WINBOND W6811_05

W6811
SINGLE-CHANNEL VOICEBAND CODEC
(5V Analog, 3V Digital)
Data Sheet
-1-
Publication Release Date: September, 2005
Revision A12
W6811
1. GENERAL DESCRIPTION
The W6811 is a general-purpose single channel PCM CODEC with pin-selectable -Law or A-Law
companding. The device is compliant with the ITU G.712 specification. It operates off of separated
analog (5V) and digital (3V) power supplies and is available in 24-pin PDIP, SOG, SSOP, and TSSOP
package options. Functions performed include digitization and reconstruction of voice signals, and
band limiting and smoothing filters required for PCM systems. The filters are compliant with ITU G.712
specification. W6811 performance is specified over the industrial temperature range of –40°C to
+85°C.
The W6811 includes an on-chip precision voltage reference and an additional power amplifier,
capable of driving 300Ω loads differentially up to a level of 6.3V peak-to-peak. The analog section is
fully differential, reducing noise and improving the power supply rejection ratio. The data transfer
protocol supports both long-frame and short-frame synchronous communications for PCM applications,
and IDL and GCI communications for ISDN applications. W6811 accepts seven master clock rates
between 256 kHz and 4.096 MHz, and an on-chip pre-scaler automatically determines the division
ratio for the required internal clock.
2. FEATURES
APPLICATIONS
•
•
•
•
•
•
•
•
•
•
•
•
•
Power supply:
ƒ Analog 4.5 – 5.5V
ƒ Digital 2.7 – 3.3V
Typical power dissipation of 25 mW,
power-down mode of 0.5 W
Fully-differential analog circuit design
On-chip precision reference of 1.575 V for
a 0 dBm TLP at 600 Ω
Push-pull power amplifiers with external
gain adjustment with 300 Ω load capability
Seven master clock rates of 256 kHz to
4.096 MHz
Pin-selectable -Law and A-Law
companding (compliant with ITU G.711)
CODEC A/D and D/A filtering compliant
with ITU G.712
Industrial temperature range (–40°C to
+85°C)
Four packages: 24-pin PDIP, SOG, SSOP,
and TSSOP
Pb-Free / RoHS package options available
•
•
•
•
•
•
•
•
•
-2-
Digital Telephone Systems
Central Office Equipment (Gateways,
Switches, Routers)
PBX Systems (Gateways, Switches)
PABX/SOHO Systems
Local Loop card
SOHO Routers
VoIP Terminals
Enterprise Phones
ISDN Terminals
Analog line cards
Digital Voice Recorders
Publication Release Date: September, 2005
Revision A12
W6811
3. BLOCK DIAGRAM
Re
Int
PC
cei
erf
M
ve
ace
Receive
PCM
Interface
BCLKR
FSR
PCMR
G.712 CODEC
G.711 μ/A -Law
Tra Int
ns PC erf
mitM ace
Transmit
PCM
Interface
BCLKT
FST
PCMT
PAO+
PAOPAI
RO AO
AI+
AI-
μ/A-Law
V REF
512 kHz
256 kHz
V AG
8 kHz
-3-
PUI
VDDD
VSSD
Power Conditioning
VDDA
256 kHz,
512 kHz,
1536 kHz,
1544 kHz,
2048 kHz,
2560 kHz
& 4096 kHz
Voltage reference
Pre -scaler
Saler
VSSA
MCLK
Publication Release Date: September, 2005
Revision A12
W6811
4. TABLE OF CONTENTS
1. GENERAL DESCRIPTION ................................................................................................................. 2
2. FEATURES ......................................................................................................................................... 2
3. BLOCK DIAGRAM............................................................................................................................... 3
4. TABLE OF CONTENTS ...................................................................................................................... 4
5. PIN CONFIGURATION ....................................................................................................................... 6
6. PIN DESCRIPTION ............................................................................................................................. 7
7. FUNCTIONAL DESCRIPTION............................................................................................................ 9
7.1. Transmit Path............................................................................................................................. 9
7.2. Receive Path............................................................................................................................ 10
7.3. Power Management................................................................................................................. 11
7.3.1. Analog Supply ................................................................................................................ 11
7.3.2. Digital Supply ................................................................................................................. 11
7.3.3. Analog Ground Reference Bypass................................................................................. 11
7.3.4. Analog Ground Reference Voltage Output .................................................................... 11
7.4. PCM Interface .......................................................................................................................... 11
7.4.1. Long Frame Sync ........................................................................................................... 12
7.4.2. Short Frame Sync .......................................................................................................... 12
7.4.3. GCI Interface .................................................................................................................. 12
7.4.4. IDL Interface ................................................................................................................... 13
7.4.5. System Timing................................................................................................................ 13
8. TIMING DIAGRAMS.......................................................................................................................... 14
9. ABSOLUTE MAXIMUM RATINGS.................................................................................................... 21
9.1. Absolute Maximum Ratings .................................................................................................... 21
9.2. Operating Conditions .............................................................................................................. 21
10. ELECTRICAL CHARACTERISTICS ............................................................................................... 22
10.1. General Parameters............................................................................................................... 22
10.2. Analog Signal Level and Gain Parameters............................................................................ 23
10.3. Analog Distortion and Noise Parameters............................................................................... 24
10.4. Analog Input and Output Amplifier Parameters ..................................................................... 25
10.5. Digital I/O ............................................................................................................................... 27
10.5.1. µ-Law Encode Decode Characteristics ........................................................................ 27
10.5.2. A-Law Encode Decode Characteristics........................................................................ 28
10.5.3. PCM Codes for Zero and Full Scale ............................................................................ 29
10.5.4. PCM Codes for 0dBm0 Output .................................................................................... 29
11. TYPICAL APPLICATION CIRCUIT ................................................................................................. 30
12. PACKAGE SPECIFICATION .......................................................................................................... 32
12.1. 24L TSSOP – 4.4X7.8mm ..................................................................................................... 32
12.2. 24L SOP – 300mil.................................................................................................................. 33
12.3. 24L SSOP – 209mil ............................................................................................................... 34
12.4. 24L PDIP – 300 mil ................................................................................................................ 35
13. ORDERING INFORMATION........................................................................................................... 36
14. VERSION HISTORY ....................................................................................................................... 37
-4-
Publication Release Date: September, 2005
Revision A12
W6811
5. PIN CONFIGURATION
VREF
1 VREF
24
V
AG
VAG
RO -
2 RO-
AI+ 23
23
AI+
PAI
3 PAI
AI
22-
AI-
PAO -
4 PAO -
AO
PAO+
VDDA
5 PAO+
AO 21
/A 20
μ
6 VDDA
V
19
SSA
VSSA
NC
VDDD
7 NC
8 VDDD
NC 18
17
V
SSD
NC
VSSD
FSR
9 FSR
PCMI
PCMR
10 PCMI
BCLKR
11 BCLKR
PUI
12 PUI
μ/A-Law
FSX 16
16
PCMO 15
FST
PCMT
BCLKT 14
BCLKT
MCLK 13
MCLK
PDIP/SOP/SSOP/TSSOP
-5-
Publication Release Date: September, 2005
Revision A12
W6811
6. PIN DESCRIPTION
Pin
Name
VREF
Pin
No.
1
VDD*
Functionality
A
RO-
2
A
PAI
3
A
PAO-
4
A
PAO+
5
A
VDDA
6
A
NC
VDDD
7
8
D
FSR
9
D
PCMR
10
D
BCLKR
11
D
PUI
12
D
MCLK
13
D
BCLKT
PCMT
14
15
D
D
FST
16
D
This pin is used to bypass the on-chip 2.5V voltage reference. It needs to be
decoupled to VSSA through a 0.1 μF ceramic decoupling capacitor. No
external loads should be tied to this pin.
Inverting output of the receive smoothing filter. This pin can typically drive a 2
kΩ load to 1.575 volt peak referenced to the analog ground level.
This pin is the inverting input to the power amplifier. Its DC level is at the VAG
voltage.
Inverting power amplifier output. This pin can drive a 300 Ω load to 1.575 volt
peak referenced to the VAG voltage level.
Non-inverting power amplifier output. This pin can drive a 300 Ω load to 1.575
Volt peak referenced to the VAG voltage level.
Analog power supply. This pin should be decoupled to VSSA with a 0.1μF
ceramic capacitor.
Not Connected
Digital power supply. This pin should be decoupled to VSSD with a 0.1μF
ceramic capacitor. For correct operation, VDDD value should always be lower
than VDDA.
8 kHz Frame Sync input for the PCM receive section. This pin also selects
channel 0 or channel 1 in the GCI and IDL modes. It can also be connected to
the FST pin when transmit and receive are synchronous operations.
PCM input data receive pin. The data needs to be synchronous with the FSR
and BCLKR pins.
PCM receive bit clock input pin. This pin also selects the interface mode. The
GCI mode is selected when this pin is tied to VSSD. The IDL mode is selected
when this pin is tied to VDDD. This pin can also be tied to the BCLKT when
transmit and receive are synchronous operations.
Power up input signal. When this pin is tied to VDDD, the part is powered up.
When tied to VSSD, the part is powered down.
System master clock input. Possible input frequencies are 256 kHz, 512 kHz,
1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz & 4096 kHz. For a better
performance, it is recommended to have the MCLK signal synchronous and
aligned to the FST signal. This is a requirement in the case of 256 and 512
kHz frequencies.
PCM transmit bit clock input pin.
PCM output data transmit pin. The output data is synchronous with the FST
and BCLKT pins.
8 kHz transmit frame sync input. This pin synchronizes the transmit data
bytes.
-6-
Publication Release Date: September, 2005
Revision A12
W6811
Pin
Name
VSSD
NC
VSSA
μ/A-Law
Pin
No.
17
18
19
20
VDD*
Functionality
D
This is the digital supply ground. This pin should be connected to 0V.
Not Connected
A
This is the analog supply ground. This pin should be connected to 0V.
D
Compander mode select pin. μ-Law companding is selected when this pin is
tied to VDDD. A-Law companding is selected when this pin is tied to VSSD.
AO
21
A
Analog output of the first gain stage in the transmit path.
AI22
A
Inverting input of the first gain stage in the transmit path.
AI+
23
A
Non-inverting input of the first gain stage in the transmit path.
VAG
24
A
Mid-Supply analog ground pin, which supplies a 2.5 Volt reference voltage for
all-analog signal processing. This pin should be decoupled to VSSA with a
0.01μF capacitor. This pin becomes high impedance when the chip is
powered down.
* These columns represent whether the pin Is driven by Analog (‘A’) or Digital (‘D’) power supply.
-7-
Publication Release Date: September, 2005
Revision A12
W6811
7. FUNCTIONAL DESCRIPTION
W6811 is a single-rail, single channel PCM CODEC for voiceband applications. The CODEC complies
with the specifications of the ITU-T G.712 recommendation. The CODEC also includes a complete μLaw and A-Law compander. The μ-Law and A-Law companders are designed to comply with the
specifications of the ITU-T G.711 recommendation.
The block diagram in section 3 shows the main components of the W6811. The chip consists of a
PCM interface, which can process long and short frame sync formats, as well as GCI and IDL formats.
The pre-scaler of the chip provides the internal clock signals and synchronizes the CODEC sample
rate with the external frame sync frequency. The power conditioning block provides the internal power
supply for the digital and the analog section, while the voltage reference block provides a precision
analog ground voltage for the analog signal processing. The main CODEC block diagram is shown in
section 3.
VA
VAG
G
+ - +
Receive Path
PAO+
PAO PAI
8
μ/Aμ/ACont
Control
o
D/A
Converter
w
+
-
fC= 3400Hz
Hz
Smooth
Smoothing
ngFilter
1
RO -
Smooth
Smoothing
Filter
ngFilter
2
Transmit Path
AO
8
A/D
Converter
μ/Aμ/A- Control
Cont
ffCC == 200Hz
fC== 3400Hz
3400
200
Figure
7.1 The W6811 Signal Path
Hz
Hz Pass
High
Ant
--Aliasi
Aliasing Ant-Aliasi
High
Ant
--Aliasing
Filt
Filter
Filter
Pas
i Filter
ng
++
-
AI+
AI -
7.1. TRANSMIT PATH
The A-to-D path of the CODEC contains an analog input amplifier with externally configurable gain
setting (see application examples in section 11). The device has an input operational amplifier whose
output is the input to the encoder section. If the input amplifier is not required for operation it can be
powered down and bypassed. In that case a single ended input signal can be applied to the AO pin or
the AI- pin. The AO pin becomes high input impedance when the input amplifier is powered down. The
input amplifier can be powered down by connecting the AI+ pin to VDDA or VSSA. The AO pin is selected
as an input when AI+ is tied to VDDA and the AI- pin is selected as an input when AI+ is tied to VSSA
(see Table 7.1).
-8-
Publication Release Date: September, 2005
Revision A12
W6811
AI+
Input Amplifier
Input
VDDA
Powered Down
AO
1.2 to VDDA-1.2
Powered Up
AI+, AIVSSA
Powered Down
AITable 7.1 Input Amplifier Modes of operation
When the input amplifier is powered down, the input signal at AO or AI- needs to be referenced to the
analog ground voltage VAG.
The output of the input amplifier is fed through a 3.4 kHz switched capacitor low pass filter to prevent
aliasing of input signals above 4 kHz, due to the sampling at 8 kHz. The output of the 3.4 kHz low
pass filter is filtered by a high pass filter with a 200 Hz cut-off frequency. The filters are designed
according to the recommendations in the G.712 ITU-T specification. From the output of the high pass
filter the signal is digitized. The signal is converted into a compressed 8-bit digital representation with
either μ-Law or A-Law format. The μ-Law or A-Law format is pin-selectable through the μ/A-Law pin.
The compression format can be selected according to Table 7.2.
μ/A-Law Pin
VSSA
VDDA
Format
A-Law
μ-Law
Table 7.2. Pin-selectable Compression Format
The digital 8-bit μ-Law or A-Law samples are fed to the PCM interface for serial transmission at the
data rate supplied by the external bit clock BCLKT.
7.2. RECEIVE PATH
The 8-bit digital input samples for the D-to-A path are serially shifted in by the PCM interface and
converted to parallel data bits. During every cycle of the frame sync FSR, the parallel data bits are fed
through the pin-selectable μ-Law or A-Law expander and converted to analog samples. The mode of
expansion is selected by the μ/A-Law pin as shown in Table 7.2. The analog samples are filtered by a
low-pass smoothing filter with a 3.4 kHz cut-off frequency, according to the ITU-T G.712 specification.
A sin(x)/x compensation is integrated with the low pass smoothing filter. The output of this filter is
buffered to provide the receive output signal RO-. The RO- output can be externally connected to the
PAI pin to provide a differential output with high driving capability at the PAO+ and PAO- pins. By
using external resistors (see section 11 for examples), various gain settings of this output amplifier can
be achieved. If the transmit power amplifier is not in use, it can be powered down by connecting PAI to
VDDA.
-9-
Publication Release Date: September, 2005
Revision A12
W6811
7.3. POWER MANAGEMENT
7.3.1. Analog Supply
The power supply for the analog part of the W6811 needs to be 5V +/- 10%. This supply voltage is
connected to the VDDA pin. The VDDA pin needs to be decoupled to ground through a 0.1 μF ceramic
capacitor.
7.3.2. Digital Supply
The power supply for the digital part of the W6811 needs to be 3V +/- 10%. This supply voltage is
connected to the VDDD pin. The VDDD pin needs to be decoupled to ground through a 0.1 μF ceramic
capacitor.
7.3.3. Analog Ground Reference Bypass
The system has an internal precision voltage reference which generates the 2.5V mid-supply analog
ground voltage. This voltage needs to be decoupled to VSSA at the VREF pin through a 0.1 μF ceramic
capacitor.
7.3.4. Analog Ground Reference Voltage Output
The analog ground reference voltage is available for external reference at the VAG pin. This voltage
needs to be decoupled to VSSA through a 0.01 μF ceramic capacitor. The analog ground reference
voltage is generated from the voltage on the VREF pin and is also used for the internal signal
processing.
7.4. PCM INTERFACE
The PCM interface is controlled by pins BCLKR, FSR, BCLKT & FST. The input data is received
through the PCMR pin and the output data is transmitted through the PCMT pin. The modes of
operation of the interface are shown in Table 7.3.
BCLKR
FSR
Interface Mode
64 kHz to 4.096
MHz
VSSD
VSSD
VDDD
VDDD
8 kHz
Long or Short Frame Sync
VSSD
VDDD
VSSD
VDDD
ISDN GCI with active channel B1
ISDN GCI with active channel B2
ISDN IDL with active channel B1
ISDN IDL with active channel B2
Table 7.3 PCM Interface mode selections
7.4.1. Long Frame Sync
The Long Frame Sync or Short Frame Sync interface mode can be selected by connecting the BCLKR
or BCLKT pin to a 64 kHz to 4.096 MHz clock and connecting the FSR or FST pin to the 8 kHz frame
sync. The device synchronizes the data word for the PCM interface and the CODEC sample rate on
the positive edge of the Frame Sync signal. It recognizes a Long Frame Sync when the FST pin is
- 10 -
Publication Release Date: September, 2005
Revision A12
W6811
held HIGH for two consecutive falling edges of the bit-clock at the BCLKT pin. The length of the Frame
Sync pulse can vary from frame to frame, as long as the positive frame sync edge occurs every 125
μsec. During data transmission in the Long Frame Sync mode, the transmit data pin PCMT will
become low impedance when the Frame Sync signal FST is HIGH or when the 8 bit data word is
being transmitted. The transmit data pin PCMT will become high impedance when the Frame Sync
signal FST becomes LOW while the data is transmitted or when half of the LSB is transmitted. The
internal decision logic will determine whether the next frame sync is a long or a short frame sync,
based on the previous frame sync pulse. To avoid bus collisions, the PCMT pin will be HIGH
impedance for two frame sync cycles after every power down state. More detailed timing information
can be found in the interface timing section.
7.4.2. Short Frame Sync
The W6811 operates in the Short Frame Sync Mode when the Frame Sync signal at pin FST is HIGH
for one and only one falling edge of the bit-clock at the BCLKT pin. On the following rising edge of the
bit-clock, the W6811 starts clocking out the data on the PCMT pin, which will also change from high to
low impedance state. The data transmit pin PCMT will go back to the high impedance state halfway
through the LSB. The Short Frame Sync operation of the W6811 is based on an 8-bit data word.
When receiving data on the PCMR pin, the data is clocked in on the first falling edge after the falling
edge that coincides with the Frame Sync signal. The internal decision logic will determine whether the
next frame sync is a long or a short frame sync, based on the previous frame sync pulse. To avoid bus
collisions, the PCMT pin will be high impedance for two frame sync cycles after every power down
state. More detailed timing information can be found in the interface timing section.
7.4.3. General Circuit Interface (GCI)
The GCI interface mode is selected when the BCLKR pin is connected to VSSD for two or more frame
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The GCI interface
consists of 4 pins : FSC (FST), DCL (BCLKT), Dout (PCMT) & Din (PCMR). The FSR pin selects
channel B1 or B2 for transmit and receive. Data transitions occur on the positive edges of the data
clock DCL. The Frame Sync positive edge is aligned with the positive edge of the data clock DCLK.
The data rate is running half the speed of the bit-clock. The channels B1 and B2 are transmitted
consecutively. Therefore, channel B1 is transmitted on the first 16 clock cycles of DCL and B2 is
transmitted on the second 16 clock cycles of DCL. For more timing information, see the timing section.
- 11 -
Publication Release Date: September, 2005
Revision A12
W6811
7.4.4. Interchip Digital Link (IDL)
The IDL interface mode is selected when the BCLKR pin is connected to VDDD for two or more frame
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The IDL interface
consists of 4 pins : IDL SYNC (FST), IDL CLK (BCLKT), IDL TX (PCMT) & IDL RX (PCMR). The FSR
pin selects channel B1 or B2 for transmit and receive. The data for channel B1 is transmitted on the
first positive edge of the IDL CLK after the IDL SYNC pulse. The IDL SYNC pulse is one IDL CLK
cycle long. The data for channel B2 is transmitted on the eleventh positive edge of the IDL CLK after
the IDL SYNC pulse. The data for channel B1 is received on the first negative edge of the IDL CLK
after the IDL SYNC pulse. The data for channel B2 is received on the eleventh negative edge of the
IDL CLK after the IDL SYNC pulse. The transmit signal pin IDL TX becomes high impedance when not
used for data transmission and also in the time slot of the unused channels. For more timing
information, see the timing section.
7.4.5. System Timing
The system can work at 256 kHz, 512 kHz, 1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz & 4096 kHz
master clock rates. The system clock is supplied through the master clock input MCLK and can be
derived from the bit-clock if desired. An internal pre-scaler is used to generate a fixed 256 kHz and an
8 kHz sample clock for the internal CODEC. The pre-scaler measures the master clock frequency
versus the Frame Sync frequency and sets the division ratio accordingly. If the Frame Sync is LOW for
the entire frame sync period while the MCLK and BCLK pin clock signals are still present, the W6811
will enter the low power standby mode. Another way to power down is to set the PUI pin to LOW.
When the system needs to be powered up again, the PUI pin needs to be set to HIGH and the Frame
Sync pulse needs to be present. It will take two Frame Sync cycles before the pin PCMT will become
low impedance.
- 12 -
Publication Release Date: September, 2005
Revision A12
W6811
8. TIMING DIAGRAMS
TFTRHM
TFTRSM
TMCKL
TMCKH
TRISE
TFALL
MCLK
TMCK
TFS
TFSL
FST
TFTRH
BCLKT
0
TFTRS
1
TFTFH
2
3
TFDTD
TBCKH
4
5
6
7
TBDTD
PCMT
D7
D6
8
THID
D5
D4
D3
D2
TBCKL
0
1
TBCK
THID
D1 D0
MSB
LSB
TFS
TFSL
FSR
TFRRH
BCLKR
0
TFRRS
1
TFRFH
2
3
TBCKH
4
5
6
7
8
TBCKL
0
1
TBCK
PCMR
D7
MSB
TDRS
D6
D5
D4
D3
D2
D1 D0
LSB
TDRH
Figure 8.1 Long Frame Sync PCM Timing
- 13 -
Publication Release Date: September, 2005
Revision A12
W6811
SYMBOL
1/TFS
TFSL
1/TBCK
TBCKH
TBCKL
TFTRH
TFTRS
TFTFH
TFDTD
TBDTD
THID
TFRRH
TFRRS
TFRFH
TDRS
TDRH
1
DESCRIPTION
MIN
TYP
FST, FSR Frequency
--8
FST / FSR Minimum LOW Width 1
TBCK
BCLKT, BCLKR Frequency
64
--BCLKT, BCLKR HIGH Pulse Width
50
--BCLKT, BCLKR LOW Pulse Width
50
--BCLKT 0 Falling Edge to FST Rising
20
--Edge Hold Time
FST Rising Edge to BCLKT 1 Falling
80
--edge Setup Time
BCLKT 2 Falling Edge to FST Falling
50
--Edge Hold Time
FST Rising Edge to Valid PCMT Delay
----Time
BCLKT Rising Edge to Valid PCMT
----Delay Time
Delay Time from the Later of FST
10
--Falling Edge, or
BCLKT 8 Falling Edge to PCMT Output
High Impedance
BCLKR 0 Falling Edge to FSR Rising
20
--Edge Hold Time
FSR Rising Edge to BCLKR 1 Falling
80
--edge Setup Time
BCLKR 2 Falling Edge to FSR Falling
50
--Edge Hold Time
Valid PCMR to BCLKR Falling Edge
0
--Setup Time
PCMR Hold Time from BCLKR Falling
50
--Edge
Table 8.1 Long Frame Sync PCM Timing Parameters
MAX
--4096
-------
UNIT
kHz
sec
kHz
ns
ns
ns
---
ns
---
ns
60
ns
60
ns
60
ns
---
ns
---
ns
---
ns
---
ns
---
ns
TFSL must be at least ≥ TBCK
- 14 -
Publication Release Date: September, 2005
Revision A12
W6811
TFTRHM
TFTRSM
TMCKL
TMCKH
TRISE
TFALL
MCLK
TMCK
TFS
TFTFH
TFTFS
FST
TFTRS
TFTRH
BCLKT
-1
0
TBCKH
1
2
3
TBDTD
D7
PCMT
4
5
6
7
0
8
TBDTD
D6
D5
TBCKL
TBCK
THID
D4
D3
D2
1
D1 D0
MSB
LSB
TFS
TFRFH
TFRFS
FSR
TFRRS
TFRRH
BCLKR
-1
0
TBCKH
1
2
3
4
5
6
7
TBCKL
0
8
1
TBCK
PCMR
D7
MSB
TDRS
D6
D5
D4
D3
D2
D1 D0
LSB
TDRH
Figure 8.2 Short Frame Sync PCM Timing
- 15 -
Publication Release Date: September, 2005
Revision A12
W6811
SYMBOL
1/TFS
1/TBCK
TBCKH
TBCKL
TFTRH
TFTRS
TFTFH
TFTFS
TBDTD
THID
TFRRH
TFRRS
TFRFH
TFRFS
TDRS
TDRH
DESCRIPTION
FST, FSR Frequency
BCLKT, BCLKR Frequency
BCLKT, BCLKR HIGH Pulse Width
BCLKT, BCLKR LOW Pulse Width
BCLKT –1 Falling Edge to FST Rising Edge Hold
Time
FST Rising Edge to BCLKT 0 Falling edge Setup
Time
BCLKT 0 Falling Edge to FST Falling Edge Hold Time
FST Falling Edge to BCLKT 1 Falling Edge Setup
Time
BCLKT Rising Edge to Valid PCMT Delay Time
Delay Time from BCLKT 8 Falling Edge to PCMT
Output High Impedance
BCLKR –1 Falling Edge to FSR Rising Edge Hold
Time
FSR Rising Edge to BCLKR 0 Falling edge Setup
Time
BCLKR 0 Falling Edge to FSR Falling Edge Hold Time
FSR Falling Edge to BCLKR 1 Falling Edge Setup
Time
Valid PCMR to BCLKR Falling Edge Setup Time
PCMR Hold Time from BCLKR Falling Edge
MIN
--64
50
50
20
TYP
8
---------
MAX
--4096
-------
UNIT
kHz
kHz
ns
ns
ns
80
---
---
ns
50
50
-----
-----
ns
ns
10
10
-----
60
60
ns
ns
20
---
---
ns
80
---
---
ns
50
50
-----
-----
ns
ns
0
50
-----
-----
ns
ns
Table 8.2 Short Frame Sync PCM Timing Parameters
- 16 -
Publication Release Date: September, 2005
Revision A12
W6811
TFS
FST
TFSFH
TFSRS
TFSRH
BCLKT
-1
0
1
TBCKH
2
3
4
TBDTD
PCMT
5
6
8
9
THID
TBDTD
D7 D6 D5 D4 D3 D2 D1 D0
MSB
LSB
TDRS
PCMR
7
10
11
12
13
14
LSB
17
18
THID
TBDTD
D7 D6 D5 D4 D3 D2
D1 D0
LSB
MSB
TDRS
D7 D6 D5 D4 D3 D2 D1 D0
16
TBCK
TBDTD
TDRH
MSB
15
TBCKL
TDRH
D7 D6 D5 D4 D3 D2
MSB
D1 D0
LSB
BCH = 0
B1 Channel
BCH = 1
B2 Channel
Figure 8.3 IDL PCM Timing
SYMBOL
1/TFS
1/TBCK
TBCKH
TBCKL
TFSRH
TFSRS
TFSFH
TBDTD
THID
TDRS
TDRH
DESCRIPTION
FST Frequency
BCLKT Frequency
BCLKT HIGH Pulse Width
BCLKT LOW Pulse Width
BCLKT –1 Falling Edge to FST Rising
Edge Hold Time
FST Rising Edge to BCLKT 0 Falling edge
Setup Time
BCLKT 0 Falling Edge to FST Falling Edge
Hold Time
BCLKT Rising Edge to Valid PCMT Delay
Time
Delay Time from the BCLKT 8 Falling
Edge (B1 channel) or BCLKT 18 Falling
Edge (B2 Channel) to PCMT Output High
Impedance
Valid PCMR to BCLKT Falling Edge Setup
Time
PCMR Hold Time from BCLKT Falling
Edge
MIN
--256
50
50
20
TYP
8
---------
MAX
--4096
-------
UNIT
kHz
kHz
ns
ns
ns
60
---
---
ns
20
---
---
ns
10
---
60
ns
10
---
50
ns
20
---
---
ns
75
---
---
ns
Table 8.3 IDL PCM Timing Parameters
- 17 -
Publication Release Date: September, 2005
Revision A12
W6811
TFS
FST
TFSFH
TFSRS
TFSRH
TBCKH
TBCKL
BCLKT
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
TFDTD
PCMT
TBDTD
D7 D6 D5 D4 D3 D2 D1 D0
TBDTD
TDRS
D7 D6 D5 D4 D3 D2
D1 D0
LSB
TDRS
TDRH
TDRH
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2
MSB
D1 D0
LSB MSB
BCH = 0
B1 Channel
THID
TBDTD TBCK
LSB MSB
MSB
PCMR
THID
LSB
BCH = 1
B2 Channel
Figure 8.4 GCI PCM Timing
SYMBOL
1/TFST
1/TBCK
TBCKH
TBCKL
TFSRH
TFSRS
TFSFH
TFDTD
TBDTD
THID
TDRS
TDRH
DESCRIPTION
FST Frequency
BCLKT Frequency
BCLKT HIGH Pulse Width
BCLKT LOW Pulse Width
BCLKT 0 Falling Edge to FST Rising Edge Hold
Time
FST Rising Edge to BCLKT 1 Falling edge Setup
Time
BCLKT 1 Falling Edge to FST Falling Edge Hold
Time
FST Rising Edge to Valid PCMT Delay Time
BCLKT Rising Edge to Valid PCMT Delay Time
Delay Time from the BCLKT 16 Falling Edge (B1
channel) or BCLKT 32 Falling Edge (B2 Channel) to
PCMT Output High Impedance
Valid PCMR to BCLKT Rising Edge Setup Time
PCMR Hold Time from BCLKT Rising Edge
MIN
--512
50
50
20
TYP
8
---------
MAX
--6176
-------
UNIT
kHz
kHz
ns
ns
ns
60
---
---
ns
20
---
---
ns
----10
-------
60
60
50
ns
ns
ns
20
---
-----
--60
ns
ns
Table 8.4 GCI PCM Timing Parameters
- 18 -
Publication Release Date: September, 2005
Revision A12
W6811
SYMBOL
1/TMCK
DESCRIPTION
Master Clock Frequency
MIN
---
TMCKH / TMCK
TMCKH
MCLK Duty Cycle for 256 kHz Operation
Minimum Pulse Width HIGH for MCLK(512 kHz
or Higher)
Minimum Pulse Width LOW for MCLK (512 kHz
or Higher)
MCLK falling Edge to FST Rising Edge Hold
Time
FST Rising Edge to MCLK Falling edge Setup
Time
Rise Time for All Digital Signals
Fall Time for All Digital Signals
45%
50
TMCKL
TFTRHM
TFTRSM
TRISE
TFALL
TYP
256
512
1536
1544
2048
2560
4096
MAX
---
UNIT
kHz
---
55%
---
ns
50
---
---
ns
50
---
---
ns
50
---
---
ns
-----
-----
50
50
ns
ns
Table 8.5 General PCM Timing Parameters
- 19 -
Publication Release Date: September, 2005
Revision A12
W6811
9. ABSOLUTE MAXIMUM RATINGS
9.1. ABSOLUTE MAXIMUM RATINGS
Condition
Value
Junction temperature
1500C
Storage temperature range
-650C to +1500C
Voltage Applied to any pin
Analog
(VSSA - 0.3V) to (VDDA + 0.3V)
(VSSD - 0.3V) to (VDDD + 0.3V)
Analog
Digital
(VSSA – 1.0V) to (VDDA + 1.0V)
(VSSD – 1.0V) to (VDDD + 1.0V)
Digital
Voltage applied to any pin
(Input current limited to +/-20 mA)
VDDA - VSSA ; VDDD - VSSD
VDDD –
-0.5V to +6V
VDDA2
< 0.3V
1. Stresses above those listed may cause permanent damage to the device. Exposure to the absolute
maximum ratings may affect device reliability. Functional operation is not implied at these conditions.
2. At any time, the digital power supply should not be higher the 0.3V from the analog power supply.
9.2. OPERATING CONDITIONS
Condition
Value
0
0
Industrial operating temperature
-40 C to +85 C
Analog supply voltage (VDDA)
+4.5V to +5.5V
Digital supply voltage (VDDD)
+2.7V to +3.3V
Ground voltage (VSSA, VSSD)
0V
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely
affect the life and reliability of the device.
- 20 -
Publication Release Date: September, 2005
Revision A12
W6811
10. ELECTRICAL CHARACTERISTICS
10.1. GENERAL PARAMETERS
Min (2)
Symbo
l
Parameters
VIL
Input LOW Voltage
VIH
Input HIGH Voltage
VOL
PCMT Output LOW Voltage
IOL = 1.6 mA
VOH
PCMT Output HIGH Voltage
IOL = -1.6 mA
IDDA
IDDD
VDDA Current (Operating) -ADC+DAC
ISBA
ISBD
VCCA Current (Standby)
PUI = 1
FSX running MCLK
running
PUI = 1
FSX = 0 MCLK running
IPDA
IPDD
VCCA Current (Power Down)
VCCD Current (Power Down)
PUI = 0
PUI = 0
IIL
Input Leakage Current
IOL
PCMT Output Leakage Current
CIN
Digital Input Capacitance
COUT
PCMT Output Capacitance
1.
2.
Conditions
Typ (1)
Max (2)
Units
0.5
V
2.2
V
0.4
VDDD – 0.5
V
V
5.5
25
8
1000
mA
μA
200
0.2
500
100
nA
μA
200
200
500
500
nA
nA
VSSD<VIN<VDDD
+/-10
μA
VSSA<PCMT<VDDA
High Z State
+/-10
μA
10
pF
15
pF
PCMT High Z
Typical values: TA = 25°C , VDDA = 5.0 V, VDDD = 3.0 V
All min/max limits are guaranteed by Winbond via electrical testing or characterization. Not all
specifications are 100 percent tested.
- 21 -
Publication Release Date: September, 2005
Revision A12
W6811
10.2. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS
VDDA=5V ±10%; VSSA=0V; TA=-40°C to +85°C; all analog signals referred to VAG; MCLK=BCLK= 2.048 MHz;
FST=FSR=8kHz Synchronous operation.
PARAMETER
SYM.
CONDITION
TYP.
Absolute Level
Max. Transmit
Level
Absolute Gain
(0 dBm0 @
1020 Hz;
TA=+25°C)
Absolute Gain
variation with
Temperature
Frequency
Response,
Relative to
0dBm0 @
1020 Hz
LABS
TXMAX
0 dBm0 = 0dBm @ 600Ω
3.17 dBm0 for μ-Law
3.14 dBm0 for A-Law
0 dBm0 @ 1020 Hz;
TA=+25°C
1.096
1.579
1.573
0
GABST
TA=0°C to TA=+70°C
TA=-40°C to TA=+85°C
GRTV
Gain Variation
vs. Level Tone
(1020 Hz
relative to –10
dBm0)
GLT
15 Hz
50 Hz
60 Hz
200 Hz
300 to 3000 Hz
3300 Hz
3400 Hz
3600 Hz
4000 Hz
4600 Hz to 100 kHz
+3 to –40 dBm0
-40 to –50 dBm0
-50 to –55 dBm0
GABS
TRANSMIT
(A/D)
MIN.
MAX.
-------------0.25 +0.25
RECEIVE
(D/A)
MIN.
MAX.
-------------0.25 +0.25
0
-0.03
-0.05
+0.03
+0.05
-0.03
-0.05
+0.03
+0.05
dB
---------------------------
-------1.0
-0.20
-0.35
-0.8
-------0.3
-0.6
-1.6
-40
-30
-26
-0.4
+0.15
+0.15
0
0
-14
-32
+0.3
+0.6
+1.6
-0.5
-0.5
-0.5
-0.5
-0.20
-0.35
-0.8
-------0.2
-0.4
-1.6
0
0
0
0
+0.15
+0.15
0
0
-14
-30
+0.2
+0.4
+1.6
dB
- 22 -
UNIT
VPK
VPK
VPK
dB
dB
Publication Release Date: September, 2005
Revision A12
W6811
10.3. ANALOG DISTORTION AND NOISE PARAMETERS
VDDA=5V ±10%; VSSA=0V; TA=-40°C to +85°C; all analog signals referred to VAG; MCLK=BCLK= 2.048 MHz;
FST=FSR=8kHz Synchronous operation.
PARAMETER
SYM.
CONDITION
Total Distortion vs.
Level Tone (1020 Hz,
μ-Law, C-Message
Weighted)
Total Distortion vs.
Level Tone (1020 Hz,
A-Law, Psophometric
Weighted)
Spurious Out-Of-Band
at RO- (300 Hz to
3400 Hz @ 0dBm0)
DLTμ
Spurious In-Band (700
Hz to 1100 Hz @
0dBm0)
Intermodulation
Distortion (300 Hz to
3400 Hz –4 to –21
dBm0
Crosstalk (1020 Hz @
0dBm0)
Absolute Group Delay
Group Delay Distortion
(relative to group
delay @ 1200 Hz)
DSPI
+3 dBm0
0 dBm0 to -30 dBm0
-40 dBm0
-45 dBm0
+3 dBm0
0 dBm0 to -30 dBm0
-40 dBm0
-45 dBm0
4600 Hz to 7600 Hz
7600 Hz to 8400 Hz
8400 Hz to 100000
Hz
300 to 3000 Hz
DIM
Two tones
Idle Channel Noise
NIDL
DLTA
DSPO
DXT
τABS
τD
1200 Hz
500 Hz
600 Hz
1000 Hz
2600 Hz
2800 Hz
μ-Law; C-message
A-Law; Psophometric
TRANSMIT (A/D)
MIN. TYP. MA
X.
36
----36
----29
----25
----36
----36
----29
----25
-----------------------
RECEIVE (D/A)
MIN. TYP. MAX.
UNIT
34
36
30
25
34
36
30
25
-------
-----------------------
-----------------30
-40
-30
dBC
dBp
dB
---
---
-47
---
---
-47
dB
---
---
-41
---
---
-41
dB
---
---
-75
---
---
-75
dBm0
-----------------
-----------------
360
750
380
130
130
750
18
-68
-----------------
-----------------
240
750
370
120
120
750
13
-78
μsec
μsec
- 23 -
dBrnc0
dBm0p
Publication Release Date: September, 2005
Revision A12
W6811
10.4. ANALOG INPUT AND OUTPUT AMPLIFIER PARAMETERS
VDDA=5V ±10%; VSSA=0V; TA=-40°C to +85°C; all analog signals referred to VAG;
PARAMETER
AI Input Offset Voltage
AI Input Current
AI Input Resistance
AI Input Capacitance
AI Common Mode Input
Voltage Range
AI Common Mode Rejection
Ratio
AI Amp Gain Bandwidth
Product
AI Amp DC Open Loop Gain
AI Amp Equivalent Input
Noise
AO Output Voltage Range
SYM.
VOFF,AI
IIN,AI
RIN,AI
CIN,AI
VCM,AI
CONDITION
AI+, AIAI+, AIAI+, AI- to VAG
AI+, AIAI+, AI-
MIN.
----10
--1.2
TYP.
--±0.1
-------
MAX.
±25
±1.0
--10
VDDA-1.2
CMRRTI
AI+, AI-
---
60
---
dB
GBWTI
AO, RLD≥10kΩ
---
2150
---
kHz
GTI
NTI
AO, RLD≥10kΩ
C-Message
Weighted
RLD=10kΩ to VAG
RLD=2kΩ to VAG
AO, RO to VAG
AO, RO
0.5 ≤AO,RO-≤
VDDA-0.5
RO-, 0 to 3400
Hz
RO- to VAG
Relative to VSSA
Within ±25mV
change
Transmit
Receive
-----
95
-24
-----
dB
dBrnC
0.5
1.0
2
--±1.0
-----------
VDDA-0.5
VDDA-1.0
--100
---
Load Resistance
Load Capacitance
AO & RO Output Current
RLDTGRO
CLDTGRO
IOUT1
RO- Output Resistance
RRO-
---
1
---
RO- Output Offset Voltage
Analog Ground Voltage
VAG Output Resistance
VOFF,ROVAG
RVAG
--2.429
---
--2.5
2.5
±25
2.573
12.5
mV
V
Ω
Power Supply Rejection Ratio
(0 to 100 kHz to VDDA, Cmessage)
PAI Input Offset Voltage
PAI Input Current
PAI Input Resistance
PAI Amp Gain Bandwidth
Product
PSRR
30
30
80
75
-----
dBC
----10
---
--±0.05
--1000
±20
±1.0
-----
mV
μA
MΩ
kHz
VTG
VOFF,PAI
IIN,PAI
RIN,PAI
GBWPI
PAI
PAI
PAI to VAG
PAO- no load
- 24 -
UNIT.
mV
μA
MΩ
pF
V
V
kΩ
pF
mA
Ω
Publication Release Date: September, 2005
Revision A12
W6811
PARAMETER
Output Offset Voltage
Load Resistance
SYM.
VOFF,PO
RLDPO
Load Capacitance
CLDPO
PO Output Current
IOUTPO
PO Output Resistance
PO Differential Gain
RPO
GPO
PO Differential Signal to
Distortion C-Message
weighted
DPO
PO Power Supply Rejection
Ratio (0 to 25 kHz to VDDA,
Differential out)
PSRRPO
CONDITION
PAO+ to PAOPAO+, PAOdifferentially
PAO+, PAOdifferentially
0.5 ≤AO,RO-≤
VDDA-0.5
PAO+ to PAORLD=300Ω,
+3dBm0, 1 kHz,
PAO+ to PAOZLD=300Ω
ZLD=100nF +
100Ω
ZLD=100nF + 20Ω
0 to 4 kHz
4 to 25 kHz
- 25 -
MIN.
--300
TYP.
-----
MAX.
±50
---
UNIT.
mV
Ω
---
---
1000
pF
±10.0
---
---
mA
---0.2
1
0
--+0.2
Ω
dB
45
---
60
40
-----
dBC
--40
---
40
55
40
-------
dB
Publication Release Date: September, 2005
Revision A12
W6811
10.5. DIGITAL I/O
10.5.1. μ-Law Encode Decode Chatacteristics
Normalized
Encode
Decision
Levels
8159
7903
:
4319
4063
:
2143
2015
:
1055
991
:
511
479
:
239
223
:
103
95
:
35
31
:
3
1
0
Digital Code
D4
D3
Chord
Step
D7
Sign
D6
Chord
D5
Chord
1
0
0
0
1
0
0
1
0
1
Normalized
Decode
Levels
D2
Step
D1
Step
D0
Step
0
0
0
0
8031
:
0
1
1
1
1
4191
:
0
1
1
1
1
1
2079
:
0
1
0
1
1
1
1
1023
:
1
0
1
1
1
1
1
1
495
:
1
1
0
0
1
1
1
1
231
:
1
1
0
1
1
1
1
1
99
:
1
1
1
0
1
1
1
1
33
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
0
Notes:
Sign bit = 0 for negative values, sign bit = 1 for positive values
- 26 -
Publication Release Date: September, 2005
Revision A12
W6811
10.5.2. A-Law Encode Decode Characteristics
Normalized
Encode
Decision
Levels
4096
3968
:
2048
2048
:
1088
1024
:
544
512
:
272
256
:
136
128
:
68
64
:
2
0
Digital Code
D4
D3
Chord
Step
D7
Sign
D6
Chord
D5
Chord
1
0
1
0
1
0
1
1
0
1
Normalized
Decode
Levels
D2
Step
D1
Step
D0
Step
1
0
1
0
4032
:
0
0
1
0
1
2112
:
1
1
0
1
0
1
1056
:
0
0
0
0
1
0
1
528
:
1
0
0
1
0
1
0
1
264
:
1
1
1
0
0
1
0
1
132
:
1
1
1
0
0
1
0
1
66
:
1
1
0
1
0
1
0
1
1
Notes:
1. Sign bit = 0 for negative values, sign bit = 1 for positive values
2. Digital code includes inversion of all even number bits
- 27 -
Publication Release Date: September, 2005
Revision A12
W6811
10.5.3. PCM Codes for Zero and Full Scale
Level
+ Full Scale
+ Zero
- Zero
- Full Scale
Sign bit
(D7)
1
1
0
0
μ-Law
Chord bits
(D6,D5,D4)
000
111
111
000
Step bits
(D3,D2,D1,D0)
0000
1111
1111
0000
Sign bit
(D7)
1
1
0
0
A-Law
Chord bits
(D6,D5,D4)
010
101
101
010
Step bits
(D3,D2,D1,D0)
1010
0101
0101
1010
Sign bit
(D7)
0
0
0
0
1
1
1
1
A-Law
Chord bits
(D6,D5,D4)
011
010
010
011
011
010
010
011
Step bits
(D3,D2,D1,D0)
0100
0001
0001
0100
0100
0001
0001
0100
10.5.4. PCM Codes for 0dBm0 Output
Sample
1
2
3
4
5
6
7
8
Sign bit
(D7)
0
0
0
0
1
1
1
1
μ-Law
Chord bits
(D6,D5,D4)
001
000
000
001
001
000
000
001
Step bits
(D3,D2,D1,D0)
1110
1011
1011
1110
1110
1011
1011
1110
- 28 -
Publication Release Date: September, 2005
Revision A12
W6811
11. TYPICAL APPLICATION CIRCUIT
+5VDC
+3VDC
AO
27K
22
23
AI+
27K
0.1 uF
0.01 uF
MCLK
24
1
VAG
VREF
2
RO-
27K
3
27K
PCMR
BCLKR
FSR
8 KHz Frame Sy nc
2.048 MHz
Bit Clock
13
PCM OUT
10
11
9
PCM IN
PAI
4
PAO-
5
PAO+
DIFFERENTIAL
AUDIO OUT
RL > 150 ohms
+
17
W6811
u/A
PUI
VSSA
27K
16
14
15
MODE SELECT
20
12
POWER CONTROL
19
1.0 uF
FST
BCLKT
PCMT
AI-
VSSD
DIFFERENTIAL
AUDIO IN
+
VDDD
21
1.0 uF
VDDA
27K
8
0.1 uF
6
0.1 uF
Figure 11.1 Typical circuit for Differential Analog I/O’s
+5VDC
+3VDC
23
27K
1.0 uF
27K
24
1
0.01 uF
0.1 uF
AUDIO OUT
RL > 2K ohms
2
27K
3
27K
4
5
AUDIO OUT
RL > 150
ohms
100 uF
VDDD
FST
BCLKT
PCMT
AIAI+
MCLK
VAG
VREF
PCMR
BCLKR
FSR
RO-
16
14
15
8 KHz Frame Sy nc
2.048 MHz
Bit Clock
13
PCM OUT
10
11
9
PCM IN
PAI
PAOPAO+
W6811
VSSD
AUDIO IN
AO
VSSA
22
u/A
PUI
20
12
MODE SELECT
POWER CONTROL
19
27K
17
21
1.0 uF
VDDA
27K
8
0.1 uF
6
0.1 uF
Figure 11.2 Typical circuit for Single Ended Analog I/O’s
- 29 -
Publication Release Date: September, 2005
Revision A12
W6811
+5VDC
1.0 uF
3.9K
23
100pF
ELECTRET
MICROPHONE
0.01 uF
0.1 uF
62K
24
1
2
27K
27K
3
1.5K
27K
4
5
AO
VDDD
22
FST
BCLKT
PCMT
AIAI+
MCLK
VAG
VREF
PCMR
BCLKR
FSR
RO-
16
14
15
8 KHz Frame Sy nc
2.048 MHz
Bit Clock
13
PCM OUT
10
11
9
PCM IN
PAI
PAOPAO+
W6811
u/A
PUI
VSSA
100pF
20
12
MODE SELECT
POWER CONTROL
19
3.9K
VSSD
21
1.0 uF
VDDA
62K
8
0.1 uF
6
0.1 uF
22 uF
+
+3VDC
1K
17
1.5K
SPEAKER
Figure 11.3 Handset Interface
+5VDC
+3VDC
0.01 uF
0.1 uF
24
1
27K
2
TRANSFORMER
600 OHM 1:1
3
27K
4
5
VDDD
AI+
MCLK
VAG
VREF
PCMR
BCLKR
FSR
RO-
16
14
15
PAOPAO+
W6811
8 KHz Frame Sy nc
2.048 MHz
Bit Clock
13
PCM OUT
10
11
9
PCM IN
B1/B2 SELECT
PAI
VSSA
600
23
FST
BCLKT
PCMT
AI-
u/A
PUI
20
12
MODE SELECT
POWER CONTROL
19
1.0 uF
AO
VSSD
22
17
21
27K
VDDA
27K
8
0.1 uF
6
0.1 uF
Figure 11.4 Transformer Interface Circuit in GCI mode
- 30 -
Publication Release Date: September, 2005
Revision A12
W6811
12. PACKAGE SPECIFICATION
12.1. 24L TSSOP - 4.4X7.8MM
PLASTIC THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) DIMENSIONS
SYMBOL
A
A1
A2
L
E
HE
D
b
c
L1
e
01
MIN
0.05
0.80
0.50
4.30
7.70
0.19
0.09
DIMENSION IN MM
NOM
0.90
0.60
6.40 BSC.
4.40
7.80
MAX
1.20
0.15
1.05
0.75
MIN
0.002
0.031
0.020
4.50
7.90
0.30
0.20
0.169
0.303
0.007
0.004
8
0
1.0 REF.
0.65 BSC.
0
DIMENSION IN INCH
NOM
MAX
0.043
0.006
0.035
0.041
0.024
0.030
0.252 BSC.
0.173
0.177
0.307
0.311
0.012
0.008
0.039 REF
0.026 BSC
8
Publication Release Date: September, September, 2005
- 31 Revision A12
W6811
12.2. 24L SOP-300MIL
SMALL OUTLINE PACKAGE (SAME AS SOG & SOIC) DIMENSIONS
11
20
c
E
HE
L
10
1
D
0.25
O
A
Y
SEATING
SEATING PLANE
PLANE
GAUGE PLANE
e
GAUGE PLANE
A1
b
SYMBOL
A
A1
b
c
E
D
e
HE
Y
L
0
DIMENSIONS IN MM
MIN
MAX
2.35
2.65
0.10
0.30
0.33
0.51
0.23
0.32
7.40
7.60
12.60
13.00
1.27 BSC.
10.00
1065
0.10
0.40
1.27
0
8
DIMENSIONS IN INCH
MIN
MAX
0.093
0.104
0.004
0.012
0.013
0.020
0.009
0.013
0.291
0.299
0.946
0.512
0.050 BSC.
0.394
0.419
0.004
0.016
0.050
0
8
Publication Release Date: September, September, 2005
- 32 Revision A12
W6811
12.3. 24L SSOP-209 MIL
SHRINK SMALL OUTLINE PACKAGE
DIMENSIONS
Publication Release Date: September, September, 2005
- 33 Revision A12
W6811
12.4. 24L PDIP – 300 MIL
PLASTIC DUAL INLINE PACKAGE DIMENSIONS
D
24
13
1
12
1
E
E
S
c
1
2
AA
A
L
Base Plane
Mounting Plane
B
e1
SYMBOL
A
A1
A2
B
B1
c
D
E
E1
e1
L
á
eA
S
MIN
0.25
3.18
0.41
1.47
0.20
7.37
6.43
2.29
3.05
0°
8.38
DIMENSION IN MM
NOM
3.30
0.46
1.52
0.25
31.95
7.62
6.55
2.54
3.30
8.89
eA
á
B1
MAX
4.45
3.43
0.56
1.63
0.36
32.26
7.87
6.68
2.79
3.56
15°
9.40
2.29
MIN
0.010
0.125
0.016
0.058
0.008
0.290
0.253
0.090
0.120
0°
0.330
DIMENSION IN INCH
NOM
MAX
0.175
0.130
0.018
0.060
0.010
1.258
0.300
0.258
0.100
0.130
0.350
0.135
0.022
0.064
0.014
1.270
0.310
0.263
0.110
0.140
15°
0.370
0.090
Publication Release Date: September, September, 2005
- 34 Revision A12
W6811
13. ORDERING INFORMATION
Winbond Part Number Description
W6811I _ _
Product Family
W6811 Product
Package Material:
Blank =
Standard Package
G
=
Pb-free (RoHS) Package
Package Type:
W
=
24-Lead Plastic Thin Small Outline Package (TSSOP) Type 1
S
=
24-Lead Plastic Small Outline Package (SOG/SOP)
R
=
24-Lead Plastic Small Outline Package (SSOP)
E
=
24-Lead Plastic Dual Inline Package (PDIP)
When ordering W6811 series devices, please refer to the following part numbers.
Part Number
W6811IW
W6811IS
W6811IR
W6811IE
W6811IWG
W6811ISG
W6811IRG
W6811IEG
Publication Release Date: September, September, 2005
- 35 Revision A12
W6811
14. VERSION HISTORY
VERSION
DATE
PAGE
DESCRIPTION
A7
August 9,
2002
A8
September
26, 2002
A9
October
10, 2002
A10
October
23, 2003
34
Changed the package dimension of the SSOP24 package
A11
April 2005
41
Add Important Notice
A12
September,
2005
2
11, 12
22
23
23
29, 30
35
Preliminary
Added reference to Pb-free RoHS packaging
Capitalized logic HIGH/LOW
Extended conditions on Table 10.2.
Extended conditions on Table 10.3.
Corrected Idle Channel Noise min/max and units.
Improved Application Diagrams
Added G package ordering code
Publication Release Date: September, September, 2005
- 36 Revision A12
W6811
Important Notice
Winbond products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control instruments,
airplane or spaceship instruments, transportation instruments, traffic signal instruments,
combustion control instruments, or for other applications intended to support or sustain life.
Further more, Winbond products are not intended for applications wherein failure of Winbond
products could result or lead to a situation wherein personal injury, death or severe property
or environmental damage could occur.
Winbond customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Winbond for any damages resulting from such improper
use or sales.
The information contained in this datasheet may be subject to change
without notice. It is the responsibility of the customer to check the
Winbond USA website (www.winbond-usa.com) periodically for the latest
version of this document, and any Errata Sheets that may be generated
Publication Release Date: September, September, 2005
- 37 Revision A12