 5 Polarity = 1, Phase = 0, from SPI1_CLK rising 5 Polarity = 1, Phase = 1, from SPI1_CLK falling 5 MAX UNIT ns ns ns Table 6-58. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2) (3) NO. 17 18 (1) (2) (3) (4) (5) 134 MIN td(EN A_SPC)M td(SPC_ENA)M Delay from slave assertion of SPI1_ENA active to first SPI1_CLK from master. (4) Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (5) MAX UNIT Polarity = 0, Phase = 0, to SPI1_CLK rising 3P + 5 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 3P + 5 Polarity = 1, Phase = 0, to SPI1_CLK falling 3P + 5 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 3P + 5 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M Polarity = 0, Phase = 1, from SPI1_CLK falling 0 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M Polarity = 1, Phase = 1, from SPI1_CLK rising 0 ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-56). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA assertion. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-59. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2) (3) NO. td(SCS_SPC)M 20 (1) (2) (3) (4) (5) (6) (7) td(SPC_SCS)M Delay from SPI1_SCS active to first SPI1_CLK (4) (5) Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (6) (7) 2P -3 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 2P -3 Polarity = 1, Phase = 0, to SPI1_CLK falling 2P -3 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 2P -3 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M Polarity = 0, Phase = 1, from SPI1_CLK falling 0 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M Polarity = 1, Phase = 1, from SPI1_CLK rising 0 MAX UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-56). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Table 6-60. Additional (1) SPI1 Master Timings, 5-Pin Option (2) (3) NO. 18 20 21 (1) (2) (3) (4) (5) (6) MIN td(SPC_ENA)M td(SPC_SCS)M td(SCSL_ENAL)M Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (4) Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (5) (6) MAX UNIT Polarity = 0, Phase = 0, from SPI1_CLK falling P+5 Polarity = 0, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 0, from SPI1_CLK rising P+5 Polarity = 1, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)M + P + 5 ns Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M Polarity = 0, Phase = 1, from SPI1_CLK falling 0 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M Polarity = 1, Phase = 1, from SPI1_CLK rising 0 Max delay for slave SPI to drive SPI1_ENA valid after master asserts SPI1_SCS to delay the master from beginning the next transfer, ns C2TDELAY + P ns These parameters are in addition to the general timings for SPI master modes (Table 6-57). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Submit Documentation Feedback Peripheral Information and Electrical Specifications 135 ADVANCE INFORMATION 19 MIN Polarity = 0, Phase = 0, to SPI1_CLK rising TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-60. Additional SPI1 Master Timings, 5-Pin Option (continued) NO. 22 Delay from SPI1_SCS active to first SPI1_CLK (7) (8) (9) td(SCS_SPC)M ADVANCE INFORMATION 23 (7) (8) (9) (10) MIN Delay from assertion of SPI1_ENA low to first SPI1_CLK edge. (10) td(ENA_SPC)M Polarity = 0, Phase = 0, to SPI1_CLK rising 2P -3 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 2P -3 Polarity = 1, Phase = 0, to SPI1_CLK falling 2P -3 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 2P -3 MAX UNIT ns Polarity = 0, Phase = 0, to SPI1_CLK rising 3P + 5 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 3P + 5 Polarity = 1, Phase = 0, to SPI1_CLK falling 3P + 5 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 3P + 5 ns If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA. In the case where the master SPI is ready with new data before SPI1_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed. Table 6-61. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2) (3) NO. 24 (1) (2) (3) MIN Delay from final SPI1_CLK edge to slave deasserting SPI1_ENA. td(SPC_ENAH)S MAX UNIT Polarity = 0, Phase = 0, from SPI1_CLK falling 1.5 P -3 2.5 P + 9.7 Polarity = 0, Phase = 1, from SPI1_CLK falling – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 9.7 Polarity = 1, Phase = 0, from SPI1_CLK rising 1.5 P -3 2.5 P + 9.7 Polarity = 1, Phase = 1, from SPI1_CLK rising – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 9.7 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-57). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 6-62. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2) (3) NO. 25 26 MIN td(SCSL_SPC)S td(SPC_SCSH)S Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. MAX P Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + 0 Polarity = 0, Phase = 1, from SPI1_CLK falling 0 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + 0 Polarity = 1, Phase = 1, from SPI1_CLK rising 0 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P + 9.7 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P + 9.7 ns (1) (2) (3) 136 These parameters are in addition to the general timings for SPI slave modes (Table 6-57). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-63. Additional (1) SPI1 Slave Timings, 5-Pin Option (2) (3) 25 26 td(SCSL_SPC)S td(SPC_SCSH)S Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. MAX P Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + 0 Polarity = 0, Phase = 1, from SPI1_CLK falling 0 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + 0 Polarity = 1, Phase = 1, from SPI1_CLK rising 0 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P + 9.7 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P + 9.7 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI1_SCS to slave driving SPI1_ENA valid 9.7 ns 30 (1) (2) (3) (4) MIN Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. tdis(SPC_ENA)S Delay from final clock receive edge on SPI1_CLK to slave 3-stating or driving high SPI1_ENA. (4) Polarity = 0, Phase = 0, from SPI1_CLK falling 2.5 P + 9.7 Polarity = 0, Phase = 1, from SPI1_CLK rising 2.5 P + 9.7 Polarity = 1, Phase = 0, from SPI1_CLK rising 2.5 P + 9.7 Polarity = 1, Phase = 1, from SPI1_CLK falling 2.5 P + 9.7 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-57). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Submit Documentation Feedback Peripheral Information and Electrical Specifications 137 ADVANCE INFORMATION NO. TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI 6 MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) ADVANCE INFORMATION MASTER MODE POLARITY = 0 PHASE = 1 4 SPIx_CLK 6 5 SPIx_SIMO MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(0) MI(n) 4 MASTER MODE POLARITY = 1 PHASE = 0 SPIx_CLK 5 SPIx_SIMO 6 MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI MI(0) 6 MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(n) Figure 6-39. SPI Timings—Master Mode 138 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 9 12 10 SLAVE MODE POLARITY = 0 PHASE = 0 11 SPIx_CLK 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SI(n) 14 SO(1) SO(n−1) 12 SO(n) ADVANCE INFORMATION 15 SPIx_SIMO SLAVE MODE POLARITY = 0 PHASE = 1 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SI(n−1) SI(n) SO(n−1) SO(n) 14 SO(1) SLAVE MODE POLARITY = 1 PHASE = 0 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SI(n) 14 SO(1) SO(n−1) SO(n) SLAVE MODE POLARITY = 1 PHASE = 1 12 SPIx_CLK 15 16 SPIx_SIMO SI(0) SPIx_SOMI SO(0) SI(1) 13 SO(1) SI(n−1) SI(n) 14 SO(n−1) SO(n) Figure 6-40. SPI Timings—Slave Mode Submit Documentation Feedback Peripheral Information and Electrical Specifications 139 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com MASTER MODE 4 PIN WITH ENABLE 17 18 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MI(1) MI(n−1) MO(n) MI(n) SPIx_ENA MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPIx_CLK ADVANCE INFORMATION SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MO(n) MI(1) MI(n−1) MI(n) SPIx_SCS MASTER MODE 5 PIN 22 20 MO(1) 23 18 SPIx_CLK SPIx_SIMO MO(0) MO(n−1) MO(n) SPIx_SOMI 21 SPIx_ENA MI(0) MI(1) MI(n−1) MI(n) DESEL(A) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 6-41. SPI Timings—Master Mode (4-Pin and 5-Pin) 140 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 SLAVE MODE 4 PIN WITH ENABLE 24 SPIx_CLK SPIx_SOMI SO(0) SO(1) SO(n−1) SO(n) SPIx_SIMO SI(0) SPIx_ENA SI(1) SI(n−1) SI(n) SLAVE MODE 4 PIN WITH CHIP SELECT 26 25 SPIx_CLK SPIx_SOMI 28 SO(n−1) SO(0) SO(1) ADVANCE INFORMATION 27 SO(n) SPIx_SIMO SI(0) SPIx_SCS SI(1) SI(n−1) SI(n) SLAVE MODE 5 PIN 26 30 25 SPIx_CLK 27 SPIx_SOMI 28 SO(1) SO(0) SO(n−1) SO(n) SPIx_SIMO 29 SPIx_ENA DESEL(A) SI(0) SI(1) SI(n−1) SI(n) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 6-42. SPI Timings—Slave Mode (4-Pin and 5-Pin) Submit Documentation Feedback Peripheral Information and Electrical Specifications 141 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.17 Enhanced Capture (eCAP) Peripheral The C6745/6747 device contains up to three enhanced capture (eCAP) modules. Figure 6-43 shows a functional block diagram of a module. See the TMS320C6745/C6747 DSP Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Uses for ECAP include: • Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors) • Elapsed time measurements between position sensor triggers • Period and duty cycle measurements of Pulse train signals • Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors ADVANCE INFORMATION The ECAP module described in this specification includes the following features: • 32 bit time base • 4 event time-stamp registers (each 32 bits) • Edge polarity selection for up to 4 sequenced time-stamp capture events • Interrupt on either of the 4 events • Single shot capture of up to 4 event time-stamps • Continuous mode capture of time-stamps in a 4 deep circular buffer • Absolute time-stamp capture • Difference mode time-stamp capture • All the above resources are dedicated to a single input pin The eCAP modules are clocked at the SYSCLK2 rate. The clock enable bits (ECAP1/2/3/4ENCLK) in the PCLKCR1 register are used to turn off the eCAP modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, and ECAP4EN CLK are set to low, indicating that the peripheral clock is off. 142 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 SYNC www.ti.com SYNCIn SYNCOut CTRPHS (phase register−32 bit) TSCTR (counter−32 bit) APWM mode OVF RST CTR_OVF CTR [0−31] Delta−mode PWM compare logic PRD [0−31] CMP [0−31] 32 CTR=PRD CTR [0−31] CTR=CMP 32 LD1 CAP1 (APRD active) APRD shadow 32 32 Polarity select LD 32 CMP [0−31] CAP2 (ACMP active) 32 LD LD2 Polarity select Event qualifier ACMP shadow 32 CAP3 (APRD shadow) LD 32 CAP4 (ACMP shadow) LD eCAPx Event Pre-scale Polarity select LD3 LD4 Polarity select 4 Capture events 4 CEVT[1:4] to Interrupt Controller Interrupt Trigger and Flag control CTR_OVF Continuous / Oneshot Capture Control CTR=PRD CTR=CMP Figure 6-43. eCAP Functional Block Diagram Table 6-64 is the list of the ECAP registers. Table 6-64. ECAPx Configuration Registers ECAP0 BYTE ADDRESS ECAP1 BYTE ADDRESS ECAP2 BYTE ADDRESS REGISTER NAME 0x01F0 6000 0x01F0 7000 0x01F0 8000 TSCTR 0x01F0 6004 0x01F0 7004 0x01F0 8004 CTRPHS 0x01F0 6008 0x01F0 7008 0x01F0 8008 CAP1 Submit Documentation Feedback DESCRIPTION Time-Stamp Counter Counter Phase Offset Value Register Capture 1 Register Peripheral Information and Electrical Specifications 143 ADVANCE INFORMATION 32 MODE SELECT PRD [0−31] TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-64. ECAPx Configuration Registers (continued) ECAP0 BYTE ADDRESS ECAP1 BYTE ADDRESS ECAP2 BYTE ADDRESS REGISTER NAME 0x01F0 600C 0x01F0 700C 0x01F0 800C CAP2 Capture 2 Register 0x01F0 6010 0x01F0 7010 0x01F0 8010 CAP3 Capture 3 Register 0x01F0 6014 0x01F0 7014 0x01F0 8014 CAP4 Capture 4 Register 0x01F0 6028 0x01F0 7028 0x01F0 8028 ECCTL1 Capture Control Register 1 DESCRIPTION 0x01F0 602A 0x01F0 702A 0x01F0 802A ECCTL2 Capture Control Register 2 0x01F0 602C 0x01F0 702C 0x01F0 802C ECEINT Capture Interrupt Enable Register 0x01F0 602E 0x01F0 702E 0x01F0 802E ECFLG Capture Interrupt Flag Register 0x01F0 6030 0x01F0 7030 0x01F0 8030 ECCLR Capture Interrupt Clear Register ADVANCE INFORMATION 0x01F0 6032 0x01F0 7032 0x01F0 8032 ECFRC Capture Interrupt Force Register 0x01F0 605C 0x01F0 705C 0x01F0 805C REVID Revision ID Table 6-65 shows the eCAP timing requirement and Table 6-66 shows the eCAP switching characteristics. Table 6-65. Enhanced Capture (eCAP) Timing Requirement TEST CONDITIONS tw(CAP) Capture input pulse width MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles 1tc(SCO) + tw(IQSW) cycles With input qualifier Table 6-66. eCAP Switching Characteristics PARAMETER tw(APWM) 144 Pulse duration, APWMx output high/low Peripheral Information and Electrical Specifications TEST CONDITIONS MIN 20 MAX UNIT ns Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.18 Enhanced Quadrature Encoder (eQEP) Peripheral The C6745/6747 device contains up to two enhanced quadrature encoder (eQEP) modules. See the TMS320C6745/C6747 DSP Peripherals Overview Reference Guide. – Literature Number SPRUFK9. for more details. System control registers To CPU EQEPxENCLK ADVANCE INFORMATION Data bus SYSCLK2 QCPRD QCTMR QCAPCTL 16 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT Registers used by multiple units QUTMR QWDTMR QUPRD QWDPRD 32 16 QEPCTL QEPSTS UTIME Interrupt Controller QFLG UTOUT QWDOG QDECCTL 16 WDTOUT EQEPxINT EQEPxAIN QCLK 16 QI Position counter/ control unit (PCCU) QPOSLAT QS PHE QPOSSLAT PCSOUT QPOSILAT EQEPxIIN Quadrature decoder (QDU) EQEPxIOUT EQEPxIOE EQEPxSIN EQEPxSOUT EQEPxSOE 32 32 QPOSCNT QPOSCMP EQEPxA/XCLK EQEPxBIN QDIR EQEPxB/XDIR GPIO MUX EQEPxI EQEPxS 16 QEINT QPOSINIT QFRC QPOSMAX QCLR QPOSCTL Enhanced QEP (eQEP) peripheral Figure 6-44. eQEP Functional Block Diagram Table 6-67 is the list of the EQEP registers. Table 6-68 shows the eQEP timing requirement and Table 6-69 shows the eQEP switching characteristics. Submit Documentation Feedback Peripheral Information and Electrical Specifications 145 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-67. EQEP Registers EQEP0 BYTE ADDRESS EQEP1 BYTE ADDRESS 0x01F0 9000 0x01F0 9004 ADVANCE INFORMATION REGISTER NAME DESCRIPTION 0x01F0 A000 QPOSCNT eQEP Position Counter 0x01F0 A004 QPOSINIT eQEP Initialization Position Count 0x01F0 9008 0x01F0 A008 QPOSMAX eQEP Maximum Position Count 0x01F0 900C 0x01F0 A00C QPOSCMP eQEP Position-compare 0x01F0 9010 0x01F0 A010 QPOSILAT eQEP Index Position Latch 0x01F0 9014 0x01F0 A014 QPOSSLAT eQEP Strobe Position Latch 0x01F0 9018 0x01F0 A018 QPOSLAT eQEP Position Latch 0x01F0 901C 0x01F0 A01C QUTMR eQEP Unit Timer 0x01F0 9020 0x01F0 A020 QUPRD eQEP Unit Period Register 0x01F0 9024 0x01F0 A024 QWDTMR eQEP Watchdog Timer 0x01F0 9026 0x01F0 A026 QWDPRD eQEP Watchdog Period Register 0x01F0 9028 0x01F0 A028 QDECCTL eQEP Decoder Control Register 0x01F0 902A 0x01F0 A02A QEPCTL eQEP Control Register 0x01F0 902C 0x01F0 A02C QCAPCTL eQEP Capture Control Register 0x01F0 902E 0x01F0 A02E QPOSCTL eQEP Position-compare Control Register 0x01F0 9030 0x01F0 A030 QEINT eQEP Interrupt Enable Register 0x01F0 9032 0x01F0 A032 QFLG eQEP Interrupt Flag Register 0x01F0 9034 0x01F0 A034 QCLR eQEP Interrupt Clear Register 0x01F0 9036 0x01F0 A036 QFRC eQEP Interrupt Force Register 0x01F0 9038 0x01F0 A038 QEPSTS eQEP Status Register 0x01F0 903A 0x01F0 A03A QCTMR eQEP Capture Timer 0x01F0 903C 0x01F0 A03C QCPRD eQEP Capture Period Register 0x01F0 903E 0x01F0 A03E QCTMRLAT eQEP Capture Timer Latch 0x01F0 9040 0x01F0 A040 QCPRDLAT eQEP Capture Period Latch 0x01F0 905C 0x01F0 A05C REVID eQEP Revision ID Table 6-68. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements TEST CONDITIONS tw(QEPP) QEP input period tw(INDEXH) QEP Index Input High time tw(INDEXL) QEP Index Input Low time With input qualifier QEP Strobe High time tw(STROBL) QEP Strobe Input Low time 2(1tc(SCO) + tw(IQSW)) cycles 2tc(SCO) cycles 2tc(SCO) +tw(IQSW) cycles 2tc(SCO) cycles 2tc(SCO) + tw(IQSW) cycles Asynchronous/synchronous With input qualifier 2tc(SCO) cycles 2tc(SCO) + tw(IQSW) cycles 2tc(SCO) cycles 2tc(SCO) +tw(IQSW) cycles Asynchronous/synchronous With input qualifier UNIT cycles Asynchronous/synchronous With input qualifier MAX 2tc(SCO) Asynchronous/synchronous With input qualifier tw(STROBH) MIN Asynchronous/synchronous Table 6-69. eQEP Switching Characteristics PARAMETER TEST CONDITIONS MIN MAX UNIT td(CNTR)xin Delay time, external clock to counter increment 4tc(SCO) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 6tc(SCO) cycles 146 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.19 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) The C6745/6747 device contains up to three enhanced PWM Modules (eHRPWM). Figure 6-45 shows a block diagram of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM. See the TMS320C6745/C6747 DSP Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. EPWMSYNCI EPWM0SYNCI EPWM0A ePWM0 module ADVANCE INFORMATION EPWM0INT EPWM0B TZ EPWM0SYNCO EPWM1SYNCI EPWM1INT EPWM1A ePWM1 module EPWM1B GPIO MUX EPWM1SYNCO TZ EPWM2SYNCI EPWM2INT Interrupt Controllers EPWM2A ePWM2 module EPWM2SYNCO To eCAP0 module (sync in) EPWM2B TZ EPWMSYNCO Peripheral Bus Figure 6-45. Multiple PWM Modules in a C6745/6747 System Submit Documentation Feedback Peripheral Information and Electrical Specifications 147 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Time−base (TB) Sync in/out select Mux CTR=ZERO CTR=CMPB Disabled TBPRD shadow (16) TBPRD active (16) CTR=PRD EPWMSYNCO TBCTL[SYNCOSEL] TBCTL[CNTLDE] EPWMSYNCI Counter up/down (16 bit) CTR=ZERO CTR_Dir ADVANCE INFORMATION TBCNT active (16) TBPHSHR (8) 16 8 TBPHS active (24) CTR = PRD CTR = ZERO CTR = CMPA CTR = CMPB CTR_Dir Phase control Counter compare (CC) CTR=CMPA CMPAHR (8) 16 TBCTL[SWFSYNC] (software forced sync) Action qualifier (AQ) 8 Event trigger and interrupt (ET) EPWMxINT HiRes PWM (HRPWM) CMPA active (24) EPWMA EPWMxA CMPA shadow (24) CTR=CMPB Dead band (DB) 16 PWM chopper (PC) Trip zone (TZ) EPWMB EPWMxB CMPB active (16) EPWMxTZINT CMPB shadow (16) CTR = ZERO TZ Figure 6-46. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections Table 6-70. eHRPWM Module Control and Status Registers Grouped by Submodule eHRPWM0 BYTE ADDRESS eHRPWM1 BYTE ADDRESS eHRPWM2 BYTE ADDRESS 0x01F0 0000 0x01F0 2000 0x01F0 4000 TBCTL 1 No Time-Base Control Register 0x01F0 0002 0x01F0 2002 0x01F0 4002 TBSTS 1 No Time-Base Status Register 0x01F0 0004 0x01F0 2004 0x01F0 4004 TBPHSHR 1 No Extension for HRPWM Phase Register 0x01F0 0006 0x01F0 2006 0x01F0 4006 TBPHS 1 No Time-Base Phase Register 0x01F0 0008 0x01F0 2008 0x01F0 4008 TBCNT 1 No Time-Base Counter Register 0x01F0 000A 0x01F0 200A 0x01F0 400A TBPRD 1 Yes Time-Base Period Register Acronym Size (×16) Shad ow Register Description Time-Base Submodule Registers (1) Counter-Compare Submodule Registers 0x01F0 000E 0x01F0 200E 0x01F0 400E CMPCTL 1 No Counter-Compare Control Register 0x01F0 0010 0x01F0 2010 0x01F0 4010 CMPAHR 1 No Extension for HRPWM Counter-Compare A Register 0x01F0 0012 0x01F0 2012 0x01F0 4012 CMPA 1 Yes Counter-Compare A Register 0x01F0 0014 0x01F0 2014 0x01F0 4014 CMPB 1 Yes Counter-Compare B Register (1) 148 (1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-70. eHRPWM Module Control and Status Registers Grouped by Submodule (continued) eHRPWM0 BYTE ADDRESS eHRPWM1 BYTE ADDRESS eHRPWM2 BYTE ADDRESS Size (×16) Acronym Shad ow Register Description Action-Qualifier Submodule Registers 0x01F0 0016 0x01F0 2016 0x01F0 4016 AQCTLA 1 No Action-Qualifier Control Register for Output A (eHRPWMxA) 0x01F0 0018 0x01F0 2018 0x01F0 4018 AQCTLB 1 No Action-Qualifier Control Register for Output B (eHRPWMxB) 0x01F0 001A 0x01F0 201A 0x01F0 401A AQSFRC 1 No Action-Qualifier Software Force Register 0x01F0 001C 0x01F0 201C 0x01F0 401C AQCSFRC 1 Yes Action-Qualifier Continuous S/W Force Register Set 0x01F0 001E 0x01F0 201E 0x01F0 401E DBCTL 1 No Dead-Band Generator Control Register 0x01F0 0020 0x01F0 2020 0x01F0 4020 DBRED 1 No Dead-Band Generator Rising Edge Delay Count Register 0x01F0 0022 0x01F0 2022 0x01F0 4022 DBFED 1 No Dead-Band Generator Falling Edge Delay Count Register PWM-Chopper Submodule Registers 0x01F0 003C 0x01F0 203C 0x01F0 403C PCCTL 1 No PWM-Chopper Control Register Trip-Zone Submodule Registers 0x01F0 0024 0x01F0 2024 0x01F0 4024 TZSEL 1 No Trip-Zone Select Register 0x01F0 0028 0x01F0 2028 0x01F0 4028 TZCTL 1 No Trip-Zone Control Register 0x01F0 002A 0x01F0 202A 0x01F0 402A TZEINT 1 No Trip-Zone Enable Interrupt Register 0x01F0 002C 0x01F0 202C 0x01F0 402C TZFLG 1 No Trip-Zone Flag Register 0x01F0 002E 0x01F0 202E 0x01F0 402E TZCLR 1 No Trip-Zone Clear Register 0x01F0 0030 0x01F0 2030 0x01F0 4030 TZFRC 1 No Trip-Zone Force Register Event-Trigger Submodule Registers 0x01F0 0032 0x01F0 2032 0x01F0 4032 ETSEL 1 No Event-Trigger Selection Register 0x01F0 0034 0x01F0 2034 0x01F0 4034 ETPS 1 No Event-Trigger Pre-Scale Register 0x01F0 0036 0x01F0 2036 0x01F0 4036 ETFLG 1 No Event-Trigger Flag Register 0x01F0 0038 0x01F0 2038 0x01F0 4038 ETCLR 1 No Event-Trigger Clear Register 0x01F0 003A 0x01F0 203A 0x01F0 403A ETFRC 1 No Event-Trigger Force Register 0x01F0 1020 0x01F0 3020 0x01F0 5020 High-Resolution PWM (HRPWM) Submodule Registers HRCNFG 1 No HRPWM Configuration Register (1) 6.19.1 Enhanced Pulse Width Modulator (eHRPWM) Timing PWM refers to PWM outputs on eHRPWM1-6. Table 6-71 shows the PWM timing requirements and Table 6-72, switching characteristics. Table 6-71. eHRPWM Timing Requirements PARAMETER tw(SYNCIN) Sync input pulse width TEST CONDITIONS MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles 1tc(SCO) + tw(IQSW) cycles With input qualifier Table 6-72. eHRPWM Switching Characteristics PARAMETER tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width td(PWM)TZA Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low Submit Documentation Feedback TEST CONDITIONS MIN MAX UNIT 20 ns 8tc(SCO) no pin load cycles 25 Peripheral Information and Electrical Specifications ns 149 ADVANCE INFORMATION Dead-Band Generator Submodule Registers TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-72. eHRPWM Switching Characteristics (continued) PARAMETER td(TZ-PWM)HZ TEST CONDITIONS MIN MAX Delay time, trip input active to PWM Hi-Z 20 UNIT ns 6.19.2 Trip-Zone Input Timing tw(TZ) TZ td(TZ-PWM)HZ ADVANCE INFORMATION PWM(A) A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 6-47. PWM Hi-Z Characteristics Table 6-73. Trip-Zone input Timing Requirements PARAMETER tw(TZ) MIN Pulse duration, TZx input low MAX UNIT Asynchronous 1tc(SCO) cycles Synchronous 2tc(SCO) cycles 1tc(SCO) + tw(IQSW) cycles With input qualifier Table 6-74 shows the high-resolution PWM switching characteristics. Table 6-74. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz) PARAMETER Micro Edge Positioning (MEP) step size (1) (1) 150 MIN TYP MAX UNIT 150 310 ps Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase with low voltage and high temperature and decrease with voltage and cold temperature. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per SYSCLKOUT period dynamically while the HRPWM is in operation. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.20 LCD Controller Table 6-75 lists the LCD Controller registers Address Offset Acronym Register Description 0x01E1 3000 REVID LCD Revision Identification Register 0x01E1 3004 LCD_CTRL LCD Control Register 0x01E1 3008 LCD_STAT LCD Status Register 0x01E1 300C LIDD_CTRL LCD LIDD Control Register 0x01E1 3010 LIDD_CS0_CONF LCD LIDD CS0 Configuration Register 0x01E1 3014 LIDD_CS0_ADDR LCD LIDD CS0 Address Read/Write Register 0x01E1 3018 LIDD_CS0_DATA LCD LIDD CS0 Data Read/Write Register 0x01E1 301C LIDD_CS1_CONF LCD LIDD CS1 Configuration Register 0x01E1 3020 LIDD_CS1_ADDR LCD LIDD CS1 Address Read/Write Register 0x01E1 3024 LIDD_CS1_DATA LCD LIDD CS1 Data Read/Write Register 0x01E1 3028 RASTER_CTRL LCD Raster Control Register 0x01E1 302C RASTER_TIMING_0 LCD Raster Timing 0 Register 0x01E1 3030 RASTER_TIMING_1 LCD Raster Timing 1 Register 0x01E1 3034 RASTER_TIMING_2 LCD Raster Timing 2 Register 0x01E1 3038 RASTER_SUBPANEL LCD Raster Subpanel Display Register 0x01E1 3040 LCDDMA_CTRL LCD DMA Control Register 0x01E1 3044 LCDDMA_FB0_BASE LCD DMA Frame Buffer 0 Base Address Register 0x01E1 3048 LCDDMA_FB0_CEILING LCD DMA Frame Buffer 0 Ceiling Address Register 0x01E1 304C LCDDMA_FB1_BASE LCD DMA Frame Buffer 1 Base Address Register 0x01E1 3050 LCDDMA_FB1_CEILING LCD DMA Frame Buffer 1 Ceiling Address Register ADVANCE INFORMATION Table 6-75. LCD Controller (LCDC) Registers 6.20.1 LCD Interface Display Driver (LIDD Mode) Table 6-76. LCD LIDD Mode Timing Requirements NO PARAMETER 16 tsu(LCD_D) Setup time, LCD_D[15:0] valid before LCD_CLK (SYSCLK2) ↑ 17 th(LCD_D) Hold time, LCD_D[15:0] valid after LCD_CLK (SYSCLK2) ↑ MIN MAX UNIT 7 ns 0 ns Table 6-77. LCD LIDD Mode Timing Characteristics NO PARAMETER MIN MAX UNIT 0 7 ns 4 td(LCD_D_V) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] valid (write) 5 td(LCD_D_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] invalid (write) 0 7 ns 6 td(LCD_E_A) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_AC_ENB_CS↓ 0 7 ns 7 td(LCD_E_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_AC_ENB_CS↑ 0 7 ns 8 td(LCD_A_A) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_VSYNC↓ 0 7 ns 9 td(LCD_A_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_VSYNC↑ 0 7 ns 10 td(LCD_W_A) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_HSYNC↓ 0 7 ns Submit Documentation Feedback Peripheral Information and Electrical Specifications 151 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-77. LCD LIDD Mode Timing Characteristics (continued) NO PARAMETER MIN MAX UNIT 0 7 ns ADVANCE INFORMATION 11 td(LCD_W_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_HSYNC↑ 12 td(LCD_STRB_A) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_PCLK↑ 0 7 ns 13 td(LCD_STRB_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_PCLK↓ 0 7 ns 14 td(LCD_D_Z) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] in 3-state 0 7 ns 15 td(Z_LCD_D) Delay time, LCD_CLK (SYSCLK2) ↑ to 15 td(Z_LCD_D) 3-state) LCD_D[15:0] (valid from 3-state) 0 7 ns 1 W_SU (0 to 31) 2 3 LCD_CLK (SYSCLK2) CS_DELAY (0 to 3) W_STROBE (1 to 63) R_SU (0 to 31) 4 R_HOLD (1 to 15) R_STROBE (1 to 63) W_HOLD (1 to 15) 5 14 17 16 LCD_D[15:0] CS_DELAY (0 to 3) 15 Write Data Data[7:0] Read Status LCD_PCLK Not Used 8 9 LCD_VSYNC RS 10 11 LCD_HSYNC R/W 12 12 13 13 E0 E1 LCD_AC_ENB_CS Figure 6-48. Character Display HD44780 Write 152 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 W_HOLD (1–15) R_SU (0–31) 1 2 R_STROBE R_HOLD CS_DELAY (1–63) (1–5) (0−3) (0–31) W_SU 17 15 4 W_STROBE CS_DELAY (1–63) (0 − 3) 3 Not Used LCD_CLK (SYSCLK2) 16 LCD_D[7:0] 5 Data[7:0] Write Instruction ADVANCE INFORMATION 14 Read Data LCD_PCLK Not Used 8 9 RS LCD_VSYNC 10 11 LCD_HSYNC R/W 12 12 13 13 LCD_AC_ENB_CS E0 E1 Figure 6-49. Character Display HD44780 Read Submit Documentation Feedback Peripheral Information and Electrical Specifications 153 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE CS_DELAY W_SU W_STROBE (0−31) (1−63) (0−3) (0−31) (1−63) CS_DELAY (0−3) 3 Clock LCD_CLK (SYSCLK2) 4 LCD_D[15:0] 5 5 4 Write Address Write Data ADVANCE INFORMATION 7 6 Data[15:0] 6 7 LCD_AC_ENB_CS (async mode) CS0 CS1 9 8 A0 LCD_VSYNC 10 11 11 10 R/W LCD_HSYNC 12 13 12 13 E LCD_PCLK Figure 6-50. Micro-Interface Graphic Display 6800 Write 154 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) (1−63) R_SU (0−31) CS_DELAY R_STROBE R_HOLD CS_DELAY (1−15) (0−3) (1−63 (0−3) 3 Clock LCD_CLK (SYSCLK2) 4 14 16 17 15 Write Address Data[15:0] 6 7 Read Data 6 LCD_AC_ENB_CS (async mode) ADVANCE INFORMATION LCD_D[15:0] 5 7 CS0 CS1 9 8 LCD_VSYNC A0 11 10 LCD_HSYNC R/W 12 13 12 13 LCD_PCLK E Figure 6-51. Micro-Interface Graphic Display 6800 Read Submit Documentation Feedback Peripheral Information and Electrical Specifications 155 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com R_SU (0−31) R_SU (0−31) R_STROBE R_HOLD CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 (1−63) 3 (1−15) (0−3) (1−63) (1−15) (0−3) Clock LCD_CLK (SYSCLK2) 14 16 17 15 14 17 16 15 LCD_D[15:0] Data[15:0] ADVANCE INFORMATION Read Data 6 LCD_AC_ENB_CS (async mode) 7 Read Status 6 7 CS0 CS1 8 9 LCD_VSYNC A0 LCD_HSYNC R/W 12 13 12 13 E LCD_PCLK Figure 6-52. Micro-Interface Graphic Display 6800 Status 156 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE CS_DELAY W_SU W_STROBE CS_DELAY (0−31) 3 (1−63) (0−3) (0−31) (1−63) (0 − 3) Clock LCD_CLK (SYSCLK2) LCD_D[15:0] LCD_AC_ENB_CS (async mode) 5 4 Write Address 5 DATA[15:0] Write Data 7 6 6 7 CS0 CS1 8 9 LCD_VSYNC A0 10 11 10 11 LCD_HSYNC WR RD LCD_PCLK Figure 6-53. Micro-Interface Graphic Display 8080 Write Submit Documentation Feedback Peripheral Information and Electrical Specifications 157 ADVANCE INFORMATION 4 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com W_HOLD (1−15) W_SU W_STROBE R_SU (0−31) CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 3 (0−31) (1−63) (0−3) (1−63) (1−15) 16 17 (0−3) Clock LCD_CLK (SYSCLK2) 4 LCD_D[15:0] 5 14 15 Data[15:0] Write Address ADVANCE INFORMATION 6 7 LCD_AC_ENB_CS (async mode) 6 Read Data 7 CS0 CS1 9 8 LCD_VSYNC A0 10 11 WR LCD_HSYNC 12 13 RD LCD_PCLK Figure 6-54. Micro-Interface Graphic Display 8080 Read 158 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 R_SU (0−31) R_SU (0−31) R_STROBE 1 2 (1−63) R_HOLD CS_DELAY (1−15) (0−3) R_STROBE R_HOLD (1−63) CS_DELAY (1−15) (0−3) 3 Clock LCD_CLK (SYSCLK2) 14 16 17 15 14 16 17 15 Data[15:0] LCD_D[15:0] Read Data 6 ADVANCE INFORMATION Read Status 7 6 7 LCD_AC_ENB_CS CS0 CS1 8 9 A0 LCD_VSYNC WR LCD_HSYNC 12 13 12 13 RD LCD_PCLK Figure 6-55. Micro-Interface Graphic Display 8080 Status Submit Documentation Feedback Peripheral Information and Electrical Specifications 159 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.20.2 LCD Raster Mode Table 6-78. LCD Raster Mode Timing See Figure 6-56 through Figure 6-59 NO. ADVANCE INFORMATION (1) PARAMETER fclock(PIXEL_CLK) Clock frequency, pixel clock 1 tc(PIXEL_CLK) Cycle time, pixel clock 2 tw(PIXEL_CLK_H) 3 4 MIN MAX F/2 UNIT (1) MHz 23.81 ns Pulse duration, pixel clock high 10 ns tw(PIXEL_CLK_L) Pulse duration, pixel clock low 10 td(LCD_D_V) Delay time, LCD_PCLK↑ to LCD_D[15:0] valid (write) 0 12 ns 5 td(LCD_D_IV) Delay time, LCD_PCLK↑ to LCD_D[15:0] invalid (write) 0 12 ns 6 td(LCD_AC_ENB_CS_A) Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↑ 0 12 ns 7 td(LCD_AC_ENB_CS_I) Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↓ 0 12 ns 8 td(LCD_VSYNC_A) Delay time, LCD_PCLK↓ to LCD_VSYNC↑ 0 12 ns 9 td(LCD_VSYNC_I) Delay time, LCD_PCLK↓ to LCD_VSYNC↓ 0 12 ns 10 td(LCD_HSYNC_A) Delay time, LCD_PCLK↑ to LCD_HSYNC↑ 0 12 ns 11 td(LCD_HSYNC_I) Delay time, LCD_PCLK↑ to LCD_HSYNC↓ 0 12 ns ns F = frequency of LCD_PCLK in ns Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1) register: • Vertical front porch (VFP) • Vertical sync pulse width (VSW) • Vertical back porch (VBP) • Lines per panel (LPP) Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register: • Horizontal front porch (HFP) • Horizontal sync pulse width (HSW) • Horizontal back porch (HBP) • Pixels per panel (PPL) LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2) register: • AC bias frequency (ACB) The display format produced in raster mode is shown in Figure 6-56. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the activation of I/O signal LCD_HSYNC. 160 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Data Pixels (From 1 to P) 1, 1 2, 1 1, 2 2, 2 P−2, 1 3, 1 P−1, 1 P, 1 P−1, 2 P, 2 ADVANCE INFORMATION P, 3 Data Lines (From 1 to L) 1, 3 LCD P, L−2 1, L−2 1, L−1 2, L−1 1, L 2, L P−1, L−1 P−2, L 3, L P−1, L P, L−1 P, L Figure 6-56. LCD Raster-Mode Display Format Submit Documentation Feedback Peripheral Information and Electrical Specifications 161 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Frame Time ~ 70Hz Active TFT VBP (0 to 255) VSW (1 to 64) Line Time LPP VFP (1 to 1024) (0 to 255) VSW (1 to 64) Hsync LCD_HSYNC LCD_VSYNC Vsync ADVANCE INFORMATION Data LCD_D[15:0] 1, 1 P, 1 1, L−1 P, L−1 1, 2 P, 2 1, L P, L Enable LCD_AC_ENB_CS ACB ACB (0 to 255) (0 to 255) 10 11 Hsync LCD_HSYNC CLK LCD_PCLK Data LCD_D[15:0] 1, 1 2, 1 1, 2 P, 1 PLL HFP 16 y (1 to 1024) (1 to 256) 2, 2 HSW HBP PLL (1 to 64) (1 to 256) 16 y (1 to 1024) Line 1 P, 2 Line 2 Figure 6-57. LCD Raster-Mode Active 162 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Frame Time ~ 70Hz VBP = 0 VFP = 0 Passive STN VSW = 1 (1 to 64) VBP = 0 VFP = 0 VSW = 1 (1 to 64) LPP (1 to 1024) Line LCD_HSYNC LP LCD_VSYNC FP ADVANCE INFORMATION Time 1, L Data LCD_D[7:0] 1, 1: P, 1 1, L: P, L 1, 2: P, 2 1, 3: P, 3 1, 4: P, 4 1, 5: P, 5 1, L P, L 1, 6: P, 6 1, L−1 P, L−1 1, L−4 P, L−4 1, 1 P, 1 1, 2 P, 2 1, L−3 1, L−2 1, L−1 P, L−3 P, L−2 P, L−1 M LCD_AC_ENB_CS ACB ACB (0 to 255) (0 to 255) 11 10 LCD_HSYNC LP LCD_PCLK CP Data LCD_D[7:0] 1, 5 2, 5 1, 6 P, 5 PPL 16 y (1 to 1024) 2, 6 HFP HSW HBP PPL (1 to 256) (1 to 64) (1 to 256) 16 y (1 to 2024) P, 6 Line 6 Line 5 Figure 6-58. LCD Raster-Mode Passive Submit Documentation Feedback Peripheral Information and Electrical Specifications 163 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6 LCD_AC_ENB_CS 8 LCD_VSYNC 10 11 LCD_HSYNC ADVANCE INFORMATION 1 2 3 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, L 2, L P, L 1, 1 2, 1 P, 1 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 1, L 2, L PPL 16 y (1 to 1024) 5 P, L HFP (1 to 256 Line L HSW (1 to 64) HBP (1 to 256) PPL 16 y (1 to 256) Line 1 (Passive Only) Figure 6-59. LCD Raster-Mode Control Signal Activation 164 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6 LCD_AC_ENB_CS 8 LCD_VSYNC 11 10 ADVANCE INFORMATION LCD_HSYNC 1 2 3 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, L 2, L P, L 1, 1 2, 1 P, 1 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) 1, L VBP = 0 VFP = 0 VSW = 1 2, L PPL 16 y (1 to 1024) Line L 5 P, L HFP (1 to 256 HSW (1 to 64) HBP (1 to 256) PPL 16 y (1 to 256) Line 1 (Passive Only) Figure 6-60. LCD Raster-Mode Control Signal Deactivation Submit Documentation Feedback Peripheral Information and Electrical Specifications 165 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.21 Timers The timers support the following features: • Configurable as single 64-bit timer or two 32-bit timers • Period timeouts generate interrupts, DMA events or external pin events • 8 32-bit compare registers • Compare matches generate interrupt events • Capture capability • 64-bit Watchdog capability (Timer64P1 only) Table 6-79 lists the timer registers. ADVANCE INFORMATION Table 6-79. Timer Registers Timer64P 0 Timer64P 1 Acronym 0x01C2 0000 0x01C2 1000 REV 0x01C2 0004 0x01C2 1004 EMUMGT Register Description Revision Register Emulation Management Register 0x01C2 0008 0x01C2 1008 GPINTGPEN 0x01C2 000C 0x01C2 100C GPDATGPDIR GPIO Interrupt and GPIO Enable Register 0x01C2 0010 0x01C2 1010 TIM12 Timer Counter Register 12 0x01C2 0014 0x01C2 1014 TIM34 Timer Counter Register 34 0x01C2 0018 0x01C2 1018 PRD12 Timer Period Register 12 0x01C2 001C 0x01C2 101C PRD34 Timer Period Register 34 0x01C2 0020 0x01C2 1020 TCR 0x01C2 0024 0x01C2 1024 TGCR 0x01C2 0028 0x01C2 1028 WDTCR 0x01C2 0034 0x01C2 1034 REL12 Timer Reload Register 12 GPIO Data and GPIO Direction Register Timer Control Register Timer Global Control Register Watchdog Timer Control Register 0x01C2 0038 0x01C2 1038 REL34 Timer Reload Register 34 0x01C2 003C 0x01C2 103C CAP12 Timer Capture Register 12 0x01C2 0040 0x01C2 1040 CAP34 Timer Capture Register 34 0x01C2 0044 0x01C2 1044 INTCTLSTAT 0x01C2 0060 0x01C2 1060 CMP0 Compare Register 0 0x01C2 0064 0x01C2 1064 CMP1 Compare Register 1 Timer Interrupt Control and Status Register 0x01C2 0068 0x01C2 1068 CMP2 Compare Register 2 0x01C2 006C 0x01C2 106C CMP3 Compare Register 3 0x01C2 0070 0x01C2 1070 CMP4 Compare Register 4 0x01C2 0074 0x01C2 1074 CMP5 Compare Register 5 0x01C2 0078 0x01C2 1078 CMP6 Compare Register 6 0x01C2 007C 0x01C2 107C CMP7 Compare Register 7 6.21.1 Timer Electrical Data/Timing Table 6-80. Timing Requirements for Timer Input (1) (2) (see Figure 6-61) NO. MIN MAX 1 tc(TM64Px_IN12) Cycle time, TM64Px_IN12 2 tw(TINPH) Pulse duration, TM64Px_IN12 high 0.45C 0.55C ns 3 tw(TINPL) Pulse duration, TM64Px_IN12 low 0.45C 0.55C ns 4 tt(TM64Px_IN12) Transition time, TM64Px_IN12 0.05C ns (1) (2) 166 4P UNIT ns P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns. C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.037 ns Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 1 2 3 4 4 TM64P0_IN12 Figure 6-61. Timer Timing NO. (1) MIN MAX (1) UNIT 5 tw(TOUTH) Pulse duration, TM64P0_OUT12 high 4P ns 6 tw(TOUTL) Pulse duration, TM64P0_OUT12 low 4P ns P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns. 5 6 TM64P0_OUT12 Figure 6-62. Timer Timing Submit Documentation Feedback Peripheral Information and Electrical Specifications 167 ADVANCE INFORMATION Table 6-81. Switching Characteristics Over Recommended Operating Conditions for Timer Output TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.22 Inter-Integrated Circuit Serial Ports (I2C0, I2C1) 6.22.1 I2C Device-Specific Information Having two I2C modules on the C6745/6747 simplifies system architecture, since one module may be used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate with other controllers in a system or to implement a user interface. Figure 6-63 is block diagram of the C6745/6747 I2C Module. ADVANCE INFORMATION Each I2C port supports: • Compatible with Philips® I2C Specification Revision 2.1 (January 2000) • Fast Mode up to 400 Kbps (no fail-safe I/O buffers) • Noise Filter to Remove Noise 50 ns or less • Seven- and Ten-Bit Device Addressing Modes • Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality • Events: DMA, Interrupt, or Polling • General-Purpose I/O Capability if not used as I2C Clock Prescaler I2CPSCx Control Prescaler Register I2CCOARx Own Address Register I2CSARx Slave Address Register Bit Clock Generator I2Cx_SCL Noise Filter I2CCLKHx Clock Divide High Register I2CCMDRx Mode Register I2CCLKLx Clock Divide Low Register I2CEMDRx Extended Mode Register I2CCNTx Data Count Register I2CPID1 Peripheral ID Register 1 I2CPID2 Peripheral ID Register 2 Transmit I2Cx_SDA Noise Filter I2CXSRx Transmit Shift Register I2CDXRx Transmit Buffer Interrupt/DMA Receive I2CIERx I2CDRRx Receive Buffer I2CSTRx I2CRSRx Receive Shift Register I2CSRCx I2CPFUNC Pin Function Register I2CPDOUT Interrupt Enable Register Interrupt Status Register Interrupt Source Register Peripheral Configuration Bus Interrupt DMA Requests Control I2CPDIR I2CPDIN Pin Direction Register Pin Data In Register I2CPDSET I2CPDCLR Pin Data Out Register Pin Data Set Register Pin Data Clear Register Figure 6-63. I2C Module Block Diagram 6.22.2 I2C Peripheral Registers Description(s) Table 6-82 is the list of the I2C registers. 168 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 I2C0 BYTE ADDRESS I2C1 BYTE ADDRESS Acronym Register Description 0x01C2 2000 0x01C2 2004 0x01E2 8000 ICOAR I2C Own Address Register 0x01E2 8004 ICIMR I2C Interrupt Mask Register 0x01C2 2008 0x01E2 8008 ICSTR I2C Interrupt Status Register 0x01C2 200C 0x01E2 800C ICCLKL I2C Clock Low-Time Divider Register 0x01C2 2010 0x01E2 8010 ICCLKH I2C Clock High-Time Divider Register 0x01C2 2014 0x01E2 8014 ICCNT I2C Data Count Register 0x01C2 2018 0x01E2 8018 ICDRR I2C Data Receive Register 0x01C2 201C 0x01E2 801C ICSAR I2C Slave Address Register 0x01C2 2020 0x01E2 8020 ICDXR I2C Data Transmit Register 0x01C2 2024 0x01E2 8024 ICMDR I2C Mode Register 0x01C2 2028 0x01E2 8028 ICIVR I2C Interrupt Vector Register 0x01C2 202C 0x01E2 802C ICEMDR I2C Extended Mode Register 0x01C2 2030 0x01E2 8030 ICPSC I2C Prescaler Register 0x01C2 2034 0x01E2 8034 REVID1 I2C Revision Identification Register 1 0x01C2 2038 0x01E2 8038 REVID2 I2C Revision Identification Register 2 0x01C2 2048 0x01E2 8048 ICPFUNC I2C Pin Function Register 0x01C2 204C 0x01E2 804C ICPDIR I2C Pin Direction Register 0x01C2 2050 0x01E2 8050 ICPDIN I2C Pin Data In Register 0x01C2 2054 0x01E2 8054 ICPDOUT I2C Pin Data Out Register 0x01C2 2058 0x01E2 8058 ICPDSET I2C Pin Data Set Register 0x01C2 205C 0x01E2 805C ICPDCLR I2C Pin Data Clear Register ADVANCE INFORMATION Table 6-82. Inter-Integrated Circuit (I2C) Registers 6.22.3 I2C Electrical Data/Timing 6.22.3.1 Inter-Integrated Circuit (I2C) Timing Table 6-83 and Table 6-84 assume testing over recommended operating conditions (see Figure 6-64 and Figure 6-65). Table 6-83. I2C Input Timing Requirements NO. MIN 1 tc(SCL) Cycle time, I2Cx_SCL 2 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 3 th(SCLL-SDAL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 tw(SCLL) Pulse duration, I2Cx_SCL low 5 tw(SCLH) Pulse duration, I2Cx_SCL high 6 tsu(SDA-SCLH) Setup time, I2Cx_SDA before I2Cx_SCL high 7 th(SDA-SCLL) Hold time, I2Cx_SDA after I2Cx_SCL low 8 tw(SDAH) Pulse duration, I2Cx_SDA high Submit Documentation Feedback Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 µs µs µs 4 Fast Mode 0.6 Standard Mode 250 Fast Mode 100 Standard Mode 0 Fast Mode 0 Standard Mode 4.7 Fast Mode 1.3 UNIT µs 4 Fast Mode Standard Mode MAX µs ns 0.9 Peripheral Information and Electrical Specifications µs µs 169 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-83. I2C Input Timing Requirements (continued) NO. MIN ADVANCE INFORMATION 9 tr(SDA) Rise time, I2Cx_SDA 10 tr(SCL) Rise time, I2Cx_SCL 11 tf(SDA) Fall time, I2Cx_SDA 12 tf(SCL) Fall time, I2Cx_SCL 13 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high 14 tw(SP) Pulse duration, spike (must be suppressed) 15 Cb Capacitive load for each bus line Standard Mode Fast Mode 1000 20 + 0.1Cb Standard Mode Fast Mode Standard Mode 20 + 0.1Cb 300 300 20 + 0.1Cb 300 4 Fast Mode 0.6 Standard Mode N/A Fast Mode 300 300 Standard Mode Fast Mode 300 1000 20 + 0.1Cb Standard Mode Fast Mode MAX 0 UNIT ns ns ns ns µs 50 Standard Mode 400 Fast Mode 400 ns pF Table 6-84. I2C Switching Characteristics (1) NO. PARAMETER 16 tc(SCL) Cycle time, I2Cx_SCL 17 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 18 th(SDAL-SCLL) Hold time, I2Cx_SCL low after I2Cx_SDA low 19 tw(SCLL) Pulse duration, I2Cx_SCL low 20 tw(SCLH) Pulse duration, I2Cx_SCL high 21 tsu(SDAV-SCLH) Setup time, I2Cx_SDA valid before I2Cx_SCL high 22 th(SCLL-SDAV) Hold time, I2Cx_SDA valid after I2Cx_SCL low 23 tw(SDAH) Pulse duration, I2Cx_SDA high 28 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high (1) 170 MIN Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 0.6 Standard Mode 250 Fast Mode 100 Standard Mode 0 Fast Mode 0 Standard Mode 4.7 Fast Mode 1.3 Standard Mode Fast Mode µs µs µs 4 Fast Mode 4 0.6 UNIT µs 4 Fast Mode Standard Mode MAX µs ns 0.9 µs µs µs I2C must be configured correctly to meet the timings in Table 6-84. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 11 9 I2Cx_SDA 6 8 14 4 13 5 10 I2Cx_SCL 12 3 2 7 3 Stop Start Repeated Start ADVANCE INFORMATION 1 Stop Figure 6-64. I2C Receive Timings 26 24 I2Cx_SDA 21 23 19 28 20 25 I2Cx_SCL 16 27 18 17 22 18 Stop Start Repeated Start Stop Figure 6-65. I2C Transmit Timings Submit Documentation Feedback Peripheral Information and Electrical Specifications 171 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.23 www.ti.com Universal Asynchronous Receiver/Transmitter (UART) ADVANCE INFORMATION C6745/6747 has 3 UART peripherals. Each UART has the following features: • 16-byte storage space for both the transmitter and receiver FIFOs • 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA • DMA signaling capability for both received and transmitted data • Programmable auto-rts and auto-cts for autoflow control • Programmable Baud Rate up to 3MBaud • Programmable Oversampling Options of x13 and x16 • Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates • Prioritized interrupts • Programmable serial data formats – 5, 6, 7, or 8-bit characters – Even, odd, or no parity bit generation and detection – 1, 1.5, or 2 stop bit generation • False start bit detection • Line break generation and detection • Internal diagnostic capabilities – Loopback controls for communications link fault isolation – Break, parity, overrun, and framing error simulation • Modem control functions (CTS, RTS) on UART0 only. The UART registers are listed in Section 6.23.1 6.23.1 UART Peripheral Registers Description(s) Table 6-85 is the list of UART registers. Table 6-85. UART Registers UART0 BYTE ADDRESS UART1 BYTE ADDRESS UART2 BYTE ADDRESS 0x01C4 2000 0x01D0 C000 0x01C4 2000 0x01D0 C000 0x01C4 2004 172 REGISTER NAME Register Description 0x01D0 D000 RBR Receiver Buffer Register (read only) 0x01D0 D000 THR Transmitter Holding Register (write only) 0x01D0 C004 0x01D0 D004 IER Interrupt Enable Register 0x01C4 2008 0x01D0 C008 0x01D0 D008 IIR Interrupt Identification Register (read only) 0x01C4 2008 0x01D0 C008 0x01D0 D008 FCR FIFO Control Register (write only) 0x01C4 200C 0x01D0 C00C 0x01D0 D00C LCR Line Control Register 0x01C4 2010 0x01D0 C010 0x01D0 D010 MCR Modem Control Register 0x01C4 2014 0x01D0 C014 0x01D0 D014 LSR Line Status Register 0x01C4 2018 0x01D0 C018 0x01D0 D018 MSR Modem Status Register 0x01C4 201C 0x01D0 C01C 0x01D0 D01C SCR Scratchpad Register 0x01C4 2020 0x01D0 C020 0x01D0 D020 DLL Divisor LSB Latch 0x01C4 2024 0x01D0 C024 0x01D0 D024 DLH Divisor MSB Latch 0x01C4 2028 0x01D0 C028 0x01D0 D028 REVID1 Revision Identification Register 1 0x01C4 2030 0x01D0 C030 0x01D0 D030 PWREMU_MGMT Power and Emulation Management Register 0x01C4 2034 0x01D0 C034 0x01D0 D034 MDR Mode Definition Register Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.23.2 UART Electrical Data/Timing Table 6-86. Timing Requirements for UARTx Receive (1) (see Figure 6-66) NO. (1) MIN MAX UNIT 4 tw(URXDB) Pulse duration, receive data bit (RXDn) 0.96U 1.05U ns 5 tw(URXSB) Pulse duration, receive start bit 0.96U 1.05U ns U = UART baud time = 1/programmed baud rate. NO. (1) PARAMETER MIN UNIT MAX 1 f(baud) Maximum programmable baud rate 2 tw(UTXDB) Pulse duration, transmit data bit (TXDn) U-2 U+2 3 MBaud ns 3 tw(UTXSB) Pulse duration, transmit start bit U-2 U+2 ns U = UART baud time = 1/programmed baud rate. 3 2 UART_TXDn Start Bit Data Bits 5 4 UART_RXDn Start Bit Data Bits Figure 6-66. UART Transmit/Receive Timing Submit Documentation Feedback Peripheral Information and Electrical Specifications 173 ADVANCE INFORMATION Table 6-87. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1) (see Figure 6-66) TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.24 USB1 Host Controller Registers (USB1.1 OHCI) All C6745/6747 USB interfaces are compliant with Universal Serial Bus Specifications, Revision 1.1. Table 6-88 is the list of USB Host Controller registers. Table 6-88. USB Host Controller Registers USB BYTE ADDRESS ADVANCE INFORMATION REGISTER NAME Register Description 0x01E2 5000 HCREVISION OHCI Revision Number Register 0x01E2 5004 HCCONTROL HC Operating Mode Register 0x01E2 5008 HCCOMMANDSTATUS HC Command and Status Register 0x01E2 500C HCINTERRUPTSTATUS HC Interrupt and Status Register 0x01E2 5010 HCINTERRUPTENABLE HC Interrupt Enable Register 0x01E2 5014 HCINTERRUPTDISABLE HC Interrupt Disable Register 0x01E2 5018 HCHCCA HC HCAA Address Register 0x01E2 501C HCPERIODCURRENTED HC Current Periodic Register 0x01E2 5020 HCCONTROLHEADED HC Head Control Register 0x01E2 5024 HCCONTROLCURRENTED HC Current Control Register 0x01E2 5028 HCBULKHEADED HC Head Bulk Register 0x01E2 502C HCBULKCURRENTED HC Current Bulk Register 0x01E2 5030 HCDONEHEAD HC Head Done Register 0x01E2 5034 HCFMINTERVAL HC Frame Interval Register 0x01E2 5038 HCFMREMAINING HC Frame Remaining Register 0x01E2 503C HCFMNUMBER HC Frame Number Register 0x01E2 5040 HCPERIODICSTART HC Periodic Start Register 0x01E2 5044 HCLSTHRESHOLD HC Low-Speed Threshold Register 0x01E2 5048 HCRHDESCRIPTORA HC Root Hub A Register 0x01E2 504C HCRHDESCRIPTORB HC Root Hub B Register 0x01E2 5050 HCRHSTATUS HC Root Hub Status Register 0x01E2 5054 HCRHPORTSTATUS1 HC Port 1 Status and Control Register 0x01E2 5058 HCRHPORTSTATUS2 HC Port 2 Status and Control Register Table 6-89. Switching Characteristics Over Recommended Operating Conditions for USB NO. PARAMETER LOW SPEED FULL SPEED UNIT MIN MAX MAX MAX 4 20 ns U1 tr Rise time, USB.DP and USB.DM signals 75 300 U2 tf Fall time, USB.DP and USB.DM signals 75 300 4 20 ns U3 tRFM Rise/Fall time matching 80 120 90 110 % U4 VCRS Output signal cross-over voltage 1.3 2 1.3 2 V U5 tj Differential propagation jitter -25 25 -2 U6 fop Operating frequency 174 Peripheral Information and Electrical Specifications 1.5 2 ns 12 MHz Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.25 USB0 OTG (USB2.0 OTG) ADVANCE INFORMATION The C6745/6747 USB2.0 peripheral supports the following features: • USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s - C6747 only) and full speed (FS: 12 Mb/s) • USB 2.0 host at speeds HS (C6747 only), FS, and low speed (LS: 1.5 Mb/s) • All transfer modes (control, bulk, interrupt, and isochronous) • 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0 • FIFO RAM – 4K endpoint – Programmable size • Integrated USB 2.0 High Speed PHY • Connects to a standard Charge Pump for VBUS 5 V generation • RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB Table 6-90 is the list of USB OTG registers. Table 6-90. Universal Serial Bus OTG (USB0) Registers BYTE ADDRESS Acronym Register Description 0x01E0 0000 REVID Revision Register 0x01E0 0004 CTRLR Control Register 0x01E0 0008 STATR Status Register 0x01E0 000C EMUR Emulation Register 0x01E0 0010 MODE Mode Register 0x01E0 0014 AUTOREQ Autorequest Register SRP Fix Time Register 0x01E0 0018 SRPFIXTIME 0x01E0 001C TEARDOWN Teardown Register 0x01E0 0020 INTSRCR USB Interrupt Source Register 0x01E0 0024 INTSETR USB Interrupt Source Set Register USB Interrupt Source Clear Register 0x01E0 0028 INTCLRR 0x01E0 002C INTMSKR USB Interrupt Mask Register 0x01E0 0030 INTMSKSETR USB Interrupt Mask Set Register 0x01E0 0034 INTMSKCLRR USB Interrupt Mask Clear Register 0x01E0 0038 INTMASKEDR USB Interrupt Source Masked Register 0x01E0 003C EOIR USB End of Interrupt Register 0x01E0 0040 INTVECTR USB Interrupt Vector Register 0x01E0 0050 GENRNDISSZ1 Generic RNDIS Size EP1 0x01E0 0054 GENRNDISSZ2 Generic RNDIS Size EP2 0x01E0 0058 GENRNDISSZ3 Generic RNDIS Size EP3 0x01E0 005C GENRNDISSZ4 Generic RNDIS Size EP4 0x01E0 0400 FADDR Function Address Register 0x01E0 0401 POWER Power Management Register 0x01E0 0402 INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4 0x01E0 0404 INTRRX Interrupt Register for Receive Endpoints 1 to 4 0x01E0 0406 INTRTXE Interrupt enable register for INTRTX 0x01E0 0408 INTRRXE Interrupt Enable Register for INTRRX 0x01E0 040A INTRUSB Interrupt Register for Common USB Interrupts 0x01E0 040B INTRUSBE Interrupt Enable Register for INTRUSB 0x01E0 040C FRAME Frame Number Register 0x01E0 040E INDEX Index Register for Selecting the Endpoint Status and Control Registers 0x01E0 040F TESTMODE Register to Enable the USB 2.0 Test Modes Submit Documentation Feedback Peripheral Information and Electrical Specifications 175 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-90. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym Register Description Indexed Registers These registers operate on the endpoint selected by the INDEX register ADVANCE INFORMATION 0x01E0 0410 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index register set to select Endpoints 1-4 only) 0x01E0 0412 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint 0) HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode. (Index register set to select Endpoint 0) PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints 1-4) HOST_TXCSR Control Status Register for Host Transmit Endpoint. (Index register set to select Endpoints 1-4) 0x01E0 0414 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint (Index register set to select Endpoints 1-4 only) 0x01E0 0416 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints 1-4) HOST_RXCSR Control Status Register for Host Receive Endpoint. (Index register set to select Endpoints 1-4) COUNT0 Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint 0) RXCOUNT Number of Bytes in Host Receive Endpoint FIFO. (Index register set to select Endpoints 1- 4) 0x01E0 0418 0x01E0 041A HOST_TYPE0 Defines the speed of Endpoint 0 HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. (Index register set to select Endpoints 1-4 only) HOST_NAKLIMIT0 Sets the NAK response timeout on Endpoint 0. (Index register set to select Endpoint 0) HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041F CONFIGDATA Returns details of core configuration. (Index register set to select Endpoint 0) 0x01E0 0420 FIFO0 Transmit and Receive FIFO Register for Endpoint 0 0x01E0 0424 FIFO1 Transmit and Receive FIFO Register for Endpoint 1 0x01E0 041B FIFO 0x01E0 0428 FIFO2 Transmit and Receive FIFO Register for Endpoint 2 0x01E0 042C FIFO3 Transmit and Receive FIFO Register for Endpoint 3 0x01E0 0430 FIFO4 Transmit and Receive FIFO Register for Endpoint 4 0x01E0 0460 DEVCTL OTG Device Control Device Control Register Dynamic FIFO Control 176 0x01E0 0462 TXFIFOSZ Transmit Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0463 RXFIFOSZ Receive Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0464 TXFIFOADDR Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) 0x01E0 0464 HWVERS Hardware Version Register Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-90. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym Register Description 0x01E0 0466 RXFIFOADDR Receive Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0482 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0483 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0484 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 0486 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode 0x01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048C RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode 0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode 0x01E0 0498 Submit Documentation Feedback TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. Peripheral Information and Electrical Specifications 177 ADVANCE INFORMATION Target Endpoint 0 Control Registers, Valid Only in Host Mode 0x01E0 0480 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-90. Universal Serial Bus OTG (USB0) Registers (continued) ADVANCE INFORMATION BYTE ADDRESS Acronym Register Description 0x01E0 049A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049C RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 049E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 4 Control Registers, Valid Only in Host Mode 0x01E0 04A0 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 04A2 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A3 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A4 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 04A6 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A7 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Control and Status Register for Endpoint 0 0x01E0 0502 0x01E0 0508 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode COUNT0 Number of Received Bytes in Endpoint 0 FIFO 0x01E0 050A HOST_TYPE0 Defines the Speed of Endpoint 0 0x01E0 050B HOST_NAKLIMIT0 Sets the NAK Response Timeout on Endpoint 0 0x01E0 050F CONFIGDATA Returns details of core configuration. 0x01E0 0510 TXMAXP 0x01E0 0512 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Control and Status Register for Endpoint 1 178 Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0514 RXMAXP 0x01E0 0516 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0518 RXCOUNT 0x01E0 051A HOST_TXTYPE 0x01E0 051B HOST_TXINTERVAL Peripheral Information and Electrical Specifications Maximum Packet Size for Peripheral/Host Receive Endpoint Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-90. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym 0x01E0 051C HOST_RXTYPE Register Description 0x01E0 051D HOST_RXINTERVAL 0x01E0 0520 TXMAXP 0x01E0 0522 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 2 0x01E0 0524 RXMAXP 0x01E0 0526 PERI_RXCSR Maximum Packet Size for Peripheral/Host Receive Endpoint Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0528 RXCOUNT Number of Bytes in Host Receive endpoint FIFO 0x01E0 052A HOST_TXTYPE 0x01E0 052B HOST_TXINTERVAL 0x01E0 052C HOST_RXTYPE 0x01E0 052D HOST_RXINTERVAL 0x01E0 0530 TXMAXP 0x01E0 0532 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 3 Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0534 RXMAXP 0x01E0 0536 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0538 RXCOUNT 0x01E0 053A HOST_TXTYPE 0x01E0 053B HOST_TXINTERVAL 0x01E0 053C HOST_RXTYPE 0x01E0 053D HOST_RXINTERVAL Maximum Packet Size for Peripheral/Host Receive Endpoint Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 4 0x01E0 0540 TXMAXP 0x01E0 0542 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) 0x01E0 0544 Submit Documentation Feedback RXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Maximum Packet Size for Peripheral/Host Receive Endpoint Peripheral Information and Electrical Specifications 179 ADVANCE INFORMATION Maximum Packet Size for Peripheral/Host Transmit Endpoint TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-90. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym 0x01E0 0546 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) Register Description HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) ADVANCE INFORMATION 0x01E0 0548 RXCOUNT 0x01E0 054A HOST_TXTYPE Number of Bytes in Host Receive endpoint FIFO 0x01E0 054B HOST_TXINTERVAL 0x01E0 054C HOST_RXTYPE 0x01E0 054D HOST_RXINTERVAL 0x01E0 1000 DMAREVID 0x01E0 1004 TDFDQ Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. DMA Registers DMA Revision Register DMA Teardown Free Descriptor Queue Control Register 0x01E0 1008 DMAEMU DMA Emulation Control Register 0x01E0 1800 TXGCR[0] Transmit Channel 0 Global Configuration Register 0x01E0 1808 RXGCR[0] Receive Channel 0 Global Configuration Register 0x01E0 180C RXHPCRA[0] Receive Channel 0 Host Packet Configuration Register A 0x01E0 1810 RXHPCRB[0] Receive Channel 0 Host Packet Configuration Register B 0x01E0 1820 TXGCR[1] Transmit Channel 1 Global Configuration Register 0x01E0 1828 RXGCR[1] Receive Channel 1 Global Configuration Register 0x01E0 182C RXHPCRA[1] Receive Channel 1 Host Packet Configuration Register A 0x01E0 1830 RXHPCRB[1] Receive Channel 1 Host Packet Configuration Register B 0x01E0 1840 TXGCR[2] Transmit Channel 2 Global Configuration Register Receive Channel 2 Global Configuration Register 0x01E0 1848 RXGCR[2] 0x01E0 184C RXHPCRA[2] Receive Channel 2 Host Packet Configuration Register A 0x01E0 1850 RXHPCRB[2] Receive Channel 2 Host Packet Configuration Register B 0x01E0 1860 TXGCR[3] Transmit Channel 3 Global Configuration Register Receive Channel 3 Global Configuration Register 0x01E0 1868 RXGCR[3] 0x01E0 186C RXHPCRA[3] Receive Channel 3 Host Packet Configuration Register A 0x01E0 1870 RXHPCRB[3] Receive Channel 3 Host Packet Configuration Register B 0x01E0 2C00 DMA_SCHED_CTRL 0x01E0 2D00 ENTRY[0] DMA Scheduler Table Word 0 0x01E0 2D04 ENTRY[1] DMA Scheduler Table Word 1 ... ... 0x01E0 2DFC ENTRY[63] DMA Scheduler Control Register ... DMA Scheduler Table Word 63 Queue Manager Registers 180 0x01E0 4000 QMGRREVID Queue Manager Revision Register 0x01E0 4008 DIVERSION 0x01E0 4020 FDBSC0 Free Descriptor/Buffer Starvation Count Register 0 0x01E0 4024 FDBSC1 Free Descriptor/Buffer Starvation Count Register 1 Queue Diversion Register 0x01E0 4028 FDBSC2 Free Descriptor/Buffer Starvation Count Register 2 0x01E0 402C FDBSC3 Free Descriptor/Buffer Starvation Count Register 3 0x01E0 4080 LRAM0BASE Linking RAM Region 0 Base Address Register 0x01E0 4084 LRAM0SIZE Linking RAM Region 0 Size Register 0x01E0 4088 LRAM1BASE Linking RAM Region 1 Base Address Register 0x01E0 4090 PEND0 Peripheral Information and Electrical Specifications Queue Pending Register 0 Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-90. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym 0x01E0 4094 PEND1 Register Description 0x01E0 5000 QMEMRBASE[0] Memory Region 0 Base Address Register 0x01E0 5004 QMEMRCTRL[0] Memory Region 0 Control Register 0x01E0 5010 QMEMRBASE[1] Memory Region 1 Base Address Register 0x01E0 5014 QMEMRCTRL[1] Memory Region 1 Control Register Queue Pending Register 1 ... QMEMRBASE[7] ... Memory Region 7 Base Address Register 0x01E0 5074 QMEMRCTRL[7] Memory Region 7 Control Register 0x01E0 600C CTRLD[0] Queue Manager Queue 0 Control Register D 0x01E0 601C CTRLD[1] Queue Manager Queue 1 Control Register D ... ... 0x01E0 63FC CTRLD[63] Queue Manager Queue 63 Status Register D 0x01E0 6800 QSTATA[0] Queue Manager Queue 0 Status Register A 0x01E0 6804 QSTATB[0] Queue Manager Queue 0 Status Register B 0x01E0 6808 QSTATC[0] Queue Manager Queue 0 Status Register C 0x01E0 6810 QSTATA[1] Queue Manager Queue 1 Status Register A 0x01E0 6814 QSTATB[1] Queue Manager Queue 1 Status Register B 0x01E0 6818 QSTATC[1] Queue Manager Queue 1 Status Register C ... ... 0x01E0 6BF0 QSTATA[63] Queue Manager Queue 63 Status Register A 0x01E0 6BF4 QSTATB[63] Queue Manager Queue 63 Status Register B 0x01E0 6BF8 QSTATC[63] Queue Manager Queue 63 Status Register C ADVANCE INFORMATION ... 0x01E0 5070 ... ... 6.25.1 USB2.0 Electrical Data/Timing Table 6-91. Switching Characteristics Over Recommended Operating Conditions for USB2.0 (see Figure 6-67) NO. PARAMETER FULL SPEED 12 Mbps HIGH SPEED 480 Mbps MIN MAX MIN MAX MIN UNIT MAX 1 tr(D) Rise time, USB_DP and USB_DM signals (1) 75 300 4 20 0.5 2 tf(D) Fall time, USB_DP and USB_DM signals (1) 75 300 4 20 0.5 3 trfM Rise/Fall time, matching (2) 80 120 90 111 – – 4 VCRS Output signal cross-over voltage (1) 1.3 2 1.3 2 – – 5 6 tjr(source)NT Source (Host) Driver jitter, next transition tjr(FUNC)NT Function Driver jitter, next transition tjr(source)PT Source (Host) Driver jitter, paired transition (4) tjr(FUNC)PT Function Driver jitter, paired transition 7 tw(EOPT) Pulse duration, EOP transmitter 8 tw(EOPR) Pulse duration, EOP receiver 9 t(DRATE) Data Rate 10 ZDRV Driver Output Resistance 11 ZINP Receiver Input Impedance (1) (2) (3) (4) LOW SPEED 1.5 Mbps V (3) 2 2 (3) ns 1 1 (3) ns 1 (3) ns – ns 1500 160 175 82 1.5 100k % 2 670 – ns 25 10 1250 ns – ns – – 12 40.5 49.5 100k ns 480 Mb/s 40.5 49.5 Ω - - Ω Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.] For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical. tjr = tpx(1) - tpx(0) Submit Documentation Feedback Peripheral Information and Electrical Specifications 181 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 USB_DM VCRS USB_DP www.ti.com tper − tjr 90% VOH 10% VOL tr tf Figure 6-67. USB2.0 Integrated Transceiver Interface Timing ADVANCE INFORMATION 182 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 6.26 Host-Port Interface (UHPI) 6.26.1 HPI Device-Specific Information The device includes a user-configurable 16-bit Host-port interface (HPI16). See the TMS320C6745/C6747 DSP Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. 6.26.2 HPI Peripheral Register Description(s) Table 6-92. HPI Control Registers (1) ACRONYM 0x01E1 0000 PID 0x01E1 0004 PWREMU_MGMT REGISTER NAME COMMENTS Peripheral Identification Register HPI power and emulation management register 0x01E1 0008 - 0x01E1 000C GPIO_EN 0x01E1 0010 GPIO_DIR1 General Purpose IO Direction Register 1 0x01E1 0014 GPIO_DAT1 General Purpose IO Data Register 1 The CPU has read/write access to the PWREMU_MGMT register. Reserved General Purpose IO Enable Register 0x01E1 0018 GPIO_DIR2 General Purpose IO Direction Register 2 0x01E1 001C GPIO_DAT2 General Purpose IO Data Register 2 0x01E1 0020 GPIO_DIR3 General Purpose IO Direction Register 3 0x01E1 0024 GPIO_DAT3 General Purpose IO Data Register 3 01E1 0028 - Reserved 01E1 002C - Reserved 01E1 0030 HPIC HPI control register 01E1 0034 HPIA (HPIAW) (1) HPI address register (Write) 01E1 0038 HPIA (HPIAR) (1) HPI address register (Read) 01E1 000C - 01E1 07FF - The Host and the CPU both have read/write access to the HPIC register. The Host has read/write access to the HPIA registers. The CPU has only read access to the HPIA registers. Reserved There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the perspective of the Host. The CPU can access HPIAW and HPIAR independently. Submit Documentation Feedback Peripheral Information and Electrical Specifications 183 ADVANCE INFORMATION HEX ADDRESS RANGE TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.26.3 HPI Electrical Data/Timing Table 6-93. Timing Requirements for Host-Port Interface Cycles (1) (2) NO. MIN (3) 1 tsu(SELV-HSTBL) Setup time, select signals 2 th(HSTBL-SELV) Hold time, select signals (3) valid after UHPI_HSTROBE low valid before UHPI_HSTROBE low 3 tw(HSTBL) 4 MAX UNIT 5 ns 2 ns Pulse duration, UHPI_HSTROBE active low 15 ns tw(HSTBH) Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses 2M ns ADVANCE INFORMATION 9 tsu(SELV-HASL) Setup time, selects signals valid before UHPI_HAS low 5 10 th(HASL-SELV) Hold time, select signals valid after UHPI_HAS low 2 11 tsu(HDV-HSTBH) Setup time, host data valid before UHPI_HSTROBE high 5 ns 12 th(HSTBH-HDV) Hold time, host data valid after UHPI_HSTROBE high 2 ns 13 th(HRDYL-HSTBH) Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE should not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes will not complete properly. 2 ns 16 tsu(HASL-HSTBL) Setup time, UHPI_HAS low before UHPI_HSTROBE low 2 17 th(HSTBL-HASH) Hold time, UHPI_HAS low after UHPI_HSTROBE low 2 (1) (2) (3) 184 UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns. Select signals include: HCNTL[1:0], HR/W and HHWIL. Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-94. Switching Characteristics for Host-Port Interface Cycles (1) (2) (3) NO. PARAMETER MIN UNIT MAX 5 td(HSTBL-HRDYV) Delay time, HSTROBE low to HRDY valid 5a td(HASL-HRDYV) Delay time, HAS low to HRDY valid 6 ten(HSTBL-HDLZ) Enable time, HD driven from HSTROBE low 7 td(HRDYL-HDV) Delay time, HRDY low to HD valid 8 toh(HSTBH-HDV) Output hold time, HD valid after HSTROBE high 14 tdis(HSTBH-HDHZ) Disable time, HD high-impedance from HSTROBE high 15 18 (1) (2) (3) For HPI Read, HRDY can go high (not ready) for these HPI Read conditions: Case 1: HPID read (with auto-increment) and data not in Read FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without auto-increment and data is already in Read FIFO (always applies to second half-word of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access) td(HSTBL-HDV) td(HSTBH-HRDYV) 10 ADVANCE INFORMATION For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second half-word) Case 3: HPID write when FIFO is full or flushing (can be either first or second half-word) Case 4: HPIA write and Write FIFO not empty ns 10 2 ns 0 1.5 ns ns 10 ns Delay time, HSTROBE low to HD valid For HPI Read. Applies to conditions where data is already residing in HPID/FIFO: Case 1: HPIC or HPIA read Case 2: First half-word of HPID read with auto-increment and data is already in Read FIFO Case 3: Second half-word of HPID read with or without auto-increment 15 ns Delay time, HSTROBE high to HRDY valid For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: HPID write when Write FIFO is full (can happen to either half-word) Case 2: HPIA write (can happen to either half-word) Case 3: HPID write without auto-increment (only happens to second half-word) 12 ns M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low). Submit Documentation Feedback Peripheral Information and Electrical Specifications 185 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com UHPI_HCS UHPI_HAS(D) 2 2 1 1 UHPI_HCNTL[1:0] 2 1 2 1 UHPI_HR/W 2 2 1 1 ADVANCE INFORMATION UHPI_HHWIL 4 3 3 UHPI_HSTROBE(A)(C) 15 15 14 14 6 8 8 6 UHPI_HD[15:0] (output) 5 13 7 1st Half-Word 2nd Half-Word UHPI_HRDY(B) A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI_HCS. B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. D The diagram above assumes UHPI_HAS has been pulled high. Figure 6-68. UHPI Read Timing (HAS Not Used, Tied High) 186 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 UHPI_HAS(A) 17 10 17 9 10 9 UHPI_HCNTL[1:0] 10 10 9 9 UHPI_HR/W 10 10 9 9 UHPI_HHWIL 4 3 16 16 UHPI_HCS 14 UHPI_HD[15:0] 6 (output) 5a ADVANCE INFORMATION UHPI_HSTROBE(B) 8 1st half-word 14 15 7 8 2nd half-word UHPI_HRDY A. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. B. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 6-69. UHPI Read Timing (HAS Used) Submit Documentation Feedback Peripheral Information and Electrical Specifications 187 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com UHPI_HCS UHPI_HAS(D) 1 1 2 2 UHPI_HCNTL[1:0] 1 1 2 2 UHPI_HR/W ADVANCE INFORMATION 1 1 2 2 UHPI_HHWIL 3 3 4 UHPI_HSTROBE(A)(C) 11 UHPI_HD[15:0] (input) 11 12 12 1st Half-Word 5 13 2nd Half-Word 18 13 18 5 UHPI_HRDY(B) A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI_HCS. B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. D The diagram above assumes UHPI_HAS has been pulled high. Figure 6-70. UHPI Write Timing (HAS Not Used, Tied High) 188 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 17 UHPI_HAS(A) 17 10 10 9 9 UHPI_HCNTL[1:0] 10 10 9 9 UHPI_HR/W 10 10 9 9 UHPI_HHWIL 3 ADVANCE INFORMATION 4 UHPI_HSTROBE(B) 16 16 UHPI_HCS 11 12 UHPI_HD[15:0] (input) 1st half-word 11 12 2nd half-word 5a 13 UHPI_HRDY Figure 6-71. UHPI Write Timing (HAS Used) 17 UHPI_HAS† 17 10 10 9 9 UHPI_HCNTL[1:0] 10 10 9 9 UHPI_HR/W 10 10 9 9 UHPI_HHWIL 3 4 UHPI_HSTROBE‡ 16 16 UHPI_HCS 11 12 UHPI_HD[15:0] (input) 1st half-word 5a 11 12 2nd half-word 13 UHPI_HRDY A. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. B. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 6-72. Submit Documentation Feedback Peripheral Information and Electrical Specifications 189 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 6.27 Power and Sleep Controller (PSC) The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control. ADVANCE INFORMATION The PSC includes the following features: • Provides a software interface to: – Control module clock enable/disable – Control module reset – Control CPU local reset • Supports IcePick emulation features: power, clock and reset Table 6-95. Power and Sleep Controller (PSC) Registers PSC0 PSC1 Register Description 0x01C1 0000 0x01C1 0018 0x01E2 7000 REVID Peripheral Revision and Class Information Register 0x01E2 7018 INTEVAL Interrupt Evaluation Register 0x01C1 0040 0x01E2 7040 MERRPR0 Module Error Pending Register 0 (module 0-15) (PSC0) 0x01C1 0050 0x01E2 7050 MERRCR0 0x01C1 0060 0x01E2 7060 PERRPR Power Error Pending Register 0x01C1 0068 0x01E2 7068 PERRCR Power Error Clear Register 0x01C1 0120 0x01E2 7120 PTCMD Power Domain Transition Command Register 0x01C1 0128 0x01E2 7128 PTSTAT Power Domain Transition Status Register 0x01C1 0200 0x01E2 7200 PDSTAT0 Power Domain 0 Status Register 0x01C1 0204 0x01E2 7204 PDSTAT1 Power Domain 1 Status Register 0x01C1 0300 0x01E2 7300 PDCTL0 Power Domain 0 Control Register 0x01C1 0304 0x01E2 7304 PDCTL1 Power Domain 1 Control Register 0x01C1 0400 0x01E2 7400 PDCFG0 Power Domain 0 Configuration Register 0x01C1 0404 0x01E2 7404 PDCFG1 Power Domain 1 Configuration Register 0x01C1 0800 - 0x01C1 083C 0x01E2 7800 0x01E2 787C MDSTAT0MDSTAT15 Module Status n Register (modules 0-15) (PSC0) MDSTAT0MDSTAT31 Module Status n Register (modules 0-31) (PSC1) MDCTL0MDCTL15 Module Control n Register (modules 0-15) (PSC0) MDSTAT0MDSTAT31 Module Status n Register (modules 0-31) (PSC1) Module Error Pending Register 0 (module 0-31) (PSC1) Module Error Clear Register 0 (module 0-15) (PSC0) Module Error Clear Register 0 (module 0-31) (PSC1) 0x01C1 0A00 - 0x01C1 0A3C 0x01E2 7A00 0x01E2 7A7C 6.27.1 Power Domain and Module Topology The device includes two PSC modules. Each PSC module controls clock states for several of the on chip modules, controllers and interconnect components. Table 6-96 and Table 6-97 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. See the device-specific data manual for the peripherals available on a given device. The module states and terminology are defined in Section 6.27.1.2. 190 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 0 EDMA3 Channel Controller AlwaysON (PD0) SwRstDisable — 1 EDMA3 Transfer Controller 0 AlwaysON (PD0) SwRstDisable — 2 EDMA3 Transfer Controller 1 AlwaysON (PD0) SwRstDisable — 3 EMIFA (BR7) AlwaysON (PD0) SwRstDisable — 4 SPI 0 AlwaysON (PD0) SwRstDisable — 5 MMC/SD 0 AlwaysON (PD0) SwRstDisable — 8 - - - - 9 UART 0 AlwaysON (PD0) SwRstDisable — 10 SCR0 (Br 0, Br 1, Br 2, Br 8) AlwaysON (PD0) Enable Yes 11 SCR1 (Br 4) AlwaysON (PD0) Enable Yes 12 SCR2 (Br 3, Br 5, Br 6) AlwaysON (PD0) Enable Yes 13 - - - - 15 DSP PD_DSP (PD1) Enable — Table 6-97. PSC1 Default Module Configuration LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 0 Not Used — — — 1 USB0 (USB2.0) AlwaysON (PD0) SwRstDisable — 2 USB1 (USB1.1) AlwaysON (PD0) SwRstDisable — 3 GPIO AlwaysON (PD0) SwRstDisable — 4 UHPI AlwaysON (PD0) SwRstDisable — 5 EMAC AlwaysON (PD0) SwRstDisable — 6 EMIFB (Br 20) AlwaysON (PD0) SwRstDisable — 7 McASP0 ( + McASP0 FIFO) AlwaysON (PD0) SwRstDisable — 8 McASP1 ( + McASP1 FIFO) AlwaysON (PD0) SwRstDisable — 9 McASP2( + McASP2 FIFO) AlwaysON (PD0) SwRstDisable — 10 SPI 1 AlwaysON (PD0) SwRstDisable — 11 I2C 1 AlwaysON (PD0) SwRstDisable — 12 UART 1 AlwaysON (PD0) SwRstDisable — 13 UART 2 AlwaysON (PD0) SwRstDisable — 14-15 Not Used — — — 16 LCDC AlwaysON (PD0) SwRstDisable — 17 eHRPWM0/1/2 AlwaysON (PD0) SwRstDisable — 18-19 Not Used — — — 20 ECAP0/1/2 AlwaysON (PD0) SwRstDisable — 21 EQEP0/1 AlwaysON (PD0) SwRstDisable — 22-23 Not Used — — — 24 SCR8 (Br 15) AlwaysON (PD0) Enable Yes 25 SCR7 (Br 12) AlwaysON (PD0) Enable Yes 26 SCR12 (Br 18) AlwaysON (PD0) Enable Yes 27-30 Not Used — — — Submit Documentation Feedback Peripheral Information and Electrical Specifications 191 ADVANCE INFORMATION Table 6-96. PSC0 Default Module Configuration TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-97. PSC1 Default Module Configuration (continued) LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 31 Shared RAM (Br 13) PD_SHRAM Enable Yes 6.27.1.1 Power Domain States A power domain can only be in one of the two states: ON or OFF, defined as follows: • ON: power to the domain is on • OFF: power to the domain is off ADVANCE INFORMATION In the device , for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when the chip is powered-on. This domain is not programmable to OFF state. • On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories • On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM 6.27.1.2 Module States The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 6-98. Table 6-98. Module States Module State Module Reset Module Clock Module State Definition Enable De-asserted On A module in the enable state has its module reset de-asserted and it has its clock on. This is the normal operational state for a given module Disable De-asserted Off A module in the disabled state has its module reset de-asserted and it has its module clock off. This state is typically used for disabling a module clock to save power. The device is designed in full static CMOS, so when you stop a module clock, it retains the module’s state. When the clock is restarted, the module resumes operating from the stopping point. SyncReset Asserted On A module state in the SyncReset state has its module reset asserted and it has its clock on. Generally, software is not expected to initiate this state SwRstDisable Asserted Off A module in the SwResetDisable state has its module reset asserted and it has its clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state Auto Sleep De-asserted Off A module in the Auto Sleep state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it can “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and after servicing the request it will “automatically” transition into the sleep state (with module reset re de-asserted and module clock disabled), without any software intervention. The transition from sleep to enabled and back to sleep state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. Auto Wake De-asserted Off A module in the Auto Wake state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it will “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and will remain in the “Enabled” state from then on (with module reset re de-asserted and module clock on), without any software intervention. The transition from sleep to enabled state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. 6.28 Emulation Logic The debug capabilities and features for DSP are as shown below. DSP: 192 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com • • • • • • Basic Debug – Execution Control – System Visibility Real-Time Debug – Interrupts serviced while halted – Low/non-intrusive system visibility while running Advanced Debug – Global Start – Global Stop – Specify targeted memory level(s) during memory accesses – HSRTDX (High Speed Real Time Data eXchange) Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses Analysis Actions – Stop program execution – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection Analysis Configuration – Application access – Debugger access ADVANCE INFORMATION • SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-99. DSP Debug Features Category Hardware Feature Software breakpoint Availability Unlimited Up to 10 HWBPs, including: Basic Debug Hardware breakpoint 4 precise (1) HWBPs inside DSP core and one of them is associated with a counter. 2 imprecise (1) HWBPs from AET. 4 imprecise (1) HWBPs from AET which are shared for watch point. (1) Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. Submit Documentation Feedback Peripheral Information and Electrical Specifications 193 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Table 6-99. DSP Debug Features (continued) Category Hardware Feature Availability Watch point Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch points with data (32 bits) Watch point with Data Up to 2, Which can also be used as 4 watch points. Counters/timers 1x64-bits (cycle only) + 2x32-bits (water marke counters) External Event Trigger In 1 External Event Trigger Out 1 Analysis 6.28.1 JTAG Port Description ADVANCE INFORMATION The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI, and TDO). TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed while the TRST pin is pulled low. Table 6-100. JTAG Port Description PIN TYPE NAME DESCRIPTION TRST I Test Logic Reset When asserted (active low) causes all test and debug logic in the device to be reset along with the IEEE 1149.1 interface TCK I Test Clock This is the test clock used to drive an IEEE 1149.1 TAP state machine and logic. TMS I Test Mode Select Directs the next state of the IEEE 1149.1 test access port state machine TDI I Test Data Input Scan data input to the device TDO O Test Data Output Scan data output of the device EMU0 I/O Emulation 0 Channel 0 trigger + HSRTDX 6.28.2 Scan Chain Configuration Parameters Table 6-101 shows the TAP configuration details required to configure the router/emulator for this device. Table 6-101. JTAG Port Description Router Port ID Default TAP TAP Name Tap IR Length 17 No C674x 38 The router is revision C and has a 6-bit IR length. 6.29 Real Time Clock (RTC) The RTC provides a time reference to an application running on the device. The current date and time is tracked in a set of counter registers that update once per second. The time can be represented in 12-hour or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do not interfere with the accuracy of the time and date. Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time registers are updated, or at programmable periodic intervals. The real-time clock (RTC) provides the following features: • 100-year calendar (xx00 to xx99) • Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation 194 Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com • • • • • • • SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Binary-coded-decimal (BCD) representation of time, calendar, and alarm 12-hour clock mode (with AM and PM) or 24-hour clock mode Alarm interrupt Periodic interrupt Single interrupt to the CPU Supports external 32.768-kHz crystal or external clock source of the same frequency Separate isolated power supply RTC_XI Counter 32 kHz Oscillator Compensation Seconds Minutes Week Days XTAL RTC_XO Hours Days Months Years Oscillator Alarm Alarm Interrupts Timer Periodic Interrupts Figure 6-73. Real-Time Clock Block Diagram 6.29.1 Clock Source The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When the CPU and other peripherals are without power, the RTC can remain powered to preserve the current time and calendar information. The source for the RTC reference clock may be provided by a crystal or by an external clock source. The RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the output from the oscillator back to the crystal. An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is connected to RTC_XI, and RTC_XO is left unconnected. If the RTC is not used, the RTC_XI pin should be held low and RTC_XO should be left unconnected. Submit Documentation Feedback Peripheral Information and Electrical Specifications 195 ADVANCE INFORMATION Figure 6-73 shows a block diagram of the RTC. TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com Switch for Device Core Power +1.2V CVDD Real Time Clock C2 RTC_CVDD RTC_X1 XTAL 32.768 kHz RTC_X0 ADVANCE INFORMATION 32K OSC C1 Real Time Clock (RTC) Module RTC_VSS Isolated RTC Power Domain Figure 6-74. Clock Source 6.29.2 Registers Table 6-102 lists the memory-mapped registers for the RTC. See the device-specific data manual for the memory address of these registers. Table 6-102. Real-Time Clock (RTC) Registers 196 BYTE ADDRESS Acronym Register Description 0x01C2 3000 SECOND Seconds Register 0x01C2 3004 MINUTE Minutes Register 0x01C2 3008 HOUR Hours Register 0x01C2 300C DAY Day of the Month Register 0x01C2 3010 MONTH Month Register 0x01C2 3014 YEAR Year Register 0x01C2 3018 DOTW Day of the Week Register 0x01C2 3020 ALARMSECOND Alarm Seconds Register 0x01C2 3024 ALARMMINUTE Alarm Minutes Register 0x01C2 3028 ALARMHOUR Alarm Hours Register 0x01C2 302C ALARMDAY Alarm Days Register 0x01C2 3030 ALARMMONTH Alarm Months Register 0x01C2 3034 ALARMYEAR Alarm Years Register 0x01C2 3040 CTRL Control Register 0x01C2 3044 STATUS Status Register 0x01C2 3048 INTERRUPT Interrupt Enable Register 0x01C2 304C COMPLSB Compensation (LSB) Register 0x01C2 3050 COMPMSB Compensation (MSB) Register 0x01C2 3054 OSC Oscillator Register 0x01C2 3060 SCRATCH0 Scratch 0 (General-Purpose) Register 0x01C2 3064 SCRATCH1 Scratch 1 (General-Purpose) Register Peripheral Information and Electrical Specifications Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 Table 6-102. Real-Time Clock (RTC) Registers (continued) Acronym Register Description 0x01C2 3068 SCRATCH2 Scratch 2 (General-Purpose) Register 0x01C2 306C KICK0 Kick 0 (Write Protect) Register 0x01C2 3070 KICK1 Kick 1 (Write Protect) Register ADVANCE INFORMATION BYTE ADDRESS Submit Documentation Feedback Peripheral Information and Electrical Specifications 197 TMS320C6745/6747 Floating-point Digital Signal Processor SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 www.ti.com 7 Mechanical Packaging and Orderable Information This section describes the C6745/6747 orderable part numbers, packaging options, materials, thermal and mechanical parameters. 7.1 Thermal Data for ZKB The following table(s) show the thermal resistance characteristics for the PBGA–ZKB mechanical package. Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZKB] NO. ADVANCE INFORMATION °C/W (1) °C/W (2) AIR FLOW (m/s) (3) 1 RΘJC Junction-to-case 12.8 13.5 N/A 2 RΘJB Junction-to-board 15.1 19.7 N/A 3 RΘJA Junction-to-free air 24.5 33.8 0.00 4 21.9 30 0.50 5 21.1 28.7 1.00 RΘJMA 6 Junction-to-moving air 20.4 27.4 2.00 7 19.6 26 4.00 8 0.6 0.8 0.00 9 0.8 1 0.50 10 0.9 1.2 1.00 11 1.1 1.4 2.00 12 1.3 1.8 4.00 13 14.9 19.1 0.00 14 14.4 18.2 0.50 14.4 18 1.00 16 14.3 17.7 2.00 17 14.1 17.4 4.00 15 (1) (2) (3) 198 PsiJT PsiJB Junction-to-package top Junction-to-board These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and 1.5oz (50um) inner copper thickness Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness. Power dissipation of 1W and ambient temp of 70C assumed. m/s = meters per second Mechanical Packaging and Orderable Information Submit Documentation Feedback TMS320C6745/6747 Floating-point Digital Signal Processor www.ti.com SPRS377B – SEPTEMBER 2008 – REVISED DECEMBER 2008 7.2 Thermal Data for PTP The following table(s) show the thermal resistance characteristics for the HTQFP–PTP mechanical package. NO. °C/W (1) °C/W (2) °C/W (3) °C/W (4) AIR FLOW (m/s) (5) N/A 1 RΘJC Junction-to-case 7.8 9.4 8.6 10.1 2 RΘJB Junction-to-board 6.2 9.9 7.1 10.6 N/A 3 RΘJA Junction-to-free air 21.3 27.9 23.2 30.6 0.00 4 14.3 20.2 22.6 0.50 5 13.1 18.6 21.0 1.00 12.1 17.4 19.6 2.00 7 11.2 16.2 18.2 4.00 8 0.5 0.7 0.8 0.00 9 0.6 0.9 1.0 0.50 6 10 RΘJMA PsiJT Junction-to-moving air 0.7 1.0 1.1 1.00 11 Junction-to-package top 0.8 1.1 1.3 2.00 12 1.0 1.3 1.5 4.00 13 6.3 9.5 10.8 0.00 5.9 8.8 9.9 0.50 5.9 8.7 9.8 1.00 5.8 8.6 9.7 2.00 5.8 8.5 9.6 4.00 14 15 PsiJB Junction-to-board 16 17 (1) (2) (3) (4) (5) Simulation data, using a model of a JEDEC defined 2S2P system with a 12mmx12mm copper pad on the top and bottom copper layers connected with an 8x8 thermal via array and soldered to the package thermal pad. Power dissipation of 1W assumed, 70C Ambient temp assumed. Signal layer copper coverage 20%, inner layer copper coverage 90%. Actual performance will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness. Power dissipation of 1W and ambient temp of 70C assumed. Simulation data, 1S1P PCB model with 12x12mm copper pad on the top layer soldered to device thermal pad and connected to the bottom copper layer (90% copper) with an 8x8 thermal via array. Power dissipation of 1W and ambient temp of 70C assumed. Copper thickness 2oz (70um) top and bottom. Simulation data, 1S1P PCB model with 12x12mm copper pad on the top layer soldered to device thermal pad and connected to the bottom copper layer (90% copper) with an 8x8 thermal via array. Power dissipation of 1W and ambient temp of 70C assumed. Copper thickness 1oz (35um) top and bottom. m/s = meters per second 7.3 Mechanical Drawings This section contains mechanical drawings for the ZKB Ball Grid Array package and the PTP Thin Quad Flat Pack package. Additionally, for the PTP package a detailed drawing of the actual thermal pad dimensions as well as a recommended PCB footprint are provided. Submit Documentation Feedback Mechanical Packaging and Orderable Information 199 ADVANCE INFORMATION Table 7-2. Thermal Resistance Characteristics (HTQFP Package) [PTP] PACKAGE OPTION ADDENDUM www.ti.com 12-Nov-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TMS320C6745PTP2 PREVIEW HLQFP PTP 176 TBD Call TI Call TI TMS320C6745PTP3 PREVIEW HLQFP PTP 176 TBD Call TI Call TI TMS320C6745PTPT2 PREVIEW HLQFP PTP 176 TBD Call TI Call TI TMS320C6745PTPT3 PREVIEW HLQFP PTP 176 TBD Call TI Call TI TMS320C6747ZKB2 PREVIEW BGA ZKB 256 TBD Call TI Call TI Lead/Ball Finish MSL Peak Temp (3) TMS320C6747ZKB3 PREVIEW BGA ZKB 256 TBD Call TI Call TI TMS320C6747ZKBT2 PREVIEW BGA ZKB 256 TBD Call TI Call TI TMS320C6747ZKBT3 PREVIEW BGA ZKB 256 TBD Call TI Call TI TMX320C6745PTP2 ACTIVE HLQFP PTP 176 40 TBD Call TI Call TI TMX320C6745PTP3 ACTIVE HLQFP PTP 176 40 TBD Call TI Call TI TMX320C6747ZKB2 ACTIVE BGA ZKB 256 90 TBD Call TI Call TI TMX320C6747ZKB3 ACTIVE BGA ZKB 256 90 TBD Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated