ZL50418 Managed 16-Port 10/100 M + 2-Port 1 G Ethernet Switch Data Sheet February 2004 Features • • • • • • • • • • Ordering Information ZL50418/GKC 553-pin HSBGA -40°C to +85°C • • • • • • • • • Provides port based and ID tagged VLAN support (IEEE 802.1Q), up to 255 VLANs Supports IP Multicast with IGMP snooping Supports spanning tree with CPU, on per port or per VLAN basis Packet Filtering and Port Security • Static address filtering for source and/or destination MAC • Static MAC address not subject to aging Secure mode freezes MAC address learning. Each port may independently use this mode. Full Duplex Ethernet IEEE 802.3x Flow Control Backpressure flow control for Half Duplex ports Supports Ethernet multicasting and broadcasting and flooding control Supports per-system option to enable flow control for best effort frames even on QoS-enabled ports VLAN 1 MCT • Integrated Single-Chip 10/100/1000 Mbps Ethernet Switch 16 10/100 Mbps Autosensing, Fast Ethernet Ports with RMII or Serial Interface (7WS). Each port can independently use one of the two interfaces 2 Gigabit Ports with GMII, PCS and 10/100 interface options per port Gigabit port supports hot swap in managed configuration. Supports 8/16-bit CPU interface in managed mode Serial interface in unmanaged mode Supports two Frame Buffer Memory domains with SRAM at 100 MHz Supports memory size 2 MB, or 4 MB • Two SRAM domains (2 MB or 4 MB) are required Applies centralized shared memory architecture Up to 64 K MAC addresses Maximum throughput is 3.6 Gbps non-blocking High performance packet forwarding (10.712 M packets per second) at full wire speed VLAN 1 MCT • Frame Data Buffer A SRAM (1 M / 2 M) Frame Data Buffer B SRAM (1 M / 2 M) FDB Interface LED FCB Search Engine Frame Engine 16 x 10 /100 RMII Ports 0 - 15 GMII/ PCS Port 0 GMII/ PCS Port 1 Management Module MCT Link 16-bit Parallel/ Serial Figure 1 - ZL50418 System Block Diagram 1 Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2003-2004, Zarlink Semiconductor Inc. All Rights Reserved. CPU ZL50418 • Traffic Classification • 4 transmission priorities for Fast Ethernet ports with 2 dropping levels • Classification based on: - • • • • • • • • • • • • Data Sheet Port based priority VLAN Priority field in VLAN tagged frame DS/TOS field in IP packet UDP/TCP logical ports: 8 hard-wired and 8 programmable ports, including one programmable range • The precedence of the above classifications is programmable QoS Support • Supports IEEE 802.1p/Q Quality of Service with 4 transmission priority queues with delay bounded, strict priority, and WFQ service disciplines • Provides 2 levels of dropping precedence with WRED mechanism • User controls the WRED thresholds • Buffer management: per class and per port buffer reservations • Port-based priority: VLAN priority in a tagged frame can be overwritten by the priority of Port VLAN ID 3 port trunking groups, one for the 2 Gigabit ports, and two groups for 10/100 ports, with up to 4 10/100 ports per group. Or 8 groups for 10/100 ports with up to 2 10/100 ports per group Load sharing among trunked ports can be based on source MAC and/or destination MAC. The Gigabit trunking group has one more option, based on source port Port Mirroring to any two ports of 0-15 in managed mode or to a dedicated mirroring port in unmanaged mode Full set of LED signals provided by a serial interface, or 6 LED signals dedicated to Gigabit port status only (without serial interface) Built-in MIB statistics counters Recognizes Simple Bandwidth Management (SBM) and Resource Reservation Potocol (RSVP) packets and forwards to CPU Hardware auto-negotiation through serial management interface (MDIO) for Ethernet ports Built-in reset logic triggered by system malfunction Built-in self test for internal and external SRAM I2C EEPROM for configuration 553 BGA package 2 Zarlink Semiconductor Inc. ZL50418 Data Sheet Description The ZL50418 is a high density, low cost, high performance, non-blocking Ethernet switch chip. A single chip provides 16 ports at 10/100 Mbps, 2 ports at 1000 Mbps and a CPU interface for managed and unmanaged switch applications. The Gigabit ports can also support 10/100 M. The chip supports up to 64 K MAC addresses and up to 255 port-based Virtual LANs (VLANs). The centralized shared memory architecture permits a very high performance packet forwarding rate at up to 9.524 M packets per second at full wire speed. The chip is optimized to provide low-cost, high-performance workgroup switching. Two Frame Buffer Memory domains utilize cost-effective, high-performance synchronous SRAM with aggregate bandwidth of 12.8 Gbps to support full wire speed on all ports simultaneously. With delay bounded, strict priority, and/or WFQ transmission scheduling, and WRED dropping schemes, the ZL50418 provides powerful QoS functions for various multimedia and mission-critical applications. The chip provides 4 transmission priorities (8 priorities per Gigabit port) and 2 levels of dropping precedence. Each packet is assigned a transmission priority and dropping precedence based on the VLAN priority field in a VLAN tagged frame, or the DS/TOS field, and UDP/TCP logical port fields in IP packets. The ZL50418 recognizes a total of 16 UDP/TCP logical ports, 8 hard-wired and 8 programmable (including one programmable range). The ZL50418 supports 3 groups of port trunking/load sharing. One group is dedicated to the two Gigabit ports, and the other two groups to 10/100 ports where each 10/100 group can contain up to 4 ports. Port trunking/load sharing can be used to group ports between interlinked switches to increase the effective network bandwidth. In half-duplex mode all ports support backpressure flow control to minimize the risk of losing data during long activity bursts. In full-duplex mode, IEEE 802.3x flow control is provided. The ZL50418 also supports a per-system option to enable flow control for best effort frames, even on QoS-enabled ports. The Physical Coding Sublayer (PCS) is integrated on-chip to provide a direct 10-bit interface for connection to SERDES chips. The PCS can be bypassed to provide a GMII interface. Statistical information for SNMP and the Remote Monitoring Management Information Base (RMON MIB) are collected independently for all ports. Access to these statistical counters/registers is provided via the CPU interface. SNMP Management frames can be received and transmitted via the CPU interface, creating a complete network management solution. The ZL50418 is fabricated using 0.25 micron technology. Inputs, however, are 3.3 V tolerant, and the outputs are capable of directly interfacing to LVTTL levels. The ZL50418 is packaged in a 553-pin Ball Grid Array package. 3 Zarlink Semiconductor Inc. ZL50418 Data Sheet Table of Contents 1.0 Block Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 GMII/PCS MAC Module (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Physical Coding Sublayer (PCS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 10/100 MAC Module (RMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 CPU Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6 Management Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.9 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.10 Internal Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.0 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Management and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Register Configuration, Frame Transmission, and Frame Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Register Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Rx/Tx of Standard Ethernet Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Control Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.4 Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.2 Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.0 ZL50418 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Frame Forwarding To and From CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 Search Engine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3 Search, Learning, and Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.4 VLAN Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4 MAC Address Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.5 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.6 Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.7 Port and Tag Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8 Port-Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.1 Tag-Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.9 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Zarlink Semiconductor Inc. ZL50418 Data Sheet Table of Contents 6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.1 FCB Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.2 Rx Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.3 RxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.6 Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.7 Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.8 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.9 Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.9.1 Dropping When Buffers Are Scarce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.10 ZL50418 Flow Control Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.10.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.10.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.11 Mapping to IETF Diffserv Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.2 Unicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.4 Unmanaged Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.0 Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.1 Port Mirroring Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.2 Setting Registers for Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.0 TBI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.1 TBI Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 11.0 GPSI (7WS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 11.1 GPSI connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 11.2 SCAN LINK and SCAN COL interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 12.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 12.1 LED Interface Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 12.2 Port Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 12.3 LED Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 13.0 Hardware Statistics Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 13.1 Hardware Statistics Counters List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 13.2 EEE 802.3 HUB Management (RFC 1516) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 13.2.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 13.2.1.1 ReadableOctet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 13.2.1.2 ReadableFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 13.2.1.3 FCSErrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 13.2.1.4 AlignmentErrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 13.2.1.5 FrameTooLongs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 13.2.1.6 ShortEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 Zarlink Semiconductor Inc. ZL50418 Data Sheet Table of Contents 13.2.1.7 Runts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13.2.1.8 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13.2.1.9 LateEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13.2.1.10 VeryLongEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13.2.1.11 DataRateMisatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13.2.1.12 AutoPartitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13.2.1.13 TotalErrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13.3 IEEE – 802.1 Bridge Management (RFC 1286) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.3.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.3.1.1 InFrames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.3.1.2 OutFrames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.3.1.3 InDiscards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.3.1.4 DelayExceededDiscards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.3.1.5 MtuExceededDiscards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.4 RMON – Ethernet Statistic Group (RFC 1757) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.4.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.4.1.1 Drop Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.4.1.2 Octets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.4.1.3 BroadcastPkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.4.1.4 MulticastPkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.4.1.5 CRCAlignErrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.4.1.6 UndersizePkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.4.1.7 OversizePkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.4.1.8 Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.4.1.9 Jabbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.4.1.10 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4.1.11 Packet Count for Different Size Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.5 Miscellaneous Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 14.0 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 14.1 ZL50418 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 14.2 Directly Accessed Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 14.2.1 INDEX_REG0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 14.2.2 INDEX_REG1 (only needed for 8-bit mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 14.2.3 DATA_FRAME_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 14.2.4 CONTROL_FRAME_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 14.2.5 COMMAND&STATUS Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 14.2.6 Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 14.2.7 Control Command Frame Buffer1 Access Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 14.2.8 Control Command Frame Buffer2 Access Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 14.3 (Group 0 Address) MAC Ports Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 14.3.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 14.3.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 14.3.3 GGControl – Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 14.4 (Group 1 Address) VLAN Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.4.1 AVTCL – VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.4.2 AVTCH – VLAN Type Code Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.4.3 PVMAP00_0 – Port 00 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.4.4 PVMAP00_1 – Port 00 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 14.4.5 PVMAP00_3 – Port 00 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 14.5 Port Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 14.5.1 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 14.5.2 PVROUTE 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6 Zarlink Semiconductor Inc. ZL50418 Data Sheet Table of Contents 14.5.3 PVROUTE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 14.5.4 PVROUTE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 14.5.5 PVROUTE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 14.5.6 PVROUTE4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 14.5.7 PVROUTE5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 14.5.8 PVROUTE6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 14.5.9 PVROUTE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 14.6 (Group 2 Address) Port Trunking Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 14.6.1 TRUNK0_L – Trunk group 0 Low (Managed mode only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 14.6.2 TRUNK0_M – Trunk group 0 Medium (Managed mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 14.6.3 TRUNK0_MODE– Trunk group 0 mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 14.6.4 TRUNK0_HASH0 – Trunk group 0 hash result 0 destination port number . . . . . . . . . . . . . . . . . . 73 14.6.5 TRUNK0_HASH1 – Trunk group 0 hash result 1 destination port number . . . . . . . . . . . . . . . . . . 74 14.6.6 TRUNK0_HASH2 – Trunk group 0 hash result 2 destination port number . . . . . . . . . . . . . . . . . . 74 14.6.7 TRUNK0_HASH3 – Trunk group 0 hash result 3 destination port number . . . . . . . . . . . . . . . . . . 74 14.6.8 TRUNK1_L – Trunk group 1 Low (Managed mode only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 14.6.9 TRUNK1_M – Trunk group 1 Medium Managed mode only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 14.6.10 TRUNK1_MODE – Trunk group 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 14.6.11 TRUNK1_HASH0 – Trunk group 1 hash result 0 destination port number . . . . . . . . . . . . . . . . . 75 14.6.12 TRUNK1_HASH1 – Trunk group 1 hash result 1 destination port number . . . . . . . . . . . . . . . . . 75 14.6.13 TRUNK1_HASH2 – Trunk group 1 hash result 2 destination port number . . . . . . . . . . . . . . . . . 75 14.6.14 TRUNK1_HASH3 – Trunk group 1 hash result 3 destination port number . . . . . . . . . . . . . . . . . 75 14.6.15 TRUNK2_MODE – Trunk group 2 mode (Gigabit ports 1 and 2). . . . . . . . . . . . . . . . . . . . . . . . . 75 14.6.16 TRUNK2_HASH0 – Trunk group 2 hash result 0 destination port number . . . . . . . . . . . . . . . . . 76 14.6.17 TRUNK2_HASH1 – Trunk group 2 hash result 1 destination port number . . . . . . . . . . . . . . . . . 76 14.6.18 Multicast Hash Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 14.6.18.1 Multicast_HASH0-0 – Multicast hash result 0 mask byte 0 . . . . . . . . . . . . . . . . . . . . . . . . 76 14.6.18.2 Multicast_HASH0-1 – Multicast hash result 0 mask byte 1 . . . . . . . . . . . . . . . . . . . . . . . . 77 14.6.18.3 Multicast_HASH0-3 – Multicast hash result 0 mask byte 3 . . . . . . . . . . . . . . . . . . . . . . . . 77 14.6.18.4 Multicast_HASH1-0 – Multicast hash result 1 mask byte 0 . . . . . . . . . . . . . . . . . . . . . . . . 77 14.6.18.5 Multicast_HASH1-1 – Multicast hash result 1 mask byte 1 . . . . . . . . . . . . . . . . . . . . . . . . 77 14.6.18.6 Multicast_HASH1-3 – Multicast hash result 1 mask byte 3 . . . . . . . . . . . . . . . . . . . . . . . . 77 14.6.18.7 Multicast_HASH2-0 – Multicast hash result 2 mask byte 0 . . . . . . . . . . . . . . . . . . . . . . . . 77 14.6.18.8 Multicast_HASH2-1 – Multicast hash result 2 mask byte 1 . . . . . . . . . . . . . . . . . . . . . . . . 77 14.6.18.9 Multicast_HASH2-3 – Multicast hash result 2 mask byte 3 . . . . . . . . . . . . . . . . . . . . . . . . 78 14.6.18.10 Multicast_HASH3-0 – Multicast hash result 3 mask byte 0 . . . . . . . . . . . . . . . . . . . . . . . 78 14.6.18.11 Multicast_HASH3-1 – Multicast hash result 3 mask byte 1 . . . . . . . . . . . . . . . . . . . . . . . 78 14.6.18.12 Multicast_HASH3-3 – Multicast hash result 3 mask byte 3 . . . . . . . . . . . . . . . . . . . . . . . 78 14.7 (Group 3 Address) CPU Port Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 14.7.1 MAC0 – CPU Mac address byte 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 14.7.2 MAC1 – CPU Mac address byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 14.7.3 MAC2 – CPU Mac address byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.7.4 MAC3 – CPU Mac address byte 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.7.5 MAC4 – CPU Mac address byte 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.7.6 MAC5 – CPU Mac address byte 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.7.7 INT_MASK0 – Interrupt Mask 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.7.8 INTP_MASK0 – Interrupt Mask for MAC Port 0,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 14.7.9 INTP_MASK1 – Interrupt Mask for MAC Port 2,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 14.7.10 INTP_MASK2 – Interrupt Mask for MAC Port 4,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 14.7.11 INTP_MASK3 – Interrupt Mask for MAC Port 6,7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 14.7.12 INTP_MASK4 – Interrupt Mask for MAC Port 8,9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 14.7.13 INTP_MASK5 – Interrupt Mask for MAC Port 10,11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7 Zarlink Semiconductor Inc. ZL50418 Data Sheet Table of Contents 14.7.14 INTP_MASK6 – Interrupt Mask for MAC Port 12,13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 14.7.15 INTP_MASK7 – Interrupt Mask for MAC Port 14,15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 14.7.16 INTP_MASK12 – Interrupt Mask for MAC Port G1,G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 14.7.17 RQS – Receive Queue Select CPU Address:h323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 14.7.18 RQSS – Receive Queue Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 14.8 (Group 4 Address) Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 14.8.1 AGETIME_LOW – MAC address aging time Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 14.8.2 AGETIME_HIGH –MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 14.8.3 +SCAN – SCAN Control Register (default 00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 14.9 (Group 5 Address) Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 14.9.1 FCBAT – FCB Aging Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 14.9.2 QOSC – QOS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 14.9.3 FCR – Flooding Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 14.9.4 AVPML – VLAN Tag Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 14.9.5 AVPMM – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 14.9.6 AVPMH – VLAN Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 14.9.7 TOSPML – TOS Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.9.8 TOSPMM – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.9.9 TOSPMH – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.9.10 AVDM – VLAN Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 14.9.11 TOSDML – TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 14.9.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 14.9.13 UCC – Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 14.9.14 MCC – Multicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 14.9.15 PR100 – Port Reservation for 10/100 ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 14.9.16 PRG – Port Reservation for Giga ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 14.9.17 SFCB – Share FCB Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 14.9.18 C2RS – Class 2 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 14.9.19 C3RS – Class 3 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 14.9.20 C4RS – Class 4 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 14.9.21 C5RS – Class 5 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 14.9.22 C6RS – Class 6 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 14.9.23 C7RS – Class 7 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 14.9.24 QOSCn - Classes Byte Limit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 14.9.25 Classes Byte Limit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 14.9.26 Classes Byte Limit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 14.9.27 Classes Byte Limit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 14.9.28 Classes Byte Limit Giga Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 14.9.29 Classes Byte Limit Giga Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 14.9.30 Classes WFQ Credit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 14.9.31 Classes WFQ Credit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 14.9.32 Classes WFQ Credit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 14.9.33 Classes WFQ Credit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 14.9.34 Classes WFQ Credit Port G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 14.9.35 Classes WFQ Credit Port G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 14.9.36 Class 6 Shaper Control Port G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 14.9.37 Class 6 Shaper Control Port G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 14.9.38 RDRC0 – WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 14.9.39 RDRC1 – WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 14.9.40 User Defined Logical Ports and Well Known Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 14.9.40.1 USER_PORT0_(0~7) – User Define Logical Port (0~7). . . . . . . . . . . . . . . . . . . . . . . . . . . 97 14.9.40.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority . . . . . . . . . . . . . 97 8 Zarlink Semiconductor Inc. ZL50418 Data Sheet Table of Contents 14.9.40.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority . . . . . . . . . . . . . 98 14.9.40.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority . . . . . . . . . . . . . 98 14.9.40.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority . . . . . . . . . . . . . 98 14.9.40.6 USER_PORT_ENABLE[7:0] – User Define Logic 7 to 0 Port Enables . . . . . . . . . . . . . . . 98 14.9.40.7 WELL_KNOWN_PORT[1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority . . . . . . . 98 14.9.40.8 WELL_KNOWN_PORT[3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority . . . . . . . 99 14.9.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority . . . . . . 99 14.9.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority . . . . . 99 14.9.40.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables. . . . . . 100 14.9.40.12 RLOWL – User Define Range Low Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.9.40.13 RLOWH – User Define Range Low Bit 15:8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.9.40.14 RHIGHL – User Define Range High Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.9.40.15 RHIGHH – User Define Range High Bit 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.9.40.16 RPRIORITY – User Define Range Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.9.41 CPUQOSC123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 14.10 (Group 6 Address) MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 14.10.1 MII_OP0 – MII Register Option 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 14.10.2 MII_OP1 – MII Register Option 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 14.10.3 FEN – Feature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 14.10.4 MIIC0 – MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 14.10.5 MIIC1 – MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 14.10.6 MIIC2 – MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 14.10.7 MIIC3 – MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 14.10.8 MIID0 – MII Data Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 14.10.9 MIID1 – MII Data Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 14.10.10 LED Mode – LED Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 14.10.11 DEVICE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 14.10.12 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 14.11 (Group 7 Address) Port Mirroring Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 14.11.1 MIRROR1_SRC – Port Mirror source port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 14.11.2 MIRROR1_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 14.11.3 MIRROR2_SRC – Port Mirror source port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 14.11.4 MIRROR2_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 14.12 Group F Address) CPU Access Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 14.12.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 14.12.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 14.12.2.1 DCR1-Giga port status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 14.12.3 DPST – Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 14.12.4 DTST – Data read back register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 14.12.5 PLLCR - PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 14.12.6 LCLK - LA_CLK delay from internal OE_CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 14.12.7 OECLK - Internal OE_CLK delay from SCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 14.12.8 DA – DA Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 14.13 TBI Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 14.13.1 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 14.13.2 Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 14.13.3 Advertisement Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 14.13.4 Link Partner Ability Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 14.13.5 Expansion Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 14.13.6 Extended Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 15.0 BGA and Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 15.1 BGA Views (TOP Views) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 9 Zarlink Semiconductor Inc. ZL50418 Data Sheet Table of Contents 15.1.1 Encapsulated view in unmanaged mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 15.1.2 Encapsulated view in managed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 15.2 Ball – Signal Descriptions in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 15.2.1 Ball Signal Descriptions in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 15.2.2 Ball – Signal Descriptions in Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 15.3 Ball – Signal Name in Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 15.4 Ball – Signal Name in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 15.5 AC/DC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 15.5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 15.5.4 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 15.5.5 Typical CPU Timing Diagram for a CPU Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 15.5.6 Typical CPU Timing Diagram for a CPU Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 15.6 Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 15.6.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 15.7 Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 15.7.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 15.8 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 15.8.1 Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 15.8.2 Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 15.8.3 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 15.8.4 SCANLINK SCANCOL Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 15.8.5 MDIO Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 15.8.6 I2C Input Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 15.8.7 Serial Interface Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10 Zarlink Semiconductor Inc. ZL50418 Data Sheet List of Figures Figure 1 - ZL50418 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Overview of the CPU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 3 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 4 - Write Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 5 - Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 6 - ZL50418 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only). . . . . . . . . . . . . . . . . . . . . . 21 Figure 7 - Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 8 - Priority Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 9 - Memory Configuration For: 2 Banks, 1 Layer, 2 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 10 - Memory Configuration For: 2 Banks, 2 Layer, 4 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 11 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 12 - Behaviour of the WRED Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 13 - Buffer Partition Scheme Used to Implement Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 14 - TBI Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 15 - GPSI (7WS) Mode Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 16 - SCAN LINK and SCAN COLLISON Status Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 17 - Timing Diagram of LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 18 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Figure 19 - Typical CPU Timing Diagram for a CPU Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Figure 20 - Typical CPU Timing Diagram for a CPU Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Figure 21 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Figure 22 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Figure 23 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Figure 24 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Figure 25 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Figure 26 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Figure 27 - AC Characteristics- GMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Figure 28 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Figure 29 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Figure 30 - Gigabit TBI Interface Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Figure 31 - AC Characteristics- GMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Figure 32 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 33 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 34 - Gigabit TBI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Figure 35 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Figure 36 - SCANLINK SCANCOL Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Figure 37 - SCANLINK, SCANCOL Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Figure 38 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Figure 39 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Figure 40 - I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Figure 41 - I2C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Figure 42 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Figure 43 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11 Zarlink Semiconductor Inc. ZL50418 Data Sheet List of Tables Table 1 - Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 2 - VLAN Index Mapping Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 3 - VLAN Index Port Association Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 4 - Port-Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 5 - Supported Memory Configurations (Pipeline SBRAM Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6 - Options for Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 7 - Two-Dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 8 - Four QoS Configurations for a 10/100 Mbps Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 9 - Four QoS Configurations for a Gigabit Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 10 - Mapping between ZL50418 and IETF Diffserv Classes for Gigabit Ports . . . . . . . . . . . . . . . . . . . . . . . 40 Table 11 - Mapping between ZL50418 and IETF Diffserv Classes for 10/100 Ports . . . . . . . . . . . . . . . . . . . . . . . 40 Table 12 - ZL50418 Features Enabling IETF Diffserv Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 13 - Select via trunk0_mode register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 14 - Select via trunk1_mode register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 15 - Unmanaged Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 16 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Table 17 - Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Table 18 - Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Table 19 - AC Characteristics – Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . 151 Table 20 - AC Characteristics – Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . 152 Table 21 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Table 22 - AC Characteristics – Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 23 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 24 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 25 - AC Characteristics – Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Table 26 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 27 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 28 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Table 29 - SCANLINK, SCANCOL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Table 31 - I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Table 30 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Table 32 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12 Zarlink Semiconductor Inc. ZL50418 1.0 Block Functionality 1.1 Frame Data Buffer (FDB) Interfaces Data Sheet The FDB interface supports pipelined synchronous burst SRAM (SBRAM) memory at 100 MHz. To ensure a non-blocking switch, two memory domains are required. Each domain has a 64 bit wide memory bus. At 100 MHz, the aggregate memory bandwidth is 12.8 Gbps, which is enough to support 16 10/100 Mbps and 2 Gigabit ports at full wire speed switching. The Switching Database is also located in the external SRAM; it is used for storing MAC addresses and their physical port number. It is duplicated and stored in both memory domains. Therefore, when the system updates the contents of the switching database it has to write the entry to both domains at the same time. 1.2 GMII/PCS MAC Module (GMAC) The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between the Frame Engine (FE) and the external physical device (PHY). The ZL50418 GMAC implements both GMII and MII interface, which offers a simple migration from 10/100 to 1 G. The GMAC of the ZL50418 meets the IEEE 802.3Z specification. It is able to operate in 10 M/100 M either Half or Full Duplex mode with a back pressure/flow control mechanism or in 1 G Full duplex mode with flow control mechanism. Furthermore, it will automatically retransmit upon collision for up to 16 total transmissions. PHY addresses for GMAC are 01h and 02h. For fiber optics media, the ZL50418 implements the Physical Code Sublayer (PCS) interface. The PCS includes an 8B10B encoder and decoder, auto-negotiation, and Ten Bit Interface (TBI) 1.3 Physical Coding Sublayer (PCS) Interface For the ZL50418, the 1000BASE-X PCS Interface is designed internally and may be utilized in the absence of a GMII. The PCS incorporates all the functions required by the GMII to include encoding (decoding) 8B GMII data to (from) 8B/10B TBI format for PHY communication and generating Collision Detect (COL) signals for half-duplex mode. It also manages the Auto negotiation process by informing the management entity that the PHY is ready for communications. The on-chip TBI may be disabled if TBI exists within the Gigabit PHY. The TBI interface provides a uniform interface for all 1000 Mbps PHY implementations. The PCS comprises the PCS Transmit, Synchronization, PCS Receive and Auto negotiation processes for 1000BASE-X. The PCS Transmit process sends the TBI signals TXD [9:0] to the physical medium and generates the GMII Collision Detect (COL) signal based on whether a reception is occurring simultaneously with transmission. Additionally, the Transmit process generates an internal “transmitting” flag and monitors Auto negotiation to determine whether to transmit data or to reconfigure the link. The PCS Synchronization process determines whether or not the receive channel is operational. The PCS Receive process generates RXD [7:0] on the GMII from the TBI data [9:0] and the internal “receiving” flag for use by the Transmit processes. The PCS Auto negotiation process allows the ZL50418 to exchange configuration information between two devices that share a link segment and to automatically configure the link for the appropriate speed of operation for both devices. 13 Zarlink Semiconductor Inc. ZL50418 1.4 Data Sheet 10/100 MAC Module (RMAC) The 10/100 Media Access Control module provides the necessary buffers and control interface between the Frame Engine (FE) and the external physical device (PHY). The ZL50418 has two interfaces, RMII or Serial (only for 10 M). The 10/100 MAC of the ZL50418 device meets the IEEE 802.3 specification. It is able to operate in either Half or Full Duplex mode with a back pressure/flow control mechanism. In addition, it will automatically retransmit upon collision for up to 16 total transmissions. The PHY addresses for 16 10/100 MAC are from 08h to 1Fh. 1.5 CPU Interface Module One extra port is dedicated to the CPU via the CPU interface module. The CPU interface utilizes a 16/8-bit bus in managed mode (Bootstrap TSTOUT6 makes the selection). It also supports a serial and an I2C interface, which provides an easy way to configure the system if unmanaged. 1.6 Management Module The CPU can send a control frame to access or configure the internal network management database. The Management Module decodes the control frame and executes the functions requested by the CPU. 1.7 Frame Engine The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request which is sent to the search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch response from the search engine, the frame engine performs transmission scheduling based on the frame’s priority. The frame engine forwards the frame to the MAC module when the frame is ready to be sent. 1.8 Search Engine The Search Engine resolves the frame’s destination port or ports according to the destination MAC address (L2) or IP multicast address (IP multicast packet) by searching the database. It also performs MAC learning, priority assignment and trunking functions. 1.9 LED Interface The LED interface provides a serial interface for carrying 16+2 port status signals. It can also provide direct status pins (6) for the two Gigabit ports. 1.10 Internal Memory Several internal tables are required and are described as follows: • • • Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame stored in the FDB, e.g., frame size, read/write pointer, transmission priority, etc. Network Management (NM) Database - The NM database contains the information in the statistics counters and MIB. MAC address Control Table (MCT) Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the external MAC Table. Note that the external MAC table is located in the external SSRAM Memory. 14 Zarlink Semiconductor Inc. ZL50418 2.0 System Configuration 2.1 Management and Configuration Data Sheet Two modes are supported in the ZL50418: managed and unmanaged. In managed mode, the ZL50418 uses an 8 or 16 bit CPU interface very similar to the Industry Standard Architecture (ISA) specification. In unmanaged mode, the ZL50418 has no CPU but can be configured by EEPROM using an I2C interface at bootup or via a synchronous serial interface otherwise. 2.2 Managed Mode In managed mode, the ZL50418 uses an 8 or 16 bit CPU interface very similar to the ISA bus. The ZL50418 CPU interface provides for easy and effective management of the switching system. Figure 1 provides an overview of the CPU interface. INDEX REG 1 (Addr = 001) INDEX REG 0 (Addr = 000) CONFIG DATA REG (Addr = 010) FRAME DATA REG (Addr = 011) 8 bit internal data bus CONTROL BLOCK REG 8/16 bit internal data bus 8/16 bit internal data bus 16 bit internal address bus INTERNAL CONFIGUE REGISTERS CPU FRAME RECEIVE FIFO CPU FRAME TRANSMIT FIFO CONTROL COMMAND FRAME RECEIVE FIFO CONTROL COMMAND FRAME TRANSMIT FIFO 1 AND 2 SYNCHRONOUS SERIAL INTERFACE Figure 2 - Overview of the CPU Interface 2.3 Register Configuration, Frame Transmission, and Frame Reception 2.3.1 Register Configuration The ZL50418 has many programmable parameters covering such functions as QoS weights, VLAN control and port mirroring setup. In managed mode, the CPU interface provides an easy way of configuring these parameters. The parameters are contained in 8-bit configuration registers. The ZL50418 allows indirect access to these registers, as follows: • • If operating in 8 bits-interface mode, two “index” registers (addresses 000 and 001) need to be written, to indicate the desired 8-bit register address. In 16-bit mode, only one register (address 000) needs to be written for the desired 16-bit register address. To indirectly configure the register addressed by the two index registers, a “configure data” register (address 010) must be written with the desired 8-bit data. 15 Zarlink Semiconductor Inc. ZL50418 • Data Sheet Similarly, to read the value in the register addressed by the two index registers, the “configure data” register can now simply be read. In summary, access to the many internal registers is carried out simply by directly accessing only three registers – two registers to indicate the address of the desired parameter and one register to read or write a value. Of course, because there is only one bus master, there can never be any conflict between reading and writing the configuration registers. 2.3.2 Rx/Tx of Standard Ethernet Frames The CPU interface is also responsible for receiving and transmitting standard Ethernet frames to and from the CPU. To transmit a frame from the CPU • • The CPU writes a “data frame” register (address 011) with the data it wants to transmit (minimum 64 bytes). After writing all the data, it then writes the frame size, destination port number, and frame status. The ZL50418 forwards the Ethernet frame to the desired destination port, no longer distinguishing the fact that the frame originated from the CPU. To receive a frame into the CPU • • • The CPU receives an interrupt when an Ethernet frame is available to be received. Frame information arrives first in the data frame register. This includes source port number, frame size and VLAN tag. The actual data follows the frame information. The CPU uses the frame size information to read the frame out. In summary, receiving and transmitting frames to and from the CPU is a simple process that uses one direct access register only. 2.3.3 Control Frames In addition to standard Ethernet frames described in the preceding section, the CPU is also called upon to handle special “Control frames,” generated by the ZL50418 and sent to the CPU. These proprietary frames are related to such tasks as statistics collection, MAC address learning, aging, etc. All Control frames are up to 40 bytes long. Transmitting and receiving these frames is similar to transmitting and receiving Ethernet frames, except that the register accessed is the “Control frame data” register (address 111). Specifically, there are eight types of control frames generated by the CPU and sent to the ZL50418: • • • • • • • • Memory read request Memory write request Learn MAC address Delete MAC address Search MAC address Learn IP Multicast address Delete IP Multicast address Search IP Multicast address Note: Memory read and write requests by the CPU may include VLAN table, spanning tree, statistic counters and similar updates. In addition, there are nine types of Control frames generated by the ZL50418 and sent to the CPU: • • Interrupt CPU when statistics counter rolls over Response to memory read request from CPU 16 Zarlink Semiconductor Inc. ZL50418 • • • • • • • Data Sheet Learn MAC address Delete MAC address Delete IP Multicast address New VLAN port Age out VLAN port Response to search MAC address request from CPU Response to search IP Multicast address request from CPU The format of the Control Frame is described in the processor interface application note. 2.3.4 Unmanaged Mode In unmanaged mode, the ZL50418 can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time or via a synchronous serial interface during operation. 2.4 I2C Interface The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and bidirectional, at 50 Kbps. Data transfer is performed between master and slave IC using a request / acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer. Figure 3 depicts the data transfer format. START SLAVE ADDRESS RW ACK DATA1 (8bits) ACK DATA 2 ACK DATA M ACK STOP Figure 3 - Data Transfer Format for I 2C Interface 2.4.1 Start Condition Generated by the master (in our case, the ZL50418). The bus is considered to be busy after the Start condition is generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line. Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus is free both lines are High. 2.4.2 Address The first byte after the Start condition determines which slave the master will select. The slave in our case is the EEPROM. The first seven bits of the first data byte make up the slave address. 2.4.3 Data Direction The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master transmitter sets this bit to W; a master receiver sets this bit to R. 2.4.4 Acknowledgment Like all clock pulses, the acknowledgment-related clock pulse is generated by the master. However, the transmitter releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An acknowledgment pulse follows every byte transfer. If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the transfer. 17 Zarlink Semiconductor Inc. ZL50418 Data Sheet If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let the master generate the Stop condition. 2.4.5 Data After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an acknowledge bit. Data is transferred MSB first. 2.4.6 Stop Condition Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line. The I2C interface serves the function of configuring the ZL50418 at boot time. The master is the ZL50418, and the slave is the EEPROM memory. 2.5 Synchronous Serial Interface The synchronous serial interface serves the function of configuring the ZL50418 not at boot time but via a PC. The PC serves as master and the ZL50418 serves as slave. The protocol for the synchronous serial interface is nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after each byte of data transferred. The unmanaged ZL50418 uses a synchronous serial interface to program the internal registers. To reduce the number of signals required the register address, command and data are shifted in serially through the D0 pin. STROBE- pin is used as the shift clock. AUTOFD- pin is used as data return path. Each command consists of four parts. • • • • START pulse Register Address Read or Write command Data to be written or read back Any command can be aborted in the middle by sending an ABORT pulse to the ZL50418. A START command is detected when D0 is sampled high when STROBE- rise and D0 is sampled low when STROBE- fall. An ABORT command is detected when D0 is sampled low when STROBE- rise and D0 is sampled high when STROBE- fall. 18 Zarlink Semiconductor Inc. ZL50418 2.5.1 Data Sheet Write Command STROBE2 Extra clocks after last transfer D0 A0 A1 START A2 ... A9 A11 A10 ADDRESS W D0 D1 D2 D3 D4 D5 D6 D7 COMMAND DATA Figure 4 - Write Command 2.5.2 Read Command STROBE- A0 D0 START A1 A2 ... A9 A10 ADDRESS A11 R COMMAND DATA D0 D1 D2 D3 D4 D5 D6 D7 AUTOFD- Figure 5 - Read Command All registers in ZL50418 can be modified through this synchronous serial interface. 3.0 ZL50418 Data Forwarding Protocol 3.1 Unicast Data Frame Forwarding When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An FCB handle will always be available because of advance buffer reservations. The memory (SRAM) interface is two 64-bit buses, connected to two SRAM banks, A and B. The Receive DMA (RxDMA) is responsible for multiplexing the data and the address. On a port’s “turn,” the RxDMA will move 8 bytes (or up to the end-of-frame) from the port’s associated RxFIFO into memory (Frame Data Buffer, or FDB). Once an entire frame has been moved to the FDB and a good end-of-frame (EOF) has been received, the Rx interface makes a switch request. The RxDMA arbitrates among multiple switch requests. The switch request consists of the first 64 bytes of a frame, containing among other things, the source and destination MAC addresses of the frame. The search engine places a switch response in the switch response queue of the frame engine when done. Among other information the search engine will have resolved the destination port of the frame and will have determined that the frame is unicast. After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy 19 Zarlink Semiconductor Inc. ZL50418 Data Sheet at the destination. If the frame is not dropped then the TxQ manager links the frame’s FCB to the correct per-port-per-class TxQ. Unicast TxQ’s are linked lists of transmission jobs, represented by their associated frames’ FCB’s. There is one linked list for each transmission class for each port. There are 4 transmission classes for each of the 16 10/ 100 ports, and 8 classes for each of the two Gigabit ports – a total of 112 unicast queues. The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among the head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor scheduling algorithm. The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port’s turn, the TxDMA will move 8 bytes (or up to the EOF) from memory into the port’s associated TxFIFO. After reading the EOF, the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release requests. The frame is transmitted from the TxFIFO to the line. 3.2 Multicast Data Frame Forwarding After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the multicast packet’s destinations. If so, then the frame is dropped at some destinations but not others, and the FCB is not released. If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames). There are 2 multicast queues for each of the 16 10/100 ports. The queue with higher priority has room for 32 entries and the queue with lower priority has room for 64 entries. There are 4 multicast queues for each of the two Gigabit ports. The size of the queues are: 32 entries (higher priority queue), 32 entries, 32 entries and 64 entries (lower priority queue). There is one multicast queue for every two priority classes. For the 10/100 ports to map the 8 transmit priorities into 2 multicast queues, the 2 LSB are discarded. For the gigabit ports to map the 8 transmit priorities into 4 multicast queues, the LSB are discarded. During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one logical queue. The older head of line of the two queues is forwarded first. The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to which the frame is destined. 3.3 Frame Forwarding To and From CPU Frame forwarding from the CPU port to a regular transmission port is nearly the same as forwarding between transmission ports. The only difference is that the physical destination port must be indicated in addition to the destination MAC address. Frame forwarding to the CPU port is nearly the same as forwarding to a regular transmission port. The only difference is in frame scheduling. Instead of using the patent-pending Zarlink Semiconductor scheduling algorithms, scheduling for the CPU port is simply based on strict priority. That is, a frame in a high priority queue will always be transmitted before a frame in a lower priority queue. There are four output queues to the CPU and one receive queue. 20 Zarlink Semiconductor Inc. ZL50418 4.0 Memory Interface 4.1 Overview Data Sheet The ZL50418 provides two 64-bit-wide SRAM banks, SRAM Bank A and SRAM Bank B with a 64-bit bus connected to each. Each DMA can read and write from both bank A and bank B. The following figure provides an overview of the ZL50418 SRAM banks. SRAM Bank B SRAM Bank A TXDMA 0-7 TXDMA 8-15 RXDMA 0-7 RXDMA 8-15 Figure 6 - ZL50418 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only) 4.2 Detailed Memory Information Because the bus for each bank is 64 bits wide, frames are broken into 8-byte granules, written to and read from memory. The first 8-byte granule gets written to Bank A, the second 8-byte granule gets written to Bank B, and so on in alternating fashion. When reading frames from memory, the same procedure is followed, first from A, then from B, and so on. The reading and writing from alternating memory banks can be performed with minimal waste of memory bandwidth. What’s the worst case? For any speed port, in the worst case, a 1-byte-long EOF granule gets written to Bank A. This means that a 7-byte segment of Bank A bandwidth is idle, and furthermore, the next 8-byte segment of Bank B bandwidth is idle, because the first 8 bytes of the next frame will be written to Bank A, not B. This scenario results in a maximum 15 bytes of waste per frame, which is always acceptable because the interframe gap is 20 bytes. The CPU management port gets treated like any other port, reading and writing to alternating memory banks starting with Bank A. The VLAN Index Mapping Table and Mac Address Table are duplicated in Bank A and B. When the CPU writes an entry to the VLAN Index Mapping Table it has to write the same data in bank A and bank B. Search engine data is written to both banks in parallel. In this way, a search engine read operation can be performed by either bank at any time without a problem. 21 Zarlink Semiconductor Inc. ZL50418 4.3 Data Sheet Memory Requirements To speed up searching and decrease memory latency, the external MAC address database is duplicated in both memory banks. To support 64 K MAC address, 4 MB memory is required. When VLAN support is enabled, 512 entries of the MAC address table are used for storing the VLAN ID at VLAN Index Mapping Table. Up to 2 K Ethernet frame buffers are supported and they will use 3 MB of memory. Each frame uses 1536 bytes. The maximum system memory requirement is 4 MB. If less memory is desired, the configuration can scale down. Memory Configuration Bank A Bank B Tag based VLAN Frame Buffer Max MAC Address 1M 1M Disable 1K 32 K 1M 1M Enable 1K 31.5 K 2M 2M Disable 2K 64 K 2M 2M Enable 2K 63.5 K Table 1 - Memory Configuration Memory Map 1 M Bank A 1 M Bank B 2 M Bank A 2 M Bank B 0.75 M 0.75 M 1.5 M 1.5 M 0.25 M 0.25 M 0.5 M 0.5 M Tag based VLAN Disable 1 M Bank A 1 M Bank B 2 M Bank A 2 M Bank B 0.75 M 0.75 M 1.5 M 1.5 M 0.25 M -4 K 0.25 M- 0.5 M -4 K 0.5 M- 4K 4K Tag based VLAN Enable 4K 4K Tag based VLAN Enable Frame Data Buffer (FDR) Area MAC Address Control Table (MCT) Area VLAN Table Area Figure 7 - Memory Map 22 Zarlink Semiconductor Inc. ZL50418 5.0 Search Engine 5.1 Search Engine Overview Data Sheet The ZL50418 search engine is optimized for high throughput searching, with enhanced features to support • • • • • • • • • 5.2 Up to 64 K MAC addresses Up to 255 VLAN and IP Multicast groups 3 groups of port trunking (1 for the two Gigabit ports, and 2 others) Traffic classification into 4 (or 8 for Gigabit) transmission priorities, and 2 drop precedence levels Packet filtering Security IP Multicast Flooding, Broadcast, Multicast Storm Control MAC address learning and aging Basic Flow Shortly after a frame enters the ZL50418 and is written to the Frame Data Buffer (FDB), the frame engine generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of the frame, which contain all the necessary information for the search engine to perform its task. When the search engine is done, it writes to the Switch Response Queue and the frame engine uses the information provided in that queue for scheduling and forwarding. In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch request. Among the information extracted are the source and destination MAC addresses, the transmission and discard priorities, whether the frame is unicast or multicast and VLAN ID. Requests are sent to the external SRAM to locate the associated entries in the external hash table. When all the information has been collected from external SRAM, the search engine has to compare the MAC address on the current entry with the MAC address for which it is searching. If it is not a match, the process is repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address unknown) or flooding (destination MAC address unknown). In addition, VLAN information is used to select the correct set of destination ports for the frame (for multicast) or to verify that the frame’s destination port is associated with the VLAN (for unicast). If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the source and destination MAC addresses. As stated earlier, when all the information is compiled, the switch response is generated. The search engine also interacts with the CPU with regard to learning and aging. 23 Zarlink Semiconductor Inc. ZL50418 5.3 5.3.1 Data Sheet Search, Learning, and Aging MAC Search The search block performs source MAC address and destination MAC address (or destination IP address for IP multicast) searching. As we indicated earlier, if a match is not found, then the next entry in the linked list must be examined and so on until a match is found or the end of the list is reached. In tag based VLAN mode, if the frame is unicast and the destination port is not a member of the correct VLAN, then the frame is dropped; otherwise the frame is forwarded. If the frame is multicast, this same table is used to indicate all the ports to which the frame will be forwarded. Moreover, if port trunking is enabled, this block selects the destination port (among those in the trunk group). In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing port. The main difference in this mode is that the bitmap is not dynamic. Ports cannot enter and exit groups because of real-time learning made by a CPU. The MAC search block is also responsible for updating the source MAC address timestamp and the VLAN port association timestamp, used for aging. 5.3.2 Learning The learning module learns new MAC addresses and performs port change operations on the MCT database. The goal of learning is to update this database as the networking environment changes over time. When CPU reporting is enabled, learning and port change will be performed when the CPU request queue has room, and a memory slot is available, and a “Learn MAC Address” message is sent to the CPU. When fast learning mode is enabled, learning and port change will be performed when memory slot is available and a latter “Learn MAC Address” message is sent to the CPU when CPU queue has room. When CPU reporting is disabled, learning and port change will be performed based on memory slot availability only. In tag based VLAN mode, if the source port is not a member of a classified VLAN, a “New VLAN Port” message is sent to the CPU. The CPU can decide whether or not the source port can be added to the VLAN. 5.3.3 Aging Aging time is controlled by register 400h and 401h. The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated earlier, the search module updates the source MAC address and VLAN port association timestamps for each frame it processes. When an entry is ready to be aged, the entry is removed from the table, and a “Delete MAC Address” message is sent to inform the CPU. Supported MAC entry types are: dynamic, static, source filter, destination filter, IP multicast, source and destination filter, and secure MAC address. Only dynamic entries can be aged; all others are static. The MAC entry type is stored in the “status” field of the MCT data structure. 5.3.4 VLAN Table The table below provides a mapping from VLAN ID to VLAN index. It is maintained by system software and is checked by the hardware search engine for every incoming frame. This table has 4 K entries and is stored in external SRAM. It is organized as 512 × 8 entries (total of 4 K VLAN indexes) as shown. Each VLAN index is 8 bits. 24 Zarlink Semiconductor Inc. ZL50418 Data Sheet VIX7 VIX6 VIX5 VIX4 VIX3 VIX2 VIX1 VIX0 … … … … … … … … … … … … … … … … VIX4095 VIX4094 VIX4093 VIX4092 VIX4091 VIX4090 VIX4089 VIX4088 Table 2 - VLAN Index Mapping Table Each VIX represents the mapping result from the associated VLAN ID (VLANID = 0x004 is mapped to VIX4). Unused VLAN ID’s have their corresponding VIX programmed to hexadecimal 00. Used VLAN ID’s have Their corresponding VIX programmed to hexadecimal 01 through FF. In other words, 255 VLAN’s are supported. The VIX value is a pointer to the entries in the VLAN Index port association table (internal memory). The VLAN Index port association table is used by both software and hardware. It contains 256 entries. Each entry has 19 fields, such that each field represents the port status of that particular VLAN. E N T R I E S Port Not Used G1 G0 CPU P15 P14 Bit 63 to 54 53 52 51 50 49 48 31 30 29 28 …… P3 P2 7 6 5 4 P1 3 2 P0 1 0 0 1 : : 255 Table 3 - VLAN Index Port Association Table Each entry has 64 bits. Each port has a VLAN status field with the following two bits values: - 00: Port not a member of VLAN 01: Port is a member of VLAN, and is subject to aging (Do not use. Used by the aging module) 10: Port is a member of VLAN, and is subject to aging 11: Port is a member of VLAN, and is not subject to aging Note: The VLAN aging time is controlled by register 402h. 5.4 MAC Address Filtering The ZL50418's implementation of intelligent traffic switching provides filters for source and destination MAC addresses. This feature filters unnecessary traffic, thereby providing intelligent control over traffic flows and broadcast traffic. MAC address filtering allows the ZL50418 to block an incoming packet to an interface when it sees a specified MAC address in either the source address or destination address of the incoming packet. For example, if your network is congested because of high utilization from a MAC address, you can filter all traffic transmitted from that address and restore network flow, while you troubleshoot the problem. 25 Zarlink Semiconductor Inc. ZL50418 5.5 Data Sheet Quality of Service Quality of Service (QoS) refers to the ability of a network to provide better service to selected network traffic over various technologies. Primary goals of QoS include dedicated bandwidth, controlled jitter and latency (required by some real-time and interactive traffic), and improved loss characteristics. Traditional Ethernet networks have had no prioritization of traffic. Without a protocol to prioritize or differentiate traffic, a service level known as “best effort” attempts to get all the packets to their intended destinations with minimum delay; however, there are no guarantees. In a congested network or when a low-performance switch/router is overloaded, “best effort” becomes unsuitable for delay-sensitive traffic and mission-critical data transmission. The advent of QoS for packet-based systems accommodates the integration of delay-sensitive video and multimedia traffic onto any existing Ethernet network. It also alleviates the congestion issues that have previously plagued such “best effort” networking systems. QoS provides Ethernet networks with the breakthrough technology to prioritize traffic and ensure that a certain transmission will have a guaranteed minimum amount of bandwidth. Extensive core QoS mechanisms are built into the ZL50418 architecture to ensure policy enforcement and buffering of the ingress port, as well as weighted fair-queue(WFQ) scheduling at the egress port. In the ZL50418, QoS-based policies sort traffic into a small number of classes and mark the packets accordingly. The QoS identifier provides specific treatment to traffic in different classes, so that different quality of service is provided to each class. Frame and packet scheduling and discarding policies are determined by the class to which the frames and packets belong. For example, the overall service given to frames and packets in the premium class will be better than that given to the standard class; the premium class is expected to experience lower loss rate or delay. The ZL50418 supports the following QoS techniques: • • • • In a port-based setup, any station connected to the same physical port of the switch will have the same transmit priority. In a tag-based setup, a 3-bit field in the VLAN tag provides the priority of the packet. This priority can be mapped to different queues in the switch to provide QoS. In a TOS/DS-based set up, TOS stands for “Type of Service” that may include “minimize delay,” “maximize throughput” or “maximize reliability.” Network nodes may select routing paths or forwarding behaviours that are suitably engineered to satisfy the service request. In a logical port-based set up, a logical port provides the application information of the packet. Certain applications are more sensitive to delays than others; using logical ports to classify packets can help speed up delay sensitive applications such as VoIP. 26 Zarlink Semiconductor Inc. ZL50418 5.6 Data Sheet Priority Classification Rule Figure 8 on page 27 shows the ZL50418 priority classification rule. Yes Use Default Port Settings Fix Port Priority ? No TOS Precedence over VLAN? (FCR Register, Bit 7) Use Default Port Settings No No No IP Yes Yes No VLAN Tag ? IP Frame ? Yes Yes Use Logical Port No Use TOS Yes Use Logical Port Use VLAN Priority Figure 8 - Priority Classification Rule 5.7 Port and Tag Based VLAN The ZL50418 supports two models for determining and controlling how a packet gets assigned to a VLAN: port priority and tag -based VLAN. 5.8 Port-Based VLAN An administrator can use the PVMAP Registers to configure the ZL50418 for port-based VLAN (see “Registration Definition” on page 42). For example, ports 1-3 might be assigned to the Marketing VLAN, ports 4-6 to the Engineering VLAN, and ports 7-9 to the Administrative VLAN. The ZL50418 determines the VLAN membership of each packet by noting the port on which it arrives. From there, the ZL50418 determines which outgoing port(s) is/are eligible to transmit each packet, or whether the packet should be discarded. Gigabit port 0 and 1 are denoted as Port 25 and 26 respectively. Destination Port Numbers Bit Map Port Registers 26 Register for Port #0 PVMAP00_0[7:0] to PVMAP00_3[2:0] … 2 1 0 0 1 1 0 Register for Port #1 PVMAP01_0[7:0] to PVMAP01_3[2:0] 0 1 0 1 Register for Port #2 PVMAP02_0[7:0] to PVMAP02_3[2:0] 0 0 0 0 0 0 0 0 … Register for Port #26 PVMAP26_0[7:0] to PVMAP26_3[2:0] Table 4 - Port-Based VLAN 27 Zarlink Semiconductor Inc. ZL50418 Data Sheet For example, in the above table a 1 denotes that an outgoing port is eligible to receive a packet from an incoming port. A 0 (zero) denotes that an outgoing port is not eligible to receive a packet from an incoming port. In this example: • • • Data packets received at port #0 are eligible to be sent to outgoing ports 1 and 2. Data packets received at port #1 are eligible to be sent to outgoing ports 0 and 2. Data packets received at port #2 are NOT eligible to be sent to ports 0 and 1. 5.8.1 Tag-Based VLAN The ZL50418 supports the IEEE 802.1q specification for “tagging” frames. The specification defines a way to coordinate VLANs across multiple switches. In the specification, an additional 4-octet header (or “tag”) is inserted in a frame after the source MAC address and before the frame type. 12 bits of the tag are used to define the VLAN ID. Packets are then switched through the network with each ZL50418 simply swapping the incoming tag for an appropriate forwarding tag rather than processing each packet's contents to determine the path. This approach minimizes the processing needed once the packet enters the tag-switched network. In addition, coordinating VLAN IDs across multiple switches enables VLANs to extend to multiple switches. Up to 255 VLANs are supported in the ZL50418. The 4 K VLANs specified in the IEEE 802.1q are mapped to 255 VLAN indexes. The mapping is made by the VLAN index mapping table. Based on the VLAN index (VIXn), the source and destination port membership is checked against the content in the VLAN Index Port association table. If the destination port is a member of the VLAN, the packet is forwarded; otherwise it is discarded. If the source port is not a member, a “New VLAN Port” message is sent to the CPU. A filter can be applied to discard the packet if the source port is not a member of the VLAN. 5.9 Memory Configurations The ZL50418 supports the following memory configurations. Pipeline SBRAM modes support 1 M and 2 M per bank configurations. For detail connection information, please reference the memory application note. 1 M per bank (Bootstrap pin TSTOUT7 = open) Configuration Single Layer (Bootstrap pin TSTOUT13 = open) Double Layer (Bootstrap pin TSTOUT13 = pull down) Two 128 K x 32 SRAM/bank 2 M per bank (Bootstrap pin TSTOUT7 = pull down) Connections Two 256 K x 32 SRAM/bank Connect 0E# and WE# Four 128 K x 32 SRAM/bank Connect 0E0# and WE0# Connect 0E1# and WE1# or One 128 K x 64 SRAM/bank NA or Two 128 K x 64 SRAM/bank Table 5 - Supported Memory Configurations (Pipeline SBRAM Mode) 28 Zarlink Semiconductor Inc. ZL50418 Data Sheet Only Bank A Bank A and Bank B 1M (SRAM) 2M (SRAM) 1 M/bank (SRAM) 2 M/bank (SRAM) ZL50415 X X ZL50416 X X ZL50417 X X ZL50418 X X Table 6 - Options for Memory Configuration BANK A (1M One Layer) BANK B (1M One Layer) Data LA_D[63:32] Data LA_D[31:0] SRAM Memory 128 K 32 bits Data LB_D[63:32] Data LB_D[31:0] Memory 128 K 32 bits Address LA_A[19:3] SRAM Memory 128 K 32 bits Memory 128 K 32 bits Address LB_A[19:3] Bootstraps: TSTOUT7 = Open, TSTOUT13 = Open, TSTOUT4 = Open Figure 9 - Memory Configuration For: 2 Banks, 1 Layer, 2 MB Total 29 Zarlink Semiconductor Inc. ZL50418 Data Sheet BANK A (2M Two Layers) BANK B (2M Two Layers) Data LA_D[63:32] Data LA_D[31:0] Data LB_D[63:32] SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits Data LB_D[31:0] Address LA_A[19:3] SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits Address LB_A[19:3] Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open Figure 10 - Memory Configuration For: 2 Banks, 2 Layer, 4 MB Total BANK A (2M One Layer) BANK B (2M One Layer) Data LA_D[63:32] Data LA_D[31:0] SRAM Memory 256 K 32 bits Data LB_D[63:32] Data LB_D[31:0] Memory 256 K 32 bits Address LA_A[20:3] SRAM Memory 256 K 32 bits Address LB_A[20:3] Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open Figure 11 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB 30 Zarlink Semiconductor Inc. Memory 256 K 32 bits ZL50418 6.0 Frame Engine 6.1 Data Forwarding Summary Data Sheet When a frame enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB. Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface. A switch request is sent to the Search Engine. The Search Engine processes the switch request. A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast and its destination port or ports. A VLAN table lookup is performed as well. A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling Queue (TxSch Q) or Queues. There are 4 TxSch Q for each 10/100 port (and 8 per Gigabit port), one for each priority. Creation of a queue entry either involves linking a new job to the appropriate linked list if unicast or adding an entry to a physical queue if multicast. When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one of the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality of service). The unicast linked list and the multicast queue for the same port-class pair are treated as one logical queue. The older HOL between the two queues goes first. For 10/100 ports multicast queue 0 is associated with unicast queue 0 and multicast queue 1 is associated with unicast queue 2. For Gigabit ports multicast queue 0 is associated with unicast queue 0, multicast queue 1 with unicast queue 2, multicast queue 2 with unicast queue 4 and multicast queue 3 with unicast queue 6. The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the destination port. 6.2 Frame Engine Details This section briefly describes the functions of each of the modules of the ZL50418 frame engine. 6.2.1 FCB Manager The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame departure. The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be determined by referring to Chapter 7. In addition, the FCB manager is responsible for buffer aging, and for linking unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin and the aging time is defined in register FCBAT. 6.2.2 Rx Interface The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch request. 6.2.3 RxDMA The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each frame for use by the search engine when the switch request has been made. 31 Zarlink Semiconductor Inc. ZL50418 6.2.4 Data Sheet TxQ Manager First, the TxQ manager checks the per-class queue status and global reserved resource situation and using this information makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the TxQ manager requests that the FCB manager link the unicast frame’s FCB to the correct per-port-per-class TxQ. If multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger source port flow control for the incoming frame’s source if that port is flow control enabled. Second, the TxQ manager handles transmission scheduling; it schedules transmission among the queues representing different classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to the correct port control module. 6.3 Port Control The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control module requests that the buffer be released. 6.4 TxDMA The TxDMA multiplexes data and address from port control and arbitrates among buffer release requests from the port control modules. 7.0 Quality of Service and Flow Control 7.1 Model Quality of service is an all-encompassing term for which different people have different interpretations. In general, the approach to quality of service described here assumes that we do not know the offered traffic pattern. We also assume that the incoming traffic is not policed or shaped. Furthermore, we assume that the network manager knows his applications, such as voice, file transfer or web browsing and their relative importance. The manager can then subdivide the applications into classes and set up a service contract with each. The contract may consist of bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to the switch. As an added bonus, although we do not assume anything about the arrival pattern, if the incoming traffic is policed or shaped we may be able to provide additional assurances about our switch’s performance. Table 8 shows examples of QoS applications with three transmission priorities, but best effort (P0) traffic may form a fourth class with no bandwidth or latency assurances. Gigabit ports actually have eight total transmission priorities. Goals Highest transmission priority, P3 Total Assured Bandwidth (user defined) 50 Mbps Low Drop Probability (low-drop) Apps: phone calls, circuit emulation. Latency: < 1 ms. Drop: No drop if P3 not oversubscribed. Table 7 - Two-Dimensional World Traffic 32 Zarlink Semiconductor Inc. High Drop Probability (high-drop) Apps: training video. Latency: < 1 ms. Drop: No drop if P3 not oversubscribed; first P3 to drop otherwise. ZL50418 Goals Total Assured Bandwidth (user defined) Data Sheet Low Drop Probability (low-drop) High Drop Probability (high-drop) Middle transmission priority, P2 37.5 Mbps Apps: interactive apps, Web business. Latency: < 4-5 ms. Drop: No drop if P2 not oversubscribed. Apps: non-critical interactive apps. Latency: < 4-5 ms. Drop: No drop if P2 not oversubscribed; firstP2 to drop otherwise. Low transmission priority, P1 12.5 Mbps Apps: emails, file backups. Latency: < 16 ms desired, but not critical. Drop: No drop if P1 not oversubscribed. Apps: casual web browsing. Latency: < 16 ms desired, but not critical. Drop: No drop if P1 not oversubscribed; first to drop otherwise. Total 100 Mbps Table 7 - Two-Dimensional World Traffic A class is capable of offering traffic that exceeds the contracted bandwidth. A well-behaved class offers traffic at a rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-upon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not degrade the quality of service (QoS) received by well-behaved classes. As Table 8 illustrates, the six traffic types may each have their own distinct properties and applications. As shown, classes may receive bandwidth assurances or latency bounds. In the table, P3, the highest transmission class, requires that all frames be transmitted within 1 ms, and receives 50% of the 100 Mbps of bandwidth at that port. Best-effort (P0) traffic forms a fourth class that only receives bandwidth when none of the other classes have any traffic to offer. It is also possible to add a fourth class that has strict priority over the other three; if this class has even one frame to transmit, then it goes first. In the ZL50418, each 10/100 Mbps port will support four total classes, and each 1000 Mbps port will support eight classes. We will discuss the various modes of scheduling these classes in the next section. In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should rarely lose packets. But poorly behaved users – users who send frames at too high a rate – will encounter frame loss, and the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some low-drop frames are dropped, and then all frames in the worst case. Table 8 shows that different types of applications may be placed in different boxes in the traffic table. For example, casual web browsing fits into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the category of low-loss, low-latency traffic. 7.2 Four QoS Configurations There are four basic pieces to QoS scheduling in the ZL50418: strict priority (SP), delay bound, weighted fair queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown in the tables below. For 10/100 Mbps ports, the following registers select these modes: QOSC24 [7:6]_CREDIT_C00 QOSC28 [7:6]_CREDIT_C10 33 Zarlink Semiconductor Inc. ZL50418 Data Sheet QOSC32 [7:6]_CREDIT_C20 QOSC36 [7:6]_CREDIT_C30 P3 P2 P1 Op1 (default) Delay Bound Op2 SP Delay Bound Op3 SP WFQ Op4 WFQ P0 BE BE Table 8 - Four QoS Configurations for a 10/100 Mbps Port QOSC40 [7:6] and QOSC48 [7:6] select these modes for the first and second gigabit ports, respectively. P7 P6 P5 P4 Op1 (default) Delay Bound Op2 SP Delay Bound Op3 SP WFQ Op4 WFQ P3 P2 P1 P0 BE BE Table 9 - Four QoS Configurations for a Gigabit Port The default configuration for a 10/100 Mbps port is three delay-bounded queues and one best-effort queue. The delay bounds per class are 0.8 ms for P3, 3.2 ms for P2, and 12.8 ms for P1. For a 1 Gbps port, we have a default of six delay-bounded queues and two best-effort queues. The delay bounds for a 1 Gbps port are 0.16 ms for P7 and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only served when there is no delay-bounded traffic to be served. For a 1 Gbps port where there are two best-effort queues P1 has strict priority over P0. We have a second configuration for a 10/100 Mbps port in which there is one strict priority queue, two delay bounded queues and one best effort queue. The delay bounds per class are 3.2 ms for P2 and 12.8 ms for P1. If the user is to choose this configuration, it is important that P3 (SP) traffic be either policed or implicitly bounded (e.g., if the incoming P3 traffic is very light and predictably patterned). Strict priority traffic, if not admission-controlled at a prior stage to the ZL50418 can have a adverse effect on all other classes’ performance. For a 1 Gbps port, P7 and P6 are both SP classes, and P7 has strict priority over P6. In this case, the delay bounds per class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. The third configuration for a 10/100 Mbps port contains one strict priority queue and three queues receiving a bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In the fourth configuration all queues are served using a WFQ service discipline. 7.3 Delay Bound In the absence of a sophisticated QoS server and signaling protocol, the ZL50418 may not know the mix of incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts its scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL) 34 Zarlink Semiconductor Inc. ZL50418 Data Sheet frames. As a result we assure latency bounds for all admitted frames with high confidence, even in the presence of system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping a percentage of high-drop frames even before the chip’s buffers are completely full, while still largely sparing low-drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally, the delay bound algorithm also achieves bandwidth partitioning among classes. 7.4 Strict Priority and Best Effort When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes. When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance. However, in a typical network setting, much best effort traffic will indeed be transmitted and with an adequate degree of expediency. Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the ZL50418, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to enforce bandwidth or delay does not apply to strict priority or best effort queues. We only drop frames from best effort and strict priority queues when global buffer resources become scarce. 7.5 Weighted Fair Queuing In some environments – for example, in an environment in which delay assurances are not required, but precise bandwidth partitioning on small time scales is essential, WFQ may be preferable to a delay-bounded scheduling discipline. The ZL50418 provides the user with a WFQ option with the understanding that delay assurances can not be provided if the incoming traffic pattern is uncontrolled. The user sets four WFQ “weights” (eight for Gigabit ports) such that all weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error within 2%. In WFQ mode, though we do not assure frame latency, the ZL50418 still retains a set of dropping rules that helps to prevent congestion and trigger higher level protocol end-to-end flow control. As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do indeed drop frames from SP queues for global buffer management purposes. In addition, queue P0 for a 10/100 port (and queues P0 and P1 for a Gigabit port) are treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth from a WFQ scheduling perspective. What this means is that these particular queues are only affected by dropping when the global buffer count becomes low. 7.6 Shaper Although traffic shaping is not a primary function of the ZL50418, the chip does implement a shaper for expedited forwarding (EF). Our goal in shaping is to control the peak and average rate of traffic exiting the ZL50418. Shaping is limited to the two Gigabit ports only, and only to class P6 (the second highest priority). This means that class P6 will be the class used for EF traffic. If shaping is enabled for P6, then P6 traffic must be scheduled using strict priority. With reference to Table 7, only the middle two QoS configurations may be used. Peak rate is set using a programmable whole number, no greater than 64. For example, if the setting is 32, then the peak rate for shaped traffic is 32/64 * 1000 Mbps = 500 Mbps. Average rate is also a programmable whole number, 35 Zarlink Semiconductor Inc. ZL50418 Data Sheet no greater than 64, and no greater than the peak rate. For example, if the setting is 16, then the average rate for shaped traffic is 16/64 * 1000 Mbps = 250 Mbps. As a consequence of the above settings in our example, shaped traffic will exit the ZL50418 at a rate always less than 500 Mbps, and averaging no greater than 250 Mbps. See Programming QoS Register Application Note for more information. Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if the line is idle. Though we do have global resource management, we do nothing to prevent this situation locally. We assume SP traffic is policed at a prior stage to the ZL50418. 7.7 Rate Control The ZL50418 provides a rate control function on its 10/100 ports. This rate control function applies to the outgoing traffic aggregate on each 10/100 port. It provides a way of reducing the outgoing average rate below full wire speed. Note that the rate control function does not shape or manipulate any particular traffic class. Furthermore, though the average rate of the port can be controlled with this function, the peak rate will still be full line rate. Two principal parameters are used to control the average rate for a 10/100 port. A port’s rate is controlled by allowing, on average, M bytes to be transmitted every N microseconds. Both of these values are programmable. The user can program the number of bytes in 8-byte increments, and the time may be set in units of 10 ms. The value of M/N will, of course, equal the average data rate of the outgoing traffic aggregate on the given 10/100 port. Although there are many (M,N) pairs that will provide the same average data rate performance, the smaller the time interval N, the “smoother” the output pattern will appear. In addition to controlling the average data rate on a 10/100 port, the rate control function also manages the maximum burst size at wire speed. The maximum burst size can be considered the memory of the rate control mechanism; if the line has been idle for a long time, to what extent can the port “make up for lost time” by transmitting a large burst? This value is also programmable, measured in 8-byte increments. Example: Suppose that the user wants to restrict Fast Ethernet port P’s average departure rate to 32 Mbps – 32% of line rate – when the average is taken over a period of 10 ms. In an interval of 10 ms, exactly 40000 bytes can be transmitted at an average rate of 32 Mbps. So how do we set the parameters? The rate control parameters are contained in an internal RAM block accessible through the CPU port (See Programming QoS Registers application note and Processor Interface Application Note). The data format is shown below. 63:40 39:32 31:16 15:0 0 Time interval Maximum burst size Number of bytes As we indicated earlier, the number of bytes is measured in 8-byte increments, so the 16-bit field “Number of bytes” should be set to (40000/8) 500. In addition, the time interval has to be indicated in units of 10 ms. Though we want the average data rate on port P to be 32 Mbps when measured over an interval of 10 ms, we can also adjust the maximum number of bytes that can be transmitted at full line rate in any single burst. Suppose we wish this limit to be 12 kilobytes. The number of bytes is measured in 8-byte increments, so the 16-bit field “Maximum burst size” is set to (12000/8) 1500. 36 Zarlink Semiconductor Inc. ZL50418 7.8 Data Sheet WRED Drop Threshold Management Support To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified parameters. The following table summarizes the behavior of the WRED logic. In KB (kilobytes) Level 1 N ≥ 120 Level 2 N ≥ 140 P3 P3 ≥ AKB P2 P1 P2 ≥ BKB High Drop Low Drop X% 0% Y% Z% 100% 100% P1 ≥ CKB Level 3 N ≥ 160 Figure 12 - Behaviour of the WRED Logic Px is the total byte count, in the priority queue x. The WRED logic has three drop levels, depending on the value of N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals P3*16+P2*4+P1. If using WFQ scheduling, N equals P3+P2+P1. Each drop level from one to three has defined high-drop and low-drop percentages, which indicate the minimum and maximum percentages of the data that can be discarded. The X, Y Z percent can be programmed by the register RDRC0, RDRC1. In Level 3, all packets are dropped if the bytes in each priority queue exceed the threshold. Parameters A, B, C are the byte count thresholds for each priority queue. They can be programmed by the QOS control register (refer to the register group 5). See Programming QoS Registers Application Note for more information. 7.9 Buffer Management Because the number of FDB slots is a scarce resource and because we want to ensure that one misbehaving source port or class cannot harm the performance of a well-behaved source port or class, we introduce the concept of buffer management into the ZL50418. Our buffer management scheme is designed to divide the total buffer space into numerous reserved regions and one shared pool, as shown in Figure 13 on page 38. As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first enters the ZL50418, its destination port and class are as yet unknown and so the decision to drop or not needs to be temporarily postponed. This ensures that every frame can be received first before subjecting them to the frame drop discipline after classifying. Six reserved sections, one for each of the first six priority classes, ensure a programmable number of FDB slots per class. The lowest two classes do not receive any buffer reservation. Furthermore, even for 10/100 Mbps ports, a frame is stored in the region of the FDB corresponding to its class. As we have indicated, the eight classes use only four transmission scheduling queues for 10/100 Mbps ports, but as far as buffer usage is concerned there are still eight distinguishable classes. Another segment of the FDB reserves space for each of the 27 ports — 26 ports for Ethernet and one CPU port (port number 16). Two parameters can be set, one for the source port reservation for 10/100 Mbps ports and CPU port and one for the source port reservation for 1 Gbps ports. These 27 reserved regions make sure that no well-behaved source port can be blocked by another misbehaving source port. In addition, there is a shared pool, which can store any type of frame. The frame engine allocates the frames first in the six priority sections. When the priority section is full or the packet has priority 1 or 0, the frame is allocated in the shared poll. Once the shared poll is full the frames are allocated in the section reserved for the source port. 37 Zarlink Semiconductor Inc. ZL50418 Data Sheet The following registers define the size of each section of the Frame data Buffer: • • • • • • • • • PR100- Port Reservation for 10/100 Ports PRG- Port Reservation for Giga Ports SFCB- Share FCB Size C2RS- Class 2 Reserve Size C3RS- Class 3 Reserve Size C4RS- Class 4 Reserve Size C5RS- Class 5 Reserve Size C6RS- Class 6 Reserve Size C7RS- Class 7 Reserve Size temporary reservation shared pool S per-class reservation per-source reservations (24 10/100 M, CPU) Figure 13 - Buffer Partition Scheme Used to Implement Buffer Management 7.9.1 Dropping When Buffers Are Scarce Summarizing the two examples of local dropping discussed earlier in this chapter: If a queue is a delay-bounded queue, we have a multilevel WRED drop scheme designed to control delay and partition bandwidth in case of congestion. If a queue is a WFQ-scheduled queue, we have a multilevel WRED drop scheme designed to prevent congestion. In addition to these reasons for dropping, we also drop frames when global buffer space becomes scarce. The function of buffer management is to make sure that such dropping causes as little blocking as possible. 7.10 ZL50418 Flow Control Basics Because frame loss is unacceptable for some applications, the ZL50418 provides a flow control option. When flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a source port that is sending a packet to this switch to temporarily hold off. 38 Zarlink Semiconductor Inc. ZL50418 Data Sheet While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not, are halted. A single packet destined for a congested output can block other packets destined for uncongested outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high confidence when flow control is enabled. In the ZL50418, each source port can independently have flow control enabled or disabled. For flow control enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not use reserved FDB slots for the highest six classes (P2-P7). The ZL50418 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for frames originating from flow control enabled ports. When this programmable option is active, it is possible that some packets may be dropped, even though flow control is on. The reason is that intelligent packet dropping is a major component of the ZL50418’s approach to ensuring bounded delay and minimum bandwidth for high priority flows. 7.10.1 Unicast Flow Control For unicast frames, flow control is triggered by source port resource availability. Recall that the ZL50418’s buffer management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a source port’s reserved FDB slots have been used, then flow control Xoff is triggered. Xon is triggered when a port is currently being flow controlled, and all of that port’s reserved FDB slots have been released. Note that the ZL50418’s per-source-port FDB reservations assure that a source port that sends a single frame to a congested destination will not be flow controlled. 7.10.2 Multicast Flow Control In unmanaged mode, flow control for multicast frames is triggered by a global buffer counter. When the system exceeds a programmable threshold of multicast packets Xoff is triggered. Xon is triggered when the system returns below this threshold. In managed mode, per-VLAN flow control is used for multicast frames. In this case, flow control is triggered by congestion at the destination. How so? The ZL50418 checks each destination to which a multicast packet is headed. For each destination port, the occupancy of the lowest-priority transmission multicast queue (measured in number of frames) is compared against a programmable congestion threshold. If congestion is detected at even one of the packet’s destinations, then Xoff is triggered. In addition, each source port has a 26-bit port map recording which port or ports of the multicast frame’s fanout were congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were originally marked as congested in the port map have become uncongested, then Xon is triggered, and the 26-bit vector is reset to zero. The ZL50418 also provides the option of disabling VLAN multicast flow control. Note: If per-Port flow control is on, QoS performance will be affected. 39 Zarlink Semiconductor Inc. ZL50418 7.11 Data Sheet Mapping to IETF Diffserv Classes The mapping between priority classes discussed in this chapter and elsewhere is shown below. ZL P7 P6 P5 P4 P3 P2 P1 P0 IETF NM EF AF0 AF1 AF2 AF3 BE0 BE1 Table 10 - Mapping between ZL50418 and IETF Diffserv Classes for Gigabit Ports As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally, P0 and P1 are two best effort (BE) classes. For 10/100 Mbps ports, the classes of Table 9 are merged in pairs—one class corresponding to NM+EF, two AF classes and a single BE class. ZL P3 P2 P1 P0 IETF NM+EF AF0 AF1 BE0 Table 11 - Mapping between ZL50418 and IETF Diffserv Classes for 10/100 Ports Features of the ZL50418 that correspond to the requirements of their associated IETF classes are summarized in the table below. Network management (NM) and Expedited forwarding (EF) Global buffer reservation for NM and EF Shaper for EF traffic on 1 Gbps ports Option of strict priority scheduling No dropping if admission controlled Assured forwarding (AF) Four AF classes for 1 Gbps ports Programmable bandwidth partition, with option of WFQ service Option of delay-bounded service keeps delay under fixed levels even if not admission-controlled Random early discard, with programmable levels Global buffer reservation for each AF class Best effort (BE) Two BE classes for 1 Gbps ports Service only when other queues are idle means that QoS not adversely affected Random early discard, with programmable levels Traffic from flow control enabled ports automatically classified as BE Table 12 - ZL50418 Features Enabling IETF Diffserv Standards 40 Zarlink Semiconductor Inc. ZL50418 8.0 Port Trunking 8.1 Features and Restrictions Data Sheet A port group (i.e., trunk) can include up to 4 physical ports, but when using stack all of the ports in a group must be in the same ZL50418. The two Gigabit ports may also be trunked together. There are three trunk groups total, including the option to trunk Gigabit ports. Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address and destination MAC address. Three other options include source MAC address only, destination MAC address only and source port (in bidirectional ring mode only). Load distribution for multicast is performed similarly. If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN member map. The ZL50418 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking group goes down, the ZL50418 will automatically redistribute the traffic over to the remaining ports in the trunk in unmanaged mode. In managed mode, the software can perform similar tasks. 8.2 Unicast Packet Forwarding The search engine finds the destination MCT entry and if the status field says that the destination port found belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address belongs to a trunk, then the source port’s trunk membership register is checked. A hash key, based on some combination of the source and destination MAC addresses for the current packet, selects the appropriate forwarding port, as specified in the Trunk_Hash registers. 8.3 Multicast Packet Forwarding For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the packet based on the VLAN index and hash key. Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port trunking environment. Determining one forwarding port per group. Preventing the multicast packet from looping back to the source trunk. The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with the source port. This is because, when we select the primary forwarding port for each group, we do not take the source port into account. To prevent this, we simply apply one additional filter so as to block that forwarding port for this multicast packet. 8.4 Unmanaged Trunking In unmanaged mode, 3 trunk groups are supported. Groups 0 and 1 can trunk up to 4 10/100 ports. Group 2 can trunk 2 Gigabit ports. The supported combinations are shown in the following table. Group 0 Port 0 ! Port 1 Port 2 Port 3 ! Table 13 - Select via trunk0_mode register 41 Zarlink Semiconductor Inc. ZL50418 Data Sheet ! ! ! ! ! ! ! Table 13 - Select via trunk0_mode register Group 1 Port 4 Port 5 ! ! ! ! Port 6 ! Port 7 ! Table 14 - Select via trunk1_mode register Group 2 Port 25(Giga 0) Port 26 (Giga 1) ! ! Table 15 - Unmanaged Mode In unmanaged mode, the trunks are individually enabled/disabled by controlling pin trunk0,1,2. 9.0 Port Mirroring 9.1 Port Mirroring Features The received or transmitted data of any 10/100 port in the ZL50418 chip can be “mirrored” to any other port. We support two such mirrored source-destination pairs. A mirror port can not also serve as a data port. 9.2 Setting Registers for Port Mirroring MIRROR1_SRC: Sets the source port for the first port mirroring pair. Bits [4:0] select the source port to be mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to select between ingress (Rx) or egress (Tx) data. MIRROR1_DEST: Sets the destination port for the first port mirroring pair. Bits [4:0] select the destination port to be mirrored. MIRROR2_SRC: Sets the source port for the second port mirroring pair. Bits [4:0] select the source port to be mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to select between ingress (Rx) or egress (Tx) data. MIRROR2_DEST: Sets the destination port for the second port mirroring pair. Bits [4:0] select the destination port to be mirrored. The default is port 0. Refer to Port Mirroring Application Notes for further information. 42 Zarlink Semiconductor Inc. ZL50418 10.0 TBI Interface 10.1 TBI Connection Data Sheet The TBI interface can be used for 1000Mbps fiber operation. In this mode, the ZL50418 is connected to the Serdes as shown in Figure 14. There are two TBI interfaces in the ZL50418 devices. To enable to TBI function, the corresponding TXEN and TXER pins need to be boot strapped. See Ball – Signal Description for details. M25/26_TXD[9:0] T[9:0] M25/26_TXCLK REFCLK ZL5041x SERDES M25/26_RXD[9:0] R[9:0] M25/26_RXCLK RBC0 M25/26_COL RBC1 Figure 14 - TBI Connection 43 Zarlink Semiconductor Inc. ZL50418 11.0 GPSI (7WS) Interface 11.1 GPSI connection Data Sheet The 10/100 RMII ethernet port can function in GPSI (7WS) mode when the corresponding TXEN pin is strapped low with a 1 K pull down resistor. In this mode, the TXD[0], TXD[1], RXD[0] and RXD[1] serve as TX data, TX clock, RX data and RX clock respectively. The link status and collision from the PHY are multiplexed and shifted into the switch device through external glue logic. The duplex of the port can be controlled by programming the ECR register. The GPSI interface can be operated in port based VLAN mode only. CRS_DV crs RXD[0] rxd RXD[1] rx_clk TXD[1] tx_clk TXD[0] txd TXEN txen Port 0 Ethernet PHY link0 col0 link1 col1 link2 5041X col2 SCAN_LINK SCAN_CLK SCAN_COL Port 15 Ethernet PHY Link Serializer (CPLD) Collision Serializer (CPLD) Figure 15 - GPSI (7WS) Mode Connection Diagram 44 Zarlink Semiconductor Inc. link15 col15 ZL50418 11.2 Data Sheet SCAN LINK and SCAN COL interface An external CPLD logic is required to take the link signals and collision signals from the GPSI PHYS and shift them into the switch device. The switch device will drive out a signature to indicate the start of the sequence. After that, the CPLD should shift in the link and collision status of the PHYS as shown in the figure. The extra link status indicates the polarity of the link signal. One indicates the polarity of the link signal is active high. scan_clk scan_link/ scan_col 25 cycles for link/ 24 cycles for col Drived by ZL5041x Drived by CPLD Total 32 cycles period Figure 16 - SCAN LINK and SCAN COLLISON Status Diagram 12.0 LED Interface 12.1 LED Interface Introduction A serial output channel provides port status information from the ZL50418 chips. It requires three additional pins. LED_CLK at 12.5 MHz LED_SYN a sync pulse that defines the boundary between status frames LED_DATA a continuous serial stream of data for all status LEDs that repeats once every frame time A non-serial interface is also allowed, but in this case only the Gigabit ports will have status LEDs. A low cost external device (44 pin PAL) is used to decode the serial data and to drive an LED array for display. This device can be customized for different needs. 12.2 Port Status In the ZL50418, each port has 8 status indicators each represented by a single bit. The 8 LED status indicators are: • • • • • • • Bit 0: Flow control Bit 1:Transmit data Bit 2: Receive dataBit 3: Activity (where activity includes either transmission or reception of data) Bit 4: Link up Bit 5: Speed (1= 100 Mb/s; 0= 10 Mb/s) Bit 6: Full-duplex Bit 7: Collision Eight clocks are required to cycle through the eight status bits for each port. 45 Zarlink Semiconductor Inc. ZL50418 Data Sheet When the LED_SYN pulse is asserted, the LED interface will present 256 LED clock cycles with the clock cycles providing information for the following ports. • • • • • • • • • • Port 0 (10/100): cycles #0 to cycle #7 Port 1 (10/100): cycles#8 to cycle #15 Port 2 (10/100): cycle #16 to cycle #23 ... Port 14(10/100): cycle #112 to cycle #119 Port 15(10/100): cycle #120 to cycle #127 Port 24 (Gigabit 1): cycle #192 to cycle #199 Port 25 (Gigabit 2): cycle #200 to cycle #207 Byte 26 (additional status): cycle #208 to cycle #215 Byte 27 (additional status): cycle #216 to cycle #223 Cycles #224 to 256 present data with a value of zero. The first two bits of byte 26 provides the speed information for the Gigabit ports while the remainder of byte 26 and byte 27 provides bist status • • • • • • • • • • 26[0]: G0 port (1= port 24 is operating at Gigabit speed; 0= speed is either 10 or 100 Mb/s depending on speed bit of Port 24) 26[1]: G1 port (1= port 25 is operating at Gigabit speed; 0= speed is either 10 or 100 Mb/s depending on speed bit of Port 25) 26[2]: initialization done 26[3]: initialization start 26[4]: checksum ok 26[5]: link_init_complete 26[6]: bist_fail 26[7]: ram_error 27[0]: bist_in_process 27[1]: bist_done 12.3 LED Interface Timing Diagram The signal from the ZL50418 to the LED decoder is shown in Figure 17. . Figure 17 - Timing Diagram of LED Interface 46 Zarlink Semiconductor Inc. ZL50418 13.0 Hardware Statistics Counter 13.1 Hardware Statistics Counters List Data Sheet ZL50418 hardware provides a full set of statistics counters for each Ethernet port. The CPU accesses these counters through the CPU interface. All hardware counters are rollover counters. When a counter rolls over, the CPU is interrupted, so that long-term statistics may be kept. The MAC detects all statistics, except for the delay exceed discard counter (detected by buffer manager) and the filtering counter (detected by queue manager). The following is the wrapped signal sent to the CPU through the command block. 31 30 26 25 0 Status Wrapped Signal B[0] 0-d Bytes Sent (D) B[1] 1-L Unicast Frame Sent B[2] 1-U Frame Send Fail B[3] 2-I Flow Control Frames Sent B[4] 2-u Non-Unicast Frames Sent B[5] 3-d Bytes Received (Good and Bad) (D) B[6] 4-d Frames Received (Good and Bad) (D) B[7] 5-d Total Bytes Received (D) B[8] 6-L Total Frames Received B9] 6-U Flow Control Frames Received B[10] 7-l Multicast Frames Received B[11] 7-u Broadcast Frames Received B[12] 8-L Frames with Length of 64 Bytes B[13] 8-U Jabber Frames B[14] 9-L Frames with Length Between 65-127 Bytes B[15] 9-U Oversize Frames B[16] A-l Frames with Length Between 128-255 Bytes B[17] A-u Frames with Length Between 256-511 Bytes B[18] B-l Frames with Length Between 512-1023 Bytes B[19] B-u Frames with Length Between 1024-1528 Bytes B[20] C-l Fragments B[21] C-U1 Alignment Error B[22] C-U Undersize Frames B[23] D-l CRC B[24] D-u Short Event B[25] E-l Collision B[26] E-u Drop B[27] F-l Filtering Counter B[28] F-U1 Delay Exceed Discard Counter 47 Zarlink Semiconductor Inc. ZL50418 B[29] F-U Data Sheet Late Collision B[30] Link Status Change B[31] Current link status Notation: X-Y X: Address in the contain memory Y: Size and bits for the counter d: D Word counter L: 24 bits counter bit [23:0] U: 8 bits counter bit [31:24] U1: 8 bits counter bit [23:16] l: 16 bits counter bit [15:0] u: 16 bits counter bit [31:16] 13.2 EEE 802.3 HUB Management (RFC 1516) 13.2.1 13.2.1.1 Event Counters READABLEOCTET Counts number of bytes (i.e. octets) contained in good valid frames received. Frame size: > 64 bytes, < 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No FCS (i.e. checksum) error No collisions 13.2.1.2 ReadableFrame Counts number of good valid frames received. Frame size: > 64 bytes, < 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No FCS error No collisions 48 Zarlink Semiconductor Inc. ZL50418 13.2.1.3 Data Sheet FCSErrors Counts number of valid frames received with bad FCS. Frame size: > 64 bytes, < 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No framing error No collisions 13.2.1.4 AlignmentErrors Counts number of valid frames received with bad alignment (not byte-aligned). Frame size: > 64 bytes, < 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No framing error No collisions 13.2.1.5 FrameTooLongs Counts number of frames received with size exceeding the maximum allowable frame size. Frame size: > 64 bytes, > 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged FCS error: don’t care Framing error: don’t care No collisions 13.2.1.6 ShortEvents Counts number of frames received with size less than the length of a short event. Frame size: < 10 bytes FCS error: don’t care Framing error: don’t care No collisions 49 Zarlink Semiconductor Inc. ZL50418 13.2.1.7 Data Sheet Runts Counts number of frames received with size under 64 bytes, but greater than the length of a short event. Frame size: > 10 bytes, FCS error: don’t care Framing error: don’t care < 64 bytes No collisions 13.2.1.8 Collisions Counts number of collision events. Frame size: 13.2.1.9 any size LateEvents Counts number of collision events that occurred late (after LateEventThreshold = 64 bytes). Frame size: any size Events are also counted by collision counter 13.2.1.10 VeryLongEvents Counts number of frames received with size larger than Jabber Lockup Protection Timer (TW3). Frame size: 13.2.1.11 > Jabber DataRateMisatches For repeaters or HUB application only. 13.2.1.12 AutoPartitions For repeaters or HUB application only. 13.2.1.13 TotalErrors Sum of the following errors: FCS errors Alignment errors Frame too long Short events Late events Very long events 50 Zarlink Semiconductor Inc. ZL50418 13.3 Data Sheet IEEE – 802.1 Bridge Management (RFC 1286) 13.3.1 Event Counters 13.3.1.1 InFrames Counts number of frames received by this port or segment. Note: A frame received by this port is only counted by this counter if and only if it is for a protocol being processed by the local bridge function. 13.3.1.2 OutFrames Counts number of frames transmitted by this port. Note: A frame transmitted by this port is only counted by this counter if and only if it is for a protocol being processed by the local bridge function. 13.3.1.3 InDiscards Counts number of valid frames received which were discarded (i.e., filtered) by the forwarding process. 13.3.1.4 DelayExceededDiscards Counts number of frames discarded due to excessive transmit delay through the bridge. 13.3.1.5 MtuExceededDiscards Counts number of frames discarded due to excessive size. 13.4 RMON – Ethernet Statistic Group (RFC 1757) 13.4.1 13.4.1.1 Event Counters Drop Events Counts number of times a packet is dropped, because of lack of available resources. DOES NOT include all packet dropping -- for example, random early drop for quality of service support. 13.4.1.2 Octets Counts the total number of octets (i.e. bytes) in any frames received. 13.4.1.3 BroadcastPkts Counts the number of good frames received and forwarded with broadcast address. Does not include non-broadcast multicast frames. 13.4.1.4 MulticastPkts Counts the number of good frames received and forwarded with multicast address. Does not include broadcast frames. 51 Zarlink Semiconductor Inc. ZL50418 13.4.1.5 CRCAlignErrors Frame size: > 64 bytes, < 1522 bytes if VLAN tag (1518 if no VLAN) No collisions: Counts number of frames received with FCS or alignment errors 13.4.1.6 UndersizePkts Counts number of frames received with size less than 64 bytes. Frame size: < 64 bytes, No FCS error No framing error No collisions 13.4.1.7 OversizePkts Counts number of frames received with size exceeding the maximum allowable frame size. Frame size: 1522 bytes if VLAN tag (1518 bytes if no VLAN) FCS error don’t care Framing error don’t care No collisions 13.4.1.8 Fragments Counts number of frames received with size less than 64 bytes and with bad FCS. Frame size: < 64 bytes Framing error don’t care No collisions 13.4.1.9 Jabbers Counts number of frames received with size exceeding maximum frame size and with bad FCS. Frame size: > 1522 bytes if VLAN tag (1518 bytes if no VLAN) Framing error don’t care No collisions 52 Zarlink Semiconductor Inc. Data Sheet ZL50418 13.4.1.10 Data Sheet Collisions Counts number of collision events detected. Only a best estimate since collisions can only be detected while in transmit mode, but not while in receive mode. Frame size: 13.4.1.11 any size Packet Count for Different Size Groups Six different size groups – one counter for each: • • • • • • Pkts64Octets for any packet with size = 64 bytes Pkts65to127Octets for any packet with size from 65 bytes to 127 bytes Pkts128to255Octets for any packet with size from 128 bytes to 255 bytes Pkts256to511Octets for any packet with size from 256 bytes to 511 bytes Pkts512to1023Octets for any packet with size from 512 bytes to 1023 bytes Pkts1024to1518Octets for any packet with size from 1024 bytes to 1518 bytes Counts both good and bad packets. 13.5 Miscellaneous Counters In addition to the statistics groups defined in previous sections, the ZL50418 has other statistics counters for its own purposes. We have two counters for flow control – one counting the number of flow control frames received and another counting the number of flow control frames sent. We also have two counters, one for unicast frames sent and one for non-unicast frames sent. A broadcast or multicast frame qualifies as non-unicast. Furthermore, we have a counter called “frame send fail.” This keeps track of FIFO under-runs, late collisions, and collisions that have occurred 16 times. 53 Zarlink Semiconductor Inc. ZL50418 14.0 Register Definition 14.1 ZL50418 Register Description Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default 0. ETHERNET Port Control Registers Substitute [N] with Port number (0..F,18..1A) ECR1P”N” Port Control Register 1 for Port N 0000 + 2 x N R/W 000-01 A 020 ECR2P”N” Port Control Register 2 for Port N 001 + 2 x N R/W 01B-03 5 000 GGC Extra GIGA bit control register 036 R/W NA 000 1. VLAN Control Registers Substitute [N] with Port number (0..F,18..1A) AVTCL VLAN Type Code Register Low 100 R/W 036 000 AVTCH VLAN Type Code Register High 101 R/W 037 081 PVMAP”N”_0 Port “N” Configuration Register 0 102 + 4N R/W 038-052 0FF PVMAP”N”_1 Port “N” Configuration Register 1 103 + 4N R/W 053-06 D 0FF PVMAP”N”_3 Port “N” Configuration Register 3 105 + 4N R/W 089-0A 3 007 PVMODE VLAN Operating Mode 170 R/W 0A4 000 PVROUTE7-0 VLAN Router Group Enable 171-178 R/W NA 000 2. TRUNK Control Registers TRUNK0_L Trunk Group 0 Low 200 R/W NA 000 TRUNK0_M Trunk Group 0 Medium 201 R/W NA 000 TRUNK0_ MODE Trunk Group 0 Mode 203 R/W 0A5 003 TRUNK0_ HASH0 Trunk Group 0 Hash 0 Destination Port 204 R/W NA 000 TRUNK0_ HASH1 Trunk Group 0 Hash 1 Destination Port 205 R/W NA 001 TRUNK0_ HASH2 Trunk Group 0 Hash 2 Destination Port 206 R/W NA 002 TRUNK0_ HASH3 Trunk Group 0 Hash 3 Destination Port 207 R/W NA 003 TRUNK1_L Trunk Group 1 Low 208 R/W NA 000 TRUNK1_M Trunk Group 1 Medium 209 R/W NA 000 TRUNK1_ MODE Trunk Group 1 Mode 20B R/W 0A6 003 54 Zarlink Semiconductor Inc. Notes ZL50418 CPU Addr (Hex) Data Sheet Register Description TRUNK1_ HASH0 Trunk Group 1 Hash 0 Destination Port 20C R/W NA 004 TRUNK1_ HASH1 Trunk Group 1 Hash 1 Destination Port 20D R/W NA 005 TRUNK1_ HASH2 Trunk Group 1 Hash 2 Destination Port 20E R/W NA 006 TRUNK1_ HASH3 Trunk Group 1 Hash 3 Destination Port 20F R/W NA 007 TRUNK2_ MODE Trunk Group 2 Mode 210 R/W NA 003 TRUNK2_ HASH0 Trunk Group 2 Hash 0 Destination Port 211 R/W NA 019 TRUNK2_ HASH1 Trunk Group 2 Hash 1 Destination Port 212 R/W NA 01A Multicast_ HASH0-0 Multicast hash result 0 mask byte 0 220 R/W NA 0FF Multicast_ HASH0-1 Multicast hash result 0 mask byte 1 221 R/W NA 0FF Multicast_ HASH0-2 Multicast hash result 0 mask byte 2 222 R/W NA 0FF Multicast_ HASH0-3 Multicast hash result 0 mask byte 3 223 R/W NA 0FF Multicast_ HASH1-0 Multicast hash result 1 mask byte 0 224 R/W NA 0FF Multicast_ HASH1-1 Multicast hash result 1 mask byte 1 225 R/W NA 0FF Multicast_ HASH1-2 Multicast hash result 1 mask byte 2 226 R/W NA 0FF Multicast_ HASH1-3 Multicast hash result 1 mask byte 3 227 R/W NA 0FF Multicast_ HASH2-0 Multicast hash result 2 mask byte 0 228 R/W NA 0FF Multicast_ HASH2-1 Multicast hash result 2 mask byte 1 229 R/W NA 0FF Multicast_ HASH2-2 Multicast hash result 2 mask byte 2 22A R/W NA 0FF Multicast_ HASH2-3 Multicast hash result 2 mask byte 3 22B R/W NA 0FF 55 Zarlink Semiconductor Inc. R/W I2C Addr (Hex) Default Notes ZL50418 Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default Multicast_ HASH3-0 Multicast hash result 3 mask byte 0 22C R/W NA 0FF Multicast_ HASH3-1 Multicast hash result 3 mask byte 1 22D R/W NA 0FF Multicast_ HASH3-2 Multicast hash result 3 mask byte 2 22E R/W NA 0FF Multicast_ HASH3-3 Multicast hash result 3 mask byte 3 22F R/W NA 0FF 3. CPU Port Configuration MAC0 CPU MAC Address byte 0 300 R/W NA 000 MAC1 CPU MAC Address byte 1 301 R/W NA 000 MAC2 CPU MAC Address byte 2 302 R/W NA 000 MAC3 CPU MAC Address byte 3 303 R/W NA 000 MAC4 CPU MAC Address byte 4 304 R/W NA 000 MAC5 CPU MAC Address byte 5 305 R/W NA 000 INT_MASK0 Interrupt Mask 0 306 R/W NA 000 INTP_MASK”N” Interrupt Mask for MAC Port 2N, 2N+1 310+N (310 -313) R/W NA 000 RQS Receive Queue Select 323 R/W NA 000 RQSS Receive Queue Status 324 RO NA N/A TX_AGE Transmission Queue Aging Time 325 R/W 0A7 008 4. Search Engine Configurations AGETIME_LOW MAC Address Aging Time Low 400 R/W 0A8 2M:05C/ 4M:02E AGETIME_ HIGH MAC Address Aging Time High 401 R/W 0A9 000 V_AGETIME VLAN to Port Aging Time 402 R/W NA 0FF SE_OPMODE Search Engine Operating Mode 403 R/W NA 000 SCAN Scan control register 404 R/W NA 000 5. Buffer Control and QOS Control FCBAT FCB Aging Timer 500 R/W 0AA 0FF QOSC QOS Control 501 R/W 0AB 000 FCR Flooding Control Register 502 R/W 0AC 008 56 Zarlink Semiconductor Inc. Notes ZL50418 Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default AVPML VLAN Priority Map Low 503 R/W 0AD 000 AVPMM VLAN Priority Map Middle 504 R/W 0AE 000 AVPMH VLAN Priority Map High 505 R/W 0AF 000 TOSPML TOS Priority Map Low 506 R/W 0B0 000 TOSPMM TOS Priority Map Middle 507 R/W 0B1 000 TOSPMH TOS Priority Map High 508 R/W 0B2 000 AVDM VLAN Discard Map 509 R/W 0B3 000 TOSDML TOS Discard Map 50A R/W 0B4 000 BMRC Broadcast/Multicast Rate Control 50B R/W 0B5 000 UCC Unicast Congestion Control 50C R/W 0B6 2M:008/ 4M:010 MCC Multicast Congestion Control 50D R/W 0B7 050 PR100 Port Reservation for 10/100 Ports 50E R/W 0B8 2M:024/ 4M:036 PRG Port Reservation for Giga Ports 50F R/W 0B9 2M:035/ 4M:058 SFCB Share FCB Size 510 R/W 0BA 2M:014/ 4M:064 C2RS Class 2 Reserve Size 511 R/W 0BB 000 C3RS Class 3 Reserve Size 512 R/W 0BC 000 C4RS Class 4 Reserve Size 513 R/W 0BD 000 C5RS Class 5 Reserve Size 514 R/W 0BE 000 C6RS Class 6 Reserve Size 515 R/W 0BF 000 C7RS Class 7 Reserve Size 516 R/W 0C0 000 QOSC”N” QOS Control (N=0 - 5) 517- 51C R/W 0C1-0C 6 000 QOS Control (N=6 - 11) 51D- 522 R/W NA 000 QOS Control (N=12 - 23) 523- 52E R/W 0C7-0D 2 000 QOS Control (N=24 - 59) 52F- 552 R/W NA 000 RDRC0 WRED Drop Rate Control 0 553 R/W 0FB 08F RDRC1 WRED Drop Rate Control 1 554 R/W 0FC 088 57 Zarlink Semiconductor Inc. Notes ZL50418 Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default USER_ PORT”N”_LOW User Define Logical Port “N” Low (N=0-7) 580 + 2N R/W 0D6-0D D 000 USER_ PORT”N”_HIGH User Define Logical Port “N” High 581 + 2N R/W 0DE-0E 5 000 USER_ PORT1:0_ PRIORITY User Define Logic Port 1 and 0 Priority 590 R/W 0E6 000 USER_ PORT3:2_ PRIORITY User Define Logic Port 3 and 2 Priority 591 R/W 0E7 000 USER_ PORT5:4_ PRIORITY User Define Logic Port 5 and 4 Priority 592 R/W 0E8 000 USER_ PORT7:6_PRI ORITY User Define Logic Port 7 and 6 Priority 593 R/W 0E9 000 USER_PORT_ ENABLE User Define Logic Port Enable 594 R/W 0EA 000 WLPP10 Well known Logic Port Priority for 1 and 0 595 R/W 0EB 000 WLPP32 Well known Logic Port Priority for 3 and 2 596 R/W 0EC 000 WLPP54 Well known Logic Port Priority for 5 and 4 597 R/W 0ED 000 WLPP76 Well-known Logic Port Priority for 7&6 598 R/W 0EE 000 WLPE Well known Logic Port Enable 599 R/W 0EF 000 RLOWL User Define Range Low Bit 7:0 59A R/W 0F4 000 RLOWH User Define Range Low Bit 15:8 59B R/W 0F5 000 RHIGHL User Define Range High Bit 7:0 59C R/W 0D3 000 RHIGHH User Define Range High Bit 15:8 59D R/W 0D4 000 RPRIORITY User Define Range Priority 59E R/W 0D5 000 CPUQOSC1~3 Byte limit for TxQ on CPU port 5A0-5A2 R/W NA 000 6. MISC Configuration Registers MII_OP0 MII Register Option 0 600 R/W 0F0 000 MII_OP1 MII Register Option 1 601 R/W 0F1 000 FEN Feature Registers 602 R/W 0F2 010 58 Zarlink Semiconductor Inc. Notes ZL50418 Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default MIIC0 MII Command Register 0 603 R/W N/A 000 MIIC1 MII Command Register 1 604 R/W N/A 000 MIIC2 MII Command Register 2 605 R/W N/A 000 MIIC3 MII Command Register 3 606 R/W N/A 000 MIID0 MII Data Register 0 607 RO N/A N/A MIID1 MII Data Register 1 608 RO N/A N/A LED LED Control Register 609 R/W 0F3 000 SUM EEPROM Checksum Register 60B R/W 0FF 000 7. Port Mirroring Controls MIRROR1_SRC Port Mirror 1 Source Port 700 R/W N/A 07F MIRROR1_ DEST Port Mirror 1 Destination Port 701 R/W N/A 017 MIRROR2_SRC Port Mirror 2 Source Port 702 R/W N/A 0FF MIRROR2_ DEST Port Mirror 2 Destination Port 703 R/W N/A 000 F. Device Configuration Register GCR Global Control Register F00 R/W N/A 000 DCR Device Status and Signature Register F01 RO N/A N/A DCR1 Giga Port status F02 RO N/A N/A DPST Device Port Status Register F03 R/W N/A 000 DTST Data read back register F04 RO N/A N/A DA DA Register FFF RO N/A DA 59 Zarlink Semiconductor Inc. Notes ZL50418 14.2 14.2.1 • • INDEX_REG1 (only needed for 8-bit mode) DATA_FRAME_REG Data of indirectly accessed registers. (8 bits) Address = 2 (read/write) 14.2.4 • • • INDEX_REG0 Address bits [15:8] for indirectly accessed register addresses Address = 1 (write only) 14.2.3 • • Directly Accessed Registers Address bits [7:0] for indirectly accessed register addresses Address = 0 (write only) 14.2.2 • • Data Sheet CONTROL_FRAME_REG CPU transmit/receive switch frames. (8/16 bits) Address = 3 (read/write) Format: - Send frame from CPU: In sequence) Frame Data (size should be in multiple of 8-byte) 8-byte of Frame status (Frame size, Destination port #, Frame O.K. status) - CPU Received frame: In sequence) 8-byte of Frame status (Frame size, Source port #, VLAN tag) Frame Data 14.2.5 • • • COMMAND&STATUS Register CPU interface commands (write) and status Address = 4 (read/write) When the CPU writes to this register Bit [0]: • Set Control Frame Receive buffer ready, after CPU writes a complete frame into the buffer. This bit is self-cleared. Bit [1]: • Set Control Frame Transmit buffer1 ready, after CPU reads out a complete frame from the buffer. This bit is self-cleared. Bit [2]: • Set Control Frame Transmit buffer2 ready, after CPU reads out a complete frame from the buffer. This bit is self-cleared. Bit [3]: • Set this bit to indicate CPU received a whole frame (transmit FIFO frame receive done), and flushed the rest of frame fragment, If occurs. This bit will be self-cleared. Bit [4]: • Set this bit to indicate that the following Write to the Receive FIFO is the last one (EOF). This bit will be self-cleared. 60 Zarlink Semiconductor Inc. ZL50418 Data Sheet Bit [5]: • Set this bit to re-start the data that is sent from the CPU to Receive FIFO (re-align). This feature can be used for software debug. For normal operation must be '0'. Bit [6]: • Do not use. Must be '0' Bit [7]: • Reserved When the CPU reads this register: Bit [0]: • Control Frame receive buffer ready, CPU can write a new frame - 1 – CPU can write a new control command 1 - 0 – CPU has to wait until this bit is 1 to write a new control command 1 Bit [1]: • Control Frame transmit buffer1 ready for CPU to read - 1 – CPU can read a new control command 1 - 0 – CPU has to wait until this bit is 1 to read a new control command Bit [2]: • Control Frame transmit buffer2 ready for CPU to read - 1 – CPU can read a new control command 1 - 0 – CPU has to wait until this bit is 1 to read a new control command 14.2.6 • • Bit [3]: • Transmit FIFO has data for CPU to read (TXFIFO_RDY) Bit [4]: • Receive FIFO has space for incoming CPU frame (RXFIFO_SPOK) Bit [5]: • Transmit FIFO End Of Frame (TXFIFO_EOF) Bit [6]: • Reserve Bit [7]: • Reserve Interrupt Register Interrupt sources (8 bits) Address = 5 (read only) When CPU reads this register Bit [0]: • CPU frame interrupt Bit [1]: • Control Frame 1 interrupt. Control Frame receive buffer1 has data for CPU to read Bit [2]: • Control Frame 2 interrupt. Control Frame receive buffer2 has data for CPU to read Bit [3]: • Gigabit port A interrupt Bit [4]: • Gigabit port B interrupt Bit [7:3]: • Reserve Note: This register is not self-cleared. After reading CPU has to clear the bit writing 0 to it. 61 Zarlink Semiconductor Inc. ZL50418 14.2.7 • • • Control Command Frame Buffer1 Access Register Address = 6 (read/write) When CPU writes to this register, data is written to the Control Command Frame Receive Buffer When CPU reads this register, data is read from the Control Command Frame Transmit Buffer1 14.2.8 • • Data Sheet Control Command Frame Buffer2 Access Register Address = 7 (read only) When CPU reads this register, data is read from the Control Command Frame Transmit Buffer1 Indirectly Accessed Registers 14.3 14.3.1 (Group 0 Address) MAC Ports Group ECR1Pn: Port N Control Register I2C Address 000 - 01A; CPU Address:0000+2xN (N = port number) Accessed by CPU, serial interface and I2C (R/W) 7 6 Sp State Bit [0] 5 4 3 A-FC Port Mode 2 1 0 • • 1 - Flow Control Off 0 - Flow Control On • • • When Flow Control On: In half duplex mode the MAC transmitter applies back pressure for flow control. In full duplex mode the MAC transmitter sends Flow Control frames when necessary. The MAC receiver interprets and processes incoming flow control frames. The Flow Control Frame Received counter is incremented whenever a flow control is received. • • When Flow Control off: In half duplex mode the MAC Transmitter does not assert flow control by sending flow control frames or jamming collision. In full duplex mode the Mac transmitter does not send flow control frames. The MAC receiver does not interpret or process the flow control frames. The Flow Control Frame Received counter is not incremented. • Bit [1] - 1 - Half Duplex - Only in 10/100 mode - 0 - Full Duplex Bit [2] - 1 - 10Mbps - 0 - 100Mbps 62 Zarlink Semiconductor Inc. ZL50418 Bit [4:3] Data Sheet - 00 – Automatic Enable Auto Neg. - This enables hardware state machine for auto-negotiation. - 01 - Limited Disable auto Neg. This disables hardware for speed auto-negotiation. Hardware Poll MII for link status. - 10 - Link Down. Force link down (disable the port). - 11 - Link Up. The configuration in ECR1[2:0] is used for (speed/half duplex/full duplex/flow control) setup. Bit [5] • Asymmetric Flow Control Enable. - 0 – Disable asymmetric flow control - 01 – Enable Asymmetric flow control - When this bit is set, and flow control is on (bit [0] = 0), don’t send out a flow control frame. But MAC receiver interprets and processes flow control frames. Bit [7:6] • SS - Spanning tree state (802.1D spanning tree protocol) Default is 11. - 14.3.2 00 – Blocking: Frame is dropped 01 - Listening: Frame is dropped 10 - Learning: Frame is dropped. Source MAC address is learned. 11 - Forwarding: Frame is forwarded. Source MAC address is learned. ECR2Pn: Port N Control Register I2C Address: 01B-035; CPU Address:0001+2xN (N = port number) Accessed by CPU and serial interface (R/W) 7 6 Security En Bit [0]: • 5 QoS Sel 4 3 2 1 0 Reserve DisL Ftf Futf Filter untagged frame (Default 0) - 0: Disable - 1: All untagged frames from this port are discarded or follow security option when security is enable Bit [1]: • Filter Tag frame (Default 0) - 0: Disable - 1: All tagged frames from this port are discarded or follow security option when security is enable Bit [2]: • Learning Disable (Default 0) - 1 Learning is disabled on this port - 0 Learning is enabled on this port Bit [3]: • Must be ‘1’ Bit [5:4:] • • • QOS mode selection (Default 00) Determines which of the 4 sets of QoS settings is used for 10/100 ports. Note that there are 4 sets of per-queue byte thresholds, and 4 sets of WFQ ratios programmed. These bits select among the 4 choices for each 10/100 port. Refer to QOS Application Note. 00: select class byte limit set 0 and classes WFQ credit set 0 01: select class byte limit set 1 and classes WFQ credit set 1 10: select class byte limit set 2 and classes WFQ credit set 2 11: select class byte limit set 3 and classes WFQ credit set 3 • • • • 63 Zarlink Semiconductor Inc. ZL50418 Security Enable (Default 00). The ZL50418 checks the incoming data for one of the following conditions: 1. If the source MAC address of the incoming packet is in the MAC table and is defined as secure address but the ingress port is not the same as the port associated with the MAC address in the MAC table. A MAC address is defined as secure when its entry at MAC table has static status and bit 0 is set to 1. MAC address bit 0 (the first bit transmitted) indicates whether the address is unicast or multicast. As source addresses are always unicast bit 0 is not used (always 0). ZL50418 uses this bit to define secure MAC addresses. 2. If the port is set as learning disable and the source MAC address of the incoming packet is not defined in the MAC address table. 3. If the port is configured to filter untagged frames and an untagged frame arrives or if the port is configured to filter tagged frames and a tagged frame arrives. If one of these three conditions occurs, the packet will be handled according to one of the following specified options: • CPU installed • 00 – Disable port security • 01 – Discard violating packets • 10 – Send packet to CPU and destination port • 11 – Send packet to CPU only Bit [7:6] 14.3.3 • • Data Sheet • GGControl – Extra GIGA Port Control CPU Address:h036 Accessed by CPU and serial interface (R/W) 7 6 DF Bit [0]: • 5 4 3 MiiB RstA DF 2 1 0 MiiA RstA Reset GIGA port A - 0: Normal operation (default) - 1: Reset Gigabit port A. Normally used when a new Phy is connected (Hot swap). Bit [1]: • GIGA port A use MII interface (10/100 M) - 0: Gigabit port operations at 1000 mode (default) - 1: Gigabit port operations at 10/100 mode Bit [2]: • Reserved - Must be zero Bit [3]: • GIGA port A direct flow control (MAC to MAC connection). The ZL50418 supports direct flow control mechanism; the flow control frame is therefore not sent through the Gigabit port data path. - 0: Direct flow control disabled (default) - 1: Direct flow control enabled Bit [4]: • Reset GIGA port B - 0: Normal operation (default) - 1: Reset Gigabit port B 64 Zarlink Semiconductor Inc. ZL50418 Bit [5]: • Data Sheet GIGA port B use MII interface (10/100 M) - 0: Gigabit port operates at 1000 mode (default) - 1: Gigabit port operates at 10/100 mode Bit [6]: • Reserved - Must be zero Bit [7]: • GIGA port B direct flow control (MAC to MAC connection). ZL50418 supports direct flow control mechanism; the flow control frame is therefore not sent through the Gigabit port data path. - 0: Direct flow control disabled (default) - 1: Direct flow control enabled 14.4 14.4.1 (Group 1 Address) VLAN Group AVTCL – VLAN Type Code Register Low I2C Address 036; CPU Address:h100 Accessed by CPU, serial interface and I2C (R/W) Bit [7:0]: 14.4.2 VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00) AVTCH – VLAN Type Code Register High I2C Address 037; CPU Address:h101 Accessed by CPU, serial interface and I2C (R/W) Bit [7:0]: 14.4.3 VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81) PVMAP00_0 – Port 00 Configuration Register 0 I2C Address 038, CPU Address:h102 Accessed by CPU, serial interface and I2C (R/W) In Port Based VLAN Mode Bit [7:0]: VLAN Mask for ports 7 to 0 (Default FF) This register indicates the legal egress ports. A “1” on bit 7 means that the packet can be sent to port 7. A “0” on bit 7 means that any packet destined to port 7 will be discarded. This register works with registers 1, 2 and 3 to form a 27 bit mask to all egress ports. In Tag based VLAN Mode Bit [7:0]: PVID [7:0] (Default is FF) This is the default VLAN tag. It works with configuration register PVMAP00_1 [7:5] [3:0] to form a default VLAN tag. If the received packet is untagged, then the packet is classified with the default VLAN tag. If the received packet has a VLAN ID of 0, then PVID is used to replace the packet’s VLAN ID. 65 Zarlink Semiconductor Inc. ZL50418 14.4.4 Data Sheet PVMAP00_1 – Port 00 Configuration Register 1 I2C Address h53, CPU Address:h103 Accessed by CPU, serial interface and I2C (R/W) In Port based VLAN Mode Bit [7:0]: VLAN Mask for ports 15 to 8 (Default is FF) In Tag based VLAN Mode 7 5 Unitag Port Priority 4 3 Ultrust PVID Bit [3:0]: PVID [11:8] (Default is F) Bit [4]: • 0 Untrusted Port. (Default is 1) This register is used to change the VLAN priority field of a packet to a predetermined priority. - 1 : VLAN priority field is changed to Bit[7:5] at ingress port - 0 : Keep VLAN priority field Bit [7:5]: 14.4.5 • Untag Port Priority (Default 7) PVMAP00_3 – Port 00 Configuration Register 3 I2C Address h89, CPU Address:h105) Accessed by CPU, serial interface and I2C (R/W) In Port Based VLAN Mode 7 6 5 3 FP en Drop Default tx priority 2 0 VLAN Mask Bit [2:0]: VLAN Mask for ports 26 to 24 (Default 7). Port 24 is the CPU port Bit [5:3]: Default Transmit priority. Used when Bit[7]=1 (Default 0) - 000 Transmit Priority Level 0 (Lowest) 001 Transmit Priority Level 1 010 Transmit Priority Level 2 011 Transmit Priority Level 3 100 Transmit Priority Level 4 101 Transmit Priority Level 5 110 Transmit Priority Level 6 111 Transmit Priority Level 7 (Highest) 66 Zarlink Semiconductor Inc. ZL50418 Bit [6]: Data Sheet Default Discard priority. Used when Bit[7]=1 (Default 0) - 0 - Discard Priority Level 0 (Lowest) - 1 - Discard Priority Level 1(Highest) Bit [7]: Enable Fix Priority (Default 0) - 0 Disable fix priority. All frames are analyzed. Transmit Priority and Discard Priority are based on VLAN Tag, TOS or Logical Port. - 1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3] In Tag-based VLAN Mode Bit [0]: • Not used Bit [1]: Ingress Filter Enable (Default 1) - 0 Disable Ingress Filter. Packets with VLAN not belonging to source port are forwarded, if destination port belongs to the VLAN. Symmetric VLAN. - 1 Enable Ingress Filter. Packets with VLAN not belonging to source port are filtered. Asymmetric VLAN. Bit [2]: Force untag out (VLAN tagging is based on 802.1q rule) (Default 1). - 0 Disable (Default) - 1 Force untagged output All packets transmitted from this port are untagged. This register is used when this port is connected to legacy equipment that does not support VLAN tagging. Bit [5:3]: Default Transmit priority. Used when Bit [7]=1 (Default 0) - Bit [6]: 000 Transmit Priority Level 0 (Lowest) 001 Transmit Priority Level 1 010 Transmit Priority Level 2 011 Transmit Priority Level 3 100 Transmit Priority Level 4 101 Transmit Priority Level 5 110 Transmit Priority Level 6 111 Transmit Priority Level 7 (Highest) Default Discard priority Used when Bit [7]=1 (Default 0) - 0 Discard Priority Level 0 (Lowest) - 1 Discard Priority Level 1 (Highest) Bit [7]: Enable Fix Priority (Default 0) - 0 Disable fix priority. All frames are analyzed. Transmit Priority and Discard Priority are based on VLAN Tag, TOS or Logical Port. - 1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3] 67 Zarlink Semiconductor Inc. ZL50418 14.5 Data Sheet Port Configuration Registers PVMAP01_0,1,3 I2C Address h39,54,8A; CPU Address:h106, 107, 109 PVMAP02_0,1,3 I2C Address h3A, 55,8B; CPU Address:h10A, 10B, 10D PVMAP03_0,1,3 I2C Address h3B,56,8C; CPU Address:h10E, 10F, 111 PVMAP04_0,1,3 I2C Address h3C,57,8D; CPU Address:h112, 113, 115 PVMAP05_0,1,3 I2C Address h3D,58,8E; CPU Address:h116, 117, 119 PVMAP06_0,1,3 I2C Address h3E,59,8F; CPU Address:h11A, 11B, 11D PVMAP07_0,1,3 I2C Address h3F,5A,90; CPU Address:h11E, 11F, 121 PVMAP08_0,1,3 I2C Address h40,5B,91; CPU Address:h122, 123, 125 PVMAP09_0,1,3 I2C Address h41,5C,92; CPU Address:h126, 127, 129 PVMAP10_0,1,3 I2C Address h42,5D,93; CPU Address:h12A, 12B, 12D PVMAP11_0,1,3 I2C Address h43,5E,94; CPU Address:h12E, 12F, 131 PVMAP12_0,1,3 I2C Address h44,5F,95; CPU Address:h132, 133, 135 PVMAP13_0,1,3 I2C Address h45,60,96; CPU Address:h136, 137, 139 PVMAP14_0,1,3 I2C Address h46,61,97; CPU Address:h13A, 13B, 13D PVMAP15_0,1,3 I2C Address h47,62,98; CPU Address:h13E, 13F, 141 PVMAP24_0,1,3 I2C Address h50,6B,A1; CPU Address:h162, 163, 165 (CPU port) PVMAP25_0,1,3 I2C Address h51,6C,A2; CPU Address:h166, 167, 169 (Giagabit port 1) PVMAP26_0,1,3 I2C Address h52,6D,A3; CPU Address:h16A, 16B, 16D (Gigabit port 2) 14.5.1 PVMODE I2C Address: h0A4, CPU Address:h170 Accessed by CPU, serial interface (R/W) 7 6 5 4 3 2 1 0 MAC05 MMA STP SM0 rPCS DF SL Vmod Bit [0]: • VLAN Mode (Default = 0) - 1 Tag based VLAN Mode - 0 Port based VLAN Mode Bit [1]: • Slow learning (Default = 0) - Same function as SE_OP MODE bit 7. Either bit can enable the function; both need to be turned off to disable the feature. Bit [2]: • Disable dropping of frames with destination MAC addresses 0180C2000001 to 0180C200000F (Default = 0) - 0: Drop all frames in this range - 1: Disable dropping of frames in this range 68 Zarlink Semiconductor Inc. ZL50418 Bit [3]: • Data Sheet Disable Reset PCS (Default = 0) - 0: Enable reset PCS. PCS FIFO will be reset when received a PCS symbol error. - 1: Disable reset PCS Bit [4]: • Support MAC address 0 (Default = 0) - 0: MAC address 0 is not learned. - 1: MAC address 0 is learned. Bit [5]: • Disable IEEE multicast control frame (0180C2000000 to 0180C20000FF) to CPU in managed mode (Default = 0) - 0: Packet is forwarded to CPU - 1: Packet is forwarded as multicast Bit [6]: • Multiple MAC addresses (Default = 0) - 0: Single MAC address is assigned to CPU. Registers MAC0 to MAC5 are used to program the CPU MAC address. - 1: One block of 32 MAC addresses are assigned to CPU. The block is defined in an increase way from the MAC address programmed in registers MAC0 to MAC5. Bit [7]: • Disable registers MAC 5 – 0 (CPU MAC address) in comparison with Ethernet frame destination MAC address. When disable, unicast frames are not forward to CPU. (Default = 0) - 1: Disable - 0: Enable 14.5.2 PVROUTE 0 Registers PVROUTE0 to PVROUTE7 allows the VLAN Index to be assigned an address of a router group. This feature is useful during IP Multicast mode when data is being sent to the VLAN group and no member of the group registers. By assigning a router group, the VLAN group always has a default address to handle the multicast traffic. CPU Address:h171 Accessed by CPU, serial interface (R/W) Bit [0]: • VLAN Index 8’hC0 has router group and the router group is VLAN Index 8’h40 Bit [1]: • VLAN Index 8’hC1 has router group and the router group is VLAN Index 8’h41 Bit [2]: • VLAN Index 8’hC2 has router group and the router group is VLAN Index 8’h42 Bit [3]: • VLAN Index 8’hC3 has router group and the router group is VLAN Index 8’h43 Bit [4]: • VLAN Index 8’hC4 has router group and the router group is VLAN Index 8’h44 Bit [5]: • VLAN Index 8’hC5 has router group and the router group is VLAN Index 8’h45 Bit [6]: • VLAN Index 8’hC6 has router group and the router group is VLAN Index 8’h46 Bit [7]: • VLAN Index 8’hC7 has router group and the router group is VLAN Index 8’h47 69 Zarlink Semiconductor Inc. ZL50418 14.5.3 Data Sheet PVROUTE1 CPU Address:h172 Accessed by CPU, serial interface (R/W) 14.5.4 Bit [0]: • VLAN Index 8’hC8 has router group and the router group is VLAN Index 8’h48 Bit [1]: • VLAN Index 8’hC9 has router group and the router group is VLAN Index 8’h48 Bit [2]: • VLAN Index 8’hCA has router group and the router group is VLAN Index 8’h4A Bit [3]: • VLAN Index 8’hCB has router group and the router group is VLAN Index 8’h4B Bit [4]: • VLAN Index 8’hCC has router group and the router group is VLAN Index 8’h4C Bit [5]: • VLAN Index 8’hCD has router group and the router group is VLAN Index 8’h4D Bit [6]: • VLAN Index 8’hCE has router group and the router group is VLAN Index 8’h4E Bit [7]: • VLAN Index 8’hCF has router group and the router group is VLAN Index 8’h4F PVROUTE2 CPU Address:h173 Accessed by CPU, serial interface (R/W) 14.5.5 Bit [0]: • VLAN Index 8’hD0 has router group and the router group is VLAN Index 8’h50 Bit [1]: • VLAN Index 8’hD1 has router group and the router group is VLAN Index 8’h51 Bit [2]: • VLAN Index 8’hD2 has router group and the router group is VLAN Index 8’h52 Bit [3]: • VLAN Index 8’hD3 has router group and the router group is VLAN Index 8’h53 Bit [4]: • VLAN Index 8’hD4 has router group and the router group is VLAN Index 8’h54 Bit [5]: • VLAN Index 8’hD5 has router group and the router group is VLAN Index 8’h55 Bit [6]: • VLAN Index 8’hD6 has router group and the router group is VLAN Index 8’h56 Bit [7]: • VLAN Index 8’hD7 has router group and the router group is VLAN Index 8’h57 PVROUTE3 CPU Address:h174 Accessed by CPU, serial interface (R/W) Bit [0]: • VLAN Index 8’hD8 has router group and the router group is VLAN Index 8’h58 Bit [1]: • VLAN Index 8’hD9 has router group and the router group is VLAN Index 8’h59 Bit [2]: • VLAN Index 8’hDA has router group and the router group is VLAN Index 8’h5A Bit [3]: • VLAN Index 8’hDB has router group and the router group is VLAN Index 8’h5B Bit [4]: • VLAN Index 8’hDC has router group and the router group is VLAN Index 8’h5C Bit [5]: • VLAN Index 8’hDD has router group and the router group is VLAN Index 8’h5D 70 Zarlink Semiconductor Inc. ZL50418 14.5.6 Data Sheet Bit [6]: • VLAN Index 8’hDE has router group and the router group is VLAN Index 8’h5E Bit [7]: • VLAN Index 8’hDF has router group and the router group is VLAN Index 8’h5F PVROUTE4 CPU Address:h175 Accessed by CPU, serial interface (R/W) 14.5.7 Bit [0]: • VLAN Index 8’hE0 has router group and the router group is VLAN Index 8’h60 Bit [1]: • VLAN Index 8’hE1 has router group and the router group is VLAN Index 8’h61 Bit [2]: • VLAN Index 8’hE2 has router group and the router group is VLAN Index 8’h62 Bit [3]: • VLAN Index 8’hE3 has router group and the router group is VLAN Index 8’h63 Bit [4]: • VLAN Index 8’hE4 has router group and the router group is VLAN Index 8’h64 Bit [5]: • VLAN Index 8’hE5 has router group and the router group is VLAN Index 8’h65 Bit [6]: • VLAN Index 8’hE6 has router group and the router group is VLAN Index 8’h66 Bit [7]: • VLAN Index 8’hE7 has router group and the router group is VLAN Index 8’h67 PVROUTE5 CPU Address:h176 Accessed by CPU, serial interface (R/W) 14.5.8 Bit [0]: • VLAN Index 8’hE8 has router group and the router group is VLAN Index 8’h68 Bit [1]: • VLAN Index 8’hE9 has router group and the router group is VLAN Index 8’h69 Bit [2]: • VLAN Index 8’hEA has router group and the router group is VLAN Index 8’h6A Bit [3]: • VLAN Index 8’hEB has router group and the router group is VLAN Index 8’h6B Bit [4]: • VLAN Index 8’hEC has router group and the router group is VLAN Index 8’h6C Bit [5]: • VLAN Index 8’hED has router group and the router group is VLAN Index 8’h6D Bit [6]: • VLAN Index 8’hEE has router group and the router group is VLAN Index 8’h6E Bit [7]: • VLAN Index 8’hEF has router group and the router group is VLAN Index 8’h6F PVROUTE6 CPU Address:h177 Accessed by CPU, serial interface (R/W) Bit [0]: • VLAN Index 8’hF0 has router group and the router group is VLAN Index 8’h70 Bit [1]: • VLAN Index 8’hF1 has router group and the router group is VLAN Index 8’h71 Bit [2]: • VLAN Index 8’hF2 has router group and the router group is VLAN Index 8’h72 71 Zarlink Semiconductor Inc. ZL50418 14.5.9 Data Sheet Bit [3]: • VLAN Index 8’hF3 has router group and the router group is VLAN Index 8’h73 Bit [4]: • VLAN Index 8’hF4 has router group and the router group is VLAN Index 8’h74 Bit [5]: • VLAN Index 8’hF5 has router group and the router group is VLAN Index 8’h75 Bit [6]: • VLAN Index 8’hF6 has router group and the router group is VLAN Index 8’h76 Bit [7]: • VLAN Index 8’hF7 has router group and the router group is VLAN Index 8’h77 PVROUTE7 CPU Address:h178 Accessed by CPU, serial interface (R/W) 14.6 Bit [0]: • VLAN Index 8’hF8 has router group and the router group is VLAN Index 8’h78 Bit [1]: • VLAN Index 8’hF9 has router group and the router group is VLAN Index 8’h79 Bit [2]: • VLAN Index 8’hFA has router group and the router group is VLAN Index 8’h7A Bit [3]: • VLAN Index 8’hFB has router group and the router group is VLAN Index 8’h7B Bit [4]: • VLAN Index 8’hFC has router group and the router group is VLAN Index 8’h7C Bit [5]: • VLAN Index 8’hFD has router group and the router group is VLAN Index 8’h7D Bit [6]: • VLAN Index 8’hFE has router group and the router group is VLAN Index 8’h7E Bit [7]: • VLAN Index 8’hFF has router group and the router group is VLAN Index 8’h7F (Group 2 Address) Port Trunking Groups Trunk Group 0 - Up to four 10/100 ports can be selected for trunk group 0. 14.6.1 TRUNK0_L – Trunk group 0 Low (Managed mode only) CPU Address:h200 Accessed by CPU, serial interface (R/W) Bit [7:0] Port7-0 bit map of trunk 0. (Default 00) 14.6.2 TRUNK0_M – Trunk group 0 Medium (Managed mode only) CPU Address:h201 Accessed by CPU, serial interface (R/W) Bit [7:0] Port15-8 bit map of trunk 0. (Default 00) 72 Zarlink Semiconductor Inc. ZL50418 Data Sheet TRUNK0_M, and TRUNK0_L provide a trunk map for trunk0. If ports 0 and 2 are to be trunked together, bit 0 and bit 2 of TRUNK0_L are set to 1. All others are clear at “0” to indicate that they are not part of trunk0. Up to 4 ports can be selected for trunk group 0. B i t 7 B i t 0 B i t 7 TRUNK0_M 14.6.3 TRUNK0_L P o r t 7 P o r t 8 P o r t 15 B i t 0 P o r t 0 TRUNK0_MODE– Trunk group 0 mode I2C Address h0A5; CPU Address:203 Accessed by CPU, serial interface and I2C (R/W) 7 4 3 2 Hash Select Bit [1:0]: Bit [3:2] • 0 Port Select • • • • Port selection in unmanaged mode. Input pin TRUNK0 enable/disable trunk group 0 in unmanaged mode. 00 Reserved 01 Port 0 and 1 are used for trunk0 10 Port 0,1 and 2 are used for trunk0 11 Port 0,1,2 and 3 are used for trunk0 • Hash Select. The Hash selected is valid for Trunk 0, 1 and 2. (Default 00) - 14.6.4 1 00 Use Source and Destination Mac Address for hashing 01 Use Source Mac Address for hashing 10 Use Destination Mac Address for hashing 11 Use source destination MAC address and ingress physical port number for hashing TRUNK0_HASH0 – Trunk group 0 hash result 0 destination port number CPU Address:h204 Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 0 destination port number (Default 00) 73 Zarlink Semiconductor Inc. ZL50418 14.6.5 TRUNK0_HASH1 – Trunk group 0 hash result 1 destination port number CPU Address:h205 Accessed by CPU, serial interface (R/W) Bit [4:0] 14.6.6 Hash result 1 destination port number (Default 01) TRUNK0_HASH2 – Trunk group 0 hash result 2 destination port number CPU Address:h206 Accessed by CPU, serial interface (R/W) Bit [4:0] 14.6.7 Hash result 2 destination port number (Default 02) TRUNK0_HASH3 – Trunk group 0 hash result 3 destination port number CPU Address:h207 Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 3 destination port number (Default 03) Trunk Group 1 - Up to four 10/100 ports can be selected for trunk group 1. 14.6.8 TRUNK1_L – Trunk group 1 Low (Managed mode only) Port selection for trunk group 1. CPU Address:h208 Accessed by CPU, serial interface (R/W) 14.6.9 TRUNK1_M – Trunk group 1 Medium Managed mode only) CPU Address:h209 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.6.10 Port15-8 bit map of trunk 1. (Default 00) TRUNK1_MODE – Trunk group 1 mode I2C Address h0A6; CPU Address:20B Accessed by CPU, serial interface and I2C (R/W) 7 2 1 0 Port Select Bit [1:0]: • Port selection in unmanaged mode. Input pin TRUNK1 enable/disable trunk group 1 in unmanaged mode. - 00 Reserved 01 Port 4 and 5 are used for trunk1 10 Reserved 11 Port 4,5,6 and 7 are used for trunk1 74 Zarlink Semiconductor Inc. Data Sheet ZL50418 14.6.11 Data Sheet TRUNK1_HASH0 – Trunk group 1 hash result 0 destination port number CPU Address:h20C Accessed by CPU, serial interface (R/W) Bit [4:0] 14.6.12 Hash result 0 destination port number (Default 04) TRUNK1_HASH1 – Trunk group 1 hash result 1 destination port number CPU Address:h20D Accessed by CPU, serial interface (R/W) Bit [4:0] 14.6.13 Hash result 1 destination port number (Default 05) TRUNK1_HASH2 – Trunk group 1 hash result 2 destination port number CPU Address:h20E Accessed by CPU, serial interface (R/W) Bit [4:0] 14.6.14 Hash result 1 destination port number (Default 06) TRUNK1_HASH3 – Trunk group 1 hash result 3 destination port number CPU Address:h20F Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 1 destination port number (Default 07) Trunk Group 2 14.6.15 TRUNK2_MODE – Trunk group 2 mode (Gigabit ports 1 and 2) CPU Address:210 Accessed by CPU, serial interface (R/W) 7 6 4 3 0 Ring/trunk Mode Bit [3:0] - Reserved Bit [6:4] - 000 Normal - 001 Trunk Mode. Enable Trunk group for Gigabit port 1 and 2 in managed mode. In unmanaged mode Trunk 2 is enable/disable using input pin TRUNK2. - 010 Single Ring with G1 - 100 Single Ring with G2 - 111 Dual Ring Mode 75 Zarlink Semiconductor Inc. ZL50418 14.6.16 Data Sheet TRUNK2_HASH0 – Trunk group 2 hash result 0 destination port number CPU Address:h211 Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 0 destination port number (Default 0x19) 0x19 = Gigabit port 1 0x1A = Gigabit port 2 14.6.17 TRUNK2_HASH1 – Trunk group 2 hash result 1 destination port number CPU Address:h211 Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 1 destination port number (Default 0x1A) 0x19 = Gigabit port 1 0x1A = Gigabit port 2 14.6.18 Multicast Hash Registers Multicast Hash registers are used to distribute multicast traffic. 16 registers are used to form a 4-entry array; each entry has 27 bits, with each bit representing one port. Any port not belonging to a trunk group should be programmed with 1. Ports belonging to the same trunk group should only have a single port set to “1” per entry. The port set to “1” is picked to transmit the multicast frame when the hash value is met. Hash Value =0 HASH0_3 HASH0_2 HASH0_1 HASH0_0 Hash Value =1 HASH1_3 HASH1_2 HASH1_1 HASH1_0 Hash Value =2 HASH2_3 HASH2_2 HASH2_1 HASH2_0 Hash Value =3 HASH3_3 HASH3_2 HASH3_1 HASH3_0 P o r t 2 6 14.6.18.1 P o r t 15 P o r t 24 C P U Multicast_HASH0-0 – Multicast hash result 0 mask byte 0 CPU Address:h220 Accessed by CPU, serial interface (R/W) Bit [7:0] P o r t 8 Default FF) 76 Zarlink Semiconductor Inc. P o r t 7 P o r t 0 ZL50418 14.6.18.2 Multicast_HASH0-1 – Multicast hash result 0 mask byte 1 CPU Address:h221 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.6.18.3 (Default FF) Multicast_HASH0-3 – Multicast hash result 0 mask byte 3 CPU Address:h223 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.6.18.4 (Default FF) Multicast_HASH1-0 – Multicast hash result 1 mask byte 0 CPU Address:h224 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.6.18.5 (Default FF) Multicast_HASH1-1 – Multicast hash result 1 mask byte 1 CPU Address:h225 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.6.18.6 (Default FF) Multicast_HASH1-3 – Multicast hash result 1 mask byte 3 CPU Address:h227 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.6.18.7 (Default FF) Multicast_HASH2-0 – Multicast hash result 2 mask byte 0 CPU Address:h228 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.6.18.8 (Default FF) Multicast_HASH2-1 – Multicast hash result 2 mask byte 1 CPU Address:h229 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 77 Zarlink Semiconductor Inc. Data Sheet ZL50418 14.6.18.9 Data Sheet Multicast_HASH2-3 – Multicast hash result 2 mask byte 3 CPU Address:h22B Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 14.6.18.10 Multicast_HASH3-0 – Multicast hash result 3 mask byte 0 CPU Address:h22C Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 14.6.18.11 Multicast_HASH3-1 – Multicast hash result 3 mask byte 1 CPU Address:h22D Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 14.6.18.12 Multicast_HASH3-3 – Multicast hash result 3 mask byte 3 CPU Address:h22F Accessed by CPU, serial interface (R/W) Bit [7:0] 14.7 (Default FF) (Group 3 Address) CPU Port Configuration Group 5 MAC5 0 MAC4 MAC3 MAC2 MAC1 (MC bit) MAC0 MAC5 to MAC0 registers form the CPU MAC address. When a packet with destination MAC address match MAC [5:0], the packet is forwarded to the CPU. 14.7.1 MAC0 – CPU Mac address byte 0 CPU Address:h300 Accessed by CPU Bit [7:0] Byte 0 of the CPU MAC address. (Default 00) 14.7.2 MAC1 – CPU Mac address byte 1 CPU Address:h301 Accessed by CPU Bit [7:0] Byte 1 of the CPU MAC address. (Default 00) 78 Zarlink Semiconductor Inc. ZL50418 14.7.3 Data Sheet MAC2 – CPU Mac address byte 2 CPU Address:h302 Accessed by CPU Bit [7:0] Byte 2 of the CPU MAC address. (Default 00) 14.7.4 MAC3 – CPU Mac address byte 3 CPU Address:h303 Accessed by CPU Bit [7:0] Byte 3 of the CPU MAC address. (Default 00) 14.7.5 MAC4 – CPU Mac address byte 4 CPU Address:h304 Accessed by CPU Bit [7:0] Byte 4 of the CPU MAC address. (Default 00) 14.7.6 MAC5 – CPU Mac address byte 5 CPU Address:h305 Accessed by CPU Bit [7:0] Byte 5 of the CPU MAC address. (Default 00). 14.7.7 INT_MASK0 – Interrupt Mask 0 CPU Address:h306 Accessed by CPU, serial interface (R/W) The CPU can dynamically mask the interrupt when it is busy and doesn’t want to be interrupted. (Default 0xFF) Bit [7:0] MASK - 1: Mask the interrupt - 0: Unmask the interrupt (Enable interrupt) Bit [0]: • CPU frame interrupt. CPU frame buffer has data for CPU to read Bit [1]: • Control Command 1 interrupt. Control Command Frame buffer1 has data for CPU to read Bit [2]: • Control Command 2 interrupt. Control command Frame buffer2 has data for CPU to read Bit [7:3]: • Reserved 79 Zarlink Semiconductor Inc. ZL50418 14.7.8 Data Sheet INTP_MASK0 – Interrupt Mask for MAC Port 0,1 CPU Address:h310 Accessed by CPU, serial interface (R/W) The CPU can dynamically mask the interrupt when it is busy and doesn’t want to be interrupted (Default 0xFF) 7 6 5 4 3 2 P1 1 0 P0 - 1: Mask the interrupt - 0: Unmask the interrupt Bit [0]: Port 0 statistic counter wrap around interrupt mask. An Interrupt is generated when a statistic counter wraps around. Refer to hardware statistic counter for interrupt sources. Bit [1]: Port 0 link change mask Bit [4]: Port 1 statistic counter wrap around interrupt mask. Refer to hardware statistic counter for interrupt sources. Bit [5]: Port 1 link change mask 14.7.9 INTP_MASK1 – Interrupt Mask for MAC Port 2,3 CPU Address:h311 Accessed by CPU, serial interface (R/W) 14.7.10 INTP_MASK2 – Interrupt Mask for MAC Port 4,5 CPU Address:h312 Accessed by CPU, serial interface (R/W) 14.7.11 INTP_MASK3 – Interrupt Mask for MAC Port 6,7 CPU Address:h313 Accessed by CPU, serial interface (R/W) 14.7.12 INTP_MASK4 – Interrupt Mask for MAC Port 8,9 CPU Address:h314 Accessed by CPU, serial interface (R/W) 14.7.13 INTP_MASK5 – Interrupt Mask for MAC Port 10,11 CPU Address:h315 Accessed by CPU, serial interface (R/W) 14.7.14 INTP_MASK6 – Interrupt Mask for MAC Port 12,13 CPU Address:h316 Accessed by CPU, serial interface (R/W) 80 Zarlink Semiconductor Inc. ZL50418 14.7.15 Data Sheet INTP_MASK7 – Interrupt Mask for MAC Port 14,15 CPU Address:h317 Accessed by CPU, serial interface (R/W) 14.7.16 INTP_MASK12 – Interrupt Mask for MAC Port G1,G2 CPU Address:h31C Accessed by CPU, serial interface (R/W) 14.7.17 RQS – Receive Queue Select CPU Address:h323 Accessed by CPU, serial interface (R/W) Select which receive queue is used. 7 6 5 4 3 2 1 0 FQ3 FQ2 FQ1 FQ0 SQ3 SQ2 SQ1 SQ0 Bit [0]: Select Queue 0. If set to one, this queue may be scheduled to CPU port. If set to zero, this queue will be blocked. If multiple queues are selected, a strict priority will be applied. Q3> Q2> Q1> Q0. Same applies to bits [3:1]. See QoS Application Note for more information. Bit [1]: Select Queue 1 Bit [2]: Select Queue 2 Bit [3]: Select Queue 3 Note: Strip priority applies between different selected queues (Q3>Q2>Q1>Q0) Bit [4]: Enable flush Queue 0 Bit [5]: Enable flush Queue 1 Bit [6]: Enable flush Queue 2 Bit [7]: Enable flush Queue 3 When flush (drop frames) is enable, it starts when queue is too long or entry is too old. A queue is too long when it reaches WRED thresholds. Queue 0 is not subject to early drop. Packets in queue 0 are dropped only when the queue is too old. An entry is too old when it is older than the time programmed in the register TX_AGE [5:0]. CPU can dynamically program this register reading register RQSS [7:4]. 14.7.18 RQSS – Receive Queue Status CPU Address:h324 Accessed by CPU, serial interface (RO) 7 LQ3 LQ2 5 4 3 LQ1 LQ0 NeQ3 0 NeQ2 NeQ1 81 Zarlink Semiconductor Inc. NeQ0 ZL50418 Data Sheet CPU receive queue status - Bit [3:0]: Queue 3 to 0 not empty - Bit [4]: Head of line entry for Queue 0 is valid for too long. CPU Queue 0 has no WRED threshold. - Bit [7:5]: Head of line entry for Queue 3 to 1 is valid for too long or Queue length is longer than WRED threshold. TX_AGE – Tx Queue Aging timer I2C Address: h07;CPU Address:h324 Accessed by CPU, serial interface (RW) 7 6 5 0 Tx Queue Agent - Bit [5:0]: Unit of 100ms (Default 8) Disable transmission queue aging if value is zero. Aging timer for all ports and queues. This register must be set to 0 for ‘No Packet Loss Flow Control Test’. 14.8 14.8.1 (Group 4 Address) Search Engine Group AGETIME_LOW – MAC address aging time Low I2C Address h0A8; CPU Address:h400 Accessed by CPU, serial interface and I2C (R/W) The ZL50418 removes the MAC address from the data base and sends a Delete MAC Address Control Command to the CPU. MAC address aging is enable/disable by boot strap TSTOUT9. Bit [7:0] Low byte of the MAC address aging timer. 14.8.2 AGETIME_HIGH –MAC address aging time High I2C Address h0A9; CPU Address h401 Accessed by CPU, serial interface and I2C (R/W) Bit [7:0]: High byte of the MAC address aging timer. The default setting provide 300 seconds aging time. Aging time is based on the following equation: {AGETIME_TIME,AGETIME_LOW} X (# of MAC entries in the memory X100µsec). Number of MAC entries = 32 K when 1 MB is used per Bank. Number of entries = 64 K when 2 MB is used per Bank. 82 Zarlink Semiconductor Inc. ZL50418 14.8.3 Data Sheet +SCAN – SCAN Control Register (default 00) CPU Address h404 Accessed by CPU (R/W) 7 6 0 R Ratio SCAN is used when fast learning is enabled (SE_OPMODE bit 0). It is used for setting up the report rate for newly learned MAC addresses to the CPU. Bit [6:0]: • Ratio between database scanning and aging round (Default 00) Bit [7]: • Reverse the ratio between scanning round and aging round (Default 0) Examples: R= 0, Ratio = 0: All rounds are used for aging. Never scan for new MAC addresses. R= 0, Ratio = 1: Aging and scanning in every other aging round R= 1, Ratio = 7: In eight rounds, one is used for scanning and seven are used for aging R= 0, Ratio = 7: In eight rounds, one is used for aging and seven are used for scanning 14.9 14.9.1 (Group 5 Address) Buffer Control/QOS Group FCBAT – FCB Aging Timer I2C Address h0AA; CPU Address:h500 7 0 FCBAT Bit [7:0]: 14.9.2 • • FCB Aging time. Unit of 1ms. (Default FF) This is for buffer aging control. It is used to configure the buffer aging time. This function can be enabled/disabled through bootstrap pin. It is not suggested to use this function for normal operation. QOSC – QOS Control I2C Address h0AB; CPU Address:h501 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 Tos-d Tos-p PMCQ VF1c Bit [0]: • 3 1 0 L QoS frame lost is OK. Priority will be available for flow control enabled source only when this bit is set (Default 0) 83 Zarlink Semiconductor Inc. ZL50418 Bit [4]: • Data Sheet Per VLAN Multicast Flow Control (Default 0) - 0 – Disable - 1 – Enable Bit [5]: • Select processor multicast queue size - 0 = 16 entries - 1 = 64 entries Bit [6]: • Select TOS bits for Priority (Default 0) - 0 – Use TOS [4:2] bits to map the transmit priority - 1 – Use TOS [7:5] bits to map the transmit priority Bit [7]: • Select TOS bits for Drop priority(Default 0) - 0 – Use TOS [4:2] bits to map the drop priority - 1 – Use TOS [7:5] bits to map the drop priority 14.9.3 FCR – Flooding Control Register I2C Address h0AC; CPU Address:h502 Accessed by CPU, serial interface and I2C (R/W) 7 6 4 Tos TimeBase 3 0 U2MR Bit [3:0]: • U2MR: Unicast to Multicast Rate. Units in terms of time base defined in bits [6:4]. This is used to limit the amount of flooding traffic. The value in U2MR specifies how many packets are allowed to flood within the time specified by bit [6:4]. To disable this function, program U2MR to 0. (Default = 8) Bit [6:4]: • Time Base: (Default = 000) - Bit [7]: • 000 = 100 us 001 = 200 us 010 = 400 us 011 = 800 us 100 = 1.6 ms 101 = 3.2 ms 110 = 6.4 ms 111 = 100 us, same as 000. Select VLAN tag or TOS (IP packets) to be preferentially picked to map transmit priority and drop priority (Default = 0). - 0 – Select VLAN Tag priority field over TOS - 1 – Select TOS over VLAN tag priority field 84 Zarlink Semiconductor Inc. ZL50418 14.9.4 Data Sheet AVPML – VLAN Tag Priority Map I2C Address h0AD; CPU Address:h503 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 3 VP2 2 0 VP1 VP0 Registers AVPML, AVPMM, and AVPMH allow the eight VLAN Tag priorities to map into eight Internal level transmit priorities. Under the Internal transmit priority, seven is the highest priority where as zero is the lowest. This feature allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit 2:0 of the AVPML register would map packet VLAN priority 0 into Internal transmit priority 7. The new priority is used inside the ZL50418. When the packet goes out it carries the original priority. 14.9.5 Bit [2:0]: Priority when the VLAN tag priority field is 0 (Default 0) Bit [5:3]: Priority when the VLAN tag priority field is 1 (Default 0) Bit [7:6]: Priority when the VLAN tag priority field is 2 (Default 0) AVPMM – VLAN Priority Map I2C Address h0AE, CPU Address:h504 Accessed by CPU, serial interface and I2C (R/W) Map VLAN priority into eight level transmit priorities: 7 6 4 VP5 14.9.6 3 VP4 1 VP3 0 VP2 Bit [0]: Priority when the VLAN tag priority field is 2 (Default 0) Bit [3:1]: Priority when the VLAN tag priority field is 3 (Default 0) Bit [6:4]: Priority when the VLAN tag priority field is 4 (Default 0) Bit [7]: Priority when the VLAN tag priority field is 5 (Default 0) AVPMH – VLAN Priority Map I2C Address h0AF, CPU Address:h505 Accessed by CPU, serial interface and I2C (R/W) 7 5 VP7 4 2 VP6 85 Zarlink Semiconductor Inc. 1 VP5 0 ZL50418 Data Sheet Map VLAN priority into eight level transmit priorities: 14.9.7 Bit [1:0]: Priority when the VLAN tag priority field is 5 (Default 0) Bit [4:2]: Priority when the VLAN tag priority field is 6 (Default 0) Bit [7:5]: Priority when the VLAN tag priority field is 7 (Default 0) TOSPML – TOS Priority Map I2C Address h0B0, CPU Address:h506 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 3 TP2 2 TP1 0 TP0 Map TOS field in IP packet into eight level transmit priorities 14.9.8 Bit [2:0]: Priority when the TOS field is 0 (Default 0) Bit [5:3]: Priority when the TOS field is 1 (Default 0) Bit [7:6]: Priority when the TOS field is 2 (Default 0) TOSPMM – TOS Priority Map I2C Address h0B1, CPU Address:h507 Accessed by CPU, serial interface and I2C (R/W) 7 6 4 TP5 3 1 TP4 TP3 TP2 Map TOS field in IP packet into eight level transmit priorities 14.9.9 Bit [0]: Priority when the TOS field is 2 (Default 0) Bit [3:1]: Priority when the TOS field is 3 (Default 0) Bit [6:4]: Priority when the TOS field is 4 (Default 0) Bit [7]: Priority when the TOS field is 5 (Default 0) TOSPMH – TOS Priority Map I2C Address h0B2, CPU Address:h508 Accessed by CPU, serial interface and I2C (R/W) 7 5 TP7 4 2 1 TP6 0 0 TP5 86 Zarlink Semiconductor Inc. ZL50418 Data Sheet Map TOS field in IP packet into eight level transmit priorities: 14.9.10 Bit [1:0]: Priority when the TOS field is 5 (Default 0) Bit [4:2]: Priority when the TOS field is 6 (Default 0) Bit [7:5]: Priority when the TOS field is 7 (Default 0) AVDM – VLAN Discard Map I2C Address h0B3, CPU Address:h509 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 3 2 1 0 FDV7 FDV6 FDV5 FDV4 FDV3 FDV2 FDV1 FDV0 Map VLAN priority into frame discard when low priority buffer usage is above threshold 14.9.11 Bit [0]: Frame drop priority when VLAN Tag priority field is 0 (Default 0) Bit [1]: Frame drop priority when VLAN Tag priority field is 1 (Default 0) Bit [2]: Frame drop priority when VLAN Tag priority field is 2 (Default 0) Bit [3]: Frame drop priority when VLAN Tag priority field is 3 (Default 0) Bit [4]: Frame drop priority when VLAN Tag priority field is 4 (Default 0) Bit [5]: Frame drop priority when VLAN Tag priority field is 5 (Default 0) Bit [6]: Frame drop priority when VLAN Tag priority field is 6 (Default 0) Bit [7]: Frame drop priority when VLAN Tag priority field is 7 (Default 0) TOSDML – TOS Discard Map I2C Address h0B4, CPU Address:h50A Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 3 2 1 0 FDT7 FDT6 FDT5 FDT4 FDT3 FDT2 FDT1 FDT0 Map TOS into frame discard when low priority buffer usage is above threshold Bit [0]: Frame drop priority when TOS field is 0 (Default 0) Bit [1]: Frame drop priority when TOS field is 1 (Default 0) Bit [2]: Frame drop priority when TOS field is 2 (Default 0) Bit [3]: Frame drop priority when TOS field is 3 (Default 0) Bit [4]: Frame drop priority when TOS field is 4 (Default 0) 87 Zarlink Semiconductor Inc. ZL50418 14.9.12 Data Sheet Bit [5]: Frame drop priority when TOS field is 5 (Default 0) Bit [6]: Frame drop priority when TOS field is 6 (Default 0) Bit [7]: Frame drop priority when TOS field is 7 (Default 0) BMRC - Broadcast/Multicast Rate Control I2C Address h0B5, CPU Address:h50B) Accessed by CPU, serial interface and I2C (R/W) 7 4 Broadcast Rate 3 0 Multicast Rate This broadcast and multicast rate defines for each port, the number of packets allowed to be forwarded within a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit, program the field to 0. Time base is based on register FCR [6:4] 14.9.13 Bit [3:0]: Multicast Rate Control. Number of multicast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0). Bit [7:4]: Broadcast Rate Control. Number of broadcast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0) UCC – Unicast Congestion Control I2C Address h0B6, CPU Address: 50C Accessed by CPU, serial interface and I2C (R/W) 7 0 Unicast congest threshold Bit [7:0]: 14.9.14 Number of frame count. Used for best effort dropping at B% when destination port’s best effort queue reaches UCC threshold and shared pool is all in use. Granularity 1 frame. (Default: h10 for 2 MB/bank or h08 for 1 MB/bank) MCC – Multicast Congestion Control I2C Address h0B7, CPU Address: 50D Accessed by CPU, serial interface and I2C (R/W) 7 5 FC reaction period 4 0 Multicast congest threshold 88 Zarlink Semiconductor Inc. ZL50418 14.9.15 Data Sheet Bit [4:0]: In multiples of two frames (granularity). Used for triggering MC flow control when destination port’s multicast best effort queue reaches MCC threshold.(Default 0x10) Bit [7:5]: Flow control reaction period (Default 2) Granularity 4 uSec. PR100 – Port Reservation for 10/100 ports I2C Address h0B8, CPU Address 50E Accessed by CPU, serial interface and I2C (R/W) 7 4 Buffer low threshold 3 0 SP Buffer reservation Bit [3:0]: Per source port buffer reservation. Define the space in the FDB reserved for each 10/100 port and CPU. Expressed in multiples of 4 packets. For each packet 1536 bytes are reserved in the memory. Bits [7:4]: Expressed in multiples of 4 packets. Threshold for dropping all best effort frames when destination port best efforts queues reaches UCC threshold, shared pool is all used and source port reservation is at or below the PR100[7:4] level. Also the threshold for initiating UC flow control. • Default: - h36 for 16+2 configuration with memory 2 MB/bank; - h24 for 16+2 configuration with 1 MB/bank; 14.9.16 PRG – Port Reservation for Giga ports I2C Address h0B9, CPU Address 50F Accessed by CPU, serial interface and I2C (R/W) 7 4 Buffer low threshold 3 0 SP buffer reservation Bit [3:0]: Per source port buffer reservation. Define the space in the FDB reserved for each Gigabit port. Expressed in multiples of 16 packets. For each packet 1536 bytes are reserved in the memory. Bits [7:4]: Expressed in multiples of 16 packets. Threshold for dropping all best effort frames when destination port best effort queues reach UCC threshold, shared pool is all used and source port reservation is at or below the PRG[7:4] level. Also the threshold for initiating UC flow control. • Default: - H58 for memory 2 MB/bank; - H35 for 1 MB/bank; 89 Zarlink Semiconductor Inc. ZL50418 14.9.17 Data Sheet SFCB – Share FCB Size I2C Address h0BA), CPU Address 510 Accessed by CPU, serial interface and I2C (R/W) 7 0 Shared pool buffer size Bits [7:0]: Expressed in multiples of 4 packets. Buffer reservation for shared pool. • Default: - h64 for 16+2 configuration with memory of 2 MB/bank; - h14 for 16+2 configuration with memory of 1 MB/bank; 14.9.18 C2RS – Class 2 Reserve Size I2C Address h0BB, CPU Address 511 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 2 FCB Reservation Buffer reservation for class 2 (third lowest priority). Granularity 1. (Default 0) 14.9.19 C3RS – Class 3 Reserve Size I2C Address h0BC, CPU Address 512 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 3 FCB Reservation Buffer reservation for class 3. Granularity 1. (Default 0) 14.9.20 C4RS – Class 4 Reserve Size I2C Address h0BD, CPU Address 513 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 4 FCB Reservation Buffer reservation for class 4. Granularity 1. (Default 0) 90 Zarlink Semiconductor Inc. ZL50418 14.9.21 Data Sheet C5RS – Class 5 Reserve Size I2C Address h0BE; CPU Address 514 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 5 FCB Reservation Buffer reservation for class 5. Granularity 1. (Default 0) 14.9.22 C6RS – Class 6 Reserve Size I2C Address h0BF; CPU Address 515 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 6 FCB Reservation Buffer reservation for class 6 (second highest priority). Granularity 1. (Default 0) 14.9.23 C7RS – Class 7 Reserve Size I2C Address h0C0; CPU Address 516 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 7 FCB Reservation Buffer reservation for class 7 (highest priority). Granularity 1. (Default 0) 14.9.24 QOSCn - Classes Byte Limit Set 0 Accessed by CPU; serial interface and I2C (R/W): • • • C — QOSC00 – BYTE_C01 (I2C Address h0C1, CPU Address 517) B — QOSC01 – BYTE_C02 (I2C Address h0C2, CPU Address 518) A — QOSC02 – BYTE_C03 (I2C Address h0C3, CPU Address 519) QOSC00 through QOSC02 represents one set of values A-C for a 10/100 port when using the Weighted Random Early Drop (WRED) Scheme described in Chapter 7. There are four such sets of values A-C specified in Classes Byte Limit Set 0, 1, 2, and 3. For CPU port A-C values are defined using register CPUQOSC1, 2 and 3. Each 10/ 100 port can choose one of the four Byte Limit Sets as specified by the QoS Select field located in bits 5 to 4 of the ECR2n register. The values A-C are per-queue byte thresholds for random early drop. QOSC02 represents A, and QOSC00 represents C. Granularity when Delay bound is used: QOSC02: 128 bytes, QOSC01: 256 bytes, QOSC00: 512 bytes. Granularity when WFQ is used: QOSC02: 512 bytes, QOSC01: 512 bytes, QOSC00: 512 bytes. 91 Zarlink Semiconductor Inc. ZL50418 14.9.25 Data Sheet Classes Byte Limit Set 1 Accessed by CPU, serial interface and I2C (R/W): • • • C - QOSC03 – BYTE_C11 (I2C Address h0C4, CPU Address 51a) B - QOSC04 – BYTE_C12 (I2C Address h0C5, CPU Address 51b) A - QOSC05 – BYTE_C13 (I2C Address h0C6, CPU Address 51c) QOSC03 through QOSC05 represents one set of values A-C for a 10/100 port when using the Weighted Random Early Drop (WRED) scheme. Granularity when Delay bound is used: QOSC05: 128 bytes, QOSC04: 256 bytes, QOSC03: 512 bytes. Granularity when WFQ is used: QOSC05: 512 bytes, QOSC04: 512 bytes, QOSC03: 512 bytes. 14.9.26 Classes Byte Limit Set 2 Accessed by CPU and serial interface (R/W): • • • C - QOSC06 – BYTE_C21 (CPU Address 51d) B - QOSC07 – BYTE_C22 (CPU Address 51e) A - QOSC08 – BYTE_C23 (CPU Address 51f) QOSC06 through QOSC08 represents one set of values A-C for a 10/100 port when using the Weighted Random Early Drop (WRED) scheme. Granularity when Delay bound is used: QOSC08: 128 bytes, QOSC07: 256 bytes, QOSC06: 512 bytes. Granularity when WFQ is used: QOSC08: 512 bytes, QOSC07: 512 bytes, QOSC06: 512 bytes 14.9.27 Classes Byte Limit Set 3 Accessed by CPU and serial interface (R/W): • • • C - QOSC09 – BYTE_C31 (CPU Address 520) B - QOSC10 – BYTE_C32 (CPU Address 521) A - QOSC11 – BYTE_C33 (CPU Address 522) QOSC09 through QOSC011 represents one set of values A-C for a 10/100 port when using the Weighted Random Early Drop (WRED) scheme. Granularity when Delay bound is used: QOSC11: 128 bytes, QOSC10: 256 bytes, QOSC09: 512 bytes. Granularity when WFQ is used: QOSC11: 512 bytes, QOSC10: 512 bytes, QOSC09: 512 bytes 14.9.28 Classes Byte Limit Giga Port 1 Accessed by CPU, serial interface and I2C (R/W): • • • • • • F - QOSC12 – BYTE_C2_G1 (I2C Address h0C7, CPU Address 523) E - QOSC13 – BYTE_C3_G1 (I2C Address h0C8, CPU Address 524) D - QOSC14 – BYTE_C4_G1 (I2C Address h0C9, CPU Address 525) C -QOSC15 – BYTE_C5_G1 (I2C Address h0CA, CPU Address 526) B - QOSC16 – BYTE_C6_G1 (I2C Address h0CB, CPU Address 527) A - QOSC17 – BYTE_C7_G1 (I2C Address h0CC, CPU Address 528) QOSC12 through QOSC17 represent the values A-F for Gigabit port 1. They are per-queue byte thresholds for random early drop. QOSC17 represents A and QOSC12 represents F. 92 Zarlink Semiconductor Inc. ZL50418 Data Sheet Granularity when Delay bound is used: QOSC17 and QOSC16: 256 bytes, QOSC15 and QOSC14: 512 bytes, QOSC13 and QOSC12: 1024 bytes. Granularity when WFQ is used: QOSC17 to QOSC12: 1024 bytes 14.9.29 Classes Byte Limit Giga Port 2 Accessed by CPU, serial interface and I2C (R/W) • • • • • • F - QOSC18 – BYTE_C2_G2 (I2C Address h0CD, CPU Address 529) E - QOSC19 – BYTE_C3_G2 (I2C Address h0CE, CPU Address 52a) D - QOSC20 – BYTE_C4_G2 (I2C Address h0CF, CPU Address 52b) C - QOSC21 – BYTE_C5_G2 (I2C Address h0D0, CPU Address 52c) B - QOSC22 – BYTE_C6_G2 (I2C Address h0D1, CPU Address 52d) A - QOSC23 – BYTE_C7_G2 (I2C Address h0D2, CPU Address 52e) QOSC12 through QOSC17 represent the values A-F for Gigabit port 2. They are per-queue byte thresholds for random early drop. QOSC17 represents A, and QOSC12 represents F. Granularity when Delay bound is used: QOSC17 and QOSC16: 256 bytes, QOSC15 and QOSC14: 512 bytes, QOSC13 and QOSC12: 1024 bytes. Granularity when WFQ is used: QOSC17 to QOSC12: 1024 bytes 14.9.30 Classes WFQ Credit Set 0 Accessed by CPU and serial interface • • • • W0 W1 W2 W3 - QOSC24[5:0] QOSC25[5:0] QOSC26[5:0] QOSC27[5:0] – – – – CREDIT_C00 CREDIT_C01 CREDIT_C02 CREDIT_C03 (CPU (CPU (CPU (CPU Address Address Address Address 52f) 530) 531) 532) QOSC24 through QOSC27 represents one set of WFQ parameters for a 10/100 port. There are four such sets of values. The granularity of the numbers is 1, and their sum must be 64. QOSC27 corresponds to W3 and QOSC24 corresponds to W0. QOSC24[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4. QOSC25[7]: Priority service allow flow control for the ports select this parameter set. QOSC25[6]: Flow control pause best effort traffic only Both flow control allow and flow control best effort only can take effect only the priority type is WFQ. 14.9.31 Classes WFQ Credit Set 1 Accessed by CPU and serial interface • • • • W0 W1 W2 W3 - QOSC28[5:0] QOSC29[5:0] QOSC30[5:0] QOSC31[5:0] – – – – CREDIT_C10 (CPU Address 533) CREDIT_C11 (CPU Address 534) CREDIT_C12 (CPU Address 535) CREDIT_C13 (CPU Address 536) QOSC28 through QOSC31 represents one set of WFQ parameters for a 10/100 port. There are four such sets of values. The granularity of the numbers is 1, and their sum must be 64. QOSC31 corresponds to W3 and QOSC28 corresponds to W0. 93 Zarlink Semiconductor Inc. ZL50418 Data Sheet QOSC28[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4. QOSC29[7]: Priority service allow flow control for the ports select this parameter set. QOSC29[6]: Flow control pause best effort traffic only 14.9.32 Classes WFQ Credit Set 2 Accessed by CPU and serial interface • • • • W0 W1 W2 W3 - QOSC32[5:0] QOSC33[5:0] QOSC34[5:0] QOSC35[5:0] – – – – CREDIT_C20 CREDIT_C21 CREDIT_C22 CREDIT_C23 (CPU (CPU (CPU (CPU Address Address Address Address 537) 538) 539) 53a) QOSC35 through QOSC32 represents one set of WFQ parameters for a 10/100 port. There are four such sets of values. The granularity of the numbers is 1 and their sum must be 64. QOSC35 corresponds to W3, and QOSC32 corresponds to W0. QOSC32[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4. QOSC33[7]: Priority service allow flow control for the ports select this parameter set. QOSC33[6]: Flow control pause for best effort traffic only 14.9.33 Classes WFQ Credit Set 3 Accessed by CPU and serial interface • • • • W0 W1 W2 W3 - QOSC36[5:0] QOSC37[5:0] QOSC38[5:0] QOSC39[5:0] – – – – CREDIT_C30 CREDIT_C31 CREDIT_C32 CREDIT_C33 (CPU (CPU (CPU (CPU Address Address Address Address 53b) 53c) 53d) 53e) QOSC39 through QOSC36 represents one set of WFQ parameters for a 10/100 port. There are four such sets of values. The granularity of the numbers is 1 and their sum must be 64. QOSC39 corresponds to W3, and QOSC36 corresponds to W0. QOSC36[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4. QOSC37[7]: Priority service allow flow control for the ports select this parameter set. QOSC37[6]: Flow control pause best effort traffic only 14.9.34 Classes WFQ Credit Port G1 Accessed by CPU and serial interface • W0 - QOSC40[5:0] - CREDIT_C0_G1(CPU Address 53f) [7:6]: Priority service type. Option 1 to 4. • W1 - QOSC41[5:0] – CREDIT_C1_G1 (CPU Address 540) [7]: Priority service allow flow control for the ports select this parameter set. [6]: Flow control pause best effort traffic only • • • W2 - QOSC42[5:0] – CREDIT_C2_G1 (CPU Address 541) W3 - QOSC43[5:0] – CREDIT_C3_G1 (CPU Address 542) W4 - QOSC44[5:0] – CREDIT_C4_G1 (CPU Address 543) 94 Zarlink Semiconductor Inc. ZL50418 • • • Data Sheet W5 - QOSC45[5:0] – CREDIT_C5_G1 (CPU Address 544) W6 - QOSC46[5:0] – CREDIT_C6_G1 (CPU Address 545) W7 - QOSC47[5:0] – CREDIT_C7_G1 (CPU Address 546) QOSC40 through QOSC47 represents the set of WFQ parameters for Gigabit port 24. The granularity of the numbers is 1 and their sum must be 64. QOSC47 corresponds to W7, and QOSC40 corresponds to W0. 14.9.35 Classes WFQ Credit Port G2 Accessed by CPU and serial interface • W0 - QOSC48[5:0] – CREDIT_C0_G2(CPU Address 547) [7:6]: Priority service type. Option 1 to 4 • W1 - QOSC49[5:0] – CREDIT_C1_G2(CPU Address 548) [7]: Priority service allow flow control for the ports select this parameter set. [6]: Flow control pause best effort traffic only • • • • • • W2 W3 W4 W5 W6 W7 - QOSC50[5:0] QOSC51[5:0] QOSC52[5:0] QOSC53[5:0] QOSC54[5:0] QOSC55[5:0] – – – – – – CREDIT_C2_G2(CPU CREDIT_C3_G2(CPU CREDIT_C4_G2(CPU CREDIT_C5_G2(CPU CREDIT_C6_G2(CPU CREDIT_C7_G2(CPU Address Address Address Address Address Address 549) 54a) 54b) 54c) 54d) 54e) QOSC48 through QOSC55 represents the set of WFQ parameters for Gigabit port 2. The granularity of the numbers is 1 and their sum must be 64. QOSC55 corresponds to W7 and QOSC48 corresponds to W0. 14.9.36 Class 6 Shaper Control Port G1 Accessed by CPU and serial interface QOSC56[5:0] – TOKEN_RATE_G1 (CPU Address 54f). Programs de average rate for gigabit port 1. When equal to 0, shaper is disable. Granularity is 1. QOSC57[7:0] – TOKEN_LIMIT_G1 (CPU Address 550). Programs the maximum counter for gigabit port 1. Granularity is 16 bytes. Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is limited to gigabit ports and queue P6 when it is in strict priority. QOSC41 programs the peak rate for gigabit port 1. See Programming QoS Registers Application Note for more information 14.9.37 Class 6 Shaper Control Port G2 Accessed by CPU and serial interface QOSC58[5:0] – TOKEN_RATE_G2 (CPU Address 551). Programs de average rate for gigabit port 2. When equal to 0, shaper is disable. Granularity is 1. QOSC59[7:0] – TOKEN_LIMIT_G2 (CPU Address 552). Programs the maximum counter for gigabit port 2. Granularity is 16 bytes. Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is limited to gigabit ports and queue P6 when it is in strict priority. QOSC49 programs the peak rate for gigabit port 2. See Programming QoS Register Application Note for more information. 95 Zarlink Semiconductor Inc. ZL50418 14.9.38 Data Sheet RDRC0 – WRED Rate Control 0 I2C Address 0FB, CPU Address 553 Accessed by CPU, Serial Interface and IcC (R/W) 7 4 X Rate 3 0 Y Rate Bits [7:4]: Corresponds to the frame drop percentage X% for WRED. Granularity 6.25%. Bits[3:0]: Corresponds to the frame drop percentage Y% for WRED. Granularity 6.25%. See Programming QoS Registers Application Note for more information. 14.9.39 RDRC1 – WRED Rate Control 1 I2C Address 0FC, CPU Address 554 Accessed by CPU, Serial Interface and I2C (R/W) 7 Z Rate 4 3 0 B Rate Bits [7:4]: Corresponds to the frame drop percentage Z% for WRED. Granularity 6.25%. Bits[3:0]: Corresponds to the best effort frame drop percentage B%, when shared pool is all in use and destination port best effort queue reaches UCC. Granularity 6.25%. See Programming QoS Registers Application Note for more information. 14.9.40 User Defined Logical Ports and Well Known Ports The ZL50418 supports classifying packet priority through layer 4 logical port information. It can be setup by 8 Well Known Ports, 8 User Defined Logical Ports and 1 User Defined Range. The 8 Well Known Ports supported are: • • • • • • • • 0:23 1:512 2:6000 3:443 4:111 5:22555 6:22 7:554 Their respective priority can be programmed via Well_Known_Port [7:0] priority register. Well_Known_Port_ Enable can individually turn on/off each Well Known Port if desired. Similarly, the User Defined Logical Port provides the user programmability to the priority, plus the flexibility to select specific logical ports to fit the applications. The 8 User Logical Ports can be programmed via User_Port 0-7 registers. Two registers are required to be programmed for the logical port number. The respective priority can be 96 Zarlink Semiconductor Inc. ZL50418 Data Sheet programmed to the User_Port [7:0] priority register. The port priority can be individually enabled/disabled via User_Port_Enable register. The User Defined Range provides a range of logical port numbers with the same priority level. Programming is similar to the User Defined Logical Port. Instead of programming a fixed port number, an upper and lower limit need to be programmed, they are: {RHIGHH, RHIGHL} and {RLOWH, RLOWL} respectively. If the value in the upper limit is smaller or equal to the lower limit, the function is disabled. Any IP packet with a logical port that is less than the upper limit and more than the lower limit will use the priority specified in RPRIORITY. 14.9.40.1 USER_PORT0_(0~7) – User Define Logical Port (0~7) USER_PORT_0 - I2C Address h0D6 + 0DE; CPU Address 580(Low) + 581(high) USER_PORT_1 - I2C Address h0D7 + 0DF; CPU Address 582 + 583 USER_PORT_2 - I2C Address h0D8 + 0E0; CPU Address 584 + 585 USER_PORT_3 - I2C Address h0D9 + 0E1; CPU Address 586 + 587 USER_PORT_4 - I2C Address h0DA + 0E2; CPU Address 588 + 589 USER_PORT_5 - I2C Address h0DB + 0E3; CPU Address 58A + 58B USER_PORT_6 - I2C Address h0DC + 0E4; CPU Address 58C + 58D USER_PORT_7 - I2C Address h0DD + 0E5; CPU Address 58E + 58F Accessed by CPU, serial interface and I2C (R/W) 7 0 TCP/UDP Logic Port Low 7 0 TCP/UDP Logic Port High (Default 00) This register is duplicated eight times from PORT 0 through PORT 7 and allows the CPU to define eight separate ports. 14.9.40.2 USER_PORT_[1:0]_PRIORITY - USER DEFINE LOGIC PORT 1 AND 0 PRIORITY I2C Address h0E6, CPU Address 590 Accessed by CPU, serial interface and I2C (R/W) 7 Priority 1 5 4 3 1 Drop Priority 0 0 Drop The chip allows the CPU to define the priority. Bits [3:0]: Priority setting, transmission + dropping, for logic port 0 Bits [7:4]: Priority setting, transmission + dropping, for logic port 1 (Default 00) 97 Zarlink Semiconductor Inc. ZL50418 14.9.40.3 Data Sheet USER_PORT_[3:2]_PRIORITY - USER DEFINE LOGIC PORT 3 AND 2 PRIORITY AND 4 PRIORITY AND 6 PRIORITY I2C Address h0E7, CPU Address 591 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 3 14.9.40.4 4 3 1 Drop Priority 2 0 Drop USER_PORT_[5:4]_PRIORITY - USER DEFINE LOGIC PORT 5 I2C Address h0E8, CPU Address 592 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 5 4 3 1 Drop Priority 4 0 Drop (Default 00) 14.9.40.5 USER_PORT_[7:6]_PRIORITY - USER DEFINE LOGIC PORT 7 I2C Address h0E9, CPU Address 593 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 7 4 3 1 Drop Priority 6 0 Drop (Default 00) 14.9.40.6 USER_PORT_ENABLE[7:0] – USER DEFINE LOGIC 7 TO 0 PORT ENABLES I2C Address h0EA, CPU Address 594 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 (Default 00) 14.9.40.7 WELL_KNOWN_PORT[1:0] PRIORITY- WELL KNOWN LOGIC PORT 1 I2C Address h0EB, CPU Address 595 Accessed by CPU, serial interface and I2C (R/W) Priority 0 - Well known port 23 for telnet applications. 7 Priority 1 5 4 3 1 Drop Priority 0 0 Drop 98 Zarlink Semiconductor Inc. AND 0 PRIORITY ZL50418 Data Sheet Priority 1 - Well Known port 512 for TCP/UDP. (Default 00) 14.9.40.8 WELL_KNOWN_PORT[3:2] PRIORITY- WELL KNOWN LOGIC PORT 3 AND 2 PRIORITY I2C Address h0EC, CPU Address 596 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 3 4 3 1 Drop Priority 2 0 Drop Priority 2 - Well known port 6000 for XWIN. Priority 3 - Well known port 443 for http.sec (Default 00) 14.9.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- WELL KNOWN LOGIC PORT 5 AND 4 PRIORITY I2C Address h0ED, CPU Address 597 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 5 4 3 1 Drop Priority 4 0 Drop Priority 4 - Well Known port 111 for sun remote procedure call. Priority 5 - Well Known port 22555 for IP Phone call setup. (Default 00) 14.9.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- WELL KNOWN LOGIC PORT 7 I2C Address h0EE, CPU Address 598 Accessed by CPU, serial interface and I2C (R/W) 7 Priority 7 5 4 3 1 Drop Priority 6 0 Drop Priority 6 - well know port 22 for ssh. Priority 7 – well Known port 554 for rtsp. (Default 00) 99 Zarlink Semiconductor Inc. AND 6 PRIORITY ZL50418 14.9.40.11 Data Sheet WELL KNOWN_PORT_ENABLE [7:0] – WELL KNOWN LOGIC 7 I2C Address h0EF, CPU Address 599 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 - 1– Enable - 0 - Disable (Default 00) 14.9.40.12 RLOWL – USER DEFINE RANGE LOW BIT 7:0 I2C Address h0F4, CPU Address: 59a Accessed by CPU, serial interface and I2C (R/W) (Default 00) 14.9.40.13 RLOWH – USER DEFINE RANGE LOW BIT 15:8 I2C Address h0F5, CPU Address: 59b Accessed by CPU, serial interface and I2C (R/W) (Default 00) 14.9.40.14 RHIGHL – USER DEFINE RANGE HIGH BIT 7:0 I2C Address h0D3, CPU Address: 59c Accessed by CPU, serial interface and I2C (R/W) (Default 00) 14.9.40.15 RHIGHH – USER DEFINE RANGE HIGH BIT 15:8 I2C Address h0D4, CPU Address: 59d Accessed by CPU, serial interface and I2C (R/W) (Default 00) 14.9.40.16 RPRIORITY – USER DEFINE RANGE PRIORITY I2C Address h0D5, CPU Address: 59e Accessed by CPU, serial interface and I2C (R/W) 7 4 3 1 Range Transmit Priority 100 Zarlink Semiconductor Inc. 0 Drop TO 0 PORT ENABLES ZL50418 Data Sheet RLOW and RHIGH form a range for logical ports to be classified with priority specified in RPRIORITY. 14.9.41 Bit [3:1] Transmit Priority Bits [0]: Drop Priority CPUQOSC123 CPU Address: 5a0, 5a1, 5a2 Accessed by CPU and serial interface (R/W) C - CPUQOSC1 – CPU BYTE_C1 I2C Address h0C1, CPU Address 517) B - CPUQOSC2 – CPU BYTE_C2 I2C Address h0C2, CPU Address 518) A - CPUQOSC3 – CPU BYTE_C3 I2C Address h0C3, CPU Address 519) Represents values A-C for a CPU port. The values A-C are per-queue byte thresholds for random early drop. QOSC3 represents A, and QOSC1 represents C. Granularity: 256 bytes 14.10 14.10.1 (Group 6 Address) MISC Group MII_OP0 – MII Register Option 0 I2C Address F0, CPU Address:h600 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 0 hfc 1prst DisJ Vendor Spc. Reg Addr Bits [7]: Half duplex flow control feature 0 = Half duplex flow control always enable 1 = Half duplex flow control by negotiation Bits [6]: Link partner reset auto-negotiate disable Bits [5]: Disable jabber detection. This is for HomePNA applications or any serial operation slower than 10 Mbps. 0 = Enable 1 = Disable Bit [4:0]: Vendor specified link status register address (null value means don’t use it) (Default 00). This is used if the Linkup bit position in the PHY is non-standard 101 Zarlink Semiconductor Inc. ZL50418 14.10.2 Data Sheet MII_OP1 – MII Register Option 1 I2C Address F1, CPU Address:h601 Accessed by CPU, serial interface and I2C (R/W) 7 4 3 Speed bit location 14.10.3 0 Duplex bit location Bits [3:0]: Duplex bit location in vendor specified register Bits [7:4]: Speed bit location in vendor specified register (Default 00) FEN – Feature Register I2C Address F2, CPU Address:h602) Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 3 2 1 0 DML Mii Rp IP Mul V-Sp DS RC SC Bits [0]: Statistic Counter Enable (Default 0) 0 – Disable 1 – Enable (all ports) When statistic counter is enable, an interrupt control frame is generated to the CPU, every time a counter wraps around. This feature requires an external CPU. Bits [1]: Rate Control Enable (Default 0) • 0 – Disable • 1 – Enable; Must also set ECR2Pn[3] = 1 This bit enables/disables the rate control for all 10/100 ports. To start rate control in a 10/100 port the rate control memory must be programmed. This feature requires an external CPU. See Programming QoS Registers application note and Processor Interface application note for more information. Bit [2]: Support DS EF Code. (Default 0) • 0 – Disable • 1 – Enable (all ports) When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for 110 and drop is set for 0. Bit [3]: Enable VLAN spanning tree support (Default 0) • 0 – Disable • 1 – Enable When VLAN spanning tree is enable the registers ECR1Pn are NOT used to program the port spanning tree status. The port status is programmed using the Control Command Frame. 102 Zarlink Semiconductor Inc. ZL50418 14.10.4 Bit [4]: Disable IP Multicast Support (Default 1) • 0 – Enable IP Multicast Support • 1 – Disable IP Multicast Support When enable, IGMP packets are identified by search engine and are passed to the CPU for processing. IP multicast packets are forwarded to the IP multicast group members according to the VLAN port mapping table. Bit [5]: Enable report to CPU(Default 0) • 0 – Disable report to CPU • 1 – Enable report to CPU When disable new VLAN port association report, new MAC address report or aging reports are disable for all ports. When enable, register SE_OPEMODE is used to enable/disable selectively each function. Bit [6]: Disable MII Management State Machine (Default 0) • 0: Enable MII Management State Machine • 1: Disable MII Management State Machine Data Sheet MIIC0 – MII Command Register 0 CPU Address:h603 Accessed by CPU and serial interface only (R/W) • Bit [7:0] - MII Data [7:0] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then program MII command. 14.10.5 MIIC1 – MII Command Register 1 CPU Address:h604 Accessed by CPU and serial interface only (R/W) • Bit [7:0] - MII Data [15:8] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 14.10.6 MIIC2 – MII Command Register 2 CPU Address:h605 Accessed by CPU and serial interface only (R/W) 7 6 5 Mii OP 4 0 Register address • Bit [4:0] - REG_AD – Register PHY Address • Bit [6:5] - OP – Operation code “10” for read command and “01” for write command Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 103 Zarlink Semiconductor Inc. ZL50418 14.10.7 Data Sheet MIIC3 – MII Command Register 3 CPU Address:h606 Accessed by CPU and serial interface only (R/W) 7 6 5 Rdy Valid 4 0 PHY address • Bits [4:0] - PHY_AD – 5 Bit PHY Address • Bit [6] - VALID – Data Valid from PHY (Read Only) • Bit [7] - RDY – Data is returned from PHY (Ready Only) Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. Writing this register will initiate a serial management cycle to the MII management interface. 14.10.8 MIID0 – MII Data Register 0 CPU Address:h607 Accessed by CPU and serial interface only (RO) • Bit [7:0] - MII Data [7:0] 14.10.9 MIID1 – MII Data Register 1 CPU Address:h608 Accessed by CPU and serial interface only (RO) • Bit [7:0] - MII Data [15:8] 14.10.10 LED Mode – LED Control CPU Address:h609 Accessed by CPU, serial interface and I2C (R/W) 7 5 4 3 2 Clock rate 1 Hold Time • Bit [0] Reserved(Default 0) • Bit [2:1]: Hold time for LED signal (Default 00) • 00 = 8 msec 01 = 16 msec • 10 = 32 msec 11=64 msec • Bit [4:3]: LED clock frequency (Default 0) • 00 =100 M/8 = 12.5 MHz • 10 = 100 M/32 = 125 MHz • Bit [7:5]: 0 01 = 100 M/16 = 25 MHz 11 = 100 M/64 = 1.5625 MHz Reserved. Must be set to ‘0’ (Default 0) 104 Zarlink Semiconductor Inc. ZL50418 14.10.11 Data Sheet DEVICE Mode CPU Address:h60a Accessed by CPU and serial interface (R/W) Bit [1:0]:Reserved. Must be set to ‘0’ (Default 0) Bit [2]: Support <= 1536 frames 0: <= 1518 bytes (<= 1522 bytes with VLAN tag) (Default) 1: <= 1536 bytes Bit [7:3]:Reserved. Must be set to ‘0’ (Default 0) 14.10.12 CHECKSUM - EEPROM Checksum I2C Address FF, CPU Address:h60b Accessed by CPU, serial interface and I2C (R/W) • Bit [7:0]: (Default 0) This register is used in unmanaged mode only. Before requesting that the ZL50418 updates the EEPROM device, the correct checksum needs to be calculated and written into this checksum register. The checksum formula is FF Σ i2C register = 0 i=0 When the ZL50418 boots from the EEPROM the checksum is calculated and the value must be zero. If the checksum is not zeroed the ZL50418 does not start and pin CHECKSUM_OK is set to zero. 14.11 (Group 7 Address) Port Mirroring Group 14.11.1 MIRROR1_SRC – Port Mirror source port CPU Address 700 Accessed by CPU and serial interface (R/W) (Default 7F) 7 6 5 4 0 I/O Src Port Select • Bit [4:0]: Source port to be mirrored. Use illegal port number to disable mirroring • Bit [5]: 1 – select ingress data 0 – select egress data • Bit [6]: Reserved • Bit [7]: Reserved must be set to '1' 105 Zarlink Semiconductor Inc. ZL50418 14.11.2 Data Sheet MIRROR1_DEST – Port Mirror destination CPU Address 701 Accessed by CPU, serial interface (R/W) (Default 17) 7 5 4 0 Dest Port Select • 14.11.3 Bit [4:0]: Port Mirror Destination When port mirroring is enable, destination port can not serve as a data port. MIRROR2_SRC – Port Mirror source port CPU Address 702 Accessed by CPU, serial interface (R/W) (Default FF) 7 6 5 4 0 I/O Src Port Select • Bit [4:0]: Source port to be mirrored. Use illegal port number to disable mirroring • Bit [5]: 1 – select ingress data 0 – select egress data • Bit [6] Reserved • Bit [7] Reserved must be set to '1' 14.11.4 MIRROR2_DEST – Port Mirror destination CPU Address 703 Accessed by CPU, serial interface (R/W) (Default 00) 7 5 4 0 Dest Port Select • Bit [4:0]: Port Mirror Destination When port mirroring is enable, destination port can not serve as a data port. 106 Zarlink Semiconductor Inc. ZL50418 14.12 14.12.1 Data Sheet Group F Address) CPU Access Group GCR-Global Control Register CPU Address: hF00 Accessed by CPU and serial interface. (R/W) 7 14.12.2 5 4 3 2 1 0 Init Reset Bist SR SC Bit [0]: Store configuration (Default = 0) Write ‘1’ followed by ‘0’ to store configuration into external EEPROM Bit [1]: Store configuration and reset (Default = 0) Write ‘1’ to store configuration into external EEPROM and reset chip Bit [2]: Start BIST (Default = 0) Write ‘1’ followed by ‘0’ to start the device’s built-in self-test. The result is found in the DCR register. Bit [3]: Soft Reset (Default = 0) Write ‘1’ to reset chip Bit [4]: Initialization Done (Default = 0). This bit is meaningless in unmanaged mode. In managed mode, CPU write this bit with ‘1’ to indicate initialization is completed and ready to forward packets. 1 = Initialization is done. 0 = Initialization is not complete. DCR-Device Status and Signature Register CPU Address: hF01 Accessed by CPU and serial interface. (RO) 7 6 Revision 5 4 Signature 3 2 1 0 RE BinP BR BW Bit [0]: 1: Busy writing configuration to I2C 0: Not busy (not writing configuration to I2C) Bit [1]: 1: Busy reading configuration from I2C 0: Not busy (not reading configuration from I2C) Bit [2]: 1: BIST in progress 0: BIST not running Bit [3]: 1: RAM Error 0: RAM OK Bit [5:4]: Device Signature 11: ZL50418 device 107 Zarlink Semiconductor Inc. ZL50418 Bit [7:6]: 14.12.2.1 Data Sheet Revision 00: Initial Silicon 01: XA1 Silicon 10: Production Silicon DCR1-Giga port status CPU Address: hF02 Accessed by CPU and serial interface. (RO) 7 6 4 3 CIC Bit [1:0]: 2 GIGA1 Giga port 0 strap option • • • • 00 – 100 Mb MII mode 01 – Reserved 10 – GMII 11 – PCS Giga port 1 strap option Bit[3:2] Bit [7] • • • • 00 – 100 Mb MII mode 01 – Reserved 10 – GMII 11 – PCS Chip initialization completed 108 Zarlink Semiconductor Inc. 1 GIGA0 0 ZL50418 14.12.3 Data Sheet DPST – Device Port Status Register CPU Address:hF03 Accessed by CPU and serial interface (R/W) Bit[4:0]: Read back index register. This is used for selecting what to read back from DTST. (Default 00) - 14.12.4 5’b00000 - Port 0 Operating mode and Negotiation status 5’b00001 - Port 1 Operating mode and Negotiation status 5’b00010 - Port 2 Operating mode and Negotiation status 5’b00011 - Port 3 Operating mode and Negotiation status 5’b00100 - Port 4 Operating mode and Negotiation status 5’b00101 - Port 5 Operating mode and Negotiation status 5’b00110 - Port 6 Operating mode and Negotiation status 5’b00111 - Port 7 Operating mode and Negotiation status 5’b01000 - Port 8 Operating mode and Negotiation status 5’b01001 - Port 9 Operating mode and Negotiation status 5’b01010 - Port 10 Operating mode and Negotiation status 5’b01011 - Port 11 Operating mode and Negotiation status 5’b01100 - Port 12 Operating mode and Negotiation status 5’b01101 - Port 13 Operating mode and Negotiation status 5’b01110 - Port 14 Operating mode and Negotiation status 5’b01111 - Port 15 Operating mode and Negotiation status 5’b10000 - Reserved 5’b10001 - Reserved 5’b10010 - Reserved 5’b00011 - Reserved 5’b10100 - Reserved 5’b10101 - Reserved 5’b10110 - Reserved 5’b10111 - Reserved 5’b11000 - Port 24 Operating mode/Neg status (CPU port) 5’b11001 - Port 25 Operating mode/Neg status (Gigabit 1) 5’b11010 - Port 26 Operating mode/Neg status (Gigabit 2) DTST – Data read back register CPU Address: hF04 Accessed by CPU and serial interface (RO) This register provides various internal information as selected in DPST bit [4:0]. Refer to the PHY Control Application Note. 7 6 MD 5 Info 4 Sig 3 Giga 2 Inkdn 109 Zarlink Semiconductor Inc. 1 FE 0 Fdpx FcEn ZL50418 Data Sheet When bit is 1: Bit [0] – Flow control enable Bit [1] – Full duplex port Bit [2] – Fast Ethernet port (if not gigabit port) Bit [3] – Link is down Bit [4] – Giga port Bit [5] – Signal detect (when PCS interface mode) Bit [6] - Reserved Bit [7] – Module detected (for hot swap purpose) 14.12.5 PLLCR - PLL Control Register CPU Address: hF05 Accessed by serial interface (RW) Bit [3] - Must be '1' Bit [7] - Selects strap option or LCLK/OECLK registers 0 - Strap option (default) 1 - LCLK/OECLK registers 14.12.6 LCLK - LA_CLK delay from internal OE_CLK CPU Address: hF06 Accessed by serial interface (RW) PD[12:10] LCLK Delay 000b 80h 8 Buffers Delay 001b 40h 7 Buffers Delay 010b 20h 6 Buffers Delay 011b 10h 5 Buffers Delay (Recommend) 100b 08h 4 Buffers Delay 101b 04h 3 Buffers Delay 110b 02h 2 Buffers Delay 111b 01h 1 Buffers Delay The LCLK delay from SCLK is the sum of the delay programmed in here and the delay in OECLK register. 110 Zarlink Semiconductor Inc. ZL50418 14.12.7 Data Sheet OECLK - Internal OE_CLK delay from SCLK CPU Address: hF07 Accessed by serial interface (RW) The OE_CLK is used for generating the OE0 and OE1 signals. PD[15:13] OECLK Delay 000b 80h 8 Buffers Delay 001b 40h 7 Buffers Delay (Recommend) 010b 20h 6 Buffers Delay 011b 10h 5 Buffers Delay 100b 08h 4 Buffers Delay 101b 04h 3 Buffers Delay 110b 02h 2 Buffers Delay 111b 01h 1 Buffers Delay 14.12.8 DA – DA Register CPU Address: hFFF Accessed by CPU and serial interface (RO) Always return 8’h DA. Indicate the CPU interface or serial port connection is good. 14.13 TBI Registers Two sets of TBI registers are used for configure the two Gigabit ports if they are operating in TBI mode. These TBI registers are located inside the switching chip and they are accessed through the MII command and MII data registers. 14.13.1 Control Register MII Address: h00 Read/Write Bit [15] Reset PCS logic and all TBI registers 1 = Reset. 0 = Normal operation. Bit [14] Reserved. Must be programmed with “0”. Bit [13] Speed selection (See bit 6 for complete details) Bit [12] Auto Negotiation Enable 1 = Enable auto-negotiation process. 0 = Disable auto-negotiation process (Default). Bit [11:10] Reserved. Must be programmed with “0” 111 Zarlink Semiconductor Inc. ZL50418 Bit [9] Restart Auto Negotiation. 1 = Restart auto-negotiation process. 0 = Normal operation (Default). Bit [8:7] Reserved. Bit [6] Speed Selection Bit [6][13] 1 1 = Reserved 0 0 = 1000 Mb/s (Default) 0 1 =100 Mb/s 0 0 =10 Mb/s Bit [5:0] Reserved. Must be programmed with “0”. 14.13.2 Status Register MII Address: h01 Read Only Bit [15:9] Reserved. Always read back as “0”. Bit [8] Reserved. Always read back as “1”. Bit [7:6] Reserved. Always read back as “0”. Bit [5] Auto-Negotiation Complete 1 = Auto-negotiation process completed. 0 = Auto-negotiation process not completed. Bit [4] Reserved. Always read back as “0” Bit [3] Reserved. Always read back as “1” Bit [2] Link Status 1 = Link is up. 0 = Link is down. Bit [1] Reserved. Always read back as “0”. Bit [0] Reserved. Always read back as “1”. 112 Zarlink Semiconductor Inc. Data Sheet ZL50418 14.13.3 Advertisement Register MII Address: h04 Read/Write Bit [15] Next Page 1 = Has next page capabilities. 0 = Do not has next page capabilities (Default). Bit [14] Reserved. Always read back as “0”. Read Only. Bit [13:12] Remote Fault. Default is “0”. Bit [11:9] Reserved. Always read back as “0”. Read Only. Bit [8:7] Pause. Default is “00” Bit [6] Half Duplex 1 = Support half duplex (Default). 0 = Do not support half duplex. Bit [5] Full duplex 1 = Support full duplex (Default). 0 = Do not support full duplex. Bit [4:0] Reserved. Always read back as “0”. Read Only. 14.13.4 Link Partner Ability Register MII Address: h05 Read Only Bit [15] Next Page 1 = Has next page capabilities. 0 = Do not has next page capabilities. Bit [14] Acknowledge Bit [13:12] Remote Fault. Bit [11:9] Reserved. Always read back as “0”. Bit [8:7] Pause. Bit [6] Half Duplex 1 = Support half duplex. 0 = Do not support half duplex. Bit [5] Full duplex 1 = Support full duplex. 0 = Do not support full duplex. Bit [4:0] Reserved. Always read back as “0”. 113 Zarlink Semiconductor Inc. Data Sheet ZL50418 14.13.5 Expansion Register MII Address: h06 Read Only 14.13.6 Bit [15:2] Reserved. Always read back as “0”. Bit [1] Page Received. 1 = A new page has been received. 0 = A new page has not been received. Bit [0] Reserved. Always read back as “0”. Extended Status Register MII Address: h15 Read Only Bit [15] 1000 Full Duplex 1 = Support 1000 full duplex operation (Default). 0 = Do not support 1000 full duplex operation. Bit [14] 1000 Half Duplex 1 = Support 1000 half duplex operation (Default). 0 = Do not support 1000 half duplex operation. Bit [13:0] Reserved. Always read back as “0”. 114 Zarlink Semiconductor Inc. Data Sheet ZL50418 15.0 BGA and Ball Signal Descriptions 15.1 BGA Views (TOP Views) 15.1.1 1 2 Data Sheet Encapsulated view in unmanaged mode 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D LA_D OE_ LA_ TRUN RESE RESE SCL 4 7 10 13 15 4 E0_ 8 13 16 19 33 36 39 42 4 5 C L K 0 C L K 0 K 1 RV E D RV E D B LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D LA_D OE_ LA_ LA_D RESE RESE TRUN RESE 1 3 6 9 12 14 DSC_ E1_ 7 12 15 18 32 35 38 41 44 CLK1 CLK1 6 2 RV E D RV E D K 2 RV E D 26 27 28 29 SDA STRO TSTO BE UT7 D0 TSTO TSTO UT8 UT3 C LA_C LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_W T_MO LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D OE_ LA_ LK 0 2 5 8 11 3 E_ E_ DE1 11 14 17 20 34 37 40 43 CLK2 CLK2 D AGN LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_A LA_W LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D SCAN SCAN TSTO TSTO TSTO TSTO TSTO TSTO D 17 19 21 23 25 27 29 31 6 10 E0_ 49 51 53 55 57 59 61 63 47 COL CLK UT14 UT13 UT12 UT10 UT5 UT1 E SCLK LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_A LA_W LA_D LA_D LA_D LA_D LA_D LA_D LA_D RESE LA_D 16 18 20 22 24 26 28 30 5 9 E1_ 48 50 52 54 56 58 6 0 RV E D 4 6 F AV C C R E S I S C A N L B _ D L B _ D N_ EN 63 62 G LB_C RESE LB_D LB_D LB_D LK TOUT 47 61 60 RESE RESE RESE M26_ M26_ RV E D RV E D RV E D R X E R C O L H LB_D LB_D LB_D LB_D LB_D 46 45 44 59 58 RESE RESE RESE RESE RESE RV E D RV E D RV E D RV E D R V E D J LB_D LB_D LB_D LB_D LB_D 43 42 41 57 56 RESE RESE M26_ RESE RESE RV E D RV E D R X D 9 RV E D R V E D K LB_D LB_D LB_D LB_D LB_D 40 39 38 55 54 L LB_D LB_D LB_D LB_D LB_D 37 36 35 53 52 M LB_D LB_D LB_D LB_D LB_D 34 33 32 51 50 VDD VSS VSS VSS VSS VSS VSS VSS VDD N LB_A LB_A LB_A LB_D LB_D VCC 18 19 20 49 48 VDD VSS VSS VSS VSS VSS VSS VSS VDD P LB_A LB_A LB_A LB_W LB_W VCC 15 16 17 E0_ E1_ VSS VSS VSS VSS VSS VSS R LB_A LB_A LB_A LB_A LB_A VCC 10 11 12 13 14 VSS VSS VSS VSS VSS T LB_A LB_A LB_A LB_A LB_A VCC 5 6 7 8 9 VSS VSS VSS VSS U LB_O LB_O T_MO LB_D LB_D VCC E0_ E1_ DE0 31 30 VDD VSS VSS VSS V LB_A LB_O LB_W LB_D LB_D DSC_ E_ E_ 29 28 VDD VSS VSS VSS W LB_D LB_A LB_A LB_D LB_D 15 3 4 27 26 Y LB_D LB_D LB_D LB_D LB_D 14 13 12 25 24 VCC VDD VCC VCC VCC VDD P_D TRUN RESE RESE AUTO TSTO TSTO TSTO TSTO K 0 RV E D RV E D F D U T 1 1 U T 9 U T 4 U T 0 SCAN TSTO M26_ M26_ SCAN TSTO TSTO L I N K U T 1 5 C R S TXER M O D U T 6 U T 2 VCC VDD M26_ M26_ M26_ M26_ M26_ T X C L TXEN M T X - RXDV R X C L VDD M26_ M26_ M26_ M26_ M26_ TX D9 TXD8 RXD6 RXD7 R X D 8 M26_ M26_ M26_ M26_ M26_ TX D4 TXD6 RXD3 RXD4 R X D 5 M26_ M26_ M26_ M26_ M26_ TX D7 TXD5 RXD0 RXD1 R X D 2 VCC M26_ M26_ TX D2 TXD3 GREF _CLK VSS VCC M26_ M26_ TX D0 TXD1 MDIO GREF _CLK VSS VSS VCC M25_ M25_ C R S TXER MDC M_CL K VSS VSS VSS VCC M25_ M25_ M25_ M25_ M25_ T X C L TXEN M T X - RXDV R X C L VSS VSS VSS VSS VDD VCC RESE RESE RESE M25_ M25_ RV E D RV E D RV E D R X E R C O L VSS VSS VSS VSS VDD RESE RESE RESE RESE RESE RV E D RV E D RV E D RV E D R V E D RESE RESE M25_ RESE RESE RV E D RV E D R X D 9 RV E D R V E D VDD VDD VDD VDD M25_ M25_ M25_ M25_ M25_ RXD6 TXD9 TX D 8 RXD7 R X D 8 AA LB_D LB_D LB_D LB_D LB_D 11 10 9 23 22 M25_ M25_ M25_ M25_ M25_ TX D6 TXD7 RXD3 RXD4 R X D 5 AB LB_D LB_D LB_D LB_D LB_D 8 7 6 21 20 M25_ M25_ M25_ M25_ M25_ TX D4 TXD5 RXD0 RXD1 R X D 2 AC LB_D LB_D LB_D LB_D LB_D 5 4 3 19 18 M25_ M25_ RESE RESE RESE T X D 2 T X D 3 RV E D RV E D R V E D AD LB_D LB_D LB_D LB_D LB_D 2 1 0 17 16 VCC VCC VCC VCC VCC M25_ M25_ RESE RESE RESE T X D 0 T X D 1 RV E D RV E D R V E D AE M0_T M0_T M0_T M3_T M3_T M3_R M5_T M5_T M5_R M8_T M8_T M8_R M10_ M10_ M10_ M13_ RESE M15_ RESE M15_ M15_ RESE RESE RESE RESE RESE RESE RESE X E N X D 0 X D 1 X D 1 X E N X D 0 X D 1 X E N X D 0 X D 1 X E N X D 0 T X D 1 T X E N R X D 0 T X D 1 RV E D T X D 1 RV E D T X E N R X D 0 RV E D RV E D RV E D RV E D RV E D RV E D RV E D AF M0_R M0_R M0_C M3_T M3_C M3_R M5_T M5_C M5_R M8_T M8_C M8_R M10_ M10_ M10_ M13_ M13_ M13_ M14_ RESE M15_ RESE RESE RESE RESE RESE RESE RESE RESE XD1 XD0 RS XD0 RS XD1 XD0 RS XD1 XD0 RS X D 1 T X D 0 C R S R X D 1 T X D 0 C R S R X D 1 C R S R V E D R X D 1 RV E D RV E D RV E D RV E D RV E D RV E D RV E D R V E D AG M1_T M1_T M1_T M2_T M2_C M4_T M4_C M6_T M6_C M7_T M7_C M9_T M9_C M11_ M11_ M12_ M12_ M14_ M15_ RESE RESE RESE RESE RESE RESE RESE RESE RESE RESE XEN XD0 XD1 XD1 RS XD1 RS XD1 RS XD1 RS XD1 R S T X D 1 C R S T X D 1 C R S T X D 1 T X D 0 R V E D RV E D RV E D RV E D RV E D RV E D RV E D RV E D RV E D R V E D AH M1_R M1_C M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ M13_ M15_ RESE RESE RESE RESE RESE RESE RESE XD0 RS X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 T X D 0 R X D 0 T X D 0 R X D 0 T X D 0 R X D 0 R X D 0 C R S RV E D RV E D RV E D RV E D RV E D RV E D RV E D AJ M1_R M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ RESE M13_ RESE RESE RESE RESE RESE RESE X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 T X E N R X D 1 T X E N R X D 1 T X E N R X D 1 R V E D T X E N RV E D RV E D RV E D RV E D RV E D RV E D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 115 Zarlink Semiconductor Inc. 18 19 20 21 22 23 24 25 26 27 28 29 ZL50418 15.1.2 1 Encapsulated view in managed mode 2 4 LA_D 7 LA_D 6 LA_D 5 LA_D 21 LA_D 20 5 LA_D 10 LA_D 9 LA_D 8 LA_D 23 LA_D 22 RESI SCAN LB_D F AVCC N_ EN 63 LB_C RESE LB_D LB_D TOUT 47 G LK 61 _ LB_D LB_D LB_D LB_D H 46 45 44 59 LB_D LB_D LB_D LB_D J 43 42 41 57 LB_D LB_D LB_D LB_D K 40 39 38 55 LB_D LB_D LB_D L LB_D 37 36 35 53 LB_D LB_D LB_D LB_D M 34 33 32 51 LB_A LB_A LB_A LB_D N 18 19 20 49 LB_D 62 A LA_D 1 LA_C LA_D C LK 0 LA_D D AGND 17 LA_D E SCLK 16 B 3 LA_D 4 LA_D 3 LA_D 2 LA_D 19 LA_D 18 6 LA_D 13 LA_D 12 LA_D 11 LA_D 25 LA_D 24 LB_D 60 LB_D 58 LB_D 56 LB_D 54 LB_D 52 LB_D 50 LB_D VCC 48 LB_A LB_A LB_A LB_W LB_W VCC P 15 16 17 E0_ E1_ LB_A LB_A LB_A LB_A LB_A VCC R 10 11 12 13 14 LB_A LB_A LB_A LB_A LB_A VCC T 5 6 7 8 9 LB_O LB_O T_MO LB_D LB_D VCC U E0_ E1_ DE0 31 30 LB_A LB_O LB_W LB_D LB_D V DSC_ E_ E_ 29 28 LB_D LB_A LB_A LB_D LB_D W 15 3 4 27 26 LB_D Y 14 LB_D AA 11 LB_D AB 8 Data Sheet LB_D 13 LB_D 10 LB_D 7 LB_D 12 LB_D 9 LB_D 6 LB_D LB_D LB_D 4 3 AC 5 LB_D LB_D LB_D 1 0 AD2 LB_D 25 LB_D 23 LB_D 21 LB_D 24 LB_D 22 LB_D 20 7 LA_D 15 LA_D 14 LA_A 3 LA_D 27 LA_D 26 8 9 10 11 LA_A LA_O LA_A LA_A 4 E0_ 8 13 LA_A LA_O LA_A LA_A DSC_ E1_ 7 12 LA_O LA_W T_MO LA_A E_ E_ DE1 11 LA_D LA_D LA_A LA_A 29 31 6 10 LA_D LA_D LA_A LA_A 28 30 5 9 12 13 LA_A LA_A 16 19 LA_A LA_A 15 18 LA_A LA_A 14 17 LA_W LA_D E0_ 49 LA_W LA_D E1_ 48 14 LA_D 33 LA_D 32 LA_A 20 LA_D 51 LA_D 50 15 LA_D 36 LA_D 35 LA_D 34 LA_D 53 LA_D 52 16 LA_D 39 LA_D 38 LA_D 37 LA_D 55 LA_D 54 17 LA_D 42 LA_D 41 LA_D 40 LA_D 57 LA_D 56 VCC VCC VCC VCC VCC VDD VDD 19 20 21 22 23 24 25 26 27 28 29 P_DA P_DA P_DA P_DA P_DA P_A0 P_A1 P_WETSTO TA13 TA10 TA7 TA4 TA1 UT7 P_DA P_DA LA_D P_DA P_DA P_DA P_INTP_RD TSTO TSTO TA14 TA11 62 TA5 TA2 TA6 UT8 UT3 P_DA P_DA P_DA P_A2 P_DA P_DA P_CS TSTO TSTO TSTO TSTO TA15 TA12 TA9 TA3 TA0 UT11 UT9 UT4 UT0 LA_D LA_D LA_D SCAN SCAN TSTO TSTO TSTO TSTO TSTO TSTO 61 63 47 COL CLK UT14 UT13 UT12 UT10 UT5 UT1 LA_D P_DA LA_D SCAN TSTO M26_ M26_ SCAN TSTO TSTO 60 TA8 46 LINK UT15 CRS TXER MOD UT6 UT2 E M26_ M26_ M26_ M26_ M26_ TXCL TXEN MTXCRXDV RXCL K LK K VDD VDD VDD VSS VSS VSS VSS VSS VSS VSS VDD VDD VSS VSS VSS VSS VSS VSS VSS VDD VCC VSS VSS VSS VSS VSS VSS VSS VCC VSS VSS VSS VSS VSS VSS VSS VCC VSS VSS VSS VSS VSS VSS VSS VCC VDD VSS VSS VSS VSS VSS VSS VSS VDD VDD VSS VSS VSS VSS VSS VSS VSS VDD VDD VDD VDD VDD LB_D LB_D 19 18 LB_D LB_D 17 16 18 LA_D 45 LA_D 44 LA_D 43 LA_D 59 LA_D 58 VCC RESE RESE RESE M26_ M26_ RVED RVED RVED RXER COL RESE RESE RESE RESE RESE RVED RVED RVED RVED RVED RESE RESE M26_ RESE RESE RVED RVED RXD9 RVED RVED M26_ M26_ M26_ M26_ M26_ TXD9 TXD8 RXD6 RXD7 RXD8 M26_ M26_ M26_ M26_ M26_ TXD4 TXD6 RXD3 RXD4 RXD5 M26_ M26_ M26_ M26_ M26_ TXD7 TXD5 RXD0 RXD1 RXD2 GREF M26_ M26_ _CLK TXD2 TXD3 1 GREF M26_ M26_ MDIO _CLK TXD0 TXD1 0 M25_ M25_ MDC M_CL CRS TXER K M25_ M25_ M25_ M25_ M25_ TXCL TXEN MTXCRXDV RXCL K LK K RESE RESE RESE M25_ M25_ RVED RVED RVED RXER COL RESE RESE RESE RESE RESE RVED RVED RVED RVED RVED RESE RESE M25_ RESE RESE RVED RVED RXD9 RVED RVED M25_ M25_ M25_ M25_ M25_ RXD6 TXD9 TXD8 RXD7 RXD8 M25_ M25_ M25_ M25_ M25_ TXD6 TXD7 RXD3 RXD4 RXD5 M25_ M25_ M25_ M25_ M25_ TXD4 TXD5 RXD0 RXD1 RXD2 M25_ M25_ RESE RESE RESE TXD2 TXD3 RVED RVED RVED VCC VCC VCC VCC VCC M25_ M25_ RESE RESE RESE TXD0 TXD1 RVED RVED RVED M0_T M0_T M0_T M3_T M3_T M3_R M5_T M5_T M5_R M8_T M8_T M8_R M10_ M10_ M10_ M13_ RESE M15_ RESE M15_ M15_ RESE RESE RESE RESE RESE RESE RESE XD0 XD1 XD1 XEN XD0 XD1 XEN XD0 XD1 XEN XD0 TXD1 TXEN RXD0 TXD1 RVED TXD1 RVED TXEN RXD0 RVED RVED RVED RVED RVED RVED RVED AE XEN M0_R M0_R M0_C M3_T M3_C M3_R M5_T M5_C M5_R M8_T M8_C M8_R M10_ M10_ M10_ M13_ M13_ M13_ M14_ RESE M15_ RESE RESE RESE RESE RESE RESE RESE RESE XD0 RS XD0 RS XD1 XD0 RS XD1 XD0 RS XD1 TXD0 CRS RXD1 TXD0 CRS RXD1 CRS RVED RXD1 RVED RVED RVED RVED RVED RVED RVED RVED AF XD1 M1_T M1_T M1_T M2_T M2_C M4_T M4_C M6_T M6_C M7_T M7_C M9_T M9_C M11_ M11_ M12_ M12_ M14_ M15_ RESE RESE RESE RESE RESE RESE RESE RESE RESE RESE XD0 XD1 XD1 RS XD1 RS XD1 RS XD1 RS XD1 RS TXD1 CRS TXD1 CRS TXD1 TXD0 RVED RVED RVED RVED RVED RVED RVED RVED RVED RVED AGXEN M1_R M1_C M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ M13_ M15_ RESE RESE RESE RESE RESE RESE RESE XD0 RS XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 TXD0 RXD0 TXD0 RXD0 TXD0 RXD0 RXD0 CRS RVED RVED RVED RVED RVED RVED RVED AH AJ 1 2 M1_R M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ RESE M13_ RESE RESE RESE RESE RESE RESE XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 TXEN RXD1 TXEN RXD1 TXEN RXD1 RVED TXEN RVED RVED RVED RVED RVED RVED 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 116 Zarlink Semiconductor Inc. 29 ZL50418 15.2 Data Sheet Ball – Signal Descriptions in Managed Mode All pins are CMOS type; all Input Pins are 5 Volt tolerance; and all Output Pins are 3.3 CMOS drive. 15.2.1 Ball Signal Descriptions in Managed Mode Ball No(s) Symbol I/O Description CPU BUS Interface in Managed Mode C19, B19, A19, C20, B20, A20, C21, E20, A21, B24, B22, A22, C23, B23, A23, C24 P_DATA[15:0] I/O-TS with pull up Except P_DATA[7:6] I/O-TS with pull down Processor Bus Data Bit [15:0]. P_DATA[7:0] is used in 8-bit mode. C22, A24, A25 P_A[2:0] Input Processor Bus Address Bit [2:0] A26 P_WE# Input with weak internal pull up CPU Bus-Write Enable B26 P_RD# Input with weak internal pull up CPU Bus-Read Enable C25 P_CS# Input with weak internal pull up Chip Select B25 P_INT# Output CPU Interrupt D20, B21, D19, E19,D18, E18, D17, E17, D16, E16, D15, E15, D14, E14, D13, E13, D21, E21, A18, B18, C18, A17, B17, C17, A16, B16, C16, A15, B15, C15, A14, B14, D9, E9, D8, E8, D7, E7, D6, E6, D5, E5, D4, E4, D3, E3, D2, E2, A7, B7, A6, B6, C6, A5, B5, C5, A4, B4, C4, A3, B3, C3, B2, C2 LA_D[63:0] I/O-TS with pullup Frame Bank A– Data Bit [63:0] C14, A13, B13, C13, A12, B12, C12, A11, B11, C11, D11, E11, A10, B10, D10, E10, A8, C7 LA_A[20:3] Output Frame Bank A – Address Bit [20:3] B8 LA_ADSC# Output with pull up Frame Bank A Address Status Control C1 LA_CLK Output Frame Bank A Clock Input C9 LA_WE# Output with pull up Frame Bank A Write Chip Select for one layer SRAM configuration D12 LA_WE0# Output with pull up Frame Bank A Write Chip Select for lower layer of two layers SRAM configuration Frame Buffer Interface 117 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol I/O Data Sheet Description E12 LA_WE1# Output with pull up Frame Bank A Write Chip Select for upper layer of two layers SRAM configuration C8 LA_OE# Output with pull up Frame Bank A Read Chip Select for one bank SRAM configuration A9 LA_OE0# Output with pull up Frame Bank A Read Chip Select for lower layer of two layers SRAM configuration B9 LA_OE1# Output with pull up Frame Bank A Read Chip Select for upper layer of two layers SRAM configuration F4, F5, G4, G5, H4, H5, J4, J5, K4, K5, L4, L5, M4, M5, N4, N5, G3, H1, H2, H3, J1, J2, J3, K1, K2, K3, L1, L2, L3, M1, M2, M3, U4, U5, V4, V5, W4, W5, Y4, Y5, AA4, AA5, AB4, AB5, AC4, AC5, AD4, AD5, W1, Y1, Y2, Y3, AA1, AA2, AA3, AB1, AB2, AB3, AC1, AC2, AC3, AD1, AD2, AD3 LB_D[63:0] I/O-TS with pullup. Frame Bank B– Data Bit [63:0] N3, N2, N1, P3, P2, P1, R5, R4, R3, R2, R1, T5, T4, T3, T2, T1, W3, W2 LB_A[20:3] Output Frame Bank B – Address Bit [20:3] V1 LB_ADSC# Output with pull up Frame Bank B Address Status Control G1 LB_CLK Output with pull up Frame Bank B Clock Input V3 LB_WE# Output with pull up Frame Bank B Write Chip Select for one layer SRAM configuration P4 LB_WE0# Output with pull up Frame Bank B Write Chip Select for lower layer of two layer SRAM configuration P5 LB_WE1# Output with pull up Frame Bank B Write Chip Select for upper layer of two layers SRAM configuration V2 LB_OE# Output with pull up Frame Bank B Read Chip Select for one layer SRAM configuration U1 LB_OE0# Output with pull up Frame Bank B Read Chip Select for lower layer of two layers SRAM configuration U2 LB_OE1# Output with pull up Frame Bank B Read Chip Select for upper layer of two layers SRAM configuration 118 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol I/O Data Sheet Description Fast Ethernet Access Ports [15:0] RMII R28 M_MDC Output MII Management Data Clock – (Common for all MII Ports [15:0]) P28 M_MDIO I/O-TS with pull up MII Management Data I/O – (Common for all MII Ports –[15:0])) R29 M_CLKI Input Reference Input Clock AF21, AJ19, AF18, AJ17, AJ15, AF15, AJ13, AF12, AJ11, AJ9, AF9, AJ7, AF6, AJ5, AJ3, AF1 M[15:0]_RXD[1] Input with weak internal pull up resistors. Ports [15:0] – Receive Data Bit [1] AE21, AH19, AH20, AH17, AH15, AE15, AH13, AE12, AH11, AH9, AE9, AH7, AE6, AH5, AH2, AF2 M[15:0]_RXD[0] Input with weak internal pull up resistors Ports [15:0] – Receive Data Bit [0] AH21, AF19, AF17, AG17, AG15, AF14, AG13, AF11, AG11, AG9, AF8, AG7, AF5, AG5, AH3, AF3 M[15:0]_CRS_ DV Input with weak internal pull down resistors. Ports [15:0] – Carrier Sense and Receive Data Valid AJ18, AJ21, AJ16, AJ14, AE14, AJ12, AE11, AJ10, AJ8, AE8, AJ6, AE5, AJ4, AG1, AE1 M[15:0]_TXEN I/O- TS with pull up, slew Ports [15:0] – Transmit Enable Strap option for RMII/GPSI AE18, AG18, AE16, AG16, AG14, AE13, AG12, AE10, AG10, AG8, AE7, AG6, AE4, AG4, AG3, AE3 M[15:0]_TXD[1] Output, slew Ports [15:0] – Transmit Data Bit [1] AG19, AH18, AF16, AH16, AH14, AF13, AH12, AF10, AH10, AH8, AF7, AH6, AF4, AH4, AG2, AE2 M[15:0]_TXD[0] Output, slew Ports [15:0] – Transmit Data Bit [0] GMII/TBI GiGabit Ethernet Access Ports 0 & 1 Y27, Y26, AA26, AA25, AB26, AB25, AC26, AC25, AD26, AD25 M25_TXD[9:0] Output Transmit Data Bit [9:0] T28 M25_RX_DV Input w/ pull down Receive Data Valid U28 M25_RX_ER Input w/ pull up Receive Error R25 M25_CRS Input w/ pull down Carrier Sense U29 M25_COL Input w/ pull up Collision Detected T29 M25_RXCLK Input w/ pull up Receive Clock 119 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol I/O Data Sheet Description W27, Y29, Y28, Y25, AA29, AA28, AA27, AB29, AB28, AB27 M25_RXD[9:0] Input w/ pull up Receive Data Bit [9:0] T26 M25_TX_EN Output w/ pull up Transmit Data Enable R26 M25_TX_ER Output w/ pull up Transmit Error T27 M25_ MTXCLK Input w/ pull down MII Mode Transmit Clock T25 M25_ TXCLK Output Gigabit Transmit Clock P29 GREF_CLK0 Input w/ pull up Gigabit Reference Clock K25, K26, M25, L26, M26, L25, N26, N25, P26, P25 M26_TXD[9:0] Output Transmit Data Bit [9:0] F28 M26_RX_DV Input w/ pull down Receive Data Valid G28 M26_RX_ER Input w/ pull up Receive Error E25 M26_CRS Input w/ pull down Carrier Sense G29 M26_COL Input w/ pull up Collision Detected F29 M26_RXCLK Input w/ pull up Receive Clock J27, K29, K28, K27, L29, L28, L27, M29, M28, M27 M26_RXD[9:0] Input w/ pull up Receive Data Bit [9:0] F26 M26_TX_EN Output w/ pull up Transmit Data Enable E26 M26_TX_ER Output w/ pull up Transmit Error F27 M26_ MTXCLK Input w/ pull down MII Mode Transmit Clock F25 M26_ TXCLK Output Gigabit Transmit Clock N29 GREF_CLK1 Input w/ pull up Gigabit Reference Clock C29 LED_CLK/TST OUT0 I/O- TS with pull up LED Serial Interface Output Clock D29 LED_SYN/TST OUT1 I/O- TS with pull up LED Output Data Stream Envelope E29 LED_BIT/TSTO UT2 I/O- TS with pull up LED Serial Data Output Stream B28 G1_RXTX#/TS TOUT3 I/O- TS with pull up LED for Gigabit port 1 (receive + transmit) C28 G1_DPCOL#/T STOUT4 I/O- TS with pull up LED for Gigabit port 1 (full duplex + collision) D28 G1_LINK#/TST OUT5 I/O- TS with pull up LED for Gigabit port 1 LED Interface 120 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol Data Sheet I/O Description E28 G2_RXTX#/TS TOUT6 I/O- TS with pull up LED for Gigabit port 2 (receive + transmit) A27 G2_DPCOL#/T STOUT7 I/O- TS with pull up LED for Gigabit port 2 (full duplex + collision) B27 G2_LINK#/TST OUT8 I/O- TS with pull up LED for Gigabit port 2 C27 INIT_DONE/TS TOUT9 I/O- TS with pull up System start operation D27 INIT_START/TS TOUT10 I/O- TS with pull up Start initialization C26 CHECKSUM_O K/TSTOUT11 I/O- TS with pull up EEPROM read OK D26 FCB_ERR/TST OUT12 I/O- TS with pull up FCB memory self test fail D25 MCT_ERR/TST OUT13 I/O- TS with pull up MCT memory self test fail D24 BIST_IN_PRC/ TSTOUT14 I/O- TS with pull up Processing memory self test E24 BIST_DONE/TS TOUT15 I/O- TS with pull up Memory self test done T_MODE0, T_MODE1 I/O-TS Test Pins 00 – Test mode – Set Mode upon Reset, and provides NAND Tree test output during test mode 01 - Reserved - Do not use 10 - Reserved - Do not use 11 – Normal mode. Use external pull up for normal mode Test Facility U3, C10 Ball No(s) Symbol I/O Description F3 SCAN_EN Input with pull down Scan Enable E27 SCANMODE Input with pull down 1 – Enable Test mode 0 - Normal mode (open) 121 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol Data Sheet I/O Description System Clock, Power, and Ground Pins E1 SCLK Input System Clock at 100 MHz K12, K13, K17,K18 M10, N10, M20, N20, U10, V10, U20, V20, Y12, Y13, Y17, Y18 VDD Power +2.5 Volt DC Supply F13, F14, F15, F16, F17, N6, P6, R6, T6, U6, N24, P24, R24, T24, U24, AD13, AD14, AD15, AD16, AD17 VCC Power +3.3 Volt DC Supply M12, M13, M14, M15, M16, M17, M18, N12, N13, N14, N15, N16, N17, N18, P12, P13, P14, P15, P16, P17, P18, R12, R13, R14, R15, R16, R17, R18, T12, T13, T14, T15, T16, T17, T18, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V18, VSS Power Ground Ground F1 AVCC Analog Power Analog +2.5 Volt DC Supply D1 AGND Analog Ground Analog Ground D22 SCANCOL Input/ output Scans the Collision signal of Home PHY D23 SCANCLK Output Clock for scanning Home PHY collision and link E23 SCANLINK Input/ output Link up signal from Home PHY F2 RESIN# Input Reset Input G2 RESETOUT# Output Reset PHY MISC 122 Zarlink Semiconductor Inc. ZL50418 Ball No(s) AC29, AE28, AJ27, AF27, AJ25, AF24, AH23, AE19, AC27, AF29, AG27, AF26, AG25, AG23, AF23, AG21, AC28, AF28, AH27, AE27, AH25, AE24, AF22, AF20, AD29, AG28, AJ26, AE26, AJ24, AE23, AJ22, AJ20, AD27, AH28, AG26, AE25, AG24, AE22, AJ23, AG20, AD28, AG29, AH26, AF25, AH24, AG22, AH22, AE17, G27, H29, H28, H27, J29, J28, U26, U25, V26, V25, W26, W25, G26, G25, H26, H25, J26, J25, U27, V29, V28, V27, W29, W28 Symbol Data Sheet I/O RESERVED NA Description Reserved Pins. Leave unconnected. Bootstrap Pins (Default = pull up, 1= pull up 0= pull down) After reset TSTOUT0 to TSTOU15 are used by the LED interface. C29 TSTOUT0 Default 1 GIGA Link polarity 0 – active low 1 – active high D29 TSTOUT1 Default 1 RMII MAC Power Saving Enable 0 – No power saving 1 – power saving E29 TSTOUT2 Default 1 Recommend disable (0) with pull-down Giga Half Duplex Support 0 - Disable 1 - Enable B28 TSTOUT3 Default 1 Module detect enable 0 – Hot swap enable 1 – Hot swap disable C28 TSTOUT4 D28 TSTOUT5 Default 1 Scan Speed: ¼ SCLK or SCLK 0 – ¼ SCLK (HPNA) 1 - SCLK E28 TSTOUT6 Default 1 CPU Port Mode 0 - 8 bit Bus Mode 1 - 16 bit Bus Mode Reserved 123 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol Data Sheet I/O Description A27 TSTOUT7 Default 1 Memory Size 0 - 256 K x 32 or 256 K x 64 (4 M total) 1 - 128 K x 32 or 128 K x 64 (2 M total) B27 TSTOUT8 Default 1 EEPROM Installed 0 – EEPROM installed 1 – EEPROM not installed C27 TSTOUT9 Default 1 MCT Aging 0 – MCT aging disable 1 – MCT aging enable D27 TSTOUT10 Default 1 FCB Aging 0 - FCB aging disable 1 – FCB aging enable C26 TSTOUT11 Default 1 Timeout Reset 0 - Timeout reset disable 1 - Timeout reset enable. Issue reset if any state machine did not go back to idle for 5 secs. D26 TSTOUT12 D25 TSTOUT13 Default 1 FDB RAM depth (1 or 2 layers) 0 – 2 layer 1 – 1 layer D24 TSTOUT14 Default 1 CPU installed 0 – CPU installed 1 – CPU not installed E24 TSTOUT15 Default 1 SRAM Test Mode 0 – Enable test mode 1 – Normal operation T26, R26 G0_TXEN, G0_TXER Default: PCS Giga0 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS Reserved 124 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol Data Sheet I/O Description F26, E26 G1_TXEN, G1_TXER Default: PCS Giga1 Mode: G1_TXEN G1_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS AE20, AJ18, AJ21, AJ16, AJ14, AE14, AJ12, AE11, AJ10, AJ8, AE8, AJ6, AE5, AJ4, AG1, AE1 M[15:0] TXEN Default: RMII 0 – GPSI 1 – RMII C21 P_D[9] Must be pulled-down Reserved - Must be pulled-down C19, B19, A19 P_D[15:13] Default: 111 Programmable delay for internal OE_CLK from SCLK input. The OE_CLK is used for generating the OE0 and OE1 signals Suggested value is 001. C20, B20, A20 P_D[12:10] Default: 111 Programmable delay for LA_CLK and LB_CLK from internal OE_CLK . The LA_CLK and LB_CLK delay from SCLK is the sum of the delay programmed in here and the delay in P_D[15:13]. Suggested value is 011. Notes: # =Active low signal Input =Input signal In-ST = Input signal with Schmitt-Trigger Output =Output signal (Tri-State driver) Out-OD=Output signal with Open-Drain driver I/O-TS = Input & Output signal with Tri-State driver I/O-OD =Input & Output signal with Open-Drain driver 125 Zarlink Semiconductor Inc. ZL50418 15.2.2 Data Sheet Ball – Signal Descriptions in Unmanaged Mode Ball No(s) Symbol I/O Description I2C Interface Note: In unmanaged mode, Use I2C and Serial control interface to configure the system A24 SCL Output I2C Data Clock A25 SDA I/O-TS with internal pull up I2C Data I/O A26 STROBE Input with weak internal pull up Serial Strobe Pin B26 D0 Input with weak internal pull up Serial Data Input C25 AUTOFD Output with pull up Serial Data Output (AutoFD) D20, B21, D19, E19,D18, E18, D17, E17, D16, E16, D15, E15, D14, E14, D13, E13, D21, E21, A18, B18, C18, A17, B17, C17, A16, B16, C16, A15, B15, C15, A14, B14, D9, E9, D8, E8, D7, E7, D6, E6, D5, E5, D4, E4, D3, E3, D2, E2, A7, B7, A6, B6, C6, A5, B5, C5, A4, B4, C4, A3, B3, C3, B2, C2 LA_D[63:0] I/O-TS with pull up Frame Bank A– Data Bit [63:0] C14, A13, B13, C13, A12, B12, C12, A11, B11, C11, D11, E11, A10, B10, D10, E10, A8, C7 LA_A[20:3] Output Frame Bank A – Address Bit [20:3] B8 LA_ADSC# Output with pull up Frame Bank A Address Status Control C1 LA_CLK Output with pull up Frame Bank A Clock Input C9 LA_WE# Output with pull up Frame Bank A Write Chip Select for one layer SRAM application D12 LA_WE0# Output with pull up Frame Bank A Write Chip Select for lower layer of two bank SRAM application E12 LA_WE1# Output with pull up Frame Bank A Write Chip Select for upper bank of two layer SRAM application C8 LA_OE# Output with pull up Frame Bank A Read Chip Select for one layer SRAM application Serial Control Interface Frame Buffer Interface 126 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol I/O Data Sheet Description A9 LA_OE0# Output with pull up Frame Bank A Read Chip Select for lower layer of two layers SRAM application B9 LA_OE1# Output with pull up Frame Bank A Read Chip Select for upper layer of two layers SRAM application F4, F5, G4, G5, H4, H5, J4, J5, K4, K5, L4, L5, M4, M5, N4, N5, G3, H1, H2, H3, J1, J2, J3, K1, K2, K3, L1, L2, L3, M1, M2, M3, U4, U5, V4, V5, W4, W5, Y4, Y5, AA4, AA5, AB4, AB5, AC4, AC5, AD4, AD5, W1, Y1, Y2, Y3, AA1, AA2, AA3, AB1, AB2, AB3, AC1, AC2, AC3, AD1, AD2, AD3 LB_D[63:0] I/O-TS with pull up. Frame Bank B– Data Bit [63:0] N3, N2, N1, P3, P2, P1, R5, R4, R3, R2, R1, T5, T4, T3, T2, T1, W3, W2 LB_A[20:3] Output Frame Bank B – Address Bit [20:3] V1 LB_ADSC# Output with pull up Frame Bank B Address Status Control G1 LB_CLK Output with pull up Frame Bank B Clock Input V3 LB_WE# Output with pull up Frame Bank B Write Chip Select for one layer SRAM application P4 LB_WE0# Output with pull up Frame Bank B Write Chip Select for lower layer of two layers SRAM application P5 LB_WE1# Output with pull up Frame Bank B Write Chip Select for upper layer of two layers SRAM application V2 LB_OE# Output with pull up Frame Bank B Read Chip Select for one layer SRAM application U1 LB_OE0# Output with pull up Frame Bank B Read Chip Select for lower layer of two layers SRAM application U2 LB_OE1# Output with pull up Frame Bank B Read Chip Select for upper layer of two layers SRAM application Fast Ethernet Access Ports [15:0] RMII R28 M_MDC Output MII Management Data Clock – (Common for all MII Ports [15:0]) P28 M_MDIO I/O-TS with pull up MII Management Data I/O – (Common for all MII Ports –[15:0]) 127 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol I/O Data Sheet Description R29 M_CLKI Input Reference Input Clock AF21, AJ19, AF18, AJ17, AJ15, AF15, AJ13, AF12, AJ11, AJ9, AF9, AJ7, AF6, AJ5, AJ3, AF1 M[15:0]_RXD[1] Input with weak internal pull up resistors. Ports [15:0] – Receive Data Bit [1] AE21, AH19, AH20, AH17, AH15, AE15, AH13, AE12, AH11, AH9, AE9, AH7, AE6, AH5, AH2, AF2 M[15:0]_RXD[0] Input with weak internal pull up resistors Ports [15:0] – Receive Data Bit [0] AH21, AF19, AF17, AG17, AG15, AF14, AG13, AF11, AG11, AG9, AF8, AG7, AF5, AG5, AH3, AF3 M[15:0]_CRS_DV Input with weak internal pull down resistors. Ports [15:0] – Carrier Sense and Receive Data Valid AE20, AJ18, AJ21, AJ16, AJ14, AE14, AJ12, AE11, AJ10, AJ8, AE8, AJ6, AE5, AJ4, AG1, AE1 M[15:0]_TXEN I/O- TS with pull up, slew Ports [15:0] – Transmit Enable Strap option for RMII/GPSI AE18, AG18, AE16, AG16, AG14, AE13, AG12, AE10, AG10, AG8, AE7, AG6, AE4, AG4, AG3, AE3 M[15:0]_TXD[1] Output, slew Ports [15:0] – Transmit Data Bit [1] AG19, AH18, AF16, AH16, AH14, AF13, AH12, AF10, AH10, AH8, AF7, AH6, AF4, AH4, AG2, AE2 M[15:0]_TXD[0] Output, slew Ports [15:0] – Transmit Data Bit [0] GMII/TBI GiGabit Ethernet Access Ports 0 & 1 Y27, Y26, AA26, AA25, AB26, AB25, AC26, AC25, AD26, AD25 M25_TXD[9:0] Output Transmit Data Bit [9:0] T28 M25_RX_DV Input w/ pulldown Receive Data Valid U28 M25_RX_ER Input w/ pullup Receive Error R25 M25_CRS Input w/ pulldown Carrier Sense U29 M25_COL Input w/ pullup Collision Detected T29 M25_RXCLK Input w/ pullup Receive Clock W27, Y29, Y28, Y25, AA29, AA28, AA27, AB29, AB28, AB27 M25_RXD[9:0] Input w/ pullup Receive Data Bit [9:0] T26 M25_TX_EN Output w/ pullup Transmit Data Enable R26 M25_TX_ER Output w/ pullup Transmit Error T25 M25_ TXCLK Output Gigabit Transmit Clock 128 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol I/O Data Sheet Description P29 GREF_CLK0 Input w/ pullup Gigabit Reference Clock K25, K26, M25, L26, M26, L25, N26, N25, P26, P25 M26_TXD[9:0] Output Transmit Data Bit [9:0] F28 M26_RX_DV Input w/ pulldown Receive Data Valid G28 M26_RX_ER Input w/ pullup Receive Error E25 M26_CRS Input w/ pulldown Carrier Sense G29 M26_COL Input w/ pullup Collision Detected F29 M26_RXCLK Input w/ pullup Receive Clock J27, K29, K29, K28, K27, L29, L28, L27, M29, M28, M27 M26_RXD[9:0] Input w/ pullup Receive Data Bit [9:0] F26 M26_TX_EN Output w/ pullup Transmit Data Enable E26 M26_TX_ER Output w/ pullup Transmit Error F25 M26_ TXCLK Output Gigabit Transmit Clock N29 GREF_CLK1 Input w/ pullup Gigabit Reference Clock C29 LED_CLK/TSTOUT 0 I/O- TS with pull up LED Serial Interface Output Clock D29 LED_SYN/TSTOUT 1 I/O- TS with pull up LED Output Data Stream Envelope E29 LED_BIT/TSTOUT2 I/O- TS with pull up LED Serial Data Output Stream B28 G1_RXTX#/TSTOU T3 I/O- TS with pull up LED for Gigabit port 1 (receive + transmit) C28 G1_DPCOL#/TSTO UT4 I/O- TS with pull up LED for Gigabit port 1 (full duplex + collision) D28 G1_LINK#/TSTOUT 5 I/O- TS with pull up LED for Gigabit port 1 E28 G2_RXTX#/TSTOU T6 I/O- TS with pull up LED for Gigabit port 2 (receive + transmit) A27 G2_DPCOL#/TSTO UT7 I/O- TS with pull up LED for Gigabit port 2 (full duplex + collision) B27 G2_LINK#/TSTOUT 8 I/O- TS with pull up LED for Gigabit port 2 C27 INIT_DONE/TSTOU T9 I/O- TS with pull up System start operation D27 INIT_START/TSTO UT10 I/O- TS with pull up Start initialization C26 CHECKSUM_OK/T STOUT11 I/O- TS with pull up EEPROM read OK LED Interface 129 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol I/O Data Sheet Description D26 FCB_ERR/TSTOUT 12 I/O- TS with pull up FCB memory self test fail D25 MCT_ERR/TSTOUT 13 I/O- TS with pull up MCT memory self test fail D24 BIST_IN_PRC/TST OUT14 I/O- TS with pull up Processing memory self test E24 BIST_DONE/TSTO UT15 I/O- TS with pull up Memory self test done C22 TRUNK0 Input w/ weak internal pull down resistors Trunk Port Enable in unmanaged mode In managed mode doesn't care A21 TRUNK1 Input w/ weak internal pull down resistors Trunk Port Enable in unmanaged mode In managed mode doesn't care B24 TRUNK2 Input w/ weak internal pull down resistors Trunk Port Enable in unmanaged mode In managed mode doesn't care U3, C10 T_MODE0, T_MODE1 I/O-TS Test Pins 00 – Test mode – Set Mode upon Reset, and provides NAND Tree test output during test mode 01 - Reserved - Do not use 10 - Reserved - Do not use 11 – Normal mode. Use external pull up for normal mode F3 SCAN_EN Input with pull down Scan Enable 0 - Normal mode (open) E27 SCANMODE Input with pull down 1 – Enable Test mode 0 - Normal mode (open) Trunk Enable Test Facility System Clock, Power, and Ground Pins E1 SCLK Input System Clock at 100 MHz K12, K13, K17,K18 M10, N10, M20, N20, U10, V10, U20, V20, Y12, Y13, Y17, Y18 VDD Power +2.5 Volt DC Supply F13, F14, F15, F16, F17, N6, P6, R6, T6, U6, N24, P24, R24, T24, U24, AD13, AD14, AD15, AD16, AD17 VCC Power +3.3 Volt DC Supply 130 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol Data Sheet I/O Description M12, M13, M14, M15, M16, M17, M18, N12, N13, N14, N15, N16, N17, N18, P12, P13, P14, P15, P16, P17, P18, R12, R13, R14, R15, R16, R17, R18, T12, T13, T14, T15, T16, T17, T18, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V18, VSS Power Ground Ground F1 AVCC Analog Power Analog +2.5 Volt DC Supply D1 AGND Analog Ground Analog Ground D22 SCANCOL Input Scans the Collision signal of Home PHY D23 SCANCLK Input/ output Clock for scanning Home PHY collision and link E23 SCANLINK Input Link up signal from Home PHY F2 RESIN# Input Reset Input G2 RESETOUT# Output Reset PHY AC29, AE28, AJ27, AF27, AJ25, AF24, AH23, AE19, AC27, AF29, AG27, AF26, AG25, AG23, AF23, AG21, AC28, AF28, AH27, AE27, AH25, AE24, AF22, AF20, AD29, AG28, AJ26, AE26, AJ24, AE23, AJ22, AJ20, AD27, AH28, AG26, AE25, AG24, AE22, AJ23, AG20, AD28, AG29, AH26, AF25, AH24, AG22, AH22, AE17, G27, H29, H28, H27, J29, J28, U26, U25, V26, V25, W26, W25, G26, G25, H26, H25, J26, J25, U27, V29, V28, V27, W29, W28, B22, A22, C23, B23, A23, C24, E20, B25 RESERVED NA Reserved Pins. Leave unconnected. MISC Bootstrap Pins (Default = pull up, 1= pull up 0= pull down) After reset TSTOUT0 to TSTOU15 are used by the LED interface. 131 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol Data Sheet I/O Description C29 TSTOUT0 Default 1 GIGA Link polarity 0 – active low 1 – active high D29 TSTOUT1 Default 1 RMII MAC Power Saving Enable 0 – No power saving 1 – power saving E29 TSTOUT2 Default 1 Recommend disable (0) with pull-down Giga Half Duplex Support 0 - Disable 1 - Enable B28 TSTOUT3 Default 1 Module detect enable 0 – Hot swap enable 1 – Hot swap disable C28 TSTOUT4 D28 TSTOUT5 Default 1 Scan Speed: ¼ SCLK or SCLK 0 – ¼ SCLK (HPNA) 1 - SCLK E28 TSTOUT6 Default 1 CPU Port Mode 0 - 8 bit Bus Mode 1 - 16 bit Bus Mode A27 TSTOUT7 Default 1 Memory Size 0 - 256 K x 32 or 256 K x 64 (4 M total) 1 - 128 K x 32 or 128 K x 64 (2 M total) B27 TSTOUT8 Default 1 EEPROM Installed 0 – EEPROM installed 1 – EEPROM not installed C27 TSTOUT9 Default 1 MCT Aging 0 – MCT aging disable 1 – MCT aging enable D27 TSTOUT10 Default 1 FCB Aging 0 - FCB aging disable 1 – FCB aging enable C26 TSTOUT11 Default 1 Timeout Reset 0 – Time out reset disable 1 – Time out reset enable. Issue reset if any state machine did not go back to idle for 5sec. D26 TSTOUT12 D25 TSTOUT13 Default 1 FDB RAM depth (1 or 2 layers) 0 – 2 layer 1 – 1 layer D24 TSTOUT14 Default 1 CPU installed 0 – CPU installed 1 – CPU not installed Reserved Reserved 132 Zarlink Semiconductor Inc. ZL50418 Ball No(s) Symbol Data Sheet I/O Description E24 TSTOUT15 Default 1 SRAM Test Mode 0 – Enable test mode 1 – Normal operation T26, R26 G0_TXEN, G0_TXER Default: PCS Giga0 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS F26, E26 G1_TXEN, G1_TXER Default: PCS Giga1 Mode: G1_TXEN G1_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS AE20, AJ18, AJ21, AJ16, AJ14, AE14, AJ12, AE11, AJ10, AJ8, AE8, AJ6, AE5, AJ4, AG1, AE1, M[15:0]_TXEN Default: RMII 0 – GPSI 1 - RMII C21 P_D Must be pulled-down Reserved - Must be pulled-down C19, B19, A19 OE_CLK[2:0] Default: 111 Programmable delay for internal OE_CLK from SCLK input. The OE_CLK is used for generating the OE0 and OE1 signals Suggested value is 001. C20, B20, A20 LA_CLK[2:0] Default: 111 Programmable delay for LA_CLK and LB_CLK from internal OE_CLK. The LA_CLK and LB_CLK delay from SCLK is the sum of the delay programmed in here and the delay in P_D[15:13]. Suggested value is 011. Notes: # =Active low signal Input = Input Signal In-ST =Input signal with Schmitt-Trigger Output = Output signal (Tri-State driver) Out-OD = Output signal with Open-Drain driver I/O-TS = Input & Output signal with Tri-State driver I/O-OD = Input & Output signal with Open-Drain driver 133 Zarlink Semiconductor Inc. ZL50418 15.3 Data Sheet Ball – Signal Name in Unmanaged Mode Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name D20 LA_D[63] D3 LA_D[19] A9 LA_OE0# B21 LA_D[62] E3 LA_D[18] B9 LA_OE1# D19 LA_D[61] D2 LA_D[17] F4 LB_D[63] E19 LA_D[60] E2 LA_D[16] F5 LB_D[62] D18 LA_D[59] A7 LA_D[15] G4 LB_D[61] E18 LA_D[58] B7 LA_D[14] G5 LB_D[60] D17 LA_D[57] A6 LA_D[13] H4 LB_D[59] E17 LA_D[56] B6 LA_D[12] H5 LB_D[58] D16 LA_D[55] C6 LA_D[11] J4 LB_D[57] E16 LA_D[54] A5 LA_D[10] J5 LB_D[56] D15 LA_D[53] B5 LA_D[9] K4 LB_D[55] E15 LA_D[52] C5 LA_D[8] K5 LB_D[54] D14 LA_D[51] A4 LA_D[7] L4 LB_D[53] E14 LA_D[50] B4 LA_D[6] L5 LB_D[52] D13 LA_D[49] C4 LA_D[5] M4 LB_D[51] E13 LA_D[48] A3 LA_D[4] M5 LB_D[50] D21 LA_D[47] B3 LA_D[3] N4 LB_D[49] E21 LA_D[46] C3 LA_D[2] N5 LB_D[48] A18 LA_D[45] B2 LA_D[1] G3 LB_D[47] B18 LA_D[44] C2 LA_D[0] H1 LB_D[46] C18 LA_D[43] C14 LA_A[20] H2 LB_D[45] A17 LA_D[42] A13 LA_A[19] H3 LB_D[44] B17 LA_D[41] B13 LA_A[18] J1 LB_D[43] C17 LA_D[40] C13 LA_A[17] J2 LB_D[42] A16 LA_D[39] A12 LA_A[16] J3 LB_D[41] B16 LA_D[38] B12 LA_A[15] K1 LB_D[40] C16 LA_D[37] C12 LA_A[14] K2 LB_D[39] A15 LA_D[36] A11 LA_A[13] K3 LB_D[38] B15 LA_D[35] B11 LA_A[12] L1 LB_D[37] C15 LA_D[34] C11 LA_A[11] L2 LB_D[36] A14 LA_D[33] D11 LA_A[10] L3 LB_D[35] B14 LA_D[32] E11 LA_A[9] M1 LB_D[34] 134 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Data Sheet Ball No. Signal Name Ball No. Signal Name D9 LA_D[31] A10 LA_A[8] M2 LB_D[33] E9 LA_D[30] B10 LA_A[7] M3 LB_D[32] D8 LA_D[29] D10 LA_A[6] U4 LB_D[31] E8 LA_D[28] E10 LA_A[5] U5 LB_D[30] D7 LA_D[27] A8 LA_A[4] V4 LB_D[29] E7 LA_D[26] C7 LA_A[3] V5 LB_D[28] D6 LA_D[25] B8 LA_DSC# W4 LB_D[27] E6 LA_D[24] C1 LA_CLK W5 LB_D[26] D5 LA_D[23] C9 LA_WE# Y4 LB_D[25] E5 LA_D[22] D12 LA_WE0# Y5 LB_D[24] D4 LA_D[21] E12 LA_WE1# AA4 LB_D[23] E4 LA_D[20] C8 LA_OE# AA5 LB_D[22] AB4 LB_D[21] U2 LB_OE1# AH7 M[4]_RXD[0] AB5 LB_D[20] R28 MDC AE6 M[3]_RXD[0] AC4 LB_D[19] P28 MDIO AH5 M[2]_RXD[0] AC5 LB_D[18] R29 M_CLK AH2 M[1]_RXD[0] AD4 LB_D[17] AC29 RESERVED AF2 M[0]_RXD[0] AD5 LB_D[16] AE28 RESERVED AC27 RESERVED W1 LB_D[15] AJ27 RESERVED AF29 RESERVED Y1 LB_D[14] AF27 RESERVED AG27 RESERVED Y2 LB_D[13] AJ25 RESERVED AF26 RESERVED Y3 LB_D[12] AF24 RESERVED AG25 RESERVED AA1 LB_D[11] AH23 RESERVED AG23 RESERVED AA2 LB_D[10] AE19 RESERVED AF23 RESERVED AA3 LB_D[9] AF21 M[15]_RXD[1] AG21 RESERVED AB1 LB_D[8] AJ19 M[14]_RXD[1] AH21 M[15]_CRS_DV AB2 LB_D[7] AF18 M[13]_RXD[1] AF19 M[14]_CRS_DV AB3 LB_D[6] AJ17 M[12]_RXD[1] AF17 M[13]_CRS_DV AC1 LB_D[5] AJ15 M[11]_RXD[1] AG17 M[12]_CRS_DV AC2 LB_D[4] AF15 M[10]_RXD[1] AG15 M[11]_CRS_DV AC3 LB_D[3] AJ13 M[9]_RXD[1] AF14 M[10]_CRS_DV AD1 LB_D[2] AF12 M[8]_RXD[1] AG13 M[9]_CRS_DV AD2 LB_D[1] AJ11 M[7]_RXD[1] AF11 M[8]_CRS_DV 135 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Data Sheet Ball No. Signal Name Ball No. Signal Name AD3 LB_D[0] AJ9 M[6]_RXD[1] AG11 M[7]_CRS_DV N3 LB_A[20] AF9 M[5]_RXD[1] AG9 M[6]_CRS_DV N2 LB_A[19] AJ7 M[4]_RXD[1] AF8 M[5]_CRS_DV N1 LB_A[18] AF6 M[3]_RXD[1] AG7 M[4]_CRS_DV P3 LB_A[17] AJ5 M[2]_RXD[1] AF5 M[3]_CRS_DV P2 LB_A[16] AJ3 M[1]_RXD[1] AG5 M[2]_CRS_DV P1 LB_A[15] AF1 M[0]_RXD[1] AH3 M[1]_CRS_DV R5 LB_A[14] AC28 RESERVED AF3 M[0]_CRS_DV R4 LB_A[13] AF28 RESERVED AD29 RESERVED R3 LB_A[12] AH27 RESERVED AG28 RESERVED R2 LB_A[11] AE27 RESERVED AJ26 RESERVED R1 LB_A[10] AH25 RESERVED AE26 RESERVED T5 LB_A[9] AE24 RESERVED AJ24 RESERVED T4 LB_A[8] AF22 RESERVED AE23 RESERVED T3 LB_A[7] AF20 RESERVED AJ22 RESERVED T2 LB_A[6] AE21 M[15]_RXD[0] AJ20 RESERVED T1 LB_A[5] AH19 M[14]_RXD[0] AE20 M[15]_TXEN W3 LB_A[4] AH20 M[13]_RXD[0] AJ18 M[14]_TXEN W2 LB_A[3] AH17 M[12]_RXD[0] AJ21 M[13]_TXEN V1 LB_ADSC# AH15 M[11]_RXD[0] AJ16 M[12]_TXEN G1 LB_CLK AE15 M[10]_RXD[0] AJ14 M[11]_TXEN V3 LB_WE# AH13 M[9]_RXD[0] AE14 M[10]_TXEN P4 LB_WE0# AE12 M[8]_RXD[0] AJ12 M[9]_TXEN P5 LB_WE1# AH11 M[7]_RXD[0] AE11 M[8]_TXEN V2 LB_OE# AH9 M[6]_RXD[0] AJ10 M[7]_TXEN U1 LB_OE0# AE9 M[5]_RXD[0] AJ8 M[6]_TXEN AE8 M[5]_TXEN AH8 M[6]_TXD[0] G27 RESERVED AJ6 M[4]_TXEN AF7 M[5]_TXD[0] H29 RESERVED AE5 M[3]_TXEN AH6 M[4]_TXD[0] H28 RESERVED AJ4 M[2]_TXEN AF4 M[3]_TXD[0] H27 RESERVED AG1 M[1]_TXEN AH4 M[2]_TXD[0] J29 RESERVED AE1 M[0]_TXEN AG2 M[1]_TXD[0] J28 RESERVED AD27 RESERVED AE2 M[0]_TXD[0] J27 M26_RXD[9] 136 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Data Sheet Ball No. Signal Name Ball No. Signal Name AH28 RESERVED U26 RESERVED K29 M26_RXD[8] AG26 RESERVED U25 RESERVED K28 M26_RXD[7] AE25 RESERVED V26 RESERVED K27 M26_RXD[6] AG24 RESERVED V25 RESERVED L29 M26_RXD[5] AE22 RESERVED W26 RESERVED L28 M26_RXD[4] AJ23 RESERVED W25 RESERVED L27 M26_RXD[3] AG20 RESERVED Y27 M25_TXD[9] M29 M26_RXD[2] AE18 M[15]_TXD[1] Y26 M25_TXD[8] M28 M26_RXD[1] AG18 M[14]_TXD[1] AA26 M25_TXD[7] M27 M26_RXD[0] AE16 M[13]_TXD[1] AA25 M25_TXD[6] G26 RESERVED AG16 M[12]_TXD[1] AB26 M25_TXD[5] G25 RESERVED AG14 M[11]_TXD[1] AB25 M25_TXD[4] H26 RESERVED AE13 M[10]_TXD[1] AC26 M25_TXD[3] H25 RESERVED AG12 M[9]_TXD[1] AC25 M25_TXD[2] J26 RESERVED AE10 M[8]_TXD[1] AD26 M25_TXD[1] J25 RESERVED AG10 M[7]_TXD[1] AD25 M25_TXD[0] K25 M26_TXD[9] AG8 M[6]_TXD[1] U27 RESERVED K26 M26_TXD[8] AE7 M[5]_TXD[1] V29 RESERVED M25 M26_TXD[7] AG6 M[4]_TXD[1] V28 RESERVED L26 M26_TXD[6] AE4 M[3]_TXD[1] V27 RESERVED M26 M26_TXD[5] AG4 M[2]_TXD[1] W29 RESERVED L25 M26_TXD[4] AG3 M[1]_TXD[1] W28 RESERVED N26 M26_TXD[3] AE3 M[0]_TXD[1] W27 M25_RXD[9] N25 M26_TXD[2] AD28 RESERVED Y29 M25_RXD[8] P26 M26_TXD[1] AG29 RESERVED Y28 M25_RXD[7] P25 M26_TXD[0] AH26 RESERVED Y25 M25_RXD[6] F28 M26_RX_DV AF25 RESERVED AA29 M25_RXD[5] G28 M26_RX_ER AH24 RESERVED AA28 M25_RXD[4] E25 M26_CRS AG22 RESERVED AA27 M25_RXD[3] G29 M26_COL AH22 RESERVED AB29 M25_RXD[2] F29 M26_RXCLK AE17 RESERVED AB28 M25_RXD[1] F26 M26_TX_EN AG19 M[15]_TXD[0] AB27 M25_RXD[0] E26 M26_TX_ER AH18 M[14]_TXD[0] R26 M25_TX_ER F25 M26_TXCLK 137 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Data Sheet Ball No. Signal Name Ball No. Signal Name AF16 M[13]_TXD[0] T25 M25_TXCLK E24 BIST_DONE/TSTOUT[15] AH16 M[12]_TXD[0] T26 M25_TX_EN D24 BIST_IN_PRC/TST0UT[14] AH14 M[11]_TXD[0] T28 M25_RX_DV D25 MCT_ERR/TSTOUT[13] AF13 M[10]_TXD[0] U28 M25_RX_ER D26 FCB_ERR/TSTOUT[12] AH12 M[9]_TXD[0] R25 M25_CRS C26 CHECKSUM_OK/TSTOUT[11 ] AF10 M[8]_TXD[0] U29 M25_COL D27 INIT_START/TSTOUT[10] AH10 M[7]_TXD[0] T29 M25_RXCLK C27 INIT_DONE/TSTOUT[9] B27 G2_LINK#/TSTOUT[8] U18 VSS N12 VSS A27 G2_DPCOL#/TSTOUT[7 ] V12 VSS N13 VSS E28 G2_RXTX#/TSTOUT[6] V13 VSS K17 VDD D28 G1_LINK#/TSTOUT[5] V14 VSS K18 VDD C28 G1_DPCOL#/TSTOUT[4 ] V15 VSS M10 VDD B28 G1_RXTX#/TSTOUT[3] V16 VSS N10 VDD E29 LED_BIT/TSTOUT[2] V17 VSS M20 VDD D29 LED_SYN/TSTOUT[1] V18 VSS N20 VDD C29 LED_CLK/TSTOUT[0] N14 VSS U10 VDD N29 GREF_CLK1 N15 VSS V10 VDD P29 GREF_CLK0 N16 VSS U20 VDD F3 SCAN_EN N17 VSS V20 VDD E1 SCLK N18 VSS Y12 VDD U3 T_MODE0 P12 VSS Y13 VDD C10 T_MODE1 P13 VSS Y17 VDD B24 TRUNK2 P14 VSS Y18 VDD A21 TRUNK1 P15 VSS K12 VDD C22 TRUNK0 P16 VSS K13 VDD A26 STROBE C19 OE_CLK2 M16 VSS B26 D0 B19 OE_CLK1 M17 VSS C25 AUTOFD A19 OE_CLK0 M18 VSS A24 SCL R13 VSS F16 VCC A25 SDA R14 VSS F17 VCC F1 AVCC R15 VSS N6 VCC 138 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Data Sheet Ball No. Signal Name Ball No. Signal Name D1 AGND R16 VSS P6 VCC D22 SCANCOL R17 VSS R6 VCC E23 SCANLINK R18 VSS T6 VCC E27 SCANMODE T12 VSS U6 VCC N28 T13 VSS N24 VCC N27 T14 VSS P24 VCC F2 RESIN# T15 VSS R24 VCC G2 RESETOUT# T16 VSS T24 VCC B22 Reserved T17 VSS U24 VCC A22 Reserved T18 VSS AD13 VCC C23 Reserved U12 VSS AD14 VCC B23 Reserved U13 VSS AD15 VCC A23 Reserved U14 VSS AD16 VCC C24 Reserved U15 VSS AD17 VCC D23 SCANCLK U16 VSS F13 VCC T27 M25_MTXCLK U17 VSS F14 VCC F27 M26_MTXCLK M12 VSS F15 VCC C20 LA_CLK2 M13 VSS B20 LA_CLK1 M14 VSS A20 LA_CLK0 M15 VSS C21 P_D P17 VSS E20 RESERVED P18 VSS B25 RESERVED R12 VSS 139 Zarlink Semiconductor Inc. ZL50418 15.4 Data Sheet Ball – Signal Name in Managed Mode Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name D20 LA_D[63] D3 LA_D[19] A9 LA_OE0# B21 LA_D[62] E3 LA_D[18] B9 LA_OE1# D19 LA_D[61] D2 LA_D[17] F4 LB_D[63] E19 LA_D[60] E2 LA_D[16] F5 LB_D[62] D18 LA_D[59] A7 LA_D[15] G4 LB_D[61] E18 LA_D[58] B7 LA_D[14] G5 LB_D[60] D17 LA_D[57] A6 LA_D[13] H4 LB_D[59] E17 LA_D[56] B6 LA_D[12] H5 LB_D[58] D16 LA_D[55] C6 LA_D[11] J4 LB_D[57] E16 LA_D[54] A5 LA_D[10] J5 LB_D[56] D15 LA_D[53] B5 LA_D[9] K4 LB_D[55] E15 LA_D[52] C5 LA_D[8] K5 LB_D[54] D14 LA_D[51] A4 LA_D[7] L4 LB_D[53] E14 LA_D[50] B4 LA_D[6] L5 LB_D[52] D13 LA_D[49] C4 LA_D[5] M4 LB_D[51] E13 LA_D[48] A3 LA_D[4] M5 LB_D[50] D21 LA_D[47] B3 LA_D[3] N4 LB_D[49] E21 LA_D[46] C3 LA_D[2] N5 LB_D[48] A18 LA_D[45] B2 LA_D[1] G3 LB_D[47] B18 LA_D[44] C2 LA_D[0] H1 LB_D[46] C18 LA_D[43] C14 LA_A[20] H2 LB_D[45] A17 LA_D[42] A13 LA_A[19] H3 LB_D[44] B17 LA_D[41] B13 LA_A[18] J1 LB_D[43] C17 LA_D[40] C13 LA_A[17] J2 LB_D[42] A16 LA_D[39] A12 LA_A[16] J3 LB_D[41] B16 LA_D[38] B12 LA_A[15] K1 LB_D[40] C16 LA_D[37] C12 LA_A[14] K2 LB_D[39] A15 LA_D[36] A11 LA_A[13] K3 LB_D[38] B15 LA_D[35] B11 LA_A[12] L1 LB_D[37] C15 LA_D[34] C11 LA_A[11] L2 LB_D[36] A14 LA_D[33] D11 LA_A[10] L3 LB_D[35] 140 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name B14 LA_D[32] E11 LA_A[9] M1 LB_D[34] D9 LA_D[31] A10 LA_A[8] M2 LB_D[33] E9 LA_D[30] B10 LA_A[7] M3 LB_D[32] D8 LA_D[29] D10 LA_A[6] U4 LB_D[31] E8 LA_D[28] E10 LA_A[5] U5 LB_D[30] D7 LA_D[27] A8 LA_A[4] V4 LB_D[29] E7 LA_D[26] C7 LA_A[3] V5 LB_D[28] D6 LA_D[25] B8 LA_DSC# W4 LB_D[27] E6 LA_D[24] C1 LA_CLK W5 LB_D[26] D5 LA_D[23] C9 LA_WE# Y4 LB_D[25] E5 LA_D[22] D12 LA_WE0# Y5 LB_D[24] D4 LA_D[21] E12 LA_WE1# AA4 LB_D[23] E4 LA_D[20] C8 LA_OE# AA5 LB_D[22] AB4 LB_D[21] U2 LB_OE1# AH7 M[4]_RXD[0] AB5 LB_D[20] R28 MDC AE6 M[3]_RXD[0] AC4 LB_D[19] P28 MDIO AH5 M[2]_RXD[0] AC5 LB_D[18] R29 M_CLK AH2 M[1]_RXD[0] AD4 LB_D[17] AC29 RESERVED AF2 M[0]_RXD[0] AD5 LB_D[16] AE28 RESERVED AC27 RESERVED W1 LB_D[15] AJ27 RESERVED AF29 RESERVED Y1 LB_D[14] AF27 RESERVED AG27 RESERVED Y2 LB_D[13] AJ25 RESERVED AF26 RESERVED Y3 LB_D[12] AF24 RESERVED AG25 RESERVED AA1 LB_D[11] AH23 RESERVED AG23 RESERVED AA2 LB_D[10] AE19 RESERVED AF23 RESERVED AA3 LB_D[9] AF21 M[15]_RXD[1] AG21 RESERVED AB1 LB_D[8] AJ19 M[14]_RXD[1] AH21 M[15]_CRS_DV AB2 LB_D[7] AF18 M[13]_RXD[1] AF19 M[14]_CRS_DV AB3 LB_D[6] AJ17 M[12]_RXD[1] AF17 M[13]_CRS_DV AC1 LB_D[5] AJ15 M[11]_RXD[1] AG17 M[12]_CRS_DV AC2 LB_D[4] AF15 M[10]_RXD[1] AG15 M[11]_CRS_DV AC3 LB_D[3] AJ13 M[9]_RXD[1] AF14 M[10]_CRS_DV 141 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AD1 LB_D[2] AF12 M[8]_RXD[1] AG13 M[9]_CRS_DV AD2 LB_D[1] AJ11 M[7]_RXD[1] AF11 M[8]_CRS_DV AD3 LB_D[0] AJ9 M[6]_RXD[1] AG11 M[7]_CRS_DV N3 LB_A[20] AF9 M[5]_RXD[1] AG9 M[6]_CRS_DV N2 LB_A[19] AJ7 M[4]_RXD[1] AF8 M[5]_CRS_DV N1 LB_A[18] AF6 M[3]_RXD[1] AG7 M[4]_CRS_DV P3 LB_A[17] AJ5 M[2]_RXD[1] AF5 M[3]_CRS_DV P2 LB_A[16] AJ3 M[1]_RXD[1] AG5 M[2]_CRS_DV P1 LB_A[15] AF1 M[0]_RXD[1] AH3 M[1]_CRS_DV R5 LB_A[14] AC28 RESERVED AF3 M[0]_CRS_DV R4 LB_A[13] AF28 RESERVED AD29 RESERVED R3 LB_A[12] AH27 RESERVED AG28 RESERVED R2 LB_A[11] AE27 RESERVED AJ26 RESERVED R1 LB_A[10] AH25 RESERVED AE26 RESERVED T5 LB_A[9] AE24 RESERVED AJ24 RESERVED T4 LB_A[8] AF22 RESERVED AE23 RESERVED T3 LB_A[7] AF20 RESERVED AJ22 RESERVED T2 LB_A[6] AE21 M[15]_RXD[0] AJ20 RESERVED T1 LB_A[5] AH19 M[14]_RXD[0] AE20 M[15]_TXEN W3 LB_A[4] AH20 M[13]_RXD[0] AJ18 M[14]_TXEN W2 LB_A[3] AH17 M[12]_RXD[0] AJ21 M[13]_TXEN V1 LB_ADSC# AH15 M[11]_RXD[0] AJ16 M[12]_TXEN G1 LB_CLK AE15 M[10]_RXD[0] AJ14 M[11]_TXEN V3 LB_WE# AH13 M[9]_RXD[0] AE14 M[10]_TXEN P4 LB_WE0# AE12 M[8]_RXD[0] AJ12 M[9]_TXEN P5 LB_WE1# AH11 M[7]_RXD[0] AE11 M[8]_TXEN V2 LB_OE# AH9 M[6]_RXD[0] AJ10 M[7]_TXEN U1 LB_OE0# AE9 M[5]_RXD[0] AJ8 M[6]_TXEN AE8 M[5]_TXEN AH8 M[6]_TXD[0] G27 RESERVED AJ6 M[4]_TXEN AF7 M[5]_TXD[0] H29 RESERVED AE5 M[3]_TXEN AH6 M[4]_TXD[0] H28 RESERVED AJ4 M[2]_TXEN AF4 M[3]_TXD[0] H27 RESERVED 142 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AG1 M[1]_TXEN AH4 M[2]_TXD[0] J29 RESERVED AE1 M[0]_TXEN AG2 M[1]_TXD[0] J28 RESERVED AD27 RESERVED AE2 M[0]_TXD[0] J27 M26_RXD[9] AH28 RESERVED U26 RESERVED K29 M26_RXD[8] AG26 RESERVED U25 RESERVED K28 M26_RXD[7] AE25 RESERVED V26 RESERVED K27 M26_RXD[6] AG24 RESERVED V25 RESERVED L29 M26_RXD[5] AE22 RESERVED W26 RESERVED L28 M26_RXD[4] AJ23 RESERVED W25 RESERVED L27 M26_RXD[3] AG20 RESERVED Y27 M25_TXD[9] M29 M26_RXD[2] AE18 M[15]_TXD[1] Y26 M25_TXD[8] M28 M26_RXD[1] AG18 M[14]_TXD[1] AA26 M25_TXD[7] M27 M26_RXD[0] AE16 M[13]_TXD[1] AA25 M25_TXD[6] G26 RESERVED AG16 M[12]_TXD[1] AB26 M25_TXD[5] G25 RESERVED AG14 M[11]_TXD[1] AB25 M25_TXD[4] H26 RESERVED AE13 M[10]_TXD[1] AC26 M25_TXD[3] H25 RESERVED AG12 M[9]_TXD[1] AC25 M25_TXD[2] J26 RESERVED AE10 M[8]_TXD[1] AD26 M25_TXD[1] J25 RESERVED AG10 M[7]_TXD[1] AD25 M25_TXD[0] K25 M26_TXD[9] AG8 M[6]_TXD[1] U27 RESERVED K26 M26_TXD[8] AE7 M[5]_TXD[1] V29 RESERVED M25 M26_TXD[7] AG6 M[4]_TXD[1] V28 RESERVED L26 M26_TXD[6] AE4 M[3]_TXD[1] V27 RESERVED M26 M26_TXD[5] AG4 M[2]_TXD[1] W29 RESERVED L25 M26_TXD[4] AG3 M[1]_TXD[1] W28 RESERVED N26 M26_TXD[3] AE3 M[0]_TXD[1] W27 M25_RXD[9] N25 M26_TXD[2] AD28 RESERVED Y29 M25_RXD[8] P26 M26_TXD[1] AG29 RESERVED Y28 M25_RXD[7] P25 M26_TXD[0] AH26 RESERVED Y25 M25_RXD[6] F28 M26_RX_DV AF25 RESERVED AA29 M25_RXD[5] G28 M26_RX_ER AH24 RESERVED AA28 M25_RXD[4] E25 M26_CRS AG22 RESERVED AA27 M25_RXD[3] G29 M26_COL 143 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AH22 RESERVED AB29 M25_RXD[2] F29 M26_RXCLK AE17 RESERVED AB28 M25_RXD[1] F26 M26_TX_EN AG19 M[15]_TXD[0] AB27 M25_RXD[0] E26 M26_TX_ER AH18 M[14]_TXD[0] R26 M25_TX_ER F25 M26_TXCLK AF16 M[13]_TXD[0] T25 M25_TXCLK E24 BIST_DONE/TSTOUT[15] AH16 M[12]_TXD[0] T26 M25_TX_EN D24 BIST_IN_PRC/TST0UT[14] AH14 M[11]_TXD[0] T28 M25_RX_DV D25 MCT_ERR/TSTOUT[13] AF13 M[10]_TXD[0] U28 M25_RX_ER D26 FCB_ERR/TSTOUT[12] AH12 M[9]_TXD[0] R25 M25_CRS C26 CHECKSUM_OK/TSTOUT[ 11] AF10 M[8]_TXD[0] U29 M25_COL D27 INIT_START/TSTOUT[10] AH10 M[7]_TXD[0] T29 M25_RXCLK C27 INIT_DONE/TSTOUT[9] B27 G2_LINK#/TSTOUT[8] U18 VSS N12 VSS A27 G2_DPCOL#/TSTOUT [7] V12 VSS N13 VSS E28 G2_RXTX#/TSTOUT[6 ] V13 VSS K17 VDD D28 G1_LINK#/TSTOUT[5] V14 VSS K18 VDD C28 G1_DPCOL#/TSTOUT [4] V15 VSS M10 VDD B28 G1_RXTX#/TSTOUT[3 ] V16 VSS N10 VDD E29 LED_BIT/TSTOUT[2] V17 VSS M20 VDD D29 LED_SYN/TSTOUT[1] V18 VSS N20 VDD C29 LED_CLK/TSTOUT[0] N14 VSS U10 VDD N29 GREF_CLK1 N15 VSS V10 VDD P29 GREF_CLK0 C19 P_DATA15 U20 VDD F3 SCAN_EN B19 P_DATA14 V20 VDD E1 SCLK A19 P_DATA13 Y12 VDD U3 T_MODE0 P12 VSS Y13 VDD C10 T_MODE1 P13 VSS Y17 VDD B24 P_DATA6 P14 VSS Y18 VDD A21 P_DATA7 P15 VSS K12 VDD C22 P_A2 P16 VSS K13 VDD 144 Zarlink Semiconductor Inc. ZL50418 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name A26 P_WE N16 VSS M16 VSS B26 P_RD N17 VSS M17 VSS C25 P_CS N18 VSS M18 VSS A24 P_A1 R13 VSS F16 VCC A25 P_A0 R14 VSS F17 VCC F1 AVCC R15 VSS N6 VCC D1 AGND R16 VSS P6 VCC D22 SCANCOL R17 VSS R6 VCC E23 SCANLINK R18 VSS T6 VCC E27 SCANMODE T12 VSS U6 VCC N28 T13 VSS N24 VCC N27 T14 VSS P24 VCC F2 RESIN# T15 VSS R24 VCC G2 RESETOUT# T16 VSS T24 VCC B22 P_DATA5 T17 VSS U24 VCC A22 P_DATA4 T18 VSS AD13 VCC C23 P_DATA3 U12 VSS AD14 VCC B23 P_DATA2 U13 VSS AD15 VCC A23 P_DATA1 U14 VSS AD16 VCC C24 P_DATA0 U15 VSS AD17 VCC D23 SCANCLK U16 VSS F13 VCC T27 M25_MTXCLK U17 VSS F14 VCC F27 M26_MTXCLK M12 VSS F15 VCC C20 P_DATA12 M13 VSS B20 P_DATA11 M14 VSS A20 P_DATA10 M15 VSS C21 P_DATA9 P17 VSS E20 P_DATA8 P18 VSS B25 P_INT R12 VSS 145 Zarlink Semiconductor Inc. ZL50418 15.5 Data Sheet AC/DC Timing 15.5.1 Absolute Maximum Ratings Storage Temperature -65°C to +150°C Operating Temperature -40°C to +85°C Maximum Junction Temperature +125°C Supply Voltage VCC with Respect to VSS +3.0 V to +3.6 V Supply Voltage VDD with Respect to VSS +2.38 V to +2.75 V Voltage on Input Pins -0.5 V to (VCC + 3.3 V) Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for extended periods may affect device reliability. Functionality at or above these limits is not implied. 15.5.2 DC Electrical Characteristics VCC = 3.0 V to 3.6 V (3.3v +/- 10%)TAMBIENT = -40C to +85 C VDD = 2.5 V +10% - 5% 15.5.3 Recommended Operating Conditions Symbol Parameter Description Min. Typ. Max. 100 Unit fosc Frequency of Operation (-50) MHz ICC Supply Current – @ 100 MHz (VCC=3.3 V) 350 mA IDD Supply Current – @ 100 MHz (VDD=2.5 V) 1400 mA VOH Output High Voltage (CMOS) VOL Output Low Voltage (CMOS) VIH-TTL Input High Voltage (TTL 5 V tolerant) VIL-TTL 2.4 V 0.4 V VCC + 2.0 V Input Low Voltage (TTL 5 V tolerant) 0.8 V IIL Input Leakage Current (0.1 V < VIN < VCC) (all pins except those with internal pull-up/pull-down resistors) 10 µA IOL Output Leakage Current (0.1 V < VOUT < VCC) 10 µA CIN Input Capacitance 5 pF COUT Output Capacitance 5 pF CI/O I/O Capacitance 7 pF θja Thermal resistance with 0 air flow 11.2 C/W θja Thermal resistance with 1 m/s air flow 10.2 C/W θja Thermal resistance with 2 m/s air flow 8.9 C/W θjc Thermal resistance between junction and case 3.1 C/W 2.0 146 Zarlink Semiconductor Inc. ZL50418 Symbol θjb 15.5.4 Data Sheet Parameter Description Min. Typ. Thermal resistance between junction and board Max. Unit 6.6 C/W Typical Reset & Bootstrap Timing Diagram RESIN# RESETOUT# Tri-Stated R1 R3 Bootstrap Pins Outputs Inputs Outputs R2 Figure 18 - Typical Reset & Bootstrap Timing Diagram Symbol Parameter Min. R1 Delay until RESETOUT# is tri-stated R2 Bootstrap stabilization R3 RESETOUT# assertion 1 µs Typ. Note: 10 ns RESETOUT# state is then determined by the external pull-up/down resistor 10 µs Bootstrap pins sampled on rising edge of RESIN#1 2 ms Table 16 - Reset & Bootstrap Timing 1. The TSTOUT[8:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after RESIN# goes high 147 Zarlink Semiconductor Inc. ZL50418 15.5.5 Data Sheet Typical CPU Timing Diagram for a CPU Write Cycle P_ADDR ADDR1 ADDR0 P_CS# TWA at least 2 SCLKs TWS P_WE# TWR Recovery Time TDH DATA to to VTX2600 ZL5041x DATA TWA at least 2 SCLKs TWS TWH TWH TDH DATA 0 DATA 1 TDS TDS Hold time Set up time Figure 19 - Typical CPU Timing Diagram for a CPU Write Cycle Description Write Cycle (SCLK=100 Mhz) Symbol Min. Write Set up Time TWS 10 Write Active Time TWA 20 Write Hold Time TWH 2 Write Recovery time TWR 30 Data Set Up time TDS 10 Data Hold time TDH 2 Max. Table 17 - Write Cycle 148 Zarlink Semiconductor Inc. Refer to Figure 19 At least 2 SCLK At least 3 SCLK ZL50418 15.5.6 Data Sheet Typical CPU Timing Diagram for a CPU Read Cycle P_ADDR ADDR1 ADDR0 P_CS# TRA at least 2 SCLKs TRS P_RD# DATA to CPU TRH TRS TRR Recovery Time at least 3 SCLKs TRA at least 2 SCLKs DATA 0 TDV TRH DATA 1 TDI TDV TDI 2ns Valid time Invalid time Figure 20 - Typical CPU Timing Diagram for a CPU Read Cycle Description Read Cycle (SCLK=100 Mhz) Symbol Min. Refer to Figure 20 Max. Read Set up Time TRS 10 Read Active Time TRA 20 Read Hold Time TRH 2 Read Recovery time TRR 30 Data Valid time TDv 10 Data Invalid time TDI 6 At least 2 SCLK At least 3 SCLK Table 18 - Read Cycle 149 Zarlink Semiconductor Inc. ZL50418 15.6 15.6.1 Data Sheet Local Frame Buffer SBRAM Memory Interface Local SBRAM Memory Interface LA_CLK L1 L2 LA_D[63:0] Figure 21 - Local Memory Interface – Input Setup and Hold Timing LA_CLK L3-max L3-min LA_D[63:0] L4-max L4-min LA_A[20:3] L6-max L6-min LA_ADSC# L7-max L7-min LA_WE[1:0]# #### L8-max L8-min LA_OE[1:0]# L9-max L9-min LA_WE# L10-max L10-min LA_OE# Figure 22 - Local Memory Interface - Output Valid Delay Timing 150 Zarlink Semiconductor Inc. ZL50418 Data Sheet -100 MHz Symbol Parameter Note Min. (ns) Max. (ns) L1 LA_D[63:0] input set-up time 4 L2 LA_D[63:0] input hold time 1.5 L3 LA_D[63:0] output valid delay 1.5 7 CL = 25 pf L4 LA_A[20:3] output valid delay 2 7 CL = 30 pf L6 LA_ADSC# output valid delay 1 7 CL = 30 pf L7 LA_WE[1:0]#output valid delay 1 7 CL = 25 pf L8 LA_OE[1:0]# output valid delay -1 1 CL = 25 pf L9 LA_WE# output valid delay 1 7 CL = 25 pf L10 LA_OE# output valid delay 1 5 CL = 25 pf Table 19 - AC Characteristics – Local Frame Buffer SBRAM Memory Interface 15.7 15.7.1 Local Switch Database SBRAM Memory Interface Local SBRAM Memory Interface LB_CLK L1 L2 LB_D[63:0] Figure 23 - Local Memory Interface – Input Setup and Hold Timing 151 Zarlink Semiconductor Inc. ZL50418 Data Sheet LB_CLK L3-max L3-min LB_D[31:0] L4-max L4-min LB_A[21:2] L6-max L6-min LB_ADSC# L8-max L8-min LB_WE[1:0]# L9-max L9-min LB_OE[1:0]# L10-max L10-min LB_WE# L11-max L11-min LB_OE# Figure 24 - Local Memory Interface - Output Valid Delay Timing -100 MHz Symbol Parameter Note Min. (ns) Max. (ns) L1 LB_D[63:0] input set-up time 4 L2 LB_D[63:0] input hold time 1.5 L3 LB_D[63:0] output valid delay 1.5 7 CL = 25 pf L4 LB_A[20:3] output valid delay 2 7 CL = 30 pf L6 LB_ADSC# output valid delay 1 7 CL = 30 pf L8 LB_WE[1:0]#output valid delay 1 7 CL = 25 pf L9 LB_OE[1:0]# output valid delay -1 1 CL = 25 pf L10 LB_WE# output valid delay 1 7 CL = 25 pf L11 LB_OE# output valid delay 1 5 CL = 25 pf Table 20 - AC Characteristics – Local Switch Database SBRAM Memory Interface 152 Zarlink Semiconductor Inc. ZL50418 15.8 Data Sheet AC Characteristics 15.8.1 Reduced Media Independent Interface M_CLKI M6-max M6-min M[23:0]_TXEN 15 M7-max M7-min M[23:0] 15 _TXD[1:0] Figure 25 - AC Characteristics – Reduced Media Independent Interface M_CLKI M2 M[23:0]_RXD 15 M3 M4 M[23:0]_CRS_DV 15 M5 Figure 26 - AC Characteristics – Reduced Media Independent Interface -50 MHz Symbol Parameter Note Min. (ns) Max. (ns) M2 M[15:0]_RXD[1:0] Input Setup Time 4 M3 M[15:0]_RXD[1:0] Input Hold Time 1 M4 M[15:0]_CRS_DV Input Setup Time 4 M5 M[15:0]_CRS_DV Input Hold Time 1 M6 M[15:0]_TXEN Output Delay Time 2 11 CL = 20 pF M7 M[15:0]_TXD[1:0] Output Delay Time 2 11 CL = 20 pF Table 21 - AC Characteristics – Reduced Media Independent Interface 153 Zarlink Semiconductor Inc. ZL50418 15.8.2 Data Sheet Gigabit Media Independent Interface - Port A M25_TXCLK G12-max G12-min M25_TXD [7:0] G13-max G13-min M25_TX_EN] G14-max G14-min M25_TX_ER Figure 27 - AC Characteristics- GMII M25_RXCLK G1 G2 M25_RXD[7:0] G3 G4 M25_RX_DV G5 G6 M25_RX_ER G7 G8 M25_RX_CRS Figure 28 - AC Characteristics – Gigabit Media Independent Interface -125 Mhz Symbol Parameter Note Min. (ns) Max. (ns) G1 M[25]_RXD[7:0] Input Setup Times 2 G2 M[25]_RXD[7:0] Input Hold Times 1 G3 M[25]_RX_DV Input Setup Times 2 G4 M[25]_RX_DV Input Hold Times 1 G5 M[25]_RX_ER Input Setup Times 2 G6 M[25]_RX_ER Input Hold Times 1 G7 M[25]_CRS Input Setup Times 2 G8 M[25]_CRS Input Hold Times 1 G12 M[25]_TXD[7:0] Output Delay Times 1 6 CL = 20 pf G13 M[25]_TX_EN Output Delay Times 1 6.5 CL = 20 pf G14 M[25]_TX_ER Output Delay Times 1 6 CL = 20 pf Table 22 - AC Characteristics – Gigabit Media Independent Interface 154 Zarlink Semiconductor Inc. ZL50418 15.8.3 Data Sheet Ten Bit Interface - Port A M25_TXCLK TIMIN M25_TXD [9:0] TIMAX Figure 29 - Gigabit TBI Interface Transmit Timing M25_RXCLK M25_COL T2 T2 M25_RXD[9:0] T3 T3 Figure 30 - Gigabit TBI Interface Receive Timing Symbol T1 Parameter Min. (ns) Max. (ns) 1 6 M25_TXD[9:0] Output Delay Time Note CL = 20 pf Table 23 - Output Delay Timing Symbol Parameter Min. (ns) T2 M25_RXD[9:0] Input Setup Time 3 T3 M25_RXD[9:0] Input Hold Time 3 Table 24 - Input Setup Timing 155 Zarlink Semiconductor Inc. Max. (ns) Note ZL50418 15.8.4 Data Sheet Gigabit Media Independent Interface - Port B M26_TXCLK G12-max G12-min M26_TXD [7:0] G13-max G13-min M26_TX_EN] G14-max G14-min M26_TX_ER Figure 31 - AC Characteristics- GMII M26_RXCLK G1 G2 M26_RXD[7:0] G3 G4 M26_RX_DV G5 G6 M26_RX_ER G7 G8 M26_RX_CRS Figure 32 - AC Characteristics – Gigabit Media Independent Interface -125 Mhz Symbol Parameter Note Min. (ns) G1 M[26]_RXD[7:0] Input Setup Times 2 G2 M[26]_RXD[7:0] Input Hold Times 1 G3 M[26]_RX_DV Input Setup Times 2 G4 M[26]_RX_DV Input Hold Times 1 G5 M[26]_RX_ER Input Setup Times 2 G6 M[26]_RX_ER Input Hold Times 1 G7 M[26]_CRS Input Setup Times 2 G8 M[26]_CRS Input Hold Times 1 G12 M[26]_TXD[7:0] Output Delay Times 1 Max. (ns) 6 CL = 20 pf Table 25 - AC Characteristics – Gigabit Media Independent Interface 156 Zarlink Semiconductor Inc. ZL50418 Data Sheet -125 Mhz Symbol Parameter Note Min. (ns) Max. (ns) G13 M[26]_TX_EN Output Delay Times 1 6.5 CL = 20 pf G14 M[26]_TX_ER Output Delay Times 1 6 CL = 20 pf Table 25 - AC Characteristics – Gigabit Media Independent Interface (continued) 15.8.5 Ten Bit Interface - Port B M26_TXCLK TIMIN M26_TXD [9:0] TIMAX Figure 33 - Gigabit TBI Interface Transmit Timing M26_RXCLK M26_COL T2 T2 M26_RXD[9:0] T3 T3 Figure 34 - Gigabit TBI Interface Timing Symbol T1 Parameter Min. (ns) Max. (ns) 1 6 M26_TXD[9:0] Output Delay Time Note CL = 20 pf Table 26 - Output Delay Timing Symbol Parameter Min. (ns) T2 M26_RXD[9:0] Input Setup Time 3 T3 M26_RXD[9:0] Input Hold Time 3 Table 27 - Input Setup Timing 157 Zarlink Semiconductor Inc. Max. (ns) Note ZL50418 15.8.6 Data Sheet LED Interface LED_CLK LE5-max LE5-min LED_SYN LE6-max LE6-min LED_BIT Figure 35 - AC Characteristics – LED Interface Variable FREQ. Symbol Parameter Min. (ns) Max. (ns) Note LE5 LED_SYN Output Valid Delay -1 7 CL = 30 pf LE6 LED_BIT Output Valid Delay -1 7 CL = 30 pf Table 28 - AC Characteristics – LED Interface 15.8.7 SCANLINK SCANCOL Output Delay Timing SCANCLK C5-max C5-min SCANLINK C7-max C7-min SCANCOL Figure 36 - SCANLINK SCANCOL Output Delay Timing SCANCLK C1 C2 SCANLINK C3 C4 SCANCOL Figure 37 - SCANLINK, SCANCOL Setup Timing 158 Zarlink Semiconductor Inc. ZL50418 Data Sheet -25 MHz Symbol Parameter Min. (ns) Max. (ns) Note C1 SCANLINK input set-up time 20 C2 SCANLINK input hold time 2 C3 SCANCOL input setup time 20 C4 SCANCOL input hold time 1 C5 SCANLINK output valid delay 0 10 CL = 30 pf C7 SCANCOL output valid delay 0 10 CL = 30 pf Table 29 - SCANLINK, SCANCOL Timing 15.8.8 MDIO Input Setup and Hold Timing MDC D1 D2 MDIO Figure 38 - MDIO Input Setup and Hold Timing MDC D3-max D3-min MDIO Figure 39 - MDIO Output Delay Timing 159 Zarlink Semiconductor Inc. ZL50418 Data Sheet 1 MHz Symbol Parameter Min. (ns) D1 MDIO input setup time 10 D2 MDIO input hold time 2 D3 MDIO output delay time 1 Max. (ns) 20 Note CL = 50 pf Table 30 - MDIO Timing I2C Input Setup Timing 15.8.9 SCL S2 S1 SDA Figure 40 - I 2C Input Setup Timing SCL S3-max S3-min SDA Figure 41 - I2C Output Delay Timing 50 KHz Symbol Parameter Min. (ns) S1 SDA input setup time 20 S2 SDA input hold time 1 S3* SDA output delay time 4 usec Max. (ns) 6 usec * Open Drain Output. Low to High transistor is controlled by external pullup resistor. Table 31 - I2C Timing 160 Zarlink Semiconductor Inc. Note CL = 30 pf ZL50418 15.8.10 Data Sheet Serial Interface Setup Timing STROBE D4 D5 D1 D1 D2 D2 D0 Figure 42 - Serial Interface Setup Timing STROBE D3-max D3-min AutoFd Figure 43 - Serial Interface Output Delay Timing Symbol Parameter Min. (ns) D1 D0 setup time 20 D2 D0 hold time 3 µs D3 AutoFd output delay time D4 Strobe low time 5 µs D5 Strobe high time 5 µs 1 Table 32 - Serial Interface Timing 161 Zarlink Semiconductor Inc. Max. (ns) 50 Note CL = 100 pf E1 DIMENSION A A1 A2 D D1 E E1 b e MIN MAX 2.20 2.46 0.50 0.70 1.17 REF 37.70 37.30 34.50 REF 37.70 37.30 34.50 REF 0.60 0.90 1.27 553 Conforms to JEDEC MS - 034 E e D D1 A2 b NOTE: 1. CONTROLLING DIMENSIONS ARE IN MM 2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER 3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 4. N IS THE NUMBER OF SOLDER BALLS 5. NOT TO SCALE. 6. SUBSTRATE THICKNESS IS 0.56 MM Package Code ISSUE ACN DATE APPRD. Previous package codes: For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE