EXAR XRT83SL216IB

XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
AUGUST 2006
REV. 1.0.0
GENERAL DESCRIPTION
APPLICATIONS
The XRT83SL216 is a fully integrated 16-channel E1
short-haul LIU which optimizes system cost and
performance by offering key design features. The
XRT83SL216 operates from a single 3.3V power
supply. The LIU features are programmed through a
standard serial microprocessor interface. EXAR’s LIU
has patented high impedance circuits that allow the
transmitter outputs and receiver inputs to be placed in
a high impedance mode when experiencing a power
failure or when the LIU is powered off. Additional
features include TAOS for transmit and receive,
RLOS, LCV, on chip Jitter Attenuator, AIS detector,
and diagnostic loopback modes.
•
•
•
•
•
•
•
•
ISDN Primary Rate Interface
CSU/DSU E1 Interface
E1 LAN/WAN Routers
Public Switching Systems and PBX Interfaces
E1 Multiplexer and Channel Banks
Integrated Multi-Service Access Platforms (IMAPs)
Integrated Access Devices (IADs)
Inverse Multiplexing for ATM (IMA) Wireless Base
Stations
FIGURE 1. BLOCK DIAGRAM OF THE XRT83SL216
1 of 16 Channels
TCLK
TPOS
TNEG
HDB3
Encoder
Timing
Control
Remote
Loopback
RCLK
RPOS
RNEG/LCV
Jitter
Attenuator
(Rx or Tx)
HDB3
Decoder
TTIP
Line
Driver
TRING
Analog
Loopback
Digital
Loopback
Clock & Data
Recovery
RLOS
Tx Pulse
Shaper
Peak
Detector
& Slicer
Rx
Equalizer
AIS & LOS
Detector
RTIP
RRING
JASEL0
JASEL1
TDI
TMS
Internal Clock Generator
Serial Microprocessor
Interface
JTAG
TxOE
MCLK
Reset
SDI
SDO
CS
SCLK
INT
TDO
TRST
TCK
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (510) 668-7000 • FAX (510) 668-7017 • www.exar.com
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
FEATURES
• Fully integrated 16-Channel short haul transceivers for E1 (2.048MHz) applications
• Tri-State on a per channel basis for the transmit selection
• Crystal-Less digital jitter attenuators (JA) with 32-Bit or 64-Bit FIFO for the receive or transmit paths
• Transmit outputs and receive inputs stay in the High Impedance mode upon power failure
• Support for automatic protection switching
• RLOS/AIS according to ITU-T G.775 or ETSI-300-233
• On-Chip HDB3 encoder/decoder for each channel
• On-Chip digital clock recovery circuit for high input jitter tolerance
• On-Chip per channel driver failure monitoring circuit
• On-Chip transmit pulse shaper for CEPT 75Ω and 120Ω line terminations
• High receiver interference immunity
• Transmit return loss meets or exceeds ETS1 300-166
• Meets or exceeds ITU G.703, G,775, G.736 and G.823
• Line code error and bipolar violation detection
• Transmit all ones (TAOS) for the Transmit and Receive Outputs
• Supports local analog, remote, and digital loopback modes
• Supports gapped clocks for mapper/multiplexer applications
• Low Power dissipation
• Single 3.3V supply operation (3V to 5V I/O tolerant)
• 289-Pin STBGA package
• -40°C to +85°C Temperature Range
PRODUCT ORDERING INFORMATION
PRODUCT NUMBER
PACKAGE TYPE
OPERATING TEMPERATURE RANGE
XRT83SL216IB
289 Ball STBGA
-40°C to +85°C
2
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
FIGURE 2. PIN OUT FOR THE XRT83SL216 (BOTTOM VIEW)
(See pin list for pin names and function)
XRT83SL216
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
17
16
15
14
13
12
11
10
9
3
8
7
6
5
4
3
2
1
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE OF CONTENTS
GENERAL DESCRIPTION ................................................................................................ 1
APPLICATIONS .......................................................................................................................................... 1
FIGURE 1. BLOCK DIAGRAM OF THE XRT83SL216 ........................................................................................................................... 1
FEATURES ..................................................................................................................................................... 2
PRODUCT ORDERING INFORMATION ................................................................................................. 2
FIGURE 2. PIN OUT FOR THE XRT83SL216 (BOTTOM VIEW) ............................................................................................................. 3
TABLE OF CONTENTS ............................................................................................................ I
PIN DESCRIPTIONS ......................................................................................................... 4
SERIAL MICROPROCESSOR INTERFACE ........................................................................................................... 4
RECEIVER SECTION ....................................................................................................................................... 5
TRANSMITTER SECTION ................................................................................................................................. 8
CONTROL FUNCTION ................................................................................................................................... 11
JTAG SECTION ........................................................................................................................................... 11
POWER AND GROUND ................................................................................................................................. 12
1.0 RECEIVE PATH LINE INTERFACE....................................................................................................... 15
FIGURE 3. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE PATH LINE TERMINATION (RTIP/RRING).................................................. 15
1.1 PEAK DETECTOR/DATA SLICER.................................................................................................................... 15
1.2 CLOCK AND DATA RECOVERY ...................................................................................................................... 15
FIGURE 4. RECEIVE DATA UPDATED ON THE RISING EDGE OF RCLK .............................................................................................. 15
FIGURE 5. RECEIVE DATA UPDATED ON THE FALLING EDGE OF RCLK ............................................................................................ 15
TABLE 1: TIMING SPECIFICATIONS FOR RCLK/RPOS/RNEG .......................................................................................................... 16
1.3 RECEIVE SENSITIVITY ..................................................................................................................................... 16
FIGURE 6. TEST CONFIGURATION FOR MEASURING RECEIVE SENSITIVITY ........................................................................................ 16
1.4 GENERAL ALARM DETECTION AND INTERRUPT GENERATION ............................................................... 16
1.4.1 RLOS (RECEIVER LOSS OF SIGNAL)........................................................................................................................ 17
1.4.2 AIS (ALARM INDICATION SIGNAL) ............................................................................................................................ 17
1.4.3 LCV (LINE CODE VIOLATION DETECTION) .............................................................................................................. 17
1.5 RECEIVE JITTER ATTENUATOR..................................................................................................................... 17
1.6 HDB3 DECODER ............................................................................................................................................... 17
1.7 ARAOS (AUTOMATIC RECEIVE ALL ONES).................................................................................................. 18
FIGURE 7. SIMPLIFIED BLOCK DIAGRAM OF THE ARAOS FUNCTION ................................................................................................ 18
1.8 RPOS/RNEG/RCLK ........................................................................................................................................... 18
FIGURE 8. SINGLE RAIL MODE WITH A FIXED REPEATING "0011" PATTERN ..................................................................................... 18
FIGURE 9. DUAL RAIL MODE WITH A FIXED REPEATING "0011" PATTERN ........................................................................................ 18
2.0 TRANSMIT PATH LINE INTERFACE .................................................................................................... 19
FIGURE 10. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT PATH ................................................................................................... 19
2.1 TCLK/TPOS/TNEG DIGITAL INPUTS............................................................................................................... 19
FIGURE 11. TRANSMIT DATA SAMPLED ON FALLING EDGE OF TCLK ............................................................................................... 19
FIGURE 12. TRANSMIT DATA SAMPLED ON RISING EDGE OF TCLK ................................................................................................. 19
TABLE 2: TIMING SPECIFICATIONS FOR TCLK/TPOS/TNEG ........................................................................................................... 20
2.2 HDB3 ENCODER ............................................................................................................................................... 20
TABLE 3: EXAMPLES OF HDB3 ENCODING ...................................................................................................................................... 20
2.3 TRANSMIT JITTER ATTENUATOR .................................................................................................................. 20
TABLE 4: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS .................................................................................... 20
2.4 TAOS (TRANSMIT ALL ONES)......................................................................................................................... 21
FIGURE 13. TAOS (TRANSMIT ALL ONES) ...................................................................................................................................... 21
2.5 ATAOS (AUTOMATIC TRANSMIT ALL ONES) ............................................................................................... 21
FIGURE 14. SIMPLIFIED BLOCK DIAGRAM OF THE ATAOS FUNCTION ............................................................................................... 21
3.0 APPLICATIONS ..................................................................................................................................... 22
3.1 LOOPBACK DIAGNOSTICS ............................................................................................................................. 22
3.1.1 LOCAL ANALOG LOOPBACK ....................................................................................................................................
FIGURE 15. SIMPLIFIED BLOCK DIAGRAM OF LOCAL ANALOG LOOPBACK .........................................................................................
3.1.2 REMOTE LOOPBACK ..................................................................................................................................................
FIGURE 16. SIMPLIFIED BLOCK DIAGRAM OF REMOTE LOOPBACK ....................................................................................................
3.1.3 DIGITAL LOOPBACK ...................................................................................................................................................
FIGURE 17. SIMPLIFIED BLOCK DIAGRAM OF DIGITAL LOOPBACK .....................................................................................................
22
22
22
22
23
23
3.2 INTERFACING THE TRANSMIT SECTION OF THE XRT83L216 TO THE LINE ............................................ 23
FIGURE 18. INTERFACING THE XRT83L216 TO THE LINE FOR 75W APPLICATIONS (1 CHANNEL SHOWN) .......................................... 23
FIGURE 19. INTERFACING THE XRT83L216 TO THE LINE FOR 120 W APPLICATIONS (1CHANNEL SHOWN) ....................................... 24
I
XRT83SL216
REV. 1.0.0
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
The following Ferrite Bead is Recommended for Use .............................................................................................. 24
The following Transformer is Recommended for Use .............................................................................................. 25
4.0 SERIAL MICROPROCESSOR INTERFACE BLOCK ........................................................................... 26
FIGURE 20. SIMPLIFIED BLOCK DIAGRAM OF THE SERIAL MICROPROCESSOR INTERFACE ................................................................. 26
FIGURE 21. MICROPROCESSOR SERIAL INTERFACE STRUCTURE ..................................................................................................... 26
FIGURE 22. TIMING DIAGRAM FOR THE MICROPROCESSOR SERIAL INTERFACE ................................................................................ 27
TABLE 5: MICROPROCESSOR SERIAL INTERFACE TIMINGS ( TA = 250C, VDD=3.3V± 5% AND LOAD = 10PF) .................................. 27
TABLE 6: MICROPROCESSOR REGISTER DESCRIPTION .................................................................................................................... 28
TABLE 7: MICROPROCESSOR REGISTER 0X00H BIT DESCRIPTION ................................................................................................... 30
TABLE 8: MICROPROCESSOR REGISTERS 0X01H &0X02H BIT DESCRIPTION .................................................................................... 31
TABLE 9: MICROPROCESSOR REGISTER 0X03H BIT DESCRIPTION ................................................................................................... 32
TABLE 10: MICROPROCESSOR REGISTERS 0X04H & 0X05H BIT DESCRIPTION ................................................................................. 32
TABLE 11: MICROPROCESSOR REGISTER BIT DESCRIPTION ............................................................................................................ 32
TABLE 12: MICROPROCESSOR REGISTER BIT DESCRIPTION ............................................................................................................ 34
TABLE 13: MICROPROCESSOR REGISTER BIT DESCRIPTION ............................................................................................................ 34
ELECTRICAL CHARACTERISTICS............................................................................... 36
TABLE 14: ABSOLUTE MAXIMUM RATINGS ....................................................................................................................................... 36
TABLE 15: DC DIGITAL INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS .................................................................................... 36
TABLE 16: AC ELECTRICAL CHARACTERISTICS ............................................................................................................................... 36
TABLE 17: POWER CONSUMPTION .................................................................................................................................................. 36
TABLE 18: RECEIVER ELECTRICAL CHARACTERISTICS ..................................................................................................................... 37
TABLE 19: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS .......................................................................................................... 38
ORDERING INFORMATION ........................................................................................... 39
PACKAGE DIMENSIONS ............................................................................................... 39
FIGURE 23. 15X15MM 289 BALL STBGA........................................................................................................................................ 39
REVISION HISTORY ..................................................................................................................................... 40
II
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
PIN DESCRIPTIONS
HOST MODE INTERFACE
SERIAL MICROPROCESSOR INTERFACE
NAME
PIN
TYPE
DESCRIPTION
CS
J4
I
Chip Select Input
Active low signal. This signal enables the serial microprocessor interface by
pulling chip select "Low". The serial interface is disabled when the chip select
signal returns "High".
SCLK
J5
I
Serial Clock Input
The serial clock input samples SDI on the rising edge and updates SDO on the
falling edge. See the Serial Microprocessor section of this datasheet for more
details.
SDI
K5
I
Serial Data Input
The serial data input pin is used to supply an address and data string to program the internal registers within the device. See the Serial Microprocessor
section of this datasheet for more details.
SDO
L5
O
Serial Data Output
The serial data output pin is used to retrieve the internal contents of a selected
register in readback mode. See the Microprocessor section of this datasheet
for more details.
Reset
J6
I
Hardware Reset Input
Active low signal. When this pin is pulled “Low” for more than 10µS, all internal
registers and state machines are set to their default state.
NOTE: Internally pulled "High" with 50kΩ.
INT
K4
O
Interrupt Output
Active low signal. This signal is asserted "Low" when a change in alarm status
occurs. Once the status registers have been read, the interrupt pin will return
"High". GIE (Global Interrupt Enable) must be set "High" in the appropriate
global register to enable interrupt generation.
NOTE: This pin is an open-drain output that requires an external 10KΩ pull-up
resistor.
4
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
RECEIVER SECTION
NAME
PIN
TYPE
DESCRIPTION
RLOS15
RLOS14
RLOS13
RLOS12
RLOS11
RLOS10
RLOS9
RLOS8
RLOS7
RLOS6
RLOS5
RLOS4
RLOS3
RLOS2
RLOS1
RLOS0
B10
D11
F10
B12
T12
T11
M10
R10
U8
R7
M8
T6
B6
B7
F8
C8
O
Receive Loss of Signal
When a receive loss of signal occurs, the RLOS pin will go "High" for a minimum of one RCLK cycle. RLOS will remain "High" until the loss of signal condition clears. See the Receive Loss of Signal section of this datasheet for
more details.
RCLK15
RCLK14
RCLK13
RCLK12
RCLK11
RCLK10
RCLK9
RCLK8
RCLK7
RCLK6
RCLK5
RCLK4
RCLK3
RCLK2
RCLK1
RCLK0
A10
A11
E10
A12
U12
U11
N10
P10
T8
P7
N8
U6
A6
A7
E8
D8
O
Receive Clock Output
RCLK is the recovered clock from the incoming data stream. If the incoming
signal is absent, RCLK maintains its timing by using an internal master clock
as its reference. RPOS/RNEG data can be updated on either edge of RCLK
selected by RCLKinv in the appropriate channel register.
5
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
RECEIVER SECTION
NAME
PIN
TYPE
DESCRIPTION
RPOS15
RPOS14
RPOS13
RPOS12
RPOS11
RPOS10
RPOS9
RPOS8
RPOS7
RPOS6
RPOS5
RPOS4
RPOS3
RPOS2
RPOS1
RPOS0
C10
C11
E11
C12
R12
R11
M11
T10
R8
T7
N7
R6
C6
C7
F7
A8
O
RPOS/RDATA Output
Receive digital output pin. In dual rail mode, this pin is the receive positive
data output. In single rail mode, this pin is the receive non-return to zero (NRZ)
data output.
RNEG/LCV15
RNEG/LCV14
RNEG/LCV13
RNEG/LCV12
RNEG/LCV11
RNEG/LCV10
RNEG/LCV9
RNEG/LCV8
RNEG/LCV7
RNEG/LCV6
RNEG/LCV5
RNEG/LCV4
RNEG/LCV3
RNEG/LCV2
RNEG/LCV1
RNEG/LCV0
D10
B11
F11
D12
P12
P11
N11
U10
P8
U7
M7
P6
D6
D7
E7
B8
O
RNEG/LCV Output
In dual rail mode, this pin is the receive negative data output. In single rail
mode, this pin is a Line Code Violation indicator. If a line code violation or a bipolar violation occur, the LCV pin will pull "High" for a minimum of one RCLK
cycle. LCV will remain "High" until there are no more violations.
If AMI coding is selected, every bipolar violation will cause this pin to go "High".
6
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
RECEIVER SECTION
NAME
PIN
TYPE
DESCRIPTION
RTIP15
RTIP14
RTIP13
RTIP12
RTIP11
RTIP10
RTIP9
RTIP8
RTIP7
RTIP6
RTIP5
RTIP4
RTIP3
RTIP2
RTIP1
RTIP0
B17
D17
F17
H17
K17
M17
P17
T17
T1
P1
M1
K1
H1
F1
D1
B1
I
Receive Differential Tip Input
RTIP is the positive differential input from the line interface. Along with the
RRING signal, these pins should be coupled to a 2:1 transformer for proper
operation.
RRING15
RRING14
RRING13
RRING12
RRING11
RRING10
RRING9
RRING8
RRING7
RRING6
RRING5
RRING4
RRING3
RRING2
RRING1
RRING0
C17
E17
G17
J17
L17
N17
R17
T16
T2
R1
N1
L1
J1
G1
E1
C1
I
Receive Differential Ring Input
RRING is the negative differential input from the line interface. Along with the
RTIP signal, these pins should be coupled to a 2:1 transformer for proper operation.
7
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TRANSMITTER SECTION
NAME
PIN
TYPE
TxOE
K14
I
DESCRIPTION
Transmit Output Enable
Upon power up, the transmitters are tri-stated. Enabling the transmitters is
selected through the serial microprocessor interface by programming the
appropriate channel register if this pin is pulled "High". If the TxOE pin is
pulled "Low", all 16 transmitters are tri-stated.
NOTE:
TxOE is ideal for redundancy applications. See the Redundancy
Applications Section of this datasheet for more details. Internally
pulled "Low" with a 50kΩ resistor.
TCLK15
TCLK14
TCLK13
TCLK12
TCLK11
TCLK10
TCLK9
TCLK8
TCLK7
TCLK6
TCLK5
TCLK4
TCLK3
TCLK2
TCLK1
TCLK0
A14
D13
C14
E14
N14
P13
U16
R13
R5
U2
P5
N4
E4
A3
F5
C5
I
Transmit Clock Input
TCLK is the input facility clock used to sample the incoming TPOS/TNEG data.
TPOS/TNEG data can be sampled on either edge of TCLK selected by TCLKinv in the appropriate channel register.
TPOS15
TPOS14
TPOS13
TPOS12
TPOS11
TPOS10
TPOS9
TPOS8
TPOS7
TPOS6
TPOS5
TPOS4
TPOS3
TPOS2
TPOS1
TPOS0
B13
E13
A15
F13
M14
N13
U15
T13
T5
U3
N5
M4
D4
B4
D5
B5
I
TPOS/TDATA Input
Transmit digital input pin. In dual rail mode, this pin is the transmit positive
data input. In single rail mode, this pin is the transmit non-return to zero (NRZ)
data input.
8
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TRANSMITTER SECTION
NAME
PIN
TYPE
TNEG15
TNEG14
TNEG13
TNEG12
TNEG11
TNEG10
TNEG9
TNEG8
TNEG7
TNEG6
TNEG5
TNEG4
TNEG3
TNEG2
TNEG1
TNEG0
A13
C13
B14
D14
L14
M13
U14
U13
U5
U4
M5
L4
C4
A4
E5
A5
I
DESCRIPTION
Transmit Negative Data Input
In dual rail mode, this pin is the transmit negative data input. In single rail
mode, this pin can be tied to ground.
9
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TRANSMITTER SECTION
NAME
PIN
TYPE
DESCRIPTION
TTIP15
TTIP14
TTIP13
TTIP12
TTIP11
TTIP10
TTIP9
TTIP8
TTIP7
TTIP6
TTIP5
TTIP4
TTIP3
TTIP2
TTIP1
TTIP0
B15
D15
F15
H15
K15
M15
P15
T14
T4
P3
M3
K3
H3
F3
D3
B3
O
Transmit Differential Tip Output
TTIP is the positive differential output to the line interface. Along with the
TRING signal, these pins should be coupled to a 1:2 step up transformer for
proper operation.
TRING15
TRING14
TRING13
TRING12
TRING11
TRING10
TRING9
TRING8
TRING7
TRING6
TRING5
TRING4
TRING3
TRING2
TRING1
TRING0
C15
E15
G15
J15
L15
N15
R15
R14
R4
R3
N3
L3
J3
G3
E3
C3
O
Transmit Differential Ring Output
TRING is the negative differential output to the line interface. Along with the
TTIP signal, these pins should be coupled to a 1:2 step up transformer for
proper operation.
10
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
CONTROL FUNCTION
NAME
PIN
TYPE
JASEL0
JASEL1
G13
H13
I
DESCRIPTION
Jitter Attenuator Select:
The Jitter Attenuator can be slected to be in the Transmit or Receive path.
JASEL1
0
JASEL0
0
Jitter Attenuator State
JA Disabled
0
1
JA in Tx Path
1
0
1
1
JA in Rx Path
JA Select is enabled
through µP Control
NOTE: Internally pulled "High" with a 50kΩ resistor.
MCLK
L6
I
Master Clock Input
This pin is used as the internal reference to the LIU. This clock must be
2.048MHz +/-50ppm.
JTAG SECTION
NAME
PIN
TYPE
DESCRIPTION
TCK
G5
I
JTAG Test Clock input, Boundary Scan Clock input:
TDI
G4
I
JTAG Test Data input, Boundary Scan Test Data Input:
NOTE: Internally pulled "High" with a 50kΩ resistor.
TDO
H5
O
JTAG Test Data output:
Boundary Scan Test Data Output:
TMS
G6
I
JTAG Test Mode Select, Boundary Scan Test Mode Select input pin:
NOTE: Internally pulled "High" with a 50kΩ resistor.
TRST
H4
I
JTAG Test Mode Reset, Boundary Scan Mode Reset Input pin:
NOTE: This input pin should be pulled "Low" for normal operation. Internally
pulled "High" with a 50kΩ resistor.
11
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
POWER AND GROUND
NAME
PIN
TYPE
DESCRIPTION
TVDD15
TVDD14
TVDD13
TVDD12
TVDD11
TVDD10
TVDD9
TVDD8
TVDD7
TVDD6
TVDD5
TVDD4
TVDD3
TVDD2
TVDD1
TVDD0
C16
E16
G16
J16
L16
N16
R16
P14
P4
R2
N2
L2
J2
G2
E2
C2
PWR
Transmit Analog Power Supply (3.3V ±5%)
TVDD can be shared with DVDD. However, it is recommended that TVDD be
isolated from the analog power supply RVDD. For best results, use an internal
power plane for isolation. If an internal power plane is not available, a ferrite
bead can be used. Each power supply pin should be bypassed to ground
through an external 0.1µF capacitor and a 10µF capacitor.
RefVDD
AVDD_pll
K12
K6
PWR
Analog Power Supply (3.3V ±5%)
Thes analog supply pins should not be shared with other power supplies. It is
recommended that they be isolated from the digital power supply, DVDD. For
best results, use an internal power plane for isolation. If an internal power
plane is not available, a ferrite bead can be used. Each power supply pin
should be bypassed to ground through an external 0.1µF capacitor.
DVDD
A2
A17
C9
D9
H6
H12
P9
R9
PWR
Digital Power Supply (3.3V ±5%)
DVDD should be isolated from the analog power supplies except for TVDD.
For best results, use an internal power plane for isolation. If an internal power
plane is not available, a ferrite bead can be used. Every two DVDD power supply pins should be bypassed to ground through at least one 0.1µF capacitor.
RVDD_1
E9
F6
F9
F12
M6
M9
M12
N9
PWR
Receive Power Supply (3.3V ±5%)
RVDD should be isolated from the digital power supplies. For best results, use
an internal power plane for isolation. If an internal power plane is not available,
a ferrite bead can be used. Each power supply pin should be bypassed to
ground through at least one 0.1µF capacitor and a 10µF capacitor.
RVDD_2
12
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
POWER AND GROUND
NAME
PIN
TYPE
DESCRIPTION
TGND15
TGND14
TGND13
TGND12
TGND11
TGND10
TGND9
TGND8
TGND7
TGND6
TGND5
TGND4
TGND3
TGND2
TGND1
TGND0
B16
D16
F16
H16
K16
M16
P16
T15
T3
P2
M2
K2
H2
F2
D2
B2
GND
Transmit Analog Ground
It’s recommended that all ground pins of this device be tied together and to a
ground plane.
DGND
A1
A9
A16
B9
T9
U1
U9
U17
GND
Digital Ground
It’s recommended that all ground pins of this device be tied together and to a
ground plane.
13
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
POWER AND GROUND
NAME
PIN
TYPE
AGND
G7
G8
G9
G10
G11
H7
H8
H9
H10
H11
J7
J8
J9
J10
J11
K7
K8
K9
K10
K11
L7
L8
L9
L10
L11
J14
GND
E6
E12
F4
F14
G12
G14
H14
J12
J13
K13
L12
L13
N6
N12
NC
NC
DESCRIPTION
Analog Ground
It’s recommended that all ground pins of this device be tied together and to a
ground plane.
NOTE: J14 is a factory test pin and MUST be grounded for normal operation.
No Connects
14
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
1.0 RECEIVE PATH LINE INTERFACE
The receive path consists of 16 independent E1 receivers. The following section describes the complete
receive path from RTIP/RRING inputs to RCLK/RPOS/RNEG outputs. A simplified block diagram of the receive
path is shown in Figure 3.
FIGURE 3. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE PATH LINE TERMINATION (RTIP/RRING)
RCLK
RPOS
RNEG
1.1
HDB3
Decoder
Rx Jitter
Attenuator
Clock & Data
Recovery
Rx Equalizer &
Peak Detector
RTIP
RRING
Peak Detector/Data Slicer
In the receive path, the line signal is coupled into the RTIP and RRing pins via a 2:1 transformer and are
converted into digital pulses by an equalizer and an adaptive data slicer. Clock and data signals are recovered
from the output of the slicer with the help of a digital PLL that provides excellent jitter accommodation for high
input jitter tolerance.
1.2
Clock and Data Recovery
The receive clock (RCLK) is recovered by the clock and data recovery circuitry. An internal PLL locks on the
incoming data stream and outputs a clock that’s in phase with the incoming signal. In the absence of an
incoming signal, RCLK maintains its timing by using MCLK as its reference. The recovered data can be
updated on either edge of RCLK. By default, data is updated on the rising edge of RCLK. To update data on
the falling edge of RCLK, set RCLKinv to "1" in the appropriate global register. Figure 4 is a timing diagram of
the receive data updated on the rising edge of RCLK. Figure 5 is a timing diagram of the receive data updated
on the falling edge of RCLK. The timing specifications are shown in Table 1.
FIGURE 4. RECEIVE DATA UPDATED ON THE RISING EDGE OF RCLK
R C LK R
R DY
R C LK F
R C LK
RPOS
or
RNEG
R OH
FIGURE 5. RECEIVE DATA UPDATED ON THE FALLING EDGE OF RCLK
RCLKF
RDY
RCLK
RPOS
or
RNEG
ROH
15
RCLKR
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 1: TIMING SPECIFICATIONS FOR RCLK/RPOS/RNEG
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
RCLK Duty Cycle
RCDU
45
50
55
%
Receive Data Setup Time
RSU
150
-
-
ns
Receive Data Hold Time
RHO
150
-
-
ns
RCLK to Data Delay
RDY
-
-
40
ns
RCLK Rise Time (10% to 90%)
with 25pF Loading
RCLKR
-
-
40
ns
RCLK Fall Time (90% to 10%)
with 25pF Loading
RCLKF
-
-
40
ns
NOTE: VDD=3.3V ±5%, TA=25°C, Unless Otherwise Specified
1.3
Receive Sensitivity
To meet short haul requirements, the XRT83SL216 can accept E1 signals that have been attenuated by 11dB
of flat loss in E1 mode. The test configuration for measuring the receive sensitivity is shown in Figure 6.
FIGURE 6. TEST CONFIGURATION FOR MEASURING RECEIVE SENSITIVITY
Tx
Ne twork
Analyze r
Rx
Flat Loss
Rx
Tx
Exte rnalLoopback
XRT83SL216
16-Channe l
Short Haul LIU
E1 = PRBS 2 15 - 1
1.4
General Alarm Detection and Interrupt Generation
The receive path detects RLOS and AIS. These alarms can be individually masked to prevent the alarm from
triggering an interrupt. To enable interrupt generation, the Global Interrupt Enable (GIE) bit must be set "High"
in the appropriate global register. Any time a change in status occurs (if the alarms are enabled), the interrupt
pin will pull "Low" to indicate an alarm has occurred. Once the status registers have been read, the INT pin will
return "High". The status registers are Reset Upon Read (RUR).
NOTE: The interrupt pin is an Open-Drain output that requires a 10kΩ pull-up resistor.
16
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
1.4.1
RLOS (Receiver Loss of Signal)
The XRT83SL216 supports both G.775 or ETSI-300-233 RLOS detection scheme.
In G.775 mode, RLOS is declared when the received signal is less than 320mV for more than 32 consecutive
pulse periods (typical). The device clears RLOS when the receive signal achieves 12.5% ones density with no
more than 15 consecutive zeros in a 32 bit sliding window and the signal level exceeds 550mV (typical).
In ETSI-300-233 mode the device declares RLOS when the input level drops below 320mV (typical) for more
than 2048 pulse periods (1msec). The device clears RLOS when the receive signal achieves 12.5% ones
density with no more than 15 consecutive zeros in a 32 bit sliding window and the signal level exceeds 550mV
(typical).
1.4.2
AIS (Alarm Indication Signal)
The XRT83SL216 adheres to ITU-T G.775 or ETSI-300-233 specifications for an all ones pattern detection by
programming the appropriate channel register. The alarm indication signal is set to "1" if an all ones pattern is
detected. In G.775 mode, AIS is defined as 2 or less zeros in 2 consecutive double frame (512-bit window)
periods. AIS will clear when the incoming signal has 3 or more zeros in the same time period. In ETSI-300-233
mode, AIS is defined as less than 3 zeros in a 512-bit window.
1.4.3
LCV (Line Code Violation Detection)
In HDB3 mode, the LCV pin will be set to "High" if the receiver detects excessive zero’s, bipolar violations or
HDB3 code violations. If the device is configured in AMI mode, any bipolar violations will cause the LCV pin to
go "High".
1.5
Receive Jitter Attenuator
The jitter attenuator can be configured in the receive path to reduce phase and frequency jitter in the recovered
clock. The jitter attenuator uses a data FIFO (First In First Out) with a programmable depth of 32-bit or 64-bit. If
the LIU is used for line synchronization (loop timing systems), the JA should be enabled. When the Read and
Write pointers of the FIFO are within 2-Bits of over-flowing or under-flowing, the bandwidth of the jitter
attenuator is widened to track the short term input jitter, thereby avoiding data corruption. When this condition
occurs, the jitter attenuator will not attenuate input jitter until the Read/Write pointer’s position is outside the 2Bit window. The JA has a typical clock delay equal to ½ of the FIFO bit depth.
NOTE: If the LIU is used in a multiplexer/mapper application where stuffing bits are typically removed, the JA can be
configured in the transmit path to smooth out the gapped clock. See the Transmit Section of this datasheet.
1.6
HDB3 Decoder
In single rail mode, RPOS is the output of decoded AMI or HDB3 signals and RNEG is the LCV output. HDB3
data is defined as any block of 4 successive zeros replaced with OOOV or BOOV, so that two successive V
pulses are of opposite polarity to acheive zero DC offset. If the HDB3 decoder is selected, the receive path
removes the V and B pulses so that the original data is output to RPOS.
17
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
1.7
REV. 1.0.0
ARAOS (Automatic Receive All Ones)
If ARAOS is enabled in the appropriate channel register and an RLOS condition occurs, the Receiver outputs
will generate an All Ones pattern using MCLK as reference. When RLOS clears, the All Ones pattern ends and
the Receive path returns to normal operation.
FIGURE 7. SIMPLIFIED BLOCK DIAGRAM OF THE ARAOS FUNCTION
RPOS
Rx
RNEG
All "1's"
Generator
Timing derived
from MCLK
ARAOS
RLOS
1.8
RPOS/RNEG/RCLK
The digital output data can be programmed to either single rail or dual rail formats. Figure 8 is a timing diagram
of a repeating "0011" pattern in single-rail mode. Figure 9 is a timing diagram of the same fixed pattern in dual
rail mode.
FIGURE 8. SINGLE RAIL MODE WITH A FIXED REPEATING "0011" PATTERN
RCLK
RPOS
0
0
1
0
1
FIGURE 9. DUAL RAIL MODE WITH A FIXED REPEATING "0011" PATTERN
RCLK
RPOS
RNEG
0
1
0
0
1
18
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
2.0 TRANSMIT PATH LINE INTERFACE
The transmit path consists of 16 independent E1 transmitters. The following section describes the complete
transmit path from TCLK/TPOS/TNEG inputs to TTIP/TRING outputs. A simplified block diagram of the
transmit path is shown in Figure 10.
FIGURE 10. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT PATH
TCLK
TPOS
TNEG
2.1
HDB3
Encoder
Tx Jitter
Attenuator
TTIP
Timing
Control
Tx Pulse Shaper
Line Driver
TRING
TCLK/TPOS/TNEG Digital Inputs
In dual rail mode, TPOS and TNEG are the digital inputs for the transmit path. In single rail mode, TNEG can
be tied to ground. The XRT83SL216 can be programmed to sample the inputs on either edge of TCLK. By
default, data is sampled on the falling edge of TCLK. To sample data on the rising edge of TCLK, set TCLKinv
to "1" in the appropriate global register. Figure 11 is a timing diagram of the transmit input data sampled on the
falling edge of TCLK. Figure 12 is a timing diagram of the transmit input data sampled on the rising edge of
TCLK. The timing specifications are shown in Table 2.
FIGURE 11. TRANSMIT DATA SAMPLED ON FALLING EDGE OF TCLK
TCLKR
TCLKF
TCLK
TPOS
or
TNEG
TSU
THO
FIGURE 12. TRANSMIT DATA SAMPLED ON RISING EDGE OF TCLK
TCLKF
TCLK
TPOS
or
TNEG
TSU
THO
19
TCLKR
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 2: TIMING SPECIFICATIONS FOR TCLK/TPOS/TNEG
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
TCLK Duty Cycle
TCDU
30
50
70
%
Transmit Data Setup Time
TSU
50
-
-
ns
Transmit Data Hold Time
THO
30
-
-
ns
TCLK Rise Time (10% to 90%)
TCLKR
-
-
40
ns
TCLK Fall Time (90% to 10%)
TCLKF
-
-
40
ns
NOTE: VDD=3.3V ±5%, TA=25°C, Unless Otherwise Specified
2.2
HDB3 Encoder
In single rail mode, the LIU can encode the TPOS input signal to AMI or HDB3 data. If HDB3 encoding is
selected, any sequence with four or more consecutive zeros in the input will be replaced with 000V or B00V,
where "B" indicates a pulse conforming to the bipolar rule and "V" representing a pulse violating the rule. An
example of HDB3 encoding is shown in Table 3.
TABLE 3: EXAMPLES OF HDB3 ENCODING
NUMBER OF PULSES BEFORE
NEXT 4 ZEROS
Input
2.3
0000
HDB3 (Case 1)
Odd
000V
HDB3 (Case 2)
Even
B00V
Transmit Jitter Attenuator
The XRT83SL216 LIU is ideal for multiplexer or mapper applications where the network data crosses multiple
timing domains. As the higher data rates are de-multiplexed to E1 data, stuffing bits are typically removed
which can leave gaps in the incoming data stream. The JA can be configured in the transmit path with a 32-Bit
or 64-Bit FIFO that is used to smooth the gapped clock into a steady E1 output. The maximum gap width the
JA in the Transmit path can tolerate is shown in Table 4.
TABLE 4: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS
FIFO DEPTH
MAXIMUM GAP WIDTH
32-Bit
20 UI
64-Bit
50 UI
NOTE: If the LIU is used in a loop timing system, the JA should be configured in the receive path. See the Receive Section
of this datasheet.
20
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
2.4
TAOS (Transmit All Ones)
The XRT83SL216 has the ability to transmit all ones on a per channel basis by programming the appropriate
channel register. If TAOS is enabled, the Transmitter outputs will generate an All Ones pattern regardless of
the Transmit Input data. The Remote Loop Back mode has priority over TAOS. Figure 13 is a diagram showing
the all ones signal at TTIP and TRING.
FIGURE 13. TAOS (TRANSMIT ALL ONES)
1
1
1
TAOS
2.5
ATAOS (Automatic Transmit All Ones)
ATAOS is used to generate an All Ones signal only when an RLOS condition occurs. If ATAOS is enabled, any
channel that experiences an RLOS condition will automatically cause the transmitter on that channel to send
an All Ones Pattern to the line using MCLK as reference. When RLOS clears, the All Ones pattern ends and
the Transmit path returns to normal operation.
FIGURE 14. SIMPLIFIED BLOCK DIAGRAM OF THE ATAOS FUNCTION
TTIP
Tx
All "1's"
Generator
Timing derived
from MCLK
ATAOS
RLOS
21
TRING
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
3.0 APPLICATIONS
This applications section describes system considerations along with references to application notes available
for reference where applicable.
3.1
Loopback Diagnostics
The XRT83SL216 supports several loopback modes for diagnostic testing. The following section describes the
local analog loopback, remote loopback, and digital loopback.
3.1.1
Local Analog Loopback
With local analog loopback activated, the transmit output data at TTIP/TRING is internally looped back to the
analog inputs at RTIP/RRING. External inputs at RTIP/RRING are ignored while valid transmit output data
continues to be sent to the line. A simplified block diagram of local analog loopback is shown in Figure 15.
FIGURE 15. SIMPLIFIED BLOCK DIAGRAM OF LOCAL ANALOG LOOPBACK
TAOS
TCLK
TPOS
TNEG
Encoder
JA
Timing
Control
RCLK
RPOS
RNEG
Decoder
JA
Data and
Clock
Recovery
TTIP
TRING
Tx
Rx
RTIP
RRING
NOTE: TAOS takes priority over the transmit input data at TPOS/TNEG.
3.1.2
Remote Loopback
With remote loopback activated, the receive input data at RTIP/RRING is internally looped back to the transmit
output data at TTIP/TRING. The transmit input data at TCLK/TPOS/TNEG are ignored while valid receive
output data continues to be sent to the system. A simplified block diagram of remote loopback is shown in
Figure 16.
FIGURE 16. SIMPLIFIED BLOCK DIAGRAM OF REMOTE LOOPBACK
TAOS
TCLK
TPOS
TNEG
Encoder
JA
Timing
Control
RCLK
RPOS
RNEG
Decoder
JA
Data and
Clock
Recovery
NOTE: Remote Loop Back takes priority over TAOS.
22
TTIP
TRING
Tx
Rx
RTIP
RRING
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
3.1.3
Digital Loopback
With digital loopback activated, the transmit input data at TCLK/TPOS/TNEG is looped back to the receive
output data at RCLK/RPOS/RNEG. The receive input data at RTIP/RRING is ignored while valid transmit
output data continues to be sent to the line. A simplified block diagram of digital loopback is shown in
Figure 17.
FIGURE 17. SIMPLIFIED BLOCK DIAGRAM OF DIGITAL LOOPBACK
TAOS
3.2
TCLK
TPOS
TNEG
Encoder
JA
Timing
Control
RCLK
RPOS
RNEG
Decoder
JA
Data and
Clock
Recovery
TTIP
TRING
Tx
Rx
RTIP
RRING
Interfacing the Transmit Section of the XRT83L216 to the Line
ITU-T G.703 specifies that the E1 line signal can be transmitted over coaxial cable and terminated with 75Ω or
transmitted over twisted-pair and terminated with 120Ω.
In both applications (e.g., 75Ω or 120Ω, the user is advised to interface the Transmitter to the Line, in the manner as depicted in Figure 18 and Figure 19, respectively.
FIGURE 18. INTERFACING THE XRT83L216 TO THE LINE FOR 75Ω APPLICATIONS (1 CHANNEL SHOWN)
75 Ω Coax
RPOS/RData
2 :1
RTIP
RNEG/LCV
+3.3 V
RClk
75 Ω
Signal
Source
18.7 Ω
Rx Input
RVDD
0.1 µF
TVDD
0.1 µF
RRING
AVDD
0.1 µF
10µF
75 Ω Coax
2:1
TTIP
9.1 Ω
TGND
AGND
R Load
75 Ω
Ferrite
Bead
Tx Output
TNEG/CODE
9.1 Ω
TPOS/TData
TRING
TClk
23
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
FIGURE 19. INTERFACING THE XRT83L216 TO THE LINE FOR 120 Ω APPLICATIONS (1CHANNEL SHOWN)
120 Ω Twisted Pair
RPOS/RData
2 :1
RTIP
RNEG/LCV
+3.3 V
RClk
120 Ω
Signal
Source
30 Ω
Rx Input
TVDD
0.1 µF
AVDD
RRING
0.1 µF
RVDD
0.1 µF
120 Ω Twisted Pair
10µF
2:1
TTIP
TGND
9.1 Ω
AGND
R Load
120 Ω
Tx Output
Ferrite
Bead
TNEG/CODE
9.1 Ω
TPOS/TData
TRING
TClk
THE FOLLOWING FERRITE BEAD IS RECOMMENDED FOR USE
PART NUMBER
VENDOR
TYP. IMPEDANCE @
100MHZ
TYP. IMPEDANCE @
200MHZ
HZ0402A601r-00
Steward
600Ω
925Ω
Supplier Information
Steward
Corporate Office
Europe
Asia
P.O. Box 510
Brucefield Industrial Park
3791 Jalan Bukit Merah
Chattanooga, TN 37401-510
Livingston EH%$ 9DR
#10-14 E-Centre @ Redhill
Phone: +1 (423) 308-1690
Scotland, UK
Singapore 159471
Phone: (800) 634-2673 - Toll Free
Phone +44-[0]1-506-414200
Phone: +65-6272-2646
Fax: +1 (423) 308-1622
Fax: +44-[0]1-506-410694
Fax: +65-6272-6165
24
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
THE FOLLOWING TRANSFORMER IS RECOMMENDED FOR USE
PART NUMBER
VENDOR
TURNS RATIO
PACKAGE TYPE
T1113
Pulse
1:2 Transmit
2:1 Receive
TOU 2
Magnetic Supplier Information
Supplier Information
PULSE
Corporate Office
Europe
Asia
12220 World Trade Drive
1 & 2 Huxley Road
150 Kampong Ampat
San Diego, CA 92128
The Surrey Research Park
#07-01/02
Tel: (619)-674-8100
Guildford, Surrey GU2 5RE
KA Centre
FAX: (619)-674-8262
United Kingdom
Singapore 368324
Tel: 44-1483-401700
Tel: 65-287-8998
FAX: 44-1483-401701
FAX: 65-280-0080
25
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
4.0 SERIAL MICROPROCESSOR INTERFACE BLOCK
The serial microprocessor uses a standard 3-pin serial port with CS, SCLK, and SDI for programming the LIU.
Optional pins such as SDO, INT, and RESET allow the ability to read back contents of the registers, monitor
the LIU via an interrupt pin, and reset the LIU to its default configuration by pulling reset "Low" for more than
10µS. A simplified block diagram of the Serial Microprocessor is shown in Figure 20.
FIGURE 20. SIMPLIFIED BLOCK DIAGRAM OF THE SERIAL MICROPROCESSOR INTERFACE
CS
SDO
Serial
Microprocssor
Interface
SCLK
SDI
INT
RESET
FIGURE 21. MICROPROCESSOR SERIAL INTERFACE STRUCTURE
CS
SClk
1
SDI
R/W
2
A0
3
A1
4
A2
5
A3
6
A4
7
A5
8
0
9
10
11
12
13
14
15
16
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
High Z
High Z
SDO
NOTE:
If the R/W bit is set to "1", then this denotes a "READ" operation with the Microprocessor Serial Interface.
Conversely, if the R/W bit is set to "0", then this denotes a "WRITE" operation.
26
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
FIGURE 22. TIMING DIAGRAM FOR THE MICROPROCESSOR SERIAL INTERFACE
t28
t21
CS
t26
t27
t24
SCLK
t23
t22
SDI
t25
A0
R/W
A1
CS
SCLK
t30
t29
SDO
Hi-Z
D0
t32
t31
D2
D1
D7
Don’t Care (Read mode)
SDI
TABLE 5: MICROPROCESSOR SERIAL INTERFACE TIMINGS ( TA = 250C, VDD=3.3V± 5% AND LOAD = 10PF)
SYMBOL
PARAMETER
MIN.
TYP.
MAX
UNITS
t21
CS Low to Rising Edge of SClk
5
ns
t22
SDI to Rising Edge of SClk
5
ns
t23
SDI to Rising Edge of SClk Hold Time
5
ns
t24
SClk "Low" Time
50
ns
t25
SClk "High" Time
50
ns
t26
SClk Period
100
ns
t27
Falling Edge of SClk to rising edge of CS
0
ns
t28
CS Inactive Time
50
ns
t29
Falling Edge of SClk to SDO Valid Time
20
ns
t30
Falling Edge of SClk to SDO Invalid Time
10
ns
t31
Rising edge of CS to High Z
25
ns
t32
Rise/Fall time of SDO Output
5
ns
27
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 6: MICROPROCESSOR REGISTER DESCRIPTION
REG
ADDR TYPE
D7
D6
D5
D4
D3
D2
D1
D0
Global Control Register for All 16 Channels (0x00h)
0
0x00
R/W
GIE
Reserved
SR/DR
CODE
FIFO
JABW
JASEL1
JASEL0
1
0x01
RO
INTS7
INTS6
INTS5
INTS4
INTS3
INTS2
INTS1
INTS0
2
0x02
RO
INTS15
INTS14
INTS13
INTS12
INTS11
INTS10
INTS9
INTS8
3
0x03
RO
Revision ID (See Bit Description)
4
0x04
RO
Device ID (See Bit Description)
5
0x05
RO
Device ID (See Bit Description)
Channel 0 Control Register (0x04h - 0x06h)
6
0x06
R/W
SRES_0 *
ARAOS_0
ATAOS_0
TAOS_0
RLAM_0
TXOE_0
RCLKinv_0
TCLKinv_0
7
0x07
R/W
Reserved
AISIE_0
DMOIE_0
RLOSIE_0
Reserved
Reserved
LPB1
LPB0
8
0x08
RUR/
RO
Reserved
AISIS_0
DMOIS_0
RLOSIS_0
Reserved
AISS_0
DMOS_0
RLOSS_0
Channel 1 Control Register (0x07h - 0x09h)
9
0x09
R/W
SRES_1 *
ARAOS_1
ATAOS_1
TAOS_1
RLAM_1
TXOE_1
RCLKinv_1
TCLKinv_1
10
0x0A
R/W
Reserved
AISIE_1
DMOIE_1
RLOSIE_1
Reserved
Reserved
LPB1
LPB0
11
0x0B
RUR/
RO
Reserved
AISIS_1
DMOIS_1
RLOSIS_1
Reserved
AISS_1
DMOS_1
RLOSS_1
Channel 2 Control Register (0x0Ah - 0x0Ch)
12
0x0C
R/W
SRES_2 *
ARAOS_2
ATAOS_2
TAOS_2
RLAM_2
TXOE_2
RCLKinv_2
TCLKinv_2
13
0x0D
R/W
Reserved
AISIE_2
DMOIE_2
RLOSIE_2
Reserved
Reserved
LPB1
LPB0
14
0X0E
RUR/
RO
Reserved
AISIS_2
DMOIS_2
RLOSIS_2
Reserved
AISS_2
DMOS_2
RLOSS_2
Channel 3 Control Register (0x0Dh - 0x0Fh)
15
0x0F
R/W
SRES_3 *
ARAOS_3
ATAOS_3
TAOS_3
RLAM_3
TXOE_3
RCLKinv_3
TCLKinv_3
16
0x10
R/W
Reserved
AISIE_3
DMOIE_3
RLOSIE_3
Reserved
Reserved
LPB1
LPB0
17
0x11
RUR/
RO
Reserved
AISIS_3
DMOIS_3
RLOSIS_3
Reserved
AISS_3
DMOS_3
RLOSS_3
Channel 4 Control Register (0x10h - 0x12h)
18
0x12
R/W
SRES_4 *
ARAOS_4
ATAOS_4
TAOS_4
RLAM_4
TXOE_4
RCLKinv_4
TCLKinv_4
19
0x13
R/W
Reserved
AISIE_4
DMOIE_4
RLOSIE_4
Reserved
Reserved
LPB1
LPB0
20
0x14
RUR/
RO
Reserved
AISIS_4
DMOIS_4
RLOSIS_4
Reserved
AISS_4
DMOS_4
RLOSS_4
Channel 5 Control Register (0x13h - 0x15h)
21
0x15
R/W
SRES_5 *
ARAOS_5
ATAOS_5
TAOS_5
RLAM_5
TXOE_5
RCLKinv_5
TCLKinv_5
22
0x16
R/W
Reserved
AISIE_5
DMOIE_5
RLOSIE_5
Reserved
Reserved
LPB1
LPB0
23
0x17
RUR/
RO
Reserved
AISIS_5
DMOIS_5
RLOSIS_5
Reserved
AISS_5
DMOS_5
RLOSS_5
Channel 6 Control Register (0x16h - 0x18h)
28
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 6: MICROPROCESSOR REGISTER DESCRIPTION
REG
ADDR TYPE
D7
D6
D5
D4
D3
D2
D1
D0
24
0x18
R/W
SRES_6 *
ARAOS_6
ATAOS_6
TAOS_6
RLAM_6
TXOE_6
RCLKinv_6
TCLKinv_6
25
0x19
R/W
Reserved
AISIE_6
DMOIE_6
RLOSIE_6
Reserved
Reserved
LPB1
LPB0
26
0x1A
RUR/
RO
Reserved
AISIS_6
DMOIS_6
RLOSIS_6
Reserved
AISS_6
DMOS_6
RLOSS_6
Channel 7 Control Register (0x19h - 0x1Bh)
27
0x1B
R/W
SRES_7 *
ARAOS_7
ATAOS_7
TAOS_7
RLAM_7
TXOE_7
RCLKinv_7
TCLKinv_7
28
0x1C
R/W
Reserved
AISIE_7
DMOIE_7
RLOSIE_7
Reserved
Reserved
LPB1
LPB0
29
0x1D
RUR/
RO
Reserved
AISIS_7
DMOIS_7
RLOSIS_7
Reserved
AISS_7
DMOS_7
RLOSS_7
Channel 8 Control Register (0x1Ch - 0x1Eh)
30
0x1E
R/W
SRES_8 *
ARAOS_8
ATAOS_8
TAOS_8
RLAM_8
TXOE_8
RCLKinv_8
TCLKinv_8
31
0x1F
R/W
Reserved
AISIE_8
DMOIE_8
RLOSIE_8
Reserved
Reserved
LPB1
LPB0
32
0x20
RUR/
RO
Reserved
AISIS_8
DMOIS_8
RLOSIS_8
Reserved
AISS_8
DMOS_8
RLOSS_8
Channel 9 Control Register (0x1Fh - 0x21h)
33
0x21
R/W
SRES_9 *
ARAOS_9
ATAOS_9
TAOS_9
RLAM_9
TXOE_9
RCLKinv_9
TCLKinv_9
34
0x22
R/W
Reserved
AISIE_9
DMOIE_9
RLOSIE_9
Reserved
Reserved
LPB1
LPB0
35
0x23
RUR/
RO
Reserved
AISIS_9
DMOIS_9
RLOSIS_9
Reserved
AISS_9
DMOS_9
RLOSS_9
Channel 10 Control Register (0x22h - 0x24h)
36
0x24
R/W
SRES_10 *
ARAOS_10
ATAOS_10
TAOS_10
RLAM_10
TXOE_10
RCLKinv_10
TCLKinv_10
37
0x25
R/W
Reserved
AISIE_10
DMOIE_10
RLOSIE_10
Reserved
Reserved
LPB1
LPB0
38
0x26
RUR/
RO
Reserved
AISIS_10
DMOIS_10
RLOSIS_10
Reserved
AISS_10
DMOS_10
RLOSS_10
Channel 11 Control Register (0x25h - 0x27h)
39
0x27
R/W
SRES_11 *
ARAOS_11
ATAOS_11
TAOS_11
RLAM_11
TXOE_11
RCLKinv_11
TCLKinv_11
40
0x28
R/W
Reserved
AISIE_11
DMOIE_11
RLOSIE_11
Reserved
Reserved
LPB1
LPB0
41
0x29
RUR/
RO
Reserved
AISIS_11
DMOIS_11
RLOSIS_11
Reserved
AISS_11
DMOS_11
RLOSS_11
Channel 12 Control Register (0x28h - 0x2Ah)
42
0x2A
R/W
SRES_12 *
ARAOS_12
ATAOS_12
TAOS_12
RLAM_12
TXOE_12
RCLKinv_12
TCLKinv_12
43
0x2B
R/W
Reserved
AISIE_12
DMOIE_12
RLOSIE_12
Reserved
Reserved
LPB1
LPB0
44
0x2C
RUR/
RO
Reserved
AISIS_12
DMOIS_12
RLOSIS_12
Reserved
AISS_12
DMOS_12
RLOSS_12
Channel 13 Control Register (0x2Bh - 0x2Dh)
45
0x2D
R/W
SRES_13 *
ARAOS_13
ATAOS_13
TAOS_13
RLAM_13
TXOE_13
RCLKinv_13
TCLKinv_13
46
0x2E
R/W
Reserved
AISIE_13
DMOIE_13
RLOSIE_13
Reserved
Reserved
LPB1
LPB0
47
0x2F
RUR/
RO
Reserved
AISIS_13
DMOIS_13
RLOSIS_13
Reserved
AISS_13
DMOS_13
RLOSS_13
29
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 6: MICROPROCESSOR REGISTER DESCRIPTION
REG
ADDR TYPE
D7
D6
D5
D4
D3
D2
D1
D0
Channel 14 Control Register (0x2Eh - 0x30h)
48
0x30
R/W
SRES_14 *
ARAOS_14
ATAOS_14
TAOS_14
RLAM_14
TXOE_14
RCLKinv_14
TCLKinv_14
49
0x31
R/W
Reserved
AISIE_14
DMOIE_14
RLOSIE_14
Reserved
Reserved
LPB1
LPB0
50
0x32
RUR/
RO
Reserved
AISIS_14
DMOIS_14
RLOSIS_14
Reserved
AISS_14
DMOS_14
RLOSS_14
Channel 15 Control Register (0x31h - 0x33h)
51
0x33
R/W
SRES_15 *
ARAOS_15
ATAOS_15
TAOS_15
RLAM_15
TXOE_15
RCLKinv_15
TCLKinv_15
52
0x34
R/W
Reserved
AISIE_15
DMOIE_15
RLOSIE_15
Reserved
Reserved
LPB1
LPB0
53
0x35
RUR/
RO
Reserved
AISIS_15
DMOIS_15
RLOSIS_15
Reserved
AISS_15
DMOS_15
RLOSS_15
NOTE: * Indicates that these bits are WRITE-ONLY Reset for that channel register only.
TABLE 7: MICROPROCESSOR REGISTER 0X00H BIT DESCRIPTION
GLOBAL CONTROL REGISTER FOR ALL 16 CHANNELS (0X00H)
Register
Type
Default
Value
(HW reset)
R/W
0
This Register Bit is Not Used
R/W
0
Single Rail / Dual Rail Select
This bit is used to configure the receive outputs and transmit inputs
to single rail or dual rail data formats.
R/W
0
R/W
0
R/W
0
BIT
NAME
FUNCTION
D7
GIE
Global Interrupt Enable
The global interrupt enable is used to enable/disable all interrupt
activity for all 16 channels. This bit must be set "High" for the interrupt pin to operate.
"0" = Disable all interrupt generation
"1" = Enable interrupt generation to the individual channel registers
D6
Reserved
D5
SR/DR
"0" = Dual Rail
"1" = Single Rail
D4
CODE
Encoding / Decoding Select (Single Rail Mode Only)
This bit is used to select between AMI or HDB3.
"0" = HDB3
"1" = AMI
D3
FIFOS
FIFO Depth Select
The FIFO depth select is used to configure the part for a 32-bit or
64-bit FIFO (Within the Jitter Attenuator Block). The delay of the
FIFO is typically equal to ½ the FIFO depth.
"0" = 32-bit FIFO
"1" = 64-bit FIFO
30
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 7: MICROPROCESSOR REGISTER 0X00H BIT DESCRIPTION
GLOBAL CONTROL REGISTER FOR ALL 16 CHANNELS (0X00H)
BIT
NAME
D2
JABW
FUNCTION
JA Band width Select
This bit is used to select the band with of the JA PLL.
Register
Type
Default
Value
(HW reset)
R/W
0
R/W
0
0
"0" = 10 Hz "1" = 1.5Hz
NOTE: If a "1" is written into this bit, JA FIFO size of 64 bit wide is
automatically selected.
D1
D0
JASEL1
JASEL0
Jitter Attenuator Select
These bits are used to configure the Jitter Attenuator into the
Receive or Transmit path.
"00" = Disabled
"01" = Transmit Path
"10" = Receive Path
"11" = Disabled
TABLE 8: MICROPROCESSOR REGISTERS 0X01H &0X02H BIT DESCRIPTION
INTERRUPT STATUS REGISTERS (0X01H) & 0X02H
BIT
NAME
FUNCTION
D7
D6
D5
D4
D3
D2
D1
D0
INTS_n
Interrupt Status
These 2 registers are ready only to determine when an interrupt
event occurs, the channel that generates interrupt can be identified
with minimum read/write operation.
31
Register
Type
Default
Value
(HW reset)
RO
0
0
0
0
0
0
0
0
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 9: MICROPROCESSOR REGISTER 0X03H BIT DESCRIPTION
REVISION "ID" REGISTER (0X03H)
BIT
NAME
FUNCTION
D7
D6
D5
D4
D3
D2
D1
D0
Revision
"ID"
The revision "ID" of the XRT83SL216 LIU is used to enable software to identify which revision of silicon is currently being tested.
The revision "ID" for the first revision of silicon (Revision A) will be
0x01h.
Register
Type
Default
Value
(HW reset)
RO
0
0
0
0
0
0
0
1
TABLE 10: MICROPROCESSOR REGISTERS 0X04H & 0X05H BIT DESCRIPTION
DEVICE "ID" REGISTERS (0X04H & 0X05H)
BIT
D7
D6
D5
D4
D3
D2
D1
D0
NAME
FUNCTION
Device "ID" The device for this chip consists of 2 read only registers. The ID for
the XR T83SL216 is 0x8004h.
Register
Type
Default
Value
(HW reset)
RO
TABLE 11: MICROPROCESSOR REGISTER BIT DESCRIPTION
CHANNEL CONTROL REGISTER (CHANNEL_n, where n = 0:15)
(0X06H, 0X09H, 0X0CH, 0X0FH, 0X12H, 0X15H, 0X18H, 0X1BH, 1EH, 0X21H, 0X24H, 0X27H, 0X2AH, 0X2DH, 0X30H, 0X33H)
BIT
NAME
D7
SRES_n
FUNCTION
Software Reset
Writing a "1" to this bit will cause the channel register to reset to
it's default value.
Register
Type
Default
Value
(HW reset)
WO
X
R/W
0
NOTE: This is a Write-Only bit.
D6
ARAOS_n
Automatic Receive All Ones
If ARAOS_n is selected, an all ones pattern will be sent to the
RPOS/RNEG outputs if the channel experiences an RLOS condition. If RLOS does not occur, ARAOS_n will remain inactive.
"0" = Disabled
"1" = Enabled
32
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 11: MICROPROCESSOR REGISTER BIT DESCRIPTION
CHANNEL CONTROL REGISTER (CHANNEL_n, where n = 0:15)
(0X06H, 0X09H, 0X0CH, 0X0FH, 0X12H, 0X15H, 0X18H, 0X1BH, 1EH, 0X21H, 0X24H, 0X27H, 0X2AH, 0X2DH, 0X30H, 0X33H)
BIT
NAME
FUNCTION
D5
ATAOS_n
Automatic Transmit All Ones
If ATAOS_n is selected, an all ones pattern will be transmitted from
TTIP/TRING if the channel experiences an RLOS condition. If
RLOS does not occur, ATAOS_n will remain inactive.
Register
Type
Default
Value
(HW reset)
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
0
R/W
0
"0" = Disabled
"1" = Enabled
D4
TAOS_n
Transmit All Ones
If TAOS_n is selected, an all ones pattern will be transmitted from
TTIP/TRING if the transmitter is turned on. Remote Loop Back
has priority over TAOS.
"0" = Disabled
"1" = Enabled
D3
RLAM_n
RLOS/AIS Mode Select for channel n
This bit is used to select the industry standard for declaring / clearing RLOS and AIS functionality. See the Receive section of the
Line Interface description.
"0" = ITU G.775
"1" =ETSI300233
D2
TXOE_n
Transmit Output Enable
Upon power up, the tranmitters are tri-stated. This bit is used to
enable the transmitter for this channel if the TxOE pin is pulled
"High". If the TxOE pin is pulled "Low", all 8 transmitters are tristated.
"0" = Transmitter is disabled
"1" = Transmitter is enabled if TxOE pin is pulled "High"
D1
RCLKinv_n Receiver Clock Invert
This bit is used to invert receive clock update edge with respect to
RPOS/RNEG output data.
"0" =RPOS/RNEG data is updated on the rising edge of RCLK
"1" =RPOS/RNEG data is updated on the falling edge of RCLK.
D0
TCLKinv_n Transmit Clock Invert
This bit is used to invert transmit clock sampling edge with respect
to TPOS/TNEG input data.
"0" =TPOS/TNEG data is sampled on the falling edge of TCLK
"1" =TPOS/TNEG data is sampled on the rising edge of TCLK.
33
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 12: MICROPROCESSOR REGISTER BIT DESCRIPTION
CHANNEL CONTROL REGISTER (CHANNEL_n, where n = 0:15)
(0X07H, 0X0AH, 0X0DH, 0X10H, 0X13H, 0X16H, 0X19H, 0X1CH, 0X1FH, 0X22H, 0X25H, 0X28H, 0X2BH, 0X2EH, 0X31H,
0X34H)
Register
Type
Default
Value
(HW reset)
X
X
Alarm Indication Signal Interrupt Enable
"0" = Masks the AIS interrupt generation
"1" = Enables Interrupt generation
R/W
0
Driver Monitor Output Interrupt Enable
"0" = Masks the DMO interrupt generation
"1" = Enables Interrupt generation
R/W
0
R/W
0
This Register Bit is Not Used
X
X
This Register Bit is Not Used
X
X
R/W
0
BIT
NAME
FUNCTION
D7
Reserved
D6
AISIE_n
D5
DMOIE_n
D4
RLOSIE_n Receiver Loss of Signal Interrupt Enable
"0" = Masks the RLOS interrupt generation
"1" = Enables Interrupt generation
D3
Reserved
D2
Reserved
D1
D0
LPB1
LPB0
This Register Bit is Not Used
Loop Back Select
These bits are used to configure the channel in one of three loopback modes. For additional information on loopback modes, see
the Application Section of this datasheet.
LPB1
LPB0
Loopback Mode
0
0
No Loopback
0
1
Analog Loopback
1
0
Remote Loopback
1
1
Digital Loopback
TABLE 13: MICROPROCESSOR REGISTER BIT DESCRIPTION
CHANNEL CONTROL REGISTER (CHANNEL_n, where n = 0:15)
(0X08H, 0X0BH, 0X0EH, 0X11H, 0X14H, 0X17H, 0X1AH, 0X1DH, 0X20H, 0X23H, 0X26H, 0X29H, 0X2CH, 0X2FH, 0X32H,
0X35H)
BIT
NAME
D7
Reserved
D6
AISIS_n
Register
Type
Default
Value
(HW reset)
This Register Bit is Not Used
R/W
X
Alarm Indication Signal Interrupt Status
"0" = No Change
"1" = Change in Status Occured
RUR
0
FUNCTION
34
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 13: MICROPROCESSOR REGISTER BIT DESCRIPTION
CHANNEL CONTROL REGISTER (CHANNEL_n, where n = 0:15)
(0X08H, 0X0BH, 0X0EH, 0X11H, 0X14H, 0X17H, 0X1AH, 0X1DH, 0X20H, 0X23H, 0X26H, 0X29H, 0X2CH, 0X2FH, 0X32H,
0X35H)
Register
Type
Default
Value
(HW reset)
RUR
0
RLOSSI_n Receiver Loss of Signal Interrupt Status
"0" = No Change
"1" = Change in Status Occured
RUR
0
D3
Reserved
This Register Bit is Not Used
R/W
X
D2
AISS_n
AIS Alarm Status
This alarm indication signal detection is always active regardless if
the interrupt generation is disabled. This bit indicates the AIS
activity at the time of reading.
RO
0
RO
0
RO
0
BIT
NAME
D5
DMOIS_n
D4
FUNCTION
Driver Monitor Output Interrupt Status
"0" = No Change
"1" = Change in Status Occured
"0" = No Alarm
"1" = An All "Ones" Signal is detected.
D1
DMOS_n
Driver Monitor Output Status
The Driver Monitor output is always active regardless if the interrupt generation is disabled. This bit indicates the DMO output
activity at the time of reading.
"0" = No alarm
"1" = Failure at the transmit output is detected.
D0
RLOSS_n
Receive Loss of Signal Status
The receiver loss of signal detection is always active regardless if
the interrupt generation is disabled. This bit indicates the RLOS
activity at the time of reading.
"0" = No Alarm
"1" = Loss of Signal condition is detected.
35
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
ELECTRICAL CHARACTERISTICS
TABLE 14: ABSOLUTE MAXIMUM RATINGS
Storage Temperature
-65°C to +150°C
Operating Temperature
-40°C to +85°C
Supply Voltage
-0.5V to +6.0V
TABLE 15: DC DIGITAL INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
VDD
3.13
3.3
3.46
V
Input High Voltage
VIH
2.0
-
5.0
V
Input Low Voltage
VIL
-0.5
-
0.8
V
Output High Voltage IOH=2.0mA
VOH
2.4
-
Output Low Voltage IOL=2.0mA
VOL
-
-
0.4
V
Input Leakage Current
IL
-
-
±10
µA
Input Capacitance
CI
-
5.0
Output Lead Capacitance
CL
-
-
Power Supply Voltage
V
pF
25
pF
NOTE: Input leakage current excludes pins that are internally pulled "Low" or "High".
TABLE 16: AC ELECTRICAL CHARACTERISTICS
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
MCLK Clock Duty Cycle
40
-
60
%
MCLK Clock Tolerance
-
±50
-
ppm
TABLE 17: POWER CONSUMPTION
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED
IMPEDANCE
RECEIVER
TRANSMITTER
TYP
E1
75Ω
2:1
1:2
1.6
2.3
W
50% ones
100% ones
E1
120Ω
2:1
1:2
1.4
1.9
W
50% ones
100% ones
E1
75Ω/120Ω
2:1
1.2
400
mW
Transmitter
OFF
36
MAX
UNIT
TEST
CONDITION
MODE
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 18: RECEIVER ELECTRICAL CHARACTERISTICS
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED
PARAMETER
MIN
TYP
MAX
UNIT
-
32
2048
-
15
20
-
dB
12.5
-
-
% ones
Receiver Sensitivity (flat loss
only)
11
13
-
dB
Interference Margin
-18
-14
-
15
-
kΩ
37
0.2
-
-
UIp-p
-
36
-
+0.5
kHz
dB
-
10
1.5
-
Hz
Hz
14
20
16
-
-
dB
dB
dB
TEST CONDITION
Receiver Loss of Signal
Number of consecutive zeros
before RLOS is declared
Input signal level at RLOS
RLOS clear
Input Impedance
Input Jitter Tolerance
1Hz
10kHz - 100kHz
Recovered Clock Jitter
Transfer Corner Frequency
Peaking Amplitude
Jitter Attenuator Corner Frequency
JABW = "0"
JABW = "1"
Return Loss
51kHz - 102kHz
102kHz - 2048kHz
2048kHz - 3072kHz
G.775
ETSI 300 233
Cable attenuation @ 1024kHz
ITU-G.775, ETSI 300 233
With nominal pulse amplitude of
3.0V for 120Ω and 2.37V for
75Ω. With -18dB interference
signal added.
With 6dB cable loss.
37
ITU-G.823
UIp-p
ITU-G.703
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
TABLE 19: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS
VDD=3.3V ±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED
PARAMETER
MIN
TYP
MAX
UNIT
AMI Output Pulse Amplitude
75Ω
120Ω
2.13
2.70
2.37
3.00
2.60
3.30
V
V
Output Pulse Width
224
244
264
ns
Output Pulse Width Ratio
0.95
-
1.05
ITU-G.703
Output Pulse Amplitude Ratio
0.95
-
1.05
ITU-G.703
-
0.025
0.05
UIp-p
12
10
8
-
-
dB
dB
dB
Jitter Added by the Transmitter
Output
Output Return Loss
51kHz - 102kHz
102kHz - 2048kHz
2048kHz - 3072kHz
NOTE: Transmit output return loss is dependent on the transformer characteristics.
38
TEST CONDITION
1:2 Transformer
Broad Band with jitter free TCLK
applied to the input.
ETSI 300 166
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
ORDERING INFORMATION
PRODUCT NUMBER
PACKAGE
OPERATING TEMPERATURE RANGE
XRT83SL216IB
289 ball STBGA
-400C to +850C
PACKAGE DIMENSIONS
FIGURE 23. 15X15MM 289 BALL STBGA
Note: The control dimension is in millimeter.
INCHES
MILLIMETERS
SYMBOL
MIN
MAX
MIN
MAX
A
0.056
0.067
1.42
1.70
A1
0.010
0.014
0.25
0.35
A2
0.046
0.053
1.17
1.35
D
0.583
0.598
14.80
15.20
D1
0.504 BSC
12.80 BSC
b
0.015
0.019
0.37
0.47
e
0.0315 BSC
0.80 BSC
39
XRT83SL216
16-CHANNEL E1 SHORT-HAUL LINE INTERFACE UNIT
REV. 1.0.0
REVISION HISTORY
REVISION #
DATE
DESCRIPTION
P1.0.0
07/07/05
First release of the 16-Channel LIU Preliminary Datasheet
P1.0.1
08/04/05
Edits to features, RNEG description,figure 6,, electrical supply voltage.
P1.0.2
11/05
P1.0.3
12/06/05
Changed receive transformer turns ratio from 1:1 to 2:1. Added register information.Table 16: Power Consumption added TYP values.
1.0.0
08/02/06
Removed TBD’s from electrical, removed preliminary and updated document format.
Added timing diagram and timing info for the microprocessor serial interface.
Edits
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any
circuits described herein, conveys no license under any patent or other right, and makes no representation that
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration
purposes and may vary depending upon a user’s specific application. While the information in this publication
has been carefully checked; no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately
protected under the circumstances.
Copyright 2006 EXAR Corporation
Datasheet August 2006.
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
40