TSV321-TSV358-TSV324 General Purpose, Input/Output Rail-to-Rail Low Power Operational Amplifiers ■ Operating at VCC = 2.5V to 6V ■ Rail-to-rail input & output ■ Extended Vicm (VDD - 0.2V to V CC + 0.2V) ■ Capable of driving a 32Ω load resistor ■ High stability: 500pF ■ Available in SOT23-5 micropackage ■ Operating temperature range: -40, +125°C TSV321RILT Output 1 VDD 2 Non Inverting Input 3 The TSV358 and TSV324 (dual & quad) are low voltage versions of LM358 and LM324 commodity operational amplifiers. TSV321 is the single version. The TSV321/358/324 are able to operate with voltage as low as 2.5V and features both I/O rail-to-rail. ■ Sensor signal conditioning ■ Laptop/notebook computers December 2005 N.C. 1 8 N.C. 2 _ 7 VCC Non Inverting Input 3 + 6 Output VDD 4 5 N.C. 1 Inverting Input 1 2 _ Non Inverting Input 1 3 + VDD 4 8 VCC 7 Output 2 _ 6 Inverting Input 2 + 5 Non Inverting Input 2 TSV324ID-TSV324IDT-TSV324IPT Output 1 Applications Audio driver (headphone driver) Inverting Input Inverting Input Output 1 These performances make the TSV3xx family ideal for active filters, general purpose low-voltage applications, general purpose portable devices. ■ 4 TSV358IST-TSV358ID-TSV358IDT-TSV358IPT The common mode input voltage extends 200mV at 25°C beyond the supply voltages while the output voltage swing is within 100mV of each rail with 600 Ohm load resistor. These devices offer 1.3MHz of gain-bandwidth product and provide high output drive capability typically at 65mAload. Battery-powered applications VCC TSV321ID-TSV321IDT Description ■ 5 Rev. 3 14 Output 4 1 Inverting Input 1 2 _ Non Inverting Input 1 3 + VCC 4 Non Inverting Input 2 5 Inverting Input 2 6 Output 2 7 _ 13 Inverting Input 4 + 12 Non Inverting Input 4 11 VDD + _ + _ 10 Non Inverting Input 3 9 Inverting Input 3 8 Output 3 1/15 www.st.com 15 Order Codes 1 TSV321-TSV358-TSV324 Order Codes Part Number Temperature Range Package Packaging Marking TSV321RILT SOT23-5L Tape & Reel K174 TSV321RAILT SOT23-5L Tape & Reel K178 SO-8 Tube or Tape & Reel TSV321ID/IDT V321ID TSV358ID/IDT V358ID TSSOP8 (Thin Shrink Outline Package) TSV358IPT TSV358IST TSV358IYD/IYDT TSV358IYPT TSV324ID/IDT TSV324IPT 2/15 -40°C to +125°C V358I Tape & Reel MiniSO-8 K175 SO-8 (automotive grade level) Tube or Tape & Reel TSSOP8 (automotive grade level) Tape & Reel V358Y SO-14 Tube or Tape & Reel V324ID TSSOP14 (Thin Shrink Outline Package) Tape & Reel V324IP TSV321-TSV358-TSV324 Absolute Maximum Ratings 2 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol Parameter Value Unit VCC Supply Voltage (1) 7 V Vid Differential Input Voltage (2) ±1 V Vi Input Voltage VDD -0.3 to VCC +0.3 V -65 to +150 °C 150 °C Tstg Tj Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient(3) Rthja HBM: Human Body Model(4) ESD °C/W 250 125 103 120 100 190 SOT23-5 SO-8 SO-14 TSSOP8 TSSOP14 MiniSO-8 2 kV MM: Machine Model(5) 200 V CDM: Charged Device Model 1.5 kV Latch-up Immunity 200 mA Lead Temperature (soldering, 10s) 250 °C Output Short Circuit Duration see note(6) 1. All voltages values, except differential voltage are with respect to network terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid > ±1V, the maximum input current must not exceed ±1mA. In this case (Vid > ±1V) an input series resistor must be added to limit input current. 3. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. 4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. 6. Short-circuits from the output to VCC can cause excessive heating. The maximum output current is approximately 80mA, independent of the magnitude of VCC . Destructive dissipation can result from simultaneous short-circuits on all amplifiers. Table 2. Operating conditions Symbol Parameter Value Unit 2.5 to 6 V VCC Supply Voltage Vicm Common Mode Input Voltage Range (1) VDD - 0.2 to VCC + 0.2 V Vicm Common Mode Input Voltage Range (2) VDD to VCC V Toper Operating Free Air Temperature Range -40 to + 125 °C 1. At 25°C, for 2.5 ≤ VCC ≤ 6V, Vicm is extended to VDD - 0.2V, VCC + 0.2V. 2. In full temperature range, both Rails can be reached when VCC does not exceed 5.5V. 3/15 Electrical Characteristics TSV321-TSV358-TSV324 3 Electrical Characteristics Table 3. VCC = +3V, VDD = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Parameter Input Offset Voltage ∆Vio Input Offset Voltage Drift Iib Input Offset Current Input Bias Current Min. Vicm = Vout = VCC /2 TSV321/358/324 TSV321A/358A/324A Vio Iio Conditions (1) 1) Typ. Max. Unit 0.2 0.1 3 1 mV µV/°C 2 Vicm = Vout = V CC /2 3 30 nA Vicm = Vout = V CC /2 4 125 nA CMR Common Mode Rejection Ratio 0 ≤ Vicm ≤ VCC, Vout = VCC /2 60 80 dB SVR Supply Voltage Rejection Ratio 70 85 dB Avd Large Signal Voltage Gain Vout = 0.5V to 2.5V RL = 2kΩ RL = 600Ω 80 74 92 95 dB VOH High Level Output Voltage Vid = 100mV RL = 2kΩ RL = 600Ω 2.82 2.80 2.95 2.95 V VOL Low Level Output Voltage Vid = -100mV RL = 2kΩ RL = 600Ω Output Source Current VID = 100mV, V O = VDD 20 80 Output Sink Current VID = -100mV, VO = VCC 20 80 Supply Current (per amplifier) AVCL = 1, no load Gain Bandwidth Product RL = 10kΩ, CL = 100pF, f = 100kHz SR Slew Rate RL = 10kΩ, CL = 100pF, AV = 1 φm Phase Margin CL = 100pF en Input Voltage Noise Io ICC GBP THD Total Harmonic Distortion 1. Maximum values including unavoidable inaccuracies of the industrial test. 4/15 88 115 120 160 mV mA 420 650 µA 1 1.3 MHz 0.42 0.6 V/µs 53 Degrees 27 nV/√Hz 0.01 % TSV321-TSV358-TSV324 Table 4. Electrical Characteristics VCC = +5V, VDD = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Parameter Input Offset Voltage ∆Vio Input Offset Voltage Drift Iib Input Offset Current Input Bias Current Min. Vicm = Vout = VCC /2 TSV321/358/324 TSV321A/358A/324A Vio Iio Conditions (1) 1) Typ. Max. Unit 0.2 0.1 3 1 mV µV/°C 2 Vicm = Vout = V CC /2 3 30 nA Vicm = Vout = V CC /2 70 130 nA CMR Common Mode Rejection Ratio 0 ≤ Vicm ≤ VCC, Vout = VCC /2 65 85 dB SVR Supply Voltage Rejection Ratio 70 90 dB Avd Large Signal Voltage Gain Vout = 0.5V to 2.5V RL = 2kΩ RL = 600Ω 83 77 92 85 dB VOH High Level Output Voltage Vid = 100mV RL = 2kΩ RL = 600Ω 4.80 4.75 4.95 4.90 V VOL Low Level Output Voltage Vid = -100mV RL = 2kΩ RL = 600Ω Output Source Current VID = 100mV, V O = VDD 20 80 Output Sink Current VID = -100mV, VO = VCC 20 80 Supply Current (per amplifier) AVCL = 1, no load Gain Bandwidth Product RL = 10kΩ, CL = 100pF, f = 100kHz SR Slew Rate RL = 10kΩ, CL = 100pF, AV = 1 φm Phase Margin CL = 100pF en Input Voltage Noise Io ICC GBP THD Total Harmonic Distortion 88 115 130 188 mV mA 500 835 µA 1 1.4 MHz 0.42 0.6 V/µs 55 Degrees 27 nV/√Hz 0.01 % 1. Maximum values including unavoidable inaccuracies of the industrial test. 5/15 Electrical Characteristics Figure 1. TSV321-TSV358-TSV324 Supply current/amplifier vs. supply Figure 2. voltage 600 550 500 500 Supply current/amplifier vs. temperature Supply Current (µA) Supply Current (µA) Vcc = 5V 400 Tamb = 25°C 300 200 400 350 300 100 250 -40 0 0 Figure 3. 2 4 Supply Voltage (V) 6 8 -20 0 20 40 60 80 100 120 140 Temperature (°C) Output power vs. supply voltage Figure 4. Input offset voltage drift vs. temperature 200 60 RL = 32 ohms 10% distortion 150 Input Voltage Drift (µV) 50 Output Power (mW) Vcc = 3V 450 1% distortion 40 30 0.1% distortion 20 100 Vcc = 3V 50 Vcc = 5V 0 -50 10 -100 0 1 2 3 4 5 -150 -40 6 -20 0 20 Supply Voltage (V) Figure 5. Input bias current vs. temperature Figure 6. 80 100 120 140 Open loop gain vs. temperature 0.0 -10.0 -20.0 -30.0 0 20 40 60 80 100 Temperature (°C) 120 140 RL = 2 kOhms Vcc = 5V Vicm = 2.5V Open Loop Gain (dB) Input bias current (nA) Vcc = 3V Vicm = 1.5V 6/15 60 110 10.0 -40.0 -40 -20 40 Temperature (°C) 100 90 RL = 600 ohms 80 70 -40 -20 0 20 40 60 80 Temperature (°C) 100 120 140 TSV321-TSV358-TSV324 Figure 7. Electrical Characteristics Open loop gain vs. temperature Figure 8. 110 Voltage Referenced to VCC (mV) 110 Vcc = 3V Vicm = 1.5V Open Loop Gain (dB) High level output voltage vs. temperature RL = 2 kOhms 100 90 RL = 600 Ohms 80 70 -40 -20 0 20 40 60 80 100 120 RL = 600 ohms 90 80 Vcc = 3V 70 60 50 40 -40 140 -20 0 20 Low level output voltage vs. temperature 80 100 120 140 100 RL = 600 ohms 100 Isink 90 Output Current (mA) Voltage Referenced to Gnd (mV) 60 Figure 10. Output current vs. temperature 110 Vcc = 5V 80 Vcc = 3V 70 60 50 Vcc = 5V Vid = 1V 0 Isource -50 50 40 -40 -100 -20 0 20 40 60 80 100 120 140 -40 -20 0 20 Temperature (°C) 40 60 80 100 120 140 Temperature (°C) Figure 11. Output current vs. temperature Figure 12. Output current vs. temperature 100 100 T = -40 °C Isink 50 Output Current (mA) Output Current (mA) 40 Temperature (°C) Temperature (°C) Figure 9. Vcc = 5V 100 Vcc = 3V Vid = 1V 0 Isource -50 sink 50 T = 125 °C Vcc = 5V Vid = 0.1V Vicm = 2.5V 0 T = 125 °C T = 25 °C -50 T = -40 °C -100 T = 25 °C source -100 -40 -20 0 20 40 60 80 Temperature (°C) 100 120 140 0.0 1.0 2.0 3.0 Output Voltage (V) 4.0 5.0 7/15 Electrical Characteristics TSV321-TSV358-TSV324 Figure 13. Output current vs. temperature Figure 14. Gain & phase vs. frequency 100 70 T = -40 °C T = 25 °C 60 sink 50 50 Gain (dB) T = 125 °C Vcc = 3V Vid = 0.1V Vicm = 1.5V 0 160 140 40 120 gain phase 30 100 Phase (°) Output Current (mA) 180 RL = 10K CL = 100 pF Vcc = 5V T = 125 °C T = 25 °C -50 T = -40 °C -100 0.0 20 80 10 60 source 0.5 1.0 1.5 2.0 2.5 3.0 0 1E+3 3.5 40 1E+4 Figure 15. Gain & phase vs. frequency 0.75 180 RL = 10K CL = 100 pF Vcc = 3V 40 160 140 120 gain 30 100 phase 20 80 10 60 0 1E+3 0.70 Phase (°) Gain (dB) Figure 16. Slew rate vs. temperature 0.50 -20 0 20 40 60 80 100 120 140 Temperature (°C) Figure 18. Distortion vs. frequency positive Slew Rate Vcc = 3V gain = +1 Vin = 1 to 2V RL = 10kohm CL = 100 pF 0.125 Distortion (%) Slew Rate (V/µs) negative Slew Rate 0.55 0.35 -40 1E+6 negative Slew Rate 0.55 0.50 Vcc = 3V Vout = 1Vpp RL = 32 ohms gain = -1 0.100 0.075 0.050 0.45 0.025 0.40 0.35 -40 -20 0 20 40 60 80 Temperature (°C) 8/15 0.60 0.150 0.70 0.60 positive Slew Rate 0.40 40 1E+4 1E+5 Frequency (Hz) 0.65 Vcc = 5V gain = +1 Vin = 2 to 3V RL = 10kohms CL = 100 pF 0.45 Figure 17. Slew rate vs. temperature 0.65 Slew Rate (V/µs) 70 50 1E+6 Frequency (Hz) Output Voltage (V) 60 1E+5 100 120 140 0.000 1E+1 1E+2 1E+3 Frequency (Hz) 1E+4 1E+5 TSV321-TSV358-TSV324 4 Package Mechanical Data Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 4.1 SO-8 Package SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 e 1.27 0.157 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 9/15 Package Mechanical Data 4.2 TSV321-TSV358-TSV324 TSSOP8 Package TSSOP8 MECHANICAL DATA mm. inch DIM. MIN. TYP A A1 MAX. MIN. TYP. 1.2 0.05 A2 0.80 b 0.19 1.00 MAX. 0.047 0.15 0.002 1.05 0.031 0.30 0.007 0.006 0.039 0.041 0.012 c 0.09 0.20 0.004 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 K 0˚ L 0.45 L1 0.60 1 0.008 0.0256 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 0.039 0079397/D 10/15 TSV321-TSV358-TSV324 4.3 Package Mechanical Data MiniSO-8 Package 11/15 Package Mechanical Data 4.4 TSV321-TSV358-TSV324 SO-14 Package SO-14 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.068 0.2 a2 0.003 0.007 0.46 0.013 0.018 0.25 0.007 1.65 b 0.35 b1 0.19 C MAX. 0.064 0.5 0.010 0.019 c1 45˚ (typ.) D 8.55 8.75 0.336 E 5.8 6.2 0.228 e 1.27 e3 0.344 0.244 0.050 7.62 0.300 F 3.8 4.0 0.149 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M S 0.68 0.157 0.026 8 ˚ (max.) PO13G 12/15 TSV321-TSV358-TSV324 4.5 Package Mechanical Data TSSOP14 Package TSSOP14 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. MAX. 1.2 A1 0.05 A2 0.8 b 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 1 e 0.65 BSC K 0˚ L 0.45 A 0.60 0.0256 BSC 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 A2 A1 b e K c L E D E1 PIN 1 IDENTIFICATION 1 0080337D 13/15 Package Mechanical Data 4.6 TSV321-TSV358-TSV324 SOT23-5 Package SOT23-5L MECHANICAL DATA mm. mils DIM. MIN. MAX. MIN. TYP. MAX. A 0.90 1.45 35.4 57.1 A1 0.00 0.15 0.0 5.9 A2 0.90 1.30 35.4 51.2 b 0.35 0.50 13.7 19.7 C 0.09 0.20 3.5 7.8 D 2.80 3.00 110.2 118.1 E 2.60 3.00 102.3 118.1 E1 1.50 1.75 59.0 68.8 e 0 .95 37.4 e1 1.9 74.8 L 14/15 TYP 0.35 0.55 13.7 21.6 TSV321-TSV358-TSV324 5 Revision History Revision History Table 5. Document revision history Date Revision Changes Aug. 2005 1 – First Release - Products in full production Sept. 2005 2 – Addition of TS321A/TS324A/TS358A data in tables in Chapter 3: Electrical Characteristics on page 4. – Minor formatting and grammatical changes. Dec. 2005 3 – Missing PPAP references inserted see Table 1: Order Codes on page 2. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 7 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 15/15