STMICROELECTRONICS TS921IN

TS921
Rail-to-Rail High Output Current
Single Operational Amplifier
■
■
■
■
■
■
■
■
■
Rail-to-rail input and output
Low noise: 9nV/√Hz
Low distortion
High output current: 80mA (able to drive 32Ω
loads)
High-speed: 4MHz, 1V/µs
Operating from 2.7V to 12V
ESD internal protection: 1.5kV
Latch-up immunity
Macromodel included in this specification
N
DIP8
(Plastic Package)
D
SO-8
(Plastic Micropackage)
P
TSSOP8
(Thin Shrink Small Outline Package)
Description
The TS921 is a rail-to-rail single BiCMOS
operational amplifier optimized and fully specified
for 3V and 5V operation.
Its high output current
impedances to be driven.
allows
Pin connections (top view)
low-load
The TS921 exhibits very low noise, low distortion
and low offset. It has a high output current
capability which makes this device an excellent
choice for high quality, low voltage or batteryoperated audio systems.
N.C.
1
Inverting Input
2
-
7 VCC+
Non-inverting Input
3
+
6 Output
VCC
4
8 N.C.
5 N.C.
The device is stable for capacitive loads up to
500pF.
Applications
■
Headphone amplifier
■
Servo amplifier
■
Piezoelectric speaker driver
■
■
Sound cards, multimedia systems
Mobile phone and portable communication
sets
■
Line driver, actuator driver
■
Instrumentation with low noise as key factor
November 2005
Rev 3
1/14
www.st.com
14
TS921
Order Codes
Part Number
Temperature
Range
Package
Packing
Marking
TS921IN
DIP8
Tube
TS921IN
TS921ID/IDT
SO-8
Tube or Tape & Reel
TS921IPT
TSSOP8
(Thin Shrink Outline Package)
Tape & Reel
TS921IYD/IYDT
SO-8 (automotive grade level)
Tube or Tape & Reel
-40°C, +125°C
2/14
921I
921IY
TS921
1
Absolute Maximum Ratings
Absolute Maximum Ratings
Table 1.
Symbol
Key parameters and their absolute maximum ratings
Parameter
Condition
Value
Unit
VCC
Supply voltage (1)
14
V
Vid
Differential Input Voltage (2)
±1
V
Vi
Input Voltage
VDD -0.3 to VCC+0.3
V
-65 to +150
°C
Maximum Junction Temperature
150
°C
Rthja
SO-8
Thermal Resistance Junction to
TSSOP8
Ambient
DIP8
125
120
85
°C/W
Rthjc
SO-8
Thermal Resistance Junction to
TSSOP8
Case
DIP8
40
37
41
°C/W
1.5
kV
100
V
1.5
kV
Tstg
Tj
Storage Temperature
HBM
Human Body Model(3)
ESD
Electro-Static Discharge
MM
Machine Model(4)
CDM
Charged Device Model
see note(5)
Output Short Circuit Duration
Latch-up Immunity
200
mA
10sec,
Standard package
250
°C
10sec,
Pb-free package
260
Soldering Temperature
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid > ±1V,
the maximum input current must not exceed ±1mA. In this case (Vid > ±1V) an input serie resistor must be
added to limit input current.
3. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
4. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with
no external series resistor (internal resistor < 5Ω), into pin to pin of device.
5. There is no short-circuit protection inside the device: short-circuits from the output to Vcc can cause excessive
heating. The maximum output current is approximately 80mA, independent of the magnitude of Vcc. Destructive
dissipation can result from simultaneous short-circuits on all amplifiers.
Table 2.
Operating conditions
Symbol
Parameter
VCC
Supply Voltage
Vicm
Common Mode Input Voltage Range
Toper
Operating Free Air Temperature Range
Value
Unit
2.7 to 12
V
VDD -0.2 to VCC +0.2
V
-40 to +125
°C
3/14
Electrical Characteristics
2
TS921
Electrical Characteristics
Table 3.
Electrical characteristics for VCC = 3V, VDD = 0V, Vicm = VCC/2, RL connected
to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Vio
Parameter
Conditions
Min.
Typ.
Input Offset Voltage
at Tmin. ≤ Tamb ≤ Tmax
DV io
Unit
3
5
mV
µV/°C
2
Iio
Input Offset Current
Vout = 1.5V
1
30
nA
Iib
Input Bias Current
Vout = 1.5V
15
100
nA
High Level Output Voltage
RL = 600Ω
RL = 32Ω
VOH
VOL
Avd
GBP
ICC
Low Level Output Voltage
Large Signal Voltage Gain
2.87
V
2.63
RL = 600Ω
RL = 32Ω
100
180
mV
Vout = 2Vpk-pk
RL = 600Ω
RL = 32Ω
35
16
V/mV
Gain Bandwidth Product
RL = 600Ω
4
MHz
Supply Current
no load, Vout = VCC/2
1
CMR
Common Mode Rejection Ratio
SVR
Supply Voltage Rejection Ratio
1.5
mA
60
80
dB
60
80
dB
Output Short-Circuit Current
50
80
mA
SR
Slew Rate
0.7
1.3
V/µs
Pm
Phase Margin at Unit Gain
RL = 600Ω, CL =100pF
68
Degrees
GM
Gain Margin
RL = 600Ω, CL =100pF
12
dB
Equivalent Input Noise Voltage
f = 1kHz
9
nV
-----------Hz
Total Harmonic Distortion
Vout = 2Vpk-pk,
f = 1kHz, Av = 1,
RL = 600Ω
0.005
%
Io
en
THD
4/14
Input Offset Voltage Drift
Max.
VCC = 2.7 to 3.3V
TS921
Electrical Characteristics
Table 4.
Electrical characteristics for VCC = 5V, V DD = 0V, Vicm = VCC/2, RL connected
to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Vio
Parameter
Conditions
Min.
Typ.
Input Offset Voltage
at T min. ≤ T amb ≤ Tmax
DV io
Input Offset Voltage Drift
Max.
Unit
3
5
mV
µV/°C
2
Iio
Input Offset Current
Vout = 1.5V
1
30
nA
Iib
Input Bias Current
Vout = 1.5V
15
100
nA
VOH
High Level Output Voltage
RL = 600Ω
RL = 32Ω
VOL
Avd
GBP
ICC
Low Level Output Voltage
Large Signal Voltage Gain
4.85
V
4.4
RL = 600Ω
RL = 32Ω
120
300
mV
Vout = 2Vpk-pk
RL = 600Ω
RL = 32Ω
35
16
V/mV
Gain Bandwidth Product
RL = 600Ω
4
MHz
Supply Current
no load, Vout = VCC/2
1
CMR
Common Mode Rejection Ratio
SVR
Supply Voltage Rejection Ratio
1.5
mA
60
80
dB
60
80
dB
Output Short-Circuit Current
50
80
mA
SR
Slew Rate
0.7
1.3
V/µs
Pm
Phase Margin at Unit Gain
RL = 600Ω, CL =100pF
68
Degrees
GM
Gain Margin
RL = 600Ω, CL =100pF
12
dB
Equivalent Input Noise Voltage
f = 1kHz
9
nV
-----------Hz
Total Harmonic Distortion
Vout = 2V pk-pk, f = 1kHz,
Av = 1, RL = 600Ω
0.005
%
Io
en
THD
VCC = 4.5to 5.5V
5/14
Electrical Characteristics
Figure 1.
TS921
Output short circuit vs. output
voltage
Figure 2.
100
Voltage gain and phase vs.
frequency
180
60
80
ph ase
120
40
R l=10k
C l=100pF
gain
20
Vcc=0/5V
0
-20
20
60
0
0
Pha se (D e g)
Sink
40
G ain (dB )
Output Short-Circuit Current (mA)
60
-40
-60
Source
-80
-100
-120
0
Figure 3.
1
2
3
Output Voltage (V)
4
-20
1E +02
5
Output short circuit vs. output
voltage
1E +03
Figure 4.
100
1E +04
1E +05
Frequency (H z)
1E +06
1E +07
-60
1E +08
Equivalent input noise voltage vs.
frequency
30
60
Equivalent Input Noise (nV/sqrt(Hz)
O utp u t Sh or t-Cir cu it Cu rre n t (mA)
80
S ink
40
20
Vcc=0/3V
0
-20
-40
-60
S ource
25
20
15
10
5
-80
0
-100
0
Figure 5.
0,5
1
1,5
Output Voltag e (V)
2
2,5
0.01
3
Output suppply current vs. supply
voltage
0.1
1
10
100
Frequency (kHz)
Figure 6.
THD + noise vs. frequency
0.02
THD+Noise (%)
0.015
0.01
0.005
0
0.01
0.1
1
Frequency (kHz)
6/14
10
100
TS921
Figure 7.
Electrical Characteristics
THD + noise vs. frequency
Figure 8.
0.04
THD + noise vs. output voltage
10
1
THD+Noise (%)
THD+Noise (%)
0.032
0.024
0.016
0.1
0.008
0
0.01
0.01
0.1
1
10
100
0
0.2
0.4
Frequency (kHz)
Figure 9.
0.6
0.8
1
Vout (Vrms)
THD + noise vs. frequency
Figure 10. THD + noise vs. output voltage
10
0.7
0.6
1
THD+Noise (%)
THD+Noise (%)
0.5
0.4
0.3
0.1
0.2
0.01
0.1
0
0.01
0.1
1
10
0.001
100
0
Frequency (kHz)
0.2
0.4
0.6
0.8
1
1.2
Vout (Vrms)
Figure 11. THD + noise vs. output voltage
Figure 12. Open loop gain and phase vs.
frequency
10,000
180
50
40
1,000
0,100
Phase (Deg)
Gain (dB)
THD +N oise (%)
120
30
20
60
0,010
10
0
0
1E+2
0,001
0
0,2
0,4
0,6
Vout (V rms)
0,8
1
1,2
1E+3
1E+4
1E+5
1E+6
1E+7
1E+8
Frequency (Hz)
7/14
Macromodels
TS921
3
Macromodels
3.1
Important note concerning this macromodel
Please consider following remarks before using this macromodel:
●
All models are a trade-off between accuracy and complexity (i.e. simulation time).
●
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a
design approach and help to select surrounding component values.
●
A macromodel emulates the NOMINAL performance of a TYPICAL device within
SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the
macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main
parameters of the product.
●
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature,
etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not
reliable in any way.
In Section 3.3, the electrical characteristics resulting from the use of these macromodels are
presented.
3.2
Electrical characteristics from macromodelization
Table 5.
Electrical characteristics resulting from macromodel simulation at V CC = 3V,
VDD = 0V, R L, C L connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Unit
0
mV
Avd
RL = 10kΩ
200
V/mV
ICC
No load, per operator
1.2
mA
-0.2 to 3.2
V
Vicm
8/14
Value
VOH
RL = 10kΩ
2.95
V
VOL
RL = 10kΩ
25
mV
Isink
VO = 3V
80
mA
Isource
VO = 0V
80
mA
GBP
RL = 600kΩ
4
MHz
SR
RL = 10kΩ, CL = 100pF
1.3
V/µs
φm
RL = 600kΩ
68
Degrees
TS921
3.3
Macromodels
Macromodel code
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS:
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS921 1 3 2 4 5 (analog)
********************************************************* .MODEL MDTH
D IS=1E-8 KF=2.664234E-16 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 8.125000E+00
RIN 15 16 8.125000E+00
RIS 11 15 2.238465E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 153.5u
VOFN 13 14 DC 0
IPOL 13 5 3.200000E-05
CPS 11 15 1e-9
DINN 17 13 MDTH 400E-12
VIN 17 5 -0.100000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.400000E+00
FCP 4 5 VOFP 1.865000E+02
FCN 5 4 VOFN 1.865000E+02
FIBP 2 5 VOFP 6.250000E-03
FIBN 5 1 VOFN 6.250000E-03
* GM1 STAGE ***************
FGM1P 119 5 VOFP 1.1
FGM1N 119 5 VOFN 1.1
RAP 119 4 2.6E+06
RAN 119 5 2.6E+06
* GM2 STAGE ***************
G2P 19 5 119 5 1.92E-02
G2N 19 5 119 4 1.92E-02
R2P 19 4 1E+07
R2N 19 5 1E+07
**************************
VINT1 500 0 5
GCONVP 500 501 119 4 19.38!send ds VP, I(VP)=(V119-V4)/2/Ut VP 501 0 0
GCONVN 500 502 119 5 19.38!send ds VN, I(VN)=(V119-V5)/2/Ut VN 502 0 0
********* orientation isink isource *******
VINT2 503 0 5
FCOPY 503 504 VOUT 1
DCOPYP 504 505 MDTH 400E-9
9/14
Macromodels
VCOPYP 505 0 0
DCOPYN 506 504 MDTH 400E-9
VCOPYN 0 506 0
***************************
F2PP 19 5 poly(2) VCOPYP VP 0 0 0
I(vout)*I(VP)=Iout*(V119-V4)/2/Ut
F2PN 19 5 poly(2) VCOPYP VN 0 0 0
I(vout)*I(VN)=Iout*(V119-V5)/2/Ut
F2NP 19 5 poly(2) VCOPYN VP 0 0 0
I(vout)*I(VP)=Iout*(V119-V4)/2/Ut
F2NN 19 5 poly(2) VCOPYN VN 0 0 0
I(vout)*I(VN)=Iout*(V119-V5)/2/Ut
* COMPENSATION ************
CC 19 119 25p
* OUTPUT***********
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 6.250000E+02
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 6.250000E+02
VINM 5 27 5.000000E+01
VOUT 3 23 0
ROUT 23 19 6
COUT 3 5 1.300000E-10
DOP 19 25 MDTH 400E-12
VOP 4 25 1.052
DON 24 19 MDTH 400E-12
VON 24 5 1.052
.ENDS
10/14
TS921
0 0.5!multiply
0 0.5 !multiply
0 1.75 !multiply
0 1.75 !multiply
TS921
4
Package Mechanical Data
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com.
4.1
DIP8 Package
Plastic DIP-8 MECHANICAL DATA
mm.
inch
DIM.
MIN.
A
TYP
MAX.
MIN.
3.3
0.7
B
1.39
1.65
0.055
B1
0.91
1.04
0.036
b1
MAX.
0.130
a1
b
TYP.
0.028
0.5
0.38
0.041
0.020
0.5
D
0.065
0.015
0.020
9.8
0.386
E
8.8
0.346
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
7.1
0.280
I
4.8
0.189
L
Z
3.3
0.44
0.130
1.6
0.017
0.063
P001F
11/14
Package Mechanical Data
4.2
TS921
SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
MAX.
MIN.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
e
TYP
inch
1.27
TYP.
MAX.
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
12/14
TS921
4.3
Package Mechanical Data
TSSOP8 Package
TSSOP8 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
1.2
A1
0.05
A2
0.80
b
MAX.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0.65
K
0˚
L
0.45
L1
1.00
0.60
1
0.006
0.039
0.041
0.0256
8˚
0˚
0.75
0.018
8˚
0.024
0.030
0.039
0079397/D
13/14
Revision History
5
TS921
Revision History
Date
Revision
Feb. 2001
1
Dec. 2004
2
Modifications on AMR table page 2 (explanation of Vid and Vi limits,
ESD
MM and CDM values added, Rthja added)
3
The following changes were made in this revision:
– PPAP references inserted in the datasheet see Table . Order Codes
on page 2.
– Data in tables Electrical Characteristics on page 4 reformatted for
easier use.
– Thermal Resistance Junction to Case added in Table 1. on page 3.
Nov. 2005
Changes
Initial release - Product in full production.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
14/14