WINBOND W989D2CB

W989D6CB / W989D2CB
512Mb Mobile LPSDR
TABLE OF CONTENTS
1. GENERAL DESCRIPTION .......................................................................................................... 3
2. FEATURES .................................................................................................................................. 3
3. PIN CONFIGURATION ................................................................................................................ 4
3.1 Ball Assignment: LPSDR X 16 ............................................................................................................ 4
3.2 Ball Assignment: LPSDR X 32 ............................................................................................................ 4
4. PIN DESCRIPTION...................................................................................................................... 5
4.1 Signal Description ............................................................................................................................... 5
4.2 Addressing Table ................................................................................................................................ 5
5. BLOCK DIAGRAM ...................................................................................................................... 6
6. ELECTRICAL CHARACTERISTICS ........................................................................................... 7
6.1 Absolute Maximum Ratings ................................................................................................................ 7
6.2 Operating Conditions .......................................................................................................................... 7
6.3 Capacitance ........................................................................................................................................ 7
6.4 DC Characteristics .............................................................................................................................. 8
6.5 Automatic Temperature Compensated Self Refresh Current Feature .............................................. 10
6.6 AC Characteristics And AC Operating Conditions ............................................................................ 11
6.6.1 AC Characteristics.................................................................................................................................... 11
6.6.2 AC Test Condition .................................................................................................................................... 12
6.6.3 AC Latency Characteristics ...................................................................................................................... 13
7. FUNCTION DESCRIPTION ....................................................................................................... 14
7.1 Command Function ........................................................................................................................... 14
7.1.1Table 1. Truth Table .................................................................................................................................. 14
7.1.2 Functional Truth Table ............................................................................................................................. 15
7.1.3 Function Truth Table for CKE .................................................................................................................. 18
7.1.4 Bank Activate Command .......................................................................................................................... 19
7.1.5 Bank Precharge Command ...................................................................................................................... 19
7.1.6 Precharge All Command .......................................................................................................................... 19
7.1.7 Write Command ....................................................................................................................................... 19
7.1.8 Write with Auto Precharge Command ...................................................................................................... 19
7.1.9 Read Command ....................................................................................................................................... 19
7.1.10 Read with Auto Precharge Command.................................................................................................... 19
7.1.11 Extended Mode Register Set Command ............................................................................................... 19
7.1.12 Mode Register Set Command ................................................................................................................ 20
7.1.13 No-Operation Command ........................................................................................................................ 20
7.1.14 Burst Stop Command ............................................................................................................................. 20
7.1.15 Device Deselect Command.................................................................................................................... 20
7.1.16 Auto Refresh Command ......................................................................................................................... 20
7.1.17 Self Refresh Entry Command ................................................................................................................ 20
7.1.18 Self Refresh Exit Command ................................................................................................................... 20
7.1.19 Clock Suspend Mode Entry/Power Down Mode Entry Command ......................................................... 20
7.1.20 Clock Suspend Mode Exit / Power Down Mode Exit Command ............................................................ 20
7.1.21 Data Write/Output Enable, Data Mask/Output Disable Command ........................................................ 21
8.OPERATION ............................................................................................................................... 21
8.1 Read Operation ................................................................................................................................. 21
8.2 Write Operation ................................................................................................................................. 21
8.3 Precharge ......................................................................................................................................... 22
8.3.1 Auto Precharge ........................................................................................................................................ 22
8.3.2 READ with auto precharge interrupted by a READ (with or without auto precharge) ............................. 22
8.3.3 READ with auto precharge interrupted by a WRITE (with or without auto precharge) ............................ 23
8.3.4 WRITE with auto precharge interrupted by a READ (with or without auto precharge) ............................ 24
8.3.5 WRITE with auto precharge interrupted by a WRITE (with or without auto precharge) .......................... 25
- 1-
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.4 Burst Termination .............................................................................................................................. 26
8.5 Mode Register Operation .................................................................................................................. 27
8.5.1 Burst Length field (A2~A0) ....................................................................................................................... 27
8.5.2 Addressing Mode Select (A3) .................................................................................................................. 27
8.5.3 Addressing Sequence for Sequential Mode ............................................................................................. 28
8.5.4 Addressing Sequence for Interleave Mode .............................................................................................. 28
8.5.5 Addressing Sequence Example (Burst Length = 8 and Input Address is 13) .......................................... 29
8.5.6 Read Cycle CAS Latency = 3 ................................................................................................................ 29
8.5.7 CAS Latency field (A6~A4) ................................................................................................................... 30
8.5.8 Mode Register Definition .......................................................................................................................... 30
8.6 Extended Mode Register Description................................................................................................ 31
8.7 Simplified State Diagram................................................................................................................... 32
9. CONTROL TIMING WAVEFORMS ........................................................................................... 33
9.1 Command Input Timing ..................................................................................................................... 33
9.2 Read Timing ...................................................................................................................................... 34
9.3 Control Timing of Input Data (x16) .................................................................................................... 35
9.4 Control Timing of Output Data (x16) ................................................................................................. 36
9.5 Control Timing of Input Data (x32) .................................................................................................... 37
9.6 Control Timing of Output Data (x32) ................................................................................................. 38
9.7 Mode register Set (MRS) Cycle ........................................................................................................ 39
9.8 Extended Mode register Set (EMRS) Cycle ...................................................................................... 40
10. OPERATING TIMING EXAMPLE ............................................................................................ 41
10.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)....................................................... 41
10.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto Precharge)............................ 42
10.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)....................................................... 43
10.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto Precharge)............................ 44
10.5 Interleaved Bank Write (Burst Length = 8) ...................................................................................... 45
10.6 Interleaved Bank Write (Burst Length = 8, Auto Precharge) ........................................................... 46
10.7 Page Mode Read (Burst Length = 4, CAS Latency = 3) ............................................................... 47
10.8 Page Mode Read / Write (Burst Length = 8, CAS Latency = 3) .................................................... 48
10.9 Auto Precharge Read (Burst Length = 4, CAS Latency = 3)......................................................... 49
10.10 Auto Precharge Write (Burst Length = 4) ...................................................................................... 50
10.11 Auto Refresh Cycle ....................................................................................................................... 51
10.12 Self Refresh Cycle ........................................................................................................................ 52
10.13 Power Down Mode ........................................................................................................................ 53
10.14 Burst Read and Single Write (Burst Length = 4, CAS Latency = 3) ............................................ 54
10.15 Deep Power Down Mode Entry ..................................................................................................... 55
10.16 Deep Power Down Mode Exit ....................................................................................................... 56
10.17 Auto Precharge Timing (Read Cycle) ........................................................................................... 57
10.18 Auto Precharge Timing (Write Cycle)............................................................................................ 58
10.19 Timing Chart of Read to Write Cycle............................................................................................. 59
10.20 Timing Chart for Write to Read Cycle ........................................................................................... 59
10.21 Timing Chart for Burst Stop Cycle (Burst Stop Command) ........................................................... 60
10.22 Timing Chart for Burst Stop Cycle (Precharge Command) ........................................................... 60
10.23 CKE/DQM Input Timing (Write Cycle) ........................................................................................... 61
10.24 CKE/DQM Input Timing (Read Cycle)........................................................................................... 62
11. PACKAGE DIMENSION .......................................................................................................... 63
11.1 : LPSDR X 16 .................................................................................................................................. 63
11.2 : LPSDR X 32 .................................................................................................................................. 64
12.ORDERING INFORMATION .................................................................................................... 65
13. REVISION HISTORY ............................................................................................................... 66
- 2-
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
1. GENERAL DESCRIPTION
The Winbond 512Mb Low Power SDRAM is a low power synchronous memory containing 536,870,912 memory cells
fabricated with Winbond high performance process technology.
It is designed to consume less power than the ordinary SDRAM with low power features essential for applications which
use batteries. It is available in two organizations: 4,194,304-words × 4 banks × 32 bits or 8,388,608 words × 4 banks × 16
bits. The device operates in a fully synchronous mode, and the output data are synchronized to positive edges of the
system clock and is capable of delivering data at clock rate up to 166MHz. The device supports special low power functions
such as Partial Array Self Refresh (PASR) and Automatic Temperature Compensated Self Refresh (ATCSR).
The Low Power SDRAM is suitable for 2.5G / 3G cellular phone, PDA, digital still camera, mobile game consoles and other
handheld applications where large memory density and low power consumption are required. The device operates from
1.8V power supply, and supports the 1.8V LVCMOS bus interface.
2. FEATURES
Power supply VDD = 1.7V~1.95V
CAS Latency: 2 and 3
VDDQ = 1.7V~1.95V
Burst Length: 1, 2, 4, 8, and full page
Frequency : 166MHz(-6),133MHz(-75)
Refresh: 8K refresh cycle / 64ms
Programmable Partial Array Self Refresh
Interface: LVCMOS
Power Down Mode
Support package :
Deep Power Down Mode (DPD)
Programmable output buffer driver strength
Automatic Temperature Compensated Self Refresh
54 balls VFBGA (x16)
90 balls VFBGA (x32)
Operating Temperature Range
Extended (-25°C ~ +85°C)
Industrial (-40°C ~ +85°C)
- 3-
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
3. PIN CONFIGURATION
3.1 Ball Assignment: LPSDR X 16
54Ball FBGA
1
2
3
A
VSS
DQ15
B
DQ14
C
4 5 6
7
8
9
VSSQ
VDDQ
DQ0
VDD
DQ13
VDDQ
VSSQ
DQ2
DQ1
DQ12
DQ11
VSSQ
VDDQ
DQ4
DQ3
D
DQ10
DQ9
VDDQ
VSSQ
DQ6
DQ5
E
DQ8
NC
VSS
VDD
LDQM
DQ7
F
UDQM
CLK
CKE
CAS
RAS
WE
G
A12
A11
A9
BA0
BA1
CS
H
A8
A7
A6
A0
A1
A10
J
VSS
A5
A4
A3
A2
VDD
7
8
9
(Top View) Pin Configuration
3.2 Ball Assignment: LPSDR X 32
90Ball FBGA
1
2
3
4 5 6
A
DQ26
DQ24
VSS
VDD
DQ23
DQ21
B
DQ28
VDDQ
VSSQ
VDDQ
VSSQ
DQ19
C
VSSQ
DQ27
DQ25
DQ22
DQ20
VDDQ
D
VSSQ
DQ29
DQ30
DQ17
DQ18
VDDQ
E
VDDQ
DQ31
NC
NC
DQ16
VSSQ
F
VSS
DQM3
A3
A2
DQM2
VDD
G
A4
A5
A6
A10
A0
A1
H
A7
A8
A12
NC
BA1
A11
J
CLK
CKE
A9
BA0
CS
RAS
K
DQM1
NC
NC
CAS
DQM0
L
VDDQ
DQ8
VSS
VDD
WE
DQ7
M
VSSQ
DQ10
DQ9
DQ6
DQ5
VDDQ
N
VSSQ
DQ12
DQ14
DQ1
DQ3
VDDQ
P
DQ11
VDDQ
VSSQ
VDDQ
VSSQ
DQ4
R
DQ13
DQ15
VSS
VDD
DQ0
DQ2
VSSQ
(Top View) Pin Configuration
- 4-
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
4. PIN DESCRIPTION
4.1 Signal Description
BALL NAME
FUNCTION
A [n : 0]
Address
BA0, BA1
Bank Select
DQ0~DQ15 (×16)
DQ0~DQ31 (×32)
CS
RAS
CAS
WE
DESCRIPTION
Multiplexed pins for row and column address.
A10 is Auto Precharge Select
Select bank to activate during row address latch time, or bank to
read/write during address latch time.
Data Input/ Output Multiplexed pins for data output and input.
Chip Select
Row
Address Strobe
Column
Address Strobe
Write Enable
I/O Mask
CLK
Clock Inputs
CKE
Clock Enable
VDD
VSS
Power
Ground
Power for I/O
Buffer
Ground for
I/O Buffer
No Connection
VSSQ
NC
Referred to RAS
Referred to WE
The output buffer is placed at Hi-Z (with latency of 2 in CL=2, 3;)
when DQM is sampled high in read cycle. In write cycle, sampling
DQM high will block the write operation with zero latency.
UDQM / LDQM(x16)
DQM0 ~ DQM3 (x32)
VDDQ
Disable or enable the command decoder. When command
decoder is disabled, new command is ignored and previous
operation continues.
Command input. When sampled at the rising edge of the clock,
RAS , CAS and WE define the operation to be executed.
System clock used to sample inputs on the rising edge of clock.
CKE controls the clock activation and deactivation. When CKE is
low, Power Down mode, Suspend mode or Self Refresh mode is
entered.
Power supply for input buffers and logic circuit inside DRAM.
Ground for input buffers and logic circuit inside DRAM.
Power supply separated from VDD, used for output buffers to
improve noise.
Separated ground from VSS, used for output buffers to improve
noise.
No connection
4.2 Addressing Table
ITEM
512 Mb
Number of banks
4
Bank address pins
BA0,BA1
Auto precharge pin
A10/AP
X16
Row addresses
A0-A12
Column addresses
A0-A9
Refresh count
x32
8K
Row addresses
A0-A12
Column addresses
A0-A8
Refresh count
8K
- 5-
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
5. BLOCK DIAGRAM
CLK
CLOCK
BUFFER
CKE
CS
CONTROL
SIGNAL
RAS
COMMAND
CAS
DECODER
GENERATOR
COLUMN DECODER
WE
A10
MODE
REGISTER
A0
An
BA0
BA1
COLUMN DECODER
R
O
W
D
E
C
O
R
D
E
R
R
O
W
D
E
C
O
R
D
E
R
CELL ARRAY
BANK #0
CELL ARRAY
BANK #1
SENSE AMPLIFIER
SENSE AMPLIFIER
ADDRESS
BUFFER
DMn
DQ
BUFFER
DATA CONTROL
CIRCUIT
REFRESH
COUNTER
DQ0 – DQn
DQM
COLUMN
COUNTER
COLUMN DECODER
COLUMN DECODER
R
O
W
D
E
C
O
R
D
E
R
R
O
W
CELL ARRAY
D
E
C
O
R
D
E
R
BANK #2
SENSE AMPLIFIER
CELL ARRAY
BANK #3
SENSE AMPLIFIER
- 6-
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
6. ELECTRICAL CHARACTERISTICS
6.1 Absolute Maximum Ratings
PARAMETER
SYMBOL
VALUES
UNITS
MIN
MAX
VDD
−0.3
2.7
V
Voltage on VDDQ relative to VSS
VDDQ
−0.3
2.7
V
Voltage on any pin relative to VSS
VIN, VOUT
−0.3
2.7
V
Tc
-25
-40
85
85
°C
Storage Temperature
TSTG
−55
150
°C
Short Circuit Output Current
IOUT
±50
mA
PD
1.0
W
Voltage on VDD relative to VSS
Operating Temperature
Power Dissipation
6.2 Operating Conditions
SYMBOL
MIN.
TYP.
MAX.
UNIT
Supply Voltage
PARAMETER
VDD
1.7
1.8
1.95
V
Supply Voltage (for I/O Buffer)
VDDQ
1.7
1.8
1.95
V
Input High level Voltage
VIH
0.8*VDDQ
-
VDDQ+0.3
V
Input Low level Voltage
VIL
-0.3
-
+0.3
V
LVCOMS Output H Level Voltage (IOUT = -0.1 mA )
VOH
0.9*VDDQ
-
-
V
LVCMOS Output L Level Voltage (IOUT = +0.1 mA )
VOL
-
-
0.2
V
II(L)
-1
-
1
A
IO(L)
-5
-
5
A
Input Leakage Current
(0V
VIN VDD, all other pins not under test = 0V)
Output Leakage Current (Output disable , 0V
VOUT
VDDQ)
Note: VIH(max) = VDD/ VDDQ+1.2V for pulse width < 5 ns , VIL(min) = VSS/ VSSQ-1.2V for pulse width < 5 ns
6.3 Capacitance
PARAMETER
SYMBOL
MIN.
MAX.
UNIT
CI
1.5
3.0
pf
Input Capacitance (CLK)
CCLK
1.5
3.5
pf
Input/Output capacitance
CIO
3.0
5.0
pf
Input Capacitance
(A[ n : 0] , BA0, BA1,
CS , RAS , CAS , WE
, DQM, CKE)
Note: These parameters are periodically sampled and not 100% tested.
- 7-
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
6.4 DC Characteristics
(x16)
PARAMETER / CONDITION
-6
-75
MAX.
MAX.
38
35
Low
power
0.6
0.6
Normal
power
0.8
0.8
Idd2N
10
10
mA
Idd3P
3
3
mA
3, 4, 6
Idd3N
25
25
mA
3, 4, 6
Idd4
75
70
mA
2, 3, 4
Idd5
75
75
mA
2, 3, 4, 6
Izz
10
10
μA
5,8
SYM.
Operating current:
Active mode, 1 bank, BL = 1, tRC = tRC (min), Iout=0mA,
Active Precharge command cycling without burst operation.
IDD1
Standby current:
Power-down mode, All banks idle, CKE = LOW.
Idd2P
Standby current:
Nonpower-down mode, All banks idle, CKE = HIGH.
Standby current:
Active mode; CKE = LOW, CS# = HIGH, All banks active,
No accesses in progress.
Standby current:
Active mode, CKE = HIGH, CS# = HIGH, All banks active after
tRCD met,
No accesses in progress.
Operating current:
Burst mode, All banks active, Iout=0mA,
READ/WRITE command cycling,
Auto refresh current:
tRFC=tRFC (MIN), Auto refresh command cycling
Deep Power Down Mode
- 8-
UNIT
NOTES
mA
2, 3, 4
mA
5
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
(x32)
PARAMETER / CONDITION
-6
-75
MAX.
MAX.
38
35
Low
power
0.6
0.6
Normal
power
0.8
0.8
Idd2N
10
10
mA
Idd3P
3
3
mA
3, 4, 6
Idd3N
25
25
mA
3, 4, 6
Idd4
75
70
mA
2, 3, 4
Idd5
75
75
mA
2, 3, 4, 6
Izz
10
10
μA
5,8
SYM.
Operating current:
Active mode, 1 bank, BL = 1, tRC = tRC (min), Iout=0mA,
Active Precharge command cycling without burst operation.
IDD1
Standby current:
Power-down mode, All banks idle, CKE = LOW.
Idd2P
Standby current:
Nonpower-down mode, All banks idle, CKE = HIGH.
Standby current:
Active mode; CKE = LOW, CS# = HIGH, All banks active,
No accesses in progress.
Standby current:
Active mode, CKE = HIGH, CS# = HIGH, All banks active after
tRCD met,
No accesses in progress.
Operating current:
Burst mode, All banks active, Iout=0mA,
READ/WRITE command cycling,
Auto refresh current:
tRFC=tRFC (MIN), Auto refresh command cycling
Deep Power Down Mode
UNIT
NOTES
mA
2, 3, 4
mA
5
Notes:
1. A full initialization sequence is required before proper device operation is ensured.
2. Idd is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the
outputs open.
3. The Idd current will increase or decrease proportionally according to the amount of frequency alteration for the test
condition.
4. Address transitions average one transition every 2 clocks.
5. Measurement is taken 500ms after entering into this operating mode to provide tester measuring unit settling time.
6. Other input signals can transition only one time for every 2 clocks and are otherwise at valid Vih or Vil levels.
7. CKE is HIGH during the REFRESH command period tRFC (MIN) else CKE is LOW. The Idd7 limit is a nominal value
and does not result in a fail value.
8. Typical values at 25°C (not a maximum value).
- 9-
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
6.5 Automatic Temperature Compensated Self Refresh Current Feature
IDD6
Low Power
Normal Power
TCSR Range
45℃
85℃
45℃
85℃
Full Array
450
600
650
800
1/2 Array
350
500
550
700
1/4 Array
300
400
500
600
Units
uA
Note:
1. A full initialization sequence is required before proper device operation is ensured.
2. Measurement is taken 500ms after entering into this operating mode to provide tester measuring unit settling time.
3. Enables on-die refresh and address counters.
4. Values for Idd6 85°C full array and partial array are guaranteed for the entire temperature range.
5. IDD6 is typical value.
- 10 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
6.6 AC Characteristics And AC Operating Conditions
6.6.1 AC Characteristics
*CL= CAS Latency; (Notes: 5,6,7)
PARAMETER
SYM
Ref/Active to Ref/Active
Command Period
Active to precharge
Command Period
Active to Read/Write
Command Delay Time
-6
MIN.
-75
MAX.
UNIT
NOTE
-
ns
8
50
100000
ns
8
MIN.
MAX.
72.5
tRC
60
tRAS
42
tRCD
18
18
-
ns
8
tCCD
1
1
-
CLK
8
tRP
18
18
-
ns
8
tRRD
12
15
-
ns
8
tWR
15
15
-
ns
tLDR
1
1
tCK
6
1000
7.5
1000
ns
12
1000
12
1000
ns
100000
Read/Write(a) to
Read/Write(b)Command
Period
Precharge to Active
Command Period
Active(a) to Active(b)
Command Period
Write Recovery Time
Write-Recovery Time
(Last data to Read)
CLK Cycle Time
CL * = 3
CL * = 2
CLK
CLK High Level width
tCH
2
2.5
-
ns
CLK Low Level width
tCL
2
2.5
-
ns
5.4
-
5.4
ns
6
-
8
ns
2.5
-
ns
5.4
-
5.4
ns
7
6
-
6
ns
7
1
-
ns
Access Time from CLK
CL * = 3
tAC
CL * = 2
tOH
Output Data Hold Time
Output Data High
Impedance Time
CL * = 3
2.5
tHZ
CL * = 2
Output Data Low
tLZ
1
tSB
0
6
0
7.5
ns
tT
0.3
1.2
0.3
1.2
ns
Data-in Set-up Time
tDS
1.5
1.5
-
ns
Data-in Hold Time
tDH
1
1
-
ns
Address Set-up Time
tAS
1.5
1.5
-
ns
Address Hold Time
tAH
1
1
-
ns
Impedance Time
Power Down Mode
Entry Time
Transition Time of CLK
(Rise and Fall)
- 11 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
PARAMETER
SYM
-6
MIN.
-75
MAX.
MIN.
MAX.
UNIT
CKE Set-up Time
tCKS
1.5
1.5
-
ns
CKE Hold Time
tCKH
1
1
-
ns
Command Set-up Time
tCMS
1.5
1.5
-
ns
Command Hold Time
tCMH
tREF
1
1
-
ns
64
ms
tRSC
12
15
-
ns
tRFC
72
72
-
ns
tXSR
115
115
-
ns
Refresh Time
Mode register Set Cycle
Time
Ref to Ref/Active
Command period
Self Refresh exit to next
valid command delay
64
NOTE
8
6.6.2 AC Test Condition
SYMBOL
VIH(min)
VIL(max)
VREF
VOTR
SLEW
PARAMETER
Input High Voltage Level (AC)
Input Low Voltage Level (AC)
Input Signal Reference Level
Output Signal Reference Level
Input Signal Slew Rate
VALUE
0.8 x VDDQ
0.2 x VDDQ
0.5 x VDDQ
0.5 x VDDQ
1
UNIT
V
V
V
V
V/ns
VDDQ
VTT=0.9V
RT=50Ω
VIH(min)
VREF
output
VIL(max)
CLOAD = 30pF
VSS
tT
Z = 50 Ω
VOTR
AC TEST LOAD
tT
SLEW = ( VIH(min)- VIL(max) / tT
Transition times are measured between VIH and VIL.
- 12 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
Note :
1. Conditions outside the limits listed under “ABSOLUTE MAXIMUM RATINGS” may cause permanent damage to the device.
Exposure to “ABSOLUTE MAXIMUM RATINGS” conditions for extended periods may affect deice reliability.
2. All voltages are referenced to VSS and VSSQ.
3. These parameters depend on the cycle rate. These values are measured at a cycle rate with the minimum values of tCK and tRC .
Input signals transition once per tCK period.
4. These parameters depend on the output loading. Specified values are obtained with the output open.
5. Power-up sequence is described in Note 9.
6. AC TEST CONDITIONS : (refer to 6.6.2)
7. tHZ defines the time at which the outputs achieve the open circuit condition and is not referenced to output voltage
levels.
8. These parameters account for the number of clock cycles and depend on the operating frequency of the clock, as
follows: The number of clock cycles = specified value of timing / clock period (count fractions as a whole number)
9.
Power up Sequence : The SDRAM should be powered up by the following sequence of operations.
a. Power must be applied to VDD before or at the same time as VDDQ while all input signals are held in the “NOP” state. The
CLK signal will be applied at power up with power.
b. After power-up a pause of at least 200 uA is required. It is required that DQM and CKE signals must be held “High” (VDD
levels ) to ensure that the DQ output is in High-impedance state.
c. All banks must be precharged.
d. The Mode Register Set command must be issued to initialize the Mode Register.
e. The Extended Mode Register Set command must be issued to initialize the Extended Mode Register.
f. Issue two or more Auto Refresh dummy cycles to stabilize the internal circuitry of the device.
The Mode Register Set command can be invoked either before or after the Auto Refresh dummy cycles.
6.6.3 AC Latency Characteristics
CKE to clock disable (CKE Latency)
1
DQM to output in High-Z (Read DQM Latency)
2
DQM to input data delay (Write DQM Latency)
0
Write command to input data (Write Data Latency)
0
CS to Command input ( CS Latency)
0
Precharge to DQ Hi-Z Lead time
Precharge to Last Valid data out
Burst Stop Command to DQ Hi-Z Lead time
Burst Stop Command to Last Valid data out
Read with Auto Precharge Command to Active/Ref Command
Write with Auto Precharge Command to Active/Ref Command
- 13 -
CL = 2
2
CL = 3
3
CL = 2
1
CL = 3
2
CL = 2
2
CL = 3
3
CL = 2
1
CL = 3
2
CL = 2
BL+ tRP
CL = 3
BL+ tRP
CL = 2
BL+1 + tRP
CL = 3
BL+1 + tRP
Cycle
Cycle + ns
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
7. FUNCTION DESCRIPTION
7.1 Command Function
7.1.1Table 1. Truth Table
BS0,
Symbol
Command
Device State
CKEn-1
CKEn
DQM(5)
A10
Address
CS
RAS
CAS
WE
BS1
ACT
Bank Activate
PRE
Bank Precharge
Idle (3)
H
X
X
V
V
V
L
L
H
H
Any
H
X
X
V
L
X
L
L
H
L
PREA
Precharge All
Any
H
X
X
X
H
X
L
L
H
L
WRIT
Write
Active (3)
H
X
X
V
L
V
L
H
L
L
WRITA
Write with Auto Precharge
Active (3)
H
X
X
V
H
V
L
H
L
L
READ
Read
Active (3)
H
X
X
V
L
V
L
H
L
H
Read with Auto Precharge
Active (3)
H
X
X
V
H
V
L
H
L
H
Mode Register Set
Idle
H
X
X
V
V
V
L
L
L
L
Extended Mode Register
Set
Idle
H
X
X
V
V
V
L
L
L
L
READA
MRS
EMRS
NOP
No-Operation
BST
Burst stop
DSL
Any
H
X
X
X
X
X
L
H
H
H
Active (4)
H
X
X
X
X
X
L
H
H
L
Device Deselect
Any
H
X
X
X
X
X
H
X
X
X
AREF
Auto-Refresh
Idle
H
H
X
X
X
X
L
L
L
H
SELF
Self-Refresh Entry
Idle
H
L
X
X
X
X
H
SELEX
CSE
PD
CSEX
PDEX
Self-Refresh Exit
Clock Suspend Mode
Entry
Power Down Mode Entry
Clock Suspend Mode Exit
Power Down Mode Exit
Idle
(Self Refresh)
L
Active
H
L
X
X
X
X
Idle/Active (6)
H
L
X
X
X
X
Active
L
Any
(Power Down)
L
H
H
H
X
X
X
X
X
X
X
X
X
L
L
L
H
X
X
X
L
H
H
H
X
X
X
X
X
X
H
X
X
X
L
H
H
H
X
X
X
X
H
X
X
X
L
H
H
X
X
DE
Data Write/Output Enable
Active
H
X
L
X
X
X
X
X
X
X
DD
Data Write/Output Disable
Active
H
X
H
X
X
X
X
X
X
X
DPD
Deep Power Down Mode
Entry
Idle
H
L
X
X
X
X
L
H
H
L
DPDE
Deep Power Down Mode
Exit
Idle (DPD)
L
H
X
X
X
X
X
X
X
X
Note
1.
V = Valid, × = Don’t Care, L = Low level, H = High level
2.
CKEn signal is input level when commands are issued.
CKEn-1 signal is input level one clock cycle before the commands are issued.
3.
These are state designated by the BS0, BS1 signals.
4.
Device state is Full Page Burst operation.
5.
x32: DQM0-3, x16 : LDQM / UDQM
6.
Power Down Mode cannot entry in the burst cycle.
When this command assert in the burst cycle, device state is clock suspend mode.
- 14 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
7.1.2 Functional Truth Table
(See Note 1 at the end of this Table)
Current State
Idle
Row active
Read
Write
CS
RAS
CAS
WE
Address
Command
Action
H
X
X
X
X
DSL
Nop
L
H
H
X
X
NOP/BST
Nop
L
H
L
H
BS, CA, A10
READ/READA
ILLEGAL
3
L
H
L
L
BS, CA, A10
WRIT/WRITA
ILLEGAL
3
L
L
H
H
BS, RA
ACT
Row activating
L
L
H
L
BS, A10
PRE/PREA
Nop
L
L
L
H
X
AREF/SELF
Refresh or Self refresh
2
L
L
L
L
Op-Code
MRS/EMRS
Mode register accessing
2
H
X
X
X
X
DSL
Nop
L
H
H
X
X
NOP/BST
Nop
L
H
L
H
BS, CA, A10
READ/READA
Begin read: Determine AP
4
L
H
L
L
BS, CA, A10
WRIT/WRITA
Begin write: Determine AP
4
L
L
H
H
BS, RA
ACT
ILLEGAL
3
L
L
H
L
BS, A10
PRE/PREA
Precharge
5
L
L
L
H
X
AREF/SELF
ILLEGAL
L
L
L
L
Op-Code
MRS/EMRS
ILLEGAL
H
X
X
X
X
DSL
Continue burst to end
L
H
H
H
X
NOP
Continue burst to end
L
H
H
L
X
BST
Burst stop
L
H
L
H
BS, CA, A10
READ/READA
Term burst, new read: Determine
AP
L
H
L
L
BS, CA, A10
WRIT/WRITA
Term burst, begin write:
Determine AP
L
L
H
H
BS, RA
ACT
L
L
H
L
BS, A10
PRE/PREA
Term burst, precharging
L
L
L
H
X
AREF/SELF
ILLEGAL
L
L
L
L
Op-Code
MRS/EMRS
ILLEGAL
H
X
X
X
X
DSL
Continue burst to end.
L
H
H
H
X
NOP
Continue burst to end
L
H
H
L
X
BST
Burst stop, row active
L
H
L
H
BS, CA, A10
READ/READA
Term burst, start read: Determine
AP
6, 7
L
H
L
L
BS, CA, A10
WRIT/WRITA
Term burst, new write: Determine
AP
6
L
L
H
H
BS, RA
ACT
ILLEGAL
3
L
L
H
L
BS, A10
PRE/PREA
Term burst. precharging
8
L
L
L
H
X
AREF/SELF
ILLEGAL
L
L
L
L
Op-Code
MRS/EMRS
ILLEGAL
- 15 -
ILLEGAL
Notes
6
6,7
3
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
Current State
Read with
auto
precharge
Write with
auto
precharge
Precharging
Row
activating
CS
RAS
CAS
WE
Address
Command
H
X
X
X
X
DSL
Continue burst to end
L
H
H
H
X
NOP
Continue burst to end
L
H
H
L
X
BST
ILLEGAL
L
H
L
H
BS, CA, A10
READ/READA
ILLEGAL
3
L
H
L
L
BS, CA, A10
WRIT/WRITA
ILLEGAL
3
L
L
H
H
BS, RA
ACT
ILLEGAL
3
L
L
H
L
BS, A10
PRE/PREA
ILLEGAL
3
L
L
L
H
X
AREF/SELF
ILLEGAL
L
L
L
L
Op-Code
MRS/EMRS
ILLEGAL
H
X
X
X
X
DSL
Continue burst to end
L
H
H
H
X
NOP
Continue burst to end
L
H
H
L
X
BST
ILLEGAL
L
H
L
H
BS, CA, A10
READ/READA
ILLEGAL
3
L
H
L
L
BS, CA, A10
WRIT/WRITA
ILLEGAL
3
L
L
H
H
BS, RA
ACT
ILLEGAL
3
L
L
H
L
BS, A10
PRE/PREA
ILLEGAL
3
L
L
L
H
X
AREF/SELF
ILLEGAL
L
L
L
L
Op-Code
MRS/EMRS
ILLEGAL
H
X
X
X
X
DSL
Nop → Idle after tRP
L
H
H
H
X
NOP
Nop → Idle after tRP
L
H
H
L
X
BST
ILLEGAL
L
H
L
H
BS, CA, A10
READ/READA
ILLEGAL
3
L
H
L
L
BS, CA, A10
WRIT/WRITA
ILLEGAL
3
L
L
H
H
BS, RA
ACT
ILLEGAL
3
L
L
H
L
BS, A10
PRE/PREA
Nop → Idle after tRP
L
L
L
H
X
AREF/SELF
ILLEGAL
L
L
L
L
Op-Code
MRS/EMRS
ILLEGAL
H
X
X
X
X
DSL
Nop → Row active after tRCD
L
H
H
H
X
NOP
Nop → Row active after tRCD
L
H
H
L
X
BST
ILLEGAL
L
H
L
H
BS, CA, A10
READ/READA
ILLEGAL
3
L
H
L
L
BS, CA, A10
WRIT/WRITA
ILLEGAL
3
L
L
H
H
BS, RA
ACT
ILLEGAL
3
L
L
H
L
BS, A10
PRE/PREA
ILLEGAL
3
L
L
L
H
X
AREF/SELF
ILLEGAL
L
L
L
L
Op-Code
MRS/EMRS
ILLEGAL
- 16 -
Action
Notes
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
Current State
Write
recovering
Write
recovering
with auto
precharge
Refreshing
Mode register
accessing
CS
RAS
CAS
WE
Address
Command
H
X
X
X
X
DSL
Nop → Maintain Row active after tWR
L
H
H
H
X
NOP
Nop → Maintain Row active after tWR
L
H
H
L
X
BST
Nop → Maintain Row active after tWR
L
H
L
H
BS, CA, A10
READ/READA
Begin Read
L
H
L
L
BS, CA, A10
WRIT/WRITA
Begin new Write
L
L
H
H
BS, RA
ACT
ILLEGAL
3
L
L
H
L
BS, A10
PRE/PREA
ILLEGAL
3
L
L
L
H
X
AREF/SELF
ILLEGAL
L
L
L
L
Op-Code
MRS/EMRS
ILLEGAL
H
X
X
X
X
DSL
Nop → Enter precharge after tWR
L
H
H
H
X
NOP
Nop → Enter precharge after tWR
L
H
H
L
X
BST
Nop → Enter precharge after tWR
L
H
L
H
BS, CA, A10
READ/READA
ILLEGAL
3
L
H
L
L
BS, CA, A10
WRIT/WRITA
ILLEGAL
3
L
L
H
H
BS, RA
ACT
ILLEGAL
3
L
L
H
L
BS, A10
PRE/PREA
ILLEGAL
3
L
L
L
H
X
AREF/SELF
ILLEGAL
L
L
L
L
Op-Code
MRS/EMRS
ILLEGAL
H
X
X
X
X
DSL
Nop → Idle after tRFC
L
H
H
H
X
NOP
Nop → Idle after tRFC
L
H
H
L
X
BST
Nop → Idle after tRFC
L
H
L
X
X
READ/WRIT
ILLEGAL
L
L
H
X
X
ACT/PRE/PREA
ILLEGAL
L
L
L
X
X
AREF/SELF/MRS/
EMRS
ILLEGAL
H
X
X
X
X
DSL
Nop → Idle after tRSC
L
H
H
H
X
NOP
Nop → Idle after tRSC
L
H
H
L
X
BST
ILLEGAL
L
H
L
X
X
READ/WRIT
ILLEGAL
X
ACT/PRE/PREA/
AREF/SELF/MRS/
EMRS
ILLEGAL
L
L
X
X
Action
Notes
7
Note:
1. All entries assume that CKE was active (High level) during the preceding clock cycle and the current clock cycle (CKEn-1 = CKEn = ”1”)
2. Illegal if any bank is not idle.
3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BS), depending on the state of that bank.
4. Illegal if tRCD is not satisfied.
5. Illegal if tRAS is not satisfied.
6. Must satisfy burst interrupt condition.
7. Must avoid bus contention, bus turn around, and/or satisfy write recovery requirements.
8. Must mask preceding data which don’t satisfy tWR.
Remark: H = High level, L = Low level, X = High or Low level (Don’t care), V = Valid data.
- 17 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
7.1.3 Function Truth Table for CKE
Current State
Self refresh
Power-Down
Deep Power-Down
All banks idle
Row Active
Any state other than
listed above
CKE
n-1
n
CS
RAS
CAS
WE
Address
Action
H
X
X
X
X
X
X
N/A
L
H
H
X
X
X
X
Exit Self Refresh → Idle after tRFC
L
H
L
H
H
H
X
Exit Self Refresh → Idle after tRFC
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL
L
L
X
X
X
X
X
Maintain Self Refresh
H
X
X
X
X
X
X
N/A
L
H
L
Notes
H
X
X
X
X
L
H
H
H
X
L
X
X
X
X
X
Maintain Power-Down
H
X
X
X
X
X
X
N/A
L
H
X
X
X
X
X
Exit Deep Power-Down → Exit Sequence
L
L
X
X
X
X
X
Maintain Deep Power-Down
H
H
X
X
X
X
X
Refer to Function Truth Table
H
L
H
X
X
X
X
Enter Power-down
2
H
L
L
H
H
H
X
Enter Power-Down
2
H
L
L
H
H
L
X
Enter Deep Power-Down
3
H
L
L
L
L
H
X
Self Refresh
1
H
L
L
H
L
X
X
ILLEGAL
H
L
L
L
X
X
X
ILLEGAL
L
X
X
X
X
X
X
Power-Down
H
H
X
X
X
X
X
Refer to Function Truth Table
H
L
H
X
X
X
X
Enter Power down
2
H
L
L
H
H
H
X
Enter Power down
2
H
L
L
L
L
H
X
ILLEGAL
H
L
L
H
L
X
X
ILLEGAL
Exit Power Down → Idle after 1 clock cycle
2
H
L
L
L
X
X
X
ILLEGAL
L
X
X
X
X
X
X
Power-Down → Row Active or Maintain PD
H
H
X
X
X
X
X
Refer to Function Truth Table
Note:
1. Self refresh can enter only from the all banks idle state.
2. Power-down can enter only from the all banks idle or row active state.
3. Deep power-down can enter only from the all banks idle state.
Remark: H = High level, L = Low level, X = High or Low level (Don’t care), V = Valid data.
- 18 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
7.1.4 Bank Activate Command
( RAS = L, CAS = H, WE = H, BA0, BA1 = Bank, A0~An = Row Address)
The Bank Activate command activates the bank designated by the BS (Bank Select) signal.
Row addresses are latched on A0~An when this command is issued and the cell data is read out to the sense amplifiers. The
maximum time that each bank can be held in the active state is specified as tRAS (max).
7.1.5 Bank Precharge Command
( RAS = L, RAS = H, WE = L, BA0, BA1 = Bank, A10 =L )
The Bank Precharge command is used to close (or precharge) the bank that is activated. Using this command, systems can
designated the bank to be closed by specifying the BS address bit setting in the command set. A Precharge command can be used to
precharge each bank separately (Bank Precharge) or all four banks simultaneously (Precharge All). After the Bank Precharge
command is issued, any one bank can close, and the closed bank transitions from the active state to the idle state. To re-activate the
closed bank, a system has to wait the minimum tRP delay after issuing the Precharge command before issuing the Active Command
for the device to complete the Precharge operation.
7.1.6 Precharge All Command
( RAS = L, CAS = H, WE = L, BA0, BA1 = Don’t care, A10 =H )
The Precharge All command is used to precharge all banks simultaneously. After this command is issued, all four banks close and
transition from the active state to the idle state.
7.1.7 Write Command
( RAS = H, CAS = L, WE = L, BA0, BA1 = Bank, A10 = L )
The Write command initiates a Write operation to the bank selected by BA0 and BA1 address inputs. The write data is latched at the
positive edge of CLK. Users should preprogram the length of the write data (Burst Length) and the column access sequence
(Addressing Mode) by setting the Mode Resister at power-up prior to using the Write command.
7.1.8 Write with Auto Precharge Command
( RAS = H, CAS = L, WE = L, BA0, BA1 = Bank, A10 = H )
The Write with Auto Precharge command performs the Precharge operation automatically after the Write operation. The internal
precharge starts in the cycles immediately following the cycle in which the last data is written independent of CAS Latency.
7.1.9 Read Command
( RAS = H, CAS = L, WE = H, BA0, BA1 = Bank, A10 = L )
The Read command performs a Read operation to the bank designated by BA0-1. The read data is issued sequentially synchronized
to the positive edges of CLK. The length of read data (Burst Length), Addressing Mode and CAS Latency (access time from CAS
command in a clock cycle) must be programmed in the Mode Register at power-up prior to the Write operation.
7.1.10 Read with Auto Precharge Command
( RAS = H, CAS = L, WE = H, BA0, BA1 = Bank, A10 =H )
The Read with Auto Precharge command automatically performs the Precharge operation after the Read operation. When the CAS
Latency = 3, the internal precharge starts two cycles before the last data is output. When the CAS Latency = 2, the internal
precharge starts one cycle before the last data is output.
7.1.11 Extended Mode Register Set Command
( RAS = L, CAS = L, WE = L, BA0, BA1, A0~An = Register Data)
The Extended Mode Register Set command is designed to support Partial Array Self Refresh, Temperature Compensated Self
Refresh, and Output Driver Strength/Size by allowing users to program each value by setting predefined address bits. The default
values in the Extended Mode Register after power-up are undefined; therefore this command must be issued during the power-up
sequence. Also, this command can be issued while all banks are in the idle state.
- 19 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
7.1.12 Mode Register Set Command
( RAS = L, CAS = L, WE = L, BA0, BA1, A0~An = Register Data)
The Mode Register Set command is used to program the values of CAS latency, Addressing Mode and Burst Length in the Mode
Register. The default values in the Mode Register after power-up are undefined; therefore this command must be issued during the
power-up sequence and re-issued after the Deep Power Down Exit Command. Also, this command can be issued while all banks are
in the idle state.
7.1.13 No-Operation Command
( RAS = H, CAS = H, WE = H)
The No-Operation command is used in cases such as preventing the device from registering unintended commands. The device
performs no operation when this command is registered. This command is functionally equivalent to the Device Deselect command.
7.1.14 Burst Stop Command
( RAS = H, CAS = H, WE = L)
The Burst stop command is used to stop the already activated burst operation. The activated page is left unclosed and future
commands can be issued to access the same page of the active bank. If this command is issued during a burst read operation, the
read data will go to a Hi-Z state after a delay equal to the CAS latency. If a burst stop command is issued during a burst write
operation, then the burst data is terminated and data bus goes to Hi-Z at the same clock that the burst command is activated. Any
remaining data from the burst write cycle is ignored.
7.1.15 Device Deselect Command
( CS = H)
The Device Deselect command disables the command decoder so that the RAS , CAS , WE and Address inputs are ignored.
This command is similar to the No-Operation command.
7.1.16 Auto Refresh Command
( RAS = L, CAS = L, WE = H, CKE = H, BA0, BA1, A0~An = Don’t care)
The Auto Refresh command is used to refresh the row address provided by the internal refresh counter. The Refresh operation must
be performed 8192 times within 64 ms. The next command can be issued after tRC from the end of the Auto Refresh command.
When the Auto Refresh command is issued, All banks must be in the idle state. The Auto Refresh operation is equivalent to the
CAS -before- RAS operation in a conventional DRAM.
7.1.17 Self Refresh Entry Command
( RAS = L, CAS = L, WE = H, CKE = L, BA0, BA1, A0~An = Don’t care)
When the Self Refresh Entry command is issued, the device enters the Self Refresh mode. While the device is in Self Refresh mode,
the device automatically refreshes memory cells, and all input and I/O buffers (except the CKE buffer) are disabled. By asserting the
CKE signal “high” (and by issuing the Self Refresh Exit command), the device exits the Self Refresh mode.
7.1.18 Self Refresh Exit Command
(CKE = H, CS = H or CKE = H, RAS = H, CAS = H)
This command is issued to exit out of the Self Refresh mode. One tRC delay is required prior to issuing any subsequent command
from the end of the Self Refresh Exit command.
7.1.19 Clock Suspend Mode Entry/Power Down Mode Entry Command
(CKE = L)
The internal CLK is suspended for one cycle when this command is issued (when CKE is asserted “low”). The device state is held
intact while the CLK is suspended. On the other hand, when the device is not operating the Burst cycle, this command performs
entry into Power Down mode. All input and output buffers (except the CKE buffer) are turned off in Power Down mode.
7.1.20 Clock Suspend Mode Exit / Power Down Mode Exit Command
(CKE = H)
When the internal CLK has been suspended, operation of the internal CLK is resumed by providing this command (asserting CKE
“high”). When the device is in Power Down mode, the device exits this mode and all disabled buffers are turned on to the active
state. Any subsequent commands can be issued after one clock cycle from the end of this command.
- 20 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
7.1.21 Data Write/Output Enable, Data Mask/Output Disable Command
(DQM = L/H or LDQM, UDQM = L/H or DQM0-3=L/H)
During a Write cycle, the DQM or LDQM, UDQM or DQM0-3 signals mask write data. Each of these signals control the input buffers
per byte. During a Read cycle, the DQM or LDQM, UDQM or DQM0-3 signals control of the output buffers per byte.
I/O Org.
×16
×32
MASK PIN
MASKED DQs
LDQM
DQ0~DQ7
UDQM:
DQ8~DQ15
DQM0:
DQ0~DQ7
DQM1:
DQ8~DQ15
DQM2:
DQ16~DQ23
DQM3:
DQ24~DQ31
8.OPERATION
8.1 Read Operation
Issuing the Bank Activate command to the idle bank puts it into the active state. When the Read command is issued after tRCD from the
Bank Activate command, the data is read out sequentially, synchronized to the positive edges of CLK (a Burst Read operation). The
initial read data becomes available after CAS Latency from the issuing of the Read command. The CAS latency must be set in the
Mode Register at power-up. In addition, the burst length of read data and Addressing Mode must be set. Each bank is held in the active
state unless the Precharge command is issued, so that the sense amplifiers can be used as secondary cache.
When the Read with Auto Precharge command is issued, the Precharge operation is performed automatically after the Read cycle, then
the bank is switched to the idle state. This command cannot be interrupted by any other commands. Also, when the Burst Length is 1
and tRCD (min), the timing from the RAS command to the start of the Auto Precharge operation is shorter than tRAS (min). In this case,
tRAS (min) must be satisfied by extending tRCD.
When the Precharge operation is performed on a bank during a Burst Read operation, the Burst operation is terminated.
When the Burst Length is full-page, column data is repeatedly read out until the Burst Stop command or Precharge command is issued.
8.2 Write Operation
Issuing the Write command after tRCD from the Bank Activate command, the input data is latched sequentially, synchronizing with the
positive edges of CLK after the Write command (Burst Write operation). The burst length of the Write data (Burst Length) and Addressing
Mode must be set in the Mode Register at power-up.
When the Write with Auto Precharge command is issued, the Precharge operation is performed automatically after the Write cycle, then
the bank is switched to the idle state. This command cannot be interrupted by any other command for the entire burst data duration.
Also, when the Burst Length is 1 and tRCD (min), the timing from the RAS command to the start of the Auto Precharge operation is
shorter than tRAS (min). In this case, tRAS (min) must be satisfied by extending tRCD.
When the Precharge operation is performed in a bank during a Burst Write operation, the Burst operation is terminated.
When the Burst Length is full-page, the input data is repeatedly latched until the Burst Stop command or the Precharge command is
issued.
When the Burst Read and Single Write mode is selected, the write burst length is 1 regardless of the read burst length.
- 21 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.3 Precharge
There are two commands which perform the Precharge operation: Bank Precharge and Precharge All. When the Bank Precharge
command is issued to the active bank, the bank is precharged and then switched to the idle state. The Bank Precharge command can
precharge one bank independently of the other bank and hold the unprecharged bank in the active state. The maximum time each bank
can be held in the active state is specified as tRAS (max). Therefore, each bank must be precharged within tRAS (max) from the Bank
Activate command.
The Precharge All command can be used to precharge all banks simultaneously. Even if banks are not in the active state, the Precharge
All command can still be issued. In this case, the Precharge operation is performed only for the active bank and the precharged bank is
then switched to the idle state.
8.3.1 Auto Precharge
Auto precharge is a feature that performs the same individual-bank PRECHARGE function described previously, without requiring an
explicit command. This is accomplished by using A10 to enable auto precharge in conjunction with a specific READ or WRITE command.
A precharge of the bank/row that is addressed with the READ or WRITE command is automatically performed upon completion of the
READ or WRITE burst.
Auto precharge ensures that the precharge is initiated at the earliest valid stage within a burst. Another command cannot be issued to
the same bank until the precharge time (tRP) is completed. This is determined as if an explicit PRECHARGE command was issued at the
earliest possible time.
Winbond SDRAM supports concurrent auto precharge; cases of concurrent auto precharge for READs and WRITEs are defined below.
8.3.2 READ with auto precharge interrupted by a READ (with or without auto precharge)
A READ to bank m will interrupt a READ on bank n following the programmed CAS latency. The precharge to bank n
begins when the READ to bank m is registered.
T0
T1
T2
T3
T4
T5
T6
T7
CLK
Command
Bank n
NOP
Page active
Internal
states
READ-AP
Bank n
NOP
READ-AP
Bank m
READ with burst of 4
NOP
NOP
NOP
Interrupt burst, precharge
Idle
tRP-bank n
Bank m
Page active
Address
Bank n,
Col a
NOP
tRP-bank m
Precharge
READ with burst of 4
Bank m,
Col d
Dout
a
DQ
Dout
a+1
Dout
d
Dout
d+1
CL=3 (bank n)
CL=3 (bank m)
Don’t Care
Note: 1. DQM is LOW.
- 22 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.3.3 READ with auto precharge interrupted by a WRITE (with or without auto precharge)
A WRITE to bank m will interrupt a READ on bank n when registered. DQM should be used two clocks prior to the WRITE
command to prevent bus contention. The precharge to bank n begins when the WRITE to bank m is registered.
T1
T0
T2
T3
T4
T5
T6
T7
CLK
Command
Bank n
Internal
states
READ-AP
Bank n
Page
active
NOP
NOP
NOP
READ with burst of 4
WRITE-AP
Bank m
NOP
NOP
Interrupt burst, precharge
Idle
tWR-bank m
tRP-bank n
Page active
Bank m
Address
NOP
WRITE with burst of 4
Bank n,
Col a
Write-back
Bank m,
Col d
DQM 1
DQ
DOUT
Din
Din
a
d
d+1
CL=3 (bank n)
Din
d+2
Din
d+3
Don’t Care
Note: 1. DQM is HIGH at T2 to prevent DOUTa + 1 from contending with DINd at T4.
- 23 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.3.4 WRITE with auto precharge interrupted by a READ (with or without auto precharge)
A READ to bank m will interrupt a WRITE on bank n when registered, with the data-out appearing CL later. The precharge to bank n will
begin after tWR is met, where tWR begins when the READ to bank m is registered. The last valid WRITE to bank n will be data in
registered one clock prior to the READ to bank m.
T1
T0
T2
T3
T4
T5
T6
T7
CLK
Command
Bank n
NOP
WRITE-AP
Bank n
Page active
NOP
WRITE with burst of 4
Internal
states
READ-AP
Bank m
NOP
NOP
Interrupt burst, write-back
precharge
tWR-bank n
tRP-bank n
NOP
NOP
tRP-bank m
Bank m
Address
DQ
Page active
READ with burst of 4
Bank n,
Col a
Din
a
Bank m,
Col d
Dout
d
Din
a+1
Dout
d+1
CL=3 (bank m)
Don’t Care
Note: 1. DQM is LOW.
- 24 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.3.5 WRITE with auto precharge interrupted by a WRITE (with or without auto precharge)
A WRITE to bank m will interrupt a WRITE on bank n when registered. The precharge to bank n will begin after tWR is met, where tWR
begins when the WRITE to bank m is registered. The last valid data WRITE to bank n will be data registered one clock prior to a WRITE
to bank m.
T1
T0
T2
T3
T4
T5
T6
T7
CLK
Command
Bank n
Internal
states
NOP
WRITE-AP
Bank n
NOP
NOP
NOP
Interrupt burst, write-back
WRITE with burst of 4
Page active
WRITE-AP
Bank m
Page active
Address
DQ
precharge
tWR-bank m
Write-back
WRITE with burst of 4
Bank m,
Col d
Bank n,
Col a
Din
a
NOP
tRP-bank n
tWR-bank n
Bank m
NOP
Din
a+1
Din
a+2
Din
d
Din
d+1
Din
d+2
Din
d+3
Don’t Care
Note: 1. DQM is LOW.
- 25 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.4 Burst Termination
The Read or Write command can be issued on any clock cycle. Whenever a Read operation is to be interrupted by a Write command,
the output data must be masked by DQM to avoid I/O conflict. Also, when a Write operation is to be interrupted by a Read command,
only the input data before the Read command is enable and the input data after the Read command is disabled.
- Read Interrupted by a Precharge
A Precharge command can be issued to terminate a Burst cycle early. When a Burst Read cycle is interrupted by a Precharge
command, the read operation is terminated after ( CAS latency-1) clock cycles from the Precharge command.
- Write Interrupted by a Precharge
A burst Write cycle can be interrupted by a Precharge command, the input circuit is reset at the same clock cycle at which the
Precharge command is issued. In this case, the DQM signal must be asserted high to prevent writing the invalid data to the cell
array.
- Read Interrupted by a Burst Stop
When the Burst Stop command is issued for the bank in a Burst cycle, the Burst operation is terminated. When the Burst Stop
command is issued during a Burst Read cycle, the read operation is terminated after clock cycle of ( CAS latency-1) from the Burst
Stop command.
- Write Interrupted by a Burst Stop
When the Burst Stop command is issued during a Burst Write cycle, the write operation is terminated at the same clock cycle that
the Burst Stop command is issued.
- Write Interrupted by a Read
A burst of write operation can be interrupted by a read command. The read command interrupts the write operation on the same
clock that the read command is issued. All the burst writes that are presented on the data bus before the read command is issued
will be written to the memory. Any remaining burst writes will be ignored once the read command is activated. There must be at
least one clock bubble (Hi-Z state) on the data bus to avoid bus contention.
- Read Interrupted by a Write
A burst of read operation can be interrupted by a write command by driving output drivers in a Hi-Z state using DQM before write to
avoid data conflict. DQM should be utilized if there is data from a Red command on the first and second cycles of the subsequent
write cycles to ensure the read data are tri-stated. From the third clock cycle, the write command will control the data bus and DQM
is not needed.
- 26 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.5 Mode Register Operation
The Mode register designates the operation mode for the Read or Write cycle. This register is divided into three fields; A Burst Length
field to set the length of burst data, an Addressing Mode selected bits to designate the column access sequence in a Burst cycle, and a
CAS Latency field to set the access time in clock cycle.
The Mode Register is programmed by the Mode Register Set command when all banks are in the idle state. The data to be set in the
Mode Register is transferred using the A0~An, BA0, BA1 address inputs. The initial value of the Mode Register after power-up is
undefined; therefore the Mode Register Set command must be issued before proper operation.
8.5.1 Burst Length field (A2~A0)
This field specifies the data length for column access using the A2~A0 pins and sets the Burst Length to be 1, 2, 4, 8, words, or full-page.
A2
A1
A0
BUST
LENGTH
0
0
0
1 word
0
0
1
2 words
0
1
0
4 words
0
1
1
8 words
1
1
1
Full-Page
8.5.2 Addressing Mode Select (A3)
The Addressing Mode can be one of two modes; Interleave mode or Sequential mode. When the A3 bit is 0, Sequential mode is
selected. When the A3 bit is 1, Interleave mode is selected. Both Addressing modes support burst length of 1, 2, 4 and 8 words.
Additionally, Sequential mode supports the full-page burst.
A3
ADDRESSING MODE
0
Sequential
1
Interleave
- 27 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR

Addressing sequence of Sequential mode
A column access is performed by incrementing the column address input to the device. The address is varied by the Burst Length
shown as below table.
8.5.3 Addressing Sequence for Sequential Mode
DATA
Access Address
Data0
n
Data1
n+1
Data2
n+2
Data3
n+3
Data4
n+4
Data5
n+5
Data6
n+6
Data7
n+7
Burst Length
2 words (Address bits is A0)
not carried from A0 to A1
4 words (Address bits is A1, A0)
not carried from A1 to A2
8 words (Address bits is A2, A1, A0)

not carried from A2 to A3
Addressing sequence of Interleave mode
A column access is started from the input column address and is performed by inverting the address bits in the sequence shown
as below table.
8.5.4 Addressing Sequence for Interleave Mode
DATA
Access Address
Data0
A8 A7 A6 A5 A4 A3 A2 A1 A0
Data1
A8 A7 A6 A5 A4 A3 A2 A1 A0
Data2
A8 A7 A6 A5 A4 A3 A2 A1 A0
Data3
A8 A7 A6 A5 A4 A3 A2 A1 A0
Data4
A8 A7 A6 A5 A4 A3 A2 A1 A0
Data5
A8 A7 A6 A5 A4 A3 A2 A1 A0
Data6
A8 A7 A6 A5 A4 A3 A2 A1 A0
Data7
A8 A7 A6 A5 A4 A3 A2 A1 A0
- 28 -
Burst Length
2 words
4 words
8 words
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.5.5 Addressing Sequence Example (Burst Length = 8 and Input Address is 13)
INTERLEAVE MODE
SEQUENTIAL MODE
DATA
A8
A7
A6
A5
A4
A3
A2
A1
Data0
0
0
Data1
0
Data2
A0
ADD
ADD
0
0
0
1
1
0
1
13
13
13
0
0
0
0
1
1
0
0
12
13 + 1
14
0
0
0
0
0
1
1
1
1
15
13 + 2
15
Data3
0
0
0
0
0
1
1
1
0
14
13 + 3
8
Data4
0
0
0
0
0
1
0
0
1
9
13 + 4
9
Data5
0
0
0
0
0
1
0
0
0
8
13 + 5
10
Data6
0
0
0
0
0
1
0
1
1
11
13 + 6
11
Data7
0
0
0
0
0
1
0
1
0
10
13 + 7
12
calculated using
A2, A1 and A0 bits
not carry from
A2 to A3 bit.
8.5.6 Read Cycle CAS Latency = 3
0
3
4
5
6
7
8
9
10
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Data Address { Interleave mode 13
Sequential mode 13
12
15
14
9
8
11
10
14
15
8
9
10
11
12
Command
Read
Address
13
DQ0~DQ7
1
2
- 29 -
11
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.5.7 CAS Latency field (A6~A4)
This field specifies the number of clock cycles from the assertion of the Read command to the first data read. The minimum values of
CAS Latency depends on the frequency of CLK. The minimum value which satisfies the following formula must be set in this field.


A6
A5
A4
0
1
0
2 clock
0
1
1
3 clock
CAS Latency
Reserved bits (A7, A8, A10, A11, A12, BA0, BA1)
These bits are reserved for future operations. They must be set to 0 for normal operation.
Single Write mode (A9)
This bit is used to select the write mode. When the A9 bit is 0, Burst Read and Burst Write mode are selected. When the A9 bit is
1, Burst Read and Single Write mode are selected.
A9
Write Mode
0
Burst Read and Burst Write
1
Burst Read and Single Write
8.5.8 Mode Register Definition
A0
A0
A1
Burst Length
A2
A3
Addressing Mode
A4
A5
CAS Latency
BurstA0
Length
A2
0
A0
A1
A0
0
A0
0
Sequential
A0
1
Interleave
A0
A0
1
0
0
0
1
1
1
A0
0
A0
1
A0
1
A0
0
A0
0
A0
1
1
0
1
0
1
0
A0
2
A0
4
A0
8
A0
2
A0
4
A0
8
1
A0
1
1
Reserved
A0
Reserved
A0
Full
A0
Page
A6
A3
A0
Addressing
A0 Mode
A7
A0
"0"
Reserved
A0
0
A0
1
Sequential
A0
Interleave
A0
A8
"0"
Reserved
A6
A0
A5
A4
A0
0
A0
0
A0
1
0
1
0
A0
1
A0
0
1
0
A10
"0"
0
0
0
A11
A0
"0"
0
1
A12
"0"
A9
A0
WriteA0
Mode
BA0
"0"
BA1
"0"
A0
Reserved
A0
CAS Latency
Reserved
A0
Reserved
2
A0
3
Reserved
A9
A0
Single Write Mode
A0
0
A0
1
Burst read and
A0 Burst write
Burst read and
A0 single write
- 30 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.6 Extended Mode Register Description
The Extended Mode Register designates the operation condition while SDRAM is in Self Refresh Mode and selects the
output driver strength as full, 1/2, 1/4, or 1/8 strength. The register is divided into two fields; (1) Partial Array Self Refresh
field selects how much banks or which part of a bank need to be refreshed during Self Refresh. (2) Driver Strength selected
bit to control the size of output buffer. The initial value of the Extended Mode Register after power-up is Full Driver
Strength, and all banks are refreshed during Self Refresh Mode.
A2 A1 A0
A0
A1
Partial Array
Self Refresh
A2
A3
"0"
A4
"0"
Reserved
A5
A6
Output Driver
A7
"0"
A8
"0"
A9
"0"
A10
"0"
A11
"0"
A12
"0"
BA0
"0"
BA1
"1"
Self-Refresh coverage
0
0
0
0
0
1
All banks
0
1
0
0
1
1
1
0
0
Reserved
1
0
1
1
1
0
Reserved
Reserved
1
1
1
Reserved
Banks 0 and 1 (BA1=0)
Bank 0 (BA1=BA0=0)
Reserved
Reserved
Extended
Mode
Register Set
A6
A5
Driver Strength
0
0
Full strength
0
1
1/2 strength
1
0
1/4 strength
1
1
1/8 strength
- 31 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
8.7 Simplified State Diagram
- 32 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
9. CONTROL TIMING WAVEFORMS
9.1 Command Input Timing
tCL
tCK
CLK
tCH
VIH
VIL
tT
tCMS
tCMH
tCMS
tCMH
tCMS
tCMH
tCMS
tCMH
tAS
tAH
tCMH
tT
tCMS
CS
RAS
CAS
WE
Address
BA0, BA1
tCKS
tCKH
tCKS
tCKH
tCKS
tCKH
CKE
- 33 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
9.2 Read Timing
Read CAS Latency
CLK
CS
RAS
CAS
WE
Address
BA0, BA1
tAC
tAC
tHZ
tOH
tLZ
tOH
Output
Data Valid
DQ
Read Command
Output
Data Valid
Burst Length
- 34 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
9.3 Control Timing of Input Data (x16)
(Word Mask)
CLK
tCMH
tCMS
tCMH
tCMS
LDQM
tCMH
tCMS
tCMH
tCMS
UDQM
tDS
DQ0~DQ7
tDS
Input
Data Valid
tDS
DQ8~DQ15
tDH
tDH
Input
Data Valid
tDH
Input
Data Valid
tDH
tDS
Input
Data Valid
tDS
tDS
tDH
tDS
Input
Data Valid
Input
Data Valid
tDS
tDH
tDH
Input
Data Valid
tDH
Input
Data Valid
(Clock Mask)
CLK
tCKH
tCKS
tCKH
tDH
tDS
tDH
tCKS
CKE
tDS
DQ0~DQ7
Input
Data Valid
tDS
DQ8~DQ15
tDH
Input
Data Valid
tDS
Input
Data Valid
tDS
tDH
tDS
Input
Data Valid
tDS
tDH
Input
Data Valid
tDH
Input
Data Valid
- 35 -
tDH
Input
Data Valid
tDS
tDH
Input
Data Valid
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
9.4 Control Timing of Output Data (x16)
(Output Enable)
CLK
tCMS
tCMH
tCMH
tCMS
tCMH
tCMS
LDQM
tCMH
tCMS
UDQM
tAC
tOH
tOH
tHZ
tAC
Output
Data Valid
DQ0~DQ7
Output
Data Valid
tAC
tAC
tOH
Output
Data Valid
tOH
tAC
Output
Data Valid
tHZ
tOH
tOH
Output
Data Valid
tAC
OPEN
tAC
tOH
DQ8~DQ15
tLZ
tOH
Output
Data Valid
tLZ
tAC
OPEN
(Clock Mask)
CLK
tCKH
tCKS
tCKH
tCKS
CKE
tAC
tOH
Output
Data Valid
DQ0~DQ7
tAC
tOH
DQ8~DQ15
tAC
tAC
tOH
tOH
tOH
Output
Data Valid
Output Data Valid
tAC
tAC
tOH
tOH
Output
Data Valid
Output Data Valid
- 36 -
tAC
tOH
tAC
Output
Data Valid
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
9.5 Control Timing of Input Data (x32)
CLK
(Word Mask)
tCMH
tCMS
tCMH
tCMS
DQM0
tCMH
tCMS
tCMH
tCMS
DQM1
tDS
DQ0~DQ7
tDS
tDS
tDH
tDH
Input
Data Valid
tDS
DQ24~DQ31
tDS
tDH
Input
Data Valid
tDH
tDS
Input
Data Valid
tDH
tDS
Input
Data Valid
DQ8~DQ15
DQ16~DQ23
tDH
Input
Data Valid
Input
Data Valid
tDH
tDS
Input
Data Valid
tDH
tDS
Input
Data Valid
tDS
tDH
tDS
Input
Data Valid
tDS
tDH
Input
Data Valid
tDS
tDH
tDH
tDH
Input
Data Valid
tDS
Input
Data Valid
tDS
tDH
Input
Data Valid
tDH
tDS
Input
Data Valid
tDS
Input
Data Valid
tDH
tDH
Input
Data Valid
tDS
Input
Data Valid
tDH
Input
Data Valid
*DQM2, 3 = “L”
(Clock Mask)
CLK
tCKH
tCKS
tCKH
tDH
tDS
tDH
tCKS
RAS
tDS
DQ0~DQ7
tDS
DQ8~DQ15
tDH
tDS
tDH
Input
Data Valid
tDS
tDH
tDH
Input
Data Valid
tDS
tDH
tDH
Input
Data Valid
Input
Data Valid
tDS
tDH
Input
Data Valid
Input
Data Valid
Input
Data Valid
tDS
DQ24~DQ31
tDS
Input
Data Valid
tDS
DQ16~DQ23
tDH
tDS
Input
Data Valid
Input
Data Valid
tDS
tDH
Input
Data Valid
tDH
Input
Data Valid
tDS
tDH
Input
Data Valid
tDS
tDH
Input
Data Valid
tDS
tDH
Input
Data Valid
tDS
tDH
Input
Data Valid
*DQM2, 3 = “L”
- 37 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
9.6 Control Timing of Output Data (x32)
(Output Enable)
CLK
tCMS
tCMH
tCMH
tCMS
tCMH
tCMS
DQM0
tCMH
tCMS
DQM1
tAC
tHZ
tAC
tOH
tOH
Output
Data Valid
DQ0~DQ7
Output
Data Valid
tAC
tAC
tOH
Output
Data Valid
tAC
tAC
tOH
Output
Data Valid
DQ16~DQ23
tAC
tOH
tOH
tAC
Output
Data Valid
Output
Data Valid
tOH
tAC
Output
Data Valid
tAC
tAC
tAC
OPEN
tAC
tLZ
tOH
tOH
Output
Data Valid
DQ24~DQ31
Output
Data Valid
tLZ
Output
Data Valid
tOH
tAC
Output
Data Valid
tHZ
tAC
tOH
tOH
tOH
tOH
Output
Data Valid
tAC
OPEN
tAC
tOH
DQ8~DQ15
tLZ
tOH
Output
Data Valid
tOH
tAC
Output
Data Valid
DQM2, 3 = “L”
(Clock Mask)
CLK
tCKH
tCKS
tCKH
tCKS
CKE
tAC
tOH
Output
Data Valid
DQ0~DQ7
tAC
tOH
tAC
tAC
Output
Data Valid
tAC
tAC
tOH
tAC
tOH
Output Data Valid
tAC
Output
Data Valid
Output Data Valid
tAC
tAC
Output
Data Valid
tOH
tOH
Output
Data Valid
tOH
Output Data Valid
tAC
tAC
Output
Data Valid
tOH
tOH
DQ16~DQ23
tOH
Output Data Valid
tAC
Output
Data Valid
tOH
DQ24~DQ31
tOH
tOH
DQ8~DQ15
tOH
tAC
tAC
tOH
tOH
tAC
Output
Data Valid
DQM2, 3 = “L”
- 38 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
9.7 Mode register Set (MRS) Cycle
tRSC
CLK
tCMS
tCMH
tCMS
tCMH
tCMS
tCMH
tCMS
tCMH
CS
RAS
CAS
WE
tAS
Address
BA0,BA1
tAH
Register
set data
next command
A0
Burst Length
A1
A2
A3
Addressing Mode
A4
A5
CAS Latency
A2
0
0
0
0
1
1
1
1
A6
A0
A7
0
Reserved
A8
0
Reserved
A0
A9
WriteA0
Mode
A10
0
A0
A11
0
A0
An
0
BA0
0
A0
BA1
0
Reserved
Mode
Register Set
A0
A0
A1
A0
0
A0
0
A0
1
A0
1
A0
0
A0
0
A0
1
A0
1
A0
0
1
0
1
0
1
0
1
A0
A3
A0
0
A0
1
A6
0
0
0
0
1
A0
A5
A0
0
A0
0
A0
1
A0
1
A0
0
BurstA0
Length
A0
A0
Sequential
Interleave
1
A0
1
A0
A0
2
2
A0
A0
4
4
A0
A0
8
8
A0
Reserved
A0
Reserved
FullA0
Page
A0 Mode
Addressing
A0
Sequential
A0
Interleave
A4
0
1
0
1
0
A0
A9
A0
0
A0
1
CAS A0
Latency
A0
Reserved
A0
Reserved
2
A0
3
Reserved
Single Write Mode
A0 Burst write
Burst read and
A0 single write
Burst read and
“Reserved” pins should be set to “0” during MRS cycle.
- 39 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
9.8 Extended Mode register Set (EMRS) Cycle
t RSC
CLK
t CMS
t CMH
t CMS
t CMH
t CMS
t CMH
t CMS
t CMH
tAS
tAH
CS
RAS
CAS
WE
Address
BA0,BA1
Register
set data
next command
A0
PASR
A1
A2
A3
0
A4
0
A5
Reserved
Output Driver
A2
0
0
0
0
1
1
1
1
A0
A0 A0
A1
A0
0
0
A0
0
1
A0
1
0
A0
1
1
A0
0
0
A0
0
1
A0
1
0
A0
1
1
Partial A0
Self Refresh
All A0
banks
Bank0,1
A0(BA1=0)
A0
Bank0(BA0=BA1=0)
A0
Reserved
A6
A0
A7
0
A8
0
A0
A9
0
A10
0
A11
A0
0
AA0
n
0
BA 0
0
A01
BA
1
Reserved
A6 A0 A5
0A 0 0
0A 0 1
1A 0 0
1A 0 1
A0 Strength
Output Driver
A0
Full Strength
A0
1/2 Strength
1/4 Strength
A0
A0
1/8 Strength
Extended
Mode
Register Set
"Reserved" pins should be set to "0" during EMRS cycle
- 40 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10. OPERATING TIMING EXAMPLE
10.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)
1
0
2
3
4
6
5
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
tRC
tRC
tRC
RAS
tRAS
tRP
tRAS
tRAS
tRP
tRP
tRAS
CAS
WE
BA0
BA1
tRCD
A10
RAa
Address
RAa
tRCD
tRCD
RBb
CBx
RBb
CAw
tRCD
RAc
RBd
RAc
CAy
RAe
RBd
CBz
RAe
DQM
CKE
DQ
aw0
tRRD
Bank #0 Active
Bank #1
Bank #2
tAC
tAC
tAC
aw1
aw2
aw3
bx0
bx1
Precharge
Active
bx3
cy0
tRRD
tRRD
Read
bx2
Precharge
Read
cy1
cy2
cy3
tRRD
Read
Active
tAC
Precharge
Active
Active
Read
Idle
Bank #3
- 41 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto Precharge)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
tRC
tRC
tRC
RAS
tRAS
tRP
tRAS
tRAS
tRP
tRP
tRAS
CAS
WE
BA0
BA1
tRCD
tRCD
tRCD
A10
RAa
RBb
Address
RAa
CAw RBb
tRCD
RBd
RAc
CBx
CAy
RAc
RAe
CBz
RBd
RAe
DQM
CKE
tAC
DQ
tRRD
Active
Bank #0
Bank #1
Bank #2
tAC
tAC
aw0
aw1
aw2
aw3
bx0
tRRD
Read
bx2
bx3
tAC
cy0
cy1
tRRD
Active
AP*
Active
bx1
cy3
dz0
tRRD
AP* Read
AP*
Active
Read
cy2
Active
Read
Idle
Bank #3
* AP is the internal precharge start timing
- 42 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)
0
1
2
3
4
6
5
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
tRC
tRC
RAS
tRAS
tRP
tRAS
tRP
tRAS
tRP
CAS
WE
BA0
BA1
tRCD
A10
Address
tRCD
RAa
RAa
tRCD
RAc
RBb
CAx
RBb
CBy
CAz
RAc
DQM
CKE
tAC
DQ
tAC
ax0
ax1
tRRD
Bank #0
Active
Bank #2
ax3
ax4
ax5
ax6
by0
by1
by4
by5
by6
by7
CZ0
tRRD
Read
Precharge
Bank #1
ax2
tAC
Precharge
Active
Active
Read
Precharge
Read
Idle
Bank #3
- 43 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto Precharge)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
tRC
CS
tRC
RAS
tRAS
tRAS
tRP
tRAS
tRP
CAS
WE
BA0
BA1
tRCD
A10
RAa
Address
RAa
tRCD
tRCD
RBb
CAx
RAc
RBb
RAc
CBy
CAz
DQM
CKE
tAC
tAC
DQ
ax0
ax1
ax2
tRRD
Bank #0
Active
Bank #2
Bank #3
Idle
ax4
ax5
ax6
ax7
by0
by1
by4
by5
by6
cz0
tRRD
AP*
Read
Active
Bank #1
ax3
tAC
Active
Read
Read
AP*
* AP is the internal precharge start timing
- 44 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.5 Interleaved Bank Write (Burst Length = 8)
1
0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
RAS
tRAS
tRP
tRP
tRAS
CAS
tRCD
tRCD
tRCD
WE
BA0
BA1
A10
RAa
Address
RAa
RBb
CAx
RAc
CBy
RBb
CAz
RAc
DQM
CKE
DQ
ax0
ax1
ax4
ax5
ax6
ax7
by0
tRRD
Bank #0
Active
Bank #2
Bank #3
by2
by3
by4
by5
by6
by7
cz0
cz1
cz2
tRRD
Precharge
Write
Active
Bank #1
by1
Write
Active
Write
Precharge
Idle
- 45 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.6 Interleaved Bank Write (Burst Length = 8, Auto Precharge)
1
0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
RAS
tRAS
tRAS
tRP
tRP
tRAS
CAS
WE
BA0
BA1
tRCD
A10
RAa
Address
RAa
tRCD
tRCD
RAc
RBb
CAx
RBb
CBy
RAc
CAz
DQM
CKE
DQ
ax0
ax1
ax4
ax5
ax6
ax7
by0
tRRD
Bank #0 Active
Bank #2
Bank #3
by2
by3
by4
by5
by6
by7
cz0
cz1
cz2
tRRD
Active
Write
Active
Bank #1
by1
Idle
AP*
|
Write
Write
|
AP*
* AP is the internal precharge start timing
- 46 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.7 Page Mode Read (Burst Length = 4, CAS Latency = 3)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
tCCD
tCCD
tCCD
CS
tRAS
tRP
tRAS
tRP
RAS
CAS
WE
BA0
BA1
tRCD
A10
RAa
Address
RAa
tRCD
RBb
RBb
CAI
CBx
CAy
CAm
CBz
DQM
CKE
tAC
DQ
tAC
al0
al1
al2
al3
bx0
tAC
bx1
tAC
tAC
Ay0
Ay1
Ay2
am0
am1
am2
bz0
bz1
bz2
bz3
tRRD
Bank #0 Active
Active
Bank #1
Bank #2
Bank #3
Read
Read
Read
Read
Precharge
Read
AP*
Idle
* AP is the internal precharge start timing
- 47 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.8 Page Mode Read / Write (Burst Length = 8, CAS Latency = 3)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRAS
tRP
RAS
CAS
WE
BA0
BA1
tRCD
A10
Address
RAa
RAa
CAx
CAy
DQM
CKE
tAC
DQ
tWR
ax0
Q Q
Bank #0
Active
Read
ax1
ax3
ax2
Q
Q
ax5
ax4
Q
Q
ay1
ay0
D
D
Write
ay2
D
ay4
ay3
D
D
Precharge
Bank #1
Bank #2
Bank #3
Idle
- 48 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.9 Auto Precharge Read (Burst Length = 4, CAS Latency = 3)
CLK
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CS
tRC
tRC
RAS
tRAS
tRP
tRAS
tRP
CAS
WE
BA0
BA1
tRCD
A10
Address
tRCD
RAa
RAa
RAb
CAw
RAb
CAx
DQM
CKE
tAC
DQ
Bank #0
tAC
aw0
Active
Read
aw1
AP*
aw2
bx0
aw3
Active
Read
bx1
bx2
bx3
AP*
Bank #1
Bank #2
Bank #3
Idle
* AP is the internal precharge start timing
- 49 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.10 Auto Precharge Write (Burst Length = 4)
CLK
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CS
tRC
tRC
RAS
tRAS
tRP
tRAS
tRP
CAS
WE
BA0
BA1
tRCD
tRCD
A10
RAa
Address
RAa
RAc
RAb
CAw
RAb
CAx
RAc
DQM
CKE
DQ
Bank #0
aw0
Active
Write
aw1
aw2
bx0
aw3
AP*
Active
Write
bx1
bx2
bx3
AP*
Active
Bank #1
Bank #2
Bank #3
Idle
* AP is the internal precharge start timing
- 50 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.11 Auto Refresh Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
tRP
tRFC
tRFC
CS
RAS
CAS
WE
BA0,BA1
A10
Address
DQM
CKE
DQ
All Banks
Prechage
Auto
Refresh
Auto Refresh (Arbitrary Cycle)
- 51 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.12 Self Refresh Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRP
RAS
CAS
WE
BA0,BA1
A10
Address
DQM
tSB
CKE
tCKS
tCKS
tCKS
DQ
tRFC
All Bank Precharge
Self Refresh
Entry
Self Refresh
Exit
Device Deselect (DSL) Cycle
Arbitrary Cycle
Note: The device exit the Self Refresh mode asynchronously at the rising edge of the CKE signal.
After CKE goes high, the Device Deselect or No-operation command must be registered at the immediately following
CLK rising edge, and CKE must remain high at least for tCKS delay immediately after exit the Self Refresh Mode.
A bust of 8K auto refeesh cycle within 7.8us before entering and exiting is necessary if the system does not use the
auto refresh function.
- 52 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.13 Power Down Mode
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
RAS
CAS
WE
BA
A10
RAa
Address
RAa
RAa
CAa
RAa
CAx
DQM
tSB
tSB
CKE
tCKS
tCKS
tCKS
DQ
ax0
Active
DSL
Power Down Mode
Power Down Mode
Entry
Exit
ax1
ax2
tCKS
ax3
Precharge
&
Power Down Mode Entry
Active
Device Deselect
Power Down Mode Exit
Note: The PowerDown Mode is entered by asserting CKE "low".
All Input/Output buffers (except CKE buffers) are turned off in the Power Down mode.
When CKE goes high, command input must be No operation at next CLK rising edge.
Violating refresh requirements during power-down may result in a loss of data.
- 53 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.14 Burst Read and Single Write (Burst Length = 4, CAS Latency = 3)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
RAS
CAS
tRCD
WE
BA0
BA1
A10
RBa
Address
RBa
CBv
CBw
CBx
CBy
CBz
DQM
CKE
tAC
tAC
DQ
av0
Q
Bank #0 Active
Bank #1
Bank #2
Bank #3
Read
av1
Q
av3
av2
Q
Q
aw0
ax0
D
D
ay0
D
az1
az0
Q
Q
az2
Q
az3
Q
Single Write Read
Idle
- 54 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.15 Deep Power Down Mode Entry
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRP
RAS
CAS
WE
BA0,BA1
A10
Address
DQM
tSB
CKE
tCKS
DQ
Active Banks Precharge
Deep Power Down Entry
- 55 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.16 Deep Power Down Mode Exit
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRP
tRSC
tRSC
RAS
CAS
WE
A10
OP-Code
OP-Code
Address
DQM
CKE
tCKS
DQ
200μs
DSL
tRCF
All Banks Precharge
Deep Power Down Exit
Extended Mode
Register Set Auto Refresh
Auto Refresh
Auto Refresh Arbitrary Cycle
Mode Register Set
Issue Auto Refresh cycle two or more
Note:
The device exits the Deep Power Down Mode asynchronously at the rising edge of the CKE signal.
After CKE goes high, the Device Deselect or No-operation command must be register at the immediately
following CLK rising edge, and CKE must remain high at least for tCKS delay immediately after exiting the
Deep Power Down Mode.
- 56 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.17 Auto Precharge Timing (Read Cycle)
0
1
Read
AP
2
3
4
5
6
7
8
9
10
11
(1) CAS Latency=2
( a ) burst length = 1
Command
Act
tRP
DQ
Q0
( b ) burst length = 2
Command
Read
AP
Act
tRP
DQ
Q0
Q1
( c ) burst length = 4
Command
Read
AP
Act
tRP
DQ
Q0
Q1
Q2
Q3
( d ) burst length = 8
Command
Read
AP
Q0
DQ
Q1
Q2
Q3
Q4
Q5
Q6
Act
tRP
Q7
(2) CAS Latency=3
( a ) burst length = 1
Command
Read
AP
Act
tRP
Q0
DQ
( b ) burst length = 2
Command
Read
AP
Act
tRP
Q0
DQ
Q1
( c ) burst length = 4
Command
Read
AP
Act
tRP
Q0
DQ
Q1
Q2
Q3
( d ) burst length = 8
Command
Read
AP
Act
tRP
Q0
DQ
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Note:
Read
AP
Act
represents the Read with Auto precharge command.
represents the start of internal precharging.
represents the Bank Activate command.
When the Auto precharge command is asserted, the period from Bank Activate command to
the start of internal precgarging must be at least tRAS (min).
“Dn” = Write data, and “Qn” = Read data
- 57 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.18 Auto Precharge Timing (Write Cycle)
0
1
2
3
4
5
6
7
8
9
10
11
12
(1) burst length = 1
Command
Write
AP
Act
tWR
DQ
tRP
D0
(2) burst length = 2
Command
Write
AP
Act
tWR
DQ
D0
tRP
D1
(3) burst length = 4
Command
AP
Write
Act
tRP
tWR
DQ
D0
D1
D2
D3
(4) burst length = 8
Command
Write
AP
tWR
DQ
D0
Note:
D1
D2
Wirte
D3
D4
D5
D6
Act
tRP
D7
represents the Write with Auto precharge command.
AP
represents the start of internal precharging.
Act
represents the Bank Activate command.
When the Auto precharge command is asserted, the period from Bank Activate
command to the start of internal precgarging must be at least tRAS (min).
“Dn” = Write data, and “Qn” = Read data
- 58 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.19 Timing Chart of Read to Write Cycle
In the case of Burst Length = 4
1
2
Read
Write
0
(1) CAS Latency = 2
DQM Latency = 2
( a ) Command
3
4
5
6
D1
D2
D3
D0
D1
D2
D1
D2
D3
D1
D2
7
8
9
10
9
10
11
DQM
DQ
D0
Read
( b ) Command
Write
DQM
DQ
D3
(2) CAS Latency = 3
DQM Latency = 2
Read
( a ) Command
Write
DQM
D0
DQ
Read
( b ) Command
Write
DQM
D0
DQ
D3
Note: The Output data must be masked by DQM to avoid I/O conflict.
“Dn” = Write data, and “Qn” = Read data
10.20 Timing Chart for Write to Read Cycle
In the case of Burst
Length=4
0
1
2
3
4
5
6
7
8
Q0
Q1
Q2
Q3
Q0
Q1
Q2
Q3
Q0
Q1
Q2
Q3
Q0
Q1
Q2
11
(1) CAS Latency=2
( a ) Command
Write
DQM
DQ
( b ) Command
Read
tLDR
D0
Read
Write
tLDR
DQM
DQ
(2) CAS Latency=3
( a ) Command
D0
Write
DQM
D1
Read
tLDR
D0
DQ
( b ) Command
Write
Read
tLDR
DQM
DQ
D0
D1
Q3
Note: “Dn” = Write data, and “Qn” = Read data
- 59 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.21 Timing Chart for Burst Stop Cycle (Burst Stop Command)
0
(1) Read cycle
1
2
3
4
5
6
7
8
9
10
11
( a ) CAS latency =2
Command
Read
BST
DQ
Q0
Q1
Q2
Q3
Q4
Q0
Q1
BST
Q2
Q3
( b )CAS latency = 3
Command
Read
DQ
Q4
(2) Write cycle
Command
Write
Q0
DQ
BST
Q1
Q2
Q3
Q4
Note: BST
represents the Burst stop command
“Dn” = Write data, and “Qn” = Read data
10.22 Timing Chart for Burst Stop Cycle (Precharge Command)
In the case of urst
Length = 8
(1) Read cycle
(a) CAS latency =2
Command
0
1
2
3
4
Read
5
6
7
8
9
10
11
PRCG
DQ
Q0
Q1
Q2
Q3
Q4
(b) CAS latency =3
Command
Read
PRCG
DQ
(2) Write cycle
(a) CAS latency =2
Command
Write DQM Latency = 0
Q0
Q1
Q2
Q3
Q4
PRCG
Write
tWR
DQM
DQ
(b) CAS latency =3
Command
Q0
Q1
Q2
Q3
Q4
PRCG
Write
tWR
Write DQM Latency = 0
DQM
DQ
Q0
Q1
Q2
Q3
Q4
Note: PRCG represents the Precharge command.
“Dn” = Write data, and “Qn” = Read data.
- 60 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.23 CKE/DQM Input Timing (Write Cycle)
CLK cycle No.
1
2
3
D1
D2
D3
4
5
6
7
External
CLK
Internal
CKE
DQM
DQ
D6
D5
DQM MASK
CKE MASK
(1)
CLK cycle No.
1
2
3
D1
D2
D3
4
5
6
7
External
CLK
Internal
CKE
DQM
DQ
D5
DQM MASK
D6
CKE MASK
(2)
CLK cycle No.
1
2
3
D1
D2
D3
4
5
6
7
D4
D5
D6
External
CLK
Internal
CKE
DQM
DQ
CKE MASK
Note) “Dn” = Write data, and “Qn” = Read data
(3)
- 61 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
10.24 CKE/DQM Input Timing (Read Cycle)
CLK cycle No.
1
2
3
4
Q1
Q2
Q3
Q4
5
6
7
External
CLK
Internal
CKE
DQM
DQ
Q6
Open
Open
(1)
CLK cycle No.
1
2
3
Q1
Q2
Q3
4
5
7
6
External
CLK
Internal
CKE
DQM
DQ
Q4
Q6
Open
(2)
CLK cycle No.
1
2
Q1
Q2
3
4
5
6
7
External
CLK
Internal
CKE
DQM
DQ
Note) “Dn” = Write data, and “Qn” = Read data
Q3
Q4
Q5
Q6
(3)
- 62 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
11. PACKAGE DIMENSION
11.1 : LPSDR X 16
VFBGA54Ball (8X9 MM^2, Ball pitch:0.8mm)
Note:
1. Ball land:0.5mm. Ball opening:0.4mm. PCB Ball land suggested ≦0.4mm
2. Dimensions apply to Solder Balls Post-Reflow.The Pre-Reflow diameter is 0.42 on a 0.4 SMD Ball Pad
- 63 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
11.2 : LPSDR X 32
VFBGA90Ball (8X13 MM^2, Ball pitch:0.8mm)
Note:
1. Ball land:0.5mm. Ball opening:0.4mm. PCB Ball land suggested ≦0.4mm
2. Dimensions apply to Solder Balls Post-Reflow. The Pre-Reflow diameter is 0.42 on a 0.4 SMD Ball Pad.
- 64 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
12.ORDERING INFORMATION
Mobile LPDDR/LPSDR SDRAM Package Part Numbering
W 98 9 D 6 C B G X 6 I
Product Line
98:mobile LPSDR SDRAM
94:mobile LPDDR SDRAM
Temperature
with standard Idd6
G:-25C~85C
Density
7:27=128M 8:28=256M
9:29=512M
with low power Idd6
E:-25C~85C
I:-40C~85C
Power Supply
D:1.8/1.8 VDD / VDDQ
Clock rate
5:5ns200MHz
6:6ns166MHz
7:7.5ns133MHz
I/O Ports width
6:16bit
2:32bit
Package Material
X: Lead-free + Halogen-free
Generation
Design revision.
Package configuration code
G: 54VFBGA, 8mmx9mm
H: 60VFBGA, 8mmx9mm
J: 90VFBGA, 8mmx13mm
Package or KGD
K: KGD
B: BGA
Part number
W989D6CBGX6I
W989D6CBGX6E
W989D6CBGX7E
W989D6CBGX7G
W989D2CBJX6I
W989D2CBJX6E
W989D2CBJX7E
W989D2CBJX7G
VDD/VDDQ I/O width Package
1.8V/1.8V
1.8V/1.8V
1.8V/1.8V
1.8V/1.8V
1.8V/1.8V
1.8V/1.8V
1.8V/1.8V
1.8V/1.8V
16
16
16
16
32
32
32
32
54VFBGA
54VFBGA
54VFBGA
54VFBGA
90VFBGA
90VFBGA
90VFBGA
90VFBGA
- 65 -
Others
166MHz, -40C~85C, Low
166MHz, -25C~85C, Low
133MHz, -25C~85C, Low
133MHz, -25C~85C
166MHz, -40C~85C, Low
166MHz, -25C~85C, Low
133MHz, -25C~85C, Low
133MHz, -25C~85C
Power
Power
Power
Power
Power
Power
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
13. REVISION HISTORY
VERSION
DATE
PAGE
DESCRIPTION
A01-001
03/09/2011
All
Product datasheet for customer.
A01-002
03/24/2011
All
4
9
12
Update name of document title.
Update operating temperature range.
Update Idd2N value to 10mA.
Update tRFC value to 72ns.
A01-003
04/25/2011
9
10
12
Update IDD3P value.
Add PASR.
Change 6.6.2 figure.
A01-004
06/27/2011
8,9
Update IDD2P,IDD4 value.
A01-005
09/22/2011
8,9
Update IDD3P,IDD3N value.
- 66 -
Publication Release Date: Sep, 22, 2011
Revision A01-005
W989D6CB / W989D2CB
512Mb Mobile LPSDR
Important Notice
Winbond products are not designed, intended, authorized or warranted for use as components in systems or
equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship
instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other
applications intended to support or sustain life. Furthermore, Winbond products are not intended for applications
wherein failure of Winbond products could result or lead to a situation where in personal injury, death or severe
property or environmental damage could occur.
Winbond customers using or selling these products for use in such applications do so at their own risk and agree
to fully indemnify Winbond for any damages resulting from such improper use or sales.
------------------------------------------------------------------------------------------------------------------------------------------------Please note that all data and specifications are subject to change without notice.
All the trademarks of products and companies mentioned in the datasheet belong to their respective owners.
- 67 -
Publication Release Date: Sep, 22, 2011
Revision A01-005