STMICROELECTRONICS V324ID

TSV321-TSV358-TSV324
General Purpose, Input/Output Rail-to-Rail
Low Power Operational Amplifiers
■
Operating at VCC = 2.5V to 6V
■
Rail-to-rail input & output
■
Extended Vicm (VDD - 0.2V to V CC + 0.2V)
■
Capable of driving a 32Ω load resistor
■
High stability: 500pF
■
Available in SOT23-5 micropackage
■
Operating temperature range: -40, +125°C
TSV321RILT
Output
1
VDD
2
Non Inverting Input
3
The TSV358 and TSV324 (dual & quad) are low
voltage versions of LM358 and LM324 commodity
operational amplifiers. TSV321 is the single
version. The TSV321/358/324 are able to operate
with voltage as low as 2.5V and features both I/O
rail-to-rail.
■
Sensor signal conditioning
■
Laptop/notebook computers
December 2005
N.C.
1
8
N.C.
2
_
7
VCC
Non Inverting Input
3
+
6
Output
VDD
4
5
N.C.
1
Inverting Input 1
2
_
Non Inverting Input 1
3
+
VDD
4
8
VCC
7
Output 2
_
6
Inverting Input 2
+
5
Non Inverting Input 2
TSV324ID-TSV324IDT-TSV324IPT
Output 1
Applications
Audio driver (headphone driver)
Inverting Input
Inverting Input
Output 1
These performances make the TSV3xx family
ideal for active filters, general purpose low-voltage
applications, general purpose portable devices.
■
4
TSV358IST-TSV358ID-TSV358IDT-TSV358IPT
The common mode input voltage extends 200mV
at 25°C beyond the supply voltages while the
output voltage swing is within 100mV of each rail
with 600 Ohm load resistor. These devices offer
1.3MHz of gain-bandwidth product and provide
high output drive capability typically at 65mAload.
Battery-powered applications
VCC
TSV321ID-TSV321IDT
Description
■
5
Rev. 3
14 Output 4
1
Inverting Input 1
2
_
Non Inverting Input 1
3
+
VCC
4
Non Inverting Input 2
5
Inverting Input 2
6
Output 2
7
_
13 Inverting Input 4
+
12 Non Inverting Input 4
11 VDD
+
_
+
_
10 Non Inverting Input 3
9
Inverting Input 3
8
Output 3
1/15
www.st.com
15
Order Codes
1
TSV321-TSV358-TSV324
Order Codes
Part Number
Temperature
Range
Package
Packaging
Marking
TSV321RILT
SOT23-5L
Tape & Reel
K174
TSV321RAILT
SOT23-5L
Tape & Reel
K178
SO-8
Tube or Tape & Reel
TSV321ID/IDT
V321ID
TSV358ID/IDT
V358ID
TSSOP8
(Thin Shrink Outline Package)
TSV358IPT
TSV358IST
TSV358IYD/IYDT
TSV358IYPT
TSV324ID/IDT
TSV324IPT
2/15
-40°C to +125°C
V358I
Tape & Reel
MiniSO-8
K175
SO-8 (automotive grade level)
Tube or Tape & Reel
TSSOP8
(automotive grade level)
Tape & Reel
V358Y
SO-14
Tube or Tape & Reel
V324ID
TSSOP14
(Thin Shrink Outline Package)
Tape & Reel
V324IP
TSV321-TSV358-TSV324
Absolute Maximum Ratings
2
Absolute Maximum Ratings
Table 1.
Key parameters and their absolute maximum ratings
Symbol
Parameter
Value
Unit
VCC
Supply Voltage (1)
7
V
Vid
Differential Input Voltage (2)
±1
V
Vi
Input Voltage
VDD -0.3 to VCC +0.3
V
-65 to +150
°C
150
°C
Tstg
Tj
Storage Temperature
Maximum Junction Temperature
Thermal Resistance Junction to Ambient(3)
Rthja
HBM: Human Body Model(4)
ESD
°C/W
250
125
103
120
100
190
SOT23-5
SO-8
SO-14
TSSOP8
TSSOP14
MiniSO-8
2
kV
MM: Machine Model(5)
200
V
CDM: Charged Device Model
1.5
kV
Latch-up Immunity
200
mA
Lead Temperature (soldering, 10s)
250
°C
Output Short Circuit Duration
see note(6)
1. All voltages values, except differential voltage are with respect to network terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid > ±1V, the
maximum input current must not exceed ±1mA. In this case (Vid > ±1V) an input series resistor must be added to limit input
current.
3. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all
amplifiers.
4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external
series resistor (internal resistor < 5Ω), into pin to pin of device.
6. Short-circuits from the output to VCC can cause excessive heating. The maximum output current is approximately 80mA,
independent of the magnitude of VCC . Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
Table 2.
Operating conditions
Symbol
Parameter
Value
Unit
2.5 to 6
V
VCC
Supply Voltage
Vicm
Common Mode Input Voltage Range (1)
VDD - 0.2 to VCC + 0.2
V
Vicm
Common Mode Input Voltage Range
(2)
VDD to VCC
V
Toper
Operating Free Air Temperature Range
-40 to + 125
°C
1. At 25°C, for 2.5 ≤ VCC ≤ 6V, Vicm is extended to VDD - 0.2V, VCC + 0.2V.
2. In full temperature range, both Rails can be reached when VCC does not exceed 5.5V.
3/15
Electrical Characteristics
TSV321-TSV358-TSV324
3
Electrical Characteristics
Table 3.
VCC = +3V, VDD = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Input Offset Voltage
∆Vio
Input Offset Voltage Drift
Iib
Input Offset Current
Input Bias Current
Min.
Vicm = Vout = VCC /2
TSV321/358/324
TSV321A/358A/324A
Vio
Iio
Conditions
(1)
1)
Typ.
Max.
Unit
0.2
0.1
3
1
mV
µV/°C
2
Vicm = Vout = V CC /2
3
30
nA
Vicm = Vout = V CC /2
4
125
nA
CMR
Common Mode Rejection Ratio 0 ≤ Vicm ≤ VCC, Vout = VCC /2
60
80
dB
SVR
Supply Voltage Rejection Ratio
70
85
dB
Avd
Large Signal Voltage Gain
Vout = 0.5V to 2.5V
RL = 2kΩ
RL = 600Ω
80
74
92
95
dB
VOH
High Level Output Voltage
Vid = 100mV
RL = 2kΩ
RL = 600Ω
2.82
2.80
2.95
2.95
V
VOL
Low Level Output Voltage
Vid = -100mV
RL = 2kΩ
RL = 600Ω
Output Source Current
VID = 100mV, V O = VDD
20
80
Output Sink Current
VID = -100mV, VO = VCC
20
80
Supply Current (per amplifier)
AVCL = 1, no load
Gain Bandwidth Product
RL = 10kΩ, CL = 100pF, f = 100kHz
SR
Slew Rate
RL = 10kΩ, CL = 100pF, AV = 1
φm
Phase Margin
CL = 100pF
en
Input Voltage Noise
Io
ICC
GBP
THD
Total Harmonic Distortion
1. Maximum values including unavoidable inaccuracies of the industrial test.
4/15
88
115
120
160
mV
mA
420
650
µA
1
1.3
MHz
0.42
0.6
V/µs
53
Degrees
27
nV/√Hz
0.01
%
TSV321-TSV358-TSV324
Table 4.
Electrical Characteristics
VCC = +5V, VDD = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Input Offset Voltage
∆Vio
Input Offset Voltage Drift
Iib
Input Offset Current
Input Bias Current
Min.
Vicm = Vout = VCC /2
TSV321/358/324
TSV321A/358A/324A
Vio
Iio
Conditions
(1)
1)
Typ.
Max.
Unit
0.2
0.1
3
1
mV
µV/°C
2
Vicm = Vout = V CC /2
3
30
nA
Vicm = Vout = V CC /2
70
130
nA
CMR
Common Mode Rejection Ratio 0 ≤ Vicm ≤ VCC, Vout = VCC /2
65
85
dB
SVR
Supply Voltage Rejection Ratio
70
90
dB
Avd
Large Signal Voltage Gain
Vout = 0.5V to 2.5V
RL = 2kΩ
RL = 600Ω
83
77
92
85
dB
VOH
High Level Output Voltage
Vid = 100mV
RL = 2kΩ
RL = 600Ω
4.80
4.75
4.95
4.90
V
VOL
Low Level Output Voltage
Vid = -100mV
RL = 2kΩ
RL = 600Ω
Output Source Current
VID = 100mV, V O = VDD
20
80
Output Sink Current
VID = -100mV, VO = VCC
20
80
Supply Current (per amplifier)
AVCL = 1, no load
Gain Bandwidth Product
RL = 10kΩ, CL = 100pF, f = 100kHz
SR
Slew Rate
RL = 10kΩ, CL = 100pF, AV = 1
φm
Phase Margin
CL = 100pF
en
Input Voltage Noise
Io
ICC
GBP
THD
Total Harmonic Distortion
88
115
130
188
mV
mA
500
835
µA
1
1.4
MHz
0.42
0.6
V/µs
55
Degrees
27
nV/√Hz
0.01
%
1. Maximum values including unavoidable inaccuracies of the industrial test.
5/15
Electrical Characteristics
Figure 1.
TSV321-TSV358-TSV324
Supply current/amplifier vs. supply Figure 2.
voltage
600
550
500
500
Supply current/amplifier vs.
temperature
Supply Current (µA)
Supply Current (µA)
Vcc = 5V
400
Tamb = 25°C
300
200
400
350
300
100
250
-40
0
0
Figure 3.
2
4
Supply Voltage (V)
6
8
-20
0
20
40
60
80
100
120
140
Temperature (°C)
Output power vs. supply voltage
Figure 4.
Input offset voltage drift vs.
temperature
200
60
RL = 32 ohms
10% distortion
150
Input Voltage Drift (µV)
50
Output Power (mW)
Vcc = 3V
450
1% distortion
40
30
0.1% distortion
20
100
Vcc = 3V
50
Vcc = 5V
0
-50
10
-100
0
1
2
3
4
5
-150
-40
6
-20
0
20
Supply Voltage (V)
Figure 5.
Input bias current vs. temperature
Figure 6.
80
100
120
140
Open loop gain vs. temperature
0.0
-10.0
-20.0
-30.0
0
20
40 60
80 100
Temperature (°C)
120 140
RL = 2 kOhms
Vcc = 5V
Vicm = 2.5V
Open Loop Gain (dB)
Input bias current (nA)
Vcc = 3V
Vicm = 1.5V
6/15
60
110
10.0
-40.0
-40 -20
40
Temperature (°C)
100
90
RL = 600 ohms
80
70
-40
-20
0
20
40
60
80
Temperature (°C)
100
120
140
TSV321-TSV358-TSV324
Figure 7.
Electrical Characteristics
Open loop gain vs. temperature
Figure 8.
110
Voltage Referenced to VCC (mV)
110
Vcc = 3V
Vicm = 1.5V
Open Loop Gain (dB)
High level output voltage vs.
temperature
RL = 2 kOhms
100
90
RL = 600 Ohms
80
70
-40
-20
0
20
40
60
80
100
120
RL = 600 ohms
90
80
Vcc = 3V
70
60
50
40
-40
140
-20
0
20
Low level output voltage vs.
temperature
80
100
120
140
100
RL = 600 ohms
100
Isink
90
Output Current (mA)
Voltage Referenced to Gnd (mV)
60
Figure 10. Output current vs. temperature
110
Vcc = 5V
80
Vcc = 3V
70
60
50
Vcc = 5V
Vid = 1V
0
Isource
-50
50
40
-40
-100
-20
0
20
40
60
80
100
120
140
-40
-20
0
20
Temperature (°C)
40
60
80
100
120
140
Temperature (°C)
Figure 11. Output current vs. temperature
Figure 12. Output current vs. temperature
100
100
T = -40 °C
Isink
50
Output Current (mA)
Output Current (mA)
40
Temperature (°C)
Temperature (°C)
Figure 9.
Vcc = 5V
100
Vcc = 3V
Vid = 1V
0
Isource
-50
sink
50
T = 125 °C
Vcc = 5V
Vid = 0.1V
Vicm = 2.5V
0
T = 125 °C
T = 25 °C
-50
T = -40 °C
-100
T = 25 °C
source
-100
-40
-20
0
20
40
60
80
Temperature (°C)
100
120
140
0.0
1.0
2.0
3.0
Output Voltage (V)
4.0
5.0
7/15
Electrical Characteristics
TSV321-TSV358-TSV324
Figure 13. Output current vs. temperature
Figure 14. Gain & phase vs. frequency
100
70
T = -40 °C
T = 25 °C
60
sink
50
50
Gain (dB)
T = 125 °C
Vcc = 3V
Vid = 0.1V
Vicm = 1.5V
0
160
140
40
120
gain
phase
30
100
Phase (°)
Output Current (mA)
180
RL = 10K
CL = 100 pF
Vcc = 5V
T = 125 °C
T = 25 °C
-50
T = -40 °C
-100
0.0
20
80
10
60
source
0.5
1.0
1.5
2.0
2.5
3.0
0
1E+3
3.5
40
1E+4
Figure 15. Gain & phase vs. frequency
0.75
180
RL = 10K
CL = 100 pF
Vcc = 3V
40
160
140
120
gain
30
100
phase
20
80
10
60
0
1E+3
0.70
Phase (°)
Gain (dB)
Figure 16. Slew rate vs. temperature
0.50
-20
0
20
40
60
80
100
120
140
Temperature (°C)
Figure 18. Distortion vs. frequency
positive Slew Rate
Vcc = 3V
gain = +1
Vin = 1 to 2V
RL = 10kohm
CL = 100 pF
0.125
Distortion (%)
Slew Rate (V/µs)
negative Slew Rate
0.55
0.35
-40
1E+6
negative Slew Rate
0.55
0.50
Vcc = 3V
Vout = 1Vpp
RL = 32 ohms
gain = -1
0.100
0.075
0.050
0.45
0.025
0.40
0.35
-40
-20
0
20
40
60
80
Temperature (°C)
8/15
0.60
0.150
0.70
0.60
positive Slew Rate
0.40
40
1E+4
1E+5
Frequency (Hz)
0.65
Vcc = 5V
gain = +1
Vin = 2 to 3V
RL = 10kohms
CL = 100 pF
0.45
Figure 17. Slew rate vs. temperature
0.65
Slew Rate (V/µs)
70
50
1E+6
Frequency (Hz)
Output Voltage (V)
60
1E+5
100
120
140
0.000
1E+1
1E+2
1E+3
Frequency (Hz)
1E+4
1E+5
TSV321-TSV358-TSV324
4
Package Mechanical Data
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
4.1
SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
e
1.27
0.157
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
9/15
Package Mechanical Data
4.2
TSV321-TSV358-TSV324
TSSOP8 Package
TSSOP8 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
A1
MAX.
MIN.
TYP.
1.2
0.05
A2
0.80
b
0.19
1.00
MAX.
0.047
0.15
0.002
1.05
0.031
0.30
0.007
0.006
0.039
0.041
0.012
c
0.09
0.20
0.004
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0.65
K
0˚
L
0.45
L1
0.60
1
0.008
0.0256
8˚
0˚
0.75
0.018
8˚
0.024
0.030
0.039
0079397/D
10/15
TSV321-TSV358-TSV324
4.3
Package Mechanical Data
MiniSO-8 Package
11/15
Package Mechanical Data
4.4
TSV321-TSV358-TSV324
SO-14 Package
SO-14 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
0.003
0.007
0.46
0.013
0.018
0.25
0.007
1.65
b
0.35
b1
0.19
C
MAX.
0.064
0.5
0.010
0.019
c1
45˚ (typ.)
D
8.55
8.75
0.336
E
5.8
6.2
0.228
e
1.27
e3
0.344
0.244
0.050
7.62
0.300
F
3.8
4.0
0.149
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
0.050
M
S
0.68
0.157
0.026
8 ˚ (max.)
PO13G
12/15
TSV321-TSV358-TSV324
4.5
Package Mechanical Data
TSSOP14 Package
TSSOP14 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
MAX.
1.2
A1
0.05
A2
0.8
b
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.9
5
5.1
0.193
0.197
0.201
E
6.2
6.4
6.6
0.244
0.252
0.260
E1
4.3
4.4
4.48
0.169
0.173
0.176
1
e
0.65 BSC
K
0˚
L
0.45
A
0.60
0.0256 BSC
8˚
0˚
0.75
0.018
8˚
0.024
0.030
A2
A1
b
e
K
c
L
E
D
E1
PIN 1 IDENTIFICATION
1
0080337D
13/15
Package Mechanical Data
4.6
TSV321-TSV358-TSV324
SOT23-5 Package
SOT23-5L MECHANICAL DATA
mm.
mils
DIM.
MIN.
MAX.
MIN.
TYP.
MAX.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.0
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0 .95
37.4
e1
1.9
74.8
L
14/15
TYP
0.35
0.55
13.7
21.6
TSV321-TSV358-TSV324
5
Revision History
Revision History
Table 5.
Document revision history
Date
Revision
Changes
Aug. 2005
1
– First Release - Products in full production
Sept. 2005
2
– Addition of TS321A/TS324A/TS358A data in tables in
Chapter 3: Electrical Characteristics on page 4.
– Minor formatting and grammatical changes.
Dec. 2005
3
– Missing PPAP references inserted see Table 1: Order Codes
on page 2.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 7 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
15/15