Revised March 2001 74LCX573 Low Voltage Octal Latch with 5V Tolerant Inputs and Outputs General Description Features The LCX573 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (OE) inputs. ■ 5V tolerant inputs and outputs The LCX573 is functionally identical to the LCX373 but has inputs and outputs on opposite sides. The LCX573 is designed for low voltage (3.3V or 2.5V) applications with capability of interfacing to a 5V signal environment. The LCX573 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation. ■ 2.3V–3.6V VCC specifications provided ■ 7.0 ns tPD max (VCC = 3.3V), 10 µA ICC max ■ Power down high impedance inputs and outputs ■ Supports live insertion/withdrawal (Note 1) ■ ±24 mA output drive (VCC = 3.0V) ■ Implements patented noise/EMI reduction circuitry ■ Latch-up performance exceeds 500 mA ■ ESD performance: Human body model > 2000V Machine model > 200V Note 1: To ensure the high-impedance state during power up or down, OE should be tied to VCC through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver. Ordering Code: Order Number Package Number 74LCX573WM M20B 74LCX573SJ Package Description 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide M20D 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide 74LCX573MSA MSA20 20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide 74LCX573MTC MTC20 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code. Logic Symbol Connection Diagram Pin Descriptions Pin Names D0–D7 Description Data Inputs LE Latch Enable Input OE 3-STATE Output Enable Input O0–O7 3-STATE Latch Outputs © 2001 Fairchild Semiconductor Corporation DS012405 www.fairchildsemi.com 74LCX573 Low Voltage Octal Latch with 5V Tolerant Inputs and Outputs March 1995 74LCX573 Functional Description Truth Table The LCX573 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (OE) input. When OE is LOW, the buffers are enabled. When OE is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches. Inputs Outputs OE LE D On L H H H L H L L L L X O0 H X X Z H = HIGH Voltage L = LOW Voltage Z = High Impedance X = Immaterial O0 = Previous O0 before HIGH-to-LOW transition of Latch Enable Logic Diagram Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. www.fairchildsemi.com 2 Symbol Parameter Value Conditions Units VCC Supply Voltage −0.5 to +7.0 VI DC Input Voltage −0.5 to +7.0 VO DC Output Voltage −0.5 to +7.0 Output in 3-STATE −0.5 to VCC + 0.5 Output in HIGH or LOW State (Note 3) V V IIK DC Input Diode Current −50 VI < GND IOK DC Output Diode Current −50 VO < GND +50 VO > VCC V mA mA IO DC Output Source/Sink Current ±50 mA ICC DC Supply Current per Supply Pin ±100 mA IGND DC Ground Current per Ground Pin ±100 mA TSTG Storage Temperature −65 to +150 °C Recommended Operating Conditions (Note 4) Symbol VCC Parameter Supply Voltage VI Input Voltage VO Output Voltage IOH/IOL Output Current TA Free-Air Operating Temperature ∆t/∆V Input Edge Rate, VIN = 0.8V − 2.0V, VCC = 3.0V Min Max Operating 2.0 3.6 Data Retention 1.5 3.6 0 5.5 HIGH or LOW State 0 VCC 3-STATE 0 5.5 VCC = 3.0V − 3.6V ±24 VCC = 2.7V − 3.0V ±12 VCC = 2.3V − 2.7V ±8 Units V V V mA −40 85 °C 0 10 ns/V Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The “Recommended Operating Conditions” table will define the conditions for actual device operation. Note 3: IO Absolute Maximum Rating must be observed. Note 4: Unused (inputs or I/O's) must be held HIGH or LOW. They may not float. DC Electrical Characteristics Symbol VIH VIL VOH VOL Parameter Conditions HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage LOW Level Output Voltage IOH = −100 µA VCC TA = −40°C to +85°C (V) Min 2.3 − 2.7 1.7 2.7 − 3.6 2.0 Max V 2.3 − 2.7 0.7 2.7 − 3.6 0.8 2.3 − 3.6 VCC − 0.2 IOH = −8 mA 2.3 1.8 IOH = −12 mA 2.7 2.2 IOH = −18 mA 3.0 2.4 IOH = −24 mA 3.0 2.2 IOL = 100 µA 2.3 − 3.6 Units V V 0.2 IOL = 8 mA 2.3 0.6 IOL = 12 mA 2.7 0.4 IOL = 16 mA 3.0 0.4 V IOL = 24 mA 3.0 0.55 II Input Leakage Current 0 ≤ VI ≤ 5.5V 2.3 − 3.6 ±5.0 µA IOZ 3-STATE Output Leakage 0 ≤ VO ≤ 5.5V 2.3 − 3.6 ±5.0 µA 0 10 µA VI = V IH or VIL IOFF Power-Off Leakage Current VI or VO = 5.5V 3 www.fairchildsemi.com 74LCX573 Absolute Maximum Ratings(Note 2) 74LCX573 DC Electrical Characteristics Symbol Parameter (Continued) VCC Conditions (V) Quiescent Supply Current ICC ∆ICC Increase in ICC per Input TA = −40°C to +85°C Min Units Max VI = VCC or GND 2.3 − 3.6 10 3.6V ≤ VI, VO ≤ 5.5V (Note 5) 2.3 − 3.6 ±10 VIH = VCC −0.6V 2.3 − 3.6 500 µA µA Note 5: Outputs disabled or 3-STATE only. AC Electrical Characteristics TA = −40°C to +85°C, RL = 500 Ω Symbol Parameter VCC = 3.3V ± 0.3V VCC = 2.7V VCC = 2.5 ± 0.2V CL = 50pF CL = 50pF CL = 30pF Min Max Min Max Min Max tPHL Propagation Delay 1.5 8.0 1.5 9.0 1.5 9.6 tPLH Dn to On 1.5 8.0 1.5 9.0 1.5 9.6 tPHL Propagation Delay 1.5 8.5 1.5 9.5 1.5 10.5 tPLH LE to On 1.5 8.5 1.5 9.5 1.5 10.5 tPZL Output Enable Time 1.5 8.5 1.5 9.5 1.5 10.5 1.5 8.5 1.5 9.5 1.5 10.5 tPZH tPLZ Output Disable Time tPHZ 1.5 6.5 1.5 7.0 1.5 7.8 1.5 6.5 1.5 7.0 1.5 7.8 Units ns ns ns ns tS Setup Time, Dn to LE 2.5 2.5 4.0 ns tH Hold Time, Dn to LE 1.5 1.5 2.0 ns tW LE Pulse Width 3.3 3.3 4.0 ns tOSHL Output to Output Skew (Note 6) 1.0 tOSLH ns 1.0 Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH). Dynamic Switching Characteristics Symbol VOLP VOLV VCC TA = 25°C (V) Typical CL = 50 pF, VIH = 3.3V, VIL = 0V 3.3 0.8 CL = 30 pF, VIH = 2.5V, VIL = 0V 2.5 0.6 CL = 50 pF, VIH = 3.3V, VIL = 0V 3.3 −0.8 CL = 30 pF, VIH = 2.5V, VIL = 0V 2.5 −0.6 Parameter Quiet Output Dynamic Peak VOL Quiet Output Dynamic Valley VOL Conditions Units V V Capacitance Typical Units CIN Symbol Input Capacitance Parameter VCC = Open, VI = 0V or VCC 7 pF COUT Output Capacitance VCC = 3.3V, VI = 0V or VCC 8 pF CPD Power Dissipation Capacitance VCC = 3.3V, VI = 0V or VCC, f = 10 MHz 25 pF www.fairchildsemi.com Conditions 4 74LCX573 AC LOADING and WAVEFORMS Generic for LCX Family FIGURE 1. AC Test Circuit (CL includes probe and jig capacitance) Test Switch tPLH, tPHL Open tPZL, tPLZ 6V at VCC = 3.3 ± 0.3V VCC x 2 at VCC = 2.5 ± 0.2V tPZH,tPHZ GND Waveform for Inverting and Non-Inverting Functions 3-STATE Output High Enable and Disable Times for Logic Propagation Delay. Pulse Width and trec Waveforms Setup Time, Hold Time and Recovery Time for Logic trise and tfall 3-STATE Output Low Enable and Disable Times for Logic FIGURE 2. Waveforms (Input Characteristics; f =1MHz, tr = tf = 3ns) Symbol VCC 3.3V ± 0.3V 2.7V 2.5V ± 0.2V Vmi 1.5V 1.5V VCC/2 Vmo 1.5V 1.5V VCC/2 Vx VOL + 0.3V VOL + 0.3V VOL + 0.15V Vy VOH − 0.3V VOH − 0.3V VOH − 0.15V 5 www.fairchildsemi.com 74LCX573 Schematic Diagram Generic for LCX Family www.fairchildsemi.com 6 74LCX573 Physical Dimensions inches (millimeters) unless otherwise noted 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B 7 www.fairchildsemi.com 74LCX573 Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D www.fairchildsemi.com 8 74LCX573 Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20 9 www.fairchildsemi.com 74LCX573 Low Voltage Octal Latch with 5V Tolerant Inputs and Outputs Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20 Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. www.fairchildsemi.com www.fairchildsemi.com 10