TS921 Rail-to-Rail High Output Current Single Operational Amplifier ■ ■ ■ ■ ■ ■ ■ ■ ■ Rail-to-rail input and output Low noise: 9nV/√Hz Low distortion High output current: 80mA (able to drive 32Ω loads) High-speed: 4MHz, 1V/µs Operating from 2.7V to 12V ESD internal protection: 1.5kV Latch-up immunity Macromodel included in this specification N DIP8 (Plastic Package) D SO-8 (Plastic Micropackage) P TSSOP8 (Thin Shrink Small Outline Package) Description The TS921 is a rail-to-rail single BiCMOS operational amplifier optimized and fully specified for 3V and 5V operation. Its high output current impedances to be driven. allows Pin connections (top view) low-load The TS921 exhibits very low noise, low distortion and low offset. It has a high output current capability which makes this device an excellent choice for high quality, low voltage or batteryoperated audio systems. N.C. 1 Inverting Input 2 - 7 VCC+ Non-inverting Input 3 + 6 Output VCC 4 8 N.C. 5 N.C. The device is stable for capacitive loads up to 500pF. Applications ■ Headphone amplifier ■ Servo amplifier ■ Piezoelectric speaker driver ■ ■ Sound cards, multimedia systems Mobile phone and portable communication sets ■ Line driver, actuator driver ■ Instrumentation with low noise as key factor November 2005 Rev 3 1/14 www.st.com 14 TS921 Order Codes Part Number Temperature Range Package Packing Marking TS921IN DIP8 Tube TS921IN TS921ID/IDT SO-8 Tube or Tape & Reel TS921IPT TSSOP8 (Thin Shrink Outline Package) Tape & Reel TS921IYD/IYDT SO-8 (automotive grade level) Tube or Tape & Reel -40°C, +125°C 2/14 921I 921IY TS921 1 Absolute Maximum Ratings Absolute Maximum Ratings Table 1. Symbol Key parameters and their absolute maximum ratings Parameter Condition Value Unit VCC Supply voltage (1) 14 V Vid Differential Input Voltage (2) ±1 V Vi Input Voltage VDD -0.3 to VCC+0.3 V -65 to +150 °C Maximum Junction Temperature 150 °C Rthja SO-8 Thermal Resistance Junction to TSSOP8 Ambient DIP8 125 120 85 °C/W Rthjc SO-8 Thermal Resistance Junction to TSSOP8 Case DIP8 40 37 41 °C/W 1.5 kV 100 V 1.5 kV Tstg Tj Storage Temperature HBM Human Body Model(3) ESD Electro-Static Discharge MM Machine Model(4) CDM Charged Device Model see note(5) Output Short Circuit Duration Latch-up Immunity 200 mA 10sec, Standard package 250 °C 10sec, Pb-free package 260 Soldering Temperature 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid > ±1V, the maximum input current must not exceed ±1mA. In this case (Vid > ±1V) an input serie resistor must be added to limit input current. 3. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 4. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. 5. There is no short-circuit protection inside the device: short-circuits from the output to Vcc can cause excessive heating. The maximum output current is approximately 80mA, independent of the magnitude of Vcc. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. Table 2. Operating conditions Symbol Parameter VCC Supply Voltage Vicm Common Mode Input Voltage Range Toper Operating Free Air Temperature Range Value Unit 2.7 to 12 V VDD -0.2 to VCC +0.2 V -40 to +125 °C 3/14 Electrical Characteristics 2 TS921 Electrical Characteristics Table 3. Electrical characteristics for VCC = 3V, VDD = 0V, Vicm = VCC/2, RL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Vio Parameter Conditions Min. Typ. Input Offset Voltage at Tmin. ≤ Tamb ≤ Tmax DV io Unit 3 5 mV µV/°C 2 Iio Input Offset Current Vout = 1.5V 1 30 nA Iib Input Bias Current Vout = 1.5V 15 100 nA High Level Output Voltage RL = 600Ω RL = 32Ω VOH VOL Avd GBP ICC Low Level Output Voltage Large Signal Voltage Gain 2.87 V 2.63 RL = 600Ω RL = 32Ω 100 180 mV Vout = 2Vpk-pk RL = 600Ω RL = 32Ω 35 16 V/mV Gain Bandwidth Product RL = 600Ω 4 MHz Supply Current no load, Vout = VCC/2 1 CMR Common Mode Rejection Ratio SVR Supply Voltage Rejection Ratio 1.5 mA 60 80 dB 60 80 dB Output Short-Circuit Current 50 80 mA SR Slew Rate 0.7 1.3 V/µs Pm Phase Margin at Unit Gain RL = 600Ω, CL =100pF 68 Degrees GM Gain Margin RL = 600Ω, CL =100pF 12 dB Equivalent Input Noise Voltage f = 1kHz 9 nV -----------Hz Total Harmonic Distortion Vout = 2Vpk-pk, f = 1kHz, Av = 1, RL = 600Ω 0.005 % Io en THD 4/14 Input Offset Voltage Drift Max. VCC = 2.7 to 3.3V TS921 Electrical Characteristics Table 4. Electrical characteristics for VCC = 5V, V DD = 0V, Vicm = VCC/2, RL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Vio Parameter Conditions Min. Typ. Input Offset Voltage at T min. ≤ T amb ≤ Tmax DV io Input Offset Voltage Drift Max. Unit 3 5 mV µV/°C 2 Iio Input Offset Current Vout = 1.5V 1 30 nA Iib Input Bias Current Vout = 1.5V 15 100 nA VOH High Level Output Voltage RL = 600Ω RL = 32Ω VOL Avd GBP ICC Low Level Output Voltage Large Signal Voltage Gain 4.85 V 4.4 RL = 600Ω RL = 32Ω 120 300 mV Vout = 2Vpk-pk RL = 600Ω RL = 32Ω 35 16 V/mV Gain Bandwidth Product RL = 600Ω 4 MHz Supply Current no load, Vout = VCC/2 1 CMR Common Mode Rejection Ratio SVR Supply Voltage Rejection Ratio 1.5 mA 60 80 dB 60 80 dB Output Short-Circuit Current 50 80 mA SR Slew Rate 0.7 1.3 V/µs Pm Phase Margin at Unit Gain RL = 600Ω, CL =100pF 68 Degrees GM Gain Margin RL = 600Ω, CL =100pF 12 dB Equivalent Input Noise Voltage f = 1kHz 9 nV -----------Hz Total Harmonic Distortion Vout = 2V pk-pk, f = 1kHz, Av = 1, RL = 600Ω 0.005 % Io en THD VCC = 4.5to 5.5V 5/14 Electrical Characteristics Figure 1. TS921 Output short circuit vs. output voltage Figure 2. 100 Voltage gain and phase vs. frequency 180 60 80 ph ase 120 40 R l=10k C l=100pF gain 20 Vcc=0/5V 0 -20 20 60 0 0 Pha se (D e g) Sink 40 G ain (dB ) Output Short-Circuit Current (mA) 60 -40 -60 Source -80 -100 -120 0 Figure 3. 1 2 3 Output Voltage (V) 4 -20 1E +02 5 Output short circuit vs. output voltage 1E +03 Figure 4. 100 1E +04 1E +05 Frequency (H z) 1E +06 1E +07 -60 1E +08 Equivalent input noise voltage vs. frequency 30 60 Equivalent Input Noise (nV/sqrt(Hz) O utp u t Sh or t-Cir cu it Cu rre n t (mA) 80 S ink 40 20 Vcc=0/3V 0 -20 -40 -60 S ource 25 20 15 10 5 -80 0 -100 0 Figure 5. 0,5 1 1,5 Output Voltag e (V) 2 2,5 0.01 3 Output suppply current vs. supply voltage 0.1 1 10 100 Frequency (kHz) Figure 6. THD + noise vs. frequency 0.02 THD+Noise (%) 0.015 0.01 0.005 0 0.01 0.1 1 Frequency (kHz) 6/14 10 100 TS921 Figure 7. Electrical Characteristics THD + noise vs. frequency Figure 8. 0.04 THD + noise vs. output voltage 10 1 THD+Noise (%) THD+Noise (%) 0.032 0.024 0.016 0.1 0.008 0 0.01 0.01 0.1 1 10 100 0 0.2 0.4 Frequency (kHz) Figure 9. 0.6 0.8 1 Vout (Vrms) THD + noise vs. frequency Figure 10. THD + noise vs. output voltage 10 0.7 0.6 1 THD+Noise (%) THD+Noise (%) 0.5 0.4 0.3 0.1 0.2 0.01 0.1 0 0.01 0.1 1 10 0.001 100 0 Frequency (kHz) 0.2 0.4 0.6 0.8 1 1.2 Vout (Vrms) Figure 11. THD + noise vs. output voltage Figure 12. Open loop gain and phase vs. frequency 10,000 180 50 40 1,000 0,100 Phase (Deg) Gain (dB) THD +N oise (%) 120 30 20 60 0,010 10 0 0 1E+2 0,001 0 0,2 0,4 0,6 Vout (V rms) 0,8 1 1,2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 Frequency (Hz) 7/14 Macromodels TS921 3 Macromodels 3.1 Important note concerning this macromodel Please consider following remarks before using this macromodel: ● All models are a trade-off between accuracy and complexity (i.e. simulation time). ● Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. ● A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. ● Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way. In Section 3.3, the electrical characteristics resulting from the use of these macromodels are presented. 3.2 Electrical characteristics from macromodelization Table 5. Electrical characteristics resulting from macromodel simulation at V CC = 3V, VDD = 0V, R L, C L connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Unit 0 mV Avd RL = 10kΩ 200 V/mV ICC No load, per operator 1.2 mA -0.2 to 3.2 V Vicm 8/14 Value VOH RL = 10kΩ 2.95 V VOL RL = 10kΩ 25 mV Isink VO = 3V 80 mA Isource VO = 0V 80 mA GBP RL = 600kΩ 4 MHz SR RL = 10kΩ, CL = 100pF 1.3 V/µs φm RL = 600kΩ 68 Degrees TS921 3.3 Macromodels Macromodel code ** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS: * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS921 1 3 2 4 5 (analog) ********************************************************* .MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 8.125000E+00 RIN 15 16 8.125000E+00 RIS 11 15 2.238465E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 153.5u VOFN 13 14 DC 0 IPOL 13 5 3.200000E-05 CPS 11 15 1e-9 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.100000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.400000E+00 FCP 4 5 VOFP 1.865000E+02 FCN 5 4 VOFN 1.865000E+02 FIBP 2 5 VOFP 6.250000E-03 FIBN 5 1 VOFN 6.250000E-03 * GM1 STAGE *************** FGM1P 119 5 VOFP 1.1 FGM1N 119 5 VOFN 1.1 RAP 119 4 2.6E+06 RAN 119 5 2.6E+06 * GM2 STAGE *************** G2P 19 5 119 5 1.92E-02 G2N 19 5 119 4 1.92E-02 R2P 19 4 1E+07 R2N 19 5 1E+07 ************************** VINT1 500 0 5 GCONVP 500 501 119 4 19.38!send ds VP, I(VP)=(V119-V4)/2/Ut VP 501 0 0 GCONVN 500 502 119 5 19.38!send ds VN, I(VN)=(V119-V5)/2/Ut VN 502 0 0 ********* orientation isink isource ******* VINT2 503 0 5 FCOPY 503 504 VOUT 1 DCOPYP 504 505 MDTH 400E-9 9/14 Macromodels VCOPYP 505 0 0 DCOPYN 506 504 MDTH 400E-9 VCOPYN 0 506 0 *************************** F2PP 19 5 poly(2) VCOPYP VP 0 0 0 I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2PN 19 5 poly(2) VCOPYP VN 0 0 0 I(vout)*I(VN)=Iout*(V119-V5)/2/Ut F2NP 19 5 poly(2) VCOPYN VP 0 0 0 I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2NN 19 5 poly(2) VCOPYN VN 0 0 0 I(vout)*I(VN)=Iout*(V119-V5)/2/Ut * COMPENSATION ************ CC 19 119 25p * OUTPUT*********** DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.250000E+02 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 6.250000E+02 VINM 5 27 5.000000E+01 VOUT 3 23 0 ROUT 23 19 6 COUT 3 5 1.300000E-10 DOP 19 25 MDTH 400E-12 VOP 4 25 1.052 DON 24 19 MDTH 400E-12 VON 24 5 1.052 .ENDS 10/14 TS921 0 0.5!multiply 0 0.5 !multiply 0 1.75 !multiply 0 1.75 !multiply TS921 4 Package Mechanical Data Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 4.1 DIP8 Package Plastic DIP-8 MECHANICAL DATA mm. inch DIM. MIN. A TYP MAX. MIN. 3.3 0.7 B 1.39 1.65 0.055 B1 0.91 1.04 0.036 b1 MAX. 0.130 a1 b TYP. 0.028 0.5 0.38 0.041 0.020 0.5 D 0.065 0.015 0.020 9.8 0.386 E 8.8 0.346 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 7.1 0.280 I 4.8 0.189 L Z 3.3 0.44 0.130 1.6 0.017 0.063 P001F 11/14 Package Mechanical Data 4.2 TS921 SO-8 Package SO-8 MECHANICAL DATA DIM. mm. MIN. MAX. MIN. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e TYP inch 1.27 TYP. MAX. 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 12/14 TS921 4.3 Package Mechanical Data TSSOP8 Package TSSOP8 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. 1.2 A1 0.05 A2 0.80 b MAX. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 K 0˚ L 0.45 L1 1.00 0.60 1 0.006 0.039 0.041 0.0256 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 0.039 0079397/D 13/14 Revision History 5 TS921 Revision History Date Revision Feb. 2001 1 Dec. 2004 2 Modifications on AMR table page 2 (explanation of Vid and Vi limits, ESD MM and CDM values added, Rthja added) 3 The following changes were made in this revision: – PPAP references inserted in the datasheet see Table . Order Codes on page 2. – Data in tables Electrical Characteristics on page 4 reformatted for easier use. – Thermal Resistance Junction to Case added in Table 1. on page 3. Nov. 2005 Changes Initial release - Product in full production. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 14/14