WINBOND W682510_05

ADVANCED
W682510/W682310
DUAL-CHANNEL VOICEBAND CODECS
-1-
Publication Release Date: April 2005
Revision A10
W682510/W682310
1. GENERAL DESCRIPTION
The W682510 and W682310 are general-purpose dual channel PCM CODECs with pin-selectable μLaw or A-Law companding. The device is compliant with the ITU G.712 specification. It operates from
a single power supply (+5V for the W682510, +3V for the W682310) and is available in 20-pin PDIP
(W682510 only), SSOP, and 24-pin SOP package options. Functions performed include digitization
and reconstruction of voice signals, and band limiting and smoothing filters required for PCM systems.
The filters are compliant with ITU G.712 specification. The W682510 and W682310 performance is
specified over the industrial temperature range of –40°C to +85°C.
The W682510 includes an on-chip precision voltage reference and receive output buffer amplifiers,
capable of driving 600Ω loads (line transformers.) The analog section is fully differential, reducing
noise and improving the power supply rejection ratio. The data transfer protocol supports either
parallel or serial synchronous communications for PCM applications. The W682510 and W682310
have a build in PLL that eliminates the need for a master clock and automatically determines the
division ratio for the required internal clock.
For fast evaluation and prototyping purposes, the W682510DK & W682310DK development kits are
available.
2. FEATURES
APPLICATIONS
•
•
Digital Telephone Systems
•
Central Office Equipment
Switches, Routers)
•
PBX Systems (Gateways, Switches)
•
PABX/SOHO Systems
Single power supply
o
4.5V to 5.5V (W682510)
o
2.7V to 3.8V (W682310)
•
Typical power dissipation of 35 mW,
power-down mode of 5 μW
•
Fully-differential analog circuit design
•
Hands free system
•
On-chip precision reference-
•
Speakerphone devices
o
W682510: 1.73V for a 0.8 dBm
0TLP at 600 Ω
•
VoIP Terminals
•
Enterprise Phones
o
W682310: 1.41V reference for a
0TLP of –3.8 dBm into 1200 Ω
•
ISDN Terminals
•
Analog line cards
•
Pin-selectable
μ-Law
and
A-Law
companding (compliant with ITU G.711)
•
CODEC A/D and D/A filtering compliant
with ITU G.712
•
Industrial temperature range (–40°C to
+85°C)
•
Three packages: 20-pin SSOP, 20-pin
PDIP, and 24-pin SOP
-2-
(Gateways,
W682510/W682310
3. BLOCK DIAGRAM
DATA T1
μ/A-Law
CODEC
Filter 1
PCMT1
FST
BCLK
FSR
PCMMS
PCMR1
PCM Interface
PCMT2
PC
M
Int
erf
ac
DATA R1
RO1
AO1 AI1
μ /A-Law
DATA T2
PCMR2
DATA R2
PLL
μ/A-Law
CODEC
Filter 2
RO2
AO2 AI2
Voltage reference
VREF
V SSA
-3-
V SSD
V DD
PUI
Power Conditioning
Publication Release Date: April 2005
Revision A10
W682510/W682310
4. TABLE OF CONTENTS
1. GENERAL DESCRIPTION ................................................................................................................. 2
1. GENERAL DESCRIPTION ................................................................................................................. 2
2. FEATURES ......................................................................................................................................... 2
3. BLOCK DIAGRAM ............................................................................................................................. 3
4. TABLE OF CONTENTS...................................................................................................................... 4
5. PIN CONFIGURATION ....................................................................................................................... 6
6. PIN DESCRIPTION ............................................................................................................................. 7
7. FUNCTIONAL DESCRIPTION ........................................................................................................... 8
7.1. Transmit Path............................................................................................................................. 8
7.1.1. AI1, AI2, AO1-, AO2-.............................................................................................................. 9
7.1.2. PCMT1 ................................................................................................................................... 9
7.1.3. PCMT2 ................................................................................................................................. 10
7.2. Receive Path ............................................................................................................................ 10
7.2.1. RO1, RO2 ............................................................................................................................ 10
7.2.2. PCMR1................................................................................................................................. 11
7.2.3. PCMR2................................................................................................................................. 11
7.3. Power Signals .......................................................................................................................... 11
7.3.1. VDD ........................................................................................................................................ 11
7.3.2. VSSA ...................................................................................................................................... 11
7.3.3. VSSD ...................................................................................................................................... 11
7.3.4. VREF ...................................................................................................................................... 12
7.3.5. PUI ....................................................................................................................................... 12
7.4. PCM Interface .......................................................................................................................... 12
7.4.1. μ/A-Law ................................................................................................................................ 12
7.4.2. BCLK .................................................................................................................................... 13
7.4.3. FSR ...................................................................................................................................... 13
7.4.4. FST....................................................................................................................................... 13
7.4.5. PCMMS ................................................................................................................................ 13
7.5. Power State Modes................................................................................................................. 13
7.5.1. Power Save Mode................................................................................................................ 13
7.5.2. Power Down Mode............................................................................................................... 14
7.5.3. Power Save/Down Output pin state ..................................................................................... 14
8. TIMING DIAGRAMS ......................................................................................................................... 15
9. ABSOLUTE MAXIMUM RATINGS................................................................................................... 19
-4-
W682510/W682310
10. ELECTRICAL CHARACTERISTICS .............................................................................................. 20
10.1. General Parameters
W682510
4.5V – 5.5V ............................................................... 20
10.2. General Parameters
W682310
2.7V – 3.8V ............................................................... 20
10.3. Analog Signal Level and Gain Parameters ....................................................................... 22
10.4. Analog Distortion and Noise Parameters .......................................................................... 24
10.5. Analog Input and Output Amplifier Parameters ................................................................ 25
10.6. Digital I/O ................................................................................................................................ 26
11. TYPICAL APPLICATION CIRCUIT................................................................................................ 29
12. PACKAGE DRAWING AND DIMENSIONS................................................................................... 31
12.1. 20L (PDIP) Plastic Dual Inline Package Dimensions (W682510 only) ......................... 31
12.2. 20L SSOP – 209 mil Shrink Small Outline Package Dimensions ................................. 32
12.3. 24 SOP – 300 mil .................................................................................................................. 33
13. ORDERING INFORMATION .......................................................................................................... 34
14. VERSION HISTORY ....................................................................................................................... 35
-5-
Publication Release Date: April 2005
Revision A10
W682510/W682310
5. PIN CONFIGURATION
VREF
RO2
NC
RO1
PUI
PCMMS
NC
VDD
VSSD
FSR
PCMR2
PCMR1
1
24
2
23
3
22
4
5
6
7
8
W682510/
W682310
DUAL
CHANNEL
CODEC
21
20
19
18
17
9
10
16
15
11
12
14
13
AI2
AO2 AO1 AI1
NC
μ/ A-Law
VSSA
NC
BCLK
FST
PCMT2
PCMT1
SOP
VREF
RO2
RO1
PUI
PCMMS
VDD
VSSD
FSR
PCMR2
PCMR1
1
20
2
19
3
18
4
5
6
7
8
W682510/
W682310
DUAL
CHANNEL
CODEC
17
16
15
14
13
12
11
9
10
PDIP (W682510 only), SSOP
-6-
AI2
AO2 AO1 AI1
μ/A- Law
VSSA
BCLK
FST
PCMT2
PCMT1
W682510/W682310
6. PIN DESCRIPTION
Pin #
Pin #
Functionality
SSOP
PDIP
SOP
(CH1 = Channel 1, CH2 = Channel 2)
VREF
1
1
This pin is used to bypass the signal ground. It needs to be decoupled to VSS
through a 0.1 μF ceramic decoupling capacitor. No external loads should be
tied to this pin.
RO2
2
2
CH2 Non-Inverting output of the receive smoothing filter. This pin can typically
drive a 600 Ω load (W682510) or 1200 Ω load (W682310).
RO1
3
4
CH1 Non-Inverting output of the receive smoothing filter. This pin can typically
drive a 600 Ω load (W682510) or 1200 Ω load (W682310)..
PUI
4
5
Power up input signal. When this pin is HIGH (tied to VDD) the part is powered
up. When LOW (tied to VSS) the part is powered down.
PCMMS
5
6
PCM mode select input (serial or parallel data interface) HIGH = Parallel, LOW
= Serial
VDD
6
8
Power supply. This pin should be decoupled to VSS with a 0.1μF ceramic
capacitor.
VSSD
7
9
This is the digital supply ground. This pin should be connected to 0V.
FSR
8
10
8 kHz Frame Sync input for the PCM receive section. It can also be connected
to the FST pin when transmit and receive are synchronous operations.
PCMR2
9
11
CH2 PCM input data receive pin. The data needs to be synchronous with the
FSR and BCLK pins.
PCMR1
10
12
CH1 PCM input data receive pin. The data needs to be synchronous with the
FSR and BCLK pins.
PCMT1
11
13
CH1 PCM output data transmit pin. The output data is synchronous with the
FST and BCLK pins.
PCMT2
12
14
CH2 PCM output data transmit pin. The output data is synchronous with the
FST and BCLK pins.
FST
13
15
8 kHz transmit frame sync input. This pin synchronizes the transmit data bytes.
BCLK
14
16
PCM transmit and receive bit clock input pin for CH1 and CH2 transmit.
VSSA
15
18
This is the analog supply ground. This pin should be connected to 0V.
μ/A-Law
16
19
Compander mode select pin. μ-Law companding is selected when this pin is
LOW (tied to VSS.) A-Law companding is selected when pin is HIGH (tied to
VDD.)
AI1
17
21
CH1 Non-Inverting input of the first gain stage in the transmit path.
AO1-
18
22
CH1 Inverting analog output of the first gain stage in the transmit path.
AO2-
19
23
CH2 Inverting analog output of the first gain stage in the transmit path
AI2
20
24
CH2 Non-Inverting input of the first gain stage in the transmit path.
Pin
Name
-7-
Publication Release Date: April 2005
Revision A10
W682510/W682310
7. FUNCTIONAL DESCRIPTION
W682510/W682310 is a single-rail, dual channel PCM CODEC for voiceband applications. The
CODEC complies with the specifications of the ITU-T G.712 recommendation. The CODEC includes
two complete μ-Law and A-Law companders. The μ-Law and A-Law companders are designed to
comply with the specifications of the ITU-T G.711 recommendation.
The block diagram in section 3 shows the main components of the W682510/W682310. The chip
consists of a PCM interface, which can process the data in parallel or serial formats. The PLL of the
chip provides the internal clock signals and synchronizes the CODEC sample rate with the external
frame sync frequency. The power-conditioning block provides the internal power supply for the digital
and the analog section, while the voltage reference block provides a precision analog ground voltage
for the analog signal processing.
8
DATA
R1
8 bit μ/A - Law
DAC
RO1
fC = 3400 Hz
Smoothing
Filter 1a
μ/AControl
8
8 bit μ/A - Law
DAC
DATA
R2
DATA
T1
8 bit μ/A - Law
ADC
μ/AControl
8
DATA
T1
T2
8 bit μ/A - Law
ADC
μ/AControl
Smoothing
Filter 1b
Buffer1
Av=1
RO2
fC = 3400 Hz
Smoothing
Filter 2a
μ/AControl
8
+
+
Smoothing
Filter 2b
Buffer2
Av=1
AO1 -
fC = 200 Hz
High Pass
Filter
fC = 3400 Hz
Aliasing
Anti-Aliasin
AntiFilter 1a
fC = 200 Hz
High Pass
Filter
fC = 3400 Hz
Anti-Aliasin
Anti-Aliasing
AntiFilter 2a
AI1
+
Aliasing
Anti-Aliasin
AntiFilter 1b
AO2 -
AI2
+
Anti-Aliasin
AntiAliasing
Filter 2b
FIGURE 7.1: THE W682510 AND W682310 SIGNAL PATH
7.1. TRANSMIT PATH
The A-to-D path of the CODEC contains an analog input amplifier with externally configurable gain
setting (see application examples in section 11). The transmit amplifier output is the input to the
encoder section.
The output of the input amplifier is fed through a low-pass filter to prevent aliasing at the switched
capacitor 3.4 kHz low pass filter. The 3.4 kHz switched capacitor low pass filter prevents aliasing of
input signals above 4 kHz, due to the sampling at 8 kHz. The output of the 3.4 kHz low pass filter is
filtered by a high pass filter with a 200 Hz cut-off frequency. The filters are designed according to the
recommendations in the G.712 ITU-T specification. From the output of the high pass filter the signal is
digitized. The signal is converted into a compressed 8-bit digital representation with either μ-Law or A-
-8-
W682510/W682310
Law format. The μ-Law or A-Law format is pin-selectable through the μ/A-Law pin. The compression
format can be selected according to Table 7.1.
TABLE 7.1: PIN-SELECTABLE COMPRESSION FORMAT
μ/A-Law Pin
Format
VDD (HIGH)
A-Law
VSSA (LOW)
μ-Law
The digital 8-bit μ-Law or A-Law samples are fed to the PCM interface for serial or parallel
transmission at the sample rate supplied by the external frame sync FST.
7.1.1. AI1, AI2, AO1-, AO2AI1 and AI2 are the transmit analog inputs for channels 1 and 2. AO1- and AO2- are the transmit level
feedback for channels 1 and 2. AI1 and AI2 are inverting inputs for the Op-Amps. AO1- and AO2- are
connected to the outputs of the Op-Amps and are used to set the level, as illustrated below. When AI1
and AI2 are not used, connect AI1 to AO1- and AI2 to AO2-. During power saving mode and power
down mode, the AO1- and AO2- outputs are tied weakly to VSSA on the W682510 or are high
impedance on the W682310 (See table on page 14).
R2
C1
R1
AO1AI1
CH1 Analog Input
Gain=R2/R1 ≤ 10
R2 > 20 k Ohm
+
R4
C2
CH2 Analog Input
AO2-
Gain=R4/R3 ≤ 10
R4 > 20 k Ohm
R3
AI2
+
7.1.2. PCMT1
The PCM signal output of channel 1 when the parallel mode is selected. The PCM output signal is
sent from PCMT1 in a sequential order, synchronizing with the rising edge of the BCLK signal. The
MSB may be output at the rising edge of the FST signal, based on the timing between BCLK and FST.
This output pin is in a high impedance state except during 8-bit PCM output. It is also in a high
impedance state during power-saving state or power-down. When serial operation is selected, this pin
is configured to be the output of the serial multiplexed two channel PCM signal. A pull-up resistor must
-9-
Publication Release Date: April 2005
Revision A10
W682510/W682310
be connected to this pin , as it is an open drain output. This device is compatible with the ITU-T coding
law and output coding format recommendation.
TABLE 7.15: PCM CODES FOR ZERO AND FULL SCALE
Level
μ-Law
A-Law
Sign bit
Chord bits
Step bits
Sign Bit
Chord Bits
Step Bits
+ Full Scale
1
000
0000
1
010
1010
+ Zero
1
111
1111
1
101
0101
- Zero
0
111
1111
0
101
0101
- Full Scale
0
000
0000
0
010
1010
7.1.3. PCMT2
The PCM signal output for channel 2 when the parallel mode is selected. The PCM output signal is
sent from PCMT2 in a sequential order, synchronized with the rising edge of the BCLK signal. The
MSB may be output at the rising edge of the FST signal, based on the timing between BCLK and FST.
This pin is in a high impedance state except during 8-bit PCM output. It is also in a high impedance
state during power-saving state or power-down. When the serial operation is selected, this pin is left
open. A pull-up resistor must be connected to this pin , as it is an open drain output. This device is
compatible with the ITU-T coding law and output coding format recommendation.
7.2. RECEIVE PATH
The 8-bit digital input samples for the D-to-A path are serially shifted in by the PCM interface and
converted to parallel data bits. During every cycle of the frame sync FSR, the parallel data bits are fed
through the pin-selectable μ-Law or A-Law expander and converted to analog samples. The mode of
expansion is selected by the μ/A-Law pin as shown in Table 7.2. The analog samples are filtered by a
low-pass smoothing filter with a 3.4 kHz cut-off frequency, according to the ITU-T G.712 specification.
A sin(x)/x compensation is integrated with the low pass smoothing filter. The output of this filter is
buffered to provide the receive output signal RO.
7.2.1. RO1, RO2
RO1 and RO2 are the receive analog outputs for channel 1 and channel 2. The output signal of the
W682510 has an amplitude of 3.46 Vpp (2.03 Vpp for W682310) around the signal ground voltage
(VREF). When the digital PCM signal of +3 dBm0 is presented to PCMR1 or PCMR2, it can drive a load
of 600 Ohms or more at 5 V supply voltage for the W682510 and 1200 Ohms at 3V supply for the
W682310. During power saving mode, these outputs are at the voltage level of VREF with a high
impedance. These outputs have a feature that reduces audio “pop” noises when switching between
active and inactive states and back.
- 10 -
W682510/W682310
7.2.2. PCMR1
The PCM signal input for channel 1 when in the parallel mode. D/A conversion is performed on the
serial PCM signal input to this pin. The FSR signal, synchronous with the serial PCM signal, and the
BCLK signal, processes the code. Then the analog output is output from the RO1 pin. The data rate of
the PCM signal is equal to the frequency of the BCLK signal.
The PCM signal is shifted in on the falling edge of the BCLK signal. It is latched into the internal 8-bit
register. The start of the PCM data (MSB) is synchronized with the rising edge of FSR. In the serial
mode, this pin is not used and should be connected to GND (0V).
7.2.3. PCMR2
PCM signal input for channel 2 when the parallel mode is selected. D/A conversion is performed with
the serial PCM signal input to this pin, the FSR signal, synchronous with the serial PCM signal, and
the BCLK signal, and then the analog output is output from the RO2 pin. The data rate of the PCM
signal is equal to the frequency of the BCLK signal. The PCM signal is shifted at the falling edge of the
BCLK signal and latched into the internal register when shifted by eight bits. The start of the PCM data
(MSB) is identified at the rising edge of FSR. In the serial mode this pin is used for the two channel
multiplexed PCM signal input.
7.3. POWER SIGNALS
7.3.1. VDD
The power supply for the analog and digital parts of the W682510 must be 5V +/- 10% and 2.7V to
3.8V for the W682310. This supply voltage is connected to the VDD pin. The VDD pin needs to be
decoupled to ground through a 0.1 μF ceramic capacitor. A power supply for an analog circuit in the
system to which the device is applied should be used. A bypass capacitor of 0.1 µF to 1 µF with good
high-frequency characteristics (Low ESR) and a capacitor of 10 µF to 20 µF should be connected
between this pin and the VSSA pin if needed.
7.3.2. VSSA
Ground for the analog signal circuits. This ground is separate from the digital signal ground. The VSSA
pin must be connected to the VSSD pin on the printed circuit board to make a common ground.
However, it’s advised to connect the PCB traces of these pins at the main supply hookup of the PCB
and run the VSSA and VSSD traces separately to the device.
7.3.3. VSSD
Ground for the digital signal circuits. This ground is separate from the analog signal ground. The VSSD
pin must be connected to the VSSA pin on the printed circuit board to make a common ground.
However, it’s advised to connect the PCB traces of these pins at the main supply hookup of the PCB
and run the VSSA and VSSD traces separately to the device
- 11 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
7.3.4. VREF
This pin carries the signal ground voltage level and requires a bypass capacitor. A 0.1μF ceramic
(with low ESR for good high frequency response) capacitor needs to be connected between the VSSA
pin and the VREF pin.
7.3.5. PUI
Power up input signal. When the PUI pin is set to logic “0” level, the CODEC will go into power down
mode.
7.4. PCM INTERFACE
The PCM interface is controlled by pins PCMMS, BCLK, FSR & FST. The input data is received
through the PCMR pin and the output data is transmitted through the PCMT pin. The modes of
operation of the interface are shown in Table 7.2.
TABLE 7.2: PCM INTERFACE MODE SELECTIONS
PCMMS
VDD
[HIGH]
VSS
PCM Mode
Data Available
Parallel
Mode
CH1 data on PCMT1 & PCMR1
Serial Mode
CH1 data followed by CH2 receive data on PCMR2 (total 16 bits)
[LOW]
CH2 data on PCMT2 and PCMR2 (same timing as CH1)
CH1 data followed by CH2 transmit data on PCMT1 (total 16 bits)
7.4.1. μ/A-Law
This pin selects the desired companding law. The CODEC will operate in the μ-law when this pin is at
a logic “0” level and in the A-law when at a logic “1” level. The CODEC operates μ-law if the pin is left
open, since this pin is internally pulled down.
TABLE 7.25: PIN-SELECTABLE COMPRESSION FORMAT
μ/A-Law pin
Format
HIGH (VDD )
A-Law
LOW (VSS), Floating
μ-Law
- 12 -
W682510/W682310
7.4.2. BCLK
This is the shift clock signal input for the PCMR1, PCMR2, PCMT1, and PCMT2 signals. The
frequency, equal to the data rate, is 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 1544, 2048 or
200 kHz. Setting this signal to a steady logic “1” or “0” sets both transmit and receive circuits to the
power saving state.
7.4.3. FSR
This is the receive synchronizing signal input. The required eight-bits of PCM data are selected from
the PCM data signal to the PCMR1 and PCMR2 pins by the receive synchronizing signal. All timing
signals in the receive section are synchronized by this synchronizing signal. This signal must be in
phase with the BCLK. The frequency should be 8 kHz ± 50 ppm to guarantee the AC characteristics.
This device can operate in the range of 6 kHz to 9 kHz, but the electrical characteristics specified in
the data sheet are not guaranteed.
7.4.4. FST
The transmit synchronizing signal input. The PCM output signal from PCMT1 and PCMT2 is sent in
synchronization with this transmit synchronizing signal. This FST signal triggers the PLL and
synchronizes all timing signals of the transmit section. The synchronizing signal must be in phase with
BCLK. The frequency should be 8 kHz ± 50 ppm to guarantee the AC characteristics. This device can
operate in the range of 6 kHz to 9 kHz sample rates, but the electrical characteristics are not
guaranteed. Setting this signal to logic HIGH or LOW drives both transmit and receive circuits to
power saving state.
7.4.5. PCMMS
The control signal for mode selection of the PCM input and output. When this signal is HIGH, the PCM
input and output are in the parallel mode. The PCM data of CH1 and CH2 is input to PCMR1 and
PCMR2, and output from PCMT1 and PCMT2, with the same timing. When this signal is at a LOW
level, the PCM input and output are in the serial mode. The PCM data of CH1 and CH2 is input to
PCMR2 and output from PCMT1 as two serial 8-bit bytes.
7.5. POWER STATE MODES
7.5.1. Power Save Mode
In the power save mode, all internal analog circuits except the internal reference are powered down.
The CODEC automatically enters the power save mode when the FST or BCLK signal is set to digital
“1” or digital “0”;
Upon power up with FST and BCLK signals present, it will take 2 to 10 milliseconds for the internal
PLL to lock. In addition to the PLL lock-in time, the analog outputs will be set to the internal signal
ground for 1 millisecond. This will avoid power up glitches at the outputs. The digital open drain
outputs will remain at high impedance during this power up delay.
- 13 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
7.5.2. Power Down Mode
When the power up indicator pin, PUI, is set LOW all internal circuits will go into the power down state.
It will take 2 to 10 milliseconds for the PLL to lock when operation is resumed with the FST and BCLK
signals applied and PUI set HIGH. An additional 1-millisecond delay is used to set the analog outputs
to the signal ground reference in order to avoid power up glitches. The digital open drain outputs will
remain at high impedance during this power up delay.
7.5.3. Power Save/Down Output pin state
The following table shows the states of the output pins in the power save or power down mode.
TABLE 7.5: OUTPUT PIN STATES
Product Name
Output Pin
AO1-, A02-
RO1, RO2
W682510
VSSA
Signal Ground
W682310
High Z
Signal Ground
- 14 -
W682510/W682310
8. TIMING DIAGRAMS
BCLK
FST
PCMT1
MSB D6
D5
D4
D3
D2
D1
D0 MSB D6
Channel 1 Transmit PCM Data
D5
D4
D3
D2
D1
D0
Channel 2 Transmit PCM Data
Figure 8-1a. Transmit Side Serial Mode Timing (PCMMS=0)
BCLK
FSR
PCMR2
MSB D6
D5
D4
D3
D2
D1
D0 MSB D6
Channel 1 Receive PCM Data
D5
D4
D3
D2
D1
D0
Channel 2 Receive PCM Data
Figure 8-1b. Receive Side Serial Mode Timing (PCMMS=0)
FIGURE 8.1: SERIAL MODE PCM TIMING
BCLK
FST
PCMT1
PCMT2
MSB D6
D5
D4
D3
D2
D1
D0
Figure 8-2a. Transmit Side Parallel Mode Timing (PCMMS=1)
BCLK
FSR
PCMR1
PCMR2
MSB D6
D5
D4
D3
D2
D1
D0
Figure 8-2b. Receive Side Parallel Mode Timing (PCMMS=1)
FIGURE 8.2: PARALLEL MODE PCM TIMING
- 15 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
BCLK
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
FST
FSR
PCMT1
PCMR2
MSB D6 D5 D4 D3 D2 D1 D0 MSB D6 D5 D4
Channel 1 PCM Data
D3 D2 D1 D0
Channel 2 PCM Data
Figure 8-3a. Burst Mode with Serial Timing (PCMMS=0)
BCLK
1
2
3
4
5
6
7
8
9
FST
FSR
PCMTx
PCMRx
MSB D6 D5 D4 D3 D2 D1 D0
Figure 8-3b. Burst Mode with Parallel Timing (PCMMS=1)
FIGURE 8.3: BURST MODE PCM TIMING
- 16 -
17
W682510/W682310
TABLE 8.1: PCM SYNCHRONIZATION PARAMETERS
SYMBOL
DESCRIPTION
MIN
TYP
MAX
UNIT
fFS
FST, FSR frequency
---
8
---
KHz
tWS
FST, FSR Pulse Width
1
---
7
TBCLK
tj
FST, FSR allowable jitter
0
---
500
nsec
fBCLK
BCLK frequency
64, 128, 256, 512,
1024, 2048, 96, 192,
384,
768,
1536,
1544, 200
kHz
DC
BCLK Duty Cycle
40
50
60
%
tIr
FSR, FST, BCLK, PCMR1, PCMR2, PUI, PCMMS
input rise time
---
---
50
nsec
tIf
FSR, FST, BCLK, PCMR1, PCMR2, PUI, PCMMS
input fall time
---
---
50
nsec
tIr
BCLK
FSR
FST
1
2
3
TBCLK=1/fBCLK
DC
4
6
5
tIf
7
8
TFS=1/fFS
tWS
tj
FIGURE 8.4: PCM SYNCHRONIZATION PARAMETERS
- 17 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
TABLE 8.2: PCM TIMING PARAMETERS
SYMBOL
DESCRIPTION
MIN
TYP
MAX
UNIT
tWS
FST, FSR Pulse Width
TBCLK
---
100
µ
sec
tXS
BCLK low to FST high setup time
100
---
---
nsec
tSX
FST high to BCLK low hold time
100
---
---
nsec
tSD
PCMT1, PCMT2 output delay; Cl = 100 pF
20
---
200
nsec
tXD1
PCMT1, PCMT2 output delay; Cl = 100 pF
20
---
200
nsec
tXD2
PCMT1, PCMT2 output delay; Cl = 100 pF
20
---
200
nsec
tXD3
PCMT1, PCMT2 output delay; Cl = 100 pF
20
---
200
nsec
tRS
BCLK low to FSR high setup time
100
---
---
nsec
tSR
FSR high to BCLK low hold time
100
---
---
nsec
tDS
PCMR1, PCMR2 Data in setup time
100
---
---
nsec
tDH
PCMR1, PCMR2 Data in hold time
100
---
---
nsec
RTL
PCMT1, PCMT2 Pull-up resistor
500
---
---
Ohm
CTL
PCMT1, PCMT2 Load capacitance
---
---
100
pF
tXS
BCLK
1
2
3
4
tSX
FST
PCMT1
PCMT2
5
6
7
8
9
tXD2
10
11
10
11
tXD3
tWS
tSD
MSB
tXD1
D6
D5
D4
D3
D2
D1
D0
Figure 8-5a. Transmit Timing
tRS
BCLK
1
2
3
4
5
6
7
8
tSR
FSR
tWS
tDS
PCMR1
PCMR2
MSB
D6
tDH
D5
D4
D3
D2
D1
D0
Figure 8-5b. Receive Timing
FIGURE 8.5 PCM TIMING PARAMETERS
- 18 -
9
W682510/W682310
9. ABSOLUTE MAXIMUM RATINGS
TABLE 9.1: ABSOLUTE MAXIMUM RATINGS (PACKAGED PARTS)
Condition
Value
0
Junction temperature
150 C
Storage temperature range
-650C to +1500C
Voltage Applied to any pin
(VSS - 0.3V) to (VDD + 0.3V)
Voltage applied to any pin (Input current limited to +/-20 mA)
(VSS – 1.0V) to (VDD + 1.0V)
Lead temperature (soldering
3000C
– 10 seconds)
VDD - VSS
-0.5V to +6V
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely
affect the life and reliability of the device. Functional operation is not implied at these
conditions.
TABLE 9.2: OPERATING CONDITIONS (PACKAGED PARTS)
Condition
Value
0
Industrial operating temperature
0
-40 C to +85 C
Supply voltage (VDD)
W682510
5V
+4.5V to +5.5V
Supply voltage (VDD)
W682310
3V
+2.7V to +3.8V
Ground voltage (VSS)
0V
- 19 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
10. ELECTRICAL CHARACTERISTICS
10.1. GENERAL PARAMETERS W682510 4.5V – 5.5V
Max (2)
Units
0.0
0.8
V
2.2
VDD
V
0.2
0.4
V
7
14
mA
800
1300
μA
1
10
μA
VSS<VIN<VDD
0.5
μA
Input High Leakage Current
VSS<VIN<VDD
2
μA
PCMT1, PCMT2
Leakage Current
VSS<PCMT<VDD
+/-10
μA
10
pF
15
pF
Symbol
Parameters
Conditions
VIL
Input Low Voltage
VIH
Input High Voltage
VOL
PCMT1, PCMT2
Low Voltage
IDD
VDD Current (Operating) ADC + DAC
No Load, No Signal
ISB
VDD Current (Standby)
FST or BCLK =OFF; PUI=VDD
IPD
VDD Current (Power Down)
PUI= Vss
IIL
Input Low Leakage Current
IIH
IOL
Output
Output
Digital Input Capacitance
COUT
PCMT1, PCMT2
Capacitance
2.
0.0
Typ (1)
High Z State
CIN
1.
Rpullup>500 Ω
Min (2)
Output
5
PCMT1, PCMT2 = High Z
Typical values: TA = 25°C, VDD = 5.0 V
All min/max limits are guaranteed by Winbond via electrical testing or characterization. Not all
specifications are 100 percent tested.
10.2. GENERAL PARAMETERS W682310 2.7V – 3.8V
Max (2)
Units
0.0
0.16xVDD
V
0.45xVDD
VDD
V
0.2
0.4
V
No Load, No Signal
7.4
14
mA
VDD Current (Standby)
FST or BCLK =OFF; PUI=VDD
700
2000
μA
IPD
VDD Current (Power Down)
PUI= Vss
1
10
μA
IIL
Input Low Leakage Current
VSS<VIN<VDD
0.5
μA
Symbol
Parameters
Conditions
VIL
Input Low Voltage
VIH
Input High Voltage
VOL
PCMT1, PCMT2
Low Voltage
IDD
VDD Current (Operating) ADC + DAC
ISB
Output
Rpullup>500 Ω
Min (2)
0.0
- 20 -
Typ (1)
W682510/W682310
Symbol
Parameters
Conditions
IIH
Input High Leakage Current
VSS<VIN<VDD
IOL
PCMT1, PCMT2
Leakage Current
VSS<PCMT<VDD
Output
Digital Input Capacitance
COUT
PCMT1, PCMT2
Capacitance
2.
Typ (3)
Max (4)
Units
2
μA
+/-10
μA
10
pF
15
pF
High Z State
CIN
1.
Min (4)
Output
5
PCMT1, PCMT2 = High Z
Typical values: TA = 25°C, VDD = 3.0 V
All min/max limits are guaranteed by Winbond via electrical testing or characterization. Not all
specifications are 100 percent tested.
- 21 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
10.3. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS
W682510: VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VREF;
W682310: VDD=2.7V to 3.8V; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VREF;
PARAMETER
SYM.
CONDITION
TYP.
TRANSMIT (A/D)
MIN.
Reference Level
Out
MAX.
RECEIVE (D/A)
MIN.
UNIT
MAX.
LABS
0 dBm0 = +0.8 dBm @
600Ω load 1020 Hz
0.850
---
---
---
---
VRMS
T0TLP
1020 Hz
0.850
---
---
---
---
VRMS
LABS
0 dBm0 = -3.8 dBm @
1200Ω load
1020 Hz
0.500
---
---
---
---
VRMS
T0TLP
1020 Hz
0.350
---
---
---
---
VRMS
Max. Transmit
Level In
W682510 5V
TXMAX
3.17 dBm0 for μ-Law
1.732
---
---
---
---
VPK
3.14 dBm0 for A-Law
1.726
---
---
---
---
VPK
Max. Transmit
Level In
W682310 3V
TXMAX
3.17 dBm0 for μ-Law
0.712
---
---
---
---
VPK
3.14 dBm0 for A-Law
0.708
---
---
---
---
VPK
Absolute Gain
(0 dBm0 @
1020 Hz;
TA=+25°C)
GABS
0 dBm0 @ 1020 Hz;
TA=+25°C
0
-0.2
+0.2
-0.2
+0.2
dB
Absolute Gain
variation with
Temperature
GABST
TA=0°C to TA=+70°C
0
-0.08
+0.08
-0.08
+0.08
dB
-0.1
+0.1
-0.1
+0.1
Frequency
Response,
GRTV
W682510 5V
Reference Level
In
W682510 5V
Reference Level
Out
W682310 3V
Reference Level
Out
W682310 3V
Relative to
0dBm0 @ 1020
Hz
TA=-40°C to TA=+85°C
15 Hz
---
---
-40
-0.5
0
50 Hz
---
---
-30
-0.5
0
60 Hz
---
---
-20
-0.5
0
200 Hz
---
-1.5
-0.4
-0.5
0
300 to 3000 Hz
---
-0.20
+0.20
-0.20
+0.20
3300 Hz
---
-0.50
+0.20
-0.50
+0.20
3400 Hz
---
-0.8
0
-0.8
0
3600 Hz
---
---
0
---
0
4000 Hz
---
---
-14
---
-14
4600 Hz to 100 kHz
---
---
-32
---
-30
- 22 -
dB
W682510/W682310
Gain Variation
vs. Level Tone
(1020 Hz
relative to –10
dBm0)
GLT
+3 to –40 dBm0
---
-0.3
+0.3
-0.3
+0.3
-40 to –50 dBm0
---
-0.5
+0.5
-0.5
+0.5
-50 to –55 dBm0
---
-1.2
+1.2
-1.2
+1.2
- 23 -
DB
Publication Release Date: April 2005
Revision A10
W682510/W682310
10.4. ANALOG DISTORTION AND NOISE PARAMETERS
W682510: VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VREF;
W682310: VDD=2.7V to 3.8V; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VREF;
PARAMETER
Total Distortion vs.
Level Tone (1020 Hz,
μ-Law, C-Message
Weighted)
Total Distortion vs.
Level Tone (1020 Hz,
A-Law, Psophometric
Weighted)
SYM.
DLTμ
CONDITION
TRANSMIT (A/D)
MIN.
TYP.
MAX.
36
---
---
36
---
-40 dBm0
29
-45 dBm0
TYP.
MAX.
34
---
---
---
36
---
---
---
---
30
---
---
25
---
---
25
---
---
+3 dBm0
36
---
---
34
---
---
36
---
---
36
---
---
-40 dBm0
29
---
---
30
---
---
-45 dBm0
25
---
---
25
---
---
4600 Hz to 7600 Hz
---
---
---
---
---
-30
7600 Hz to 8400 Hz
---
---
---
---
---
-40
8400 Hz to 100000 Hz
---
---
---
---
---
-30
+3 dBm0
0 dBm0 to -30 dBm0
DLTA
RECEIVE (D/A)
0 dBm0 to -30 dBm0
MIN.
UNIT
dBC
dBp
Spurious Out-Of-Band
at RO- (300 Hz to
3400 Hz @ 0dBm0)
DSPO
Spurious In-Band (700
Hz to 1100 Hz @
0dBm0)
DSPI
300 to 3000 Hz
---
---
-47
---
---
-47
dB
Intermodulation
Distortion (300 Hz to
3400 Hz –4 to –21
dBm0
DIM
Two tones
---
---
-41
---
---
-41
dB
Crosstalk (1020 Hz @
0dBm0)
DXT
---
---
-75
---
---
-75
dBm0
Channel to Channel
Crosstalk (1020 Hz @
0dBm0)
DXTCH
---
---
-75
---
---
-75
dBm0
Absolute Group Delay
τABS
1600 Hz
---
---
360
---
---
240
μsec
Group Delay
Distortion (relative to
group delay @ 1200
Hz)
τD
500 Hz
---
---
750
---
---
750
μsec
600 Hz
---
---
380
---
---
370
1000 Hz
---
---
130
---
---
120
2600 Hz
---
---
130
---
---
120
2800 Hz
---
---
750
---
---
750
μ-Law; C-message
---
---
5
---
---
13
dBrnc
A-Law; Psophometric
---
---
-69
---
---
-79
dBm0p
Idle Channel Noise
NIDL
- 24 -
dB
W682510/W682310
10.5. ANALOG INPUT AND OUTPUT AMPLIFIER PARAMETERS
W682510: VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VREF;
W682310: VDD=2.7V to 3.8V; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VREF;
PARAMETER
SYM.
CONDITION
MIN.
TYP.
MAX.
UNIT.
AI1, AI2 Input Offset Voltage
VOFF,AI
Unity Gain
---
---
±20
mV
AI1, AI2 Input Resistance
RIN,AI
AI1, AI2 to VREF
10
---
---
MΩ
AO1-, AO2- Output Amplitude
VAD
W682510
0
---
3.4
Vpp
W682310
AO1-, AO2- Load Resistance
RLOAD
AO1-, AO2- Load Capacitance
CLOAD
RO1, RO2 Load Resistance
RLOAD
RO1, RO2 Load Capacitance
CLOAD
RO1, RO2 Output Amplitude
VORO
1.4
20
---
---
kΩ
AO1-, AO2-
---
---
30
pF
W682510
0.6
---
---
kΩ
W682310
1.2
RO1, RO2
---
---
50
pF
W682510
---
---
3.4
Vpp
W682310
RO1, RO2 Output Offset Voltage
VOFF,RO
Signal Ground Voltage to VSSA
VREF
Power Supply Rejection Ratio (0 to
100 kHz to VDD, C-message)
PSRR
2.0
---
---
±100
mV
VDD/2 – 0.1
VDD/2
VDD/2+ 0.1
V
Transmit; 50 mVpp
--
40
---
dBC
Receive; 50 mVpp
--
40
---
RO to VREF
- 25 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
10.6. DIGITAL I/O
TABLE 10.61: μ-LAW ENCODE DECODE CHARACTERISTICS
Normalized
Encode
Decision
Levels
8159
7903
Normalized
Digital Code
D7
D6
D5
D4
D3
D2
D1
D0
Sign
Chord
Chord
Chord
Step
Step
Step
Step
1
0
0
0
0
0
0
0
4063
1
0
0
0
1
1
1
1
2015
1
0
0
1
1
1
1
1
991
1
0
1
0
1
1
1
1
479
1
0
1
1
1
1
1
1
223
1
1
0
0
1
1
1
1
95
1
1
0
1
1
1
1
1
31
1
1
1
0
1
1
1
1
1
0
33
:
:
3
99
:
:
35
231
:
:
103
495
:
:
239
1023
:
:
511
2079
:
:
1055
4191
:
:
2143
8031
:
:
4319
Decode
Levels
1
1
1
1
1
1
1
0
2
1
1
1
1
1
1
1
1
0
Notes:
Sign bit = 0 for negative values, sign bit = 1 for positive values
- 26 -
W682510/W682310
TABLE 10.62: A-LAW ENCODE DECODE CHARACTERISTICS
Normalized
Encode
Decision
Levels
4096
3968
Digital Code
Normalized
D7
D6
D5
D4
D3
D2
D1
D0
Sign
Chord
Chord
Chord
Step
Step
Step
Step
1
0
1
0
1
0
1
0
2048
1
0
1
0
0
1
0
1
1024
1
0
1
1
0
1
0
1
512
1
0
0
0
0
1
0
1
256
1
0
0
1
0
1
0
1
128
1
1
1
0
0
1
0
1
64
1
1
1
0
0
1
0
1
0
66
:
:
2
132
:
:
68
264
:
:
136
528
:
:
272
1056
:
:
544
2112
:
:
1088
4032
:
:
2048
Decode
Levels
1
1
0
1
0
1
0
1
1
Notes:
1. Sign bit = 0 for negative values, sign bit = 1 for positive values
2. Digital code includes inversion of all even number bits
- 27 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
TABLE 10.63: PCM CODES FOR ZERO AND FULL SCALE
μ-Law
Level
A-Law
Sign bit
Chord bits
Step bits
Sign bit
Chord bits
Step bits
(D7)
(D6,D5,D4)
(D3,D2,D1,D0)
(D7)
(D6,D5,D4)
(D3,D2,D1,D0)
+ Full Scale
1
000
0000
1
010
1010
+ Zero
1
111
1111
1
101
0101
- Zero
0
111
1111
0
101
0101
- Full Scale
0
000
0000
0
010
1010
TABLE 10.64: PCM CODES FOR 0DBM0 OUTPUT
μ-Law
Sample
A-Law
Sign bit
Chord bits
Step bits
Sign bit
Chord bits
Step bits
(D7)
(D6,D5,D4)
(D3,D2,D1,D0)
(D7)
(D6,D5,D4)
(D3,D2,D1,D0)
1
0
001
1110
0
011
0100
2
0
000
1011
0
010
0001
3
0
000
1011
0
010
0001
4
0
001
1110
0
011
0100
5
1
001
1110
1
011
0100
6
1
000
1011
1
010
0001
7
1
000
1011
1
010
0001
8
1
001
1110
1
011
0100
- 28 -
W682510/W682310
11. TYPICAL APPLICATION CIRCUIT
VDD
0.1μF
Power Up
Input
1 VREF
Channel 2
Analog
Output
AI2 24
2 RO2
AO2- 23
3 NC
AO1- 22
4 RO1
1μF
5 PUI
NC 20
6 PCMMS
A/μ 19
VSSA 18
8 VDD
NC 17
9 VSSD
BCLK 16
10 FSR
PCM 2 Ch Serial Input
Frame Sync Input
Channe
Analog
Input
AI1 21
7 NC
Channel 1
Analog
Output
Channe
Analog
Input
W682510/W2310
Bit Clock Input
FST 15
11 PCMR2
PCMT2 14
12 PCMR1
PCMT1 13
SOP
PCM 2 Ch. Serial Output
Ω
1k
VDD
FIGURE 11.1: APPLICATION CIRCUIT FOR SERIAL MODE OPERATION
- 29 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
V DD
0.1 μF
Power Up
Input
W682510/W682310
1 VREF
AI2 24
2 RO2
AO2 - 23
Channel 2 Analog Output
3 NC
AO1 - 22
Channel 1 Analog Output
4 RO1
AI1 21
5 PUI
NC 20
6 PCMMS
A/ μ 19
VSSA 18
7 NC
1 μF
PCM Ch2 Serial Input
PCM Ch1 Serial Input
Frame Sync Input
Channel 1
Analog
Input
8 V DD
NC 17
9 V SSD
BCLK 16
10 FSR
FST 15
11 PCMR2
PCMT2 14
12 PCMR1
PCMT1 13
Bit Clock Input
PCM Ch2
Serial Output
PCM Ch1
Serial Output
SOP
Ω
Ω
1k
1k
V DD
FIGURE 11.2: APPLICATION CIRCUIT FOR PARALLEL MODE OPERATION
- 30 -
W682510/W682310
12. PACKAGE DRAWING AND DIMENSIONS
12.1. 20L (PDIP) PLASTIC DUAL INLINE PACKAGE DIMENSIONS (W682510 ONLY)
D
2
1
1
E
1
1
E
S
c
1
2
AA
A
Base
Seating
L
B
e1
eA
á
B1
DIMENSION (MM)
DIMENSION (INCH)
SYMBOL
MIN.
NOM.
MAX.
MIN.
NOM.
MAX.
A
-
-
4.45
-
-
0.175
A1
0.25
-
-
0.010
-
-
A2
3918
3.30
3.43
0.125
0.130
0.135
B
0.41
0.46
0.56
0.016
0.018
0.022
B1
1.47
1.52
1.63
0.058
0.060
0.064
c
0.20
0.25
0.36
0.008
0.010
0.014
D
-
20.06
26.42
-
1.026
1.046
E
7.37
7.62
7.87
0.290
0.300
0.310
E1
6.22
6.35
6.48
0.245
0.250
0.255
e1
2.29
2.54
2.79
0.090
0.100
0.110
L
3.05
3.30
3.56
0.120
0.130
0.140
á
0º
-
15º
0º
-
15º
eA
8.51
9.02
9.53
0.335
0.355
0.375
S
-
-
1.91
-
-
0.075
- 31 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
12.2. 20L SSOP – 209 MIL SHRINK SMALL OUTLINE PACKAGE DIMENSIONS
D
1
2
DTEAIL A
HE E
1
1
b
A A
SEATING
SEATING
θ
Y
e
L
L
b
A
DETAIL A
DIMENSION (MM)
DIMENSION (INCH)
SYMBOL
MIN.
NOM.
MAX.
MIN.
NOM.
MAX.
A
-
-
2.00
-
-
0.079
A1
0.05
-
-
0.002
-
-
A2
1.65
1.75
1.85
0.065
0.069
-
b
0.22
-
0.38
0.009
-
0.015
c
0.09
-
0.25
0.004
-
0.010
D
6.90
7.20
7.50
0.272
0.283
0.295
E
5.00
5.30
5.60
0.197
0.209
0.220
HE
7.40
7.80
8.20
0.291
0.307
0.323
e
-
0.65
-
-
0.0256
-
L
0.55
0.75
0.95
0.021
0.030
0.037
L1
-
1.25
-
-
0.050
-
Y
-
-
0.10
-
-
0.004
0
0º
-
8º
0
-
8º
- 32 -
W682510/W682310
12.3. 24 SOP – 300 MIL
13
24
c
E
HE
L
1
12
D
0.25
O
A
Y
SEATING PLANE
e
GAUGE PLANE
A1
b
DIMENSION (MM)
DIMENSION (INCH)
SYMBOL
MIN.
MAX.
MIN.
MAX.
A
2.35
2.65
0.093
0.104
A1
0.10
0.30
0.004
0.012
b
0.33
0.51
0.013
0.020
c
0.23
0.32
0.009
0.013
E
7.40
7.60
0.291
0.299
D
15.20
15.60
0.598
0.614
e
HE
1.27 BSC
10.00
Y
0.050 BSC
10.65
0.394
0.10
0.419
0.004
L
0.10
1.27
0.016
0.050
0
0º
8º
0
8º
- 33 -
Publication Release Date: April 2005
Revision A10
W682510/W682310
13. ORDERING INFORMATION
Product Number Descriptor Key
W682510 _
Package Type:
Product Family
W682510 Product
E
=
20-Lead Plastic Dual Inline Package (PDIP)
S
=
24-Lead Plastic Small Outline Package (SOP)
R
=
20-Lead Plastic Small Outline Package (SSOP)
When ordering W682510 series devices, please refer to the following part numbers.
Part Number
W682510E
W682510S
W682510R
W682310 _
Product Family
W682310 Product
Package Type:
S
=
24-Lead Plastic Small Outline Package (SOP)
R
=
20-Lead Plastic Small Outline Package (SSOP)
When ordering W682310 series devices, please refer to the following part numbers.
Part Number
W682310S
W682310R
For the latest product information, access Winbond’s worldwide website at
HTTP://WWW.WINBOND-USA.COM
- 34 -
W682510/W682310
14. VERSION HISTORY
VERSION
DATE
PAGE
0.31
Mar 2003
All
0.34
Apr. 2003
Updates
0.35
May 2003
Frequency response updated
A10
April 2005
35
DESCRIPTION
Preliminary Specifications
Add Important Notice
Important Notice
Winbond products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, or for other applications intended to support or
sustain life. Further more, Winbond products are not intended for applications wherein failure
of Winbond products could result or lead to a situation wherein personal injury, death or
severe property or environmental damage could occur.
Winbond customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Winbond for any damages resulting from such improper
use or sales.
- 35 -
Publication Release Date: April 2005
Revision A10