TS80C31X2 8-bit CMOS Microcontroller 0-60 MHz 1. Description TEMIC TS80C31X2 is high performance CMOS and ROMless versions of the 80C51 CMOS single chip 8bit microcontroller. The TS80C31X2 retains all features of the TEMIC TSC80C31 with 128 bytes of internal RAM, a 5-source, 4 priority level interrupt system, an on-chip oscilator and two timer/counters. In addition, the TS80C31X2 has a dual data pointer, a more versatile serial channel that facilitates multiprocessor communication (EUART) and a X2 speed improvement mechanism. The fully static design of the TS80C31X2 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data. The TS80C31X2 has 2 software-selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the timers, the serial port and the interrupt system are still operating. In the power-down mode the RAM is saved and all other functions are inoperative. 2. Features ● 80C31 Compatible ● • 8031 pin and instruction compatible • 5 Interrupt sources, • Four 8-bit I/O ports • 4 priority level interrupt system • Two 16-bit timer/counters ● Interrupt Structure with ● Full duplex Enhanced UART • 128 bytes scratchpad RAM • Framing error detection High-Speed Architecture • Automatic address recognition • 40 MHz @ 5V, 30MHz @ 3V ● Power Control modes • Idle mode • X2 Speed Improvement capability (6 clocks/ machine cycle) • Power-down mode 30 MHz @ 5V, 20 MHz @ 3V (Equivalent to 60 MHz @ 5V, 40 MHz @ 3V) • Power-off Flag ● Dual Data Pointer ● Once mode (On-chip Emulation) ● Asynchronous port reset ● Power supply: 4.5-5.5V, 2.7-5.5V ● Temperature ranges: Commercial (0 to 70oC) and Industrial (-40 to 85oC) ● Packages: PDIL40, PLCC44, VQFP44 1.4, PQFP F1 (13.9 footprint) Rev. A - Mar. 19, 1999 1 Preliminary TS80C31X2 TxD RxD 3. Block Diagram (1) (1) XTAL1 EUART XTAL2 ALE/ PROG RAM 128x8 C51 CORE PSEN IB-bus CPU EA Timer 0 Timer 1 (1) INT Ctrl Parallel I/O Ports & Ext. Bus Port 0 Port 1 Port 2 Port 3 P3 P2 P1 P0 (1) (1) T1 T0 RESET (1) (1) INT1 WR (1) INT0 RD (1): Alternate function of Port 3 2 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 4. SFR Mapping The Special Function Registers (SFRs) of the TS80C31X2 fall into the following categories: • C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1 • I/O port registers: P0, P1, P2, P3 • Timer registers: TCON, TH0, TH1, TMOD, TL0, TL1 • Serial I/O port registers: SADDR, SADEN, SBUF, SCON • Power and clock control registers: PCON • Interrupt system registers: IE, IP, IPH • Others: CKCON Table 1. All SFRs with their address and their reset value Bit addressable Non Bit addressable 0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F F8h F0h FFh B 0000 0000 F7h E8h E0h EFh ACC 0000 0000 E7h D8h D0h DFh PSW 0000 0000 D7h C8h CFh C0h C7h B8h IP XXX0 0000 SADEN 0000 0000 B0h P3 1111 1111 A8h IE 0XX0 0000 A0h P2 1111 1111 98h SCON 0000 0000 90h P1 1111 1111 88h TCON 0000 0000 TMOD 0000 0000 TL0 0000 0000 TL1 0000 0000 80h P0 1111 1111 SP 0000 0111 DPL 0000 0000 DPH 0000 0000 0/8 1/9 2/A 3/B BFh IPH XXX0 0000 SADDR 0000 0000 B7h AFh AUXR1 XXXX 0XX0 A7h SBUF XXXX XXXX 9Fh 97h TH0 0000 0000 4/C TH1 0000 0000 5/D 6/E CKCON XXXX XXX0 8Fh PCON 00X1 0000 87h 7/F reserved Rev. A - Mar. 19, 1999 3 Preliminary TS80C31X2 5. Pin Configuration P0.0 P1.2 P1.3 P1.4 P1.5 3 4 P1.6 P1.7 RST 7 8 29 28 27 14 15 26 16 25 17 18 19 20 24 P1.4 P1.3 P1.2 P1.1 P1.0 VSS1/NIC* 2 1 44 43 42 41 40 23 22 21 7 8 39 38 P0.4/AD4 P1.6 P1.7 9 37 P0.6/AD6 RST 10 36 P0.7/AD7 P3.0/RxD 35 34 33 EA P3.1/TxD 11 12 13 P2.4 P2.3 P3.2/INT0 P3.3/INT1 14 15 32 31 PSEN P2.2 P3.4/T0 P3.5/T1 16 30 P2.6/A14 17 29 P2.5/A13 NIC* P2.1 PLCC44 NIC* ALE P2.7/A15 18 19 20 21 22 23 24 25 26 27 28 P2.0 P0.3/AD3 P0.2/AD2 P0.1/AD1 P0.0/AD0 VCC VSS1/NIC* P1.0 P1.1 P1.2 P1.3 P1.4 P0.5/AD5 P2.3/A11 P2.4/A12 PDIL40 3 P2.2/A10 11 12 13 4 P3.6/WR VSS EA ALE PSEN P2.7 P2.6 P2.5 5 P2.1/A9 XTAL1 P0.7 P1.5 NIC* P2.0/A8 P3.7/RD XTAL2 32 31 30 P0.6 VSS P3.5/T1 P3.6/WR 9 10 6 P0.5 XTAL1 P3.4/T0 P0.3 P0.4 6 XTAL2 P3.2/INT0 P3.3/INT1 36 35 34 33 5 P3.7/RD P3.0/RxD P3.1/TxD P0.1 P0.2 37 P0.2/AD2 P0.3/AD3 VCC 39 38 P0.1/AD1 40 2 P0.0/AD0 1 P1.1 VCC P1.0 44 43 42 41 40 39 38 37 36 35 34 P1.5 1 P1.6 2 P1.7 RST 3 4 P3.0/RxD 5 NIC* P3.1/TxD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 33 32 P0.4/AD4 31 P0.6/AD6 30 P0.7/AD7 29 28 EA 27 ALE PSEN 9 26 25 10 24 P2.6/A14 11 23 P2.5/A13 PQFP44 VQFP44 6 7 8 P0.5/AD5 NIC* P2.7/A15 P2.3/A11 P2.4/A12 P2.2/A10 P2.1/A9 NIC* P2.0/A8 VSS XTAL1 XTAL2 P3.7/RD P3.6/WR 12 13 14 15 16 17 18 19 20 21 22 *NIC: No Internal Connection 4 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 Table 2. Pin Description for 40/44 pin packages PIN NUMBER TYPE NAME AND FUNCTION 16 39 I I 44 38 I 39-32 43-36 37-30 I/O P1.0-P1.7 1-8 2-9 40-44 1-3 I/O P2.0-P2.7 21-28 24-31 18-25 I/O P3.0-P3.7 10-17 11, 13-19 5, 7-13 I/O Reset 10 11 12 13 14 15 16 17 9 11 13 14 15 16 17 18 19 10 5 7 8 9 10 11 12 13 4 I O I I I I O O I ALE 30 33 27 O (I) PSEN 29 32 26 O Ground: 0V reference Optional Ground: Contact the Sales Office for ground connection. Power Supply: This is the power supply voltage for normal, idle and powerdown operation Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR. Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below. RXD (P3.0): Serial input port TXD (P3.1): Serial output port INT0 (P3.2): External interrupt 0 INT1 (P3.3): External interrupt 1 T0 (P3.4): Timer 0 external input T1 (P3.5): Timer 1 external input WR (P3.6): External data memory write strobe RD (P3.7): External data memory read strobe Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to VSS permits a power-on reset using only an external capacitor to VCC. Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory. EA 31 35 29 I External Access Enable: EA must be externally held low to enable the device to fetch code from external program memory locations. XTAL1 19 21 15 I Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits. XTAL2 18 20 14 O Crystal 2: Output from the inverting oscillator amplifier MNEMONIC DIL LCC VQFP 1.4 VSS Vss1 20 22 1 VCC 40 P0.0-P0.7 Rev. A - Mar. 19, 1999 5 Preliminary TS80C31X2 6. TS80C31X2 Enhanced Features In comparison to the original 80C31, the TS80C31X2 implements some new features, which are: • The X2 option. • The Dual Data Pointer. • The 4 level interrupt priority system. • The power-off flag. • The ONCE mode. • Enhanced UART 6.1 X2 Feature The TS80C31X2 core needs only 6 clock periods per machine cycle. This feature called ”X2” provides the following advantages: ● Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power. ● Save power consumption while keeping same CPU power (oscillator power saving). ● Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes. ● Increase CPU power by 2 while keeping same crystal frequency. In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software. 6.1.1 Description The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2. shows the mode switching waveforms. 2 XTAL1 FXTAL XTAL1:2 state machine: 6 clock cycles. CPU control 0 1 FOSC X2 CKCON reg Figure 1. Clock Generation Diagram 6 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 XTAL1 XTAL1:2 X2 bit CPU clock STD Mode X2 Mode STD Mode Figure 2. Mode Switching Waveforms The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode). CAUTION In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate. Rev. A - Mar. 19, 1999 7 Preliminary TS80C31X2 Table 3. CKCON Register CKCON - Clock Control Register (8Fh) 7 6 5 4 3 2 1 0 - - - - - - - X2 Bit Number Bit Mnemonic 7 - Reserved The value read from this bit is indeterminate. Do not set this bit. 6 - Reserved The value read from this bit is indeterminate. Do not set this bit. 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 - Reserved The value read from this bit is indeterminate. Do not set this bit. 3 - Reserved The value read from this bit is indeterminate. Do not set this bit. 2 - Reserved The value read from this bit is indeterminate. Do not set this bit. 1 - Reserved The value read from this bit is indeterminate. Do not set this bit. 0 X2 Description CPU and peripheral clock bit Clear to select 12 clock periods per machine cycle (STD mode, FOSC=FXTAL/2). Set to select 6 clock periods per machine cycle (X2 mode, FOSC=FXTAL). Reset Value = XXXX XXX0b Not bit addressable 8 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 6.2 Dual Data Pointer Register Ddptr The additional data pointer can be used to speed up code execution and reduce code size in a number of ways. The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3). External Data Memory 7 0 DPS AUXR1(A2H) DPTR1 DPTR0 DPH(83H) DPL(82H) Figure 3. Use of Dual Pointer Rev. A - Mar. 19, 1999 9 Preliminary TS80C31X2 Table 4. AUXR1: Auxiliary Register 1 7 6 5 4 3 2 1 0 - - - - - - - DPS Bit Number Bit Mnemonic 7 - Reserved The value read from this bit is indeterminate. Do not set this bit. 6 - Reserved The value read from this bit is indeterminate. Do not set this bit. 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 - Reserved The value read from this bit is indeterminate. Do not set this bit. 3 - Reserved The value read from this bit is indeterminate. Do not set this bit. 2 - Reserved The value read from this bit is indeterminate. Do not set this bit. 1 - Reserved The value read from this bit is indeterminate. Do not set this bit. 0 DPS Description Data Pointer Selection Clear to select DPTR0. Set to select DPTR1. Reset Value = XXXX XXX0 Not bit addressable Application Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a ’source’ pointer and the other one as a "destination" pointer. 10 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 ASSEMBLY LANGUAGE ; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added ; 00A2 AUXR1 EQU 0A2H ; 0000 909000MOV DPTR,#SOURCE 0003 05A2 INC AUXR1 0005 90A000 MOV DPTR,#DEST 0008 LOOP: 0008 05A2 INC AUXR1 000A E0 MOVX A,@DPTR 000B A3 INC DPTR 000C 05A2 INC AUXR1 000E F0 MOVX @DPTR,A 000F A3 INC DPTR 0010 70F6 JNZ LOOP 0012 05A2 INC AUXR1 ; address of SOURCE ; switch data pointers ; address of DEST ; switch data pointers ; get a byte from SOURCE ; increment SOURCE address ; switch data pointers ; write the byte to DEST ; increment DEST address ; check for 0 terminator ; (optional) restore DPS INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state. Rev. A - Mar. 19, 1999 11 Preliminary TS80C31X2 6.3 TS80C31X2 Serial I/O Port The serial I/O port in the TS80C31X2 is compatible with the serial I/O port in the 80C31. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates Serial I/O port includes the following enhancements: ● Framing error detection ● Automatic address recognition 6.3.1 Framing Error Detection Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 4). SM0/FE SM1 SM2 REN TB8 RB8 TI RI SCON (98h) Set FE bit if stop bit is 0 (framing error) (SMOD = 1) SM0 to UART mode control (SMOD = 0) SMOD1 SMOD0 - POF GF1 GF0 PD IDL PCON (87h) To UART framing error control Figure 4. Framing Error Block Diagram When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 5.) bit is set. 12 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 5. and Figure 6.). RXD D0 D1 D2 Start bit D3 D4 D5 D6 D7 Data byte Stop bit RI SMOD0=X FE SMOD0=1 Figure 5. UART Timings in Mode 1 RXD D0 Start bit D1 D2 D3 D4 D5 D6 Data byte D7 D8 Ninth Stop bit bit RI SMOD0=0 RI SMOD0=1 FE SMOD0=1 Figure 6. UART Timings in Modes 2 and 3 6.3.2 Automatic Address Recognition The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set). Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices. If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device’s address and is terminated by a valid stop bit. To support automatic address recognition, a device is identified by a given address and a broadcast address. NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect). Rev. A - Mar. 19, 1999 13 Preliminary TS80C31X2 6.3.3 Given Address Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don’t-care bits (defined by zeros) to form the device’s given address. The don’t-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed. To address a device by its individual address, the SADEN mask byte must be 1111 1111b. For example: SADDR SADEN Given 0101 0110b 1111 1100b 0101 01XXb The following is an example of how to use given addresses to address different slaves: Slave A: SADDR SADEN Given 1111 0001b 1111 1010b 1111 0X0Xb Slave B: SADDR SADEN Given 1111 0011b 1111 1001b 1111 0XX1b Slave C: SADDR SADEN Given 1111 0010b 1111 1101b 1111 00X1b The SADEN byte is selected so that each slave may be addressed separately. For slave A, bit 0 (the LSB) is a don’t-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b). For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don’t care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b). To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b). 6.3.4 Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don’t-care bits, e.g.: SADDR SADEN Broadcast =SADDR OR SADEN 0101 0110b 1111 1100b 1111 111Xb The use of don’t-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses: Slave A: SADDR 1111 0001b SADEN 1111 1010b Broadcast 1111 1X11b, Slave B: SADDR 1111 0011b SADEN 1111 1001b Broadcast 1111 1X11B, Slave C: SADDR= 1111 0010b SADEN 1111 1101b Broadcast 1111 1111b For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh. 14 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 6.3.5 Reset Addresses On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX XXXXb (all don’t-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition. SADEN - Slave Address Mask Register (B9h) 7 6 5 4 3 2 1 0 4 3 2 1 0 Reset Value = 0000 0000b Not bit addressable SADDR - Slave Address Register (A9h) 7 6 5 Reset Value = 0000 0000b Not bit addressable Rev. A - Mar. 19, 1999 15 Preliminary TS80C31X2 Table 5. SCON Register SCON - Serial Control Register (98h) 7 6 5 4 3 2 1 0 FE/SM0 SM1 SM2 REN TB8 RB8 TI RI Bit Number 7 Bit Mnemonic FE SM0 Description Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit Serial port Mode bit 1 SM1 SM0 0 0 1 1 0 1 0 1 Mode 0 1 2 3 Description Shift Register 8-bit UART 9-bit UART 9-bit UART 6 SM1 5 SM2 4 REN Reception Enable bit Clear to disable serial reception. Set to enable serial reception. 3 TB8 Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3. Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit. Baud Rate FXTAL/12 Variable FXTAL/64 or FXTAL/32 Variable Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0. Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used. 2 RB8 1 TI Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes. 0 RI Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 5. and Figure 6. in the other modes. Reset Value = 0000 0000b Bit addressable 16 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 Table 6. PCON Register PCON - Power Control Register (87h) 7 6 5 4 3 2 1 0 SMOD1 SMOD0 - POF GF1 GF0 PD IDL Bit Number Bit Mnemonic 7 SMOD1 Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3. 6 SMOD0 Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register. 5 - 4 POF Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software. 3 GF1 General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage. 2 GF0 General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage. 1 PD Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode. 0 IDL Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode. Description Reserved The value read from this bit is indeterminate. Do not set this bit. Reset Value = 00X1 0000b Not bit addressable Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn’t affect the value of this bit. Rev. A - Mar. 19, 1999 17 Preliminary TS80C31X2 6.4 Interrupt System The TS80C31X2 has a total of 5 interrupt vectors: two external interrupts (INT0 and INT1), two timer interrupts (timers 0 and 1) and the serial port interrupt. These interrupts are shown in Figure 7. High priority interrupt IPH, IP 3 INT0 IE0 0 3 TF0 0 3 INT1 IE1 0 3 Interrupt polling sequence, decreasing from high to low priority TF1 0 3 RI TI 0 Individual Enable Global Disable Low priority interrupt Figure 7. Interrupt Control System Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 8.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once. Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 9.) and in the Interrupt Priority High register (See Table 10.). shows the bit values and priority levels associated with each combination. 18 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 Table 7. Priority Level Bit Values IPH.x IP.x Interrupt Level Priority 0 0 0 (Lowest) 0 1 1 1 0 2 1 1 3 (Highest) A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can’t be interrupted by any other interrupt source. If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence. Table 8. IE Register IE - Interrupt Enable Register (A8h) 7 6 5 4 3 2 1 0 EA - - ES ET1 EX1 ET0 EX0 Bit Number Bit Mnemonic Description 7 EA Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit. 6 - Reserved The value read from this bit is indeterminate. Do not set this bit. 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 ES Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt. 3 ET1 Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt. 2 EX1 External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1. 1 ET0 Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt. 0 EX0 External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0. Reset Value = 0XX0 0000b Bit addressable Table 9. IP Register Rev. A - Mar. 19, 1999 19 Preliminary TS80C31X2 IP - Interrupt Priority Register (B8h) 7 6 5 4 3 2 1 0 - - - PS PT1 PX1 PT0 PX0 Bit Number Bit Mnemonic 7 - Reserved The value read from this bit is indeterminate. Do not set this bit. 6 - Reserved The value read from this bit is indeterminate. Do not set this bit. 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 PS Serial port Priority bit Refer to PSH for priority level. 3 PT1 Timer 1 overflow interrupt Priority bit Refer to PT1H for priority level. 2 PX1 External interrupt 1 Priority bit Refer to PX1H for priority level. 1 PT0 Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level. 0 PX0 External interrupt 0 Priority bit Refer to PX0H for priority level. Description Reset Value = XXX0 0000b Bit addressable 20 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 Table 10. IPH Register IPH - Interrupt Priority High Register (B7h) 7 6 5 4 3 2 1 0 - - - PSH PT1H PX1H PT0H PX0H Bit Number Bit Mnemonic 7 - Reserved The value read from this bit is indeterminate. Do not set this bit. 6 - Reserved The value read from this bit is indeterminate. Do not set this bit. 5 - Reserved The value read from this bit is indeterminate. Do not set this bit. 4 3 2 1 0 PSH Description Serial port Priority High bit PSH PS 0 0 0 1 1 0 1 1 Priority Level Lowest Highest PT1H Timer 1 overflow interrupt Priority High bit PT1H PT1 Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PX1H External interrupt 1 Priority High bit PX1H PX1 Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PT0H Timer 0 overflow interrupt Priority High bit PT0H PT0 Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest PX0H External interrupt 0 Priority High bit PX0H PX0 Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest Reset Value = XXX0 0000b Not bit addressable Rev. A - Mar. 19, 1999 21 Preliminary TS80C31X2 6.5 Idle mode An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels. There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle. The flag bits GF0 and GF1 can be used to give and indication if an interrupt occured during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits. The over way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset. 6.6 Power-Down Mode To save maximum power, a power-down mode can be invoked by software (Refer to Table 6., PCON register). In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. VCC can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power-down. To properly terminate power-down, the reset or external interrupt should not be executed before VCC is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize. Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input. Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 8. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C31X2 into power-down mode. INT0 INT1 XTAL1 Active phase Power-down phase Oscillator restart phase Active phase Figure 8. Power-Down Exit Waveform Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs. Exit from power-down by either reset or external interrupt does not affect the internal RAM content. NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered. 22 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 Table 11. The state of ports during idle and power-down modes Mode Program Memory ALE PSEN PORT0 PORT1 PORT2 PORT3 Idle Power Down External External 1 0 1 0 Floating Floating Port Data Port Data Address Port Data Port Data Port Data Rev. A - Mar. 19, 1999 23 Preliminary TS80C31X2 6.7 ONCE Mode (ON Chip Emulation) The ONCE mode facilitates testing and debugging of systems using TS80C31X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C31X2; the following sequence must be exercised: ● Pull ALE low while the device is in reset (RST high) and PSEN is high. ● Hold ALE low as RST is deactivated. While the TS80C31X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode. Normal operation is restored when normal reset is applied. Table 12. External Pin Status during ONCE Mode ALE PSEN Port 0 Port 1 Port 2 Port 3 XTAL1/2 Weak pull-up Weak pull-up Float Weak pull-up Weak pull-up Weak pull-up Active 24 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 6.8 Power-Off Flag The power-off flag allows the user to distinguish between a “cold start” reset and a “warm start” reset. A cold start reset is the one induced by VCC switch-on. A warm start reset occurs while VCC is still applied to the device and could be generated for example by an exit from power-down. The power-off flag (POF) is located in PCON register (See Table 13.). POF is set by hardware when VCC rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset. Table 13. PCON Register PCON - Power Control Register (87h) 7 6 5 4 3 2 1 0 SMOD1 SMOD0 - POF GF1 GF0 PD IDL Bit Number Bit Mnemonic 7 SMOD1 Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3. 6 SMOD0 Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register. 5 - 4 POF Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software. 3 GF1 General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage. 2 GF0 General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage. 1 PD Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode. 0 IDL Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode. Description Reserved The value read from this bit is indeterminate. Do not set this bit. Reset Value = 00X1 0000b Not bit addressable Rev. A - Mar. 19, 1999 25 Preliminary TS80C31X2 7. Electrical Characteristics 7.1 Absolute Maximum Ratings (1) Ambiant Temperature Under Bias: C = commercial I = industrial Storage Temperature Voltage on VCC to VSS Voltage on Any Pin to VSS Power Dissipation 0°C to 70°C -40°C to 85°C -65°C to + 150°C -0.5 V to + 7 V -0.5 V to VCC + 0.5 V 1 W(2) NOTES 1. Stresses at or above those listed under “ Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package. 26 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 7.2 DC Parameters for Standard Voltage TA = 0°C to +70°C; VSS = 0 V; VCC = 5 V ± 10%; F = 0 to 40 MHz. TA = -40°C to +85°C; VSS = 0 V; VCC = 5 V ± 10%; F = 0 to 40 MHz. Table 14. DC Parameters in Standard Voltage Symbol Parameter VIL Input Low Voltage VIH Input High Voltage except XTAL1, RST VIH1 Input High Voltage, XTAL1, RST VOL Output Low Voltage, ports 1, 2, 3 (6) VOL1 VOH Min Typ Max Unit -0.5 0.2 VCC - 0.1 V 0.2 VCC + 0.9 VCC + 0.5 V 0.7 VCC VCC + 0.5 V 0.3 0.45 1.0 V V V IOL = 100 µA(4) 0.3 0.45 1.0 V V V IOL = 200 µA(4) Output Low Voltage, port 0, ALE, PSEN (6) Output High Voltage, ports 1, 2, 3 VCC - 0.3 V V V VCC - 0.7 VCC - 1.5 VOH1 Output High Voltage, port 0, ALE, PSEN VCC - 0.3 V V V VCC - 1.5 RST Pulldown Resistor 50 IOL = 1.6 mA(4) IOL = 3.5 mA(4) IOL = 3.2 mA(4) IOL = 7.0 mA(4) IOH = -10 µA IOH = -30 µA IOH = -60 µA VCC = 5 V ± 10% VCC - 0.7 RRST Test Conditions IOH = -200 µA IOH = -3.2 mA IOH = -7.0 mA VCC = 5 V ± 10% 90 (5) 200 kΩ IIL Logical 0 Input Current ports 1, 2 and 3 -50 µA Vin = 0.45 V ILI Input Leakage Current ±10 µA 0.45 V < Vin < VCC ITL Logical 1 to 0 Transition Current, ports 1, 2, 3 -650 µA Vin = 2.0 V CIO Capacitance of I/O Buffer 10 pF Fc = 1 MHz TA = 25°C IPD Power Down Current 50 µA 2.0 V < VCC < 5.5 V(3) ICC Power Supply Current (7) Freq = 1 MHz Icc op Icc idle Freq = 6 MHz Icc op Icc idle Freq ≥ 12 MHz Icc op = 1.25 Freq (MHz) + 5 mA 1.8 1 mA mA VCC = 5.5 V(1) 10 4 mA mA VCC = 5.5 V(2) Icc idle = 0.36 Freq (MHz) + 2.7 mA 10 (5) (5) 13@12 MHz 16@16MHz 5.5@12Mz 7@16 MHz Rev. A - Mar. 19, 1999 mA mA 27 Preliminary TS80C31X2 7.3 DC Parameters for Low Voltage TA = 0°C to +70°C; VSS = 0 V; VCC = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; VSS = 0 V; VCC = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz. Table 15. DC Parameters for Low Voltage Symbol Parameter Min Typ Max Unit -0.5 0.2 VCC - 0.1 V 0.2 VCC + 0.9 VCC + 0.5 V 0.7 VCC VCC + 0.5 V Test Conditions VIL Input Low Voltage VIH Input High Voltage except XTAL1, RST VIH1 Input High Voltage, XTAL1, RST VOL Output Low Voltage, ports 1, 2, 3 (6) 0.45 V IOL = 0.8 mA(4) VOL1 Output Low Voltage, port 0, ALE, PSEN (6) 0.45 V IOL = 1.6 mA(4) VOH Output High Voltage, ports 1, 2, 3 0.9 VCC V IOH = -10 µA VOH1 Output High Voltage, port 0, ALE, PSEN 0.9 VCC V IOH = -40 µA IIL Logical 0 Input Current ports 1, 2 and 3 -50 µA Vin = 0.45 V ILI Input Leakage Current ±10 µA 0.45 V < Vin < VCC ITL Logical 1 to 0 Transition Current, ports 1, 2, 3 -650 µA Vin = 2.0 V 200 kΩ 10 pF Fc = 1 MHz TA = 25°C RRST RST Pulldown Resistor 50 CIO Capacitance of I/O Buffer IPD Power Down Current TBD (5) TBD µA VCC = 2.0 V to 5.5 V(3) ICC Power Supply Current (7) Active Mode 16MHz Idle Mode 16MHz TBD (5) TBD (5) TBD TBD mA mA VCC = 3.3 V(1) 90 (5) VCC = 3.3 V(2) NOTES 1. Operating ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns (see Figure 12.), VIL = VSS + 0.5 V, VIH = VCC - 0.5V; XTAL2 N.C.; EA = RST = Port 0 = VCC. ICC would be slightly higher if a crystal oscillator used.. 2. Idle ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC - 0.5 V; XTAL2 N.C; Port 0 = VCC; EA = RST = VSS (see Figure 10.). 3. Power Down ICC is measured with all output pins disconnected; EA = VSS, PORT 0 = VCC; XTAL2 NC.; RST = VSS (see Figure 11.). 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi VOL peak 0.6V. A Schmitt Trigger use is not necessary. 5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V. 6. Under steady state (non-transient) conditions, IOL must be externally limited as follows: Maximum IOL per port pin: 10 mA Maximum IOL per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA Maximum total IOL for all output pins: 71 mA If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. 7. For other values, please contact your sales office. 28 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 VCC ICC VCC VCC P0 VCC RST EA XTAL2 XTAL1 (NC) CLOCK SIGNAL VSS All other pins are disconnected. Figure 9. ICC Test Condition, Active Mode VCC ICC VCC VCC P0 RST EA XTAL2 XTAL1 VSS (NC) CLOCK SIGNAL All other pins are disconnected. Figure 10. ICC Test Condition, Idle Mode VCC ICC VCC VCC P0 RST (NC) EA XTAL2 XTAL1 VSS All other pins are disconnected. Figure 11. ICC Test Condition, Power-Down Mode Rev. A - Mar. 19, 1999 29 Preliminary TS80C31X2 VCC-0.5V 0.45V TCLCH TCHCL TCLCH = TCHCL = 5ns. 0.7VCC 0.2VCC-0.1 Figure 12. Clock Signal Waveform for ICC Tests in Active and Idle Modes 7.4 AC Parameters 7.4.1 Explanation of the AC Symbols Each timing symbol has 5 characters. The first character is always a “T” (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for. Example:TAVLL = Time for Address Valid to ALE Low. TLLPL = Time for ALE Low to PSEN Low. TA = 0 to +70°C; VSS = 0 V; VCC = 5 V ± 10%; -M and -V ranges. TA = -40°C to +85°C; VSS = 0 V; VCC = 5 V ± 10%; -M and -V ranges. TA = 0 to +70°C; VSS = 0 V; 2.7 V < VCC < 5.5 V; -L range. TA = -40°C to +85°C; VSS = 0 V; 2.7 V < VCC < 5.5 V; -L range. (Load Capacitance for port 0, ALE and PSEN = 100 pF; Load Capacitance for all other outputs = 80 pF.) Table 16., Table 19. and Table 22. give the description of each AC symbols. Table 17., Table 20. and Table 23. give for each range the AC parameter. Table 18., Table 21. and Table 24. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Example: TLLIV in X2 mode for a -V part at 25 MHz: x= 22 T= 40ns TLLIV= 2T - x = 2 x 40 - 22 = 58ns 30 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 7.4.2 External Program Memory Characteristics Table 16. Symbol Description Symbol T Parameter Oscillator clock period TLHLL ALE pulse width TAVLL Address Valid to ALE TLLAX Address Hold After ALE TLLIV ALE to Valid Instruction In TLLPL ALE to PSEN TPLPH PSEN Pulse Width TPLIV PSEN to Valid Instruction In TPXIX Input Instruction Hold After PSEN TPXIZ Input Instruction FloatAfter PSEN TPXAV PSEN to Address Valid TAVIV Address to Valid Instruction In TPLAZ PSEN Low to Address Float Table 17. AC Parameters for Fix Clock Speed (see ordering) -M -V Min Min T 25 17 50 ns TLHLL 40 25 60 ns TAVLL 10 7 20 ns TLLAX 10 7 20 ns 70 Max Min Units Symbol TLLIV Max -L 45 Max 125 ns TLLPL 10 7 20 ns TPLPH 60 45 105 ns TPLIV TPXIX 25 0 TPXIZ TPXAV 25 0 18 18 60 0 12 12 ns ns 30 30 ns ns TAVIV 85 53 145 ns TPLAZ 10 10 10 ns Rev. A - Mar. 19, 1999 31 Preliminary TS80C31X2 Table 18. AC Parameters for a Variable Clock Symbol Type Standard Clock X2 Clock -M -V -L Units TLHLL Min 2T-x T-x 10 8 40 ns TAVLL Min T-x 0.5 T - x 15 10 30 ns TLLAX Min T-x 0.5 T - x 15 10 30 ns TLLIV Max 4T-x 2T-x 30 22 75 ns TLLPL Min T-x 0.5 T - x 15 10 30 ns TPLPH Min 3T-x 1.5 T - x 15 5 45 ns TPLIV Max 3T-x 1.5 T - x 50 25 90 ns TPXIX Min x x 0 0 0 ns TPXIZ Max T-x 0.5 T - x 7 5 20 ns TPXAV Min T-x 0.5 T - x 7 5 20 ns TAVIV Max 5T-x 2.5 T - x 40 30 105 ns TPLAZ Max x x 10 10 10 ns 7.4.3 External Program Memory Read Cycle 12 TCLCL TLHLL TLLIV ALE TLLPL TPLPH PSEN TLLAX TAVLL PORT 0 INSTR IN TPLIV TPLAZ A0-A7 TPXAV TPXIZ TPXIX INSTR IN A0-A7 INSTR IN TAVIV PORT 2 ADDRESS OR SFR-P2 ADDRESS A8-A15 ADDRESS A8-A15 Figure 13. External Program Memory Read Cycle 32 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 7.4.4 External Data Memory Characteristics Table 19. Symbol Description Symbol Parameter TRLRH RD Pulse Width TWLWH WR Pulse Width TRLDV RD to Valid Data In TRHDX Data Hold After RD TRHDZ Data Float After RD TLLDV ALE to Valid Data In TAVDV Address to Valid Data In TLLWL ALE to WR or RD TAVWL Address to WR or RD TQVWX Data Valid to WR Transition TQVWH Data set-up to WR High TWHQX Data Hold After WR TRLAZ RD Low to Address Float TWHLH RD or WR High to ALE high Rev. A - Mar. 19, 1999 33 Preliminary TS80C31X2 Table 20. AC Parameters for a Fix Clock Speed (see ordering) -M -V Min TRLRH 105 85 200 ns TWLWH 105 90 200 ns TRHDX Min 100 0 Max Min Units Symbol TRLDV Max -L 60 0 Max 155 0 ns ns TRHDZ 15 13 40 ns TLLDV 160 100 310 ns TAVDV 165 100 360 ns 60 ns TLLWL 40 TAVWL 40 27 100 ns TQVWX 3 0 18 ns TQVWH 145 90 280 ns TWHQX 10 7 20 ns TRLAZ TWHLH 110 30 0 5 45 65 90 0 5 29 20 34 0 ns 80 ns Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 Table 21. AC Parameters for a Variable Clock Symbol Type Standard Clock X2 Clock -M -V -L Units TRLRH Min 6T-x 3T-x 45 15 100 ns TWLWH Min 6T-x 3T-x 45 10 100 ns TRLDV Max 5T-x 2.5 T - x 25 23 95 ns TRHDX Min x x 0 0 0 ns TRHDZ Max 2T-x T-x 35 20 60 ns TLLDV Max 8T-x 4T -x 40 33 90 ns TAVDV Max 9T-x 4.5 T - x 60 50 90 ns TLLWL Min 3T-x 1.5 T - x 35 20 60 ns TLLWL Max 3T+x 1.5 T + x 35 15 60 ns TAVWL Min 4T-x 2T-x 60 40 100 ns TQVWX Min T-x 0.5 T - x 22 17 32 ns TQVWH Min 7T-x 3.5 T - x 30 27 70 ns TWHQX Min T-x 0.5 T - x 15 10 30 ns TRLAZ Max x x 0 0 0 ns TWHLH Min T-x 0.5 T - x 20 12 30 ns TWHLH Max T+x 0.5 T + x 20 12 30 ns 7.4.5 External Data Memory Write Cycle TWHLH ALE PSEN TLLWL TWLWH WR TLLAX PORT 0 TQVWX A0-A7 TQVWH TWHQX DATA OUT TAVWL PORT 2 ADDRESS OR SFR-P2 ADDRESS A8-A15 OR SFR P2 Figure 14. External Data Memory Write Cycle Rev. A - Mar. 19, 1999 35 Preliminary TS80C31X2 7.4.6 External Data Memory Read Cycle TWHLH TLLDV ALE PSEN TLLWL TRLRH RD TLLAX PORT 0 TRHDZ TAVDV TRHDX A0-A7 DATA IN TRLAZ TAVWL ADDRESS OR SFR-P2 PORT 2 ADDRESS A8-A15 OR SFR P2 Figure 15. External Data Memory Read Cycle 7.4.7 Serial Port Timing - Shift Register Mode Table 22. Symbol Description Symbol Parameter TXLXL Serial port clock cycle time TQVHX Output data set-up to clock rising edge TXHQX Output data hold after clock rising edge TXHDX Input data hold after clock rising edge TXHDV Clock rising edge to input data valid Table 23. AC Parameters for a Fix Clock Speed (see ordering) -M -V Symbol Min TXLXL 300 200 600 ns TQVHX 200 117 367 ns TXHQX 20 13 50 ns TXHDX 0 0 0 ns TXHDV Max 200 Min Units -L Max Min 117 36 Max 367 ns Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 Table 24. AC Parameters for a Variable Clock -M -V Units Symbol Type Standard Clock X2 Clock -L TXLXL Min 12 T 6T TQVHX Min 10 T - x 5T-x 50 50 133 ns TXHQX Min 2T-x T-x 30 20 50 ns TXHDX Min x x 0 0 0 ns TXHDV Max 10 T - x 5 T- x 50 50 133 ns ns 7.4.8 Shift Register Timing Waveforms INSTRUCTION 0 1 2 3 4 5 6 7 8 ALE TXLXL CLOCK TXHQX TQVXH OUTPUT DATA 0 WRITE to SBUF TXHDV INPUT DATA 1 2 3 4 5 6 7 TXHDX VALID VALID VALID SET TI VALID VALID VALID VALID VALID SET RI CLEAR RI Figure 16. Shift Register Timing Waveforms Rev. A - Mar. 19, 1999 37 Preliminary TS80C31X2 7.4.9 External Clock Drive Characteristics (XTAL1) Table 25. AC Parameters Symbol Parameter Min Max Units TCLCL Oscillator Period 25 ns TCHCX High Time 5 ns TCLCX Low Time 5 ns TCLCH Rise Time 5 ns TCHCL Fall Time 5 ns 60 % TCHCX/TCLCX Cyclic ratio in X2 mode 40 7.4.10 External Clock Drive Waveforms VCC-0.5 V 0.45 V 0.7VCC 0.2VCC-0.1 V TCHCL TCHCX TCLCH TCLCX TCLCL Figure 17. External Clock Drive Waveforms 7.4.11 AC Testing Input/Output Waveforms VCC-0.5 V INPUT/OUTPUT 0.2VCC+0.9 0.2VCC-0.1 0.45 V Figure 18. AC Testing Input/Output Waveforms AC inputs during testing are driven at VCC - 0.5 for a logic “1” and 0.45V for a logic “0”. Timing measurement are made at VIH min for a logic “1” and VIL max for a logic “0”. 7.4.12 Float Waveforms FLOAT VOH-0.1 V VLOAD VOL+0.1 V VLOAD+0.1 V VLOAD-0.1 V Figure 19. Float Waveforms 38 Rev. A - Mar. 19, 1999 Preliminary TS80C31X2 For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. IOL/IOH ≥ ± 20mA. 7.4.13 Clock Waveforms Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two. INTERNAL CLOCK STATE4 STATE5 STATE6 STATE1 STATE2 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2 STATE3 P1 P2 STATE4 P1 P2 STATE5 P1 P2 XTAL2 ALE THESE SIGNALS ARE NOT ACTIVATED DURING THE EXECUTION OF A MOVX INSTRUCTION EXTERNAL PROGRAM MEMORY FETCH PSEN P0 DATA SAMPLED PCL OUT DATA SAMPLED FLOAT P2 (EXT) PCL OUT DATA SAMPLED PCL OUT FLOAT FLOAT INDICATES ADDRESS TRANSITIONS READ CYCLE RD PCL OUT (IF PROGRAM MEMORY IS EXTERNAL) P0 DPL OR Rt OUT FLOAT P2 INDICATES DPH OR P2 SFR TO PCH TRANSITION WRITE CYCLE WR P0 PCL OUT (EVEN IF PROGRAM MEMORY IS INTERNAL) DPL OR Rt OUT DATA OUT P2 PCL OUT (IF PROGRAM MEMORY IS EXTERNAL) INDICATES DPH OR P2 SFR TO PCH TRANSITION PORT OPERATION OLD DATA P0 PINS SAMPLED NEW DATA P0 PINS SAMPLED MOV DEST P0 MOV DEST PORT (P1, P2, P3) (INCLUDES INT0, INT1, TO, T1) P1, P2, P3 PINS SAMPLED SERIAL PORT SHIFT CLOCK TXD (MODE 0) RXD SAMPLED P1, P2, P3 PINS SAMPLED RXD SAMPLED Figure 20. Clock Waveforms This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though (TA=25°C fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications. Rev. A - Mar. 19, 1999 39 Preliminary TS80C31X2 8. Ordering Information TS -M 80C31X2 -M: -V: -L: C R B Packages: A: PDIL 40 B: PLCC 44 C: PQFP F1 (13.9 mm footprint) E: VQFP 44 (1.4mm) VCC: 5V +/- 10% 40 MHz, standard mode 20 MHz, X2 mode VCC: 5V +/- 10% 40 MHz, standard mode 30 MHz, X2 mode VCC: 2.7 to 5.5 V 30 MHz, standard mode 20 MHz, X2 mode Conditioning R: Tape & Reel D: Dry Pack B: Tape & Reel and Dry Pack Temperature Range C: Commercial 0 to 70oC I: Industrial -40 to 85oC TEMIC Semiconductors Table 26. Maximum Clock Frequency Code -M -V -L Standard Mode, oscillator frequency Standard Mode, internal frequency X2 Mode, oscillator frequency X2 Mode, internal equivalent frequency 40 40 20 40 40 40 30 60 30 30 20 40 40 Unit MHz MHz Rev. A - Mar. 19, 1999 Preliminary