0 R DS122 (v2.0) December 21, 2007 QPro Virtex-II 1.5V Platform FPGAs 0 Product Specification 0 Summary of QPro™ Virtex™-II Features • • Industry’s first military-grade platform FPGA solution • Certified to MIL-PRF-38535 (Qualified Manufacturer Listing) • - Precise clock de-skew 100% factory tested • - Flexible frequency synthesis Guaranteed over the full military temperature range (–55°C to +125°C) or industrial temperature range (–40°C to +100°C) - High-resolution phase shifting • • • • Ceramic and plastic wire-bond and flip-chip grid array packages ♦ ♦ • IP-immersion architecture • Up to 12 DCM (Digital Clock Manager) modules 16 global clock multiplexer buffers Active interconnect technology ♦ Fourth-generation segmented routing structure ♦ Predictable, fast routing delay, independent of fanout ♦ Densities from 1M to 6M system gates ♦ 300+ MHz internal clock speed (Advance Data) ♦ Up to 824 user I/Os ♦ 622+ Mb/s I/O (Advance Data) ♦ 19 single-ended and six differential standards SelectRAM™ Memory Hierarchy ♦ Programmable sink current (2 mA to 24 mA) per I/O ♦ 2.5 Mb of dual-port RAM in 18 Kbit block SelectRAM resources ♦ Digitally Controlled Impedance (DCI) I/O: on-chip termination resistors for single-ended I/O standards ♦ Up to 1 Mb of distributed SelectRAM resources ♦ PCI compliant (32/33 MHz) at 3.3V High-performance interfaces to external memory ♦ Differential signaling ♦ ♦ 622 Mb/s Low-Voltage Differential Signaling I/O (LVDS) with current mode drivers DRAM interfaces SelectIO™-Ultra Technology - SDR/DDR SDRAM - Network FCRAM ♦ Bus LVDS I/O - Reduced Latency DRAM ♦ Lightning Data Transport (LDT) I/O with current driver buffers ♦ Low-Voltage Positive Emitter-Coupled Logic (LVPECL) I/O ♦ Built-in DDR input and output registers ♦ Arithmetic functions Proprietary high-performance SelectLink Technology ♦ Dedicated 18-bit x 18-bit multiplier blocks - High-bandwidth data path ♦ Fast look-ahead carry logic chains - Double Data Rate (DDR) link - Web-based HDL generation methodology ♦ ♦ • High-performance clock management circuitry SRAM interfaces - SDR/DDR SRAM - QDR SRAM CAM interfaces • Flexible logic resources • Up to 67,584 internal registers/latches with Clock Enable • Up to 67,584 look-up tables (LUTs) or cascadable 16bit shift registers • Supported by Xilinx Foundation Series™ and Alliance Series™ Development Systems ♦ Integrated VHDL and Verilog design flows • Wide multiplexers and wide-input function support ♦ Compilation of 10M system gates designs • Horizontal cascade chain and sum-of-products support ♦ Internet Team Design (ITD) tool • Internal 3-state busing © 2003, 2006-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 1 R • QPro Virtex-II 1.5V Platform FPGAs SRAM-based in-system configuration ♦ Unlimited reprogrammability ♦ Fast SelectMAP configuration ♦ Readback capability ♦ Triple Data Encryption Standard (DES) security option (Bitstream Encryption) • 0.15 µm 8-layer metal process with 0.12 µm highspeed transistors ♦ IEEE 1532 support • ♦ Partial reconfiguration 1.5V (VCCINT) core power supply, dedicated 3.3V VCCAUX auxiliary and VCCO I/O power supplies • IEEE 1149.1 compatible Boundary-Scan logic support General Description The Virtex-II family includes platform FPGAs developed for high performance from low-density to high-density designs that are based on IP cores and customized modules. The family delivers complete solutions for telecommunication, wireless, networking, video, and DSP applications, including PCI, LVDS, and DDR interfaces. The leading-edge 0.15 µm/0.12 µm CMOS 8-layer metal process and the Virtex-II architecture are optimized for high speed with low power consumption. Combining a wide variety of flexible features and a large range of densities up to 8 million system gates, the Virtex-II family enhances programmable logic design capabilities and is a powerful alternative to mask-programmed gates arrays. As shown in Table 1, the QPro Virtex-II family comprises three members, ranging from 1M to 6M system gates. Table 1: Virtex-II Field-Programmable Gate Array Family Members Device System Gates CLB (1 CLB = 4 slices = Max 128 bits) Array Row x Col. Slices Maximum Distributed RAM Kbits SelectRAM Blocks Multiplier Blocks 18 Kbit Blocks Max RAM (Kbits) DCMs Max I/O Pads(1) XQ2V1000 1M 40 x 32 5,120 160 40 40 720 8 432 XQ2V3000 3M 64 x 56 14,336 448 96 96 1,728 12 720 XQ2V6000 6M 96 x 88 33,792 1,056 144 144 2,592 12 1,104 Notes: 1. See details in Table 2. Packaging Offerings include ball grid array (BGA) packages with 1.00 mm and 1.27 mm pitches. In addition to traditional wire-bond interconnects, flip-chip interconnect is used in some of the CGA offerings. The use of flip-chip interconnect offers more I/Os than is possible in wire-bond versions of the similar packages. Flip-chip construction offers the combination of high pin count with high thermal capacity. Table 2 shows the maximum number of user I/Os available. The Virtex-II device/package combination table (Table 5, DS122 (v2.0) December 21, 2007 Product Specification page 6) details the maximum number of I/Os for each device and package using wire-bond or flip-chip technology. Table 2: Maximum Number of User I/O Pads Wire-Bond Flip-Chip XQ2V1000 328 – XQ2V3000 516 – XQ2V6000 – 824 Device www.xilinx.com 2 R QPro Virtex-II 1.5V Platform FPGAs Architecture Virtex-II Array Overview • Block SelectRAM memory modules provide large 18 Kbit storage elements of dual-port RAM. Virtex-II devices are user-programmable gate arrays with various configurable elements. The Virtex-II architecture is optimized for high-density and high-performance logic designs. As shown in Figure 1, the programmable device is comprised of input/output blocks (IOBs) and internal configurable logic blocks (CLBs). • Multiplier blocks are 18-bit x 18-bit dedicated multipliers. • DCM (Digital Clock Manager) blocks provide selfcalibrating, fully digital solutions for clock distribution delay compensation, clock multiplication and division, coarse- and fine-grained clock phase shifting. Programmable I/O blocks provide the interface between package pins and the internal configurable logic. Most popular and leading-edge I/O standards are supported by the programmable IOBs. A new generation of programmable routing resources called Active Interconnect Technology interconnects all of these elements. The general routing matrix (GRM) is an array of routing switches. Each programmable element is tied to a switch matrix, allowing multiple connections to the general routing matrix. The overall programmable interconnection is hierarchical and designed to support high-speed designs. The internal configurable logic includes four major elements organized in a regular array: • Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and synchronous logic, including basic storage elements. BUFTs (3-state buffers) associated with each CLB element drive dedicated segmentable horizontal routing resources. All programmable elements, including the routing resources, are controlled by values stored in static memory cells. These values are loaded in the memory cells during configuration and can be reloaded to change the functions of the programmable elements. X-Ref Target - Figure 1 DCM DCM IOB Global Clock Mux Configurable Logic Programmable I/Os CLB Block SelectRAM Multiplier DS031_28_100900 Figure 1: Virtex-II Architecture Overview DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 3 R QPro Virtex-II 1.5V Platform FPGAs Virtex-II Features This section briefly describes Virtex-II features. Input/Output Blocks (IOBs) IOBs are programmable and can be categorized as follows: • Input block with an optional single-data-rate or doubledata-rate (DDR) register • Output block with an optional single-data-rate or DDR register, and an optional 3-state buffer, to be driven directly or through a single or DDR register The function generators F and G are configurable as 4-input look-up tables (LUTs), as 16-bit shift registers, or as 16-bit distributed SelectRAM memory.In addition, the two storage elements are either edge-triggered D-type flip-flops or levelsensitive latches. Each CLB has internal fast interconnect and connects to a switch matrix to access general routing resources. Block SelectRAM Memory • LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V) The block SelectRAM memory resources are 18 Kb of dual-port RAM, programmable from 16K x 1 bit to 512 x 36 bits, in various depth and width configurations. Each port is totally synchronous and independent, offering three "read-during-write" modes. Block SelectRAM memory is cascadable to implement large embedded storage blocks. Supported memory configurations for dual-port and singleport modes are shown in Table 3. • PCI compatible (33 MHz) at 3.3V Table 3: Dual-Port And Single-Port Configurations • CardBus compliant (33 MHz) at 3.3V 16K x 1 bit 2K x 9 bits • GTL and GTLP • 8K x 2 bits 1K x 18 bits HSTL (Class I, II, III, and IV) • 4K x 4 bits 512 x 36 bits SSTL (3.3V and 2.5V, Class I and II) • AGP-2X • Bidirectional block (any combination of input and output configurations) These registers are either edge-triggered D-type flip-flops or level-sensitive latches. IOBs support the following single-ended I/O standards: The digitally controlled impedance (DCI) I/O feature automatically provides on-chip termination for each I/O element. The IOB elements also support the following differential signaling I/O standards: • LVDS • BLVDS (Bus LVDS) • ULVDS • LDT • LVPECL Both the SelectRAM memory and the multiplier resource are connected to four switch matrices to access the general routing resources. Global Clocking The DCM and global clock multiplexer buffers provide a complete solution for designing high-speed clocking schemes. Two adjacent pads are used for each differential pair. Two or four IOB blocks connect to one switch matrix to access the routing resources. Configurable Logic Blocks (CLBs) CLB resources include four slices and two 3-state buffers. Each slice is equivalent and contains: • Two function generators (F and G) • Two storage elements • Arithmetic logic gates • Large multiplexers • Wide function capability • Fast carry look-ahead chain • Horizontal cascade chain (OR gate) DS122 (v2.0) December 21, 2007 Product Specification A multiplier block is associated with each SelectRAM memory block. The multiplier block is a dedicated 18 x 18bit multiplier and is optimized for operations based on the block SelectRAM content on one port. The 18 x 18 multiplier can be used independently of the block SelectRAM resource. Read/multiply/accumulate operations and DSP filter structures are extremely efficient. Up to 12 DCM blocks are available. To generate de-skewed internal or external clocks, each DCM can be used to eliminate clock distribution delay. The DCM also provides 90-, 180-, and 270-degree phase-shifted versions of its output clocks. Fine-grained phase shifting offers highresolution phase adjustments in increments of 1/256 of the clock period. Very flexible frequency synthesis provides a clock output frequency equal to any M/D ratio of the input clock frequency, where M and D are two integers. For the exact timing parameters, see "QPro Virtex-II Switching Characteristics," page 53. Virtex-II devices have 16 global clock MUX buffers with up to eight clock nets per quadrant. Each global clock MUX buffer can select one of the two clock inputs and switch glitch-free from one clock to the other. Each DCM block is able to drive up to four of the 16 global clock MUX buffers. www.xilinx.com 4 R QPro Virtex-II 1.5V Platform FPGAs Routing Resources Boundary-Scan The IOB, CLB, block SelectRAM, multiplier, and DCM elements all use the same interconnect scheme and the same access to the global routing matrix. Timing models are shared, greatly improving the predictability of the performance of high-speed designs. Boundary-Scan instructions and associated data registers support a standard methodology for accessing and configuring Virtex-II devices that complies with IEEE standards 1149.1 — 1993 and 1532. A system mode and a test mode are implemented. In system mode, a Virtex-II device performs its intended mission even while executing non-test boundary-scan instructions. In test mode, boundary-scan test instructions control the I/O pins for testing purposes. The Virtex-II Test Access Port (TAP) supports BYPASS, PRELOAD, SAMPLE, IDCODE, and USERCODE non-test instructions. The EXTEST, INTEST, and HIGHZ test instructions are also supported. There are a total of 16 global clock lines with eight available per quadrant. In addition, 24 vertical and horizontal long lines per row or column as well as massive secondary and local routing resources provide fast interconnect. Virtex-II buffered interconnects are relatively unaffected by net fanout, and the interconnect layout is designed to minimize crosstalk. Horizontal and vertical routing resources for each row or column include: • 24 long lines • 120 hex lines • 40 double lines • 16 direct connect lines (total in all four directions) DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 5 R QPro Virtex-II 1.5V Platform FPGAs Virtex-II Device/Package Combinations and Maximum I/O Wire-bond and flip-chip packages are available. Table 4 shows the maximum possible number of user I/Os in wirebond and flip-chip packages. Table 5 shows the number of available user I/Os for all device/package combinations. • FG denotes wire-bond fine-pitch plastic BGA (1.00 mm pitch). • BG denotes wire-bond standard plastic BGA (1.27 mm pitch). • CG denotes wire-bond fine-pitch hermetic ceramic column grid array (1.27 mm pitch). • CF denotes flip-chip fine-pitch non-hermetic ceramic column grid Array (1.00 mm pitch). • EF denotes epoxy-coated flip-chip BGA package (1.00 mm pitch). The number of I/Os per package include all user I/Os except the 15 control pins (CCLK, DONE, M0, M1, M2, PROG_B, PWRDWN_B, TCK, TDI, TDO, TMS, HSWAP_EN, DXN, DXP, and RSVD) and VBATT. Table 4: Package Information Package FG456 BG575 BG728 & CG717 EF957 CF1144 EF1152 Pitch (mm) 1.00 1.27 1.27 1.27 1.00 1.00 Size (mm) 23 x 23 31 x 31 35 x 35 40 x 40 35 x 35 35 x 35 Table 5: Virtex-II Device/Package Combinations and Maximum Number of Available I/Os Package Available I/Os XQ2V1000 XQ2V3000 XQ2V6000 FG456 324 – – BG575 328 – – BG728 – 516 – CG717 – 516 – EF957 – – 684 CF1144 – – 824 EF1152 – – 824 Notes: 1. 2. The BG728 and CG717 packages are pinout (footprint) compatible. The CF1144 is pinout (footprint) compatible with the FF1152. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 6 R QPro Virtex-II 1.5V Platform FPGAs Virtex-II Ordering Information Example: XQ2V3000 -4 CG 717 M Device Type Temperature Range/Grade Speed Grade(1) Number of Pins Package Type Notes: 1. -4 and- 5 are the only supported speed grades. Device Ordering Options Device Type Package Grade Temperature XQ2V1000 FG456 456-Ball Plastic Fine-Pitch BGA Package I Industrial Plastic TJ = –40°C to +100°C XQ2V3000 BG575 575-Ball Plastic BGA Package M Military Ceramic TJ = –55°C to +125°C XQ2V6000 BG728 728-Ball Plastic BGA Package N Military Plastic TJ = –55°C to +125°C CG717 717-Column Ceramic CGA Package EF957 957-Ball Epoxy-Coated Flip-Chip BGA Package CF1144 1144-Column Ceramic Flip-Chip Package EF1152 1152-Ball Epoxy-Coated Flip-Chip BGA Package Valid Ordering Combinations M Grade N Grade I Grade XQ2V3000-4CG717M XQ2V1000-4FG456N XQ2V6000-5EF957I XQ2V6000-4CF1144M(1) XQ2V1000-4BG575N XQ2V6000-4EF1152I XQ2V3000-4BG728N XQ2V6000-5EF1152I Notes: 1. CF1144 is non-Hermetic Ceramic. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 7 R QPro Virtex-II 1.5V Platform FPGAs Detailed Description Input/Output Blocks (IOBs) Table 6: Supported Single-Ended I/O Standards Virtex-II I/O blocks (IOBs) are provided in groups of two or four on the perimeter of each device. Each IOB can be used as an input and/or an output for single-ended I/Os. Two IOBs can be used as a differential pair. A differential pair is always connected to the same switch matrix, as shown in Figure 2. IOB blocks are designed for high-performance I/Os, supporting 19 single-ended standards, as well as differential signaling with LVDS, LDT, Bus LVDS, and LVPECL. X-Ref Target - Figure 2 IOB PAD4 Differential Pair IOB PAD3 Switch Matrix IOB PAD2 Differential Pair IOB PAD1 Output VCCO Input VCCO Input VREF Board Termination Voltage (VTT) LVTTL 3.3 3.3 N/A N/A LVCMOS33 3.3 3.3 N/A N/A LVCMOS25 2.5 2.5 N/A N/A LVCMOS18 1.8 1.8 N/A N/A LVCMOS15 1.5 1.5 N/A N/A PCI33_3 3.3 3.3 N/A N/A PCI66_3 3.3 3.3 N/A N/A PCI-X 3.3 3.3 N/A N/A GTL Note 1 Note 1 0.8 1.2 GTLP Note 1 Note 1 1.0 1.5 HSTL_I 1.5 N/A 0.75 0.75 HSTL_II 1.5 N/A 0.75 0.75 HSTL_III 1.5 N/A 0.9 1.5 HSTL_IV 1.5 N/A 0.9 1.5 HSTL_I 1.8 N/A 0.9 0.9 HSTL_II 1.8 N/A 0.9 0.9 HSTL_III 1.8 N/A 1.1 1.8 HSTL_IV 1.8 N/A 1.1 1.8 SSTL2_I 2.5 N/A 1.25 1.25 SSTL2_II 2.5 N/A 1.25 1.25 SSTL3_I 3.3 N/A 1.5 1.5 SSTL3_II 3.3 N/A 1.5 1.5 AGP-2X/AGP 3.3 N/A 1.32 N/A I/O Standard DS031_30_101600 Note: Differential I/Os must use the same clock. Figure 2: Virtex-II Input/Output Tile Supported I/O Standards Virtex-II IOB blocks feature SelectI/O-Ultra inputs and outputs that support a wide variety of I/O signaling standards. In addition to the internal supply voltage (VCCINT = 1.5V), output driver supply voltage (VCCO) is dependent on the I/O standard (see Table 6). An auxiliary supply voltage (VCCAUX = 3.3V) is required, regardless of the I/O standard used. For exact supply voltage absolute maximum ratings, see "DC Input and Output Levels." All of the user IOBs have fixed-clamp diodes to VCCO and to ground. As outputs, these IOBs are not compatible or compliant with 5V I/O standards. As inputs, these IOBs are not normally 5V tolerant, but can be used with 5V I/O standards when external current-limiting resistors are used. For more details, see the “5V Tolerant I/Os” Tech Topic at http://www.xilinx.com. Table 8, page 9 lists supported I/O standards with Digitally Controlled Impedance. See "Digitally Controlled Impedance (DCI)," page 15. DS122 (v2.0) December 21, 2007 Product Specification Notes: 1. VCCO of GTL or GTLP should not be lower than the termination voltage or the voltage seen at the I/O pad. Table 7: Supported Differential Signal I/O Standards Output VCCO Input VCCO Input VREF Output VOD LVPECL_33 3.3 N/A N/A 490 mV to 1.22V LDT_25 2.5 N/A N/A 0.430 – 0.670 LVDS_33 3.3 N/A N/A 0.250 – 0.400 LVDS_25 2.5 N/A N/A 0.250 – 0.400 LVDSEXT_33 3.3 N/A N/A 0.330 – 0.700 LVDSEXT_25 2.5 N/A N/A 0.330 – 0.700 BLVDS_25 2.5 N/A N/A 0.250 – 0.450 ULVDS_25 2.5 N/A N/A 0.430 – 0.670 I/O Standard www.xilinx.com 8 R QPro Virtex-II 1.5V Platform FPGAs Table 8: Supported DCI I/O Standards I/O Standard Output VCCO Input VCCO Input VREF Termination Type LVDCI_33 (1) 3.3 3.3 N/A Series LVDCI_DV2_33 (1) 3.3 3.3 N/A Series LVDCI_25 (1) 2.5 2.5 N/A Series LVDCI_DV2_25 (1) 2.5 2.5 N/A Series LVDCI_18 (1) 1.8 1.8 N/A Series LVDCI_DV2_18 (1) 1.8 1.8 N/A Series LVDCI_15 (1) 1.5 1.5 N/A Series LVDCI_DV2_15 (1) 1.5 1.5 N/A Series GTL_DCI 1.2 1.2 0.8 Single GTLP_DCI 1.5 1.5 1.0 Single HSTL_I_DCI 1.5 1.5 0.75 Split HSTL_II_DCI 1.5 1.5 0.75 Split HSTL_III_DCI 1.5 1.5 0.9 Single HSTL_IV_DCI 1.5 1.5 0.9 Single HSTL_I_DCI 1.8 N/A 0.9 Split HSTL_II_DCI 1.8 N/A 0.9 Split HSTL_III_DCI 1.8 N/A 1.1 Single HSTL_IV_DCI 1.8 N/A 1.1 Single SSTL2_I_DCI (2) 2.5 2.5 1.25 Split SSTL2_II_DCI (2) 2.5 2.5 1.25 Split SSTL3_I_DCI (2) 3.3 3.3 1.5 Split SSTL3_II_DCI (2) 3.3 3.3 1.5 Split Logic Resources IOB blocks include six storage elements, as shown in Figure 3. X-Ref Target - Figure 3 IOB Input Reg 3-State SR forces the storage element into the state specified by the SRHIGH or SRLOW attribute. SRHIGH forces a logic “1”. SRLOW forces a logic “0”. When SR is used, a second input (REV) forces the storage element into the opposite state. The reset condition predominates over the set condition. The initial state after configuration or global initialization state is defined by a separate INIT0 and INIT1 attribute. By default, the SRLOW attribute forces INIT0, and the SRHIGH attribute forces INIT1. For each storage element, the SRHIGH, SRLOW, INIT0, and INIT1 attributes are independent. Synchronous or asynchronous set/reset is consistent in an IOB block. Each register or latch (independent of all other registers or latches) (see Figure 5, page 10) can be configured as follows: Reg • No set or reset ICK2 • Synchronous set • Synchronous reset • Synchronous set and reset • Asynchronous set (preset) • Asynchronous reset (clear) • Asynchronous set and reset (preset and clear) DDR mux Reg OCK1 PAD Reg OCK2 Each group of two registers has a clock enable signal (ICE for the input registers, OCE for the output registers, and TCE for the 3-state registers). The clock enable signals are active High by default. If left unconnected, the clock enable for that storage element defaults to the active state. ICK1 Reg OCK2 The DDR mechanism shown in Figure 4 can be used to mirror a copy of the clock on the output. This is useful for propagating a clock along the data that has an identical delay. It is also useful for multiple clock generation, where there is a unique clock driver for every clock load. Virtex-II devices can produce many copies of a clock with very little skew. All the control signals have independent polarities. Any inverter placed on a control input is automatically absorbed. Reg OCK1 Double data rate is directly accomplished by the two registers on each path, clocked by the rising edges (or falling edges) from two different clock nets. The two clock signals are generated by the DCM and must be 180 degrees out of phase, as shown in Figure 4, page 10. There are two input, output, and 3-state data signals, each being alternately clocked out. Each IOB block has common synchronous or asynchronous set and reset (SR and REV signals). Notes: 1. LVDCI_XX and LVDCI_DV2_XX are LVCMOS controlled impedance buffers, matching the reference resistors or half of the reference resistors. 2. These are SSTL compatible. DDR mux Each storage element can be configured either as an edgetriggered D-type flip-flop or as a level-sensitive latch. On the input, output, and 3-state path, one or two DDR registers can be used. Output DS031_29_100900 The synchronous reset overrides a set, and an asynchronous clear overrides a preset. Figure 3: Virtex-II IOB Block DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 9 R QPro Virtex-II 1.5V Platform FPGAs X-Ref Target - Figure 4 DCM 180° 0° FDDR FDDR D1 D1 Q1 CLOCK Q1 CLK1 CLK1 Q DDR MUX DDR MUX D2 Q D2 Q2 Q2 CLK2 CLK2 (50/50 duty cycle clock) DS031_26_100900 Figure 4: Double Data Rate Registers X-Ref Target - Figure 5 (O/T) 1 FF LATCH (O/T) CE (O/T) CLK1 D1 Q1 Attribute INIT1 INIT0 SRHIGH SRLOW CE CK1 SR REV SR Shared by all registers REV FF1 DDR MUX FF2 (OQ or TQ) FF LATCH D2 (O/T) CLK2 Q2 CE CK2 SR REV Attribute INIT1 INIT0 SRHIGH SRLOW (O/T) 2 Reset Type SYNC ASYNC DS031_25_110300 Figure 5: Register/Latch Configuration in an IOB Block DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 10 R QPro Virtex-II 1.5V Platform FPGAs Input/Output Individual Options Each device pad has optional pull-up and pull-down resistors in all SelectI/O-Ultra configurations. Each device pad has an optional weak-keeper in LVTTL, LVCMOS, and PCI SelectI/O-Ultra configurations, as illustrated in Figure 6. Values of the optional pull-up and pull-down resistors are in the range 10 - 60 KΩ, which is the specification for VCCO when operating at 3.3V (from 3.0V to 3.6V only). The clamp diode is always present, even when power is not. X-Ref Target - Figure 6 VCCO Clamp Diode OBUF VCCO Program Current Weak Keeper 10-60KΩ PAD VCCO 10-60KΩ VCCAUX = 3.3V VCCINT = 1.5V Program Delay IBUF DS031_23_011601 Figure 6: LVTTL, LVCMOS, or PCI SelectI/O-Ultra Standards The optional weak-keeper circuit is connected to each output. When selected, this circuit monitors the voltage on the pad and weakly drives the pin High or Low. If the pin is connected to a multiple-source signal, the weak-keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter. Pull-up or pulldown resistors override the weak-keeper circuit. LVTTL sinks and sources current up to 24 mA. The current is programmable for LVTTL and LVCMOS SelectI/O-Ultra standards (see Table 9). Drive-strength and slew-rate controls for each output driver minimize bus transients. For LVDCI and LVDCI_DV2 standards, drive strength and slewrate controls are not available. Table 9: LVTTL and LVCMOS Programmable Currents (Sink and Source) SelectI/O-Ultra Programmable Current (Worst-Case Guaranteed Minimum) LVTTL 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVCMOS33 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVCMOS25 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVCMOS18 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a LVCMOS15 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 11 R QPro Virtex-II 1.5V Platform FPGAs Figure 7 shows the SSTL2, SSTL3, and HSTL configurations. HSTL can sink current up to 48 mA. (HSTL IV) X-Ref Target - Figure 7 VCCO Output Path The output path includes a 3-state output buffer that drives the output signal onto the pad. The output and/or the 3-state signal can be routed to the buffer directly from the internal logic or through an output/3-state flip-flop or latch, or through the DDR output/3-state registers. Clamp Diode Each output driver can be individually programmed for a wide range of low-voltage signaling standards. In most signaling standards, the output High voltage depends on an externally supplied VCCO voltage. The need to supply VCCO imposes constraints on which standards can be used in the same bank (see "I/O Banking"). PAD I/O Banking DS031_24_100900 Figure 7: SSTL or HSTL SelectI/O-Ultra Standards All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Virtex-II devices use two memory cells to control the configuration of an I/O as an input. This is to reduce the probability of an I/O configured as an input from flipping to an output when subjected to a single event upset (SEU) in space applications. Prior to configuration, all outputs not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive. The dedicated pin HSWAP_EN controls the pull-up resistors prior to configuration. By default, HSWAP_EN is driven High, which disables the pull-up resistors on user I/O pins. When HSWAP_EN is driven Low, the pull-up resistors are activated on user I/O pins. Some of the I/O standards described above require VCCO and VREF voltages. These voltages are externally supplied and connected to device pins that serve groups of IOB blocks, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank. Eight I/O banks result from dividing each edge of the FPGA into two banks, as shown in Figure 8 and Figure 9, page 13. Each bank has multiple VCCO pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use. X-Ref Target - Figure 8 Bank 1 Bank 5 Bank 4 Bank 6 All Virtex-II IOBs support IEEE 1149.1 compatible Boundary-Scan testing. Input Path The Virtex-II IOB input path routes input signals directly to internal logic and/or through an optional input flip-flop or latch, or through the DDR input registers. An optional delay element at the D-input of the storage element eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the Virtex-II device, and when used, ensures that the pad-to-pad hold time is zero. Each input buffer can be configured to conform to any of the low-voltage signaling standards supported. In some of these standards the input buffer utilizes a user-supplied DS122 (v2.0) December 21, 2007 Product Specification Bank 0 Bank 2 VCCAUX = 3.3V VCCINT = 1.5V Bank 3 VREF Bank 7 OBUF threshold voltage, VREF. The need to supply VREF imposes constraints on which standards can be used in the same bank (see "I/O Banking"). ug002_c2_014_112900 Figure 8: Virtex-II I/O Banks: Top View for Wire-Bond Packages (CS, FG, & BG) Some input standards require a user-supplied threshold voltage (VREF), and certain user-I/O pins are automatically configured as VREF inputs. Approximately one in six of the I/O pins in the bank assume this role. www.xilinx.com 12 R QPro Virtex-II 1.5V Platform FPGAs Rules for Combining I/O Standards in the Same Bank X-Ref Target - Figure 9 The following rules must be obeyed to combine different input, output, and bidirectional standards in the same bank: Bank 0 • Bank 7 Bank 2 Bank 1 Combining output standards only. Output standards with the same output VCCO requirement can be combined in the same bank. Bank 6 Bank 3 Compatible example: Bank 4 SSTL2_I and LVDS_25_DCI outputs Incompatible example: SSTL2_I (output VCCO = 2.5V) and LVCMOS33 (output VCCO = 3.3V) outputs Bank 5 • ds031_66_112900 Figure 9: Virtex-II I/O Banks: Top View for Flip-Chip Packages (FF & BF) Combining input standards only. Input standards with the same input VCCO and input VREF requirements can be combined in the same bank. Compatible example: LVCMOS15 and HSTL_IV inputs VREF pins within a bank are interconnected internally, and consequently only one VREF voltage can be used within each bank. However, for correct operation, all VREF pins in the bank must be connected to the external reference voltage source. The VCCO and the VREF pins for each bank appear in the device pinout tables. Within a given package, the number of VREF and VCCO pins can vary depending on the size of device. In larger devices, more I/O pins convert to VREF pins. Since these are always a superset of the VREF pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All VREF pins for the largest device anticipated must be connected to the VREF voltage and are not used for I/O. In smaller devices, some VCCO pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or, if necessary, they can be connected to VCCO to permit migration to a larger device. Incompatible example: LVCMOS15 (input VCCO = 1.5V) and LVCMOS18 (input VCCO = 1.8V) inputs Incompatible example: HSTL_I_DCI_18 (VREF = 0.9V) and HSTL_IV_DCI_18 (VREF = 1.1V) inputs • Combining input standards and output standards. Input standards and output standards with the same input VCCO and output VCCO requirement can be combined in the same bank. Compatible example: LVDS_25 output and HSTL_I input Incompatible example: LVDS_25 output (output VCCO = 2.5V) and HSTL_I_DCI_18 input (input VCCO = 1.8V) • Combining bidirectional standards with input or output standards. When combining bidirectional I/O with other standards, make sure the bidirectional standard can meet rules 1 through 3 above. • Additional rules for combining DCI I/O standards. ♦ No more than one Single Termination type (input or output) is allowed in the same bank. Incompatible example: HSTL_IV_DCI input and HSTL_III_DCI input ♦ No more than one Split Termination type (input or output) is allowed in the same bank. Incompatible example: HSTL_I_DCI input and HSTL_II_DCI input The implementation tools enforce these design rules. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 13 R QPro Virtex-II 1.5V Platform FPGAs Table 10 summarizes all standards and voltage supplies. Table 10: Summary of Voltage Supply Requirements for All Input and Output Standards VREF VCCO I/O Standard Termination Type Outpu Inpu Input Output t t LVDS_33 LVDSEXT_33 Table 10: Summary of Voltage Supply Requirements for All Input and Output Standards (Cont’d) VCCO I/O Standard Input VREF Termination Type Outpu Inpu Input Output t t Input N/R (1) N/R N/R HSTL_III_18 1.1 N/R N/R N/R N/R N/R HSTL_IV_18 1.1 N/R N/R 0.9 N/R N/R N/R N/R N/R HSTL_I_18 SSTL3_I 1.5 N/R N/R HSTL_II_18 0.9 N/R N/R SSTL3_II 1.5 N/R N/R SSTL18_I 0.9 N/R N/R AGP 1.32 N/R N/R SSTL18_II 0.9 N/R N/R N/R N/R N/R N/R Series N/R N/R Series N/R 1.1 N/R Single 1.1 Single Single LVPECL_33 N/R N/R LVTTL N/R N/R N/R LVCMOS18 LVCMOS33 N/R N/R N/R LVDCI_18 N/R Series N/R LVDCI_DV2_18 N/R Series N/R HSTL_III_DCI_18 LVDCI_33 3.3 LVDCI_DV2_33 1.8 N/R N/R N/R HSTL_IV_DCI_18 N/R N/R N/R HSTL_I_DCI_18 0.9 N/R Split PCIX N/R N/R N/R HSTL_II_DCI_18 0.9 Split Split LVDS_33_DCI N/R N/R Split SSTL18_I_DCI 0.9 N/R Split 0.9 Split Split 0.9 N/R N/R 0.9 N/R N/R PCI33_3 PCI66_3 3.3 1.8 LVDSEXT_33_DCI N/R N/R Split SSTL18_II_DCI SSTL3_I_DCI 1.5 N/R Split HSTL_III SSTL3_II_DCI 1.5 Split Split HSTL_IV LVDS_25 N/R N/R N/R HSTL_I 0.75 N/R N/R 0.75 N/R N/R N/R N/R N/R N/R Series N/R N/R Series N/R 1 Single Single N/R LVDSEXT_25 N/R N/R N/R HSTL_II LDT_25 N/R N/R N/R LVCMOS15 N/R N/R N/R LVDCI_15 N/R N/R N/R LVDCI_DV2_15 ULVDS_25 N/R BLVDS_25 1.5 SSTL2_I 1.25 N/R N/R GTLP_DCI SSTL2_II 1.25 N/R N/R HSTL_III_DCI 0.9 N/R Single LVCMOS25 N/R N/R N/R HSTL_IV_DCI 0.9 Single Single LVDCI_25 N/R Series N/R HSTL_I_DCI 0.75 N/R Split 0.75 Split Split 0.8 Single Single 1 N/R N/R 0.8 N/R N/R 2.5 1.5 N/R Series N/R HSTL_II_DCI N/R N/R Split GTL_DCI LVDSEXT_25_DCI N/R N/R Split GTLP SSTL2_I_DCI 1.25 N/R Split GTL SSTL2_II_DCI 1.25 Split Split Notes: LVDCI_DV2_25 LVDS_25_DCI 2.5 1. DS122 (v2.0) December 21, 2007 Product Specification 1.2 1.2 N/R N/R N/R = no requirement. www.xilinx.com 14 R QPro Virtex-II 1.5V Platform FPGAs Digitally Controlled Impedance (DCI) Today’s chip output signals with fast edge rates require termination to prevent reflections and maintain signal integrity. High pin count packages (especially ball grid arrays) can not accommodate external termination resistors. Virtex-II XCITE DCI provides controlled impedance drivers and on-chip termination for single-ended and differential I/Os. This eliminates the need for external resistors, and improves signal integrity. The DCI feature can be used on any IOB by selecting one of the DCI I/O standards. Controlled Impedance Drivers (Series Termination) DCI can be used to provide a buffer with a controlled output impedance. It is desirable for this output impedance to match the transmission line impedance (Z). Virtex-II input buffers also support LVDCI and LVDCI_DV2 I/O standards. X-Ref Target - Figure 11 IOB Z When applied to inputs, DCI provides input parallel termination. When applied to outputs, DCI provides controlled impedance drivers (series termination) or output parallel termination. DCI operates independently on each I/O bank. When a DCI I/O standard is used in a particular I/O bank, external reference resistors must be connected to two dual-function pins on the bank. These resistors, the voltage reference of the N transistor (VRN), and the voltage reference of the P transistor (VRP) are shown in Figure 10. Virtex-II DCI VCCO = 3.3 V, 2.5 V, 1.8 V or 1.5 V DS031_51_110600 Figure 11: Internal Series Termination Table 11: SelectI/O-Ultra Controlled Impedance Buffers X-Ref Target - Figure 10 1 Bank DCI DCI Z VCCO DCI DCI Half Impedance 3.3 V LVDCI_33 LVDCI_DV2_33 2.5 V LVDCI_25 LVDCI_DV2_25 1.8 V LVDCI_18 LVDCI_DV2_18 1.5 V LVDCI_15 LVDCI_DV2_15 Controlled Impedance Drivers (Parallel Termination) DCI DCI also provides on-chip termination for SSTL3, SSTL2, HSTL (Class I, II, III, or IV), and GTL/GTLP receivers or transmitters on bidirectional lines. DCI VCCO Table 12 lists the on-chip parallel terminations available in Virtex-II devices. VCCO must be set according to Table 8. Note that there is a VCCO requirement for GTL_DCI and GTLP_DCI, due to the on-chip termination resistor. RREF (1%) VRN VRP RREF (1%) Table 12: SelectI/O-Ultra Buffers with On-Chip Parallel Termination GND DS031_50_101200 Figure 10: DCI in a Virtex-II Bank When used with a terminated I/O standard, the value of resistors are specified by the standard (typically 50 Ω). When used with a controlled impedance driver, the resistors set the output impedance of the driver within the specified range (25 Ω to 100 Ω). For all series and parallel terminations listed in Table 11 and Table 12, the reference resistors must have the same value for any given bank. One percent resistors are recommended. The DCI system adjusts the I/O impedance to match the two external reference resistors or half of the reference resistors, and compensates for impedance changes due to voltage and/or temperature fluctuations. The adjustment is done by turning parallel transistors in the IOB on or off. DS122 (v2.0) December 21, 2007 Product Specification I/O Standard External Termination On-Chip Termination SSTL3 Class I SSTL3_I SSTL3_I_DCI (1) SSTL3 Class II SSTL3_II SSTL3_II_DCI (1) SSTL2 Class I SSTL2_I SSTL2_I_DCI (1) SSTL2 Class II SSTL2_II SSTL2_II_DCI (1) HSTL Class I HSTL_I HSTL_I_DCI HSTL Class II HSTL_II HSTL_II_DCI HSTL Class III HSTL_III HSTL_III_DCI HSTL Class IV HSTL_IV HSTL_IV_DCI GTL GTL GTL_DCI GTLP GTLP GTLP_DCI Notes: 1. SSTL Compatible www.xilinx.com 15 R QPro Virtex-II 1.5V Platform FPGAs Figure 12 provides examples illustrating the use of the HSTL_I_DCI, HSTL_II_DCI, HSTL_III_DCI, and HSTL_IV_DCI I/O standards. For a complete list, see the [Ref 1]. X-Ref Target - Figure 12 HSTL_I HSTL_II VCCO/2 VCCO/2 R Conventional VCCO VCCO 2R VCCO 2R N/A R Z0 2R Virtex-II DCI Virtex-II DCI VCCO VCCO VCCO Virtex-II DCI Recommended Z0 Virtex-II DCI Virtex-II DCI VCCO R Z0 R R 2R 2R VCCO Z0 2R Virtex-II DCI 2R Reference Resistor R 2R Virtex-II DCI VCCO Bidirectional VCCO Z0 Virtex-II DCI Virtex-II DCI Virtex-II DCI 2R Z0 R Z0 Virtex-II DCI 2R VCCO R Z0 2R VCCO VCCO R 2R Virtex-II DCI VCCO 2R Z0 Virtex-II DCI DCI Transmit DCI Receive Virtex-II DCI VCCO R Z0 R Z0 Virtex-II DCI VCCO/2 2R VCCO R Z0 Virtex-II DCI VCCO Conventional Transmit DCI Receive VCCO R 2R Virtex-II DCI R Z0 VCCO Z0 VCCO R Z0 R Z0 VCCO R VCCO/2 2R R HSTL_IV VCCO R Z0 VCCO/2 DCI Transmit Conventional Receive VCCO/2 R Z0 HSTL_III Z0 N/A Virtex-II DCI Virtex-II DCI Virtex-II DCI VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 50 Ω 50 Ω 50 Ω 50 Ω DS031_65a_100201 Figure 12: HSTL DCI Usage Examples DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 16 R QPro Virtex-II 1.5V Platform FPGAs Figure 13 provides examples illustrating the use of the SSTL2_I_DCI, SSTL2_II_DCI, SSTL3_I_DCI, and SSTL3_II_DCI I/O standards. For a complete list, see [Ref 1]. X-Ref Target - Figure 13 SSTL2_I SSTL2_II SSTL3_I VCCO/2 VCCO/2 VCCO/2 R VCCO/2 R Conventional R/2 Z0 25Ω(1) VCCO 25Ω(1) R R/2 R 2R 25Ω R/2 2R R/2 2R 2R Z0 2R Virtex-II DCI VCCO VCCO 25Ω(1) 2R 2R Z0 2R 2R 2R Virtex-II DCI Virtex-II DCI Virtex-II DCI Virtex-II DCI N/A Virtex-II DCI VCCO VCCO 25Ω (1) Z0 2R 2R 25Ω (1) N/A Virtex-II DCI Virtex-II DCI 25Ω(1) 2R 2R Virtex-II DCI Reference Resistor 2R 2R Virtex-II DCI Bidirectional R/2 Z0 2R 2R 2R R Z0 VCCO 25Ω(1) 2R Z0 VCCO VCCO/2 Virtex-II DCI VCCO VCCO 25Ω(1) R 2R Virtex-II DCI VCCO 25Ω(1) R/2 2R VCCO/2 2R Z0 Virtex-II DCI DCI Transmit DCI Receive VCCO 2R VCCO Virtex-II DCI 2R Z0 Z0 (1) 2R VCCO R 2R 25Ω Z0 Virtex-II DCI VCCO/2 VCCO VCCO/2 Z0 Virtex-II DCI Z0 R/2 R Z0 R Z0 (1) 2R Conventional Transmit DCI Receive VCCO/2 R VCCO/2 Z0 Virtex-II DCI VCCO/2 R R Z0 R/2 VCCO/2 DCI Transmit Conventional Receive SSTL3_II VCCO VCCO 2R 2R Z0 2R 2R Virtex-II DCI Virtex-II DCI Virtex-II DCI VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 50 Ω 50 Ω 50 Ω 50 Ω Recommended Z0(2) 25Ω(1) Notes: 1. The SSTL-compatible 25Ω series resistor is accounted for in the DCI buffer, and it is not DCI controlled. 2. Z0 is the recommended PCB trace impedance. DS031_65b_112502 Figure 13: SSTL DCI Usage Examples DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 17 R QPro Virtex-II 1.5V Platform FPGAs Figure 14 provides examples illustrating the use of the LVDS_DCI and LVDSEXT_DCI I/O standards. For a complete list, see [Ref 1]. X-Ref Target - Figure 14 LVDS_DCI and LVDSEXT_DCI Receiver Z0 2R Conventional Z0 Virtex-II LVDS VCCO 2R Z0 2R Conventional Transmit DCI Receive VCCO 2R Z0 2R Virtex-II LVDS DCI Reference Resistor VRN = VRP = R = Z0 Recommended Z0 50 Ω DS031_65c_082102 Figure 14: LVDS DCI Usage Examples DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 18 R QPro Virtex-II 1.5V Platform FPGAs Configurable Logic Blocks (CLBs) Configurations The Virtex-II configurable logic blocks (CLB) are organized in an array and are used to build combinatorial and synchronous logic designs. Each CLB element is tied to a switch matrix to access the general routing matrix, as shown in Figure 15. A CLB element comprises four similar slices with fast local feedback within the CLB. The four slices are split into two columns of two slices with two independent carry logic chains and one common shift chain. Look-Up Table X-Ref Target - Figure 15 COUT TBUF X0Y1 TBUF X0Y0 Slice X1Y1 Slice X1Y0 COUT Switch Matrix SHIFT CIN Slice X0Y1 Fast Connects to neighbors Slice X0Y0 CIN DS031_32_101600 Figure 15: Virtex-II CLB Element Slice Description X-Ref Target - Figure 16 ORCY Register Register The initial state after configuration or global initial state is defined by a separate INIT0 and INIT1 attribute. By default, setting the SRLOW attribute sets INIT0, and setting the SRHIGH attribute sets INIT1. SRL16 CY RAM16 MUXF5 SRL16 LUT F CY Arithmetic Logic DS031_31_100900 Figure 16: Virtex-II Slice Configuration The output from the function generator in each slice drives both the slice output and the D input of the storage element. Figure 17 shows a more detailed view of a single slice. DS122 (v2.0) December 21, 2007 Product Specification The storage elements in a Virtex-II slice can be configured as either edge-triggered D-type flip-flops or level-sensitive latches. The D input can be directly driven by the X or Y output via the DX or DY input, or by the slice inputs bypassing the function generators via the BX or BY input. The clock enable signal (CE) is active High by default. If left unconnected, the clock enable for that storage element defaults to the active state. In addition to clock (CK) and clock enable (CE) signals, each slice has set and reset signals (SR and BY slice inputs). SR forces the storage element into the state specified by the attribute SRHIGH or SRLOW. SRHIGH forces a logic “1” when SR is asserted. SRLOW forces a logic “0”. When SR is used, a second input (BY) forces the storage element into the opposite state. The reset condition is predominant over the set condition (Figure 18, page 21). MUXFx LUT G In addition to the basic LUTs, the Virtex-II slice contains logic (MUXF5 and MUXFX multiplexers) that combines function generators to provide any function of five, six, seven, or eight inputs. The MUXFXs are either MUXF6, MUXF7, or MUXF8 according to the slice considered in the CLB. Selected functions up to nine inputs (MUXF5 multiplexer) can be implemented in one slice. The MUXFX can also be a MUXF6, MUXF7, or MUXF8 multiplexer to map any functions of six, seven, or eight inputs and selected wide logic functions. Register/Latch Each slice includes two 4-input function generators, carry logic, arithmetic logic gates, wide function multiplexers and two storage elements. As shown in Figure 16, each 4-input function generator is programmable as a 4-input LUT, 16 bits of distributed SelectRAM memory, or a 16-bit variabletap shift register element. RAM16 Virtex-II function generators are implemented as 4-input look-up tables (LUTs). Four independent inputs are provided to each of the two function generators in a slice (F and G). These function generators are each capable of implementing any arbitrarily defined Boolean function of four inputs. The propagation delay is therefore independent of the function implemented. Signals from the function generators can exit the slice (X or Y output), can input the XOR dedicated gate (see arithmetic logic), or input the carry-logic multiplexer (see fast look-ahead carry logic), or feed the D input of the storage element, or go to the MUXF5 (not shown in Figure 17, page 20). For each slice, set and reset can be set to be synchronous or asynchronous. Virtex-II devices also have the ability to set INIT0 and INIT1 independent of SRHIGH and SRLOW. Control signals CLK, CE, and SR are common to both storage elements in one slice. All control signals have independent polarities. Any inverter placed on a control input is automatically absorbed. www.xilinx.com 19 R QPro Virtex-II 1.5V Platform FPGAs The set and reset functionality of a register or a latch can be configured as follows: • Asynchronous set (preset) • Asynchronous reset (clear) • No set or reset • Asynchronous set and reset (preset and clear) • Synchronous set • Synchronous reset The synchronous reset has precedence over a set, and an asynchronous clear has precedence over a preset. • Synchronous set and reset X-Ref Target - Figure 17 COUT SHIFTIN ORCY SOPIN SOPOUT 0 Dual-Port Shift-Reg G4 G3 G2 G1 WG4 WG3 WG2 WG1 A4 LUT A3 RAM A2 ROM A1 D WG4 G WG3 WG2 MC15 WG1 DI WS YBMUX YB MUXCY 1 0 1 GYMUX Y DY XORG FF LATCH ALTDIG MULTAND 1 0 DYMUX G2 PROD G1 CYOG BY CE CLK D Q Q Y CE CK SR REV BY SLICEWE[2:0] WSG WE[2:0] WE CLK WSF SR SHIFTOUT DIG MUXCY 1 0 CE CLK Shared between x & y Registers SR CIN DS031_01_112502 Figure 17: Virtex-II Slice (Top Half) DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 20 R QPro Virtex-II 1.5V Platform FPGAs Table 13: Distributed SelectRAM Configurations X-Ref Target - Figure 18 FFY FF LATCH DY D Q CE CK SR REV BY YQ Attribute INIT1 INIT0 SRHIGH SRLOW FFX FF LATCH DX CE CLK SR BX D Q CE CK SR REV 1. Attribute INIT1 INIT0 SRHIGH SRLOW Reset Type SYNC ASYNC DS031_22_110600 Distributed SelectRAM Memory Each function generator (LUT) can implement a 16 x 1-bit synchronous RAM resource called a distributed SelectRAM element. The SelectRAM elements are configurable within a CLB to implement the following: Single-port 16 x 8 bit RAM • Single-port 32 x 4 bit RAM • Single-port 64 x 2 bit RAM • Single-port 128 x 1 bit RAM • Dual-port 16 x 4 bit RAM • Dual-port 32 x 2 bit RAM • Dual-port 64 x 1 bit RAM Number of LUTs 16 x 1S 1 16 x 1D 2 32 x 1S 2 32 x 1D 4 64 x 1S 4 64 x 1D 8 128 x 1S 8 Notes: XQ Figure 18: Register/Latch Configuration in a Slice • RAM S = single-port configuration, and D = dual-port configuration. For single-port configurations, distributed SelectRAM memory has one address port for synchronous writes and asynchronous reads. For dual-port configurations, distributed SelectRAM memory has one port for synchronous writes and asynchronous reads and another port for asynchronous reads. The function generator (LUT) has separated read address inputs (A1, A2, A3, A4) and write address inputs (WG1/WF1, WG2/WF2, WG3/WF3, WG4/WF4). In single-port mode, read and write addresses share the same address bus. In dual-port mode, one function generator (R/W port) is connected with shared read and write addresses. The second function generator has the A inputs (read) connected to the second read-only port address and the W inputs (write) shared with the first read/write port address. Figure 19, Figure 20, page 22, and Figure 21, page 22 illustrate various example configurations. X-Ref Target - Figure 19 RAM 16x1S Distributed SelectRAM memory modules are synchronous (write) resources. The combinatorial read access time is extremely fast, while the synchronous write simplifies highspeed designs. A synchronous read can be implemented with a storage element in the same slice. The distributed SelectRAM memory and the storage element share the same clock input. A Write Enable (WE) input is active High, and is driven by the SR input. Table 13 shows the number of LUTs (two per slice) occupied by each distributed SelectRAM configuration. DS122 (v2.0) December 21, 2007 Product Specification A[3:0] RAM A[4:1] 4 4 WG[4:1] WS D WE WCLK Output D D Q DI Registered Output (BY) WSG (SR) WE CK (optional) DS031_02_100900 Figure 19: Distributed SelectRAM (RAM16x1S) www.xilinx.com 21 R QPro Virtex-II 1.5V Platform FPGAs Similar to the RAM configuration, each function generator (LUT) can implement a 16 x 1-bit ROM. Five configurations are available: ROM16x1, ROM32x1, ROM64x1, ROM128x1, and ROM256x1. The ROM elements are cascadable to implement wider or/and deeper ROM. ROM contents are loaded at configuration. Table 14 shows the number of LUTs occupied by each configuration. X-Ref Target - Figure 20 RAM 32x1S A[4] (BX) RAM 4 A[3:0] D G[4:1] WG[4:1] WS D WE WCLK DI (BY) Table 14: ROM Configuration WSG WE0 WE CK WSF (SR) F5MUX WS DI RAM D 4 D Q ROM Number of LUTs Output 16 x 1 1 Registered Output 32 x 1 2 (optional) 4 8 (1 CLB) 256 x 1 16 (2 CLBs) F[4:1] Shift Registers WF[4:1] DS031_03_110100 Figure 20: Single-Port Distributed SelectRAM (RAM32x1S) X-Ref Target - Figure 21 RAM 16x1D 4 DPRA[3:0] 4 A[3:0] dual_port RAM G[4:1] D DPO WG[4:1] WS D 64 x 1 128 x 1 DI Each function generator can also be configured as a 16-bit shift register. The write operation is synchronous with a clock input (CLK) and an optional clock enable, as shown in Figure 22. A dynamic read access is performed through the 4bit address bus, A[3:0]. The configurable 16-bit shift register cannot be set or reset. The read is asynchronous, however, the storage element or flip-flop is available to implement a synchronous read. The storage element should always be used with a constant address. For example, when building an 8-bit shift register and configuring the addresses to point to the seventh bit, the eighth bit can be the flip-flop. The overall system performance is improved by using the superior clockto-out of the flip-flops. X-Ref Target - Figure 22 (BY) SRLC16 SHIFTIN WSG SHIFT-REG WE CK A[3:0] 4 A[4:1] D MC15 WS DI Output D A[3:0] 4 dual_port RAM G[4:1] D WSG SPO CE (SR) CLK DI (SR) (optional) WE CK SHIFTOUT WSG WE WCLK Registered Output D(BY) WG[4:1] WS Q DS031_05_110600 WE CK Figure 22: Shift Register Configurations Figure 21: Dual-Port Distributed SelectRAM (RAM16x1D) An additional dedicated connection between shift registers allows connecting the last bit of one shift register to the first bit of the next, without using the ordinary LUT output. (See Figure 23, page 23.) Longer shift registers can be built with dynamic access to any bit in the chain. The shift register chaining and the MUXF5, MUXF6, and MUXF7 multiplexers allow up to a 128-bit shift register with addressable access to be implemented in one CLB. DS031_04_110100 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 22 R QPro Virtex-II 1.5V Platform FPGAs Multiplexers X-Ref Target - Figure 23 Virtex-II function generators and associated multiplexers can implement the following: 1 Shift Chain in CLB DI D SRLC16 MC15 IN DI D SRLC16 MC15 FF FF SHIFTOUT SHIFTIN SLICE S2 FF DI D SRLC16 MC15 FF DI D SRLC16 MC15 FF 8:1 multiplexer in two slices • 16:1 multiplexer in one CLB element (4 slices) • 32:1 multiplexer in two CLB elements (8 slices) Dedicated carry logic provides fast arithmetic addition and subtraction. The Virtex-II CLB has two separate carry chains, as shown in the Figure 25, page 25. The height of the carry chains is two bits per slice. The carry chain in the Virtex-II device is running upward. The dedicated carry path and carry multiplexer (MUXCY) can also be used to cascade function generators for implementing wide logic functions. SHIFTIN FF • Fast Lookahead Carry Logic SHIFTOUT DI D SRLC16 MC15 4:1 multiplexer in one slice Each Virtex-II slice has one MUXF5 multiplexer and one MUXFX multiplexer. The MUXFX multiplexer implements the MUXF6, MUXF7, or MUXF8, as shown in Figure 24, page 24. Each CLB element has two MUXF6 multiplexers, one MUXF7 multiplexer and one MUXF8 multiplexer (examples of multiplexers are shown in [Ref 1]). Any LUT can implement a 2:1 multiplexer. SLICE S3 DI D SRLC16 MC15 • Arithmetic Logic The arithmetic logic includes an XOR gate that allows a 2-bit full adder to be implemented within a slice. In addition, a dedicated AND (MULT_AND) gate (shown in Figure 17, page 20) improves the efficiency of multiplier implementation. SLICE S1 SHIFTOUT SHIFTIN DI D SRLC16 MC15 FF DI D SRLC16 MC15 FF SLICE S0 OUT CLB CASCADABLE OUT DS031_06_110200 Figure 23: Cascadable Shift Register DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 23 R QPro Virtex-II 1.5V Platform FPGAs F8 X-Ref Target - Figure 24 G F5 Slice S3 MUXF8 combines the two MUXF7 outputs (Two CLBs) F6 F G F5 Slice S2 MUXF6 combines the two MUXF5 outputs from slices S2 and S3 F7 F F5 G Slice S1 MUXF7 combines the two MUXF6 outputs from slices S0 and S2 Slice S0 MUXF6 combines the two MUXF5 outputs from slices S0 and S1 F6 F F5 G F CLB DS031_08_100201 Figure 24: MUXF5 and MUXFX multiplexers DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 24 R QPro Virtex-II 1.5V Platform FPGAs X-Ref Target - Figure 25 COUT to S0 of the next CLB COUT to CIN of S2 of the next CLB O I MUXCY FF LUT (First Carry Chain) SLICE S3 O I MUXCY FF LUT CIN COUT O I MUXCY FF LUT SLICE S2 O I O I MUXCY MUXCY FF LUT FF LUT O I SLICE S1 MUXCY FF LUT CIN COUT O I (Second Carry Chain) MUXCY FF LUT O I SLICE S0 MUXCY FF LUT CIN CIN CLB DS031_07_110200 Figure 25: Fast Carry Logic Path DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 25 R QPro Virtex-II 1.5V Platform FPGAs Sum of Products connected to the output of the top MUXCY in the same slice, as shown in Figure 26. Each Virtex-II slice has a dedicated OR gate named ORCY, ORing together outputs from the slices carryout and the ORCY from an adjacent slice. The ORCY gate with the dedicated Sum of Products (SOP) chain are designed for implementing large, flexible SOP chains. One input of each ORCY is connected through the fast SOP chain to the output of the previous ORCY in the same slice row. The second input is LUTs and MUXCYs can implement large AND gates or other combinatorial logic functions. Figure 27 illustrates LUT and MUXCY resources configured as a 16-input AND gate. X-Ref Target - Figure 26 ORCY ORCY ORCY ORCY SOP 4 LUT MUXCY 4 LUT Slice 1 4 LUT MUXCY 4 LUT MUXCY LUT MUXCY MUXCY LUT Slice 3 4 LUT MUXCY 4 LUT MUXCY Slice 0 4 4 LUT VCC LUT Slice 1 4 LUT MUXCY 4 LUT MUXCY Slice 2 4 MUXCY 4 Slice 3 4 LUT MUXCY 4 LUT MUXCY Slice 0 4 MUXCY LUT VCC MUXCY MUXCY Slice 2 4 LUT VCC MUXCY VCC CLB CLB ds031_64_110300 Figure 26: Horizontal Cascade Chain X-Ref Target - Figure 27 OUT 4 LUT MUXCY 0 1 “0” 4 LUT Slice MUXCY 0 1 “0” 16 4 AND OUT MUXCY 0 1 LUT “0” 4 LUT Slice MUXCY 0 1 VCC DS031_41_110600 Figure 27: Wide-Input AND Gate (16 Inputs) DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 26 R QPro Virtex-II 1.5V Platform FPGAs 3-State Buffers Introduction Each Virtex-II CLB contains two 3-state drivers (TBUFs) that can drive on-chip buses. Each 3-state buffer has its own 3-state control pin and its own input pin. Each of the four slices have access to the two 3-state buffers through the switch matrix, as shown in Figure 28. TBUFs in neighboring CLBs can access slice outputs by direct connects. The outputs of the 3-state buffers drive horizontal routing resources used to implement 3-state buses. The 3-state buffer logic is implemented using AND-OR logic rather than 3-state drivers, so that timing is more predictable and less load dependent especially with larger devices. Locations/Organization Four horizontal routing resources per CLB are provided for on-chip 3-state buses. Each 3-state buffer has access alternately to two horizontal lines, which can be partitioned as shown in Figure 29. The switch matrices corresponding to SelectRAM memory and multiplier or I/O blocks are skipped. X-Ref Target - Figure 28 Number of 3-State Buffers TBUF TBUF Table 15 shows the number of 3-state buffers available in each Virtex-II device. The number of 3-state buffers is twice the number of CLB elements. Slice S3 Switch Matrix Table 15: Virtex-II 3-State Buffers Slice S2 3-State Buffers per Row Total Number of 3-State Buffers XQ2V1000 64 2,560 XQ2V3000 112 7,168 XQ2V6000 176 16,896 Device Slice S1 Slice S0 DS031_37_060700 Figure 28: Virtex-II 3-State Buffers X-Ref Target - Figure 29 3 - state lines Switch matrix CLB-II Programmable connection Switch matrix CLB-II DS031_09_032700 Figure 29: 3-State Buffer Connection to Horizontal Lines DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 27 R QPro Virtex-II 1.5V Platform FPGAs CLB/Slice Configurations Table 16 summarizes the logic resources in one CLB. All of the CLBs are identical and each CLB or slice can be implemented in one of the configurations listed. Table 17 shows the available resources in all CLBs. Table 16: Logic Resources in One CLB Slices LUTs Flip-Flops MULT_ANDs Arithmetic & Carry Chains SOP Chains Distributed SelectRAM Shift Registers TBUF 4 8 8 8 2 2 128 bits 128 bits 2 Table 17: Virtex-II Logic Resources Available in All CLBs Device CLB Array: Row x Column Number of Slices Number of LUTs Max Distributed SelectRAM or Shift Register (bits) Number of Flip-Flops Number of Carry Chains (1) Number of SOP Chains (1) XQ2V1000 40 x 32 5,120 10,240 163,840 10,240 64 80 XQ2V3000 64 x 56 14,336 28,672 458,752 28,672 112 128 XQ2V6000 96 x 88 33,792 67,584 1,081,344 67,584 176 192 Notes: 1. The carry chains and SOP chains can be split or cascaded. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 28 R QPro Virtex-II 1.5V Platform FPGAs 18 Kbit Block SelectRAM Resources Introduction Virtex-II devices incorporate large amounts of 18 Kbit block SelectRAM. These complement the distributed SelectRAM resources that provide shallow RAM structures implemented in CLBs. Each Virtex-II block SelectRAM is an 18 Kbit true dual-port RAM with two independently clocked and independently controlled synchronous ports that access a common storage area. Both ports are functionally identical. CLK, EN, WE, and SSR polarities are defined through configuration. as 8 + 1, 16 + 2, or 32 + 4. These extra parity bits are stored and behave exactly as the other bits, including the timing parameters. Video applications can use the 9-bit ratio of Virtex-II block SelectRAM memory to advantage. Each block SelectRAM cell is a fully synchronous memory, as illustrated in Figure 30. Input data bus and output data bus widths are identical. X-Ref Target - Figure 30 18 Kbit Block SelectRAM DI DIP ADDR Each port has the following types of inputs: Clock and Clock Enable, Write Enable, Set/Reset, and Address, as well as separate Data/parity data inputs (for writes) and Data/parity data outputs (for reads). Operation is synchronous. The block SelectRAM behaves like a register. Control, address, and data inputs must (and need only) be valid during the set-up time window prior to a rising (or falling, a configuration option) clock edge. Data outputs change as a result of the same clock edge. WE EN SSR CLK DO DOP DS031_10_071602 Figure 30: 18 Kbit Block SelectRAM Memory in SinglePort Mode Configuration Dual-Port Configuration The Virtex-II block SelectRAM supports various configurations, including single- and dual-port RAM and various data/address aspect ratios. Supported memory configurations for single- and dual-port modes are shown in Table 18. As a dual-port RAM, each port of block SelectRAM has access to a common 18 Kbit memory resource. These are fully synchronous ports with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion (Table 19, page 30 illustrates the different configurations available on Ports A and B). Table 18: Dual- and Single-Port Configurations 16K x 1 bit 2K x 9 bits 8K x 2 bits 1K x 18 bits 4K x 4 bits 512 x 36 bits Single-Port Configuration As a single-port RAM, the block SelectRAM has access to the 18 Kbit memory locations in any of the 2K x 9-bit, 1K x 18-bit, or 512 x 36-bit configurations and to 16 Kbit memory locations in any of the 16K x 1-bit, 8K x 2-bit, or 4K x 4-bit configurations. The advantage of 9-bit, 18-bit, and 36-bit widths is the ability to store a parity bit for every eight bits. Parity bits must be generated or checked externally in user logic. In such cases, the width is viewed DS122 (v2.0) December 21, 2007 Product Specification If both ports are configured in either 2K x 9-bit, 1K x 18-bit, or 512 x 36-bit configurations, the 18 Kbit block is accessible from Port A or B. If both ports are configured in either 16K x 1-bit, 8K x 2-bit, or 4K x 4-bit configurations, the 16 Kbit block is accessible from Port A or Port B. All other configurations result in one port having access to an 18 Kbit memory block and the other port having access to a 16 Kbit subset of the memory block equal to 16 Kbits. Each block SelectRAM cell is a fully synchronous memory, as illustrated in Table 31, page 30. The two ports have independent inputs and outputs and are independently clocked. www.xilinx.com 29 R QPro Virtex-II 1.5V Platform FPGAs Table 19: Dual-Port Mode Configurations Port A 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1 Port B 16K x 1 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36 Port A 8K x 2 8K x 2 8K x 2 8K x 2 8K x 2 Port B 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36 Port A 4K x 4 4K x 4 4K x 4 4K x 4 Port B 4K x 4 2K x 9 1K x 18 512 x 36 Port A 2K x 9 2K x 9 2K x 9 Port B 2K x 9 1K x 18 512 x 36 Port A 1K x 18 1K x 18 Port B 1K x 18 512 x 36 Port A 512 x 36 Port B 512 x 36 Read/Write Operations X-Ref Target - Figure 31 18 Kbit Block SelectRAM The Virtex-II block SelectRAM read operation is fully synchronous. An address is presented, and the read operation is enabled by control signals WEA and WEB in addition to ENA or ENB. Then, depending on clock polarity, a rising or falling clock edge causes the stored data to be loaded into output registers. DIA DIPA ADDRA WEA ENA SSRA CLKA DOA DOPA The write operation is also fully synchronous. Data and address are presented, and the write operation is enabled by control signals WEA or WEB in addition to ENA or ENB. Then, again depending on the clock input mode, a rising or falling clock edge causes the data to be loaded into the memory cell addressed. DIB DIPB ADDRB WEB ENB SSRB CLKB A write operation performs a simultaneous read operation. Three different options are available, selected by configuration: DOB DOPB • DS031_11_071602 The WRITE_FIRST option is a transparent mode. The same clock edge that writes the data input (DI) into the memory also transfers DI into the output registers DO as shown in Figure 32, page 31. Figure 31: 18 Kbit Block SelectRAM in Dual-Port Mode Port Aspect Ratios Table 20 shows the depth and the width aspect ratios for the 18 Kbit block SelectRAM. Virtex-II block SelectRAM also includes dedicated routing resources to provide an efficient interface with CLBs, block SelectRAM, and multipliers. • Depth Address Bus Data Bus Parity Bus 1 16,384 ADDR[13:0] DATA[0] N/A 2 8,192 ADDR[12:0] DATA[1:0] N/A 4 4,096 ADDR[11:0] DATA[3:0] N/A 9 2,048 ADDR[10:0] DATA[7:0] Parity[0] 18 1,024 ADDR[9:0] DATA[15:0] Parity[1:0] 36 512 ADDR[8:0] DATA[31:0] Parity[3:0] DS122 (v2.0) December 21, 2007 Product Specification READ_FIRST The READ_FIRST option is a read-before-write mode. The same clock edge that writes data input (DI) into the memory also transfers the prior content of the memory cell addressed into the data output registers DO, as shown in Figure 33, page 31. Table 20: 18 Kbit Block SelectRAM Port Aspect Ratio Width WRITE_FIRST • NO_CHANGE The NO_CHANGE option maintains the content of the output registers, regardless of the write operation. The clock edge during the write mode has no effect on the content of the data output register DO. When the port is configured as NO_CHANGE, only a read operation loads a new value in the output register DO, as shown in Figure 34, page 31. www.xilinx.com 30 R QPro Virtex-II 1.5V Platform FPGAs X-Ref Target - Figure 32 Data_in DI Internal Memory DO Data_out = Data_in CLK WE Data_in New Address aa RAM Contents Old New New Data_out DS031_14_102000 Figure 32: WRITE_FIRST Mode X-Ref Target - Figure 33 Data_in DI Internal Memory DO Prior stored data CLK WE Data_in New Address aa RAM Contents Old New Data_out Old DS031_13_102000 Figure 33: READ_FIRST Mode X-Ref Target - Figure 34 Data_in DI Internal Memory DO No change during write CLK WE Data_in New Address aa RAM Contents Old Data_out New Last Read Cycle Content (no change) DS031_12_102000 Figure 34: NO_CHANGE Mode DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 31 R QPro Virtex-II 1.5V Platform FPGAs Control Pins and Attributes number of CLBs in a column divided by four. Column locations are shown in Table 22. Virtex-II SelectRAM memory has two independent ports with the control signals described in Table 21. All control inputs including the clock have an optional inversion. Table 22: SelectRAM Memory Floor Plan Device Columns Function XQ2V1000 CLK Read and Write Clock XQ2V3000 EN Enable affects Read, Write, Set, Reset XQ2V6000 WE Write Enable SSR Set DO register to SRVAL (attribute) Table 21: Control Functions Control Signal SelectRAM Blocks Per Column Total 4 10 40 6 16 96 6 24 144 Total Amount of SelectRAM Memory Initial memory content is determined by the INIT_xx attributes. Separate attributes determine the output register value after device configuration (INIT) and SSR is asserted (SRVAL). Both attributes (INIT_B and SRVAL) are available for each port when a block SelectRAM resource is configured as dual-port RAM. Table 23 shows the amount of block SelectRAM memory available for each Virtex-II device. The 18 Kbit SelectRAM blocks are cascadable to implement deeper or wider single- or dual-port memory resources. Table 23: Virtex-II SelectRAM Memory Available Total SelectRAM Memory Device Blocks Kbits Bits XQ2V1000 40 720 737,280 XQ2V3000 96 1,728 1,769,472 XQ2V6000 144 2,592 2,654,208 Locations Virtex-II SelectRAM memory blocks are located in either four or six columns. The number of blocks per column depends of the device array size and is equivalent to the X-Ref Target - Figure 35 2 CLB columns 2 CLB columns 2 CLB columns n CLB columns 2 CLB columns 2 CLB columns 2 CLB column 2 CLB columns 2 CLB column n CLB columns SelectRAM Blocks SelectRAM Blocks 2 CLB columns n CLB columns n CLB columns 2 CLB columns 2 CLB columns n CLB columns 2 CLB columns n CLB columns SelectRAM Blocks ds031_38_101000 Figure 35: Block SelectRAM (2-column, 4-column, and 6-column) DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 32 R QPro Virtex-II 1.5V Platform FPGAs 18-Bit x 18-Bit Multipliers Introduction A Virtex-II multiplier block is an 18-bit by 18-bit 2’s complement signed multiplier. Virtex-II devices incorporate many embedded multiplier blocks. These multipliers can be associated with an 18 Kbit block SelectRAM resource or can be used independently. They are optimized for highspeed operations and have a lower power consumption compared to an 18-bit x 18-bit multiplier in slices. Each SelectRAM memory and multiplier block is tied to four switch matrices, as shown in Figure 36. use of SelectRAM memory and the multiplier with an accumulator in LUTs allows for implementation of a digital signal processor (DSP) multiplier-accumulator (MAC) function, which is commonly used in finite and infinite impulse response (FIR and IIR) digital filters. Configuration The multiplier block is an 18-bit by 18-bit signed multiplier (2's complement). Both A and B are 18-bit-wide inputs, and the output is 36 bits. Figure 37 shows a multiplier block. X-Ref Target - Figure 37 X-Ref Target - Figure 36 Multiplier Block Switch Matrix A[17:0] Switch Matrix 18-Kbit block SelectRAM Switch Matrix 18 x 18 Multiplier MULT 18 x 18 P[35:0] B[17:0] DS031_40_100400 Figure 37: Multiplier Block Locations/Organization Multiplier organization is identical to the 18 Kbit SelectRAM organization, because each multiplier is associated with an 18 Kbit block SelectRAM resource. Switch Matrix In addition to the built-in multiplier blocks, the CLB elements have dedicated logic to implement efficient multipliers in logic (refer to "Configurable Logic Blocks (CLBs)," page 19). DS031_33_101000 Figure 36: SelectRAM and Multiplier Blocks Association with Block SelectRAM Memory The interconnect is designed to allow SelectRAM memory and multiplier blocks to be used at the same time, but some interconnect is shared between the SelectRAM and the multiplier. Thus, SelectRAM memory can be used only up to 18 bits wide when the multiplier is used, because the multiplier shares inputs with the upper data bits of the SelectRAM memory. Table 24: Multiplier Floor Plan Device Columns XQ2V1000 Multipliers Per Column Total 4 10 40 XQ2V3000 6 16 96 XQ2V6000 6 24 144 This sharing of the interconnect is optimized for an 18-bitwide block SelectRAM resource feeding the multiplier. The DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 33 R QPro Virtex-II 1.5V Platform FPGAs X-Ref Target - Figure 38 2 CLB columns n CLB columns 2 CLB columns 2 CLB columns 2 CLB columns n CLB columns Multiplier Blocks 2 CLB columns 2 CLB column 2 CLB column 2 CLB columns Multiplier Blocks 2 CLB columns n CLB columns n CLB columns 2 CLB columns 2 CLB columns n CLB columns 2 CLB columns n CLB columns Multiplier Blocks DS031_39_101000 Figure 38: Multipliers (2-column, 4-column, and 6-column) DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 34 R QPro Virtex-II 1.5V Platform FPGAs Global Clock Multiplexer Buffers Virtex-II devices have 16 clock input pins that can also be used as regular user I/Os. Eight clock pads are on the top edge of the device, in the middle of the array, and eight are on the bottom edge, as illustrated in Figure 39. The global clock multiplexer buffer represents the input to dedicated low-skew clock tree distribution in Virtex-II devices. Like the clock pads, eight global clock multiplexer buffers are on the top edge of the device and eight are on the bottom. Global clock buffers are used to distribute the clock to some or all synchronous logic elements (such as registers in CLBs and IOBs, and SelectRAM blocks). Eight global clocks can be used in each quadrant of the Virtex-II device. Designers should consider the clock distribution detail of the device prior to pin-locking and floorplanning (see [Ref 1]). Figure 42 shows clock distribution in Virtex-II devices. X-Ref Target - Figure 39 In each quadrant, up to eight clocks are organized in clock rows. A clock row supports up to 16 CLB rows (eight up and eight down). For the largest devices a new clock row is added, as necessary. 8 clock pads To reduce power consumption, any unused clock branches remain static. Global clocks are driven by dedicated clock buffers (BUFG), which can also be used to gate the clock (BUFGCE) or to multiplex between two independent clock inputs (BUFGMUX). Virtex-II Device The most common configuration option of this element is as a buffer. A BUFG function in this (global buffer) mode, is shown in Figure 41. 8 clock pads X-Ref Target - Figure 41 BUFG DS031_42_101000 I Figure 39: Virtex-II Clock Pads Each global clock buffer can be driven by either the clock pad to distribute a clock directly to the device, or the Digital Clock Manager (DCM), discussed in "Digital Clock Manager (DCM)," page 38. Each global clock buffer can also be driven by local interconnects. The DCM has clock output(s) that can be connected to global clock buffer inputs, as shown in Figure 40. X-Ref Target - Figure 40 Clock Pad Clock Pad CLKIN DCM CLKOUT 0 Clock Distribution DS031_61_101200 Figure 41: Virtex-II BUFG Function The Virtex-II global clock buffer BUFG can also be configured as a clock enable/disable circuit (Figure 43), as well as a two-input clock multiplexer (Figure 44). A functional description of these two options is provided below. Each of them can be used in either of two modes, selected by configuration: rising clock edge or falling clock edge. This section describes the rising clock edge option. For the opposite option, falling clock edge, just change all "rising" references to "falling" and all "High" references to "Low", except for the description of the CE or S levels. The rising clock edge option uses the BUFGCE and BUFGMUX primitives. The falling clock edge option uses the BUFGCE_1 and BUFGMUX_1 primitives. I Clock Buffer O I Clock Buffer 0 Clock Distribution DS031_43_101000 Figure 40: Virtex-II Clock Distribution Configurations DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 35 R QPro Virtex-II 1.5V Platform FPGAs X-Ref Target - Figure 42 8 BUFGMUX NE NW NW 8 BUFGMUX NE 8 8 8 max 16 Clocks 16 Clocks 8 SW 8 BUFGMUX SE 8 SE SW 8 BUFGMUX DS031_45_120200 Figure 42: Virtex-II Clock Distribution BUFGCE If the CE input is active (High) prior to the incoming rising clock edge, this Low-to-High-to-Low clock pulse passes through the clock buffer. Any level change of CE during the incoming clock High time has no effect. X-Ref Target - Figure 44 BUFGMUX I0 X-Ref Target - Figure 43 I1 BUFGCE I O O S DS031_63_112900 CE Figure 44: Virtex-II BUFGMUX Function DS031_62_101200 Figure 43: Virtex-II BUFGCE Function If the CE input is inactive (Low) prior to the incoming rising clock edge, the following clock pulse does not pass through the clock buffer, and the output stays Low. Any level change of CE during the incoming clock High time has no effect. CE must not change during a short setup window just prior to the rising clock edge on the BUFGCE input I. Violating this setup time requirement can result in an undefined runt pulse output. All Virtex-II devices have 16 global clock multiplexer buffers. Figure 45 shows a switchover from CLK0 to CLK1. In Figure 45: BUFGMUX BUFGMUX can switch between two unrelated, even asynchronous clocks. Basically, a Low on S selects the I0 input, and a High on S selects the I1 input. Switching from one clock to the other is done in such a way that the output High and Low time is never shorter than the shortest High or Low time of either input clock. As long as the presently selected clock is High, any level change of S has no effect. If the presently selected clock is Low while S changes, or if it goes Low after S has changed, the output is kept Low until the other ("to-be-selected") clock has made a transition from High to Low. At that instant, the new clock starts driving the output. DS122 (v2.0) December 21, 2007 Product Specification The two clock inputs can be asynchronous with regard to each other, and the S input can change at any time, except for a short setup time prior to the rising edge of the presently selected clock, that is, prior to the rising edge of the BUFGMUX output O. Violating this setup time requirement can result in an undefined runt pulse output. • The current clock is CLK0. • S is activated High. • If CLK0 is currently High, the multiplexer waits for CLK0 to go Low. • Once CLK0 is Low, the multiplexer output stays Low until CLK1 transitions High to Low. • When CLK1 transitions from High to Low, the output switches to CLK1. • No glitches or short pulses can appear on the output. www.xilinx.com 36 R QPro Virtex-II 1.5V Platform FPGAs Local Clocking X-Ref Target - Figure 45 Wait for Low In addition to global clocks, there are local clock resources in the Virtex-II devices. There are more than 72 local clocks in the Virtex-II family. These resources can be used for many different applications, including but not limited to memory interfaces. For example, even using only the left and right I/O banks, Virtex-II FPGAs can support up to 50 local clocks for DDR SDRAM. These interfaces can operate beyond 200 MHz on Virtex-II devices. S CLK0 Switch CLK1 OUT DS031_46_112900 Figure 45: Clock Multiplexer Waveform Diagram DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 37 R QPro Virtex-II 1.5V Platform FPGAs Digital Clock Manager (DCM) The Virtex-II DCM offers a wide range of powerful clock management features: • • • Table 25: DCM Status Pins Status Pin Function 0 Phase Shift Overflow 1 CLKIN Stopped 2 CLKFX Stopped Frequency Synthesis: The DCM generates a wide range of output clock frequencies, performing very flexible clock multiplication and division. 3 N/A 4 N/A Phase Shifting: The DCM provides both coarse phase shifting and fine-grained phase shifting with dynamic phase shift control. 5 N/A 6 N/A 7 N/A Clock De-skew: The DCM generates new system clocks (either internally or externally to the FPGA), which are phase-aligned to the input clock, thus eliminating clock distribution delays. The DCM utilizes fully digital delay lines allowing robust high-precision control of clock phase and frequency. It also utilizes fully digital feedback systems, operating dynamically to compensate for temperature and voltage variations during operation. Up to four of the nine DCM clock outputs can drive inputs to global clock buffers or global clock multiplexer buffers simultaneously (see Figure 46). All DCM clock outputs can simultaneously drive general routing resources, including routes to output buffers. X-Ref Target - Figure 46 DCM CLKIN CLKFB RST DSSEN CLK0 CLK90 CLK180 CLK270 CLK2X CLK2X180 CLKDV Frequency Synthesis The DCM provides flexible methods for generating new clock frequencies. Each method has a different operating frequency range and different AC characteristics. The CLK2X and CLK2X180 outputs double the clock frequency. The CLKDV output creates divided output clocks with division options of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16. STATUS[7:0] PSDONE control signal The CLKFX and CLKFX180 outputs can be used to produce clocks at the following frequency: DS031_67_112900 FREQCLKFX = (M/D) × FREQCLKIN Figure 46: Digital Clock Manager The DCM can be configured to delay the completion of the Virtex-II configuration process until after the DCM has achieved lock. This guarantees that the chip does not begin operating until after the system clocks generated by the DCM have stabilized. The DCM has the following general control signals: • RST input pin: resets the entire DCM. • LOCKED output pin: asserted High when all enabled DCM circuits have locked. • STATUS output pins (active High): shown in Table 25. DS122 (v2.0) December 21, 2007 Product Specification The DCM de-skews the output clocks relative to the input clock by automatically adjusting a digital delay line. Additional delay is introduced so that clock edges arrive at internal registers and block RAMs simultaneously with the clock edges arriving at the input clock pad. Alternatively, external clocks, which are also de-skewed relative to the input clock, can be generated for board-level routing. All DCM output clocks are phase-aligned to CLK0 and, therefore, are also phase-aligned to the input clock. To achieve clock de-skew, the CLKFB input must be connected, and its source must be either CLK0 or CLK2X. CLKFB must always be connected, unless only the CLKFX or CLKFX180 outputs are used and de-skew is not required. PSINCDEC CLKFX PSEN CLKFX180 PSCLK LOCKED clock signal Clock De-Skew where M and D are two integers. Specifications for M and D are provided under "DCM Timing Parameters". By default, M=4 and D=1, which results in a clock output frequency four times faster than the clock input frequency (CLKIN). CLK2X180 is phase shifted 180 degrees relative to CLK2X. CLKFX180 is phase shifted 180 degrees relative to CLKFX. All frequency synthesis outputs automatically have 50/50 duty cycles (with the exception of the CLKDV output when performing a non-integer divide in high-frequency mode). Note: CLK2X and CLK2X180 are not available in high-frequency mode. www.xilinx.com 38 R QPro Virtex-II 1.5V Platform FPGAs Phase Shifting The PHASE_SHIFT attribute is the numerator in the following equation: The DCM provides additional control over clock skew through either coarse- or fine-grained phase shifting. The CLK0, CLK90, CLK180, and CLK270 outputs are each phase shifted by ¼ of the input clock period relative to each other, providing coarse phase control. Note that CLK90 and CLK270 are not available in high-frequency mode. Fine-phase adjustment affects all nine DCM output clocks. When activated, the phase shift between the rising edges of CLKIN and CLKFB is a specified fraction of the input clock period. In variable mode, the PHASE_SHIFT value can also be dynamically incremented or decremented as determined by PSINCDEC synchronously to PSCLK, when the PSEN input is active. Figure 47 illustrates the effects of fine-phase shifting. For more information on DCM features, see [Ref 1]. Table 26 lists fine-phase shifting control pins, when used in variable mode. Table 26: Fine-Phase Shifting Control Pins Control Pin Direction Function PSINCDEC in Increment or decrement PSEN in Enable ± phase shift PSCLK in Clock for phase shift out Active when completed PSDONE Phase Shift (ns) = (PHASE_SHIFT/256) × PERIODCLKIN The full range of this attribute is always -255 to +255, but its practical range varies with CLKIN frequency, as constrained by the FINE_SHIFT_RANGE component, which represents the total delay achievable by the phase shift delay line. Total delay is a function of the number of delay taps used in the circuit. Across process, voltage, and temperature, this absolute range is guaranteed to be as specified under "DCM Timing Parameters". Absolute range (fixed mode) = ± FINE_SHIFT_RANGE Absolute range (variable mode) = ± FINE_SHIFT_RANGE/2 The reason for the difference between fixed and variable modes is as follows. For variable mode to allow symmetric, dynamic sweeps from –255/256 to +255/256, the DCM sets the "zero phase skew" point as the middle of the delay line, thus dividing the total delay line range in half. In fixed mode, since the PHASE_SHIFT value never changes after configuration, the entire delay line is available for insertion into either the CLKIN or CLKFB path (to create either positive or negative skew). Taking both of these components into consideration, the following are some usage examples: • If PERIODCLKIN = 2 × FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to ± 128, and in variable mode it is limited to ± 64. • If PERIODCLKIN = FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to ± 255, and in variable mode it is limited to ± 128. • If PERIODCLKIN ≤ 0.5 × FINE_SHIFT_RANGE, then PHASE_SHIFT is limited to ± 255 in either mode. Two separate components of the phase shift range must be understood: • PHASE_SHIFT attribute range • FINE_SHIFT_RANGE DCM timing parameter range X-Ref Target - Figure 47 CLKIN CLKOUT_PHASE_SHIFT CLKFB = NONE CLKIN CLKOUT_PHASE_SHIFT CLKFB = FIXED (PS/256) x PERIODCLKIN (PS/256) x PERIODCLKIN (PS negative) (PS positive) CLKIN CLKOUT_PHASE_SHIFT = VARIABLE CLKFB (PS/256) x PERIODCLKIN (PS negative) (PS/256) x PERIODCLKIN (PS positive) DS031_48_101201 Figure 47: Fine-Phase Shifting Effects DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 39 R QPro Virtex-II 1.5V Platform FPGAs Operating Modes The frequency ranges of DCM input and output clocks depend on the operating mode specified, either low-frequency mode or high-frequency mode, according to Table 27. (For actual values, see "QPro Virtex-II Switching Characteristics".) The CLK2X, CLK2X180, CLK90, and CLK270 outputs are not available in high-frequency mode. High or low-frequency mode is selected by an attribute. Table 27: DCM Frequency Ranges Output Clock Low-Frequency Mode CLKIN Input High-Frequency Mode CLK Output CLKIN Input CLK Output CLK0, CLK180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF CLKIN_FREQ_DLL_HF CLK90, CLK270 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF NA NA CLK2X, CLK2X180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_2X_LF NA NA CLKDV CLKIN_FREQ_DLL_LF CLKOUT_FREQ_DV_LF CLKIN_FREQ_DLL_HF CLKOUT_FREQ_DV_HF CLKFX, CLKFX180 CLKIN_FREQ_FX_LF CLKOUT_FREQ_FX_LF CLKIN_FREQ_FX_HF CLKOUT_FREQ_FX_HF Locations/Organization Table 28: DCM Organization Virtex-II DCMs are placed on the top and the bottom of each block RAM and multiplier column. The number of DCMs depends on the device size, as shown in Table 28. DS122 (v2.0) December 21, 2007 Product Specification CLKOUT_FREQ_1X_HF Device Columns DCMs XQ2V1000 4 8 XQ2V3000 6 12 XQ2V6000 6 12 www.xilinx.com 40 R QPro Virtex-II 1.5V Platform FPGAs Active Interconnect Technology Each Virtex-II device can be represented as an array of switch matrices with logic blocks attached, as illustrated in Figure 49. Local and global Virtex-II routing resources are optimized for speed and timing predictability, as well as to facilitate IP cores implementation. Virtex-II Active Interconnect Technology is a fully buffered programmable routing matrix. All routing resources are segmented to offer the advantages of a hierarchical solution. Virtex-II logic features like CLBs, IOBs, block RAM, multipliers, and DCMs are all connected to an identical switch matrix for access to global routing resources, as shown in Figure 48. Place-and-route software takes advantage of this regular array to deliver optimum system performance and fast compile times. The segmented routing resources are essential to guarantee IP cores portability and to efficiently handle an incremental design flow that is based on modular implementations. Total design time is reduced due to fewer and shorter design iterations. X-Ref Target - Figure 48 Switch Matrix Switch Matrix CLB Switch Matrix Switch Matrix 18Kb BRAM IOB MULT 18 x 18 Switch Matrix Switch Matrix DCM Switch Matrix DS031_55_101000 Figure 48: Active Interconnect Technology X-Ref Target - Figure 49 Switch Matrix IOB Switch Matrix IOB Switch Matrix IOB Switch Matrix Switch Matrix IOB Switch Matrix CLB Switch Matrix CLB Switch Matrix Switch Matrix Switch Matrix IOB Switch Matrix CLB Switch Matrix CLB Switch Matrix Switch Matrix Switch Matrix IOB Switch Matrix CLB Switch Matrix CLB Switch Matrix Switch Matrix IOB Switch Matrix CLB Switch Matrix CLB Switch Matrix Multiplier SelectRAM DCM Switch Matrix Switch Matrix Switch Matrix DS031_34_110300 Figure 49: Routing Resources DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 41 R QPro Virtex-II 1.5V Platform FPGAs Hierarchical Routing Resources • Most Virtex-II signals are routed using the global routing resources, which are located in horizontal and vertical routing channels between each switch matrix. As shown in Figure 50, Virtex-II devices have fully buffered programmable interconnections, with a number of resources counted between any two adjacent switch matrix rows or columns. Fanout has minimal impact on the performance of each net. Hex lines route signals to every third or sixth block away in all four directions. Organized in a staggered pattern, hex lines can only be driven from one end. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). • Double lines route signals to every first or second block away in all four directions. Organized in a staggered pattern, double lines can be driven only at their endpoints. Double-line signals can be accessed either at the endpoints or at the midpoint (one block from the source). • Direct connect lines route signals to neighboring blocks: vertically, horizontally, and diagonally. In Figure 50: • Long lines are bidirectional wires that distribute signals across the device. Vertical and horizontal long lines span the full height and width of the device. Fast connect lines are the internal CLB local interconnections from LUT outputs to LUT inputs. X-Ref Target - Figure 50 24 Horizontal Long Lines 24 Vertical Long Lines 120 Horizontal Hex Lines 120 Vertical Hex Lines 40 Horizontal Double Lines 40 Vertical Double Lines 16 Direct Connections (total in all four directions) 8 Fast Connects DS031_60_110200 Figure 50: Hierarchical Routing Resources Dedicated Routing • Two dedicated carry-chain resources per slice column (two per CLB column) propagate carry-chain MUXCY output signals vertically to the adjacent slice. (See "CLB/Slice Configurations".) • One dedicated SOP chain per slice row (two per CLB row) propagates ORCY output logic signals horizontally to the adjacent slice. (See "Sum of Products".) • One dedicated shift chain per CLB connects the output of LUTs in shift-register mode to the input of the next LUT in shift-register mode (vertically) inside the CLB. (See "Shift Registers".) In addition to the global and local routing resources, dedicated signals are available: • There are eight global clock nets per quadrant (see "Global Clock Multiplexer Buffers"). • Horizontal routing resources are provided for on-chip 3state buses. Four partitionable bus lines are provided per CLB row, permitting multiple buses within a row. (See "3-State Buffers".) DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 42 R QPro Virtex-II 1.5V Platform FPGAs Creating a Design Creating Virtex-II designs is easy with Xilinx Integrated Synthesis Environment (ISE) development systems, which support advanced design capabilities, including ProActive Timing Closure, integrated logic analysis, and the fastest place and route runtimes in the industry. ISE solutions enable designers to get the performance they need, quickly and easily. As a result of the ongoing cooperative development efforts between Xilinx and EDA Alliance partners, designers can take advantage of the benefits provided by EDA technologies in the programmable logic design process. Xilinx development systems are available in a number of easy to use configurations, collectively known as the ISE Series. high densities of the Virtex-II family, designs are created most efficiently using HDLs. To further improve their time to market, many Xilinx customers employ incremental, modular, and Intellectual Property (IP) design techniques. When properly used, these techniques further accelerate the logic design process. To enable designers to leverage existing investments in EDA tools and to ensure high-performance design flows, Xilinx jointly develops tools with leading EDA vendors, including: • Aldec • Cadence • Exemplar ISE Alliance • Mentor Graphics The ISE Alliance solution is designed to plug and play within an existing design environment. Built using industry standard data formats and netlists, these stable, flexible products enable Alliance EDA partners to deliver their best design automation capabilities to Xilinx customers, along with the time to market benefits of ProActive Timing Closure. • Model Technology • Synopsys • Synplicity ISE Foundation The ISE Foundation solution delivers the benefits of true HDL-based design in a seamlessly integrated design environment. An intuitive project navigator, as well as powerful HDL design and two HDL synthesis tools, ensure that high-quality results are achieved quickly and easily. The ISE Foundation product includes: • State Diagram entry using Xilinx StateCAD • Automatic HDL Testbench generation using Xilinx HDLBencher • HDL Simulation using ModelSim XE Complete information on Alliance Series partners and their associated design flows is available at http://www.xilinx.com on the Xilinx Alliance Series web page. The ISE Foundation product offers schematic entry and HDL design capabilities as part of an integrated design solution, enabling one-stop shopping. These capabilities are powerful, easy to use, and they support the full portfolio of Xilinx programmable logic devices. HDL design capabilities include a color-coded HDL editor with integrated language templates, state diagram entry, and Core generation capabilities. Synthesis The ISE Alliance product is engineered to support advanced design flows with the industry's best synthesis tools. Advanced design methodologies include: Design Flow • Physical Synthesis Virtex-II design flow proceeds as follows: • Incremental synthesis • Design Entry • RTL floorplanning • Synthesis • Direct physical mapping • Implementation • Verification The ISE Foundation product seamlessly integrates synthesis capabilities purchased directly from Exemplar, Synopsys, and Synplicity. In addition, it includes the capabilities of Xilinx Synthesis Technology. Most programmable logic designers iterate through these steps several times in the process of completing a design. Design Entry All Xilinx ISE development systems support the mainstream EDA design entry capabilities, ranging from schematic design to advanced HDL design methodologies. Given the DS122 (v2.0) December 21, 2007 Product Specification A benefit of having two seamlessly integrated synthesis engines within an ISE design flow is the ability to apply alternative sets of optimization techniques on designs, helping to ensure that designers can meet even the toughest timing requirements. www.xilinx.com 43 R QPro Virtex-II 1.5V Platform FPGAs Design Implementation The ISE Series development systems include Xilinx timingdriven implementation tools, frequently called “place and route” or “fitting” software. This robust suite of tools enables the creation of an intuitive, flexible, tightly integrated design flow that efficiently bridges “logical” and “physical” design domains. This simplifies the task of defining a design, including its behavior, timing requirements, and optional layout (or floorplanning), as well as simplifying the task of analyzing reports generated during the implementation process. The Virtex-II implementation process is comprised of Synthesis, translation, mapping, place and route, and configuration file generation. While the tools can be run individually, many designers choose to run the entire implementation process with the click of a button. To assist those who prefer to script their design flows, Xilinx provides Xflow, an automated single command line process. Design Verification In addition to conventional design verification using static timing analysis or simulation techniques, Xilinx offers powerful in-circuit debugging techniques using ChipScope ILA (Integrated Logic Analysis). The reconfigurable nature of Xilinx FPGAs means that designs can be verified in real time without the need for extensive sets of software simulation vectors. For simulation, the system extracts post-layout timing information from the design database, and back-annotates this information into the netlist for use by the simulator. The back annotation features a variety of patented Xilinx techniques, resulting in the industry’s most powerful simulation flows. Alternatively, timing-critical portions of a design can be verified using the Xilinx static timing analyzer or a third party static timing analysis tool like Synopsys Prime Time, by exporting timing data in the STAMP data format. For in-circuit debugging, ChipScope ILA enables designers to analyze the real-time behavior of a device while operating at full system speeds. Logic analysis commands and captured data are transferred between the ChipScope software and ILA cores within the Virtex-II FPGA, using industry standard JTAG protocols. These JTAG transactions are driven over an optional download cable (MultiLINX or JTAG), connecting the Virtex device in the target system to a PC or workstation. ChipScope ILA was designed to look and feel like a logic analyzer, making it easy to begin debugging a design immediately. Modifications to the desired logic analysis can be downloaded directly into the system in a matter of minutes. DS122 (v2.0) December 21, 2007 Product Specification Other Unique Features of Virtex-II Design Flow Xilinx design flows feature a number of unique capabilities. Among these are efficient incremental HDL design flows, which are robust capabilities enabled by Xilinx exclusive hierarchical floorplanning capabilities. Another powerful design capability only available in the Xilinx design flow is “Modular Design”, part of the Xilinx suite of team design tools, which enables autonomous design, implementation, and verification of design modules. Incremental Synthesis Xilinx unique hierarchical floorplanning capabilities enable designers to create a programmable logic design by isolating design changes within one hierarchical “logic block”, and perform synthesis, verification, and implementation processes on that specific logic block. By preserving the logic in unchanged portions of a design, Xilinx incremental design makes the high-density design process more efficient. Xilinx hierarchical floorplanning capabilities can be specified using the high-level floorplanner or a preferred RTL floorplanner (see the Xilinx website for a list of supported EDA partners). When used in conjunction with one of the EDA partners’ floorplanners, higher performance results can be achieved, as many synthesis tools use this more predictable detailed physical implementation information to establish more aggressive and accurate timing estimates when performing their logic optimizations. Modular Design Xilinx innovative modular design capabilities take the incremental design process one step further by enabling the designer to delegate responsibility for completing the design, synthesis, verification, and implementation of a hierarchical “logic block” to an arbitrary number of designers - assigning a specific region within the target FPGA for exclusive use by each of the team members. This team design capability enables an autonomous approach to design modules, changing the hand-off point to the lead designer or integrator from “my module works in simulation” to “my module works in the FPGA”. This unique design methodology also leverages the Xilinx hierarchical floorplanning capabilities and enables the Xilinx (or EDA partner) floorplanner to manage the efficient implementation of very high-density FPGAs. www.xilinx.com 44 R QPro Virtex-II 1.5V Platform FPGAs Configuration Virtex-II devices are configured by loading applicationspecific configuration data into the internal configuration memory. Configuration is carried out using a subset of the device pins, some of which are dedicated, while others can be re-used as general purpose inputs and outputs once configuration is complete. Depending on the system design, several configuration modes are supported, selectable via mode pins. The mode pins M2, M1, and M0 are dedicated pins. An additional pin, HSWAP_EN, is used in conjunction with the mode pins to select whether user I/O pins have pull-ups during configuration. By default, HSWAP_EN is tied High (internal pull-up), which shuts off the pull-ups on the user I/O pins during configuration. When HSWAP_EN is tied Low, user I/Os have pull-ups during configuration. Other dedicated pins are CCLK (the configuration clock pin), DONE, PROG_B, and the boundary-scan pins: TDI, TDO, TMS, and TCK. Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or an input accepting an externally generated clock. The configuration pins and boundary-scan pins are independent of the VCCO. The auxiliary power supply (VCCAUX) of 3.3V is used for these pins. All configuration pins are LVTTL 12 mA. (See "QPro Virtex-II DC Characteristics".) A persist option is available which can be used to force the configuration pins to retain their configuration function even after device configuration is complete. If the persist option is not selected, then the configuration pins with the exception of CCLK, PROG_B, and DONE can be used as user I/O in normal operation. The persist option does not apply to the boundary-scan related pins. The persist feature is valuable in applications which employ partial reconfiguration or reconfiguration on the fly. Configuration Modes Virtex-II supports the following five configuration modes: • Slave-serial mode • Master-serial mode • Slave SelectMAP mode • Master SelectMAP mode • Boundary-Scan mode (IEEE 1532/IEEE 1149) Multiple FPGAs can be daisy chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed internally to the DOUT pin. The data on the DOUT pin changes on the rising edge of CCLK. Slave-serial mode is selected by applying <111> to the mode pins (M2, M1, M0). A weak pull-up on the mode pins makes slave serial the default mode if the pins are left unconnected. Master-Serial Mode In master-serial mode, the CCLK pin is an output pin. It is the Virtex-II FPGA device that drives the configuration clock on the CCLK pin to a Xilinx Serial PROM, which in turn feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy chain is presented on the DOUT pin after the rising CCLK edge. The interface is identical to slave serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK, which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration. Slave SelectMAP Mode The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the Virtex-II FPGA device with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, an active-Low Chip Select (CS_B) signal, and a Write signal (RDWR_B). If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If RDWR_B is asserted, configuration data is read out of the FPGA as part of a readback operation. After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback using the persist option. A detailed description of configuration modes is provided in [Ref 1]. Slave-Serial Mode In slave-serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other serial source of configuration data. The CCLK pin on the FPGA is an DS122 (v2.0) December 21, 2007 Product Specification input in this mode. The serial bitstream must be setup at the DIN input pin a short time before each rising edge of the externally generated CCLK. Multiple Virtex-II FPGAs can be configured using the SelectMAP mode, and can be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data, RDWR_B, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by deasserting the CS_B pin of each device in turn and writing the appropriate data. www.xilinx.com 45 R QPro Virtex-II 1.5V Platform FPGAs Master SelectMAP Mode This mode is a master version of the SelectMAP mode. The device is configured byte-wide on a CCLK supplied by the Virtex-II FPGA. Timing is similar to the Slave SerialMAP mode except that CCLK is supplied by the Virtex-II FPGA. Boundary-Scan (JTAG, IEEE 1532) Mode In boundary-scan mode, dedicated pins are used for configuring the Virtex-II device. The configuration is done entirely through the IEEE 1149.1 Test Access Port (TAP). Virtex-II device configuration using boundary scan is compliant with IEEE 1149.1-1993 standard and the new IEEE 1532 standard for In-System Configurable (ISC) devices. The IEEE 1532 standard is backward compliant with the IEEE 1149.1-1993 TAP and state machine. The IEEE Standard 1532 for In-System Configurable (ISC) devices is intended to be programmed, reprogrammed, or tested on the board via a physical and logical protocol. Configuration through the boundary-scan port is always available, independent of the mode selection. Selecting the boundary-scan mode simply turns off the other modes. Table 29: Virtex-II Configuration Mode Pin Settings Configuration Mode (1) M2 M1 M0 CCLK Direction Data Width Serial DOUT (2) Master Serial 0 0 0 Out 1 Yes Slave Serial 1 1 1 In 1 Yes Master SelectMAP 0 1 1 Out 8 No Slave SelectMAP 1 1 0 In 8 No Boundary Scan 1 0 1 N/A 1 No Notes: 1. 2. The HSWAP_EN pin controls the pullups. Setting M2, M1, and M0 selects the configuration mode, while the HSWAP_EN pin controls whether or not the pullups are used. Daisy chaining is possible only in modes where Serial DOUT is used. For example, in SelectMAP modes, the first device does NOT support daisy chaining of downstream devices. Table 30 lists the total number of bits required to configure each device. Table 30: Virtex-II Bitstream Lengths Device Number of Configuration Bits XQ2V1000 3,753,432 XQ2V3000 9,595,304 XQ2V6000 19,760,560 Notes: 1. 2. These values are only valid for STEPPING LEVEL 1. Only STEPPING LEVEL 1 should be used with QPro devices. Configuration Sequence The configuration of Virtex-II devices is a three-phase process after Power On Reset or POR. POR occurs when VCCINT is greater than 1.2V, VCCAUX is greater than 2.5V, and VCCO (bank 4) is greater than 1.5V. Once the POR voltages have been reached, the three-phase process begins. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. Configuration is automatically initiated on power-up unless it is delayed by the user. The INIT_B pin can be held Low using an open-drain driver. An open-drain is required since INIT_B is a bidirectional open-drain pin that is held Low by a Virtex-II DS122 (v2.0) December 21, 2007 Product Specification FPGA device while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded. The configuration process can also be initiated by asserting the PROG_B pin. The end of the memory-clearing phase is signaled by the INIT_B pin going High, and the completion of the entire process is signaled by the DONE pin going High. The Global Set/Reset (GSR) signal is pulsed after the last frame of configuration data is written but before the start-up sequence. The GSR signal resets all flip-flops on the device. The default start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary. One CCLK cycle later, the Global Write Enable (GWE) signal is released. This permits the internal storage elements to begin changing state in response to the logic and the user clock. The relative timing of these events can be changed via configuration options in software. In addition, the GTS and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start synchronously. The sequence can also be paused at any stage, until lock has been achieved on any or all DCMs, as well as the DCI. www.xilinx.com 46 R QPro Virtex-II 1.5V Platform FPGAs Readback In this mode, configuration data from the Virtex-II FPGA device can be read back. Readback is supported only in the SelectMAP (master and slave) and Boundary Scan modes. Along with the configuration data, it is possible to read back the contents of all registers, distributed SelectRAM, and block RAM resources. This capability is used for real-time debugging. For more detailed configuration information, see [Ref 1]. Bitstream Encryption Virtex-II devices have an on-chip decryptor using one or two sets of three keys for triple-key Data Encryption Standard (DES) operation. Xilinx software tools offer an optional encryption of the configuration data (bitstream) with a triplekey DES determined by the designer. The keys are stored in the FPGA by JTAG instruction and retained by a battery connected to the VBATT pin, when the device is not powered. Virtex-II devices can be configured DS122 (v2.0) December 21, 2007 Product Specification with the corresponding encrypted bitstream, using any of the configuration modes described previously. A detailed description of how to use bitstream encryption is provided in the Virtex-II User Guide. Your local FAE can also provide specific information on this feature. Partial Reconfiguration Partial reconfiguration of Virtex-II devices can be accomplished in either Slave SelectMAP mode or Boundary-Scan mode. Instead of resetting the chip and doing a full configuration, new data is loaded into a specified area of the chip, while the rest of the chip remains in operation. Data is loaded on a column basis, with the smallest load unit being a configuration “frame” of the bitstream (device size dependent). Partial reconfiguration is useful for applications that require different designs to be loaded into the same area of a chip, or that require the ability to change portions of a design without having to reset or reconfigure the entire chip. www.xilinx.com 47 R QPro Virtex-II 1.5V Platform FPGAs QPro Virtex-II Electrical Characteristics QPro Virtex-II devices are only available with the -5 and-4 speed grades. QPro Virtex-II DC and AC characteristics are specified for military grade. Except for the operating temperature range, or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -4 speed grade military device are the same as for a -4 speed grade commercial device). All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications. Contact Xilinx for design considerations requiring more detailed information. All specifications are subject to change without notice. QPro Virtex-II DC Characteristics Table 31: Absolute Maximum Ratings Description(1) Symbol Value Units VCCINT Internal supply voltage relative to GND –0.5 to 1.65 V VCCAUX Auxiliary supply voltage relative to GND –0.5 to 4.0 V VCCO Output drivers supply voltage relative to GND –0.5 to 4.0 V VBATT Key memory battery backup supply –0.5 to 4.0 V VREF Input reference voltage –0.5 to VCCO + 0.5 V VIN(3) Input voltage relative to GND (user and dedicated I/Os) –0.5 to VCCO + 0.5 V –0.5 to 4.0 V –65 to +150 °C VTS Voltage applied to 3-state output (user and dedicated I/Os) TSTG Storage temperature (ambient) TSOL Maximum soldering temperature +220 °C TJ Operating junction temperature(2) +125 °C Notes: 1. 2. 3. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. For soldering guidelines and thermal considerations, see the Device Packaging information on the Xilinx website. Inputs configured as PCI are fully PCI compliant. This statement takes precedence over any specification that would imply that the device is not PCI compliant. Table 32: Recommended Operating Conditions Symbol Description Min Max Units VCCINT Internal supply voltage relative to GND 1.425 1.575 V VCCAUX Auxiliary supply voltage relative to GND 3.135 3.465 V VCCO Supply voltage relative to GND 1.2 3.6 V VBATT Battery voltage relative to GND 1.0 3.6 V Notes: 1. 2. 3. 4. 5. If battery is not used, do not connect VBATT. Recommended maximum voltage droop for VCCAUX is 10 mV/ms. The thresholds for Power On Reset are VCCINT > 1.2V, VCCAUX > 2.5V, and VCCO (Bank 4) > 1.5V. Limit the noise at the power supply to be within 200 mV peak-to-peak. For power bypassing guidelines, see [Ref 2]. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 48 R QPro Virtex-II 1.5V Platform FPGAs Table 33: DC Characteristics Over Recommended Operating Conditions Symbol Description Device Min Max Units VDRINT Data retention VCCINT voltage All 1.2 V VDRI Data retention VCCAUX voltage All 2.5 V IREF VREF current per bank All –10 +10 μA IL Input leakage current All –10 +10 μA CIN Input capacitance All 10 pF IRPU Pad pull-up (when selected) @ VIN = 0V, VCCO = 3.3V (sample tested) All Note 1 250 μA IRPD Pad pull-down (when selected) @ VIN = 3.6V (sample tested) All Note 1 250 μA IBATT Battery supply current All 100 nA Notes: 1. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits. Table 34: Quiescent Supply Current Symbol ICCINTQ ICCOQ ICCAUXQ Description Device Min Typical Max Units Quiescent VCCINT supply current XQ2V1000 XQ2V3000 XQ2V6000 – 12 27 45 500 1300 1500 mA Quiescent VCCO supply current(1)(2) XQ2V1000 XQ2V3000 XQ2V6000 – 1 2 2 6.25 6.25 6.25 mA Quiescent VCCAUX supply current(1)(2) XQ2V1000 XQ2V3000 XQ2V6000 – 5 10 12.5 40 105 150 mA Notes: 1. 2. 3. 4. With no output current loads and no active input pull-up resistors. All I/O pins are 3-stated and floating. If DCI or differential signaling is used, more accurate values can be obtained by using the Power Estimator or XPOWER. Data are retained even if VCCO drops to 0V. All values shown reflect the military temperature operating range. For industrial temperature operating range values, refer to [Ref 4]. Note: The 300 mA is transient current (peak) and eventually Power-On Power Supply Requirements disappears even if VCCAUX does not power up Xilinx FPGAs require a certain amount of supply current during power-on to ensure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. The VCCINT, VCCAUX, and VCCO power supplies shall each ramp on no faster than 200 μs and no slower than 50 ms. Ramp on is defined as: 0 VDC to minimum supply voltages. Once initialized and configured, use the power calculator to estimate current drain on these supplies. Table 35: Maximum Power-On Current Required for QPro Virtex-II Devices Current Table 35 shows the maximum current required by QPro Virtex-II FPGAs for proper power on and configuration. Power supplies can be turned on in any sequence. If any VCCO bank powers up before VCCAUX, then each bank draws up to 300 mA, worst case, until the VCCAUX powers on. This current draw does not harm the device. If the current is limited to the minimum value above, or larger, the device powers on properly after all three supplies have passed through their power on reset threshold voltages. DS122 (v2.0) December 21, 2007 Product Specification Device (mA) XQ2V1000 XQ2V3000 XQ2V6000 ICCINTMAX 500 1300 1500 ICCAUXMAX 140 140 140 ICCOMAX 75 140 140 Notes: 1. 2. ICCOMIN values listed here apply to the entire device (all banks). All values shown reflect the military temperature operating range. For industrial temperature operating range values, refer to [Ref 4]. www.xilinx.com 49 R QPro Virtex-II 1.5V Platform FPGAs General Power Supply Requirements Proper decoupling of all FPGA power supplies is essential. Consult [Ref 2] for detailed information on power distribution system design. switching output (SSO) limits are essential for keeping power supply noise to a minimum. Refer to [Ref 3] to determine the number of simultaneously switching outputs allowed per bank at the package level. DC Input and Output Levels VCCAUX powers critical resources in the FPGA. Thus, VCCAUX is especially susceptible to power supply noise. Changes in VCCAUX voltage outside of 200 mV peak to peak should take place at a rate no faster than 10 mV per millisecond. Techniques to help reduce jitter and period distortion are provided in Xilinx Answer Record 13756, available at www.support.xilinx.com. VCCAUX can share a power plane with 3.3V VCCO, but only if VCCO does not have excessive noise. Using simultaneously Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the recommended operating conditions at the VOL and VOH test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum VCCO with the respective VOL and VOH voltage levels shown. Other standards are sample tested. Table 36: DC Input and Output Levels VIH VOL VOH IOL IOH V, Max V, Max V, Min mA mA 2.0 3.6 0.4 2.4 24 –24 0.8 2.0 3.6 0.4 VCCO – 0.4 24 –24 –0.5 0.7 1.7 2.7 0.4 VCCO – 0.4 24 –24 LVCMOS18 –0.5 35% VCCO 65% VCCO 1.95 0.4 VCCO – 0.4 16 –16 LVCMOS15 –0.5 35% VCCO 65% VCCO 1.7 0.4 VCCO – 0.4 16 –16 PCI33_3 –0.5 30% VCCO 50% VCCO VCCO + 0.5 10% VCCO 90% VCCO Note 2 Note 2 PCI66_3 –0.5 30% VCCO 50% VCCO VCCO + 0.5 10% VCCO 90% VCCO Note 2 Note 2 PCI–X –0.5 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 GTLP –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.5 0.6 n/a 36 n/a GTL –0.5 VREF – 0.05 VREF + 0.05 VCCO + 0.5 0.4 n/a 40 n/a HSTL I –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.5 0.4 VCCO – 0.4 8 –8 HSTL II –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.5 0.4 VCCO – 0.4 16 –16 HSTL III –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.5 0.4 VCCO – 0.4 24 –8 HSTL IV –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.5 0.4 VCCO – 0.4 48 –8 SSTL3 I –0.5 VREF – 0.2 VREF + 0.2 VCCO + 0.5 VREF – 0.6 VREF + 0.6 8 –8 SSTL3 II –0.5 VREF – 0.2 VREF + 0.2 VCCO + 0.5 VREF – 0.8 VREF + 0.8 16 –16 SSTL2 I –0.5 VREF – 0.15 VREF + 0.15 VCCO + 0.5 VREF – 0.65 VREF + 0.65 7.6 –7.6 SSTL2 II –0.5 VREF – 0.15 VREF + 0.15 VCCO + 0.5 VREF – 0.80 VREF + 0.80 15.2 –15.2 AGP –0.5 VREF – 0.2 VREF + 0.2 VCCO + 0.5 10% VCCO 90% VCCO Note 2 Note 2 VIL Input/Output Standard V, Min V, Max V, Min LVTTL(1) –0.5 0.8 LVCMOS33 –0.5 LVCMOS25 Notes: 1. 2. 3. VOL and VOH for lower drive currents are sample tested. The DONE pin is always LVTTL 12 mA. Tested according to the relevant specifications. LVTTL and LVCMOS inputs have approximately 100 mV of hysteresis. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 50 R QPro Virtex-II 1.5V Platform FPGAs LDT Differential Signal DC Specifications (LDT_25) DC Parameter Symbol Differential Output Voltage VOD Change in VOD Magnitude Δ VOD Output Common Mode Voltage VOCM Conditions RT = 100 Ω across Q and Q signals Min Typ Max Units 500 600 700 mV 15 mV 640 mV 15 mV 1000 mV 15 mV 700 mV 15 mV Max Units –15 RT = 100 Ω across Q and Q signals 560 Δ VOCM –15 Input Differential Voltage VID 200 Change in VID Magnitude Δ VID –15 Input Common Mode Voltage VICM 500 Δ VICM –15 Change in VOS Magnitude Change in VICM Magnitude 600 600 600 LVDS DC Specifications (LVDS_33 and LVDS_25) DC Parameter Symbol Conditions Min Typ Supply Voltage VCCO Output High Voltage for Q and Q VOH RT = 100 Ω across Q and Q signals Output Low Voltage for Q and Q VOL RT = 100 Ω across Q and Q signals 0.925 RT = 100 Ω across Q and Q signals 250 350 400 mV RT = 100 Ω across Q and Q signals 1.125 1.2 1.375 V 100 350 N/A mV 0.2 1.25 VCCO – 0.5 V Typ Max Units Differential Output Voltage (Q – Q), Q = High (Q – Q), Q = High VODIFF Output Common-Mode Voltage VOCM Differential Input Voltage (Q – Q), Q = High (Q – Q), Q = High VIDIFF Input Common-Mode Voltage VICM 3.3 or 2.5 Common-mode input voltage = 1.25V Differential input voltage = ±350 mV V 1.575 V V Extended LVDS DC Specifications (LVDSEXT_33 and LVDSEXT_25) DC Parameter Symbol Conditions Min Supply Voltage VCCO Output High voltage for Q and Q VOH RT = 100 Ω across Q and Q signals Output Low voltage for Q and Q VOL RT = 100 Ω across Q and Q signals 0.705 RT = 100 Ω across Q and Q signals 440 RT = 100 Ω across Q and Q signals 1.125 Differential output voltage (Q – Q), Q = High (Q – Q), Q = High VODIFF Output common-mode voltage VOCM Differential input voltage (Q – Q), Q = High (Q – Q), Q = High VIDIFF Input common-mode voltage VICM DS122 (v2.0) December 21, 2007 Product Specification 3.3 or 2.5 Common-mode input voltage = 1.25V Differential input voltage = ±350 mV V 1.785 V V 820 mV 1.200 1.375 V 100 350 N/A mV 0.2 1.25 VCCO – 0.5 V www.xilinx.com 51 R QPro Virtex-II 1.5V Platform FPGAs LVPECL DC Specifications These values are valid when driving a 100 Ω differential load only, i.e., a 100 Ω resistor between the two receiver pins. The VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode ranges. Table 37 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see [Ref 1]. Table 37: LVPECL DC Specifications DC Parameter Min VCCO Max Min 3.0 Max Min 3.3 Max 3.6 Units V VOH 1.8 2.11 1.92 2.28 2.13 2.41 V VOL 0.96 1.27 1.06 1.43 1.30 1.57 V VIH 1.49 2.72 1.49 2.72 1.49 2.72 V VIL 0.86 2.125 0.86 2.125 0.86 2.125 V Differential Input Voltage 0.3 – 0.3 – 0.3 – V DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 52 R QPro Virtex-II 1.5V Platform FPGAs QPro Virtex-II Switching Characteristics Switching characteristics in this document are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: Advance: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. Preliminary: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. Production: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. DS122 (v2.0) December 21, 2007 Product Specification Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 38 correlates the current status of each QPro Virtex-II device with a corresponding speed grade designation. Table 38: QPro Virtex-II Device Speed Grade Designations Device Speed Grade Designations Advance Preliminary Production XQ2V1000 -4(N) XQ2V3000 -4(M,N) XQ2V6000 -5(I), -4(I,M) All specifications are always representative of worst-case supply voltage and junction temperature conditions. Testing of Switching Characteristics All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the Xilinx static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all QPro Virtex-II devices. www.xilinx.com 53 R QPro Virtex-II 1.5V Platform FPGAs IOB Input Switching Characteristics Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values shown in "IOB Input Switching Characteristics Standard Adjustments," page 55. Table 39: IOB Input Switching Characteristics Description Symbol Device Pad to I output, no delay TIOPI Pad to I output, with delay TIOPID Speed Grade Units -5 -4 All 0.76 0.88 ns XQ2V1000 2.11 2.43 ns XQ2V3000 2.16 2.49 ns XQ2V6000 2.31 2.66 ns Propagation Delays Pad to output IQ via transparent latch, no delay TIOPLI All 0.91 1.05 ns Pad to output IQ via transparent latch, with delay TIOPLID XQ2V1000 3.55 4.09 ns XQ2V3000 3.65 4.20 ns XQ2V6000 3.95 4.55 ns All 0.67 0.77 ns TIOPICK/TIOICKP All 0.92/–0.39 1.06/–0.45 ns TIOPICKD/TIOICKPD XQ2V1000 3.57/–2.24 4.10/–2.58 ns XQ2V3000 3.67/–2.31 4.22/–2.66 ns XQ2V6000 3.97/–2.52 4.56/–2.90 ns TIOICECK/TIOCKICE All 0.21/ 0.04 0.24/ 0.04 ns TIOSRCKI All 0.27 0.34 ns SR input to IQ (asynchronous) TIOSRIQ All 1.22 1.40 ns GSR to output IQ TGSRQ All 5.98 6.88 ns Clock CLK to output IQ TIOCKIQ Setup and Hold Times with Respect to Clock at IOB Input Register Pad, no delay Pad, with delay ICE input SR input (IFF, synchronous) Set/Reset Delays Notes: 1. Input timing for LVTTL is measured at 1.4V. For other I/O standards, see Table 43. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 54 R QPro Virtex-II 1.5V Platform FPGAs IOB Input Switching Characteristics Standard Adjustments Table 40: IOB Input Switching Characteristics Standard Adjustments Description Symbol Standard TILVTTL Speed Grade Units -5 -4 LVTTL 0.00 0.00 ns TILVCMOS33 LVCMOS33 0.00 0.00 ns TILVCMOS25 LVCMOS25 0.11 0.12 ns TILVCMOS18 LVCMOS18 0.43 0.49 ns TILVCMOS15 LVCMOS15 1.00 1.15 ns TILVDS_25 LVDS_25 0.60 0.69 ns TILVDS_33 LVDS_33 0.60 0.69 ns TILVPECL_33 LVPECL 0.60 0.69 ns TIPCI33_3 PCI, 33 MHz, 3.3V 0.00 0.00 ns TIPCI66_3 PCI, 66 MHz, 3.3V 0.00 0.00 ns TIPCIX PCI–X, 133 MHz, 3.3V 0.00 0.00 ns TIGTL GTL 0.42 0.48 ns TIGTLP GTLP 0.42 0.48 ns TIHSTL_I HSTL I 0.42 0.48 ns TIHSTL_II HSTL II 0.42 0.48 ns TIHSTL_III HSTL III 0.42 0.48 ns TIHSTL_IV HSTL IV 0.42 0.48 ns TIHSTL_I_18 HSTL I_18 0.42 0.48 ns TIHSTL_II_18 HSTL II_18 0.42 0.48 ns TIHSTL_III_18 HSTL III_18 0.42 0.48 ns TIHSTL_IV_18 HSTL IV_18 0.42 0.48 ns TISSTL2_I SSTL2 I 0.42 0.48 ns TISSTL2_II SSTL2 II 0.42 0.48 ns TISSTL3_I SSTL3 I 0.35 0.40 ns TISSTL3_II SSTL3 II 0.35 0.40 ns TIAGP AGP 0.35 0.40 ns TILVDCI_33 LVDCI_33 0.00 0.00 ns TILVDCI_25 LVDCI_25 0.11 0.12 ns TILVDCI_18 LVDCI_18 0.43 0.49 ns TILVDCI_15 LVDCI_15 1.00 1.14 ns TILVDCI_DV2_33 LVDCI_DV2_33 0.00 0.00 ns TILVDCI_DV2_25 LVDCI_DV2_25 0.11 0.12 ns TILVDCI_DV2_18 LVDCI_DV2_18 0.43 0.49 ns TILVDCI_DV2_15 LVDCI_DV2_15 1.00 1.14 ns TIGTL_DCI GTL_DCI 0.42 0.48 ns TIGTLP_DCI GTLP_DCI 0.42 0.48 ns Data Input Delay Adjustments Standard-specific data input delay adjustments DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 55 R QPro Virtex-II 1.5V Platform FPGAs Table 40: IOB Input Switching Characteristics Standard Adjustments (Cont’d) Description Standard-specific data input delay adjustments Symbol Standard TIHSTL_I_DCI Speed Grade Units -5 -4 HSTL_I_DCI 0.42 0.48 ns TIHSTL_II_DCI HSTL_II_DCI 0.42 0.48 ns TIHSTL_III_DCI HSTL_III_DCI 0.42 0.48 ns TIHSTL_IV_DCI HSTL_IV_DCI 0.42 0.48 ns TIHSTL_I_DCI_18 HSTL_I_DCI_18 0.42 0.48 ns TIHSTL_II_DCI_18 HSTL_II_DCI_18 0.42 0.48 ns TIHSTL_III_DCI_18 HSTL_III_DCI_18 0.42 0.48 ns TIHSTL_IV_DCI_18 HSTL_IV_DCI_18 0.42 0.48 ns TISSTL2_I_DCI SSTL2_I_DCI 0.42 0.48 ns TISSTL2_II_DCI SSTL2_II_DCI 0.42 0.48 ns TISSTL3_I_DCI SSTL3_I_DCI 0.35 0.40 ns TISSTL3_II_DCI SSTL3_II_DCI 0.35 0.40 ns TILDT_25 LDT_25 0.49 0.56 ns TIULVDS_25 ULVDS_25 0.49 0.56 ns Notes: 1. Input timing for LVTTL is measured at 1.4V. For other I/O standards, see Table 43. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 56 R QPro Virtex-II 1.5V Platform FPGAs IOB Output Switching Characteristics Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays with the values shown in "IOB Output Switching Characteristics Standard Adjustments," page 58. Table 41: IOB Output Switching Characteristics Description Symbol Speed Grade -5 -4 Units Propagation Delays O input to Pad TIOOP 1.51 1.74 ns O input to Pad via transparent latch TIOOLP 1.83 2.11 ns TIOTHZ 0.56 0.64 ns TIOTON 1.45 1.67 ns TIOTLPHZ 0.88 1.01 ns TIOTLPON 1.77 2.04 ns TGTS 5.20 5.98 ns TIOCKP 1.87 2.15 ns TIOCKHZ 1.04 1.20 ns TIOCKON 1.94 2.22 ns TIOOCK/TIOCKO 0.34/–0.09 0.39/–0.11 ns OCE input TIOOCECK/TIOCKOCE 0.21/–0.07 0.24/–0.08 ns SR input (OFF) TIOSRCKO/TIOCKOSR 0.30/–0.06 0.34/–0.07 ns TIOTCK/TIOCKT 0.31/–0.07 0.35/–0.08 ns 3–State Setup Times, TCE input TIOTCECK/TIOCKTCE 0.21/–0.07 0.24/–0.08 ns 3–State Setup Times, SR input (TFF) TIOSRCKT/TIOCKTSR 0.30/–0.06 0.34/–0.07 ns TIOSRP 2.59 2.98 ns TIOSRHZ 1.67 1.92 ns SR input to valid data on Pad (asynchronous) TIOSRON 2.56 2.95 ns GSR to Pad TIOGSRQ 5.98 6.88 ns 3-State Delays T input to Pad high-impedance(1) T input to valid data on Pad T input to Pad high-impedance via transparent latch(1) T input to valid data on Pad via transparent latch GTS to Pad high-impedance(1) Sequential Delays Clock CLK to Pad Clock CLK to Pad high-impedance (synchronous)(1) Clock CLK to valid data on Pad (synchronous) Setup and Hold Times Before/After Clock CLK O input 3–State Setup Times, T input Set/Reset Delays SR input to Pad (asynchronous) SR input to Pad high-impedance (asynchronous)(1) Notes: 1. The 3-state turn-off delays should not be adjusted. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 57 R QPro Virtex-II 1.5V Platform FPGAs IOB Output Switching Characteristics Standard Adjustments Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown. Table 42: IOB Output Switching Characteristics Standard Adjustments Description Symbol Standard TOLVTTL_S2 Speed Grade Units -5 -4 LVTTL, Slow, 2 mA 9.71 10.68 ns TOLVTTL_S4 4 mA 5.95 6.55 ns TOLVTTL_S6 6 mA 4.24 4.66 ns TOLVTTL_S8 8 mA 2.96 3.26 ns Output Delay Adjustments Standard-specific adjustments for output delays terminating at pads (based on standard capacitive load, Csl) DS122 (v2.0) December 21, 2007 Product Specification TOLVTTL_S12 12 mA 2.39 2.63 ns TOLVTTL_S16 16 mA 1.75 1.93 ns TOLVTTL_S24 24 mA 1.30 1.43 ns TOLVTTL_F2 LVTTL, Fast, 2 mA 6.72 7.39 ns TOLVTTL_F4 4 mA 2.88 3.17 ns TOLVTTL_F6 6 mA 1.62 1.78 ns TOLVTTL_F8 8 mA 0.48 0.52 ns TOLVTTL_F12 12 mA 0.00 0.00 ns TOLVTTL_F16 16 mA –0.14 –0.15 ns TOLVTTL_F24 24 mA –0.23 –0.26 ns TOLVDS_25 LVDS –0.32 –0.36 ns TOLVDS_33 LVDS –0.26 –0.29 ns TOLVDSEXT_25 LVDS –0.19 –0.21 ns TOLVDSEXT_33 LVDS –0.18 –0.19 ns TOLDT_25 LDT –0.21 –0.23 ns TOBLVDS_25 BLVDS 0.69 0.76 ns TOULVDS_25 ULVDS –0.21 –0.23 ns TOLVPECL_33 LVPECL 0.30 0.33 ns TOPCI33_3 PCI, 33 MHz, 3.3V 1.19 1.31 ns TOPCI66_3 PCI, 66 MHz, 3.3V –0.01 –0.01 ns TOPCIX PCI–X, 133 MHz, 3.3V –0.01 –0.01 ns TOGTL GTL –0.32 –0.36 ns TOGTLP GTLP –0.18 –0.20 ns TOHSTL_I HSTL I 0.27 0.29 ns TOHSTL_II HSTL II –0.16 –0.17 ns TOHSTL_III HSTL III –0.17 –0.19 ns TOHSTL_IV HSTL IV – –0.45 ns TOHSTL_I_18 HSTL I_18 0.03 0.04 ns TOHSTL_II_18 HSTL II_18 –0.18 –0.20 ns TOHSTL_III_18 HSTL III_18 –0.16 –0.18 ns TOHSTL_IV_18 HSTL IV_18 –0.40 –0.44 ns TOSSTL2_I SSTL2 I 0.22 0.24 ns TOSSTL2_II SSTL2 II –0.16 –0.18 ns www.xilinx.com 58 R QPro Virtex-II 1.5V Platform FPGAs Table 42: IOB Output Switching Characteristics Standard Adjustments (Cont’d) Description Standard-specific adjustments for output delays terminating at pads (based on standard capacitive load, Csl) DS122 (v2.0) December 21, 2007 Product Specification Symbol Standard TOSSTL3_I TOSSTL3_II Speed Grade Units -5 -4 SSTL3 I 0.30 0.33 ns SSTL3 II –0.05 –0.05 ns TOAGP AGP –0.28 –0.31 ns TOLVCMOS33_S2 LVCMOS33, Slow, 2 mA 7.91 8.70 ns TOLVCMOS33_S4 4 mA 4.50 4.95 ns TOLVCMOS33_S6 6 mA 3.44 3.78 ns TOLVCMOS33_S8 8 mA 2.36 2.60 ns TOLVCMOS33_S12 12 mA 1.97 2.16 ns TOLVCMOS33_S16 16 mA 1.27 1.40 ns TOLVCMOS33_S24 24 mA 1.22 1.34 ns TOLVCMOS33_F2 LVCMOS33, Fast, 2 mA 6.00 6.60 ns TOLVCMOS33_F4 4 mA 2.55 2.81 ns TOLVCMOS33_F6 6 mA 1.31 1.45 ns TOLVCMOS33_F8 8 mA 0.49 0.54 ns TOLVCMOS33_F12 12 mA 0.28 0.31 ns TOLVCMOS33_F16 16 mA –0.14 –0.15 ns TOLVCMOS33_F24 24 mA –0.21 –0.23 ns TOLVCMOS25_S2 LVCMOS25, Slow, 2 mA 9.39 10.33 ns TOLVCMOS25_S4 4 mA 5.16 5.67 ns TOLVCMOS25_S6 6 mA 4.67 5.13 ns TOLVCMOS25_S8 8 mA 3.98 4.38 ns TOLVCMOS25_S12 12 mA 2.93 3.22 ns TOLVCMOS25_S16 16 mA 2.43 2.67 ns TOLVCMOS25_S24 24 mA 2.06 2.27 ns TOLVCMOS25_F2 LVCMOS25, Fast, 2 mA 4.18 4.60 ns TOLVCMOS25_F4 4 mA 1.18 1.30 ns TOLVCMOS25_F6 6 mA 0.74 0.81 ns TOLVCMOS25_F8 8 mA 0.34 0.37 ns TOLVCMOS25_F12 12 mA 0.02 0.03 ns TOLVCMOS25_F16 16 mA –0.19 –0.21 ns TOLVCMOS25_F24 24 mA –0.36 –0.40 ns TOLVCMOS18_S2 LVCMOS18, Slow, 2 mA 16.10 17.71 ns TOLVCMOS18_S4 4 mA 10.51 11.57 ns TOLVCMOS18_S6 6 mA 7.75 8.53 ns TOLVCMOS18_S8 8 mA 7.08 7.78 ns TOLVCMOS18_S12 12 mA 5.71 6.28 ns TOLVCMOS18_S16 16 mA 5.47 6.02 ns TOLVCMOS18_F2 LVCMOS18, Fast, 2 mA 5.72 6.30 ns TOLVCMOS18_F4 4 mA 1.95 2.15 ns TOLVCMOS18_F6 6 mA 0.85 0.94 ns TOLVCMOS18_F8 8 mA 0.72 0.80 ns www.xilinx.com 59 R QPro Virtex-II 1.5V Platform FPGAs Table 42: IOB Output Switching Characteristics Standard Adjustments (Cont’d) Description Standard-specific adjustments for output delays terminating at pads (based on standard capacitive load, Csl) DS122 (v2.0) December 21, 2007 Product Specification Symbol Standard TOLVCMOS18_F12 Speed Grade Units -5 -4 12 mA 0.27 0.30 ns TOLVCMOS18_F16 16 mA 0.23 0.26 ns TOLVCMOS15_S2 LVCMOS15, Slow, 2 mA 19.55 21.50 ns TOLVCMOS15_S4 4 mA 13.17 14.48 ns TOLVCMOS15_S6 6 mA 12.42 13.66 ns TOLVCMOS15_S8 8 mA 10.06 11.06 ns TOLVCMOS15_S12 12 mA 9.32 10.25 ns TOLVCMOS15_S16 16 mA 8.46 9.31 ns TOLVCMOS15_F2 LVCMOS15, Fast, 2 mA 5.25 5.78 ns TOLVCMOS15_F4 4 mA 2.07 2.27 ns TOLVCMOS15_F6 6 mA 1.51 1.66 ns TOLVCMOS15_F8 8 mA 0.96 1.05 ns TOLVCMOS15_F12 12 mA 0.77 0.84 ns TOLVCMOS15_F16 16 mA 0.69 0.75 ns TOLVDCI_33 LVDCI_33 0.77 0.84 ns TOLVDCI_25 LVDCI_25 0.80 0.88 ns TOLVDCI_18 LVDCI_18 0.87 0.95 ns TOLVDCI_15 LVDCI_15 1.88 2.06 ns TOLVDCI_DV2_33 LVDCI_DV2_33 0.12 0.13 ns TOLVDCI_DV2_25 LVDCI_DV2_25 0.03 0.03 ns TOLVDCI_DV2_18 LVDCI_DV2_18 0.43 0.48 ns TOLVDCI_DV2_15 LVDCI_DV2_15 1.23 1.36 ns TOGTL_DCI GTL_DCI –0.32 –0.35 ns TOGTLP_DCI GTLP_DCI –0.16 –0.17 ns TOHSTL_I_DCI HSTL_I_DCI 0.23 0.26 ns TOHSTL_II_DCI HSTL_II_DCI 0.06 0.07 ns TOHSTL_III_DCI HSTL_III_DCI –0.18 –0.20 ns TOHSTL_IV_DCI HSTL_IV_DCI –0.47 –0.52 ns TOHSTL_I_DCI_18 HSTL_I_DCI_18 0.05 0.06 ns TOHSTL_II_DCI_18 HSTL_II_DCI_18 –0.03 –0.03 ns TOHSTL_III_DCI_18 HSTL_III_DCI_18 –0.14 –0.16 ns TOHSTL_IV_DCI_18 HSTL_IV_DCI_18 –0.42 –0.47 ns TOSSTL2_I_DCI SSTL2_I_DCI 0.13 0.14 ns TOSSTL2_II_DCI SSTL2_II_DCI –0.10 –0.11 ns TOSSTL3_I_DCI SSTL3_I_DCI 0.16 0.17 ns TOSSTL3_II_DCI SSTL3_II_DCI 0.08 0.09 ns www.xilinx.com 60 R QPro Virtex-II 1.5V Platform FPGAs Table 43: Delay Measurement Methodology VL(1) VH(1) Meas. Point VREF (Typ)(2) LVTTL 0 3 1.4 – LVCMOS33 0 3.3 1.65 – LVCMOS25 0 2.5 1.25 – LVCMOS18 0 1.8 0.9 – LVCMOS15 0 1.5 0.75 – Standard PCI33_3 Per PCI Specification – PCI66_3 Per PCI Specification – Per PCI–X Specification – PCIX33_3 GTL VREF – 0.2 VREF + 0.2 VREF 0.80 GTLP VREF – 0.2 VREF + 0.2 VREF 1.0 HSTL Class I VREF – 0.5 VREF + 0.5 VREF 0.75 HSTL Class II VREF – 0.5 VREF + 0.5 VREF 0.75 HSTL Class III VREF – 0.5 VREF + 0.5 VREF 0.90 HSTL Class IV VREF – 0.5 VREF + 0.5 VREF 0.90 SSTL3 I & II VREF – 1.0 VREF + 1.0 VREF 1.5 SSTL2 I & II VREF – 0.75 VREF + 0.75 VREF 1.25 VREF – (0.2xVCCO) VREF + (0.2xVCCO) VREF Per AGP Spec LVDS_25 1.2 – 0.125 1.2 + 0.125 1.2 LVDS_33 1.2 – 0.125 1.2 + 0.125 1.2 LVDSEXT_25 1.2 – 0.125 1.2 + 0.125 1.2 LVDSEXT_33 1.2 – 0.125 1.2 + 0.125 1.2 ULVDS_25 0.6 – 0.125 0.6 + 0.125 0.6 LDT_25 0.6 – 0.125 0.6 + 0.125 0.6 LVPECL 1.6 –0.3 1.6 + 0.3 1.6 AGP Notes: 1. 2. Input waveform switches between VLand VH. Measurements are made at VREF (Typ), Maximum, and Minimum. Worst-case values are reported. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 61 R QPro Virtex-II 1.5V Platform FPGAs Table 44: Standard Capacitive Loads Standard Csl (pF) LVTTL Fast Slew Rate, 2 mA drive 35 LVTTL Fast Slew Rate, 4 mA drive 35 LVTTL Fast Slew Rate, 6 mA drive 35 LVTTL Fast Slew Rate, 8 mA drive 35 LVTTL Fast Slew Rate, 12 mA drive 35 LVTTL Fast Slew Rate, 16 mA drive 35 LVTTL Fast Slew Rate, 24 mA drive 35 LVTTL Slow Slew Rate, 2 mA drive 35 LVTTL Slow Slew Rate, 4 mA drive 35 LVTTL Slow Slew Rate, 6 mA drive 35 LVTTL Slow Slew Rate, 8 mA drive 35 LVTTL Slow Slew Rate, 12 mA drive 35 LVTTL Slow Slew Rate, 16 mA drive 35 LVTTL Slow Slew Rate, 24 mA drive 35 LVCMOS33 35 LVCMOS25 35 LVCMOS18 35 LVCMOS15 35 PCI 33 MHZ 3.3V 10 PCI 66 MHz 3.3V 10 PCI–X 133 MHz 3.3V 10 GTL 0 GTLP 0 HSTL Class I 10 HSTL Class II 10 HSTL Class III 10 HSTL Class IV 10 SSTL2 Class I 10 SSTL2 Class II 10 SSTL3 Class I 10 SSTL3 Class II 10 AGP 10 Notes: 1. 2. 3. I/O parameter measurements are made with the capacitance values shown above. I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it. Use of IBIS models results in a more accurate prediction of the propagation delay: ♦ Model the output in an IBIS simulation into the standard capacitive load. ♦ Record the relative time to the VOH or VOL transition of interest. ♦ Remove the capacitance, and model the actual PCB traces (transmission lines) and actual loads from the appropriate IBIS models for driven devices. ♦ Record the results from the new simulation. ♦ Compare with the capacitance simulation. The increase or decrease in delay from the capacitive load delay simulation should be added or subtracted from the value above to predict the actual delay. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 62 R QPro Virtex-II 1.5V Platform FPGAs Clock Distribution Switching Characteristics Table 45: Clock Distribution Switching Characteristics Description Symbol Speed Grade -5 -4 Global Clock Buffer I input to O output TGIO 0.52 0.59 Global Clock Buffer S input Setup/Hold to I1 an I2 inputs TGSI/TGIS 0.61/ 0 0.70/ 0 Units ns ns CLB Switching Characteristics Delays originating at F/G inputs vary slightly according to the input used (see Figure 46). The values listed below are worstcase. Precise values are provided by the timing analyzer. Table 46: CLB Switching Characteristics Description Symbol Speed Grade -5 -4 Units Combinatorial Delays 4-input function: F/G inputs to X/Y outputs TILO 0.39 0.44 ns 5-input function: F/G inputs to F5 output TIF5 0.63 0.72 ns 5-input function: F/G inputs to X output TIF5X 0.83 0.95 ns FXINA or FXINB inputs to Y output via MUXFX TIFXY 0.39 0.45 ns FXINA input to FX output via MUXFX TINAFX 0.28 0.32 ns FXINB input to FX output via MUXFX TINBFX 0.28 0.32 ns SOPIN input to SOPOUT output via ORCY TSOPSOP 0.38 0.44 ns Incremental delay routing through transparent latch to XQ/YQ outputs TIFNCTL 0.45 0.51 ns FF Clock CLK to XQ/YQ outputs TCKO 0.50 0.57 ns Latch Clock CLK to XQ/YQ outputs TCKLO 0.59 0.68 ns BX/BY inputs TDICK/TCKDI 0.33/–0.08 0.37/–0.09 ns DY inputs TDYCK/TCKDY 0.33/–0.08 0.37/–0.09 ns DX inputs TDXQK/TCKDX 0.33/–0.08 0.37/–0.09 ns CE input TCECK/TCKCE 0.21/–0.07 0.24/–0.08 ns SR/BY inputs (synchronous) TSRCK/TSCKR 0.23/–0.03 0.26/–0.03 ns Minimum Pulse Width, High TCH 0.67 0.77 ns Minimum Pulse Width, Low TCL 0.67 0.77 ns TRPW 0.67 0.77 ns Delay from SR/BY inputs to XQ/YQ outputs (asynchronous) TRQ 1.17 1.34 ns Toggle Frequency (MHz) (for export control) FTOG 750 650 MHz Sequential Delays Setup and Hold Times Before/After Clock CLK Clock CLK Set/Reset Minimum Pulse Width, SR/BY inputs DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 63 R QPro Virtex-II 1.5V Platform FPGAs CLB Distributed RAM Switching Characteristics Table 47: CLB Distributed RAM Switching Characteristics Description Symbol Speed Grade -5 -4 Units Sequential Delays Clock CLK to X/Y outputs (WE active) in 16 x 1 mode TSHCKO16 1.79 2.05 ns Clock CLK to X/Y outputs (WE active) in 32 x 1 mode TSHCKO32 2.17 2.49 ns Clock CLK to F5 output TSHCKOF5 1.94 2.23 ns BX/BY data inputs (DIN) TDS/TDH 0.58/–0.10 0.67/–0.11 ns F/G address inputs TAS/TAH 0.44/ 0.00 0.50/ 0.00 ns SR input (WS) TWES/TWEH 0.46/–0.01 0.53/–0.01 ns Setup and Hold Times Before/After Clock CLK Clock CLK Minimum Pulse Width, High TWPH 0.63 0.72 ns Minimum Pulse Width, Low TWPL 0.63 0.72 ns Minimum clock period to meet address write cycle time TWC 1.25 1.44 ns CLB Shift Register Switching Characteristics 0.63 Table 48: CLB Shift Register Switching Characteristics Description Symbol Speed Grade -5 -4 Units Sequential Delays Clock CLK to X/Y outputs TREG 2.54 2.92 ns Clock CLK to X/Y outputs TREG32 2.92 3.35 ns Clock CLK to XB output via MC15 LUT output TREGXB 2.46 2.82 ns Clock CLK to YB output via MC15 LUT output TREGYB 2.40 2.75 ns Clock CLK to Shiftout TCKSH 2.11 2.43 ns Clock CLK to F5 output TREGF5 2.69 3.09 ns TSRLDS/TSRLDH 0.58/–0.08 0.67/–0.09 ns TWSS/TWSH 0.21/–0.07 0.24/–0.08 ns Minimum Pulse Width, High TSRPH 0.63 0.72 ns Minimum Pulse Width, Low TSRPL 0.63 0.72 ns Setup and Hold Times Before/After Clock CLK BX/BY data inputs (DIN) SR input (WS) Clock CLK DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 64 R QPro Virtex-II 1.5V Platform FPGAs Multiplier Switching Characteristics Table 49 and Table 50 provide timing information for QPro Virtex-II multiplier blocks, available in stepping revisions of QPro Virtex-II devices. For more information on stepping revisions, availability, and ordering instructions, see your local sales representative. Table 49: Enhanced Multiplier Switching Characteristics Description Symbol Speed Grade -5 -4 Units Propagation Delay to Output Pin Input to Pin 35 TMULT_P35 5.14 5.91 ns Input to Pin 34 TMULT_P34 5.03 5.79 ns Input to Pin 33 TMULT_P33 4.93 5.66 ns Input to Pin 32 TMULT_P32 4.82 5.54 ns Input to Pin 31 TMULT_P31 4.71 5.42 ns Input to Pin 30 TMULT_P30 4.61 5.29 ns Input to Pin 29 TMULT_P29 4.50 5.17 ns Input to Pin 28 TMULT_P28 4.39 5.05 ns Input to Pin 27 TMULT_P27 4.28 4.92 ns Input to Pin 26 TMULT_P26 4.18 4.80 ns Input to Pin 25 TMULT_P25 4.07 4.68 ns Input to Pin 24 TMULT_P24 3.96 4.56 ns Input to Pin 23 TMULT_P23 3.86 4.43 ns Input to Pin 22 TMULT_P22 3.75 4.31 ns Input to Pin 21 TMULT_P21 3.64 4.19 ns Input to Pin 20 TMULT_P20 3.54 4.06 ns Input to Pin 19 TMULT_P19 3.43 3.94 ns Input to Pin 18 TMULT_P18 3.32 3.82 ns Input to Pin 17 TMULT_P17 3.21 3.69 ns Input to Pin 16 TMULT_P16 3.11 3.57 ns Input to Pin 15 TMULT_P15 3.00 3.45 ns Input to Pin 14 TMULT_P14 2.89 3.33 ns Input to Pin 13 TMULT_P13 2.79 3.20 ns Input to Pin 12 TMULT_P12 2.68 3.08 ns Input to Pin 11 TMULT_P11 2.57 2.96 ns Input to Pin 10 TMULT_P10 2.47 2.83 ns Input to Pin 9 TMULT_P9 2.36 2.71 ns Input to Pin 8 TMULT_P8 2.25 2.59 ns Input to Pin 7 TMULT_P7 2.14 2.46 ns Input to Pin 6 TMULT_P6 2.04 2.34 ns Input to Pin 5 TMULT_P5 1.93 2.22 ns Input to Pin 4 TMULT_P4 1.82 2.10 ns Input to Pin 3 TMULT_P3 1.72 1.97 ns Input to Pin 2 TMULT_P2 1.61 1.85 ns Input to Pin 1 TMULT_P1 1.50 1.73 ns Input to Pin 0 TMULT_P0 1.40 1.60 ns DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 65 R QPro Virtex-II 1.5V Platform FPGAs Table 50: Pipelined Multiplier Switching Characteristics Description Symbol Speed Grade Units -5 -4 TMULIDCK/ TMULCKID 3.45/0.00 3.89/0.00 ns Clock Enable TMULIDCK_CE/ TMULCKID_CE 0.80/0.00 0.86/0.00 ns Reset TMULIDCK_RST/ TMULCKID_RST 0.80/0.00 0.86/0.00 ns Clock to Pin 35 TMULTCK_P35 3.25 3.74 ns Clock to Pin 34 TMULTCK_P34 3.14 3.61 ns Clock to Pin 33 TMULTCK_P33 3.04 3.49 ns Clock to Pin 32 TMULTCK_P32 2.93 3.37 ns Clock to Pin 31 TMULTCK_P31 2.82 3.25 ns Clock to Pin 30 TMULTCK_P30 2.72 3.12 ns Clock to Pin 29 TMULTCK_P29 2.61 3.00 ns Clock to Pin 28 TMULTCK_P28 2.50 2.88 ns Clock to Pin 27 TMULTCK_P27 2.40 2.75 ns Clock to Pin 26 TMULTCK_P26 2.29 2.63 ns Clock to Pin 25 TMULTCK_P25 2.18 2.51 ns Clock to Pin 24 TMULTCK_P24 2.07 2.38 ns Clock to Pin 23 TMULTCK_P23 1.97 2.26 ns Clock to Pin 22 TMULTCK_P22 1.86 2.14 ns Clock to Pin 21 TMULTCK_P21 1.75 2.02 ns Clock to Pin 20 TMULTCK_P20 1.65 1.89 ns Clock to Pin 19 TMULTCK_P19 1.54 1.77 ns Clock to Pin 18 TMULTCK_P18 1.43 1.65 ns Clock to Pin 17 TMULTCK_P17 1.33 1.52 ns Clock to Pin 16 TMULTCK_P16 1.22 1.40 ns Clock to Pin 15 TMULTCK_P15 1.11 1.28 ns Clock to Pin 14 TMULTCK_P14 1.00 1.15 ns Clock to Pin 13 TMULTCK_P13 1.00 1.15 ns Clock to Pin 12 TMULTCK_P12 1.00 1.15 ns Clock to Pin 11 TMULTCK_P11 1.00 1.15 ns Clock to Pin 10 TMULTCK_P10 1.00 1.15 ns Clock to Pin 9 TMULTCK_P9 1.00 1.15 ns Clock to Pin 8 TMULTCK_P8 1.00 1.15 ns Clock to Pin 7 TMULTCK_P7 1.00 1.15 ns Clock to Pin 6 TMULTCK_P6 1.00 1.15 ns Clock to Pin 5 TMULTCK_P5 1.00 1.15 ns Clock to Pin 4 TMULTCK_P4 1.00 1.15 ns Clock to Pin 3 TMULTCK_P3 1.00 1.15 ns Clock to Pin 2 TMULTCK_P2 1.00 1.15 ns Clock to Pin 1 TMULTCK_P1 1.00 1.15 ns Clock to Pin 0 TMULTCK_P0 1.00 1.15 ns Setup and Hold Times Before/After Clock Data Inputs Clock to Output Pin DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 66 R QPro Virtex-II 1.5V Platform FPGAs Block SelectRAM Switching Characteristics Table 51: Block SelectRAM Switching Characteristics Description Symbol Speed Grade Units -5 -4 TBCKO 2.31 2.65 ns ADDR inputs TBACK/TBCKA 0.32/ 0.00 0.36/ 0.00 ns DIN inputs TBDCK/TBCKD 0.32/ 0.00 0.36/ 0.00 ns EN input TBECK/TBCKE 1.04/–0.50 1.20/–0.58 ns RST input TBRCK/TBCKR 1.44/–0.78 1.65/–0.90 ns WEN input TBWCK/TBCKW 0.63/–0.21 0.72/–0.25 ns Minimum Pulse Width, High TBPWH 1.29 1.48 ns Minimum Pulse Width, Low TBPWL 1.29 1.48 ns Sequential Delays Clock CLK to DOUT output Setup and Hold Times Before Clock CLK Clock CLK TBUF Switching Characteristics Table 52: TBUF Switching Characteristics Description Symbol Speed Grade Units -5 -4 TIO 0.50 0.58 ns TRI input to OUT output high-impedance TOFF 0.48 0.55 ns TRI input to valid data on OUT output TON 0.48 0.55 ns Symbol Min Max Units TMS and TDI Setup times before TCK TTAPTK 5.5 – ns TMS and TDI Hold times after TCK TTCKTAP 0.0 – ns Output delay from clock TCK to output TDO TTCKTDO – 10.0 ns FTCK – 33 MHz Combinatorial Delays IN input to OUT output JTAG Test Access Port Switching Characteristics Table 53: JTAG Test Access Port Switching Characteristics Description Maximum TCK clock frequency DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 67 R QPro Virtex-II 1.5V Platform FPGAs QPro Virtex-II Pin-to-Pin Output Parameter Guidelines All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted. Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DCM Table 54: Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DCM Description Symbol Device TICKOFDCM Speed Grade Units -5 -4 XQ2V1000 1.28 1.48 ns XQ2V3000 1.28 1.48 ns XQ2V6000 1.88 2.17 ns LVTTL Global Clock Input to Output delay using Output flip-flop, 12 mA, Fast Slew Rate, with DCM. For data output with different standards, adjust the delays with the values shown in "IOB Output Switching Characteristics Standard Adjustments," page 58. Global Clock and OFF with DCM Notes: 1. 2. 3. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. Output timing is measured with a 35 pF external capacitive load. The only time it is not 50% of VCC threshold is with LVCMOS. For other I/O standards and different loads, see Table 43, page 61. DCM output jitter is included in the measurement. Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DCM Table 55: Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DCM Description Symbol Device TICKOF Speed Grade Units -5 -4 XQ2V1000 4.28 4.62 ns XQ2V3000 4.43 5.10 ns XQ2V6000 5.38 5.93 ns LVTTL Global Clock Input to Output Delay using Output flip-flop, 12 mA, Fast Slew Rate, without DCM. For data output with different standards, adjust the delays with the values shown in "IOB Output Switching Characteristics Standard Adjustments," page 58. Global Clock and OFF without DCM Notes: 1. 2. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. Output timing is measured at 50% VCC threshold with 35 pF external capacitive load. For other I/O standards and different loads, see Table 43, page 61. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 68 R QPro Virtex-II 1.5V Platform FPGAs QPro Virtex-II Pin-to-Pin Input Parameter Guidelines All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted. Global Clock Setup and Hold for LVTTL Standard, with DCM Table 56: Global Clock Setup and Hold for LVTTL Standard, with DCM Description Symbol Device TPSDCM/TPHDCM Speed Grade Units -5 -4 XQ2V1000 1.60/–0.90 1.84/–0.76 ns XQ2V3000 1.70/–0.90 1.96/–0.76 ns XQ2V6000 1.70/–0.90 1.96/–0.76 ns Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard. For data input with different standards, adjust the setup time delay by the values shown in "IOB Input Switching Characteristics Standard Adjustments," page 55. No Delay Global Clock and IFF with DCM Notes: 1. 2. IFF = Input Flip-Flop or Latch Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. Global Clock Setup and Hold for LVTTL Standard, without DCM Table 57: Global Clock Setup and Hold for LVTTL Standard, without DCM Description Symbol Device TPSFD/TPHFD Speed Grade Units -5 -4 XQ2V1000 1.92/ 0.00 2.21/ 0.00 ns XQ2V3000 1.92/ 0.00 2.21/ 0.00 ns XQ2V6000 1.92/ 0.50 2.21/ 0.50 ns Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard.(1) For data input with different standards, adjust the setup time delay by the values shown in "IOB Input Switching Characteristics Standard Adjustments," page 55. Full Delay Global Clock and IFF(2) without DCM Notes: 1. 2. 3. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. IFF = Input Flip-Flop or Latch These values are parametrically measured. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 69 R QPro Virtex-II 1.5V Platform FPGAs DCM Timing Parameters All devices are 100% functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions. All output jitter and phase specifications are determined through statistical measurement at the package pins. Operating Frequency Ranges Table 58: Operating Frequency Ranges Description Symbol Constraints Speed Grade Units -5 -4 CLKOUT_FREQ_1X_LF_Min 24.00 24.00 MHz CLKOUT_FREQ_1X_LF_Max 210.00 180.00 MHz CLKOUT_FREQ_2X_LF_Min 48.00 48.00 MHz CLKOUT_FREQ_2X_LF_Max 420.00 360.00 MHz CLKOUT_FREQ_DV_LF_Min 1.50 1.50 MHz CLKOUT_FREQ_DV_LF_Max 140.00 120.00 MHz CLKOUT_FREQ_FX_LF_Min 24.00 24.00 MHz CLKOUT_FREQ_FX_LF_Max 240.00 210.00 MHz CLKIN_FREQ_DLL_LF_Min 24.00 24.00 MHz CLKIN_FREQ_DLL_LF_Max 210.00 180.00 MHz CLKIN_FREQ_FX_LF_Min 1.00 1.00 MHz CLKIN_FREQ_FX_LF_Max 240.00 210.00 MHz PSCLK_FREQ_LF_Min 0.01 0.01 MHz PSCLK_FREQ_LF_Max 420.00 360.00 MHz CLKOUT_FREQ_1X_HF_Min 48.00 48.00 MHz CLKOUT_FREQ_1X_HF_Max 420.00 360.00 MHz Output Clocks (Low Frequency Mode) CLK0, CLK90, CLK180, CLK270 CLK2X, CLK2X180 CLKDV CLKFX, CLKFX180 Input Clocks (Low Frequency Mode) CLKIN (using DLL outputs)(1)(3) CLKIN (using CLKFX outputs)(2)(3) PSCLK Output Clocks (High Frequency Mode) CLK0, CLK180 CLKDV CLKFX, CLKFX180 CLKOUT_FREQ_DV_HF_Min 3.00 3.00 MHz CLKOUT_FREQ_DV_HF_Max 280.00 240.00 MHz CLKOUT_FREQ_FX_HF_Min 210.00 210.00 MHz CLKOUT_FREQ_FX_HF_Max 320.00 270.00 MHz CLKIN_FREQ_DLL_HF_Min 48.00 48.00 MHz CLKIN_FREQ_DLL_HF_Max 420.00 360.00 MHz CLKIN_FRQ_FX_HF_Min 50.00 50.00 MHz CLKIN_FRQ_FX_HF_Max 320.00 270.00 MHz PSCLK_FREQ_HF_Min 0.01 0.01 MHz PSCLK_FREQ_HF_Max 420.00 360.00 MHz Input Clocks (High Frequency Mode) CLKIN (using DLL outputs)(1)(3) CLKIN (using CLKFX outputs)(2)(3) PSCLK Notes: 1. 2. 3. The term DLL outputs is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. If both DLL and CLKFX outputs are used, follow the more restrictive specification. If the CLKIN_DIVIDE_BY_2 attribute of the DCM is used, then double these values. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 70 R QPro Virtex-II 1.5V Platform FPGAs Input Clock Tolerances Table 59: Input Clock Tolerances Speed Grade Description Constraints FCLKIN Symbol -5 Min -4 Max Min Units Max Input Clock Low/High Pulse Width PSCLK PSCLK and PSCLK_PULSE CLKIN(2) PSCLK_PULSE and CLKIN_PULSE < 1 MHz 25.00 25.00 ns 1 – 10 MHz 25.00 25.00 ns 10 – 25 MHz 10.00 10.00 ns 25 – 50 MHz 5.00 5.00 ns 50 – 100 MHz 3.00 3.00 ns 100 – 150 MHz 2.40 2.40 ns 150 – 200 MHz 2.00 2.00 ns 200 – 250 MHz 1.80 1.80 ns 250 – 300 MHz 1.50 1.50 ns 300 – 350 MHz 1.30 1.30 ns 350 – 400 MHz 1.15 1.15 ns > 400 MHz 1.05 1.05 ns Input Clock Cycle-Cycle Jitter (Low Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN (using CLKFX outputs)(2) CLKIN_CYC_JITT_DLL_LF ±300 ±300 ps CLKIN_CYC_JITT_FX_LF ±300 ±300 ps CLKIN_CYC_JITT_DLL_HF ±150 ±150 ps CLKIN_CYC_JITT_FX_HF ±150 ±150 ps CLKIN_PER_JITT_DLL_LF ±1 ±1 ns CLKIN_PER_JITT_FX_LF ±1 ±1 ns CLKIN_PER_JITT_DLL_HF ±1 ±1 ns CLKIN_PER_JITT_FX_HF ±1 ±1 ns ±1 ±1 ns Input Clock Cycle-Cycle Jitter (High Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN (using CLKFX outputs)(2) Input Clock Period Jitter (Low Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN (using CLKFX outputs)(2) Input Clock Period Jitter (High Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN (using CLKFX outputs)(2) Feedback Clock Path Delay Variation CLKFB off-chip feedback CLKFB_DELAY_VAR_EXT Notes: 1. 2. 3. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. If both DLL and CLKFX outputs are used, follow the more restrictive specification. If the DCM phase shift feature is used and the CLKIN frequency > 200 MHz, the CLKIN duty cycle must be within ±5% (45/55 to 55/45). DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 71 R QPro Virtex-II 1.5V Platform FPGAs Output Clock Jitter Table 60: Output Clock Jitter Description Symbol Constraints Speed Grade -5 -4 Units Clock Synthesis Period Jitter CLK0 CLKOUT_PER_JITT_0 ±100 ±100 ps CLK90 CLKOUT_PER_JITT_90 ±150 ±150 ps CLK180 CLKOUT_PER_JITT_180 ±150 ±150 ps CLK270 CLKOUT_PER_JITT_270 ±150 ±150 ps CLK2X, CLK2X180 CLKOUT_PER_JITT_2X ±200 ±200 ps CLKDV (integer division) CLKOUT_PER_JITT_DV1 ±150 ±150 ps CLKDV (non-integer division) CLKOUT_PER_JITT_DV2 ±300 ±300 ps CLKFX, CLKFX180 CLKOUT_PER_JITT_FX Note 1 Note 1 ps Notes: 1. Values for this parameter are available at http://www.xilinx.com. Output Clock Phase Alignment Table 61: Output Clock Phase Alignment Description Symbol Constraints Speed Grade Units -5 -4 CLKIN_CLKFB_PHASE ±50 ±50 ps CLKOUT_PHASE ±140 ±140 ps DLL outputs(1) CLKOUT_DUTY_CYCLE_DLL(2) ±150 ±150 ps CLKFX outputs CLKOUT_DUTY_CYCLE_FX ±100 ±100 ps Phase Offset Between CLKIN and CLKFB CLKIN/CLKFB Phase Offset Between Any DCM Outputs All CLK* outputs Duty Cycle Precision Notes: 1. 2. 3. The term DLL outputs is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. CLKOUT_DUTY_CYCLE_DLL applies to the 1X clock outputs (CLK0, CLK90, CLK180, and CLK270) only if DUTY_CYCLE_CORRECTION = TRUE. Specification also applies to PSCLK. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 72 R QPro Virtex-II 1.5V Platform FPGAs Miscellaneous Timing Parameters Table 62: Miscellaneous Timing Parameters Description Speed Grade Constraints FCLKIN -5 -4 LOCK_DLL_60 > 60 MHz 20.0 20.0 μs LOCK_DLL_50_60 50 – 60 MHz 25.0 25.0 μs LOCK_DLL_40_50 40 – 50 MHz 50.0 50.0 μs LOCK_DLL_30_40 30 – 40 MHz 90.0 90.0 μs LOCK_DLL_24_30 24 – 30 MHz 120.0 120.0 μs LOCK_FX_MIN 10.0 10.0 ms LOCK_FX_MAX 10.0 10.0 ms LOCK_DLL_FINE_SHIFT 50.0 50.0 μs FINE_SHIFT_RANGE 10.0 10.0 ns DCM_TAP_MIN 30.0 30.0 ps DCM_TAP_MAX 60.0 60.0 ps Symbol Units Time Required to Achieve LOCK Using DLL outputs(1) LOCK_DLL Using CLKFX outputs Additional lock time with fine-phase shifting Fine-Phase Shifting Absolute shifting range Delay Lines Tap delay resolution Notes: 1. 2. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. Specification also applies to PSCLK. Frequency Synthesis Table 63: Frequency Synthesis Attribute Min Max CLKFX_MULTIPLY 2 32 CLKFX_DIVIDE 1 32 Parameter Cross Reference Table 64: Parameter Cross Reference Libraries Guide Data Sheet DLL_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_{1X|2X|DV}_LF DFS_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_FX_LF DLL_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_DLL_LF DFS_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_FX_LF DLL_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_{1X|DV}_HF DFS_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_FX_HF DLL_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_DLL_HF DFS_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_FX_HF DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 73 R QPro Virtex-II 1.5V Platform FPGAs Source-Synchronous Switching Characteristics The parameters in this section provide the necessary values for calculating timing budgets for QPro Virtex-II sourcesynchronous transmitter and receiver data-valid windows. Table 65: Duty Cycle Distortion and Clock-Tree Skew Description Duty Cycle Distortion(1) Clock Tree Skew(2) Symbol Device TDCD_CLK0 Speed Grade Units -5 -4 All 140 140 ps TDCD_CLK180 All 50 50 ps TCKSKEW XQ2V1000 80 90 ps XQ2V3000 100 110 ps XQ2V6000 500 550 ps Notes: 1. 2. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times. TDCD_CLK0 applies to cases where local (IOB) inversion is used to provide the negative-edge clock to the DDR element in the I/O. TDCD_CLK180 applies to cases where the CLK180 output of the DCM is used to provide the negative-edge clock to the DDR element in the I/O. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. Table 66: Package Skew Description Package Skew(1) Symbol Device/Package Value Units TPKGSKEW XQ2V6000/CF1144 90 ps Notes: 1. 2. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball (7.1 ps per mm). Package trace length information is available for these device/package combinations. This information can be used to deskew the package. Table 67: Sample Window Description Sampling Error at Receiver Pins(1) Symbol Device TSAMP Speed Grade Units -5 -4 XQ2V1000 500 550 ps XQ2V3000 500 550 ps XQ2V6000 500 550 ps Notes: 1. This parameter indicates the total sampling error of QPro Virtex-II DDR input registers across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers’ edges of operation. These measurements include ♦ ♦ ♦ ♦ CLK0 and CLK180 DCM jitter Worst-case Duty-Cycle Distortion - TDCD_CLK180 DCM accuracy (phase offset) DCM phase shift resolution. These measurements do not include package or clock tree skew. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 74 R QPro Virtex-II 1.5V Platform FPGAs Table 68: Pin-to-Pin Setup/Hold: Source-Synchronous Configuration Description Symbol Device TPSDCM/TPHDCM Speed Grade Units -5 -4 XQ2V1000 0.2/0.5 0.2/0.5 ns XQ2V3000 0.2/0.5 0.2/0.5 ns XQ2V6000 0.2/0.6 0.2/0.6 ns Data Input Set-Up and Hold Times Relative to a Forwarded Clock Input Pin, Using DCM and Global Clock Buffer. For situations where clock and data inputs conform to different standards, adjust the setup and hold values accordingly using the values shown in "IOB Input Switching Characteristics Standard Adjustments," page 55. No Delay Global Clock and IFF with DCM Notes: 1. 2. 3. IFF = Input Flip-Flop The timing values were measured using the fine-phase adjustment feature of the DCM. The worst-case duty-cycle distortion and DCM jitter on CLK0 and CLK180 is included in these measurements. Source Synchronous Timing Budgets This section describes how to use the parameters provided in the "Source-Synchronous Switching Characteristics" section to develop system-specific timing budgets. The following analysis provides information necessary for determining QPro Virtex-II contributions to an overall system timing analysis. No assumptions are made about the effects of Inter-Symbol Interference or PCB skew. QPro Virtex-II Transmitter Data-Valid Window (TX) QPro Virtex-II Receiver Data-Valid Window (RX) TX is the minimum aggregate valid data period for a sourcesynchronous data bus at the pins of the device and is calculated as follows: RX is the required minimum aggregate valid data period for a source-synchronous data bus at the pins of the device and is calculated as follows: TX = Data Period - [Jitter(1) + Duty Cycle Distortion(2) + TCKSKEW(3) + TPKGSKEW(4)] RX = [TSAMP(1) + TCKSKEW(2) + TPKGSKEW(3)] Notes: Notes: 1. 2. 3. 4. 1. Jitter values and accumulation methodology to be provided in a future release of this document. The absolute period jitter values found in the "DCM Timing Parameters," page 70 section of the particular DCM output clock used to clock the IOB FF can be used for a best-case analysis. This value depends on the clocking methodology used. See Note 1 for Table 65, page 74. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball. ♦ ♦ ♦ ♦ 2. 3. DS122 (v2.0) December 21, 2007 Product Specification This parameter indicates the total sampling error of QPro Virtex-II DDR input registers across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers’ edges of operation. These measurements include: CLK0 and CLK180 DCM jitter in a quiet system Worst-case duty-cycle distortion DCM accuracy (phase offset) DCM phase shift resolution These measurements do not include package or clock tree skew. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball. www.xilinx.com 75 R QPro Virtex-II 1.5V Platform FPGAs QPro Virtex-II Device/Package Combinations and Maximum I/Os Available This section provides "QPro Virtex-II Device/Package Combinations and Maximum I/Os Available" and "QPro Virtex-II Pin Definitions", followed by pinout tables for the following packages: package. Table 70 shows the maximum number of user I/Os possible for each available package. There are four package type definitions: • FG denotes plastic wire-bond fine-pitch BGA (1.00 mm pitch). "BG575 Standard BGA Package" • "BG728 Standard BGA and CG717 Ceramic CGA Packages" BG denotes plastic wire-bond ball grid array (1.27 mm pitch). • CG denotes hermetic ceramic wire-bond column grid array (1.27 mm pitch). • CF denotes non-hermetic ceramic flip-chip column grid array (1.00 mm pitch). • "FG456 Fine-Pitch BGA Package" • • • "EF957 Epoxy-Coated Flip-Chip BGA Package" • "EF957 Epoxy-Coated Flip-Chip BGA Package" • "EF1152 Epoxy-Coated Flip-Chip BGA Package Specifications (1.00 mm pitch)" QPro Virtex-II devices are available in both wire-bond and flip-chip packages. The basic package dimensions are listed in Table 69. See Figure 51 through Figure 56 for a more complete mechanical description of each available The number of I/Os per package include all user I/Os except the 15 control pins (CCLK, DONE, M0, M1, M2, PROG_B, PWRDWN_B, TCK, TDI, TDO, TMS, HSWAP_EN, DXN, DXP, AND RSVD). Table 69: Package Information Package FG456 BG575 BG728 & CG717 CF1144 EF957 EF1152 Pitch (mm) 1.00 1.27 1.27 1.00 1.27 1.00 Size (mm) 23 x 23 31 x 31 35 x 35 35 x 35 40 x 40 35 x 35 Table 70: QPro Virtex-II Device/Package Combinations and Maximum Number of Available I/Os (Advance Information) Package Available I/Os XQ2V1000 XQ2V3000 XQ2V6000 FG456 324 – – BG575 328 – – BG728 – 516 – CG717 – 516 – CF1144 – – 824 EF957 – 684 684 EF1152 – 720 824 Notes: 1. The BG728 and CG717 packages are pinout (footprint) compatible. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 76 R QPro Virtex-II 1.5V Platform FPGAs QPro Virtex-II Pin Definitions • FG456: wire-bond fine-pitch BGA of 1.00 mm pitch • BG575 and BG728: wire-bond BGA of 1.27 mm pitch Each device is split into eight I/O banks to allow for flexibility in the choice of I/O standards (see the QPro Virtex-II Data Sheet). Global pins, including JTAG, configuration, and power/ground pins, are listed at the end of each table. Table 71 provides definitions for all pin types. • CG717: wire-bond ceramic column grid of 1.27 mm pitch • All QPro Virtex-II pinout tables are available on the distribution CD-ROM, or on the web (at http://www.xilinx.com). CF1144: Ceramic flip-chip fine-pitch column grid of 1.00 mm pitch This section describes the pinouts for QPro Virtex-II devices in the following packages: Pin Definitions Table 71 provides a description of each pin type listed in QPro Virtex-II pinout tables. Table 71: QPro Virtex-II Pin Definitions Pin Name Direction Description User I/O Pins IO_LXXY_# Input/Output All user I/O pins are capable of differential signalling and can implement LVDS, ULVDS, BLVDS, LVPECL, or LDT pairs. Each user I/O is labeled “IO_LXXY_#”, where: • IO indicates a user I/O pin. • LXXY indicates a differential pair, with XX a unique pair in the bank and Y = P/N for the positive and negative sides of the differential pair. • # indicates the bank number (0 through 7). Dual-Function Pins IO_LXXY_#/ZZZ The dual-function pins are labelled “IO_LXXY_#/ZZZ”, where ZZZ can be one of the following pins: • Per Bank – VRP, VRN, or VREF • Globally – GCLKX(S/P), BUSY/DOUT, INIT_B, DIN/D0 – D7, RDWR_B, or CS_B With /ZZZ DIN/D0, D1, D2, D3, D4, D5, D6, D7 Input/Output In SelectMAP mode, D0 through D7 are configuration data pins. These pins become user I/Os after configuration, unless the SelectMAP port is retained. In bit-serial modes, DIN (D0) is the single-data input. This pin becomes a user I/O after configuration. CS_B Input In SelectMAP mode, this is the active-Low Chip Select signal. This pin becomes a user I/O after configuration, unless the SelectMAP port is retained. RDWR_B Input In SelectMAP mode, this is the active-Low Write Enable signal. This pin becomes a user I/O after configuration, unless the SelectMAP port is retained. BUSY/DOUT Output In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. This pin becomes a user I/O after configuration, unless the SelectMAP port is retained. In bit-serial modes, DOUT provides preamble and configuration data to downstream devices in a daisy chain. This pin becomes a user I/O after configuration. INIT_B Bidirectional (open-drain) When Low, this pin indicates that the configuration memory is being cleared. When held Low, the start of configuration is delayed. During configuration, a Low on this output indicates that a configuration data error has occurred. This pin becomes a user I/O after configuration. GCLKx (S/P) Input/Output These are clock input pins that connect to Global Clock Buffers. These pins become regular user I/Os when not needed for clocks. VRP Input This pin is for the DCI voltage reference resistor of the P transistor (per bank). VRN Input This pin is for the DCI voltage reference resistor of the N transistor (per bank). ALT_VRP Input This is the alternative pin for the DCI voltage reference resistor of the P transistor. ALT_VRN Input This is the alternative pin for the DCI voltage reference resistor of the N transistor. VREF Input These are input threshold voltage pins. They become user I/Os when an external threshold voltage is not needed (per bank). DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 77 R QPro Virtex-II 1.5V Platform FPGAs Table 71: QPro Virtex-II Pin Definitions (Cont’d) Pin Name Dedicated Direction Description Pins(1) CCLK Input/Output Configuration clock. Output in Master mode or Input in Slave mode. PROG_B Input Active-Low asynchronous reset to configuration logic. This pin has a permanent weak pull-up resistor. DONE Input/Output DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, this pin indicates completion of the configuration process. As an input, a Low level on DONE can be configured to delay the start-up sequence. M2, M1, M0 Input Configuration mode selection. HSWAP_EN Input Enable I/O pullups during configuration. TCK Input Boundary Scan Clock. TDI Input Boundary Scan Data Input. TDO Output Boundary Scan Data Output. TMS Input Boundary Scan Mode Select. PWRDWN_B Input (unsupported) Active-Low power-down pin (unsupported). Driving this pin Low can adversely affect device operation and configuration. PWRDWN_B is internally pulled High, which is its default state. It does not require an external pull-up. DXN, DXP N/A Temperature-sensing diode pins (Anode: DXP, Cathode: DXN). VBATT Input Decryptor key memory backup supply. (Do not connect if battery is not used.) RSVD N/A Reserved pin – do not connect. VCCO Input Power-supply pins for the output drivers (per bank). VCCAUX Input Power-supply pins for auxiliary circuits. VCCINT Input Power-supply pins for the internal core logic. GND Input Ground. Other Pins Notes: 1. All dedicated pins (JTAG and configuration) are powered by VCCAUX (independent of the bank VCCO voltage). DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 78 R QPro Virtex-II 1.5V Platform FPGAs FG456 Fine-Pitch BGA Package The XQ2V1000 QPro Virtex-II device is available in the FG456 fine-pitch BGA package. Pins definitions listed in Table 72 are identical to the commercial grade XC2V1000-FG456. Following this table are the "FG456 Fine-Pitch BGA Package Specifications (1.00 mm pitch)," page 85. Table 72: FG456 BGA — XQ2V1000 (Cont’d) Table 72: FG456 BGA — XQ2V1000 Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L01N_0 B4 0 IO_L96N_0/GCLK5P B11 0 IO_L01P_0 A4 0 IO_L96P_0/GCLK4S A11 0 IO_L02N_0 C4 0 IO_L02P_0 C5 1 IO_L96N_1/GCLK3P F12 0 IO_L03N_0/VRP_0 B5 1 IO_L96P_1/GCLK2S F13 0 IO_L03P_0/VRN_0 A5 1 IO_L95N_1/GCLK1P E12 0 IO_L04N_0/VREF_0 D6 1 IO_L95P_1/GCLK0S D12 0 IO_L04P_0 C6 1 IO_L94N_1 C12 0 IO_L05N_0 B6 1 IO_L94P_1/VREF_1 B12 0 IO_L05P_0 A6 1 IO_L93N_1 A13 0 IO_L06N_0 E7 1 IO_L93P_1 B13 0 IO_L06P_0 E8 1 IO_L92N_1 C13 0 IO_L21N_0 D7 1 IO_L92P_1 D13 0 IO_L21P_0/VREF_0 C7 1 IO_L91N_1 E13 0 IO_L22N_0 B7 1 IO_L91P_1/VREF_1 E14 0 IO_L22P_0 A7 1 IO_L54N_1 A14 0 IO_L24N_0 D8 1 IO_L54P_1 B14 0 IO_L24P_0 C8 1 IO_L52N_1 C14 0 IO_L49N_0 B8 1 IO_L52P_1 D14 0 IO_L49P_0 A8 1 IO_L51N_1/VREF_1 A15 0 IO_L51N_0 E9 1 IO_L51P_1 B15 0 IO_L51P_0/VREF_0 F9 1 IO_L49N_1 C15 0 IO_L52N_0 D9 1 IO_L49P_1 D15 0 IO_L52P_0 C9 1 IO_L24N_1 F14 0 IO_L54N_0 B9 1 IO_L24P_1 E15 0 IO_L54P_0 A9 1 IO_L22N_1 A16 0 IO_L91N_0/VREF_0 E10 1 IO_L22P_1 B16 0 IO_L91P_0 F10 1 IO_L21N_1/VREF_1 C16 0 IO_L92N_0 D10 1 IO_L21P_1 D16 0 IO_L92P_0 C10 1 IO_L06N_1 E16 0 IO_L93N_0 B10 1 IO_L06P_1 E17 0 IO_L93P_0 A10 1 IO_L05N_1 A17 0 IO_L94N_0/VREF_0 E11 1 IO_L05P_1 B17 0 IO_L94P_0 F11 1 IO_L04N_1 C17 0 IO_L95N_0/GCLK7P D11 1 IO_L04P_1/VREF_1 D17 0 IO_L95P_0/GCLK6S C11 1 IO_L03N_1/VRP_1 A18 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 79 R QPro Virtex-II 1.5V Platform FPGAs Table 72: FG456 BGA — XQ2V1000 (Cont’d) Table 72: FG456 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 1 IO_L03P_1/VRN_1 B18 2 IO_L91N_2 K21 1 IO_L02N_1 C18 2 IO_L91P_2 K22 1 IO_L02P_1 D18 2 IO_L93N_2 L17 1 IO_L01N_1 A19 2 IO_L93P_2/VREF_2 L18 1 IO_L01P_1 B19 2 IO_L94N_2 L19 2 IO_L94P_2 L20 2 IO_L01N_2 C21 2 IO_L96N_2 L21 2 IO_L01P_2 C22 2 IO_L96P_2 L22 2 IO_L02N_2/VRP_2 E18 2 IO_L02P_2/VRN_2 F18 3 IO_L96N_3 M21 2 IO_L03N_2 D21 3 IO_L96P_3 M20 2 IO_L03P_2/VREF_2 D22 3 IO_L94N_3 M19 2 IO_L04N_2 E19 3 IO_L94P_3 M18 2 IO_L04P_2 E20 3 IO_L93N_3/VREF_3 M17 2 IO_L06N_2 E21 3 IO_L93P_3 N17 2 IO_L06P_2 E22 3 IO_L91N_3 N22 2 IO_L19N_2 F19 3 IO_L91P_3 N21 2 IO_L19P_2 F20 3 IO_L54N_3 N20 2 IO_L21N_2 F21 3 IO_L54P_3 N19 2 IO_L21P_2/VREF_2 F22 3 IO_L52N_3 N18 2 IO_L22N_2 G18 3 IO_L52P_3 P18 2 IO_L22P_2 H18 3 IO_L51N_3/VREF_3 P22 2 IO_L24N_2 G19 3 IO_L51P_3 P21 2 IO_L24P_2 G20 3 IO_L49N_3 P20 2 IO_L43N_2 G2 3 IO_L49P_3 P19 2 IO_L43P_2 G22 3 IO_L48N_3 R22 2 IO_L45N_2 H19 3 IO_L48P_3 R21 2 IO_L45P_2/VREF_2 H20 3 IO_L46N_3 R20 2 IO_L46N_2 H21 3 IO_L46P_3 R19 2 IO_L46P_2 H22 3 IO_L45N_3/VREF_3 R18 2 IO_L48N_2 J17 3 IO_L45P_3 P17 2 IO_L48P_2 J18 3 IO_L43N_3 T22 2 IO_L49N_2 J19 3 IO_L43P_3 T21 2 IO_L49P_2 J20 3 IO_L24N_3 T20 2 IO_L51N_2 J21 3 IO_L24P_3 T19 2 IO_L51P_2/VREF_2 J22 3 IO_L22N_3 U22 2 IO_L52N_2 K17 3 IO_L22P_3 U21 2 IO_L52P_2 K18 3 IO_L21N_3/VREF_3 U20 2 IO_L54N_2 K19 3 IO_L21P_3 U19 2 IO_L54P_2 K20 3 IO_L19N_3 T18 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 80 R QPro Virtex-II 1.5V Platform FPGAs Table 72: FG456 BGA — XQ2V1000 (Cont’d) Table 72: FG456 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 3 IO_L19P_3 U18 4 IO_L91N_4/VREF_4 U13 3 IO_L06N_3 V22 4 IO_L91P_4 V13 3 IO_L06P_3 V21 4 IO_L92N_4 W13 3 IO_L04N_3 V20 4 IO_L92P_4 Y13 3 IO_L04P_3 V19 4 IO_L93N_4 AA13 3 IO_L03N_3/VREF_3 W22 4 IO_L93P_4 AB13 3 IO_L03P_3 W21 4 IO_L94N_4/VREF_4 U12 3 IO_L02N_3/VRP_3 Y22 4 IO_L94P_4 V12 3 IO_L02P_3/VRN_3 Y21 4 IO_L95N_4/GCLK3S W12 3 IO_L01N_3 W20 4 IO_L95P_4/GCLK2P Y12 3 IO_L01P_3 AA20 4 IO_L96N_4/GCLK1S AA12 4 IO_L96P_4/GCLK0P AB12 4 IO_L01N_4/DOUT AB19 4 IO_L01P_4/INIT_B AA19 5 IO_L96N_5/GCLK7S AA11 4 IO_L02N_4/D0 V18 5 IO_L96P_5/GCLK6P Y11 4 IO_L02P_4/D1 V17 5 IO_L95N_5/GCLK5S W11 4 IO_L03N_4/D2/ALT_VRP_4 W18 5 IO_L95P_5/GCLK4P V11 4 IO_L03P_4/D3/ALT_VRN_4 Y18 5 IO_L94N_5 U11 4 IO_L04N_4/VREF_4 AA18 5 IO_L94P_5/VREF_5 U10 4 IO_L04P_4 AB18 5 IO_L93N_5 AB10 4 IO_L05N_4/VRP_4 W17 5 IO_L93P_5 AA10 4 IO_L05P_4/VRN_4 Y17 5 IO_L92N_5 Y10 4 IO_L06N_4 AA17 5 IO_L92P_5 W10 4 IO_L06P_4 AB17 5 IO_L91N_5 V10 4 IO_L19N_4 V16 5 IO_L91P_5/VREF_5 V9 4 IO_L19P_4 V15 5 IO_L54N_5 AB9 4 IO_L21N_4 W16 5 IO_L54P_5 AA9 4 IO_L21P_4/VREF_4 Y16 5 IO_L52N_5 Y9 4 IO_L22N_4 AA16 5 IO_L52P_5 W9 4 IO_L22P_4 AB16 5 IO_L51N_5/VREF_5 AB8 4 IO_L24N_4 W15 5 IO_L51P_5 AA8 4 IO_L24P_4 Y15 5 IO_L49N_5 Y8 4 IO_L49N_4 AA15 5 IO_L49P_5 W8 4 IO_L49P_4 AB15 5 IO_L24N_5 U9 4 IO_L51N_4 U14 5 IO_L24P_5 V8 4 IO_L51P_4/VREF_4 V14 5 IO_L22N_5 AB7 4 IO_L52N_4 W14 5 IO_L22P_5 AA7 4 IO_L52P_4 Y14 5 IO_L21N_5/VREF_5 Y7 4 IO_L54N_4 AA14 5 IO_L21P_5 W7 4 IO_L54P_4 AB14 5 IO_L19N_5 AB6 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 81 R QPro Virtex-II 1.5V Platform FPGAs Table 72: FG456 BGA — XQ2V1000 (Cont’d) Table 72: FG456 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 5 IO_L19P_5 AA6 6 IO_L49P_6 P4 5 IO_L06N_5 Y6 6 IO_L49N_6 P3 5 IO_L06P_5 W6 6 IO_L51P_6 P2 5 IO_L05N_5/VRP_5 V7 6 IO_L51N_6/VREF_6 P1 5 IO_L05P_5/VRN_5 V6 6 IO_L52P_6 N6 5 IO_L04N_5 AB5 6 IO_L52N_6 N5 5 IO_L04P_5/VREF_5 AA5 6 IO_L54P_6 N4 5 IO_L03N_5/D4/ALT_VRP_5 Y5 6 IO_L54N_6 N3 5 IO_L03P_5/D5/ALT_VRN_5 W5 6 IO_L91P_6 N2 5 IO_L02N_5/D6 AB4 6 IO_L91N_6 N1 5 IO_L02P_5/D7 AA4 6 IO_L93P_6 M6 5 IO_L01N_5/RDWR_B Y4 6 IO_L93N_6/VREF_6 M5 5 IO_L01P_5/CS_B AA3 6 IO_L94P_6 M4 6 IO_L94N_6 M3 6 IO_L01P_6 V5 6 IO_L96P_6 M2 6 IO_L01N_6 U5 6 IO_L96N_6 M1 6 IO_L02P_6/VRN_6 Y2 6 IO_L02N_6/VRP_6 Y1 7 IO_L96P_7 L2 6 IO_L03P_6 V4 7 IO_L96N_7 L3 6 IO_L03N_6/VREF_6 V3 7 IO_L94P_7 L4 6 IO_L04P_6 W2 7 IO_L94N_7 L5 6 IO_L04N_6 W1 7 IO_L93P_7/VREF_7 K1 6 IO_L06P_6 U4 7 IO_L93N_7 K2 6 IO_L06N_6 U3 7 IO_L91P_7 K3 6 IO_L19P_6 V2 7 IO_L91N_7 K4 6 IO_L19N_6 V1 7 IO_L54P_7 L6 6 IO_L21P_6 U2 7 IO_L54N_7 K6 6 IO_L21N_6/VREF_6 U1 7 IO_L52P_7 K5 6 IO_L22P_6 T5 7 IO_L52N_7 J5 6 IO_L22N_6 R5 7 IO_L51P_7/VREF_7 J1 6 IO_L24P_6 T4 7 IO_L51N_7 J2 6 IO_L24N_6 T3 7 IO_L49P_7 J3 6 IO_L43P_6 T2 7 IO_L49N_7 J4 6 IO_L43N_6 T1 7 IO_L48P_7 H1 6 IO_L45P_6 R4 7 IO_L48N_7 H2 6 IO_L45N_6/VREF_6 R3 7 IO_L46P_7 H3 6 IO_L46P_6 R2 7 IO_L46N_7 H4 6 IO_L46N_6 R1 7 IO_L45P_7/VREF_7 J6 6 IO_L48P_6 P6 7 IO_L45N_7 H5 6 IO_L48N_6 P5 7 IO_L43P_7 G1 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 82 R QPro Virtex-II 1.5V Platform FPGAs Table 72: FG456 BGA — XQ2V1000 (Cont’d) Table 72: FG456 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 7 IO_L43N_7 G2 4 VCCO_4 U16 7 IO_L24P_7 G3 4 VCCO_4 U15 7 IO_L24N_7 G4 4 VCCO_4 T14 7 IO_L22P_7 F1 4 VCCO_4 T13 7 IO_L22N_7 F2 4 VCCO_4 T12 7 IO_L21P_7/VREF_7 F3 5 VCCO_5 U8 7 IO_L21N_7 F4 5 VCCO_5 U7 7 IO_L19P_7 G5 5 VCCO_5 T11 7 IO_L19N_7 F5 5 VCCO_5 T10 7 IO_L06P_7 E1 5 VCCO_5 T9 7 IO_L06N_7 E2 6 VCCO_6 T6 7 IO_L04P_7 E3 6 VCCO_6 R6 7 IO_L04N_7 E4 6 VCCO_6 P7 7 IO_L03P_7/VREF_7 D1 6 VCCO_6 N7 7 IO_L03N_7 D2 6 VCCO_6 M7 7 IO_L02P_7/VRN_7 C1 7 VCCO_7 L7 7 IO_L02N_7/VRP_7 C2 7 VCCO_7 K7 7 IO_L01P_7 E5 7 VCCO_7 J7 7 IO_L01N_7 E6 7 VCCO_7 H6 7 VCCO_7 G6 0 VCCO_0 G11 0 VCCO_0 G10 NA CCLK Y19 0 VCCO_0 G9 NA PROG_B A2 0 VCCO_0 F8 NA DONE AB20 0 VCCO_0 F7 NA M0 AB2 1 VCCO_1 G14 NA M1 W3 1 VCCO_1 G13 NA M2 AB3 1 VCCO_1 G12 NA HSWAP_EN B3 1 VCCO_1 F16 NA TCK C19 1 VCCO_1 F15 NA TDI D3 2 VCCO_2 L16 NA TDO D20 2 VCCO_2 K16 NA TMS B20 2 VCCO_2 J16 NA PWRDWN_B AB21 2 VCCO_2 H17 NA DXN D5 2 VCCO_2 G17 NA DXP A3 3 VCCO_3 T17 NA VBATT A21 3 VCCO_3 R17 NA RSVD A20 3 VCCO_3 P16 3 VCCO_3 N16 NA VCCAUX AB11 3 VCCO_3 M16 NA VCCAUX AA22 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 83 R QPro Virtex-II 1.5V Platform FPGAs Table 72: FG456 BGA — XQ2V1000 (Cont’d) Table 72: FG456 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number NA VCCAUX AA1 NA GND N13 NA VCCAUX M22 NA GND N12 NA VCCAUX L1 NA GND N11 NA VCCAUX B22 NA GND N10 NA VCCAUX B1 NA GND N9 NA VCCAUX A12 NA GND M14 NA VCCINT U17 NA GND M13 NA VCCINT U6 NA GND M12 NA VCCINT T16 NA GND M11 NA VCCINT T15 NA GND M10 NA VCCINT T8 NA GND M9 NA VCCINT T7 NA GND L14 NA VCCINT R16 NA GND L13 NA VCCINT R7 NA GND L12 NA VCCINT H16 NA GND L11 NA VCCINT H7 NA GND L10 NA VCCINT G16 NA GND L9 NA VCCINT G15 NA GND K14 NA VCCINT G8 NA GND K13 NA VCCINT G7 NA GND K12 NA VCCINT F17 NA GND K11 NA VCCINT F6 NA GND K10 NA GND AB22 NA GND K9 NA GND AB1 NA GND J14 NA GND AA21 NA GND J13 NA GND AA2 NA GND J12 NA GND Y20 NA GND J11 NA GND Y3 NA GND J10 NA GND W19 NA GND J9 NA GND W4 NA GND D19 NA GND P14 NA GND D4 NA GND P13 NA GND C20 NA GND P12 NA GND C3 NA GND P11 NA GND B21 NA GND P10 NA GND B2 NA GND P9 NA GND A22 NA GND N14 NA GND A1 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 84 R QPro Virtex-II 1.5V Platform FPGAs FG456 Fine-Pitch BGA Package Specifications (1.00 mm pitch) X-Ref Target - Figure 51 Figure 51: FG456 Fine-Pitch BGA Package Specifications DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 85 R QPro Virtex-II 1.5V Platform FPGAs BG575 Standard BGA Package The XQ2V1000 QPro Virtex-II device is available in the BG575 BGA package. Following Table 73 are the "BG575 Standard BGA Package Specifications (1.27 mm pitch)," page 93. Table 73: BG575 BGA — XQ2V1000 (Cont’d) Table 73: BG575 BGA — XQ2V1000 Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L01N_0 A3 0 IO_L91P_0 C11 0 IO_L01P_0 A4 0 IO_L92N_0 G11 0 IO_L02N_0 D5 0 IO_L92P_0 E11 IO_L93N_0 C12 0 IO_L02P_0 C5 0 0 IO_L03N_0/VRP_0 E6 0 IO_L93P_0 B12 0 IO_L03P_0/VRN_0 D6 0 IO_L94N_0/VREF_0 E12 0 IO_L04N_0/VREF_0 F7 0 IO_L94P_0 D12 0 IO_L04P_0 E7 0 IO_L95N_0/GCLK7P G12 IO_L95P_0/GCLK6S F12 0 IO_L05N_0 G8 0 0 IO_L05P_0 H9 0 IO_L96N_0/GCLK5P H11 0 IO_L06N_0 A5 0 IO_L96P_0/GCLK4S H12 0 IO_L06P_0 A6 0 IO_L19N_0 B5 1 IO_L96N_1/GCLK3P A13 IO_L96P_1/GCLK2S A14 0 IO_L19P_0 B6 1 0 IO_L21N_0 D7 1 IO_L95N_1/GCLK1P B13 0 IO_L21P_0/VREF_0 C7 1 IO_L95P_1/GCLK0S C13 0 IO_L22N_0 F8 1 IO_L94N_1 D13 0 IO_L22P_0 E8 1 IO_L94P_1/VREF_1 E13 IO_L93N_1 F13 0 IO_L24N_0 G9 1 0 IO_L24P_0 F9 1 IO_L93P_1 G13 0 IO_L49N_0 G10 1 IO_L92N_1 H13 0 IO_L49P_0 H10 1 IO_L92P_1 H14 0 IO_L51N_0 B7 1 IO_L91N_1 C14 IO_L91P_1/VREF_1 D14 0 IO_L51P_0/VREF_0 B8 1 0 IO_L52N_0 D8 1 RSVD E14 0 IO_L52P_0 C8 1 RSVD G14 0 IO_L54N_0 E9 1 RSVD A15 0 IO_L54P_0 D9 1 RSVD A16 RSVD B15 0 RSVD A8 1 0 RSVD A9 1 RSVD C15 0 RSVD C9 1 RSVD E15 0 RSVD B9 1 RSVD F15 0 RSVD F10 1 RSVD G15 RSVD H15 0 RSVD E10 1 0 RSVD A10 1 IO_L54N_1 B16 0 RSVD A11 1 IO_L54P_1 C16 0 RSVD C10 1 IO_L52N_1 D16 0 RSVD B10 1 IO_L52P_1 E16 D11 1 IO_L51N_1/VREF_1 F16 0 IO_L91N_0/VREF_0 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 86 R QPro Virtex-II 1.5V Platform FPGAs Table 73: BG575 BGA — XQ2V1000 (Cont’d) Table 73: BG575 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 1 IO_L51P_1 G16 2 IO_L43P_2 H20 1 IO_L49N_1 A17 2 IO_L45N_2 J18 1 IO_L49P_1 A19 2 IO_L45P_2/VREF_2 J19 1 IO_L24N_1 B17 2 IO_L46N_2 K17 1 IO_L24P_1 B18 2 IO_L46P_2 K18 1 IO_L22N_1 C17 2 IO_L48N_2 H23 1 IO_L22P_1 D17 2 IO_L48P_2 H24 1 IO_L21N_1/VREF_1 F17 2 IO_L49N_2 H21 1 IO_L21P_1 E17 2 IO_L49P_2 H22 1 IO_L19N_1 A20 2 IO_L51N_2 J24 1 IO_L19P_1 A21 2 IO_L51P_2/VREF_2 K24 1 IO_L06N_1 B19 2 IO_L52N_2 J22 1 IO_L06P_1 B20 2 IO_L52P_2 J23 1 IO_L05N_1 C18 2 IO_L54N_2 J20 1 IO_L05P_1 D18 2 IO_L54P_2 J21 1 IO_L04N_1 C20 2 RSVD K19 1 IO_L04P_1/VREF_1 D20 2 RSVD K20 1 IO_L03N_1/VRP_1 D19 2 RSVD L17 1 IO_L03P_1/VRN_1 E19 2 RSVD L18 1 IO_L02N_1 E18 2 RSVD K23 1 IO_L02P_1 F18 2 RSVD L24 1 IO_L01N_1 H16 2 RSVD K22 1 IO_L01P_1 G17 2 RSVD L22 2 RSVD L21 2 IO_L01N_2 D22 2 RSVD L20 2 IO_L01P_2 D23 2 IO_L91N_2 M23 2 IO_L02N_2/VRP_2 E21 2 IO_L91P_2 N24 2 IO_L02P_2/VRN_2 E22 2 IO_L93N_2 M21 2 IO_L03N_2 F21 2 IO_L93P_2/VREF_2 M22 2 IO_L03P_2/VREF_2 F20 2 IO_L94N_2 M19 2 IO_L04N_2 G20 2 IO_L94P_2 M20 2 IO_L04P_2 G19 2 IO_L96N_2 M17 2 IO_L06N_2 H18 2 IO_L96P_2 M18 2 IO_L06P_2 J17 2 IO_L19N_2 D24 3 IO_L96N_3 N23 2 IO_L19P_2 E23 3 IO_L96P_3 N22 2 IO_L21N_2 E24 3 IO_L94N_3 N20 2 IO_L21P_2/VREF_2 F24 3 IO_L94P_3 N21 2 IO_L22N_2 F23 3 IO_L93N_3/VREF_3 N19 2 IO_L22P_2 G23 3 IO_L93P_3 N18 2 IO_L24N_2 G21 3 IO_L91N_3 N17 2 IO_L24P_2 G22 3 IO_L91P_3 P17 2 IO_L43N_2 H19 3 RSVD P24 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 87 R QPro Virtex-II 1.5V Platform FPGAs Table 73: BG575 BGA — XQ2V1000 (Cont’d) Table 73: BG575 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 3 RSVD R24 3 RSVD R23 4 IO_L01N_4/DOUT AD22 3 3 RSVD R22 4 IO_L01P_4/INIT_B AD21 RSVD P22 4 IO_L02N_4/D0 AA20 3 RSVD P21 4 IO_L02P_4/D1 AB20 3 RSVD P20 4 IO_L03N_4/D2/ALT_VRP_4 Y19 3 RSVD P18 4 IO_L03P_4/D3/ALT_VRN_4 AA19 3 RSVD T24 4 IO_L04N_4/VREF_4 W18 3 RSVD U24 4 IO_L04P_4 Y18 3 IO_L54N_3 T23 4 IO_L05N_4/VRP_4 U16 3 IO_L54P_3 T22 4 IO_L05P_4/VRN_4 V17 3 IO_L52N_3 T21 4 IO_L06N_4 AD20 3 IO_L52P_3 T20 4 IO_L06P_4 AD19 3 IO_L51N_3/VREF_3 R20 4 IO_L19N_4 AC20 3 IO_L51P_3 R19 4 IO_L19P_4 AC19 3 IO_L49N_3 W24 4 IO_L21N_4 AA18 3 IO_L49P_3 W23 4 IO_L21P_4/VREF_4 AB18 3 IO_L48N_3 U23 4 IO_L22N_4 AC18 3 IO_L48P_3 V23 4 IO_L22P_4 AC17 3 IO_L46N_3 U22 4 IO_L24N_4 AA17 3 IO_L46P_3 U21 4 IO_L24P_4 AB17 3 IO_L45N_3/VREF_3 V22 4 IO_L49N_4 Y17 3 IO_L45P_3 V21 4 IO_L49P_4 W17 3 IO_L43N_3 U19 4 IO_L51N_4 V16 3 IO_L43P_3 U20 4 IO_L51P_4/VREF_4 W16 3 IO_L24N_3 T19 4 IO_L52N_4 AD17 3 IO_L24P_3 T18 4 IO_L52P_4 AD16 3 IO_L22N_3 R18 4 IO_L54N_4 AB16 3 IO_L22P_3 R17 4 IO_L54P_4 AC16 3 IO_L21N_3/VREF_3 Y24 4 RSVD Y16 3 IO_L21P_3 Y23 4 RSVD AA16 3 IO_L19N_3 AA24 4 RSVD W15 3 IO_L19P_3 AB24 4 RSVD Y15 3 IO_L06N_3 AA23 4 RSVD U15 3 IO_L06P_3 AA22 4 RSVD V15 3 IO_L04N_3 Y22 4 RSVD AD15 3 IO_L04P_3 Y21 4 RSVD AD14 3 IO_L03N_3/VREF_3 W21 4 RSVD AB15 3 IO_L03P_3 W20 4 RSVD AC15 3 IO_L02N_3/VRP_3 V20 4 IO_L91N_4/VREF_4 AA14 3 IO_L02P_3/VRN_3 V19 4 IO_L91P_4 AB14 3 IO_L01N_3 U18 4 IO_L92N_4 V14 3 IO_L01P_3 T17 4 IO_L92P_4 Y14 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 88 R QPro Virtex-II 1.5V Platform FPGAs Table 73: BG575 BGA — XQ2V1000 (Cont’d) Table 73: BG575 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 4 IO_L93N_4 AB13 5 IO_L21N_5/VREF_5 W8 4 IO_L93P_4 AC13 5 IO_L21P_5 Y8 4 IO_L94N_4/VREF_4 Y13 5 IO_L19N_5 AD5 4 IO_L94P_4 AA13 5 IO_L19P_5 AD4 4 IO_L95N_4/GCLK3S V13 5 IO_L06N_5 AC6 4 IO_L95P_4/GCLK2P W13 5 IO_L06P_5 AC5 4 IO_L96N_4/GCLK1S U14 5 IO_L05N_5/VRP_5 AB7 4 IO_L96P_4/GCLK0P U13 5 IO_L05P_5/VRN_5 AA7 5 IO_L04N_5 AB5 5 IO_L96N_5/GCLK7S AD12 5 IO_L04P_5/VREF_5 AA5 5 IO_L96P_5/GCLK6P AD11 5 IO_L03N_5/D4/ALT_VRP_5 AA6 5 IO_L95N_5/GCLK5S AC12 5 IO_L03P_5/D5/ALT_VRN_5 Y6 5 IO_L95P_5/GCLK4P AB12 5 IO_L02N_5/D6 Y7 5 IO_L94N_5 AA12 5 IO_L02P_5/D7 W7 5 IO_L94P_5/VREF_5 Y12 5 IO_L01N_5/RDWR_B V8 5 IO_L93N_5 W12 5 IO_L01P_5/CS_B U9 5 IO_L93P_5 V12 5 IO_L92N_5 U12 6 IO_L01P_6 AB2 5 IO_L92P_5 U11 6 IO_L01N_6 AB1 5 IO_L91N_5 AB11 6 IO_L02P_6/VRN_6 AA3 5 IO_L91P_5/VREF_5 AA11 6 IO_L02N_6/VRP_6 AA2 5 RSVD Y11 6 IO_L03P_6 Y4 5 RSVD V11 6 IO_L03N_6/VREF_6 Y3 5 RSVD AD10 6 IO_L04P_6 W4 5 RSVD AD9 6 IO_L04N_6 W5 5 RSVD AC10 6 IO_L06P_6 V5 5 RSVD AB10 6 IO_L06N_6 V6 5 RSVD Y10 6 IO_L19P_6 U7 5 RSVD W10 6 IO_L19N_6 T8 5 RSVD V10 6 IO_L21P_6 AA1 5 RSVD U10 6 IO_L21N_6/VREF_6 Y2 5 IO_L54N_5 AC9 6 IO_L22P_6 Y1 5 IO_L54P_5 AB9 6 IO_L22N_6 W1 5 IO_L52N_5 AA9 6 IO_L24P_6 W2 5 IO_L52P_5 Y9 6 IO_L24N_6 V2 5 IO_L51N_5/VREF_5 W9 6 IO_L43P_6 V4 5 IO_L51P_5 V9 6 IO_L43N_6 V3 5 IO_L49N_5 AD8 6 IO_L45P_6 U6 5 IO_L49P_5 AD6 6 IO_L45N_6/VREF_6 U5 5 IO_L24N_5 AC8 6 IO_L46P_6 T7 5 IO_L24P_5 AC7 6 IO_L46N_6 T6 5 IO_L22N_5 AB8 6 IO_L48P_6 R8 5 IO_L22P_5 AA8 6 IO_L48N_6 R7 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 89 R QPro Virtex-II 1.5V Platform FPGAs Table 73: BG575 BGA — XQ2V1000 (Cont’d) Table 73: BG575 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 6 IO_L49P_6 U2 7 RSVD L5 6 IO_L49N_6 U1 7 RSVD L7 6 IO_L51P_6 U4 7 IO_L54P_7 J1 6 IO_L51N_6/VREF_6 U3 7 IO_L54N_7 H1 6 IO_L52P_6 T1 7 IO_L52P_7 J2 6 IO_L52N_6 R1 7 IO_L52N_7 J3 6 IO_L54P_6 T3 7 IO_L51P_7/VREF_7 J4 6 IO_L54N_6 T2 7 IO_L51N_7 J5 6 RSVD T5 7 IO_L49P_7 K5 6 RSVD T4 7 IO_L49N_7 K6 6 RSVD R6 7 IO_L48P_7 F1 6 RSVD R5 7 IO_L48N_7 F2 6 RSVD P8 7 IO_L46P_7 H2 6 RSVD P7 7 IO_L46N_7 G2 6 RSVD R2 7 IO_L45P_7/VREF_7 H3 6 RSVD P1 7 IO_L45N_7 H4 6 RSVD R3 7 IO_L43P_7 G3 6 RSVD P3 7 IO_L43N_7 G4 6 IO_L91P_6 P5 7 IO_L24P_7 H5 6 IO_L91N_6 P4 7 IO_L24N_7 H6 6 IO_L93P_6 N4 7 IO_L22P_7 J6 6 IO_L93N_6/VREF_6 N3 7 IO_L22N_7 J7 6 IO_L94P_6 N6 7 IO_L21P_7/VREF_7 K7 6 IO_L94N_6 N5 7 IO_L21N_7 K8 6 IO_L96P_6 N8 7 IO_L19P_7 E1 6 IO_L96N_6 N7 7 IO_L19N_7 E2 7 IO_L06P_7 D2 7 IO_L96P_7 N2 7 IO_L06N_7 D3 7 IO_L96N_7 M1 7 IO_L04P_7 E3 7 IO_L94P_7 M2 7 IO_L04N_7 E4 7 IO_L94N_7 M3 7 IO_L03P_7/VREF_7 F4 7 IO_L93P_7/VREF_7 M4 7 IO_L03N_7 F5 7 IO_L93N_7 M5 7 IO_L02P_7/VRN_7 G5 7 IO_L91P_7 M6 7 IO_L02N_7/VRP_7 G6 7 IO_L91N_7 M7 7 IO_L01P_7 H7 7 RSVD M8 7 IO_L01N_7 J8 7 RSVD L8 7 RSVD L1 0 VCCO_0 J12 7 RSVD K1 0 VCCO_0 J11 7 RSVD K2 0 VCCO_0 J10 7 RSVD K3 0 VCCO_0 F11 7 RSVD L3 0 VCCO_0 C6 7 RSVD L4 0 VCCO_0 B11 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 90 R QPro Virtex-II 1.5V Platform FPGAs Table 73: BG575 BGA — XQ2V1000 (Cont’d) Table 73: BG575 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 1 VCCO_1 J15 NA CCLK AB23 1 VCCO_1 J14 NA PROG_B C1 1 VCCO_1 J13 NA DONE AB21 1 VCCO_1 F14 NA M0 AC4 1 VCCO_1 C19 NA M1 AB4 1 VCCO_1 B14 NA M2 AD3 2 VCCO_2 M16 NA HSWAP_EN C2 2 VCCO_2 L23 NA TCK C23 2 VCCO_2 L19 NA TDI D1 2 VCCO_2 L16 NA TDO C24 2 VCCO_2 K16 NA TMS C21 2 VCCO_2 F22 NA PWRDWN_B AC21 3 VCCO_3 W22 NA DXN B4 3 VCCO_3 R16 NA DXP C4 3 VCCO_3 P23 NA VBATT B21 3 VCCO_3 P19 NA RSVD A22 3 VCCO_3 P16 3 VCCO_3 N16 NA VCCAUX AD13 4 VCCO_4 AC14 NA VCCAUX AC22 4 VCCO_4 AB19 NA VCCAUX AC3 4 VCCO_4 W14 NA VCCAUX N1 4 VCCO_4 T15 NA VCCAUX M24 4 VCCO_4 T14 NA VCCAUX B22 4 VCCO_4 T13 NA VCCAUX B3 5 VCCO_5 AC11 NA VCCAUX A12 5 VCCO_5 AB6 NA VCCINT U17 5 VCCO_5 W11 NA VCCINT U8 5 VCCO_5 T12 NA VCCINT T16 5 VCCO_5 T11 NA VCCINT T9 5 VCCO_5 T10 NA VCCINT R15 6 VCCO_6 W3 NA VCCINT R14 6 VCCO_6 R9 NA VCCINT R13 6 VCCO_6 P9 NA VCCINT R12 6 VCCO_6 P6 NA VCCINT R11 6 VCCO_6 P2 NA VCCINT R10 6 VCCO_6 N9 NA VCCINT P15 7 VCCO_7 M9 NA VCCINT P10 7 VCCO_7 L9 NA VCCINT N15 7 VCCO_7 L6 NA VCCINT N10 7 VCCO_7 L2 NA VCCINT M15 7 VCCO_7 K9 NA VCCINT M10 7 VCCO_7 F3 NA VCCINT L15 NA VCCINT L10 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 91 R QPro Virtex-II 1.5V Platform FPGAs Table 73: BG575 BGA — XQ2V1000 (Cont’d) Table 73: BG575 BGA — XQ2V1000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number NA VCCINT K15 NA GND P11 NA VCCINT K14 NA GND N14 NA VCCINT K13 NA GND N13 NA VCCINT K12 NA GND N12 NA VCCINT K11 NA GND N11 NA VCCINT K10 NA GND M14 NA VCCINT J16 NA GND M13 NA VCCINT J9 NA GND M12 NA VCCINT H17 NA GND M11 NA VCCINT H8 NA GND L14 NA GND AD24 NA GND L13 NA GND AD23 NA GND L12 NA GND AD18 NA GND L11 NA GND AD7 NA GND K21 NA GND AD2 NA GND K4 NA GND AD1 NA GND G24 NA GND AC24 NA GND G18 NA GND AC23 NA GND G7 NA GND AC2 NA GND G1 NA GND AC1 NA GND F19 NA GND AB22 NA GND F6 NA GND AB3 NA GND E20 NA GND AA21 NA GND E5 NA GND AA15 NA GND D2 NA GND AA10 NA GND D15 NA GND AA4 NA GND D10 NA GND Y20 NA GND D4 NA GND Y5 NA GND C22 NA GND W19 NA GND C3 NA GND W6 NA GND B24 NA GND V24 NA GND B23 NA GND V18 NA GND B2 NA GND V7 NA GND B1 NA GND V1 NA GND A24 NA GND R21 NA GND A23 NA GND R4 NA GND A18 NA GND P14 NA GND A7 NA GND P13 NA GND A2 NA GND P12 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 92 R QPro Virtex-II 1.5V Platform FPGAs BG575 Standard BGA Package Specifications (1.27 mm pitch) X-Ref Target - Figure 52 Figure 52: BG575 Standard BGA Package Specifications DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 93 R QPro Virtex-II 1.5V Platform FPGAs BG728 Standard BGA and CG717 Ceramic CGA Packages The XQ2V3000 QPro Virtex-II device is available in the BG728 BGA and CG717 CGA packages. The CG717 has identical pinout as the BG728 (except for those pins listed in Table 74) and footprint compatibility. The CG717 has 11 fewer GND pins than the BG728. The BG728 GND pin numbers missing on the CG717 are shown in Table 74. Following the pin listing in Table 75 are the "BG728 Standard BGA Package Specifications (1.27 mm pitch)," page 103 and the "CG717 Ceramic Column Grid Array (CGA) Package Specifications (1.27 mm pitch)," page 104 Table 74: BG728 GND Pins not available on the CG7171 Table 75: BG728 and CG717 — XQ2V3000 Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) BG728 GND Pin Numbers A2 A27 AG1 AG26 B1 B27 AG2 AG27 A26 AF1 AF27 Notes: 1. Physical pin does not exist for CG717 package. Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L01N_0 B3 0 IO_L52N_0 F10 0 IO_L01P_0 A3 0 IO_L52P_0 E10 0 IO_L02N_0 B4 0 IO_L54N_0 D10 IO_L54P_0 C10 0 IO_L02P_0 A4 0 0 IO_L03N_0/VRP_0 C5 0 IO_L67N_0 B10 0 IO_L03P_0/VRN_0 C6 0 IO_L67P_0 A10 0 IO_L04N_0/VREF_0 B5 0 IO_L69N_0 G11 0 IO_L04P_0 A5 0 IO_L69P_0/VREF_0 H11 IO_L70N_0 F11 0 IO_L05N_0 E6 0 0 IO_L05P_0 D6 0 IO_L70P_0 F12 0 IO_L06N_0 B6 0 IO_L72N_0 D11 0 IO_L06P_0 A6 0 IO_L72P_0 C11 0 IO_L19N_0 E7 0 IO_L73N_0 B11 IO_L73P_0 A11 0 IO_L19P_0 D8 0 0 IO_L21N_0 F8 0 IO_L75N_0 H12 0 IO_L21P_0/VREF_0 E8 0 IO_L75P_0/VREF_0 J12 0 IO_L22N_0 C7 0 IO_L76N_0 E12 0 IO_L22P_0 C8 0 IO_L76P_0 D12 IO_L78N_0 B12 0 IO_L24N_0 B7 0 0 IO_L24P_0 A7 0 IO_L78P_0 A12 0 IO_L25N_0 H9 0 IO_L91N_0/VREF_0 J13 0 IO_L25P_0 J9 0 IO_L91P_0 H13 0 IO_L27N_0 F9 0 IO_L92N_0 G13 IO_L92P_0 F13 0 IO_L27P_0/VREF_0 G9 0 0 IO_L28N_0 E9 0 IO_L93N_0 E13 0 IO_L28P_0 D9 0 IO_L93P_0 D13 0 IO_L30N_0 C9 0 IO_L94N_0/VREF_0 B13 0 IO_L30P_0 B9 0 IO_L94P_0 A13 IO_L95N_0/GCLK7P C13 0 IO_L49N_0 A8 0 0 IO_L49P_0 A9 0 IO_L95P_0/GCLK6S C14 0 IO_L51N_0 G10 0 IO_L96N_0/GCLK5P F14 0 IO_L51P_0/VREF_0 H10 0 IO_L96P_0/GCLK4S E14 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 94 R QPro Virtex-II 1.5V Platform FPGAs Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 1 IO_L96N_1/GCLK3P G14 1 IO_L25P_1 J20 1 IO_L96P_1/GCLK2S H14 1 IO_L24N_1 C20 1 IO_L95N_1/GCLK1P A15 1 IO_L24P_1 C21 1 IO_L95P_1/GCLK0S B15 1 IO_L22N_1 D20 1 IO_L94N_1 C15 1 IO_L22P_1 E21 1 IO_L94P_1/VREF_1 D15 1 IO_L21N_1/VREF_1 E20 1 IO_L93N_1 E15 1 IO_L21P_1 F20 1 IO_L93P_1 F15 1 IO_L19N_1 A21 1 IO_L92N_1 G15 1 IO_L19P_1 B21 1 IO_L92P_1 H15 1 IO_L06N_1 A22 1 IO_L91N_1 J15 1 IO_L06P_1 B22 1 IO_L91P_1/VREF_1 J16 1 IO_L05N_1 C22 1 IO_L78N_1 A16 1 IO_L05P_1 C23 1 IO_L78P_1 B16 1 IO_L04N_1 D22 1 IO_L76N_1 D16 1 IO_L04P_1/VREF_1 E22 1 IO_L76P_1 E16 1 IO_L03N_1/VRP_1 A23 1 IO_L75N_1/VREF_1 F16 1 IO_L03P_1/VRN_1 B23 1 IO_L75P_1 F17 1 IO_L02N_1 A24 1 IO_L73N_1 H16 1 IO_L02P_1 B24 1 IO_L73P_1 H17 1 IO_L01N_1 A25 1 IO_L72N_1 A17 1 IO_L01P_1 B25 1 IO_L72P_1 B17 1 IO_L70N_1 C17 2 IO_L01N_2 C27 1 IO_L70P_1 D17 2 IO_L01P_2 D27 1 IO_L69N_1/VREF_1 G18 2 IO_L02N_2/VRP_2 D25 1 IO_L69P_1 G17 2 IO_L02P_2/VRN_2 D26 1 IO_L67N_1 A18 2 IO_L03N_2 E24 1 IO_L67P_1 B18 2 IO_L03P_2/VREF_2 E25 1 IO_L54N_1 C18 2 IO_L04N_2 E26 1 IO_L54P_1 D18 2 IO_L04P_2 E27 1 IO_L52N_1 E18 2 IO_L06N_2 F23 1 IO_L52P_1 F18 2 IO_L06P_2 F24 1 IO_L51N_1/VREF_1 H19 2 IO_L19N_2 F25 1 IO_L51P_1 H18 2 IO_L19P_2 F26 1 IO_L49N_1 A19 2 IO_L21N_2 F27 1 IO_L49P_1 A20 2 IO_L21P_2/VREF_2 G27 1 IO_L30N_1 B19 2 IO_L22N_2 G23 1 IO_L30P_1 C19 2 IO_L22P_2 H23 1 IO_L28N_1 D19 2 IO_L24N_2 G25 1 IO_L28P_1 E19 2 IO_L24P_2 G26 1 IO_L27N_1/VREF_1 F19 2 IO_L25N_2 H21 1 IO_L27P_1 G19 2 IO_L25P_2 J21 1 IO_L25N_1 J19 2 IO_L27N_2 H22 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 95 R QPro Virtex-II 1.5V Platform FPGAs Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 2 IO_L27P_2/VREF_2 J22 2 IO_L96N_2 P22 2 IO_L28N_2 H24 2 IO_L96P_2 P23 2 IO_L28P_2 H25 2 IO_L30N_2 H27 3 IO_L96N_3 R27 2 IO_L30P_2 J27 3 IO_L96P_3 R26 2 IO_L43N_2 J23 3 IO_L94N_3 R25 2 IO_L43P_2 J24 3 IO_L94P_3 R24 2 IO_L45N_2 J25 3 IO_L93N_3/VREF_3 R23 2 IO_L45P_2/VREF_2 J26 3 IO_L93P_3 T23 2 IO_L46N_2 K20 3 IO_L91N_3 R22 2 IO_L46P_2 K21 3 IO_L91P_3 R21 2 IO_L48N_2 K22 3 IO_L78N_3 R20 2 IO_L48P_2 K23 3 IO_L78P_3 R19 2 IO_L49N_2 K24 3 IO_L76N_3 T27 2 IO_L49P_2 K25 3 IO_L76P_3 T26 2 IO_L51N_2 K26 3 IO_L75N_3/VREF_3 T24 2 IO_L51P_2/VREF_2 K27 3 IO_L75P_3 U24 2 IO_L52N_2 L20 3 IO_L73N_3 T22 2 IO_L52P_2 M20 3 IO_L73P_3 U22 2 IO_L54N_2 L21 3 IO_L72N_3 T20 2 IO_L54P_2 L22 3 IO_L72P_3 T19 2 IO_L67N_2 L24 3 IO_L70N_3 U27 2 IO_L67P_2 L25 3 IO_L70P_3 U26 2 IO_L69N_2 L26 3 IO_L69N_3/VREF_3 U25 2 IO_L69P_2/VREF_2 L27 3 IO_L69P_3 V25 2 IO_L70N_2 M19 3 IO_L67N_3 U21 2 IO_L70P_2 N19 3 IO_L67P_3 U20 2 IO_L72N_2 M22 3 IO_L54N_3 V27 2 IO_L72P_2 M23 3 IO_L54P_3 V26 2 IO_L73N_2 M24 3 IO_L52N_3 V24 2 IO_L73P_2 N24 3 IO_L52P_3 V23 2 IO_L75N_2 M26 3 IO_L51N_3/VREF_3 V22 2 IO_L75P_2/VREF_2 M27 3 IO_L51P_3 W22 2 IO_L76N_2 N20 3 IO_L49N_3 V21 2 IO_L76P_2 N21 3 IO_L49P_3 V20 2 IO_L78N_2 N22 3 IO_L48N_3 W27 2 IO_L78P_2 N23 3 IO_L48P_3 Y27 2 IO_L91N_2 N25 3 IO_L46N_3 W26 2 IO_L91P_2 P25 3 IO_L46P_3 W25 2 IO_L93N_2 N26 3 IO_L45N_3/VREF_3 W24 2 IO_L93P_2/VREF_2 N27 3 IO_L45P_3 W23 2 IO_L94N_2 P20 3 IO_L43N_3 W21 2 IO_L94P_2 P21 3 IO_L43P_3 W20 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 96 R QPro Virtex-II 1.5V Platform FPGAs Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 3 IO_L28N_3 W19 4 IO_L24N_4 AB20 3 IO_L28P_3 Y19 4 IO_L24P_4 AA20 3 IO_L27N_3/VREF_3 Y25 4 IO_L25N_4 AC20 3 IO_L27P_3 Y24 4 IO_L25P_4 AD20 3 IO_L25N_3 Y23 4 IO_L27N_4 AG20 3 IO_L25P_3 AA23 4 IO_L27P_4/VREF_4 AG19 3 IO_L24N_3 Y22 4 IO_L28N_4 AB19 3 IO_L24P_3 Y21 4 IO_L28P_4 AA19 3 IO_L22N_3 AA27 4 IO_L30N_4 AC19 3 IO_L22P_3 AB27 4 IO_L30P_4 AD19 3 IO_L21N_3/VREF_3 AA26 4 IO_L49N_4 AE19 3 IO_L21P_3 AA25 4 IO_L49P_4 AF19 3 IO_L19N_3 AB26 4 IO_L51N_4 AA18 3 IO_L19P_3 AB25 4 IO_L51P_4/VREF_4 Y18 3 IO_L06N_3 AB24 4 IO_L52N_4 AB18 3 IO_L06P_3 AB23 4 IO_L52P_4 AC18 3 IO_L04N_3 AC27 4 IO_L54N_4 AD18 3 IO_L04P_3 AC26 4 IO_L54P_4 AE18 3 IO_L03N_3/VREF_3 AC25 4 IO_L67N_4 AF18 3 IO_L03P_3 AC24 4 IO_L67P_4 AG18 3 IO_L02N_3/VRP_3 AD27 4 IO_L69N_4 AA17 3 IO_L02P_3/VRN_3 AE27 4 IO_L69P_4/VREF_4 Y17 3 IO_L01N_3 AD26 4 IO_L70N_4 AB17 3 IO_L01P_3 AD25 4 IO_L70P_4 AB16 4 IO_L72N_4 AD17 4 IO_L01N_4/DOUT AF25 4 IO_L72P_4 AE17 4 IO_L01P_4/INIT_B AG25 4 IO_L73N_4 AF17 4 IO_L02N_4/D0 AF24 4 IO_L73P_4 AG17 4 IO_L02P_4/D1 AG24 4 IO_L75N_4 Y16 4 IO_L03N_4/D2/ALT_VRP_4 AD23 4 IO_L75P_4/VREF_4 W16 4 IO_L03P_4/D3/ALT_VRN_4 AE23 4 IO_L76N_4 AC16 4 IO_L04N_4/VREF_4 AF23 4 IO_L76P_4 AD16 4 IO_L04P_4 AG23 4 IO_L78N_4 AF16 4 IO_L05N_4/VRP_4 AD22 4 IO_L78P_4 AG16 4 IO_L05P_4/VRN_4 AE22 4 IO_L91N_4/VREF_4 W15 4 IO_L06N_4 AF22 4 IO_L91P_4 Y15 4 IO_L06P_4 AG22 4 IO_L92N_4 AB15 4 IO_L19N_4 AC21 4 IO_L92P_4 AA15 4 IO_L19P_4 AB21 4 IO_L93N_4 AC15 4 IO_L21N_4 AE21 4 IO_L93P_4 AD15 4 IO_L21P_4/VREF_4 AE20 4 IO_L94N_4/VREF_4 AE15 4 IO_L22N_4 AF21 4 IO_L94P_4 AE14 4 IO_L22P_4 AG21 4 IO_L95N_4/GCLK3S AF15 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 97 R QPro Virtex-II 1.5V Platform FPGAs Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 4 IO_L95P_4/GCLK2P AG15 5 IO_L28P_5 AC9 4 IO_L96N_4/GCLK1S Y14 5 IO_L27N_5/VREF_5 AB9 4 IO_L96P_4/GCLK0P AA14 5 IO_L27P_5 AA9 5 IO_L25N_5 AE8 5 IO_L96N_5/GCLK7S AC14 5 IO_L25P_5 AE7 5 IO_L96P_5/GCLK6P AB14 5 IO_L24N_5 AD8 5 IO_L95N_5/GCLK5S AG13 5 IO_L24P_5 AC8 5 IO_L95P_5/GCLK4P AF13 5 IO_L22N_5 AB8 5 IO_L94N_5 AE13 5 IO_L22P_5 AA8 5 IO_L94P_5/VREF_5 AD13 5 IO_L21N_5/VREF_5 AG7 5 IO_L93N_5 AC13 5 IO_L21P_5 AF7 5 IO_L93P_5 AB13 5 IO_L19N_5 AC7 5 IO_L92N_5 AA13 5 IO_L19P_5 AB7 5 IO_L92P_5 Y13 5 IO_L06N_5 AG6 5 IO_L91N_5 W13 5 IO_L06P_5 AF6 5 IO_L91P_5/VREF_5 W12 5 IO_L05N_5/VRP_5 AE6 5 IO_L78N_5 AG12 5 IO_L05P_5/VRN_5 AD6 5 IO_L78P_5 AF12 5 IO_L04N_5 AG5 5 IO_L76N_5 AD12 5 IO_L04P_5/VREF_5 AF5 5 IO_L76P_5 AC12 5 IO_L03N_5/D4/ALT_VRP_5 AE5 5 IO_L75N_5/VREF_5 AB12 5 IO_L03P_5/D5/ALT_VRN_5 AD5 5 IO_L75P_5 AB11 5 IO_L02N_5/D6 AG4 5 IO_L73N_5 Y12 5 IO_L02P_5/D7 AF4 5 IO_L73P_5 Y11 5 IO_L01N_5/RDWR_B AG3 5 IO_L72N_5 AG11 5 IO_L01P_5/CS_B AF3 5 IO_L72P_5 AF11 5 IO_L70N_5 AE11 6 IO_L01P_6 AE1 5 IO_L70P_5 AD11 6 IO_L01N_6 AD1 5 IO_L69N_5/VREF_5 AA10 6 IO_L02P_6/VRN_6 AD3 5 IO_L69P_5 AA11 6 IO_L02N_6/VRP_6 AD2 5 IO_L67N_5 AG10 6 IO_L03P_6 AC4 5 IO_L67P_5 AF10 6 IO_L03N_6/VREF_6 AC3 5 IO_L54N_5 AE10 6 IO_L04P_6 AC2 5 IO_L54P_5 AD10 6 IO_L04N_6 AC1 5 IO_L52N_5 AC10 6 IO_L06P_6 AB5 5 IO_L52P_5 AB10 6 IO_L06N_6 AB4 5 IO_L51N_5/VREF_5 Y9 6 IO_L19P_6 AB3 5 IO_L51P_5 Y10 6 IO_L19N_6 AB2 5 IO_L49N_5 AG9 6 IO_L21P_6 AB1 5 IO_L49P_5 AG8 6 IO_L21N_6/VREF_6 AA1 5 IO_L30N_5 AF9 6 IO_L22P_6 AA5 5 IO_L30P_5 AE9 6 IO_L22N_6 AA6 5 IO_L28N_5 AD9 6 IO_L24P_6 AA3 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 98 R QPro Virtex-II 1.5V Platform FPGAs Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 6 IO_L24N_6 AA2 6 IO_L94P_6 R3 6 IO_L25P_6 Y5 6 IO_L94N_6 P3 6 IO_L25N_6 Y6 6 IO_L96P_6 R2 6 IO_L27P_6 Y4 6 IO_L96N_6 R1 6 IO_L27N_6/VREF_6 Y3 6 IO_L28P_6 Y1 7 IO_L96P_7 P5 6 IO_L28N_6 W1 7 IO_L96N_7 P6 6 IO_L43P_6 W8 7 IO_L94P_7 P7 6 IO_L43N_6 W9 7 IO_L94N_7 P8 6 IO_L45P_6 W6 7 IO_L93P_7/VREF_7 N1 6 IO_L45N_6/VREF_6 W7 7 IO_L93N_7 N2 6 IO_L46P_6 W5 7 IO_L91P_7 N3 6 IO_L46N_6 W4 7 IO_L91N_7 N4 6 IO_L48P_6 W3 7 IO_L78P_7 N6 6 IO_L48N_6 W2 7 IO_L78N_7 N7 6 IO_L49P_6 V7 7 IO_L76P_7 N9 6 IO_L49N_6 V8 7 IO_L76N_7 N8 6 IO_L51P_6 V5 7 IO_L75P_7/VREF_7 N5 6 IO_L51N_6/VREF_6 V6 7 IO_L75N_7 M6 6 IO_L52P_6 V4 7 IO_L73P_7 M1 6 IO_L52N_6 V3 7 IO_L73N_7 M2 6 IO_L54P_6 V2 7 IO_L72P_7 M4 6 IO_L54N_6 V1 7 IO_L72N_7 M5 6 IO_L67P_6 U8 7 IO_L70P_7 M8 6 IO_L67N_6 T8 7 IO_L70N_7 M9 6 IO_L69P_6 U6 7 IO_L69P_7/VREF_7 L1 6 IO_L69N_6/VREF_6 U7 7 IO_L69N_7 L2 6 IO_L70P_6 U4 7 IO_L67P_7 L3 6 IO_L70N_6 U3 7 IO_L67N_7 L4 6 IO_L72P_6 U2 7 IO_L54P_7 K1 6 IO_L72N_6 U1 7 IO_L54N_7 K2 6 IO_L73P_6 T9 7 IO_L52P_7 K4 6 IO_L73N_6 R9 7 IO_L52N_7 K5 6 IO_L75P_6 T5 7 IO_L51P_7/VREF_7 L6 6 IO_L75N_6/VREF_6 T6 7 IO_L51N_7 L7 6 IO_L76P_6 T4 7 IO_L49P_7 K6 6 IO_L76N_6 R4 7 IO_L49N_7 K7 6 IO_L78P_6 T2 7 IO_L48P_7 L8 6 IO_L78N_6 T1 7 IO_L48N_7 K8 6 IO_L91P_6 R7 7 IO_L46P_7 J1 6 IO_L91N_6 R8 7 IO_L46N_7 H1 6 IO_L93P_6 R5 7 IO_L45P_7/VREF_7 J2 6 IO_L93N_6/VREF_6 R6 7 IO_L45N_7 J3 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 99 R QPro Virtex-II 1.5V Platform FPGAs Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 7 IO_L43P_7 K3 1 VCCO_1 D21 7 IO_L43N_7 J4 1 VCCO_1 C16 7 IO_L30P_7 H3 2 VCCO_2 N18 7 IO_L30N_7 H4 2 VCCO_2 M25 7 IO_L28P_7 J5 2 VCCO_2 M21 7 IO_L28N_7 J6 2 VCCO_2 M18 7 IO_L27P_7/VREF_7 H5 2 VCCO_2 L19 7 IO_L27N_7 H6 2 VCCO_2 L18 7 IO_L25P_7 J7 2 VCCO_2 K19 7 IO_L25N_7 J8 2 VCCO_2 G24 7 IO_L24P_7 G1 3 VCCO_3 AA24 7 IO_L24N_7 F1 3 VCCO_3 V19 7 IO_L22P_7 G2 3 VCCO_3 U19 7 IO_L22N_7 G3 3 VCCO_3 U18 7 IO_L21P_7/VREF_7 F2 3 VCCO_3 T25 7 IO_L21N_7 F3 3 VCCO_3 T21 7 IO_L19P_7 G5 3 VCCO_3 T18 7 IO_L19N_7 G6 3 VCCO_3 R18 7 IO_L06P_7 F4 4 VCCO_4 AE16 7 IO_L06N_7 F5 4 VCCO_4 AD21 7 IO_L04P_7 E1 4 VCCO_4 AA16 7 IO_L04N_7 E2 4 VCCO_4 W18 7 IO_L03P_7/VREF_7 D1 4 VCCO_4 W17 7 IO_L03N_7 C1 4 VCCO_4 V17 7 IO_L02P_7/VRN_7 E3 4 VCCO_4 V16 7 IO_L02N_7/VRP_7 E4 4 VCCO_4 V15 7 IO_L01P_7 D2 5 VCCO_5 AE12 7 IO_L01N_7 D3 5 VCCO_5 AD7 5 VCCO_5 AA12 0 VCCO_0 K13 5 VCCO_5 W11 0 VCCO_0 K12 5 VCCO_5 W10 0 VCCO_0 K11 5 VCCO_5 V13 0 VCCO_0 J11 5 VCCO_5 V12 0 VCCO_0 J10 5 VCCO_5 V11 0 VCCO_0 G12 6 VCCO_6 AA4 0 VCCO_0 D7 6 VCCO_6 V9 0 VCCO_0 C12 6 VCCO_6 U10 1 VCCO_1 K17 6 VCCO_6 U9 1 VCCO_1 K16 6 VCCO_6 T10 1 VCCO_1 K15 6 VCCO_6 T7 1 VCCO_1 J18 6 VCCO_6 T3 1 VCCO_1 J17 6 VCCO_6 R10 1 VCCO_1 G16 7 VCCO_7 M10 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 100 R QPro Virtex-II 1.5V Platform FPGAs Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 7 VCCO_7 M7 NA VCCINT T17 7 VCCO_7 M3 NA VCCINT T11 7 VCCO_7 L10 NA VCCINT R17 7 VCCO_7 L9 NA VCCINT R11 7 VCCO_7 K9 NA VCCINT P18 7 VCCO_7 G4 NA VCCINT P17 7 VCCO_7 N10 NA VCCINT P11 NA VCCINT P10 NA CCLK AA22 NA VCCINT N17 NA PROG_B C4 NA VCCINT N11 NA DONE AC22 NA VCCINT M17 NA M0 AC6 NA VCCINT M11 NA M1 Y7 NA VCCINT L17 NA M2 AE4 NA VCCINT L16 NA HSWAP_EN D5 NA VCCINT L15 NA TCK G20 NA VCCINT L14 NA TDI H7 NA VCCINT L13 NA TDO G22 NA VCCINT L12 NA TMS F21 NA VCCINT L11 NA PWRDWN_B AE24 NA VCCINT K18 NA DXN G8 NA VCCINT K14 NA DXP F7 NA VCCINT K10 NA VBATT D23 NA GND AG271 NA RSVD C24 NA GND AG261 NA GND AG14 NA VCCAUX AF14 NA GND AG21 NA VCCAUX AE26 NA GND AG11 NA VCCAUX AE2 NA GND AF271 NA VCCAUX P26 NA GND AF26 NA VCCAUX P2 NA GND AF20 NA VCCAUX C26 NA GND AF8 NA VCCAUX C2 NA GND AF2 NA VCCAUX B14 NA GND AF11 NA VCCINT V18 NA GND AE25 NA VCCINT V14 NA GND AE3 NA VCCINT V10 NA GND AD24 NA VCCINT U17 NA GND AD14 NA VCCINT U16 NA GND AD4 NA VCCINT U15 NA GND AC23 NA VCCINT U14 NA GND AC17 NA VCCINT U13 NA GND AC11 NA VCCINT U12 NA GND AC5 NA VCCINT U11 NA GND AB22 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 101 R QPro Virtex-II 1.5V Platform FPGAs Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Table 75: BG728 and CG717 — XQ2V3000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number NA GND AB6 NA GND M16 NA GND AA21 NA GND M15 NA GND AA7 NA GND M14 NA GND Y26 NA GND M13 NA GND Y20 NA GND M12 NA GND Y8 NA GND L23 NA GND Y2 NA GND L5 NA GND W14 NA GND J14 NA GND U23 NA GND H26 NA GND U5 NA GND H20 NA GND T16 NA GND H8 NA GND T15 NA GND H2 NA GND T14 NA GND G21 NA GND T13 NA GND G7 NA GND T12 NA GND F22 NA GND R16 NA GND F6 NA GND R15 NA GND E23 NA GND R14 NA GND E17 NA GND R13 NA GND E11 NA GND R12 NA GND E5 NA GND P27 NA GND D24 NA GND P24 NA GND D14 NA GND P19 NA GND D4 NA GND P16 NA GND C25 NA GND P15 NA GND C3 NA GND P14 NA GND B271 NA GND P13 NA GND B26 NA GND P12 NA GND B20 NA GND P9 NA GND B8 NA GND P4 NA GND B2 NA GND P1 NA GND B11 NA GND N16 NA GND A271 NA GND N15 NA GND A261 NA GND N14 NA GND A14 NA GND N13 NA GND A2 NA GND N12 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 102 R QPro Virtex-II 1.5V Platform FPGAs BG728 Standard BGA Package Specifications (1.27 mm pitch) X-Ref Target - Figure 53 Figure 53: BG728 Standard BGA Package Specifications DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 103 R QPro Virtex-II 1.5V Platform FPGAs CG717 Ceramic Column Grid Array (CGA) Package Specifications (1.27 mm pitch) X-Ref Target - Figure 54 Figure 54: CG717 Ceramic CGA Package Specifications DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 104 R QPro Virtex-II 1.5V Platform FPGAs EF957 Epoxy-Coated Flip-Chip BGA Package The XQ2V6000 QPro Virtex-II device is available in the EF957 epoxy-coated flip-chip BGA package. Pins definitions listed in Table 76 are identical to the commercial grade XC2V1000-FG456. Following this table are the "EF957 Epoxy-Coated FlipChip BGA Package Specifications (1.00 mm pitch)," page 117. Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L01N_0 H23 0 IO_L50P_0 E21 0 IO_L01P_0 H22 0 IO_L51N_0 F21 0 IO_L02N_0 G24 0 IO_L51P_0/VREF_0 F20 0 IO_L02P_0 E25 0 IO_L52N_0 A24 0 IO_L03N_0/VRP_0 B29 0 IO_L52P_0 A23 0 IO_L03P_0/VRN_0 C27 0 IO_L53N_0 E20 0 IO_L04N_0/VREF_0 F24 0 IO_L53P_0 E19 0 IO_L04P_0 F23 0 IO_L54N_0 B22 0 IO_L05N_0 D26 0 IO_L54P_0 B21 0 IO_L05P_0 D25 0 IO_L67N_0 D21 0 IO_L06N_0 A28 0 IO_L67P_0 D20 0 IO_L06P_0 A27 0 IO_L68N_0 J20 0 IO_L19N_0 J22 0 IO_L68P_0 J19 0 IO_L19P_0 J21 0 IO_L69N_0 F19 0 IO_L20N_0 G23 0 IO_L69P_0/VREF_0 F18 0 IO_L20P_0 G22 0 IO_L70N_0 A22 0 IO_L21N_0 B27 0 IO_L70P_0 A21 IO_L71N_0 H19 0 IO_L21P_0/VREF_0 B26 0 0 IO_L22N_0 K20 0 IO_L71P_0 H17 0 IO_L22P_0 K19 0 IO_L72N_0 C21 0 IO_L23N_0 C26 0 IO_L72P_0 C20 0 IO_L23P_0 C24 0 IO_L73N_0 B20 0 IO_L24N_0 D24 0 IO_L73P_0 B19 0 IO_L24P_0 D23 0 IO_L74N_0 G18 0 IO_L25N_0 E24 0 IO_L74P_0 G17 0 IO_L25P_0 E23 0 IO_L75N_0 E18 0 IO_L26N_0 G21 0 IO_L75P_0/VREF_0 D17 0 IO_L26P_0 G20 0 IO_L76N_0 A20 0 IO_L27N_0 A26 0 IO_L76P_0 A19 0 IO_L27P_0/VREF_0 A25 0 IO_L77N_0 D19 0 IO_L29N_0 H21 0 IO_L77P_0 D18 0 IO_L29P_0 H20 0 IO_L78N_0 C19 0 IO_L30N_0 B25 0 IO_L78P_0 C17 0 IO_L30P_0 B23 0 IO_L91N_0/VREF_0 K18 0 IO_L49N_0 C23 0 IO_L91P_0 J18 0 IO_L49P_0 C22 0 IO_L92N_0 F17 0 IO_L50N_0 E22 0 IO_L92P_0 F16 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 105 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L93N_0 B18 1 IO_L68N_1 D12 0 IO_L93P_0 B17 1 IO_L68P_1 D11 0 IO_L94N_0/VREF_0 J17 1 IO_L67N_1 B11 0 IO_L94P_0 J16 1 IO_L67P_1 B10 0 IO_L95N_0/GCLK7P E17 1 IO_L54N_1 E12 0 IO_L95P_0/GCLK6S E16 1 IO_L54P_1 E11 0 IO_L96N_0/GCLK5P A18 1 IO_L53N_1 A11 0 IO_L96P_0/GCLK4S A17 1 IO_L53P_1 A10 1 IO_L52N_1 G12 1 IO_L96N_1/GCLK3P C16 1 IO_L52P_1 G11 1 IO_L96P_1/GCLK2S C15 1 IO_L51N_1/VREF_1 K13 1 IO_L95N_1/GCLK1P H16 1 IO_L51P_1 K12 1 IO_L95P_1/GCLK0S H15 1 IO_L50N_1 C11 1 IO_L94N_1 A15 1 IO_L50P_1 C10 1 IO_L94P_1/VREF_1 A14 1 IO_L49N_1 B9 1 IO_L93N_1 F15 1 IO_L49P_1 B7 1 IO_L93P_1 F14 1 IO_L30N_1 F11 1 IO_L92N_1 G15 1 IO_L30P_1 F9 1 IO_L92P_1 G14 1 IO_L29N_1 A9 1 IO_L91N_1 B15 1 IO_L29P_1 A8 1 IO_L91P_1/VREF_1 B14 1 IO_L27N_1/VREF_1 D9 1 IO_L78N_1 D15 1 IO_L27P_1 D8 1 IO_L78P_1 E15 1 IO_L26N_1 J12 1 IO_L77N_1 J15 1 IO_L26P_1 J11 1 IO_L77P_1 K14 1 IO_L25N_1 C9 1 IO_L76N_1 D14 1 IO_L25P_1 C8 1 IO_L76P_1 D13 1 IO_L24N_1 E10 1 IO_L75N_1/VREF_1 E14 1 IO_L24P_1 E9 1 IO_L75P_1 E13 1 IO_L23N_1 H11 1 IO_L74N_1 A13 1 IO_L23P_1 H10 1 IO_L74P_1 A12 1 IO_L22N_1 A7 1 IO_L73N_1 F13 1 IO_L22P_1 A6 1 IO_L73P_1 F12 1 IO_L21N_1/VREF_1 A5 1 IO_L72N_1 J14 1 IO_L21P_1 A4 1 IO_L72P_1 J13 1 IO_L20N_1 G10 1 IO_L71N_1 B13 1 IO_L20P_1 G9 1 IO_L71P_1 B12 1 IO_L19N_1 B6 1 IO_L70N_1 C13 1 IO_L19P_1 C5 1 IO_L70P_1 C12 1 IO_L06N_1 C6 1 IO_L69N_1/VREF_1 H13 1 IO_L06P_1 D6 1 IO_L69P_1 H12 1 IO_L05N_1 H9 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 106 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 1 IO_L05P_1 G8 2 IO_L44P_2 M9 1 IO_L04N_1 D7 2 IO_L45N_2 G2 1 IO_L04P_1/VREF_1 E6 2 IO_L45P_2/VREF_2 J2 1 IO_L03N_1/VRP_1 E8 2 IO_L46N_2 H3 1 IO_L03P_1/VRN_1 E7 2 IO_L46P_2 J3 1 IO_L02N_1 F8 2 IO_L47N_2 J6 1 IO_L02P_1 F7 2 IO_L47P_2 L6 1 IO_L01N_1 B5 2 IO_L48N_2 J5 1 IO_L01P_1 B3 2 IO_L48P_2 K5 2 IO_L49N_2 H1 2 IO_L01N_2 F5 2 IO_L49P_2 J1 2 IO_L01P_2 G4 2 IO_L50N_2 N10 2 IO_L02N_2/VRP_2 G6 2 IO_L50P_2 P10 2 IO_L02P_2/VRN_2 H6 2 IO_L51N_2 L7 2 IO_L03N_2 D3 2 IO_L51P_2/VREF_2 M7 2 IO_L03P_2/VREF_2 E4 2 IO_L52N_2 K3 2 IO_L04N_2 K10 2 IO_L52P_2 L3 2 IO_L04P_2 K9 2 IO_L53N_2 M8 2 IO_L05N_2 D2 2 IO_L53P_2 N8 2 IO_L05P_2 E3 2 IO_L54N_2 L5 2 IO_L06N_2 F4 2 IO_L54P_2 M5 2 IO_L06P_2 F3 2 IO_L67N_2 K2 2 IO_L19N_2 L10 2 IO_L67P_2 L2 2 IO_L19P_2 M10 2 IO_L68N_2 M6 2 IO_L20N_2 H7 2 IO_L68P_2 N6 2 IO_L20P_2 J8 2 IO_L69N_2 L4 2 IO_L21N_2 D1 2 IO_L69P_2/VREF_2 M4 2 IO_L21P_2/VREF_2 E1 2 IO_L70N_2 K1 2 IO_L22N_2 G5 2 IO_L70P_2 L1 2 IO_L22P_2 H5 2 IO_L71N_2 N9 2 IO_L23N_2 E2 2 IO_L71P_2 P9 2 IO_L23P_2 F2 2 IO_L72N_2 N5 2 IO_L24N_2 H4 2 IO_L72P_2 P5 2 IO_L24P_2 J4 2 IO_L73N_2 M3 2 IO_L25N_2 K8 2 IO_L73P_2 N3 2 IO_L25P_2 L8 2 IO_L74N_2 R8 2 IO_L27N_2 J7 2 IO_L74P_2 R9 2 IO_L27P_2/VREF_2 K7 2 IO_L75N_2 M2 2 IO_L43N_2 F1 2 IO_L75P_2/VREF_2 N2 2 IO_L43P_2 G1 2 IO_L76N_2 M1 2 IO_L44N_2 L9 2 IO_L76P_2 N1 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 107 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 2 IO_L77N_2 P7 3 IO_L72N_3 Y5 2 IO_L77P_2 R7 3 IO_L72P_3 AA5 2 IO_L78N_2 N4 3 IO_L71N_3 W3 2 IO_L78P_2 P4 3 IO_L71P_3 Y3 2 IO_L91N_2 T8 3 IO_L70N_3 W4 2 IO_L91P_2 T9 3 IO_L70P_3 Y4 2 IO_L92N_2 P6 3 IO_L69N_3/VREF_3 U9 2 IO_L92P_2 R6 3 IO_L69P_3 V9 2 IO_L93N_2 P2 3 IO_L68N_3 AA1 2 IO_L93P_2/VREF_2 R2 3 IO_L68P_3 AB1 2 IO_L94N_2 R5 3 IO_L67N_3 Y7 2 IO_L94P_2 T5 3 IO_L67P_3 AA7 2 IO_L95N_2 P1 3 IO_L54N_3 AA6 2 IO_L95P_2 R1 3 IO_L54P_3 AC6 2 IO_L96N_2 R4 3 IO_L53N_3 AA2 2 IO_L96P_2 R3 3 IO_L53P_3 AB2 3 IO_L52N_3 AA4 3 IO_L96N_3 T6 3 IO_L52P_3 AC4 3 IO_L96P_3 U5 3 IO_L51N_3/VREF_3 V10 3 IO_L95N_3 U6 3 IO_L51P_3 W10 3 IO_L95P_3 V6 3 IO_L50N_3 AA3 3 IO_L94N_3 T3 3 IO_L50P_3 AB3 3 IO_L94P_3 U3 3 IO_L49N_3 AB5 3 IO_L93N_3/VREF_3 U1 3 IO_L49P_3 AC5 3 IO_L93P_3 V1 3 IO_L48N_3 W9 3 IO_L92N_3 U8 3 IO_L48P_3 Y9 3 IO_L92P_3 W8 3 IO_L47N_3 AC1 3 IO_L91N_3 U2 3 IO_L47P_3 AD1 3 IO_L91P_3 V2 3 IO_L46N_3 AC3 3 IO_L78N_3 U7 3 IO_L46P_3 AD3 3 IO_L78P_3 V7 3 IO_L45N_3/VREF_3 Y8 3 IO_L77N_3 U4 3 IO_L45P_3 AA8 3 IO_L77P_3 V4 3 IO_L44N_3 AC2 3 IO_L76N_3 W1 3 IO_L44P_3 AE2 3 IO_L76P_3 Y1 3 IO_L43N_3 AB7 3 IO_L75N_3/VREF_3 V5 3 IO_L43P_3 AC7 3 IO_L75P_3 W5 3 IO_L27N_3/VREF_3 Y10 3 IO_L74N_3 W2 3 IO_L27P_3 AA10 3 IO_L74P_3 Y2 3 IO_L25N_3 AE1 3 IO_L73N_3 W6 3 IO_L25P_3 AF1 3 IO_L73P_3 Y6 3 IO_L24N_3 AF2 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 108 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 3 IO_L24P_3 AG2 4 IO_L21P_4/VREF_4 AL5 3 IO_L23N_3 AA9 4 IO_L22N_4 AB12 3 IO_L23P_3 AB9 4 IO_L22P_4 AB13 3 IO_L22N_3 AD4 4 IO_L23N_4 AJ6 3 IO_L22P_3 AE4 4 IO_L23P_4 AJ8 3 IO_L21N_3/VREF_3 AD5 4 IO_L24N_4 AK6 3 IO_L21P_3 AE5 4 IO_L24P_4 AK7 3 IO_L20N_3 AB8 4 IO_L25N_4 AG8 3 IO_L20P_3 AC8 4 IO_L25P_4 AG9 3 IO_L19N_3 AG1 4 IO_L26N_4 AF9 3 IO_L19P_3 AH1 4 IO_L26P_4 AF11 3 IO_L06N_3 AF4 4 IO_L27N_4 AH8 3 IO_L06P_3 AG4 4 IO_L27P_4/VREF_4 AH9 3 IO_L05N_3 AB10 4 IO_L28N_4 AD11 3 IO_L05P_3 AB11 4 IO_L28P_4 AD12 3 IO_L04N_3 AF3 4 IO_L29N_4 AL6 3 IO_L04P_3 AG3 4 IO_L29P_4 AL7 3 IO_L03N_3/VREF_3 AD6 4 IO_L30N_4 AJ9 3 IO_L03P_3 AD7 4 IO_L30P_4 AJ10 3 IO_L02N_3/VRP_3 AE6 4 IO_L49N_4 AE11 3 IO_L02P_3/VRN_3 AF5 4 IO_L49P_4 AE12 3 IO_L01N_3 AH2 4 IO_L50N_4 AG10 3 IO_L01P_3 AH3 4 IO_L50P_4 AG11 4 IO_L51N_4 AL8 4 IO_L01N_4/BUSY/DOUT (1) AD9 4 IO_L51P_4/VREF_4 AL9 4 IO_L01P_4/INIT_B AD10 4 IO_L52N_4 AF12 4 IO_L02N_4/D0/DIN (1) AF7 4 IO_L52P_4 AF13 4 IO_L02P_4/D1 AG7 4 IO_L53N_4 AK9 4 IO_L03N_4/D2/ALT_VRP_4 AK3 4 IO_L53P_4 AK10 4 IO_L03P_4/D3/ALT_VRN_4 AJ5 4 IO_L54N_4 AH11 4 IO_L04N_4/VREF_4 AE8 4 IO_L54P_4 AH12 4 IO_L04P_4 AF8 4 IO_L67N_4 AC12 4 IO_L05N_4/VRP_4 AK4 4 IO_L67P_4 AC13 4 IO_L05P_4/VRN_4 AK5 4 IO_L68N_4 AG12 4 IO_L06N_4 AH6 4 IO_L68P_4 AG13 4 IO_L06P_4 AH7 4 IO_L69N_4 AL10 4 IO_L19N_4 AC10 4 IO_L69P_4/VREF_4 AL11 4 IO_L19P_4 AC11 4 IO_L70N_4 AD13 4 IO_L20N_4 AE9 4 IO_L70P_4 AD15 4 IO_L20P_4 AE10 4 IO_L71N_4 AJ11 4 IO_L21N_4 AL4 4 IO_L71P_4 AJ12 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 109 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 4 IO_L72N_4 AK11 5 IO_L77N_5 AC17 4 IO_L72P_4 AK12 5 IO_L77P_5 AB18 4 IO_L73N_4 AE14 5 IO_L76N_5 AH18 4 IO_L73P_4 AE15 5 IO_L76P_5 AH19 4 IO_L74N_4 AF14 5 IO_L75N_5/VREF_5 AL19 4 IO_L74P_4 AF15 5 IO_L75P_5 AL20 4 IO_L75N_4 AL12 5 IO_L74N_5 AC18 4 IO_L75P_4/VREF_4 AL13 5 IO_L74P_5 AC19 4 IO_L76N_4 AB14 5 IO_L73N_5 AJ19 4 IO_L76P_4 AC14 5 IO_L73P_5 AJ20 4 IO_L77N_4 AH13 5 IO_L72N_5 AG18 4 IO_L77P_4 AH14 5 IO_L72P_5 AG19 4 IO_L78N_4 AJ13 5 IO_L71N_5 AF18 4 IO_L78P_4 AK13 5 IO_L71P_5 AF19 4 IO_L91N_4/VREF_4 AC15 5 IO_L70N_5 AK20 4 IO_L91P_4 AC16 5 IO_L70P_5 AK21 4 IO_L92N_4 AG14 5 IO_L69N_5/VREF_5 AH20 4 IO_L92P_4 AG15 5 IO_L69P_5 AH21 4 IO_L93N_4 AK14 5 IO_L68N_5 AD19 4 IO_L93P_4 AK15 5 IO_L68P_5 AD20 4 IO_L94N_4/VREF_4 AF16 5 IO_L67N_5 AL21 4 IO_L94P_4 AG16 5 IO_L67P_5 AL22 4 IO_L95N_4/GCLK3S AL14 5 IO_L54N_5 AG20 4 IO_L95P_4/GCLK2P AL15 5 IO_L54P_5 AG21 4 IO_L96N_4/GCLK1S AH15 5 IO_L53N_5 AB19 4 IO_L96P_4/GCLK0P AJ15 5 IO_L53P_5 AB20 5 IO_L52N_5 AJ21 5 IO_L96N_5/GCLK7S AJ16 5 IO_L52P_5 AJ22 5 IO_L96P_5/GCLK6P AH17 5 IO_L51N_5/VREF_5 AF20 5 IO_L95N_5/GCLK5S AD16 5 IO_L51P_5 AF21 5 IO_L95P_5/GCLK4P AD17 5 IO_L50N_5 AE20 5 IO_L94N_5 AL17 5 IO_L50P_5 AE21 5 IO_L94P_5/VREF_5 AL18 5 IO_L49N_5 AK22 5 IO_L93N_5 AG17 5 IO_L49P_5 AK23 5 IO_L93P_5 AF17 5 IO_L30N_5 AJ23 5 IO_L92N_5 AE17 5 IO_L30P_5 AJ24 5 IO_L92P_5 AE18 5 IO_L29N_5 AC20 5 IO_L91N_5 AK17 5 IO_L29P_5 AC21 5 IO_L91P_5/VREF_5 AJ17 5 IO_L28N_5 AL23 5 IO_L78N_5 AK18 5 IO_L28P_5 AL24 5 IO_L78P_5 AK19 5 IO_L27N_5/VREF_5 AL25 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 110 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 5 IO_L27P_5 AL26 6 IO_L06N_6 AG31 5 IO_L26N_5 AD21 6 IO_L19P_6 AA22 5 IO_L26P_5 AD22 6 IO_L19N_6 Y22 5 IO_L25N_5 AH23 6 IO_L20P_6 AD25 5 IO_L25P_5 AH24 6 IO_L20N_6 AC24 5 IO_L24N_5 AG22 6 IO_L21P_6 AG30 5 IO_L24P_5 AG23 6 IO_L21N_6/VREF_6 AF30 5 IO_L23N_5 AE22 6 IO_L22P_6 AD26 5 IO_L23P_5 AE23 6 IO_L22N_6 AC26 5 IO_L22N_5 AK25 6 IO_L23P_6 AF29 5 IO_L22P_5 AK26 6 IO_L23N_6 AD29 5 IO_L21N_5/VREF_5 AH25 6 IO_L24P_6 AE28 5 IO_L21P_5 AG25 6 IO_L24N_6 AD28 5 IO_L20N_5 AB21 6 IO_L25P_6 AB24 5 IO_L20P_5 AC22 6 IO_L25N_6 AA24 5 IO_L19N_5 AL27 6 IO_L27P_6 AC25 5 IO_L19P_5 AL28 6 IO_L27N_6/VREF_6 AB25 5 IO_L06N_5 AK27 6 IO_L43P_6 AF31 5 IO_L06P_5 AJ27 6 IO_L43N_6 AE31 5 IO_L05N_5/VRP_5 AD23 6 IO_L44P_6 AA23 5 IO_L05P_5/VRN_5 AE24 6 IO_L44N_6 Y23 5 IO_L04N_5 AJ26 6 IO_L45P_6 AE30 5 IO_L04P_5/VREF_5 AH26 6 IO_L45N_6/VREF_6 AC30 5 IO_L03N_5/D4/ALT_VRP_5 AF23 6 IO_L46P_6 AC28 5 IO_L03P_5/D5/ALT_VRN_5 AF24 6 IO_L46N_6 AA28 5 IO_L02N_5/D6 AG24 6 IO_L47P_6 AD27 5 IO_L02P_5/D7 AF25 6 IO_L47N_6 AC27 5 IO_L01N_5/RDWR_B AK28 6 IO_L48P_6 AA25 5 IO_L01P_5/CS_B AK29 6 IO_L48N_6 Y25 6 IO_L49P_6 AC29 6 IO_L01P_6 AF27 6 IO_L49N_6 AB29 6 IO_L01N_6 AF28 6 IO_L50P_6 AB27 6 IO_L02P_6/VRN_6 AE26 6 IO_L50N_6 AA27 6 IO_L02N_6/VRP_6 AE27 6 IO_L51P_6 AA26 6 IO_L03P_6 AH29 6 IO_L51N_6/VREF_6 Y26 6 IO_L03N_6/VREF_6 AH30 6 IO_L52P_6 AD31 6 IO_L04P_6 AB22 6 IO_L52N_6 AC31 6 IO_L04N_6 AB23 6 IO_L53P_6 W22 6 IO_L05P_6 AG28 6 IO_L53N_6 V22 6 IO_L05N_6 AG29 6 IO_L54P_6 Y27 6 IO_L06P_6 AH31 6 IO_L54N_6 W27 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 111 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 6 IO_L67P_6 AB30 7 IO_L94P_7 T29 6 IO_L67N_6 AA30 7 IO_L94N_7 R29 6 IO_L68P_6 W26 7 IO_L93P_7/VREF_7 R31 6 IO_L68N_6 V26 7 IO_L93N_7 P31 6 IO_L69P_6 AB31 7 IO_L92P_7 R26 6 IO_L69N_6/VREF_6 AA31 7 IO_L92N_7 P26 6 IO_L70P_6 AA29 7 IO_L91P_7 R30 6 IO_L70N_6 Y29 7 IO_L91N_7 P30 6 IO_L71P_6 Y24 7 IO_L78P_7 R25 6 IO_L71N_6 W24 7 IO_L78N_7 P25 6 IO_L72P_6 V25 7 IO_L77P_7 R28 6 IO_L72N_6 U25 7 IO_L77N_7 P28 6 IO_L73P_6 Y28 7 IO_L76P_7 N31 6 IO_L73N_6 W28 7 IO_L76N_7 M31 6 IO_L74P_6 W23 7 IO_L75P_7/VREF_7 R23 6 IO_L74N_6 V23 7 IO_L75N_7 P23 6 IO_L75P_6 Y30 7 IO_L74P_7 N30 6 IO_L75N_6/VREF_6 W30 7 IO_L74N_7 M30 6 IO_L76P_6 Y31 7 IO_L73P_7 P27 6 IO_L76N_6 W31 7 IO_L73N_7 N27 6 IO_L77P_6 V27 7 IO_L72P_7 P22 6 IO_L77N_6 U27 7 IO_L72N_7 N22 6 IO_L78P_6 W29 7 IO_L71P_7 N29 6 IO_L78N_6 U29 7 IO_L71N_7 M29 6 IO_L91P_6 U23 7 IO_L70P_7 N28 6 IO_L91N_6 T23 7 IO_L70N_7 M28 6 IO_L92P_6 U26 7 IO_L69P_7/VREF_7 N26 6 IO_L92N_6 T26 7 IO_L69N_7 M26 6 IO_L93P_6 V28 7 IO_L68P_7 L31 6 IO_L93N_6/VREF_6 U28 7 IO_L68N_7 K31 6 IO_L94P_6 U24 7 IO_L67P_7 M27 6 IO_L94N_6 T24 7 IO_L67N_7 L27 6 IO_L95P_6 V30 7 IO_L54P_7 N23 6 IO_L95N_6 U30 7 IO_L54N_7 M23 6 IO_L96P_6 V31 7 IO_L53P_7 L30 6 IO_L96N_6 U31 7 IO_L53N_7 K30 7 IO_L52P_7 L28 7 IO_L96P_7 T27 7 IO_L52N_7 J28 7 IO_L96N_7 R27 7 IO_L51P_7/VREF_7 M24 7 IO_L95P_7 R24 7 IO_L51N_7 L24 7 IO_L95N_7 N24 7 IO_L50P_7 L29 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 112 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 7 IO_L50N_7 K29 7 IO_L01P_7 D30 7 IO_L49P_7 M25 7 IO_L01N_7 D29 7 IO_L49N_7 L25 7 IO_L48P_7 L26 0 VCCO_0 C18 7 IO_L48N_7 J26 0 VCCO_0 C25 7 IO_L47P_7 J31 0 VCCO_0 F22 7 IO_L47N_7 H31 0 VCCO_0 H18 7 IO_L46P_7 J29 0 VCCO_0 L17 7 IO_L46N_7 H29 0 VCCO_0 L18 7 IO_L45P_7/VREF_7 M22 0 VCCO_0 L19 7 IO_L45N_7 L22 0 VCCO_0 L20 7 IO_L44P_7 J30 0 VCCO_0 M17 7 IO_L44N_7 G30 0 VCCO_0 M18 7 IO_L43P_7 K27 0 VCCO_0 M19 7 IO_L43N_7 J27 1 VCCO_1 C7 7 IO_L27P_7/VREF_7 L23 1 VCCO_1 C14 7 IO_L27N_7 K23 1 VCCO_1 F10 7 IO_L25P_7 G31 1 VCCO_1 H14 7 IO_L25N_7 F31 1 VCCO_1 L12 7 IO_L24P_7 F30 1 VCCO_1 L13 7 IO_L24N_7 E30 1 VCCO_1 L14 7 IO_L23P_7 K25 1 VCCO_1 L15 7 IO_L23N_7 J25 1 VCCO_1 M13 7 IO_L22P_7 H28 1 VCCO_1 M14 7 IO_L22N_7 G28 1 VCCO_1 M15 7 IO_L21P_7/VREF_7 H27 2 VCCO_2 G3 7 IO_L21N_7 G27 2 VCCO_2 K6 7 IO_L20P_7 K24 2 VCCO_2 M11 7 IO_L20N_7 J24 2 VCCO_2 N11 7 IO_L19P_7 E31 2 VCCO_2 N12 7 IO_L19N_7 D31 2 VCCO_2 P3 7 IO_L06P_7 F28 2 VCCO_2 P8 7 IO_L06N_7 E28 2 VCCO_2 P11 7 IO_L05P_7 K22 2 VCCO_2 P12 7 IO_L05N_7 K21 2 VCCO_2 R11 7 IO_L04P_7 F29 2 VCCO_2 R12 7 IO_L04N_7 E29 3 VCCO_3 U11 7 IO_L03P_7/VREF_7 H26 3 VCCO_3 U12 7 IO_L03N_7 H25 3 VCCO_3 V3 7 IO_L02P_7/VRN_7 G26 3 VCCO_3 V8 7 IO_L02N_7/VRP_7 F27 3 VCCO_3 V11 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 113 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number 3 VCCO_3 V12 7 VCCO_7 M21 3 VCCO_3 W11 7 VCCO_7 N20 3 VCCO_3 W12 7 VCCO_7 N21 3 VCCO_3 Y11 7 VCCO_7 P20 3 VCCO_3 AB6 7 VCCO_7 P21 3 VCCO_3 AE3 7 VCCO_7 P24 4 VCCO_4 Y13 7 VCCO_7 P29 4 VCCO_4 Y14 7 VCCO_7 R20 4 VCCO_4 Y15 7 VCCO_7 R21 4 VCCO_4 AA12 4 VCCO_4 AA13 NA CCLK AJ4 4 VCCO_4 AA14 NA PROG_B D27 4 VCCO_4 AA15 NA DONE AG6 4 VCCO_4 AD14 NA M0 AH27 4 VCCO_4 AF10 NA M1 AJ28 4 VCCO_4 AJ7 NA M2 AG26 4 VCCO_4 AJ14 NA HSWAP_EN E26 5 VCCO_5 Y17 NA TCK K11 5 VCCO_5 Y18 NA TDI C28 5 VCCO_5 Y19 NA TDO C4 5 VCCO_5 AA17 NA TMS J10 5 VCCO_5 AA18 NA PWRDWN_B AH5 5 VCCO_5 AA19 NA DXN F25 5 VCCO_5 AA20 NA DXP B28 5 VCCO_5 AD18 NA VBATT D5 5 VCCO_5 AF22 NA RSVD B4 5 VCCO_5 AJ18 5 VCCO_5 AJ25 NA VCCAUX B16 6 VCCO_6 U20 NA VCCAUX C2 6 VCCO_6 U21 NA VCCAUX C30 6 VCCO_6 V20 NA VCCAUX T2 6 VCCO_6 V21 NA VCCAUX T30 6 VCCO_6 V24 NA VCCAUX AJ2 6 VCCO_6 V29 NA VCCAUX AJ30 6 VCCO_6 W20 NA VCCAUX AK16 6 VCCO_6 W21 NA VCCINT K15 6 VCCO_6 Y21 NA VCCINT K17 6 VCCO_6 AB26 NA VCCINT L11 6 VCCO_6 AE29 NA VCCINT L16 7 VCCO_7 G29 NA VCCINT L21 7 VCCO_7 K26 NA VCCINT M12 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 114 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number NA VCCINT M16 NA VCCINT AB17 NA VCCINT M20 NA GND A2 NA VCCINT N13 NA GND A3 NA VCCINT N14 NA GND A16 NA VCCINT N15 NA GND A29 NA VCCINT N16 NA GND A30 NA VCCINT N17 NA GND B1 NA VCCINT N18 NA GND B2 NA VCCINT N19 NA GND B8 NA VCCINT P13 NA GND B24 NA VCCINT P19 NA GND B30 NA VCCINT R10 NA GND B31 NA VCCINT R13 NA GND C1 NA VCCINT R19 NA GND C3 NA VCCINT R22 NA GND C29 NA VCCINT T11 NA GND C31 NA VCCINT T12 NA GND D4 NA VCCINT T13 NA GND D10 NA VCCINT T19 NA GND D16 NA VCCINT T20 NA GND D22 NA VCCINT T21 NA GND D28 NA VCCINT U10 NA GND E5 NA VCCINT U13 NA GND E27 NA VCCINT U19 NA GND F6 NA VCCINT U22 NA GND F26 NA VCCINT V13 NA GND G7 NA VCCINT V19 NA GND G13 NA VCCINT W13 NA GND G16 NA VCCINT W14 NA GND G19 NA VCCINT W15 NA GND G25 NA VCCINT W16 NA GND H2 NA VCCINT W17 NA GND H8 NA VCCINT W18 NA GND H24 NA VCCINT W19 NA GND H30 NA VCCINT Y12 NA GND J9 NA VCCINT Y16 NA GND J23 NA VCCINT Y20 NA GND K4 NA VCCINT AA11 NA GND K16 NA VCCINT AA16 NA GND K28 NA VCCINT AA21 NA GND N7 NA VCCINT AB15 NA GND N25 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 115 R QPro Virtex-II 1.5V Platform FPGAs Table 76: EF957 — XQ2V6000 (Cont’d) Table 76: EF957 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number NA GND P14 NA GND AC9 NA GND P15 NA GND AC23 NA GND P16 NA GND AD2 NA GND P17 NA GND AD8 NA GND P18 NA GND AD24 NA GND R14 NA GND AD30 NA GND R15 NA GND AE7 NA GND R16 NA GND AE13 NA GND R17 NA GND AE16 NA GND R18 NA GND AE19 NA GND T1 NA GND AE25 NA GND T4 NA GND AF6 NA GND T7 NA GND AF26 NA GND T10 NA GND AG5 NA GND T14 NA GND AG27 NA GND T15 NA GND AH4 NA GND T16 NA GND AH10 NA GND T17 NA GND AH16 NA GND T18 NA GND AH22 NA GND T22 NA GND AH28 NA GND T25 NA GND AJ1 NA GND T28 NA GND AJ3 NA GND T31 NA GND AJ29 NA GND U14 NA GND AJ31 NA GND U15 NA GND AK1 NA GND U16 NA GND AK2 NA GND U17 NA GND AK8 NA GND U18 NA GND AK24 NA GND V14 NA GND AK30 NA GND V15 NA GND AK31 NA GND V16 NA GND AL2 NA GND V17 NA GND AL3 NA GND V18 NA GND AL16 NA GND W7 NA GND AL29 NA GND W25 NA GND AL30 NA GND AB4 Notes: NA GND AB16 1. NA GND AB28 DS122 (v2.0) December 21, 2007 Product Specification See Table 71 for an explanation of the signals available on this pin. www.xilinx.com 116 R QPro Virtex-II 1.5V Platform FPGAs EF957 Epoxy-Coated Flip-Chip BGA Package Specifications (1.00 mm pitch) X-Ref Target - Figure 55 Figure 55: EF957 Epoxy-Coated Flip-Chip BGA Package Specifications DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 117 R QPro Virtex-II 1.5V Platform FPGAs CF1144 and EF1152 Ceramic Flip-Chip Fine-Pitch CGA Packages The XQ2V6000 QPro Virtex-II device is available in the CF1144 and FF1152 flip-chip fine-pitch CGA packages. Pins for the CF1144 package are the same as the FF1152, except for those pins shown in Table 77 which have been removed. The CF1144 has eight fewer GND pins than the FF1152. The FF1152 GND pin numbers missing on the CF1144 are shown in Table 77. Following the pin listing in Table 78 are the "CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package Specifications (1.00 mm pitch)" and "EF1152 Epoxy-Coated Flip-Chip BGA Package Specifications (1.00 mm pitch)," page 133. Table 77: FF1152 GND Pins not available on the CF1144 FF1152 GND Pin Numbers A2 A33 AN1 AN34 B1 B34 AP2 AP33 Notes: 1. Physical pin does not exist for CF1144 package Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L01N_0 D29 0 IO_L28P_0 D26 0 IO_L01P_0 C29 0 IO_L29N_0 H23 0 IO_L02N_0 H26 0 IO_L29P_0 H22 IO_L30N_0 F23 0 IO_L02P_0 G26 0 0 IO_L03N_0/VRP_0 E28 0 IO_L30P_0 F24 0 IO_L03P_0/VRN_0 E27 0 IO_L49N_0 B28 0 IO_L04N_0/VREF_0 F25 0 IO_L49P_0 B29 0 IO_L04P_0 F26 0 IO_L50N_0 J22 IO_L50P_0 J21 0 IO_L05N_0 H25 0 0 IO_L05P_0 H24 0 IO_L51N_0 A28 0 IO_L06N_0 E26 0 IO_L51P_0/VREF_0 A29 0 IO_L06P_0 F27 0 IO_L52N_0 A26 0 IO_L19N_0 B32 0 IO_L52P_0 B27 0 IO_L19P_0 C33 0 IO_L53N_0 C24 IO_L53P_0 D24 0 IO_L20N_0 J24 0 0 IO_L20P_0 J23 0 IO_L54N_0 D22 0 IO_L21N_0 C27 0 IO_L54P_0 D23 0 IO_L21P_0/VREF_0 C28 0 IO_L60N_0 B25 0 IO_L22N_0 B30 0 IO_L60P_0 B26 0 IO_L22P_0 B31 0 IO_L67N_0 B23 IO_L67P_0 B24 0 IO_L23N_0 K23 0 0 IO_L23P_0 K22 0 IO_L68N_0 G22 0 IO_L24N_0 C26 0 IO_L68P_0 G23 0 IO_L24P_0 D27 0 IO_L69N_0 F22 0 IO_L25N_0 A30 0 IO_L69P_0/VREF_0 F21 IO_L70N_0 A23 0 IO_L25P_0 A31 0 0 IO_L26N_0 G24 0 IO_L70P_0 A24 0 IO_L26P_0 G25 0 IO_L71N_0 K21 0 IO_L27N_0 E25 0 IO_L71P_0 K20 0 IO_L27P_0/VREF_0 E24 0 IO_L72N_0 C22 0 IO_L28N_0 D25 0 IO_L72P_0 C23 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 118 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Number Bank Pin Description Pin Number IO_L73N_0 E21 1 IO_L94P_1/VREF_1 D16 IO_L73P_0 E22 1 IO_L93N_1 F16 0 IO_L74N_0 H21 1 IO_L93P_1 F17 0 IO_L74P_0 H20 1 IO_L92N_1 G16 0 IO_L75N_0 G20 1 IO_L92P_1 G17 0 IO_L75P_0/VREF_0 F20 1 IO_L91N_1 C16 0 IO_L76N_0 B21 1 IO_L91P_1/VREF_1 C15 0 IO_L76P_0 B22 1 IO_L84N_1 D14 0 IO_L77N_0 J20 1 IO_L84P_1 D15 0 IO_L77P_0 K19 1 IO_L83N_1 J17 0 IO_L78N_0 D20 1 IO_L83P_1 K17 0 IO_L78P_0 D21 1 IO_L82N_1 B17 0 IO_L79N_0 A21 1 IO_L82P_1 A17 0 IO_L79P_0 A22 1 IO_L81N_1/VREF_1 A15 0 IO_L80N_0 L19 1 IO_L81P_1 B16 0 IO_L80P_0 L18 1 IO_L80N_1 L17 0 IO_L81N_0 B19 1 IO_L80P_1 L16 0 IO_L81P_0/VREF_0 A20 1 IO_L79N_1 A13 0 IO_L82N_0 A18 1 IO_L79P_1 A14 0 IO_L82P_0 B18 1 IO_L78N_1 C13 0 IO_L83N_0 H19 1 IO_L78P_1 C14 0 IO_L83P_0 H18 1 IO_L77N_1 K16 0 IO_L84N_0 C20 1 IO_L77P_1 K15 Bank Pin Description 0 0 0 IO_L84P_0 C21 1 IO_L76N_1 B13 0 IO_L91N_0/VREF_0 D19 1 IO_L76P_1 B14 0 IO_L91P_0 D18 1 IO_L75N_1/VREF_1 F15 0 IO_L92N_0 G18 1 IO_L75P_1 G15 0 IO_L92P_0 G19 1 IO_L74N_1 H15 0 IO_L93N_0 F18 1 IO_L74P_1 H14 0 IO_L93P_0 F19 1 IO_L73N_1 A11 0 IO_L94N_0/VREF_0 C19 1 IO_L73P_1 A12 0 IO_L94P_0 C18 1 IO_L72N_1 E13 0 IO_L95N_0/GCLK7P K18 1 IO_L72P_1 E14 0 IO_L95P_0/GCLK6S J18 1 IO_L71N_1 J15 0 IO_L96N_0/GCLK5P E19 1 IO_L71P_1 J14 0 IO_L96P_0/GCLK4S E18 1 IO_L70N_1 D12 1 IO_L70P_1 D13 1 IO_L96N_1/GCLK3P E17 1 IO_L69N_1/VREF_1 F14 1 IO_L96P_1/GCLK2S E16 1 IO_L69P_1 F13 1 IO_L95N_1/GCLK1P H17 1 IO_L68N_1 C11 1 IO_L95P_1/GCLK0S H16 1 IO_L68P_1 C12 1 IO_L94N_1 D17 1 IO_L67N_1 B11 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 119 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Description Pin Number Bank Pin Description Pin Number 1 IO_L67P_1 B12 1 IO_L60N_1 F11 1 IO_L05P_1 J10 1 IO_L04N_1 D8 1 IO_L60P_1 F12 1 IO_L04P_1/VREF_1 E7 1 IO_L54N_1 D10 1 IO_L03N_1/VRP_1 F9 1 IO_L54P_1 D11 1 IO_L03P_1/VRN_1 F8 1 IO_L53N_1 G12 1 IO_L02N_1 H10 1 IO_L53P_1 G13 1 IO_L02P_1 H9 1 IO_L52N_1 B9 1 IO_L01N_1 C2 1 IO_L52P_1 B10 1 IO_L01P_1 B3 1 IO_L51N_1/VREF_1 B8 1 IO_L51P_1 A9 2 IO_L01N_2 E2 1 IO_L50N_1 K14 2 IO_L01P_2 D2 1 IO_L50P_1 K13 2 IO_L02N_2/VRP_2 K11 1 IO_L49N_1 A6 2 IO_L02P_2/VRN_2 K10 1 IO_L49P_1 A7 2 IO_L03N_2 F5 1 IO_L30N_1 D9 2 IO_L03P_2/VREF_2 G5 1 IO_L30P_1 C9 2 IO_L04N_2 E3 1 IO_L29N_1 H13 2 IO_L04P_2 D3 1 IO_L29P_1 H12 2 IO_L05N_2 J9 1 IO_L28N_1 C7 2 IO_L05P_2 K9 1 IO_L28P_1 C8 2 IO_L06N_2 F4 1 IO_L27N_1/VREF_1 E11 2 IO_L06P_2 E4 1 IO_L27P_1 E10 2 IO_L19N_2 E1 1 IO_L26N_1 J13 2 IO_L19P_2 D1 1 IO_L26P_1 K12 2 IO_L20N_2 J8 1 IO_L25N_1 B6 2 IO_L20P_2 K8 1 IO_L25P_1 B7 2 IO_L21N_2 H7 1 IO_L24N_1 E8 2 IO_L21P_2/VREF_2 J7 Bank 1 IO_L24P_1 E9 2 IO_L22N_2 H6 1 IO_L23N_1 G10 2 IO_L22P_2 G6 1 IO_L23P_1 G11 2 IO_L23N_2 L10 1 IO_L22N_1 A4 2 IO_L23P_2 L9 1 IO_L22P_1 A5 2 IO_L24N_2 G3 1 IO_L21N_1/VREF_1 F10 2 IO_L24P_2 F3 1 IO_L21P_1 G9 2 IO_L25N_2 G2 1 IO_L20N_1 J12 2 IO_L25P_2 F2 1 IO_L20P_1 J11 2 IO_L26N_2 M10 1 IO_L19N_1 B4 2 IO_L26P_2 N10 1 IO_L19P_1 B5 2 IO_L27N_2 J6 1 IO_L06N_1 D6 2 IO_L27P_2/VREF_2 K6 1 IO_L06P_1 C6 2 IO_L28N_2 J5 1 IO_L05N_1 H11 2 IO_L28P_2 H5 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 120 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Number Bank Pin Description IO_L29N_2 L7 2 IO_L74N_2 P9 IO_L29P_2 K7 2 IO_L74P_2 R9 2 IO_L30N_2 J4 2 IO_L75N_2 P2 2 IO_L30P_2 H4 2 IO_L75P_2/VREF_2 N2 2 IO_L43N_2 G1 2 IO_L76N_2 R4 2 IO_L43P_2 F1 2 IO_L76P_2 P4 2 IO_L44N_2 L8 2 IO_L77N_2 R8 2 IO_L44P_2 M8 2 IO_L77P_2 T8 2 IO_L45N_2 J1 2 IO_L78N_2 T3 2 IO_L45P_2/VREF_2 H2 2 IO_L78P_2 R3 2 IO_L46N_2 J3 2 IO_L79N_2 P1 Bank Pin Description 2 2 Pin Number 2 IO_L46P_2 H3 2 IO_L79P_2 N1 2 IO_L47N_2 M9 2 IO_L80N_2 T11 2 IO_L47P_2 N9 2 IO_L80P_2 U11 2 IO_L48N_2 L5 2 IO_L81N_2 R7 2 IO_L48P_2 K5 2 IO_L81P_2/VREF_2 R6 2 IO_L49N_2 K2 2 IO_L82N_2 U5 2 IO_L49P_2 J2 2 IO_L82P_2 T5 2 IO_L50N_2 N7 2 IO_L83N_2 T10 2 IO_L50P_2 M7 2 IO_L83P_2 U10 2 IO_L51N_2 L6 2 IO_L84N_2 U4 2 IO_L51P_2/VREF_2 M6 2 IO_L84P_2 T4 2 IO_L52N_2 M3 2 IO_L91N_2 T2 2 IO_L52P_2 L3 2 IO_L91P_2 R1 2 IO_L53N_2 L4 2 IO_L92N_2 U7 2 IO_L53P_2 K4 2 IO_L92P_2 T7 2 IO_L54N_2 N4 2 IO_L93N_2 T6 2 IO_L54P_2 M4 2 IO_L93P_2/VREF_2 U6 2 IO_L67N_2 M2 2 IO_L94N_2 U1 2 IO_L67P_2 L2 2 IO_L94P_2 U2 2 IO_L68N_2 N8 2 IO_L95N_2 U9 2 IO_L68P_2 P8 2 IO_L95P_2 U8 2 IO_L69N_2 N6 2 IO_L96N_2 U3 2 IO_L69P_2/VREF_2 P6 2 IO_L96P_2 V4 2 IO_L70N_2 P5 2 IO_L70P_2 N5 3 IO_L96N_3 V6 2 IO_L71N_2 P10 3 IO_L96P_3 W6 2 IO_L71P_2 R10 3 IO_L95N_3 V5 2 IO_L72N_2 P3 3 IO_L95P_3 W5 2 IO_L72P_2 N3 3 IO_L94N_3 V7 2 IO_L73N_2 M1 3 IO_L94P_3 W7 2 IO_L73P_2 L1 3 IO_L93N_3/VREF_3 V10 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 121 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Description Pin Number Bank Pin Description Pin Number 3 IO_L93P_3 W10 3 IO_L92N_3 V1 3 IO_L54P_3 AC7 3 IO_L53N_3 AC2 3 IO_L92P_3 V2 3 IO_L53P_3 AD2 3 IO_L91N_3 W3 3 IO_L52N_3 AC8 3 IO_L91P_3 Y3 3 IO_L52P_3 AB8 3 IO_L84N_3 V9 3 IO_L51N_3/VREF_3 AB10 Bank 3 IO_L84P_3 V8 3 IO_L51P_3 AC10 3 IO_L83N_3 W4 3 IO_L50N_3 AD5 3 IO_L83P_3 Y4 3 IO_L50P_3 AE5 3 IO_L82N_3 W11 3 IO_L49N_3 AE4 3 IO_L82P_3 V11 3 IO_L49P_3 AF4 3 IO_L81N_3/VREF_3 W8 3 IO_L48N_3 AB9 3 IO_L81P_3 Y8 3 IO_L48P_3 AC9 3 IO_L80N_3 W2 3 IO_L47N_3 AE2 3 IO_L80P_3 Y1 3 IO_L47P_3 AF1 3 IO_L79N_3 AA3 3 IO_L46N_3 AD6 3 IO_L79P_3 AB3 3 IO_L46P_3 AE6 3 IO_L78N_3 Y6 3 IO_L45N_3/VREF_3 AD9 3 IO_L78P_3 AA6 3 IO_L45P_3 AE9 3 IO_L77N_3 AA4 3 IO_L44N_3 AF2 3 IO_L77P_3 AB4 3 IO_L44P_3 AG2 3 IO_L76N_3 Y7 3 IO_L43N_3 AF3 3 IO_L76P_3 AA8 3 IO_L43P_3 AG3 3 IO_L75N_3/VREF_3 Y10 3 IO_L30N_3 AD7 3 IO_L75P_3 AA10 3 IO_L30P_3 AE7 3 IO_L74N_3 AA1 3 IO_L29N_3 AF5 3 IO_L74P_3 AB1 3 IO_L29P_3 AG5 3 IO_L73N_3 AA5 3 IO_L28N_3 AE8 3 IO_L73P_3 AB5 3 IO_L28P_3 AD8 3 IO_L72N_3 AA9 3 IO_L27N_3/VREF_3 AF8 3 IO_L72P_3 Y9 3 IO_L27P_3 AF9 3 IO_L71N_3 AA2 3 IO_L26N_3 AH1 3 IO_L71P_3 AB2 3 IO_L26P_3 AJ1 3 IO_L70N_3 AB6 3 IO_L25N_3 AG4 3 IO_L70P_3 AC6 3 IO_L25P_3 AH5 3 IO_L69N_3/VREF_3 AD1 3 IO_L24N_3 AF6 3 IO_L69P_3 AC1 3 IO_L24P_3 AG6 3 IO_L68N_3 AC3 3 IO_L23N_3 AH3 3 IO_L68P_3 AD3 3 IO_L23P_3 AJ3 3 IO_L67N_3 AC4 3 IO_L22N_3 AF7 3 IO_L67P_3 AD4 3 IO_L22P_3 AG7 3 IO_L54N_3 AB7 3 IO_L21N_3/VREF_3 AL1 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 122 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Bank Pin Description Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Number Bank Pin Description Pin Number 3 IO_L21P_3 AK1 4 IO_L25N_4 AP5 3 IO_L20N_3 AH2 4 IO_L25P_4 AP4 3 IO_L20P_3 AJ2 4 IO_L26N_4 AG11 3 IO_L19N_3 AJ4 4 IO_L26P_4 AG12 3 IO_L19P_3 AK4 4 IO_L27N_4 AN7 3 IO_L06N_3 AE10 4 IO_L27P_4/VREF_4 AN6 3 IO_L06P_3 AD10 4 IO_L28N_4 AL10 3 IO_L05N_3 AK2 4 IO_L28P_4 AL9 3 IO_L05P_3 AL2 4 IO_L29N_4 AF12 3 IO_L04N_3 AH6 4 IO_L29P_4 AF13 3 IO_L04P_3 AJ5 4 IO_L30N_4 AK10 3 IO_L03N_3/VREF_3 AE11 4 IO_L30P_4 AK11 3 IO_L03P_3 AF11 4 IO_L49N_4 AP7 3 IO_L02N_3/VRP_3 AK3 4 IO_L49P_4 AP6 3 IO_L02P_3/VRN_3 AL3 4 IO_L50N_4 AH13 3 IO_L01N_3 AF10 4 IO_L50P_4 AH12 3 IO_L01P_3 AG9 4 IO_L51N_4 AJ11 4 IO_L51P_4/VREF_4 AJ12 4 IO_L01N_4/DOUT AM4 4 IO_L52N_4 AP9 4 IO_L01P_4/INIT_B AL5 4 IO_L52P_4 AN8 4 IO_L02N_4/D0 AG10 4 IO_L53N_4 AG13 4 IO_L02P_4/D1 AH11 4 IO_L53P_4 AG14 4 IO_L03N_4/D2/ALT_VRP_4 AK7 4 IO_L54N_4 AM11 4 IO_L03P_4/D3/ALT_VRN_4 AK8 4 IO_L54P_4 AL11 4 IO_L04N_4/VREF_4 AL6 4 IO_L60N_4 AN10 4 IO_L04P_4 AM6 4 IO_L60P_4 AN9 4 IO_L05N_4/VRP_4 AK9 4 IO_L67N_4 AN12 4 IO_L05P_4/VRN_4 AJ8 4 IO_L67P_4 AN11 4 IO_L06N_4 AM8 4 IO_L68N_4 AE14 4 IO_L06P_4 AM7 4 IO_L68P_4 AE15 4 IO_L19N_4 AN3 4 IO_L69N_4 AJ13 4 IO_L19P_4 AM2 4 IO_L69P_4/VREF_4 AJ14 4 IO_L20N_4 AJ10 4 IO_L70N_4 AL13 4 IO_L20P_4 AJ9 4 IO_L70P_4 AL12 4 IO_L21N_4 AH9 4 IO_L71N_4 AF14 4 IO_L21P_4/VREF_4 AH10 4 IO_L71P_4 AF15 4 IO_L22N_4 AN5 4 IO_L72N_4 AM13 4 IO_L22P_4 AN4 4 IO_L72P_4 AM12 4 IO_L23N_4 AE12 4 IO_L73N_4 AP12 4 IO_L23P_4 AE13 4 IO_L73P_4 AP11 4 IO_L24N_4 AM9 4 IO_L74N_4 AG15 4 IO_L24P_4 AL8 4 IO_L74P_4 AG16 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 123 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Bank Pin Description Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Number Bank Pin Description Pin Number 4 IO_L75N_4 AN14 5 IO_L92P_5 AH18 4 IO_L75P_4/VREF_4 AN13 5 IO_L91N_5 AM19 4 IO_L76N_4 AP14 5 IO_L91P_5/VREF_5 AM20 4 IO_L76P_4 AP13 5 IO_L84N_5 AL21 4 IO_L77N_4 AD16 5 IO_L84P_5 AL20 4 IO_L77P_4 AD17 5 IO_L83N_5 AM22 4 IO_L78N_4 AK14 5 IO_L83P_5 AM21 4 IO_L78P_4 AK13 5 IO_L82N_5 AN18 4 IO_L79N_4 AN16 5 IO_L82P_5 AP18 4 IO_L79P_4 AP15 5 IO_L81N_5/VREF_5 AP20 4 IO_L80N_4 AE16 5 IO_L81P_5 AN19 4 IO_L80P_4 AE17 5 IO_L80N_5 AE18 4 IO_L81N_4 AH15 5 IO_L80P_5 AE19 4 IO_L81P_4/VREF_4 AJ15 5 IO_L79N_5 AP22 4 IO_L82N_4 AP17 5 IO_L79P_5 AP21 4 IO_L82P_4 AN17 5 IO_L78N_5 AK22 4 IO_L83N_4 AH17 5 IO_L78P_5 AK21 4 IO_L83P_4 AH16 5 IO_L77N_5 AD18 4 IO_L84N_4 AL15 5 IO_L77P_5 AD19 4 IO_L84P_4 AL14 5 IO_L76N_5 AN22 4 IO_L91N_4/VREF_4 AL16 5 IO_L76P_5 AN21 4 IO_L91P_4 AL17 5 IO_L75N_5/VREF_5 AJ20 4 IO_L92N_4 AJ17 5 IO_L75P_5 AH20 4 IO_L92P_4 AJ16 5 IO_L74N_5 AG19 4 IO_L93N_4 AM15 5 IO_L74P_5 AG20 4 IO_L93P_4 AM14 5 IO_L73N_5 AP24 4 IO_L94N_4/VREF_4 AM16 5 IO_L73P_5 AP23 4 IO_L94P_4 AM17 5 IO_L72N_5 AL23 4 IO_L95N_4/GCLK3S AF17 5 IO_L72P_5 AL22 4 IO_L95P_4/GCLK2P AG17 5 IO_L71N_5 AF20 4 IO_L96N_4/GCLK1S AK16 5 IO_L71P_5 AF21 4 IO_L96P_4/GCLK0P AK17 5 IO_L70N_5 AM24 5 IO_L70P_5 AM23 AK18 5 IO_L69N_5/VREF_5 AJ21 5 IO_L96N_5/GCLK7S 5 IO_L96P_5/GCLK6P AK19 5 IO_L69P_5 AJ22 5 IO_L95N_5/GCLK5S AG18 5 IO_L68N_5 AJ24 5 IO_L95P_5/GCLK4P AF18 5 IO_L68P_5 AJ23 5 IO_L94N_5 AL18 5 IO_L67N_5 AN24 5 IO_L94P_5/VREF_5 AL19 5 IO_L67P_5 AN23 5 IO_L93N_5 AJ19 5 IO_L60N_5 AN26 5 IO_L93P_5 AJ18 5 IO_L60P_5 AN25 5 IO_L92N_5 AH19 5 IO_L54N_5 AL25 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 124 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Bank Pin Description Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Number Bank Pin Description Pin Number 5 IO_L54P_5 AL24 5 IO_L03P_5/D5/ALT_VRN_5 AL29 5 IO_L53N_5 AE20 5 IO_L02N_5/D6 AG24 5 IO_L53P_5 AE21 5 IO_L02P_5/D7 AG25 5 IO_L52N_5 AN27 5 IO_L01N_5/RDWR_B AL30 5 IO_L52P_5 AP26 5 IO_L01P_5/CS_B AM31 5 IO_L51N_5/VREF_5 AP29 5 IO_L51P_5 AP28 6 IO_L01P_6 AE24 5 IO_L50N_5 AG21 6 IO_L01N_6 AD25 5 IO_L50P_5 AG22 6 IO_L02P_6/VRN_6 AJ30 5 IO_L49N_5 AN29 6 IO_L02N_6/VRP_6 AH30 5 IO_L49P_5 AN28 6 IO_L03P_6 AL32 5 IO_L30N_5 AK24 6 IO_L03N_6/VREF_6 AK32 5 IO_L30P_5 AK25 6 IO_L04P_6 AF25 5 IO_L29N_5 AH23 6 IO_L04N_6 AE25 5 IO_L29P_5 AH22 6 IO_L05P_6 AJ31 5 IO_L28N_5 AP31 6 IO_L05N_6 AK31 5 IO_L28P_5 AP30 6 IO_L06P_6 AH29 5 IO_L27N_5/VREF_5 AH24 6 IO_L06N_6 AG29 5 IO_L27P_5 AH25 6 IO_L19P_6 AG26 5 IO_L26N_5 AF22 6 IO_L19N_6 AF26 5 IO_L26P_5 AF23 6 IO_L20P_6 AL33 5 IO_L25N_5 AM27 6 IO_L20N_6 AK33 5 IO_L25P_5 AM26 6 IO_L21P_6 AJ32 5 IO_L24N_5 AL27 6 IO_L21N_6/VREF_6 AH32 5 IO_L24P_5 AL26 6 IO_L22P_6 AG28 5 IO_L23N_5 AH26 6 IO_L22N_6 AF28 5 IO_L23P_5 AJ25 6 IO_L23P_6 AG30 5 IO_L22N_5 AN31 6 IO_L23N_6 AF30 5 IO_L22P_5 AN30 6 IO_L24P_6 AF29 5 IO_L21N_51/VREF_5 AK26 6 IO_L24N_6 AE29 5 IO_L21P_5 AK27 6 IO_L25P_6 AF27 5 IO_L20N_5 AG23 6 IO_L25N_6 AE27 5 IO_L20P_5 AF24 6 IO_L26P_6 AL34 5 IO_L19N_5 AM33 6 IO_L26N_6 AK34 5 IO_L19P_5 AN32 6 IO_L27P_6 AE28 5 IO_L06N_5 AJ27 6 IO_L27N_6/VREF_6 AD28 5 IO_L06P_5 AJ26 6 IO_L28P_6 AE26 5 IO_L05N_5/VRP_5 AE22 6 IO_L28N_6 AD26 5 IO_L05P_5/VRN_5 AE23 6 IO_L29P_6 AF31 5 IO_L04N_5 AM28 6 IO_L29N_6 AG31 5 IO_L04P_5/VREF_5 AM29 6 IO_L30P_6 AF32 5 IO_L03N_5/D4/ALT_VRP_5 AK28 6 IO_L30N_6 AG32 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 125 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Description Pin Number Bank Pin Description Pin Number 6 IO_L43P_6 AC25 6 IO_L43N_6 AB25 6 IO_L76P_6 Y28 6 IO_L76N_6 Y29 6 IO_L44P_6 AJ33 6 IO_L77P_6 AB33 6 IO_L44N_6 AH33 6 IO_L77N_6 AA33 6 IO_L45P_6 AE31 6 IO_L78P_6 AA30 6 IO_L45N_6/VREF_6 AD32 6 IO_L78N_6 AB30 6 IO_L46P_6 AD27 6 IO_L79P_6 W24 6 IO_L46N_6 AC27 6 IO_L79N_6 V24 6 IO_L47P_6 AJ34 6 IO_L80P_6 AB34 6 IO_L47N_6 AH34 6 IO_L80N_6 AA34 6 IO_L48P_6 AE30 6 IO_L81P_6 W33 6 IO_L48N_6 AD30 6 IO_L81N_6/VREF_6 Y34 6 IO_L49P_6 AC26 6 IO_L82P_6 W25 6 IO_L49N_6 AB26 6 IO_L82N_6 V25 6 IO_L50P_6 AD29 6 IO_L83P_6 Y32 6 IO_L50N_6 AC29 6 IO_L83N_6 AA32 6 IO_L51P_6 AF33 6 IO_L84P_6 W29 6 IO_L51N_6/VREF_6 AG33 6 IO_L84N_6 V29 6 IO_L52P_6 AC28 6 IO_L91P_6 W28 6 IO_L52N_6 AB28 6 IO_L91N_6 V28 6 IO_L53P_6 AF34 6 IO_L92P_6 V33 6 IO_L53N_6 AE33 6 IO_L92N_6 V34 6 IO_L54P_6 AB27 6 IO_L93P_6 Y31 6 IO_L54N_6 AA27 6 IO_L93N_6/VREF_6 W31 6 IO_L67P_6 AA25 6 IO_L94P_6 V26 6 IO_L67N_6 Y25 6 IO_L94N_6 V27 6 IO_L68P_6 AD33 6 IO_L95P_6 W30 6 IO_L68N_6 AC33 6 IO_L95N_6 V30 6 IO_L69P_6 AC32 6 IO_L96P_6 V32 6 IO_L69N_6/VREF_6 AB32 6 IO_L96N_6 W32 6 IO_L70P_6 AA26 6 IO_L70N_6 Y26 7 IO_L96P_7 U31 6 IO_L71P_6 AD34 7 IO_L96N_7 V31 6 IO_L71N_6 AC34 7 IO_L95P_7 T28 Bank 6 IO_L72P_6 AC31 7 IO_L95N_7 U28 6 IO_L72N_6 AD31 7 IO_L94P_7 U33 6 IO_L73P_6 Y27 7 IO_L94N_7 U34 6 IO_L73N_6 W27 7 IO_L93P_7/VREF_7 U29 6 IO_L74P_6 AB29 7 IO_L93N_7 T29 6 IO_L74N_6 AA29 7 IO_L92P_7 U27 6 IO_L75P_6 AB31 7 IO_L92N_7 U26 6 IO_L75N_6/VREF_6 AA31 7 IO_L91P_7 T30 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 126 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Number Bank Pin Description Pin Number IO_L91N_7 U30 IO_L84P_7 R32 7 IO_L52N_7 M33 7 IO_L51P_7/VREF_7 M29 7 IO_L84N_7 T32 7 IO_L51N_7 L29 7 IO_L83P_7 U25 7 IO_L50P_7 M28 7 IO_L83N_7 T25 7 IO_L50N_7 N28 7 IO_L82P_7 R34 7 IO_L49P_7 K30 Bank Pin Description 7 7 7 IO_L82N_7 T33 7 IO_L49N_7 K31 7 IO_L81P_7/VREF_7 N34 7 IO_L48P_7 H32 7 IO_L81N_7 P34 7 IO_L48N_7 J32 7 IO_L80P_7 U24 7 IO_L47P_7 N26 7 IO_L80N_7 T24 7 IO_L47N_7 M26 7 IO_L79P_7 R31 7 IO_L46P_7 J33 7 IO_L79N_7 T31 7 IO_L46N_7 K33 7 IO_L78P_7 N32 7 IO_L45P_7/VREF_7 H33 7 IO_L78N_7 P32 7 IO_L45N_7 J34 7 IO_L77P_7 T27 7 IO_L44P_7 M27 7 IO_L77N_7 R27 7 IO_L44N_7 L27 7 IO_L76P_7 N33 7 IO_L43P_7 H31 7 IO_L76N_7 P33 7 IO_L43N_7 J31 7 IO_L75P_7/VREF_7 R29 7 IO_L30P_7 F32 7 IO_L75N_7 R28 7 IO_L30N_7 G32 7 IO_L74P_7 R26 7 IO_L29P_7 N25 7 IO_L74N_7 P26 7 IO_L29N_7 M25 7 IO_L73P_7 N31 7 IO_L28P_7 F34 7 IO_L73N_7 P31 7 IO_L28N_7 G34 7 IO_L72P_7 N30 7 IO_L27P_7/VREF_7 J30 7 IO_L72N_7 P30 7 IO_L27N_7 H30 7 IO_L71P_7 R25 7 IO_L26P_7 K28 7 IO_L71N_7 P25 7 IO_L26N_7 L28 7 IO_L70P_7 L34 7 IO_L25P_7 H28 7 IO_L70N_7 M34 7 IO_L25N_7 J29 7 IO_L69P_7/VREF_7 P29 7 IO_L24P_7 G29 7 IO_L69N_7 N29 7 IO_L24N_7 H29 7 IO_L68P_7 P27 7 IO_L23P_7 L26 7 IO_L68N_7 N27 7 IO_L23N_7 K26 7 IO_L67P_7 L32 7 IO_L22P_7 F33 7 IO_L67N_7 M32 7 IO_L22N_7 G33 7 IO_L54P_7 L31 7 IO_L21P_7/VREF_7 J28 7 IO_L54N_7 M31 7 IO_L21N_7 J27 7 IO_L53P_7 K29 7 IO_L20P_7 K27 7 IO_L53N_7 L30 7 IO_L20N_7 J26 7 IO_L52P_7 L33 7 IO_L19P_7 E31 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 127 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Number Bank Pin Description IO_L19N_7 F31 2 VCCO_2 T1 IO_L06P_7 D32 2 VCCO_2 R12 7 IO_L06N_7 E32 2 VCCO_2 R11 7 IO_L05P_7 L25 2 VCCO_2 R5 7 IO_L05N_7 K24 2 VCCO_2 P12 7 IO_L04P_7 D34 2 VCCO_2 P11 Bank Pin Description 7 7 Pin Number 7 IO_L04N_7 E34 2 VCCO_2 N12 7 IO_L03P_7/VREF_7 G30 2 VCCO_2 N11 7 IO_L03N_7 F30 2 VCCO_2 M11 7 IO_L02P_7/VRN_7 K25 2 VCCO_2 K1 7 IO_L02N_7/VRP_7 J25 2 VCCO_2 G4 7 IO_L01P_7 D33 3 VCCO_3 AH4 7 IO_L01N_7 E33 3 VCCO_3 AE1 3 VCCO_3 AC11 0 VCCO_0 M22 3 VCCO_3 AB12 0 VCCO_0 M21 3 VCCO_3 AB11 0 VCCO_0 M20 3 VCCO_3 AA12 0 VCCO_0 M19 3 VCCO_3 AA11 0 VCCO_0 M18 3 VCCO_3 Y12 0 VCCO_0 L23 3 VCCO_3 Y11 0 VCCO_0 L22 3 VCCO_3 Y5 0 VCCO_0 L21 3 VCCO_3 W12 0 VCCO_0 L20 3 VCCO_3 W1 0 VCCO_0 E20 3 VCCO_3 V12 0 VCCO_0 D28 4 VCCO_4 AP16 0 VCCO_0 A25 4 VCCO_4 AP10 0 VCCO_0 A19 4 VCCO_4 AL7 1 VCCO_1 M17 4 VCCO_4 AK15 1 VCCO_1 M16 4 VCCO_4 AD15 1 VCCO_1 M15 4 VCCO_4 AD14 1 VCCO_1 M14 4 VCCO_4 AD13 1 VCCO_1 M13 4 VCCO_4 AD12 1 VCCO_1 L15 4 VCCO_4 AC17 1 VCCO_1 L14 4 VCCO_4 AC16 1 VCCO_1 L13 4 VCCO_4 AC15 1 VCCO_1 L12 4 VCCO_4 AC14 1 VCCO_1 E15 4 VCCO_4 AC13 1 VCCO_1 D7 5 VCCO_5 AP25 1 VCCO_1 A16 5 VCCO_5 AP19 1 VCCO_1 A10 5 VCCO_5 AL28 2 VCCO_2 U12 5 VCCO_5 AK20 2 VCCO_2 T12 5 VCCO_5 AD23 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 128 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description 5 VCCO_5 AD22 NA TCK F7 5 VCCO_5 AD21 NA TDI C31 5 VCCO_5 AD20 NA TDO D5 5 VCCO_5 AC22 NA TMS E6 5 VCCO_5 AC21 NA PWRDWN_B AK6 5 VCCO_5 AC20 NA DXN F28 5 VCCO_5 AC19 NA DXP G27 5 VCCO_5 AC18 NA VBATT C4 6 VCCO_6 AH31 NA RSVD G8 6 VCCO_6 AE34 NA VCCAUX AM30 6 VCCO_6 AC24 NA VCCAUX AM18 6 VCCO_6 AB24 NA VCCAUX AM5 6 VCCO_6 AB23 NA VCCAUX V3 6 VCCO_6 AA24 NA VCCAUX U32 6 VCCO_6 AA23 NA VCCAUX C30 6 VCCO_6 Y30 NA VCCAUX C17 6 VCCO_6 Y24 NA VCCAUX C5 6 VCCO_6 Y23 NA VCCINT AD24 6 VCCO_6 W34 NA VCCINT AD11 6 VCCO_6 W23 NA VCCINT AC23 6 VCCO_6 V23 NA VCCINT AC12 7 VCCO_7 U23 NA VCCINT AB22 7 VCCO_7 T34 NA VCCINT AB21 7 VCCO_7 T23 NA VCCINT AB20 7 VCCO_7 R30 NA VCCINT AB19 7 VCCO_7 R24 NA VCCINT AB18 7 VCCO_7 R23 NA VCCINT AB17 7 VCCO_7 P24 NA VCCINT AB16 7 VCCO_7 P23 NA VCCINT AB15 7 VCCO_7 N24 NA VCCINT AB14 7 VCCO_7 N23 NA VCCINT AB13 7 VCCO_7 M24 NA VCCINT AA22 7 VCCO_7 K34 NA VCCINT AA13 7 VCCO_7 G31 NA VCCINT Y22 NA VCCINT Y13 NA CCLK AH8 NA VCCINT W22 NA PROG_B D30 NA VCCINT W13 NA DONE AJ7 NA VCCINT V22 NA M0 AH27 NA VCCINT V13 NA M1 AJ28 NA VCCINT U22 NA M2 AK29 NA VCCINT U13 NA HSWAP_EN E29 NA VCCINT T22 DS122 (v2.0) December 21, 2007 Product Specification Pin Number www.xilinx.com 129 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Pin Number Bank Pin Description Pin Number VCCINT T13 NA GND AH28 VCCINT R22 NA GND AH21 NA VCCINT R13 NA GND AH14 NA VCCINT P22 NA GND AH7 NA VCCINT P13 NA GND AG34 NA VCCINT N22 NA GND AG27 NA VCCINT N21 NA GND AG8 NA VCCINT N20 NA GND AG1 NA VCCINT N19 NA GND AF19 NA VCCINT N18 NA GND AF16 NA VCCINT N17 NA GND AE32 NA VCCINT N16 NA GND AE3 NA VCCINT N15 NA GND AC30 NA VCCINT N14 NA GND AC5 NA VCCINT N13 NA GND AA28 NA VCCINT M23 NA GND AA21 NA VCCINT M12 NA GND AA20 NA VCCINT L24 NA GND AA19 NA VCCINT L11 NA GND AA18 NA GND AA17 Bank Pin Description NA NA NA GND AP32 NA GND AA16 NA GND AP27 NA GND AA15 NA GND AP8 NA GND AA14 NA GND AP3 NA GND AA7 NA GND AN33 NA GND Y33 NA GND AN20 NA GND Y21 NA GND AN15 NA GND Y20 NA GND AN2 NA GND Y19 NA GND AM34 NA GND Y18 NA GND AM32 NA GND Y17 NA GND AM25 NA GND Y16 NA GND AM10 NA GND Y15 NA GND AM3 NA GND Y14 NA GND AM1 NA GND Y2 NA GND AL31 NA GND W26 NA GND AL4 NA GND W21 NA GND AK30 NA GND W20 NA GND AK23 NA GND W19 NA GND AK12 NA GND W18 NA GND AK5 NA GND W17 NA GND AJ29 NA GND W16 NA GND AJ6 NA GND W15 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 130 R QPro Virtex-II 1.5V Platform FPGAs Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Table 78: CF1152 and EF1144 — XQ2V6000 (Cont’d) Bank Pin Description Pin Number Bank Pin Description Pin Number NA GND W14 NA GND P18 NA GND W9 NA GND P17 NA GND V21 NA GND P16 NA GND V20 NA GND P15 NA GND V19 NA GND P14 NA GND V18 NA GND P7 NA GND V17 NA GND M30 NA GND V16 NA GND M5 NA GND V15 NA GND K32 NA GND V14 NA GND K3 NA GND U21 NA GND J19 NA GND U20 NA GND J16 NA GND U19 NA GND H34 NA GND U18 NA GND H27 NA GND U17 NA GND H8 NA GND U16 NA GND H1 NA GND U15 NA GND G28 NA GND U14 NA GND G21 NA GND T26 NA GND G14 NA GND T21 NA GND G7 NA GND T20 NA GND F29 NA GND T19 NA GND F6 NA GND T18 NA GND E30 NA GND T17 NA GND E23 NA GND T16 NA GND E12 NA GND T15 NA GND E5 NA GND T14 NA GND D31 NA GND T9 NA GND D4 NA GND R33 NA GND C34 NA GND R21 NA GND C32 NA GND R20 NA GND C25 NA GND R19 NA GND C10 NA GND R18 NA GND C3 NA GND R17 NA GND C1 NA GND R16 NA GND B33 NA GND R15 NA GND B20 NA GND R14 NA GND B15 NA GND R2 NA GND B2 NA GND P28 NA GND A32 NA GND P21 NA GND A27 NA GND P20 NA GND A8 NA GND P19 NA GND A3 DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 131 R QPro Virtex-II 1.5V Platform FPGAs CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package Specifications (1.00 mm pitch) X-Ref Target - Figure 56 Figure 56: CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package Specifications DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 132 R QPro Virtex-II 1.5V Platform FPGAs EF1152 Epoxy-Coated Flip-Chip BGA Package Specifications (1.00 mm pitch) X-Ref Target - Figure 57 Figure 57: EF1152 Epoxy-Coated Flip-Chip BGA Package Specifications DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 133 R QPro Virtex-II 1.5V Platform FPGAs References 1. UG002, Virtex-II Platform FPGA User Guide. 2. XAPP623, Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors. 3. XAPP689, Managing Ground Bounce in Large FPGAs. 4. DS031, Virtex-II Platform FPGAs. Revision History This section records the change history for this module of the data sheet. Date Version Revision 9/24/03 1.0 Advance release. 12/10/03 1.1 Initial Xilinx release. 11/30/06 1.2 • Updated format. • Updated pin assignments for "BG575 Standard BGA Package," page 86. 12/21/07 2.0 • Added support for XQ2V6000-5EF957I, XQ2V6000-4EF1152I, and XQ2V6000-5EF1152I. • Updated the values in Table 34, page 49 and Table 35, page 49. • Updated package drawings for: ♦ "CG717 Ceramic Column Grid Array (CGA) Package Specifications (1.27 mm pitch)," page 104 ♦ "CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package Specifications (1.00 mm pitch)," page 132 • Updated document template. • Updated URLs. Notice of Disclaimer THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS. DS122 (v2.0) December 21, 2007 Product Specification www.xilinx.com 134