PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER DECEMBER 2006 GENERAL DESCRIPTION The EXAR XRS10L120 is a Serial ATA port multiplier designed for next generation enterprise class disk array systems that use SATA mid-planes. The device is targeted at low cost storage applications. This function is used when one active host has to communicate with multiple SATA drives. The XRS10L120 supports up to 2 SATA drives and utilizes the full bandwidth of the host connection. The upstream ports of XRS10L120 can also be attached to a port selector (XRS10L210) or a Serial ATA Switch to provide redundancy in a more complex topology. The XRS10L120 includes enhanced features such as staggered HDD spin-up, power management control, hot plug capability and support for legacy software. The XRS10L120 acts as a retimer, maintaining independent signaling domains between the drives themselves and the external interconnect. The high-speed serial input features selectable equalization adjustment and the high-speed serial output features selectable pre-emphasis to compensate for ISI (Inter-Symbol Interference) and increase maximum cable distances. XRS10L120 applications. reliable data FR-4 and 15 cable. meets tight jitter budgets in SATA Exar's serial I/O technology enables transmission over 1 meter or more of meters or more of unequalized copper Host and drive port speeds can be mixed and matched, based upon inherent data rate negotiation present in the SATA II specifications. The MDIO bus allows simple configuration of the device. To summarize, the XRT10L120 port multiplier device allows the system designer to increase the number of serial ATA connections in an enclosure that does not have a sufficient number of serial ATA connections for all of the drives in the enclosure. REV. P1.0.1 device. PM ports 0 and 1 are valid device ports within the 2-output XRS10L120, while PM port 15 is designated for communication between the host and the XRS10L120 itself. For host-to-device transactions, the PM Port field is designated by the host in order to specify which device the frame is intended for. For device-to-host transactions, the XRS10L120 fills in the PM Port field with the port address of the device that is transmitting the frame. STANDARDS COMPLIANCE The XRS10L120 is compliant with the following industry specifications: • Serial ATA, Revision 1.0a • Serial ATA II: Extensions to Serial ATA 1.0a, Revision 1.2 • Serial ATA II PHY Electrical Specifications, Revision 1.0 • Serial ATA II: Port Multiplier, Revision 1.2 APPLICATIONS • • • • • Other Serial ATA link replicator applications Buffers for externally connected links High density storage boxes RAID Subsystems FEATURES GENERAL FEATURES • Three independent 3/1.5G SATA ports. • Supports 3/1.5G rate detection/speed negotiation. • Supports power down modes - Active, partial, slumber and power down. PORT MULTIPLIER LOGIC FEATURES • Low latency architecture. • Supports OOB signaling for SATA applications. Internal OOB detectors for COMSAS, COMRESET/ COMINIT and COMWAKE. OVERVIEW OF PORT MULTIPLIER LOGIC XRS10L120 port multiplier is a multiplexer where one active host connection is multiplexed to multiple device connections. The XRS10L120 is an extensible design that can support up to 2 device connections and utilizes the full bandwidth of the host connection. XRS10L120 uses four bits, known as the PM Port field in all Serial ATA frame types, to route frames between the selected host and the appropriate Serial ATA Enclosures TEST AND CONTROL FEATURES • • • • Supports MDIO Bus. Outputs for various failure modes. Built-In self test mode through the MDIO bus. Supports various loopback modes. Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (510) 668-7000 • FAX (510) 668-7017 • www.exar.com PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 HIGH SPEED I/O FEATURES • High speed outputs with selectable pre-emphasis to extend the link budgets. • High speed input equalization for improved signal integrity. • Compliant with SATA Gen2i & Gen2 specification. • Enables reliable data transmission over 1 meter or more of FR-4 and 15 meters or more of unequalized copper cable. • Supports spread spectrum clocking to reduce EMI. PHYSICAL FEATURES • CMOS 0.13 Micron Technology • Single 1.2 V Power Supply • -40°C to 85°C Industrial Temperature Range • 2000 V ESD Rating on All Pins • No heatsink or airflow required • 100-Pin LQFP Package APPLICATION EXAMPLE The XRS10L120 is ideally suited for use within an external drive enclosure as a means of providing access to up to two target devices per XRS10L120. This application is shown in Figure 1. Other applications for the XRS10L120 include use in fixed-content or network attached storage systems, storage arrays, desktop applications or entry-level servers, RAID storage or disk-to-disk backup. FIGURE 1. SYSTEM BLOCK DIAGRAM FOR XRS10L120 IN A DRIVE ENCLOSURE A PPLICATION DRIVE ENCLOSURE SATA XRS10L120 Port Mutiplier SATA 2 PRELIMINARY XRS10L120 SERIAL ATA II: 1:4 PORT MULTIPLIER REV. P1.0.0 TABLE OF CONTENTS GENERAL DESCRIPTION................................................................................................ 1 OVERVIEW OF PORT MULTIPLIER LOGIC .......................................................................................................... STANDARDS COMPLIANCE .............................................................................................................................. APPLICATIONS.......................................................................................................................................... FEATURES .................................................................................................................................................... 1 1 1 1 General Features ....................................................................................................................................................... Port Multiplier Logic Features..................................................................................................................................... Test and Control Features.......................................................................................................................................... High Speed I/O Features............................................................................................................................................ Physical Features ....................................................................................................................................................... Application Example ................................................................................................................................................... 1 1 1 2 2 2 FIGURE 1. SYSTEM BLOCK DIAGRAM FOR XRS10L120 IN A DRIVE ENCLOSURE APPLICATION ........................................................... 2 TABLE OF CONTENTS ..................................................................................................... I 1.0 PIN DESCRIPTIONS................................................................................................................................ 3 FIGURE 2. PINOUT OF THE XRS10L120 ........................................................................................................................................... 3 TABLE 1: XRS10L120 PIN DESCRIPTIONS ....................................................................................................................................... 4 2.0 FUNCTIONAL DESCRIPTION................................................................................................................. 6 FIGURE 3. XRS10L120 INTERFACES ................................................................................................................................................ 6 FIGURE 4. XRS10L120 BLOCK DIAGRAM ......................................................................................................................................... 6 2.1 OUT OF BAND FEATURE................................................................................................................................... 7 FIGURE 5. COMWAKE AND COMRESET/COMINIT S EQUENCES ................................................................................................... 7 FIGURE 6. EXAMPLE OOB SEQUENCE .............................................................................................................................................. 7 2.2 POWER DOWN MODES ..................................................................................................................................... 8 2.3 SPEED NEGOTIATION ....................................................................................................................................... 8 FIGURE 7. SERIAL ATA SPEED N EGOTIATION ................................................................................................................................... 8 2.4 PORT MULTIPLIER IMPLEMENTATION............................................................................................................ 9 FIGURE 8. PORT SELECTION SIGNAL - TRANSMITTED COMRESET SIGNALS ..................................................................................... 9 2.5 TRANSMISSION FROM A HOST TO A DEVICE................................................................................................ 9 2.5.1 TRANSMISSION FROM A DEVICE TO A HOST ......................................................................................................... 10 2.6 CLOCKING ........................................................................................................................................................ 11 TABLE 2: PLL DIVIDE FACTORS ...................................................................................................................................................... 11 2.6.1 SPREAD SPECTRUM CLOCKING............................................................................................................................... 11 FIGURE 9. SPREAD SPECTRUM C LOCKING ...................................................................................................................................... 11 2.7 TEST AND LOOPBACK MODES...................................................................................................................... 12 2.7.1 HOST SIDE LOOPBACK MODES................................................................................................................................ 12 Shallow Host Loopback Mode .................................................................................................................................. 12 FIGURE 10. SHALLOW H OST LOOPBACK MODE ............................................................................................................................... 12 Deep Host Loopback Mode ...................................................................................................................................... 12 FIGURE 11. DEEP HOST LOOPBACK MODE ..................................................................................................................................... 12 2.7.2 DEVICE SIDE LOOPBACK MODES ............................................................................................................................ 13 Shallow Device Loopback Mode .............................................................................................................................. 13 FIGURE 12. SHALLOW D EVICE LOOPBACK MODE ............................................................................................................................ 13 Deep Device Loopback Mode .................................................................................................................................. 13 FIGURE 13. DEEP DEVICE LOOPBACK MODE .................................................................................................................................. 13 3.0 ELECTRICAL SPECIFICATIONS.......................................................................................................... 14 3.1 SERIAL ATA SPECIFICATIONS....................................................................................................................... 14 3.1.1 SERIAL ATA TRANSMITTER....................................................................................................................................... FIGURE 14. SERIAL ATA EQUIVALENT O UTPUT CIRCUIT ................................................................................................................. FIGURE 15. EFFECTS OF TRANSMIT PRE-EMPHASIS ........................................................................................................................ FIGURE 16. TRANSMIT EYE MASK FOR SERIAL ATA O UTPUT .......................................................................................................... 14 14 15 15 Serial ATA Receiver ................................................................................................................................................. 16 FIGURE 17. SERIAL ATA EQUIVALENT INPUT CIRCUIT ..................................................................................................................... 16 FIGURE 18. RECEIVE EYE MASK FOR SERIAL ATA INPUT ................................................................................................................ 16 TABLE 3: SERIAL ATA LINK SPECIFICATIONS .................................................................................................................................. 17 3.2 CMOS INTERFACE ........................................................................................................................................... 18 TABLE 4: CMOS I/O SPECIFICATIONS ............................................................................................................................................ 18 3.3 MDIO INTERFACE............................................................................................................................................. 18 FIGURE 19. REPRESENTATIVE MDIO CIRCUIT ................................................................................................................................ 18 FIGURE 20. MDIO INPUT AND OUTPUT WAVEFORMS ...................................................................................................................... 19 I XRS10L120 PRELIMINARY SERIAL ATA II: 1:4 PORT MULTIPLIER REV. P1.0.0 TABLE 5: MDIO DC AND AC CHARACTERISTICS ............................................................................................................................. 19 TABLE 6: OPERATING CONDITIONS ................................................................................................................................................. 20 4.0 REGISTERS DESCRIPTION.................................................................................................................. 21 4.1 REGISTER OVERVIEW ..................................................................................................................................... 21 TABLE 7: MDIO DEVICE DESIGNATIONS ......................................................................................................................................... 21 TABLE 8: MDIO ADDRESSING ........................................................................................................................................................ 21 4.2 MACRO REGISTERS ........................................................................................................................................ 22 TABLE 9: TRANSMIT/RECEIVE LANE REGISTERS (MDIO DEVICE 1 AND 2) ........................................................................................ 22 FIGURE 21. EFFECT OF SETTING R ECEIVE OFFSET REGISTER ........................................................................................................ 28 TABLE 10: PLL CONFIGURATION/D EBUG REGISTERS (MDIO DEVICE 1 AND 2) ................................................................................ 29 TABLE 11: BIAS GENERATOR CONFIGURATION/D EBUG R EGISTERS (MDIO DEVICE 1 AND 2) ............................................................ 31 TABLE 12: POWERDOWN REGISTERS (MDIO D EVICES 1 AND 2) ...................................................................................................... 35 TABLE 13: BLOCK CONTROL SIGNALS (MDIO DEVICES 1 AND 2) ..................................................................................................... 36 4.3 XRS10L120 DEVICE GENERIC REGISTERS................................................................................................... 37 TABLE 14: RESET CONTROL SIGNALS ............................................................................................................................................. 37 TABLE 15: SATA P ORT MULTIPLIER REGISTERS ............................................................................................................................. 39 TABLE 16: CLOCK CONFIGURATION REGISTER ................................................................................................................................ 47 5.0 FEATURES AND BENEFITS ................................................................................................................ 48 TABLE 17: FEATURES AND BENEFITS .............................................................................................................................................. 48 PRODUCT ORDERING INFORMATION .................................................................................................... 48 100 LEAD LOW-PROFILE QUAD FLAT PACK................................................................................... 49 REVISIONS .................................................................................................................................................. 50 II PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 1.0 PIN DESCRIPTIONS 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 RESETB DRACT0 DRACT1 NC NC VSS SOTN0 SOTP0 VDD SORN0 SORP0 VSS VSSA VDDA VSS SORP1 SORN1 VDD SOTP1 SOTN1 VSS VDD VSS PWRDNB ANTEST FIGURE 2. PINOUT OF THE XRS10L120 XRS10L120 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 TRST PORTSEL MDC VSS MDIO VSS NC NC VDD NC NC VSS VSSA VDDA VSS NC NC VDD NC NC VSS VSS VDD CLKSTN CLKSTP HBACT NC VSS VDD VSS NC NC VDD NC NC VSS VDDA VSSA VSS SiRP SiRN VDD SiTP SiTN VSS TCK TMS VDD TDO TDI 3 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 VDDA RBias VSSA CMU_REFN CMU_REFP VDDA XOG XOD VSSA VSS NC NC VDD PRN1 PRP1 VSS VDDA VSSA VSS PRP0 PRN0 VDD NC NC VSS PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 1: XRS10L120 PIN DESCRIPTIONS PIN NAME P IN NUMBER I/O I/O TYPE DESCRIPTION DATA INTERFACE SOTP0/SOTN0 68, 69 SOTP1/SOTN1 57, 56 SORP0/SORN0 65, 66 SORP1/SORN1 60, 59 SITP/SITN SIRP/SIRN O CML AC Coupled Serial ATA Output Transmitters. These ports communicate from the XRS10L120 to downstream devices I Serial ATA Input Receivers. These ports receive signals from downstream devices 93, 94 O Serial ATA Output Transmitter. This port communicates from the XRS10L120 to upstream hosts. 90, 91 I Serial ATA Input Receiver. This port receives signals from upstream hosts. CLOCK INTERFACE CMU_REFP/ CMU_REFN 46, 47 I CML AC Coupled Reference clock input (Select by setting bit 2 = 1 in register 0.0001) XOD 43 I Analog Crystal oscillator input (power up default state) XOG 44 I Analog Crystal oscillator input (bit 2 = 0 in register 0.0001) MDIO INTERFACE SIGNALS MDC 3 I LVCMOS MDIO clock input MDIO 5 I/O LVCMOS MDIO data port. Open drain JTAG INTERFACE SIGNALS TCK 96 I LVCMOS JTAG test clock TDI 100 I JTAG test data in TDO 99 O JTAG test data out. Open drain TMS 97 I JTAG mode select TRST 1 I JTAG test reset GENERAL CONTROL AND CONFIGURATION SIGNALS (CMOS) RBIAS 49 I Analog RESETB 75 I LVCMOS Active low reset pin. PWRDNB 52 I LVCMOS Active low power down signal for chip. DRACT0 74 O LVCMOS Drive activity port 0 for external LED. 1.2V CMOS open drain DRACT1 73 LVCMOS Drive activity port 1 for external LED. 1.2V CMOS open drain HBACT 76 LVCMOS Host bus adaptor activity port 0 for external LED. 1.2V CMOS open drain O Connection point for calibration termination resistor. TEST PIN 4 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 1: XRS10L120 PIN DESCRIPTIONS PIN NAME P IN NUMBER I/O I/O TYPE DESCRIPTION ANTEST 51 O Analog PORTSEL 2 I LVCMOS Ground CLKSTN/ CLKSTP 24, 25 O CML AC Coupled Output clock test pin Analog test pin RESERVED PINS PRP0/PRN0 31, 30 I Short with a 100 ohms resistor PRP1/PRN1 36, 37 I Short with a 100 ohms resistor PTP0/PTN0 28, 27 O No Connect PTP1/PTN1 39, 40 O No Connect Reserved 7,8, 10, 11, 16, 17, 19, 20, 71, 72, 77, 81, 82, 84, 85 - No Connect POWER AND G ROUND SIGNALS VDD 9, 18, 23, 29, 38, 54, 58, 67, 79, 83, 92, 98 I 1.2V supply. VDDA 14, 34, 45, 50, 62, 87 I 1.2V Analog supply. VSS 4, 6, 12, 15, 21, 22, 26, 32, 35, 41, 53, 55, 61, 64, 70, 78, 80, 86, 89, 95 I Ground. VSSA 13, 33, 42, 48, 63, 88 I Analog Ground. 5 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 2.0 FUNCTIONAL DESCRIPTION A top-level view of the XRS10L120 is shown in Figure 3 outlining the interfaces to the device and the required support components. The data path can be seen at the top of the device. This includes the output transmit and input receive path at the top left, providing the upstream interface to the host, and the output transmit and input receive paths at the top right, providing the downstream interface to the target devices. The clocking, control, and configuration interfaces are shown below the dashed line. FIGURE 3. XRS10L120 INTERFACES Serial ATA Upstream SiT_P0/SiT_N0 SOT_P/N[1:0] Serial ATA Downstream Interface to HBAs SiR_P0/SiR_N0 SOR_P/N[1:0] Interface to HBAs Output Port Status LED DRACT[1:0] Reference Clock CMU_REF_P/N HBACT0 Control and configuration Interface XOD RESETB XOG PWRDNB TCK Crystal Oscillator Inputs TDI MDC TDO1 JTAG Interface MDIO1 TMS RBIAS VDDA TRST Calibration Resistor 49.9 Ω ± 1% The XRS10L120 incorporates identical instantiations of a dual-channel Serial ATA II 3 Gbps PHY macro. This common building block provides a uniform implementation with common characteristics and a common register map, but provides a functional implementation of independent PHY blocks. Digital logic implementations of Serial ATA link layer blocks along with port multiplier logic provide the remainder of the data path within the XRS10L120. In addition, management and control interfaces including an MDIO interface for register control, a JTAG interface for boundary scan purposes, and a resistor calibration circuit complete the device. A block diagram of the XRS10L120 is shown in Figure 4. FIGURE 4. XRS10L120 B LOCK D IAGRAM SIR SIT SATA II 3G PHY SATA II LINK LAYER SATA II LINK LAYER SATA II 3G PHY SOT 0 SATA II LINK LAYER SATA II 3G PHY SOT 1 SOR 0 RATE ADJUST FIFO PORT MULTIPLIER 6 SOR 1 PRELIMINARY SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 2.1 XRS10L120 Out of Band Feature Each Serial ATA link provides full support for the three Out Of Band (OOB) signals supported by Serial ATA: COMRESET, COMINIT and COMWAKE. These sequences must be separated by idle periods as shown in Figure 5. The sequences are comprised of 106.7ns bursts of activity that are interleaved with varying length stretches of electrical idle. This alternating sequence must be repeated four times to be recognized. FIGURE 5. COMWAKE AND COMRESET/COMINIT SEQUENCES 106.7ns COMWAKE 106.7ns COMRESET COMINIT 320ns An example OOB sequence and the resulting burst and idle widths are shown in Figure 6. If the sequence of burstWidth and idleWidth counts falls within the range specified in the MDIO registers for four consecutive burst/idle sequences, then the link will assert COMINIT or COMWAKE. This OOB signal will remain asserted for as long as the corresponding sequence on the input pins continues. FIGURE 6. EXAMPLE OOB SEQUENCE rxdP, rxdN squelchClock burstWidth idleWidth 15 15 17 15 17 COMINT = (MaxBurstWidth≥burstWidth≥MinBurstWidth) && (MaxInitWidth≥idleWidth≥MinInitWidth) COMWAKE = (MaxBurstWidth≥burstWidth≥MinBurstWidth) && (MaxWakeWidth≥idleWidth³MinWakeWidth) 7 17 XRS10L120 PRELIMINARY SERIAL ATA II: 1:2 PORT MULTIPLIER 2.2 REV. P1.0.1 Power Down Modes Each Serial ATA link within the XRS10L120 features independent full support for the 3 defined Serial ATA power modes, as follows: • Active: All parts of the link are active. All power-down signals are de-asserted. • Partial: In partial mode, the input and output pipelines are shut down, but the PLL and the OOB generation circuits are active. • Slumber: In slumber mode, the PLL is also shut down, saving additional power but adding latency on exit. The XRS10L120 also provides full support for power management commands from connected hosts and devices, as outlined by the Serial ATA II port multiplier specifications. If the PhyRdy signal is not present between the host and the XRS10L120, the XRS10L120 will power down the PHY connected to the host and squelch the device transmitters. OOB signals will still be propagated between the host and the XRS10L120. Power management requests from a host port, as specified by a PMREQ primitive, will propagate to all active device ports. In such a condition, the XRS10L120 will respond with a PMACK or PMNAK primitive, appropriately modify the power setting of the link with the host, and then propagate the request to each device that has PhyRdy set. The link within the XRS10L120 to each device that responds with a valid PMACK signal will be appropriately modified to reflect the new power setting. Power management requests from a device port, as specified by a PMREQ primitive, will only affect the link between that device and the XRS10L120. In such a condition, the XRS10L120 will respond with a PMACK or PMNAK primitive, and modify the link to reflect the requested power state. 2.3 Speed Negotiation The XRS10L120 will automatically perform speed negotiation with the host and devices in order to verify whether the second generation Serial ATA 3.0 Gbps data rate is available or whether the system will need to fall back upon the first generation Serial ATA 1.5 Gbps data rate. Speed negotiation is performed on an independent basis by each of the dual-channel macros. To perform speed negotiation with a downstream device, the XRS10L120 will first perform a COMRESET/COMINIT handshake with the device and then performs a calibrate/COMWAKE handshake. Following receipt of the device COMWAKE signal, the XRS10L120 will continually send out a D10.2 signal while awaiting receipt of the device ALIGN primitive. Depending on the speed of the ALIGN primitive, the XRS10L120 will be able to determine the PHY generation of the device, and provide the appropriate 1.5 Gbps or 3.0 Gbps ALIGN primitive in return to the device, thus completing speed negotiation. This process is outlined in Figure 7. FIGURE 7. SERIAL ATA SPEED NEGOTIATION 8 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 For speed negotiation with an upstream host, after the COMRESET/COMINIT and COMWAKE handshake is complete, the XRS10L120 will initially send out an ALIGN primitive at the 2nd generation 3.0 Gbps data rate. If no confirming 3.0 Gbps ALIGN primitive is received from the host, the XRS10L120 will then step down and attempt negotiation at the lower 1.5 Gbps data rate. 2.4 Port Multiplier Implementation The XRS10L120 provides full support for the functionality outlined in the Serial ATA II Port Multiplier specification. A Serial ATA II Port Multiplier is a mechanism for a host connection to communicate with multiple devices. A Port Multiplier is conceptually a simple multiplexer in which a host connection is multiplexed to multiple device connections. The XRS10L120 uses four bits, known as the PM Port field in all Serial ATA frame types, to route frames between the host and the appropriate device. PM ports 0 and 1 are valid device ports within the 2-output XRS10L120, while PM port 15 is designated for communication between the host and the XRS10L120 itself. For host-to-device transactions, the PM Port field is designated by the host in order to specify which device the frame is intended for. For device-to-host transactions, the XRS10L120 fills in the PM Port field with the port address of the device that is transmitting the frame. The PM Port field is defined in the Serial ATA port multiplier specification to be the first 32-bit Dword in the Frame Information Structure (FIS) for all FIS types, as shown in Figure 8. FIGURE 8. PORT SELECTION SIGNAL - TRANSMITTED COMRESET SIGNALS As defined in Serial ATA1.0 2.5 PM Port FIS Type Transmission from a Host to a Device A host indicates the target device for receipt of a transmitted frame by setting the PM Port field in the frame to the device's port address. When an XRS10L120 receives a frame as selected from the host, it checks the PM Port field in the frame to determine which port address should be used. If the frame is set for transmission to the control port (15), the XRS10L120 receives the frame and performs the command or operation requested. If the frame is designated for a device port, the XRS10L120 obeys the following procedure: 1. The XRS10L120 first determines if the device port is valid. If the device port is not valid, the XRS10L120 will issue a SYNC primitive to the host and terminate reception of the frame. 2. The XRS10L120 determines if the X bit is set in the device port's PSCR[1] (SError) register. If the X bit is set, the XRS10L120 issues a SYNC primitive to the host and terminates reception of the frame. 3. The XRS10L120 determines if a collision has occurred. A collision occurs when a reception is already in progress from the device that the host wants to transmit to. If a collision has occurred, the XRS10L120 will finish receiving the frame from the host and will then issue an R_ERR primitive to the host as the ending status. The XRS10L120 will then discard the frame, but will not return an R_RDY primitive to the host until the frame from the affected device port has been transmitted to the host, thus indicating to the host when it can retry to send the frame. The transmission from the device will proceed as requested, as the device will always take collision precedence over the host. 4. The XRS10L120 initiates a transfer with the device by issuing an X_RDY primitive to the device. A collision may occur as the XRS10L120 is issuing the X_RDY to the device if the device has started transmitting an X_RDY primitive to the XRS10L120, indicating a decision to start a transmission to the host. In this case, the XRS10L120 will finish receiving the frame from the host and then issue an R_ERR primitive to the host to indicate an unsuccessful transmission. The transmission from the device will proceed as requested, as the device will always take collision precedence over the host. 5. After the device issues an R_RDY primitive to the XRS10L120, the XRS10L120 will transmit the frame from the host to the device. The XRS10L120 will not send an R_OK status primitive to the host until the 9 XRS10L120 PRELIMINARY SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 device has issued an R_OK primitive to indicate successful frame reception. In this way, the R_OK status handshake is interlocked from the device to the host. If an error is detected during any part of the frame transfer, the XRS10L120 will ensure that the error condition is propagated to the host and the device. If no error occurs during frame transfer, the XRS10L120 will not alter the contents of the frame, or modify the CRC in any way. 2.5.1 Transmission from a Device to a Host A device indicates a transmit to a host in the same way as would be done if the host and device were attached directly. This transaction obeys the following procedure: 1. After receiving an X_RDY primitive from the device, the XRS10L120 will determine if the X bit is set in the device port's PSCR (SError) register. The XRS10L120 will not issue an R_RDY primitive to the device until this bit is cleared to zero. 2. The XRS10L120 will then receive the frame from the device. The XRS10L120 will fill in the PM Port field with the port address of the transmitting device. The XRS10L120 will then check the CRC received from the device, and if valid, it will recalculate the CRC based upon the new PM Port field. If the CRC calculated from the device is incorrect, the XRS10L120 will corrupt the CRC sent to the host to ensure propagation of the error condition 3. The XRS10L120 will issue an X_RDY primitive to the host to start the transmission of the frame to the host. After the host issues an R_RDY primitive to the XRS10L120, the frame from the device, with the updated CRC, will then be transmitted to the host. The XRS10L120 will not send an R_OK status primitive to the device until the host has issued an R_OK primitive to indicate successful frame reception. In this way, the R_OK status handshake will be interlocked from the device to the host. If an error is detected during any part of the frame transfer, the XRS10L120 will ensure that the error condition is propagated to the host and the device. 10 PRELIMINARY SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 2.6 XRS10L120 Clocking The XRS10L120 allows the use of either an external reference clock or of a low cost crystal oscillator to act as a reference clock. Separate device inputs are available for each approach, with full rate reference clock inputs provided on pins CMU_REFP and CMU_REFN, and crystal oscillator inputs provided on pins XOD and XOG. Supported data rates and their appropriate PLL divide factors are outlined in Table 2. TABLE 2: PLL DIVIDE FACTORS CMU_REF XO FREQ /REF (REG N.0041) /FB (REG N.0040) DATA RATE SATA Gen. 1 25MHz 1 30 1.5Gbps* SATA Gen. 1 75MHz 1 10 1.5Gbps* SATA Gen. 1 100MHz 2 15 1.5Gbps* SATA Gen. 1 150MHz 1 5 1.5Gbps* SATA Gen. 2 25MHz 1 60 3.0Gbps SATA Gen. 2 75MHz 1 20 3.0Gbps SATA Gen. 2 100MHz 2 30 3.0Gbps SATA Gen. 2 150MHz 1 10 3.0Gbps MODE OR NOTE: * All link start with 3.0Gbps, then negotiate down to 1.5Gbps for SATA Generation 1 devices. 2.6.1 Spread Spectrum Clocking The XRS10L120 provides full support for receipt and generation of signals that have been configured for Spread Spectrum Clocking (SSC) support. The spread technique is implemented by down-spreading the data rate by 0.5% as a means of reducing EMI. Generation of the down-spread clock is performed within the XRS10L120. An example of the resultant spectral fundamental frequency before and after SSC can be seen in Figure 9. FIGURE 9. SPREAD SPECTRUM CLOCKING 11 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER 2.7 REV. P1.0.1 Test and Loopback Modes The XRS10L120 provides for loopback testing on both the host and device interfaces, and incorporates a number of internal testing features, as outlined in the following subsections. 2.7.1 Host Side Loopback Modes The XRS10L120 supports two forms of host loopback modes: a shallow serial loopback implemented within the host PHY macro, or a deep parallel loopback implemented within the device PHY macros after the port selector and port multiplier functionality. SHALLOW H OST LOOPBACK MODE The shallow host loopback mode is shown in Figure 10. In this mode, the incoming data stream from the host and embedded clock are recovered by an internal CDR, and the deserialized data is retransmitted serially back to the host, as clocked by the recovered clock. In this implementation, the received data is still transmitted to the internal port selector block and will propagate through to the device side output pins. FIGURE 10. SHALLOW HOST LOOPBACK MODE SiT SOT0 SOR0 SiR SOT1 SOR1 Dual PHY PHY Layer Port Multiplier DEEP HOST LOOPBACK MODE The deep host loopback mode is shown in Figure 11. In this mode, the incoming data stream from the host is transmitted through the digital blocks within the XRS10L120, and the loopback path is implemented at the device-side Serial ATA PHY block. Note that once again, the looped back data is still transmitted on the deviceside output pins. The deep host loopback mode is enabled by using the Parallel Loopback registers for the downstream PHYs in Device 2 or 3. This received data must be in the form of valid SATA frames for a deep loopback to be successful, or the internal logic must be bypassed via MDIO register settings. FIGURE 11. DEEP HOST LOOPBACK MODE SiT SOT0 SOR0 SiR SOT1 SOR1 Dual PHY PHY Layer Port Multiplier 12 PRELIMINARY SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 2.7.2 XRS10L120 Device Side Loopback Modes The XRS10L120 supports two forms of device-side loopback modes: a shallow serial loopback implemented within the device-side PHY macros, or a deep parallel loopback implemented within the host PHY macro after the port multiplier functionality. SHALLOW D EVICE LOOPBACK MODE The shallow device loopback mode is shown in Figure 12. In this mode, the incoming data stream from the device and embedded clock are recovered by an internal CDR, and the deserialized data is retransmitted serially back to the designated device, as clocked by the recovered clock. In this implementation, the received data is still transmitted to the internal port multiplier block. FIGURE 12. SHALLOW DEVICE LOOPBACK MODE SiT SOT0 SOR0 SiR SOT1 SOR1 Dual PHY PHY Layer Port Multiplier DEEP DEVICE LOOPBACK MODE The deep device loopback mode is shown in Figure 13. In this mode, the incoming data stream from the device is transmitted through the digital blocks within the XRS10L120, and the loopback path is implemented at the host-side Serial ATA PHY block. Note that once again, the looped back data is still transmitted on the host-side output pins. FIGURE 13. DEEP D EVICE LOOPBACK MODE SiT SOT0 SOR0 SiR SOT1 SOR1 Dual PHY PHY Layer Port Multiplier 13 XRS10L120 PRELIMINARY SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 3.0 ELECTRICAL SPECIFICATIONS This section contains the electrical specifications for the XRS10L120. 3.1 Serial ATA Specifications The XRS10L120 electrical transmit and receive specifications are outlined in this section. The XRS10L120 is fully compliant to the Serial ATA II specification for Gen2i, Gen2x, Gen1i, Gen1x and Gen1m variations at 3.0 and 1.5 Gbps. 3.1.1 Serial ATA Transmitter A simplified version of the output circuit and test fixture for each of the 6 Serial ATA transmit outputs on the XRS10L120 is shown in Figure 14. The output differential pair is terminated to the supply VDD. The circuit is designed to be AC coupled. FIGURE 14. SERIAL ATA EQUIVALENT OUTPUT C IRCUIT The XRS10L120 Serial ATA outputs include a simple one-tap equalizer, that is useful in driving longer printed circuit traces and is a required component in second generation Serial ATA PHYs. This equalizer preemphasizes the output signal whenever there is a data transition. The amount of pre-emphasis can vary between 0 and 45.5%, and is configured via MDIO register settings. Note that pre-emphasis doesn't increase the overall swing, but instead reduces the output amplitude when there is no transition. 14 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 FIGURE 15. EFFECTS OF TRANSMIT PRE-EMPHASIS The overall swing level can also be modified via MDIO register settings. The XRS10L120 transmit mask is shown in Figure 16. FIGURE 16. TRANSMIT EYE MASK FOR SERIAL ATA OUTPUT 15 XRS10L120 PRELIMINARY SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 SERIAL ATA RECEIVER An equivalent circuit for the XRS10L120 Serial ATA inputs is shown in Figure 17. The device receiver mask is shown in Figure 18. This circuit is designed to be AC coupled. Note that the Serial ATA system specification requires the common mode value of the receiver to be near ground; to accomplish this, a high value resistor should be placed on the connector side of the AC coupling capacitor. The termination resistors are not connected during power-up. FIGURE 17. SERIAL ATA EQUIVALENT INPUT CIRCUIT FIGURE 18. RECEIVE EYE MASK FOR SERIAL ATA INPUT 16 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 3: SERIAL ATA LINK SPECIFICATIONS NAME DESCRIPTION MIN. NOM MAX UNITS tBIT,XS Bit Time 670 - 333 ps JXR1 Input Jitter Tolerance Mask at signal crossover 0.32 - - UI JXR1,DJ Deterministic jitter tolerance at signal crossover 0.18 - - UI JXT1 Output jitter mask at signal crossover - - 0.15 UI JXT1,DJ Deterministic output jitter at signal crossover - - 0.07 UI tR/tF Input signal rise/fall times (20% - 80%) 0.2 - 0.46 UI tQR/tQF Output signal rise/fall times (20% - 80%) 0.2 - 0.41 UI tTOL,RX1 RX to sysclock frequency offset tolerance -5350 0 350 ppm VIN Input swing, differential peak-peak 175 - 1600 mV VSW2 Output swing, differential peak-peak 800 - 1200 mV VIN,IDLE No swing detection threshold 65 120 155 mV RIN,DIFF Differential mode input resistance 85 100 115 mV RIN,CM3 Common mode input resistance 40 50 60 Ω RIN,OFF Common mode input resistance, no power 200 - - kΩ RIN,XS Output termination resistance 40 50 60 Ω S11,IN,DIFF Differential input return loss, 50MHz - 1.5GHz 12 - - dB S11,IN,CM Common mode input return loss 50MHz-1.5GHz 6 - - dB S22,OUT,DIFF Differential output return loss 50MHz-1.5GHz 12 - - dB S22,OUT,CM Common mode output return loss 50MHz-1.5GHz 6 - - dB tS,REG Setup time for register port 1.5 - - ns tH,REG Hold time for register port 1.5 - - ns tQ,REG Clock to Q time for register port 0 - 2 ns tCYC,REG Register port clock cycle time 10 - - ns tHI,REG R register port clock high time 4 - - ns tLO,REG Register port clock low time 4 - - ns tRF,REG Register port input rise/fall time - - 0.5 ns 17 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER 3.2 REV. P1.0.1 CMOS Interface AC and DC specifications for the CMOS inputs and outputs are listed in Table 4. Since all these signals are asychronous, there are no setup or hold times defined. The CMOS pins are defined in the General Control and Configuration portion of Table 1 in Section 1, "Pin Descriptions". TABLE 4: CMOS I/O SPECIFICATIONS NAME DESCRIPTION MIN NOM MAX UNITS tDR/tDF,CMOS CMOS input signal rise/fall times (20% - 80%) 0.2 - 5 ns 0.2 - 5 ns tQR/tQF,CMOS1 CMOS output signal rise/fall times (20% - 80%) VIL,CMOS CMOS input low voltage -0.3 0 0.36 V VIH,CMOS CMOS input high voltage 0.8 2.5 2.8 V IOL,CMOS Output current for VOL = 0.2V 4.0 - 20 mA dIOL/dt,CMOS Output current rate of change -10 - 10 mA/ns LI,CMOS CMOS I/O inductance - - 8 nH CI,CMOS CMOS I/O capacitance - - 5 pF .1. This value is measured driving a load of 20pF. 3.3 MDIO Interface The Management Data Input/Output (MDIO) port complies with Clause 45 of the IEEE 802.3ae specification. A representative MDIO driver/receiver is shown in Figure 19. MDIO uses an open drain driver with a pullup resistor to 1.2V. FIGURE 19. REPRESENTATIVE MDIO CIRCUIT 1.2V Pin To other MDIO Devices Open Drain Driver Representative MDIO Read and Write waveforms are shown in Figure 20. The XRS10L120 samples MDIO on the rising edge of MDC for input and drives MDIO after the rising edge of MDC for output. Note that setup, hold, and output timings are defined from the maximum vIL and minimum VIH levels. 18 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 FIGURE 20. MDIO INPUT AND OUTPUT WAVEFORMS Values for MDIO parameters are shown in Table 5 TABLE 5: MDIO DC AND AC C HARACTERISTICS Name Description Min Nom Max Units tCYCLE,MDIO MDC cycle time 400 - - ns tLOW,MDC MDC low time 160 - - ns tHIGH,MDC MDC high time 160 - - ns tS,MDIO1 MDIO input to MDC setup time 10 - - ns tH,MDIO2 MDC to MDIO input hold time 10 - - ns tQ,MDIO3 MDC to MDIO output time 0 - 150 ns tDR/tDF,MDIO MDIO input signal rise/fall times (20% - 80%) 0.2 - 100 ns tQR/tQF,MDIO4 MDIO output signal rise/fall times (20% - 80%) 0.2 - 80 ns VIL,MDIO MDIO input low voltage -0.3 0 0.36 V VIH,MDIO MDIO input high voltage 0.84 1.2 1.5 V VOL,MDIO4 MDIO output low voltage -0.3 0 0.2 V 19 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 5: MDIO DC AND AC C HARACTERISTICS MDIO output high voltage 1.0 1.2 1.5 V IOL,MDIO MDIO Output current for VOL = 0.2V 4.0 - 20 mA dlOL/dt,MDIO MDIO Output current rate of change -10 10 mA/ns VOH,MDIO4 LI,MDIO MDIO input inductance - - 8 nH CI,MDIO MDIO input capacitance - - 5 pF NOTES: 1. Measured from minimum MDIO VIH to maximum MDC VIL for MDIO rising edge. Measured from maximum MDIO VIL to maximum MDC VIL for MDIO falling edge. 2. Measured from minimum MDC VIH to maximum MDIO VIL for MDIO rising edge. 3. Measured from minimum MDC VIH to maximum MDIO VIL for MDIO rising edge and MDC rising edge. 4. Measured Measured Measured Measured Measured from minimum MDC VIH to minimum MDIO VIH for MDIO falling edge. from minimum MDC VIH to minimum MDIO VIH for MDIO falling edge and MDC rising edge. from maximum MDC VIL to maximum MDIO VIL for MDIO rising edge and MDC falling edge. from maximum MDC VIL to minimum MDIO VIH for MDIO falling edge and MDC falling edge. driving a load of 470pF. TABLE 6: OPERATING C ONDITIONS Name TA Description Ambient temperature under bias Min Nom Max Units 0 25 70 0C VDD Core power supply voltage 1.14 1.2 1.26 V IDD Core power supply current - 650 800 mA VESD Electrostatic discharge tolerance, Human Body Model θJA Junction-to-ambient thermal resistance 2000 V 38.5 20 0C/W PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 4.0 REGISTERS DESCRIPTION The XRS10L120 provides a variety of registers for the purpose of device configuration, testing and monitoring. These registers are accessed through the MDIO interface, outlined in “Section 3.3, MDIO Interface” on page 18. The entire register set is described in this section. 4.1 Register Overview The XRS10L120 port address is hardwired to 0; this field should be set to 0 in all packets.The XRS10L120 contains three identical instantiations of a dual Serial ATA PHY macro. A common set of registers exists within each of these macros, and are outlined in “Section 4.2, Macro Registers” on page 22. MDIO device designations 1-3 are used for each of these three macros as shown in Table 8. Registers relating to the XRS10L120 as a whole are outlined in “Section 4.3, XRS10L120 Device Generic Registers” on page 37 and make use of MDIO device 0. TABLE 7: MDIO D EVICE DESIGNATIONS MDIO DEVICE DESIGNATION MACRO RELEVANT PINS 0 XRS10L120 Device Generic Registers N/A 1 Serial ATA Input Macro SI0 * 2 Serial ATA Output Macro 0 SO0, SO1 * Transmit/Receive Lane 1 registers are not applicable for MDIO device 1. The XRS10L120 registers are arranged as 8-bit fields with 8-bit addresses. These are mapped into the 16-bit MDIO address and data fields by setting the most significant byte of each to be 0. An example mapping from a macro address/data combination to an MDIO address & data combination is shown in Table 9+ TABLE 8: MDIO ADDRESSING MACRO A DDRESS MACRO DATA MDIO ADDRESS MDIO D ATA 0x40 abcde 0x0040 00000000000abcde NOTE: The unused upper 3 bits in FBDIV are also set to 0 during MDIO writes and are undefined during MDIO reads. In the description of each register field, there is an entry describing its read/write status. This may fall into one of the following categories: • R/W- register field is read/write • RO - register field is read only • LL - Latching Low - Used with bits that monitor some state internal to the XRS10L120. When the condition for the bit to go low is reached, the bit stays low until the next time it is read. Once it is read, its value reverts to the cur-rent state of the condition it monitors. • LH - Latching High - When the condition for the bit to go high is reached, the bit stays high until the next time it is read. Once it is read, its value reverts to the current state of the condition it monitors. • SC - When an SC bit is set, some action is initiated; once the action is complete, the bit is cleared. 21 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER 4.2 REV. P1.0.1 Macro Registers The registers outlined in this section are common to each of the three Serial ATA dual PHY macros as described in the previous section. As such, each listed register is present in each of the 1, 2, and 3 MDIO register spaces, and will perform the stated function on the specified Serial ATA lane. The registers within each dual PHY macro are split into three sections: Transmit/receive lane 0 registers: Address range 000***** Transmit/receive lane 1 registers: Address range 001***** PLL registers: Address range 010***** Bias generator registers: Address range 011***** TABLE 9: TRANSMIT/RECEIVE LANE REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX N.0000 N.0021 BIT(S) NAME R/W D EFAULT 7:6 Reserved RO - 5:4 5:4 Receive_Test0[1:0] Receive_Test1[1:0] R/W 00 PRBS checker control 00 = disable PRBS checkers 01 = enable 2^23-1 checkers 10 = enable 2^31-1 checkers 11 = enable 2^10-1 checkers 3:2 3:2 Transmit_Test0[1:0] Transmit_Test1[1:0] R/W 00 Test Pattern Control 00 = Use input data from DATAIN 01 = Generate 2^23-1 PRBS 10 = Generate 2^31-1 PRBS 11 = Generate 2^10-1 PRBS 1 selFourFive R/W 1 0 = Output data is x8 1 = Output data is x10 0 SATAPCIEXB[ R/W 1 Tx output swing booster bit 0 = boost swing by 10% 1 = nominal swing 22 DESCRPTION Reserved PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 9: TRANSMIT/RECEIVE LANE REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX BIT(S) NAME R/W D EFAULT N.0001 N.0021 7:3 7:3 RiseFall_Coef0[4:0] RiseFall_Coef1[4:0] R/W 00000 2:0 Transmit_Eq0[2:0] Transmit_Eq1[2:0] R/W 000 Transmit equalization control 000 = 0% transmit preemphasis 001 = 6.5% transmit preemphasis 010 = 13% transmit preemphasis 011 = 19.5% transmit preemphasis 100 = 26% transmit preemphasis 101 = 32.5% transmit preemphasis 110 = 39% transmit preemphasis 111 = 45.5% transmit preemphasis 7:6 7:6 mscProg0[1:0] mscProg1[1:0] RW 01 Receive equalization control – boost at 1.5GHz 5:3 5:3 Beacon_Swing0[2:0] Beacon_Swing1[2:0] R/W 100 Transmit swing size for OOB Signals 000 = 800mV 001 = 700mV 010 = 600mV 011 = 500mV 100 = 400mV 101 = 300mV 110 = 200mV 111 = 0mV 2:0 2:0 Output_Swing0[2:0] Output_Swing1[2:0] R/W 100 Transmit swing size in normal operation 000 = 800mV 001 = 700mV 010 = 600mV 011 = 500mV 100 = 400mV 101 = 300mV 110 =200mV 111 = 0mV 7 enEqB RO 1 6:4 noSigLevel0[2:0] noSigLevel1[2:0] RW 001 Nominal threshold for no signal detect 3:0 hpProgOvrd0[3:0] hpProgOvrd1[3:0] RW 0000 High pole programming override value N.0002 N.0022 N.0003 N.0023 23 DESCRPTION Output rise/fall time coefficient 00000 = +0ps 11111 = +25ps 01001 = SATA 3G 00010 = SATA 1.5G other = increases rise/fall times monotonically between 0 and 25ps Enable receive equalization 0 = enable equalization 1 = disable equalization PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 9: TRANSMIT/RECEIVE LANE REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX BIT(S) NAME R/W D EFAULT N.0004 N.0024 7:0 7:0 xCDROffs_F0[7:0] xCDROffs_F1[7:0] RW 0x40 N.0005 N.0025 7:0 7:0 Rx_Offset0 Rx_Offset1 R/W N.0006 N.0026 7 xCDRmetamode RO 0 Selection of clock to use on FSM 6 xCDRrndT RW 1 Randomizes tie breaker 5 xCDRclkmode RW 0 selects clock to use for FSM 4 xCDRrotate RW 0 Enables CDR rotation 3:0 xCDRinc0[3:0] xCDRinc1[3:0] RW 0x2 Increment for CDR N.0007 N.0027 7:5 xCDRupdnsw[2:0] RW 000 Direction of count on FSM 4:0 xCDRincF0[4:0] xCDRincF1[4:0] RW 00100 N.0008 N.0028 7 Reserved RO - 6 xCDRenF 5 xCDRmisc R/W 0 4:0 xCDRlimHF0[4:0] xCDRlimHF1[4:0] RW 00111 7 Reserved RO - Reserved 6 xCDRmult2F_F RW 0 Value of xCDRmult2F when DIV2CLK=0 5 xCDRmult2F_H RW 1 Value of xCDRmult2F when DIV2CLK=1 4:0 xCDRlimLF0[4:0] xCDRlimLF1[4:0] RW 0x18 N.000A N.002A 7:6 Reserved RO - 5:0 MinBurstWidth0[5:0] MinBurstWidth1[5:0] R/W 000100 N.000B N.002B 7:6 Reserved RO - 5:0 MaxBurstWidth0[5:0] MaxBurstWidth1[5:0] R/W 000111 N.000C N.002C 7:6 Reserved RO - 5:0 5:0 MinInitWidth0[5:0] MinInitWidth1[5:0] RW 001100 N.0009 N.0029 DESCRPTION 2’s complement offset for Clock data recovery Offset = CDRoff*tbit/128 Value of xCDROffs0/1 when DIV2CLK=0 2's complement offset for Clock data recovery Offset = CDRoff*tbit/256 Value of xCDROffs0/1 when DIV2CLK=1 Fast increment size for CDR Reserved 1 24 Reserved Lower bound count of activity burst for COM FSM Reserved Upper bound count of activity burst for COM FSM Reserved Lower bound count of idle for COMINIT/COMRESET PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 9: TRANSMIT/RECEIVE LANE REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX BIT(S) NAME R/W D EFAULT N.000D N.002D 7:6 7:6 Reserved RO - 5:0 5:0 MaxWakeWidth0 MaxWakeWidth1 RW 010110 N.000E N.002E 7:6 Reserved RO - 5:0 MinWakeWidth0[5:0] MinWakeWidth1[5:0] RW 000100 N.000F N.002F 7:6 Reserved RO - 5:0 MaxWakeWidth0[5:0] MaxWakeWidth1[5:0] N.0010 N.0030 7:6 Reserved RO - 5:3 rcvRef0[2:0] rcvRef1[2:0] RW 011 Percent of full swing that TX must reach during Receiver Detect to count as receiver present (not applicable to SATA PHY macros) 2:0 squelchdivsel[2:0] 010 Value by which to divide squelch clock 000 = divide by 1 001 = divide by 2 010 = divide by 4 011 = divide by 6 100 = divide by 8 101 = divide by 10 110 = divide by 12 111 = divide by 14 N.0011 N.0031 7:0 rcvdetdelay0[10:0] (lower 8 bits) N.0012 N.0032 7:3 Reserved 2:0 rcvdetdelay0[10:0] (upper 3 bits) 000111 DESCRPTION Reserved Upper bound count of idle for COMINIT/COMRESET Reserved Lower bound count of idle for COMWAKE Reserved Upper bound count of idle for COMWAKE Reserved Number of SYSCLK cycles to wait between assertion of RECDET and clocking comparator RO - Reserved Number of SYSCLK cycles to wait between assertion of RECDET and clocking comparator for receiver detect (not applicable to SATA PHY macros) 25 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 9: TRANSMIT/RECEIVE LANE REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX N.0013 N.0033 N.0014 N.0034 N.0015 N.0035 N.0017 N.0016 BIT(S) NAME R/W D EFAULT 7:0 rcvdetdelay1[10:0] (lower 8 bits) 0 Invert outgoing rxpclk for external use 7:3 Reserved 1 Invert incoming rxpclk for internal use 2:0 rcvdetdelay1[10:0] (upper 3 bits) 0 line loopback fifo rxpclk flip 7 orxpclkflip 0 Invert outgoing txpclk for external use 6 irxpclkflip 0 Invert incoming txpclk for internal use 5 rxpclkflip 000 4 otxpclkflip 3 itxpclkflip 011 Number of idles required before declaring a COM* match 2:0 clkTestSel0[2:0] clkTestSel1[2:0] 100 Number of bursts required before declaring a COM* match 7:6 Reserved 5:3 nidleCmin[2:0] 011 Divider selection for sysclk-> sysclk25 000 = divide by 1 (sysclk is 25MHz) 001 = divide by 2 (sysclk is 50MHz) 010 = divide by 3 (sysclk is 75MHz) 011 = divide by 4 (sysclk is 100MHz) 100 = divide by 5 (sysclk is 125MHz) 101 = divide by 6 (sysclk is 150MHz) 110 = divide by 10 (sysclk is 250MHz) 111 = divide by 12 (sysclk is 300MHz) 2:0 nburstCmin[2:0] 0xf number of bursts in com* sequence 7 Reserved RO - RO - RO - N.0037 N.0036 26 DESCRPTION Selection for clock onto clockTest pin 000 = disable 001 = txpclk[0] 010 = rxclk[0] 011 = sysclk 100 = SSCtrig other = reserved Only clkTestSel0 is active; clkTestSel1 is a noconnect Reserved Reserved PRBS error count Upper byte read clears both upper and lower bytes PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 9: TRANSMIT/RECEIVE LANE REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX N.0018 N.0038 BIT(S) NAME R/W D EFAULT 6:4 sysclk25divsel0[2:0] sysclk25divsel1[2:0] RO - 3:0 comburstnum[3:0] 100 DESCRPTION Reserved Tx Pre-driver swing size for async beacon 000 = 800mV 001 = 700mV 010 = 600mV 011 = 500mV 100 = 400mV 101 = 300mV 110 = 200mV 111 = 0mV NOTE: This feature is not used for SATA N.0019 N.0039 7:0 wec0[15:0] wec1[15:0] 7:6 Reserved 5:3 txbiasbuffselb0[2:0] txbiasbuffselb1[2:0] 100 RO 00011 27 Tx Predriver swing size in normal operation 000 = 800mV 001 = 700mV 010 = 600mV 011 = 500mV 100 = 400mV (sata default) 101 = 300mV Reserved Output rise/fall time coefficient 00000 = +0ps 11111 = +25ps Other code increases rise/fall times monotonically between 0 and 25ps PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 The Rx_offset registers change the sampling point of the data relative to the bit boundary. The offset value is stored in two's complement format, with bit 0 being the LSB. The step size is a fraction of the bit time; it is constant across process and operating conditions but changes with the operating frequency. The eye diagram in Figures 21 shows graphically the effect of changing the register value. FIGURE 21. EFFECT OF SETTING RECEIVE OFFSET REGISTER Data Eye 64 (0x40) 28 32 (0x20)0 0 (0x00) -32 (0xE0) -64 (0xC0) Register Value PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 10: PLL CONFIGURATION/D EBUG R EGISTERS (MDIO DEVICE 1 AND 2) ADDRESS HEX BIT(S) NAME R/W DEFAULT N.0040 7:6 Reserved RO - 5:0 FBDIV[5:0] 7:6 Reserved 5:0 REFDIV[5:0] 7:6 Reserved RO - 5:0 SSCInc R/W 0x01 7:6 Reserved RO - 5:0 SSCIncIntrv R/W 01100 7:6 Reserved RO - 5:0 SSCMax R/W 00000 N.0041 N.0042 N.0043 N.0044 100101 RO 000000 29 DESCRIPTION Reserved Divide value for feedback clock 110000 = divide by 5 100000 = divide by 10 100001 = divide by 15 100010 = divide by 20 100011 = divide by 25 100101 = divide by 30 (default) 100111 = divide by 50 101101 = divide by 60 Other - reserved Reserved Divide values for system clock 010000 = divide by 1 000000 = divide by 2 (default) 000001 = divide by 3 000010 = divide by 4 000011 = divide by 5 000101 = divide by 6 000110 = divide by 8 000111 = divide by 10 001101 = divide by 12 001110 = divide by 16 001111 = divide by 20 Others - reserved Reserved Step size for SSC increment Reserved Interval between steps for SSC increment Reserved Maximum value for spread PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 10: PLL C ONFIGURATION/D EBUG R EGISTERS (MDIO DEVICE 1 AND 2) ADDRESS HEX BIT(S) NAME R/W DEFAULT N.0045 7:5 Reserved RO - Reserved 4 SSCmode R/W 0 Selects position of spreading interpolator 0 = Interpolator in feedback path 1 = Interpolator in feedforward path 3 SSCCenter R/W 0 Center spread instead of down/upspread 2 SSCInvert R/W 0 Spread up instead of down 1 SSCPDMBypass R/W 0 Do not use the pulse density modulator 0 SSCBypass R/W 1 Bypass the saw generator and pulse density modulator and get increment from SSCMax (set SSCMax to 51 when SSCBypass is set to 0) 7 PLLQpumpOvrd RO - Override for charge pump programmability 0 = use value based on FB divider 1 = use value from PLLQpump N.0046 DESCRIPTION Values based on FB divider: FBDIV[5:0] qpump[6:0] 11XXXX => 1111110 100000 => 0001110 100001 => 0000110 100010 => 0000011 100011 => 0000010 100101 => 0000010 100111 => 0000001 101101 => 0000001 Others => 0000000 6:0 PLLQpump[6:0] Charge Pump Programmability 000001 = Enable 1 charge pump unit 000010 = Enable 2 charge pump units 000011 = Enable 3 charge pump units 000110 = Enable 4 charge pump units 000111 = Enable 5 charge pump units 001110 = Enable 6 charge pump units 001111 = Enable 7 charge pump units 011110 = Enable 8 charge pump units 011111 = Enable 9 charge pump units 111110 = Enable 10 charge pump units 111111 = Enable 11 charge pump units 30 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 10: PLL CONFIGURATION/D EBUG R EGISTERS (MDIO DEVICE 1 AND 2) ADDRESS HEX BIT(S) NAME R/W DEFAULT N.0047 7:3 Reserved RO - Reserved 2 tdccovrd 0 1 = use tdccen bits to activate/disable transmit duty cycle correction ports 0 = use pwrdnTxB bits to activate/disable transmit duty cycle correction ports 1:0 tdccen[1:0] 00 When tdccovrd is asserted, tdccen[N] enables/disables duty cycle correction from transmit lane N. 1 = enable duty cycle correction from lane N 0 = disable duty cycle correction from lane N 7:1 Reserved 0 pllClkDiv5en N.0048 RO DESCRIPTION - Reserved 1 1 = enable pllclkDiv5 0 = disable pllClkDiv5 TABLE 11: BIAS GENERATOR C ONFIGURATION/DEBUG REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX BIT(S) NAME N.0060 7:3 Reserved 1 bgPwrdn 0 Powers down core of bandgap circuit 0 = Normal operation 1 = power down core of bandgap The bandgap voltage can be overdriven externally by setting both bgTesten and bgPwrdn 0 bgTestEn 0 Bandgap test mode enable 0 = Normal operation 1 = Connect bandgap voltage to bgMuxOut RW RESET VALUE DESCRIPTION Reserved 31 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 11: BIAS GENERATOR C ONFIGURATION/DEBUG REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX BIT(S) NAME N.0061 7:6 prcal50dccQrx[1:0] 00 Input DCC rcal bias for Q 00 = 50µA 01 = 75uA 10 = 25uA 11 = 100uA 5:4 prcal50dccIrx[1:0] 00 Input DCC rcal bias for I 00 = 50uA 01 = 75uA 10 = 25uA 11 = 100uA 3:2 prcal50DCCpll[1:0] 00 PLL DCC 50u rcal bias 00 = 50uA 01 = 75uA 10 = 25uA 11 = 100uA 1:0 prcal50CLpll[1:0] 00 PLL 50u rcval bias 00 = 50uA 01 = 75uA 10 = 25uA 11 = 100uA 7:4 pr100pampQrx[3:0] 0x0 Input amp r bias for Q 1010=50uA 0010=75uA 0000=100uA 0001=125uA 1100=150uA, 0111=175uA 1111=200uA 3:0 pr100pampIrx[3:0] 0x0 Input amp r bias for I 1010=50uA 0010=75uA 0000=100uA 0001=125uA 1100=150uA 0111=175uA 1111=200uA N.0062 RW RESET VALUE 32 DESCRIPTION PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 11: BIAS GENERATOR C ONFIGURATION/DEBUG REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX BIT(S) NAME RW RESET VALUE N.0063 7:6 Reserved RO - 5:4 prcal50squelch[1:0] 00 Squelch 50u rcal bias 00 = 50uA 01 = 75uA 10 = 25uA 11 = 100uA 3:2 pr50squelch1[1:0] 00 Squelch 50µ r bias 00 = 50uA 01 = 75uA, 10 = 25uA 11 = 100uA 1:0 pr50squelch0[1:0] 00 Squelch 50µ r bias 00 = 50uA, 01 = 75µA 10 = 25µA 11 = 100µA 7:4 pr100Tx[3:0] 0x0 Transmit r bias 1010=50uA 0010=75uA 0000=100uA 0001=125uA 1100=150uA 0111=175uA 1111=200uA 3:0 pr100squelch[3:0] 0x0 Squelch 100u r bias 1010=50uA 0010=75uA 0000=100uA 0001=125uA 1100=150uA 0111=175uA 1111=200uA N.0064 33 DESCRIPTION Reserved PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 11: BIAS GENERATOR C ONFIGURATION/DEBUG REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX BIT(S) NAME N.0065 7:6 prcal50spare0[1:0] 00 50u spare rcal bias 0 00 = 50uA 01 = 75uA 10 = 25uA 11 = 100uA 5:4 prcal50DCCTx[1:0] 00 Transmit rcal bias 00 = 50uA 01 = 75uA 10 = 25uA 11 = 100uA 3:0 prcal100Tx[3:0] 0x0 Transmit rcal bias 1010=50uA 0010=75uA 0000=100uA 0001=125uA 1100=150uA 0111=175uA 1111=200uA 7:2 Reserved 1:0 prcal50spare1[1:0] 00 50u spare rcal bias 0 00 = 50uA 01 = 75uA 10 = 25uA 11 = 100uA 7:4 pr100ext1[3:0] 0x0 100u external bias 1010=50uA 0010=75uA 0000=100uA 0001=125uA 1100=150uA 0111=175uA 1111=200uA 3:0 pr100ext0[3:0] 0x0 100u external bias 1010=50uA 0010=75uA 0000=100uA 0001=125uA 1100=150uA 0111=175uA 1111=200uA N.0066 N.0067 RW RO RESET VALUE - 34 DESCRIPTION Reserved PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 11: BIAS GENERATOR C ONFIGURATION/DEBUG REGISTERS (MDIO D EVICE 1 AND 2) ADDRESS HEX BIT(S) NAME RW RESET VALUE N.0068 7:4 Reserved RO - 3:0 prcal100pciPreamp [3:0] 0x0 DESCRIPTION Reserved 100u external bias 1010=50uA 0010=75uA 0000=100uA 0001=125uA 1100=150uA 0111=175uA 1111=200uA TABLE 12: POWERDOWN REGISTERS (MDIO DEVICES 1 AND 2) ADDRESS HEX 1.0080 2.0080 1.0081 2.0081 BIT(S) NAME RW RESET VALUE DESCRIPTION 7:6 SIpwrdnDetB[1:0] SO01pwrdnDetB[1:0] RW 11 Powers down the signal detector and COM* circuits 1 = normal operation 0 = power down 5:4 SIpwrdnRxB[1:0] SO01pwrdnRxB[1:0] RW 11 Powers down the receivers and CDR 1 = normal operation 0 = power down 3:2 SIpwrdnTxDrvB[1:0] SO01pwrdnTxDrvB[1:0] RW 11 Powers down the transmitter 1 = normal operation 0 = power down 1:0 SIpwrdnTxB[1:0] SO01pwrdnTxB[1:0] RW 11 Powers down the transmit pipes and clock 1 = normal operation 0 = power down 7:2 Reserved RO - Reserved 1 SIpwrdnBiasGen SO01pwrdnBiasGen SO23pwrdnBiasGen RW 0 Powers down the bandgap. 1 = normal operation 0 = power down 0 SIpwrdnPLLB SO01pwrdnPLLB SO23pwrdnPLLB RW 1 Powers down the PLL 1 = normal operation 0 = power down 35 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 13: BLOCK CONTROL SIGNALS (MDIO DEVICES 1 AND 2) ADDRESS HEX BIT(S) NAME RW RESET VALUE 7:4 Reserved RO - 3:2 SIselLpbk[1:0] SO01selLpbk[1:0] RW 00 Serial Loopback Control 1 = Enable Serial Loopback 0 = Normal operation 1:0 SIparLpbk[1:0] SO01parLpbk[1:0] RW 00 Parallel Loopback Control 1 = Enable Parallel Loopback 0 = Normal operation 7:6 SISendBeacon[1:0] SO01SendBeacon[1:0] RW 00 Causes beacon signal to be sent on link 5:4 SItxsigsel1[1:0] SO01txsigsel1[1:0] RW 00 Transmitter 1 source selection 00 = transmit data 01 = transmit internally generated beacon 10 = transmit externally generated beacon 11 = transmit idle/COM* 3:2 SItxsigsel0[1:0] SO01txsigsel0[1:0] RW 00 Transmitter 0 source selection 00 = transmit data 01 = transmit internally generated beacon 10 = transmit externally generated beacon 11 = transmit idle/COM* 1:0 SIsysClkEn[1:0] SO01sysClkEn[1:0] RW 00 Source of txPClk[1:0] SItxsigsel0[1:0] SO01txsigsel0[1:0] 1.0084 2.0084 7:2 Reserved RO - 1:0 SIrcvDet[1:0] SO01rcvDet[1:0] RW/SC 00 1.0085 2.0085 7:2 Reserved RO - 1:0 SIDIV2CLK[1:0] SO01DIV2CLK[1:0] RW 00 1.0086 2.0086 7:6 Reserved RO - 5:4 SIforceidle[1:0] SO01forceidle[1:0] RW 00 Generate forceidle signal to lane 3:2 SIcomtype[1:0] SO01comtype[1:0] RW 00 Type of COM sequence to generate when Comstart is asserted 1 = generate WAKE 0 = generate INIT 1:0 SIcomstart[1:0] SO01comstart[1:0] RW/SC 00 Comstart signal. Self clearing 1.0082 2.0082 1.0083 2.0083 36 DESCRIPTION Reserved Reserved Starts receiver detect cycle. Self clearing Reserved Divide reference clock by 2 for corresponding lane Reserved PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 13: BLOCK CONTROL SIGNALS (MDIO DEVICES 1 AND 2) ADDRESS HEX BIT(S) NAME RW RESET VALUE 7:6 SIcomfinish[1:0] SO01comfinish[1:0] RO/LH 00 Signal generation initiated by comtype has finished 5:4 SIsigValid[1:0] SO01sigValid[1:0] RO/LH 00 Valid signal received on lane 3:2 SICOMWAKE[1:0] SO01COMWAKE[1:0] RO/LH 00 COMWAKE Sequence received on lane 1:0 SICOMINIT[1:0] SO01COMINIT[1:0] RO/LH 00 COMINIT Sequence received on lane 7:6 Reserved RO - 5:4 SIRXErr[1:0] SO01RXErr[1:0] RO/LH 00 PRBS error on lane. Self clearing 3:2 SIrcvAbsent[1:0] SO01rcvAbsent[1:0] RO/LH 00 No Receiver present on lane 1:0 SIrcvPresent[1:0] SO01rcvPresent[1:0] RO/LH 00 Receiver detected on lane 1.0087 2.0087 1.0088 2.0088 4.3 DESCRIPTION Reserved XRS10L120 Device Generic Registers This section outlines generic registers relating to the XRS10L120 as a whole. These registers are accessed through MDIO device 0. TABLE 14: RESET CONTROL SIGNALS ADDRESS HEX BIT(S) NAME RW RESET VALUE 0.0000 7:2 Reserved RO - Reserved 1 simflag RW 0 speed up flag for simulation only 0 rseqstart RW/SC 0 setting starts up reset controller. Self clearing 0.0003 0.0002 7:0 override_reg[15:0] RW 0x00 0x00 0.0004 3:0 resetPLLB_reg[3:0] RW 0xf 37 DESCRIPTION Override register for resets [15] – ebables all overrides [14:9] spares [8] – rcal reset [7] – device macro1 [6] – device macro0 [5] – selector and multiplier [4] – device gasket 1 [3] – device gasket 0 [2] – host gasket [1] – host macro [0] – rcal enable Resets the PLL portion of the macros. PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 14: RESET CONTROL SIGNALS ADDRESS HEX BIT(S) NAME RW RESET VALUE 0.0005 7:0 resetDB_reg[7:0] RW 0xff Resets the digital portion of the macros 0 = reset the part 1 = normal operation 0.0006 7:0 resetCDRB_reg[7:0] RW 0xff Resets the CDR portion of the macros. 0.0011 0.0010 7:0 rcon_controlwords0[15:0] RW 0x02 0x00 reset controller microwords 0.0013 0.0012 7:0 rcon_controlwords1[15:0] RW 0x00 0x04 reset controller microwords 0.0015 0.0014 7:0 rcon_controlwords2[15:0] RW 0x00 0x53 reset controller microwords 0.0017 0.0016 7:0 rcon_controlwords3[15:0] RW 0x02 0x40 reset controller microwords 0.0019 0.0018 7:0 rcon_controlwords4[15:0] RW 0x00 0x80 reset controller microwords 0.001B 0.001A 7:0 rcon_controlwords5[15:0] RW 0x01 0x40 reset controller microwords 0.001D 0.001C 7:0 rcon_controlwords6[15:0] RW 0x00 0xc0 reset controller microwords 0.001F 0.001E 7:0 rcon_controlwords7[15:0] RW 0x01 0x20 reset controller microwords 0.0021 0.0020 7:0 rcon_controlwords8[15:0] RW 0x00 0x00 reset controller microwords 0.0023 0.0022 7:0 rcon_controlwords9[15:0] RW 0x00 0x00 reset controller microwords 0.0025 0.0024 7:0 rcon_controlwordsA[15:0] RW 0x00 0x00 reset controller microwords 0.0027 0.0026 7:0 rcon_controlwordsB[15:0] RW 0x00 0x00 reset controller microwords 38 DESCRIPTION PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 15: SATA PORT MULTIPLIER REGISTERS ADDRESS BIT(S) HEX 0.0080 NAME RW RESET VALUE 7 p_rx_areset_h RW 0 Programmable auto reset for transmit elastic fifo (Host link layer) 1 = reset fifo when full or empty 0 = otherwise 6 p_rx_ra_disable_h RW 0 Programmable rate adjust disable for receive elastic fifo (Host link layer) 1 = disable 0 = enable 5 p_tx_feclr_h RW 0 programmable fifo error clear for transmit elastic fifo (Host link layer) 1 = clear sticky error 0 = otherwise 4 p_tx_areset_h RW 0 Programmable auto reset for transmit elastic fifo (Host link layer) 1 = reset fifo when full or empty 0 = otherwise 3 p_tx_ra_disable_h RW 0 Programmable rate adjust disable for transmit elastic fifo 1 = disable 0 = enable 2:1 p_devport_sel[1:0] RW 00 device port select for FIS routing in test mode 0 p_test_mode RW 0 1 = port multiplier in test mode 0 = otherwise 39 DESCRIPTION PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 15: SATA PORT MULTIPLIER REGISTERS ADDRESS BIT(S) HEX 0.0081 NAME RW RESET VALUE 7 p_rx_areset_d0 RW 0 Programmable auto reset for transmit elastic fifo (Device 0 link layer) 1 = reset fifo when full or empty 0 = otherwise 6 p_rx_ra_disable_d0 RW 0 Programmable rate adjust disable for receive elastic fifo (Device 0 link layer) 1 = disable 0 = enable 5 p_tx_feclr_d0 RW 0 Programmable fifo error clear for transmit elastic fifo (Device 0 link layer) 1 = clear sticky error 0 = otherwise 4 p_tx_areset_d0 RW 0 Programmable auto reset for transmit elastic fifo (Device 0 link layer) 1 = reset fifo when full or empty 0 = otherwise 3 p_tx_ra_disable_d0 RW 0 Programmable rate adjust disable for transmit elastic fifo 1 = disable 0 = enable 2 p_as_mon_h RW 0 Control bit that 1:monitors for unaligned Dword primitives (Host link layer) 0 = otherwise 1 p_sd_disable_h RW 0 Programmable scrambler/de-scrambler disable (Host link layer) 1 = disable 0 = enable 0 p_rx_feclr_h RW 0 Programmable fifo error clear for transmit elastic fifo (Host link layer) 1 = clear sticky error 0 = otherwise 40 DESCRIPTION PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 15: SATA PORT MULTIPLIER REGISTERS ADDRESS BIT(S) HEX 0.0082 NAME RW RESET VALUE 7 p_rx_areset_d1 RW 0 Programmable auto reset for transmit elastic fifo (Device 1 link layer) 1 = reset fifo when full or empty 0 = otherwise 6 p_rx_ra_disable_d1 RW 0 Programmable rate adjust disable for receive elastic fifo (Device 1 link layer) 1 = disable 0 = enable 5 p_tx_feclr_d1 RW 0 Programmable fifo error clear for transmit elastic fifo (Device 1 link layer) 1 = clear sticky error 0 = otherwise 4 p_tx_areset_d1 RW 0 Programmable auto reset for transmit elastic fifo (Device 1 link layer) 1 = reset fifo when full or empty 0 = otherwise 3 p_tx_ra_disable_d1 RW 0 Programmable rate adjust disable for transmit elastic fifo (Device 1 link layer) 1 = disable 0 = enable 2 p_as_mon_d0 RW 1 Control bit that 1 = monitors for unaligned Dword primitives (Device 0 link layer) 0 = otherwise 1 p_sd_disable_d0 RW 0 Programmable scrambler/de-scrambler disable (Device 0 link layer) 1 = disable 0 = enable 0 p_rx_feclr_d0 RW 0 Programmable fifo error clear for transmit elastic fifo (Device 0 link layer) 1 = clear sticky error 0 = otherwise 41 DESCRIPTION PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 15: SATA PORT MULTIPLIER REGISTERS ADDRESS BIT(S) HEX 0.0083 NAME RW RESET VALUE 7 p_rx_areset_d2 RW 0 Programmable auto reset for transmit elastic fifo (Device 2 link layer) 1 = reset fifo when full or empty 0 = otherwise 6 p_rx_ra_disable_d2 RW 0 Programmable rate adjust disable for receive elastic fifo (Device 2 link layer) 1 = disable 0 = enable 5 p_tx_feclr_d2 RW 0 Programmable fifo error clear for transmit elastic fifo (Device 2 link layer) 1 = clear sticky error 0 = otherwise 4 p_tx_areset_d2 RW 0 Programmable auto reset for transmit elastic fifo (Device 2 link layer) 1 = reset fifo when full or empty 0 = otherwise 3 p_tx_ra_disable_d2 RW 0 Programmable rate adjust disable for transmit elastic fifo (Device 2 link layer) 1 = disable 0 = enable 2 p_as_mon_d1 RW 1 Control bit that 1 = monitors for unaligned Dword primitives (Device 1 link layer) 0 = otherwise 1 p_sd_disable_d1 RW 0 Programmable scrambler/de-scrambler disable (Device 1 link layer) 1 = disable 0 = enable 0 p_rx_feclr_d1 RW 0 Programmable fifo error clear for transmit elastic fifo (Device 1 link layer) 1 = clear sticky error 0 = otherwise 42 DESCRIPTION PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 15: SATA PORT MULTIPLIER REGISTERS ADDRESS BIT(S) HEX 0.0084 NAME RW RESET VALUE 7 p_rx_areset_d3 RW 0 Programmable auto reset for transmit elastic fifo (Device 3 link layer) 1 = reset fifo when full or empty 0 = otherwise 6 p_rx_ra_disable_d3 RW 0 Programmable auto reset for transmit elastic fifo (Device 3 link layer) 1 = reset fifo when full or empty 0 = otherwise 5 p_tx_feclr_d3 RW 0 Programmable fifo error clear for transmit elastic fifo (Device 3 link layer) 1 = clear sticky error 0 = otherwise 4 p_tx_areset_d3 RW 0 Programmable auto reset for transmit elastic fifo (Device 3 link layer) 1 = reset fifo when full or empty 0 = otherwise 3 p_tx_ra_disable_d3 RW 0 Programmable rate adjust disable for transmit elastic fifo (Device 3 link layer) 1 = disable 0 = enable 2 p_as_mon_d2 RW 1 Control bit that 1 = monitors for unaligned Dword primitives (Device 2 link layer) 0 = otherwise 1 p_sd_disable_d2 RW 0 Programmable scrambler/de-scrambler disable (Device 2 link layer) 1 = disable 0 = enable 0 p_rx_feclr_d2 RW 0 Programmable fifo error clear for transmit elastic fifo (Device 2 link layer) 1 = clear sticky error 0 = otherwise 43 DESCRIPTION PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 15: SATA PORT MULTIPLIER REGISTERS ADDRESS BIT(S) HEX NAME RW RESET VALUE 7:4 Reserved RO - Reserved 3 p_dvc_prt_en RW 0 1 = enable all port multiplier ports on reset 0 = otherwise 2 p_as_mon_d3 RW 1 Control bit that 1 = monitors for unaligned Dword primitives (Device 3 link layer) 0 = otherwise 1 p_sd_disable_d3 RW 0 Programmable scrambler/de-scrambler disable (Device 3 link layer) 1 = disable 0 = enable 0 p_rx_feclr_d3 RW 0 Programmable fifo error clear for transmit elastic fifo (Device 3 link layer) 1 = clear sticky error 0 = otherwise 7:6 Reserved RO - Reserved 5:3 p_dvc1_wght[2:0] RW 000 Device port 1 weight for weighted-round robin arbitration Valid values 1-7 2:0 p_dvc0_wght[2:0] RW 000 Device port 0 weight for weighted-round robin arbitration Valid values 1-7 7:6 Reserved RO - 5:3 p_dvc3_wght[2:0] RW 000 Device port 3 weight for weighted-round robin arbitration Valid values 1-7 2:0 p_dvc2_wght[2:0] RW 000 Device port 2 weight for weighted-round robin arbitration Valid values 1-7 0.0088 7:0 p_intvl_val[7:0] RW 0xB7 programmable communication interval value for hot plug FSM Interval is 27.3us * count 0.0089 7 Reserved RO - 6:3 p_msb_rscnt[3:0] RW 1000 2 p_dlock_err_clr RW 0 1 = clear the stick deadlock error indicator 0 = otherwise 1 p_restart_pm_en RW 1 1 = port multiplier will restart if it enters deadlock 0 = otherwise 0 p_pwrmng_on RW 1 1 = power management turned on in port 0 = power management turned off in port 7 Reserved RO - Reserved 6:4 p_col_ad[2:0] RW 000 Col address of the SRAM in test mode 3:0 p_row_ad[11:0] RW 0x00 Row address of the SRAM in test mode 0.0085 0.0086 0.0087 0.0090 44 DESCRIPTION Reserved Reserved The 4 MSB’s of the 20 bit timeout value used to decide how long the PM should wait before issuing a restart PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 15: SATA PORT MULTIPLIER REGISTERS ADDRESS BIT(S) HEX NAME RW RESET VALUE DESCRIPTION 0.0091 7:0 p_row_ad[11:0] RW 0x00 Row address of the SRAM in test mode 0.0092 7:0 p_wdata[7:0] RW 0x00 Write data for the sram in test mode 0.0093 7:0 p_rdata[7:0] RO 0x00 Read data from the sram in test mode 0.0094 7:2 Reserved RO - Reserved 1 p_wr_en RW 0 1 = write op 0 = read op 0 p_wr_toggle RW 0 initiates an sram op 7 o_rx_ferr_d2 RO 0 Observable receive elastic fifo sticky error (full or empty) (Device 2 link layer) 1 = error 0 = no error 6 o_tx_ferr_d2 RO 0 Observable transmit elastic fifo sticky error (full or empty) (Device 2 link layer) 1 = error 0 = no error 5 o_rx_ferr_d1 RO 0 Observable receive elastic fifo sticky error (full or empty) (Device 1 link layer) 1 = error 0 = no error 4 o_tx_ferr_d1 RO 0 Observable transmit elastic fifo sticky error (full or empty) (Device 1 link layer) 1 = error 0 = no error 3 o_rx_ferr_d0 RO 0 Observable receive elastic fifo sticky error (full or empty) (Device 0 link layer) 1 = error 0 = no error 2 o_tx_ferr_d0 RO 0 Observable transmit elastic fifo sticky error (full or empty)(Device 0 link layer) 1 = error 0 = no error 1 o_rx_ferr_h RO 0 Observable receive elastic fifo sticky error (full or empty) (Host link layer) 1 = error 0 = no error 0 o_tx_ferr_h RO 0 Observable transmit elastic fifo sticky error (full or empty)(Host link layer) 1 = error 0 = no error 0.0095 45 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 15: SATA PORT MULTIPLIER REGISTERS ADDRESS BIT(S) HEX NAME RW RESET VALUE 7 o_dlock_err RO 0 1 = a PM deadlock occurred 0 = otherwise 6 spdmode_d3 RO 0 SPD mode signal from phy 3 1 = 3Gb/s mode 0 = 1.5Gb/s mode 5 spdmode_d2 RO 0 SPD mode signal from phy 2 1 = 3Gb/s mode 0 = 1.5Gb/s mode 4 spdmode_d1 RO 0 SPD mode signal from phy 1 1 = 3Gb/s mode 0 = 1.5Gb/s mode 3 spdmode_d0 RO 0 SPD mode signal from phy 0 1 = 3Gb/s mode 0 = 1.5Gb/s mode 2 pm_ssc_tx_en RO 0 Dynamic SSC transmit enable signal 1 o_rx_ferr_d3 RO 0 Observable receive elastic fifo sticky error (full or empty) (Device 3 link layer) 1 = error 0 = no error 0 o_tx_ferr_d3 RO 0 Observable transmit elastic fifo sticky error (full or empty) (Device 3 link layer) 1 = error 0 = no error 7:6 max_spd_to_dp3[1:0] RO 00 SPD field from the dev 3 SCControl reg 5:4 max_spd_to_dp2[1:0] RO 00 SPD field from the dev 2 SCControl reg 3:2 max_spd_to_dp1[1:0] RO 00 SPD field from the dev 1 SCControl reg 1:0 max_spd_to_dp0[1:0] RO 00 SPD field from the dev 0 SCControl reg 0.0098 7:0 p_vct_fis_size[11:0] RW 0x06 0.0099 7 p_vct_en RW 1 6:4 p_vct_emp_wmark[2:0] RW 0x3 Progammable watermark for VCT read from SRAM 3:0 p_vct_fis_size[11:0] RW 0x0 Programmable FIS size when VCT kicks in 0.009C 7:0 p_err_thres[14:0] RW 0x00 Threshold for high error rate from port multiplier 0.009D 7 p_err_thres_en RW 0 6:0 p_err_thres[14:0] RW 0x00 0.0096 0.0097 46 DESCRIPTION Programmable FIS size when VCT kicks in Enable for virtual cut-through Enable for error counting Threshold for high error rate from port multiplier PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 TABLE 16: CLOCK CONFIGURATION REGISTER ADDRESS H EX BIT(S) NAME RW RESET VALUE 0.0001 7:3 Reserved RO - Reserved 2 refClkSel RW 0 1 = select CMU_REF 0 = select on chip crystal oscillator 1 pwrdnRefClk RW 0 Powers down reference clock 7:4 Reserved RO - Reserved 3:1 clkMacroTestSel[2:0] RW 000 DESCRIPTION 0 0.009B 0 clkTestEn RW 0 47 000 = disabled 001 = Sata Output Macro 2 010 = Sata Output Macro 0 011 = Sata Input Macro 100 = Reserved 101 = SysClkBotLeft 110 = PLL Output 111 = PLL Test Clock -->ClkTestIn<0> -->ClkTestIn<1> -->ClkTestIn<2> -->ClkTestIn<4> -->ClkTestIn<5> -->ClkTestIn<6> 0 = disable clock test output buffer 1 = enable clock test output buffer PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 5.0 FEATURES AND BENEFITS TABLE 17: FEATURES AND BENEFITS DISTINGUISHING FEATURE COMPETITIVE ADVANTAGE Support for 3.0 Gbps and 1.5 Backwards Compatibility to SATA Gen. 1 Gbps SYSTEM BENEFIT Can be used with both SATA Gen. 1 and Gen. 2 drives Equalization and pre-empha- Superior analog front end. Very high signal Enables integrity. Meets sis on the receive front end • Longer distances on the copper/FR-4 • SATA Gen2i, Gen2x • Improved signal integrity Programmable Output Swing Optimizes Power Consumption Provides compliance to both SAS and SATA systems Speed Negotiation Locks to 3/1.5G SATA data without any exter- Reduces system complexity and software effort to implement auto rate adaptation. nal components. Fast Locking & Low Latency Locks to incoming data with in 300 data Enhances the overall system performance. edges. Latency is <25 clock cycles. Built in Self Test. Includes a PRBS generator and checker for Makes testing of the storage sub-systems self testing. PRBS patterns of 2^10-1, 2^23-1, easier. and 2^31-1 are all available. 2 Wire MDIO Bus Control and monitoring features are managed Minimizes board space and system cost. through a comprehensive register set instead of multiple pins. Power down modes Supports the following modes of operation: • Active Mode - 90 mW • Partial Mode - <37.5 mW • Slumber Mode - <5 mW • Power down mode < 0.5mW Provides full support of power management commands from the connected hosts and devices. Fully complies with the Serial ATA II port multiplier specification. Spread Spectrum Clocking Full support for receipt and generation of sig- Reduces EMI to Enable FCC Compliance nals that have been configured for Spread Spectrum Clocking (SSC) support. Test and Loopback modes Supports two forms of host loopback modes: Provide full testability in a system configuraand two forms of device-side loopback modes tion. Register Compatibility with Compliant with Legacy ATA Systems ATA Reduces software effort. Low Power Consumption (1 Watt) Minimizes System Costs. No need of heat sink or airflow. PRODUCT ORDERING INFORMATION PRODUCT N UMBER PACKAGE TYPE OPERATING TEMPERATURE RANGE XRS10L120IV 100 Pin LQFP -40°C to +85°C 48 PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 100 LEAD LOW-PROFILE QUAD FLAT PACK (14 X 14 X 1.4 mm LQFP, 1.0 mm FORM) D D1 75 51 76 50 D1 100 26 1 β B e C A2 A Seating Plane 25 α A1 L NOTE: The control dimension is in millimeters INCHES MILLIMETERS SYMBOL MIN MAX MIN MAX A 0.055 0.063 1.40 1.60 A1 0.002 0.006 0.05 0.15 A2 0.053 0.057 1.35 1.45 B 0.010 0.014 0.17 0.27 C 0.004 0.008 0.09 0.20 D 0.622 0.638 15.80 16.20 D1 0.390 0.555 13.90 14.10 e 0.0197 BSC 0.50 BSC L 0.018 0.030 0.45 0.75 α 0° 7° 0° 7° β 7° typ 7° typ 49 D PRELIMINARY XRS10L120 SERIAL ATA II: 1:2 PORT MULTIPLIER REV. P1.0.1 REVISIONS REV # DATE P1.0.0 July 2006 P1.0.1 December 2006 DESCRIPTION OF CHANGES Initial Issue NOTICE EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user’s specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies. EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances. Copyright 2006 EXAR Corporation Datasheet December 2006. Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited. 50