74LVC1G10 Single 3-input NAND gate Rev. 01 — 2 October 2007 Product data sheet 1. General description The 74LVC1G10 provides a low-power, low-voltage single 3-input NAND gate. The inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device in a mixed 3.3 V and 5 V environment. Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall time. This device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. 2. Features ■ Wide supply voltage range from 1.65 V to 5.5 V ■ High noise immunity ■ Complies with JEDEC standard: ◆ JESD8-7 (1.65 V to 1.95 V) ◆ JESD8-5 (2.3 V to 2.7 V) ◆ JESD8-B/JESD36 (2.7 V to 3.6 V). ■ ±24 mA output drive (VCC = 3.0 V) ■ CMOS low power consumption ■ Latch-up performance exceeds 250 mA ■ Direct interface with TTL levels ■ Inputs accept voltages up to 5 V ■ ESD protection: ◆ HBM JESD22-A114E exceeds 2000 V ◆ MM JESD22-A115-A exceeds 200 V ◆ CDM JESD22-C101-C exceeds 1000 V ■ Multiple package options ■ Specified from −40 °C to +85 °C and −40 °C to +125 °C 74LVC1G10 NXP Semiconductors Single 3-input NAND gate 3. Ordering information Table 1. Ordering information Type number Package Temperature range Name Description Version 74LVC1G10GW −40 °C to +125 °C SC-88 plastic surface-mounted package; 6 leads SOT363 74LVC1G10GV −40 °C to +125 °C SC-74 plastic surface-mounted package (TSOP6); 6 leads SOT457 74LVC1G10GM −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads; 6 terminals; body 1 × 1.45 × 0.5 mm SOT886 74LVC1G10GF −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads; 6 terminals; body 1 × 1 × 0.5 mm SOT891 4. Marking Table 2. Marking Type number Marking code 74LVC1G10GW YM 74LVC1G10GV YM 74LVC1G10GM YM 74LVC1G10GF YM 5. Functional diagram A B C 1 A 4 3 Y 6 001aag686 Fig 1. Logic symbol 1 3 6 & B 001aag687 Fig 2. IEC logic symbol 74LVC1G10_1 Product data sheet Y 4 C 001aag688 Fig 3. Logic diagram © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 2 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate 6. Pinning information 6.1 Pinning 74LVC1G10 74LVC1G10 A 1 6 A 1 6 C GND 2 5 VCC C GND 2 5 VCC B 3 4 Y B 3 4 Y 74LVC1G10 A 1 6 C GND 2 5 VCC B 3 4 Y 001aag690 001aag691 Transparent top view Transparent top view 001aag689 Fig 4. Pin configuration SOT363 and SOT457 Fig 5. Pin configuration SOT886 Fig 6. Pin configuration SOT891 6.2 Pin description Table 3. Pin description Symbol Pin Description A 1 data input GND 2 ground (0 V) B 3 data input Y 4 data output VCC 5 supply voltage C 6 data input 7. Functional description Table 4. Function table[1] Input Output A B C Y H H H L L X X H X L X H X X L H [1] H = HIGH voltage level; L = LOW voltage level; X = don’t care. 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 3 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter VCC supply voltage IIK input clamping current VI input voltage IOK output clamping current output voltage VO IO output current ICC supply current IGND ground current Ptot total power dissipation Tstg storage temperature Conditions VI < 0 V [1] Min Max Unit −0.5 +6.5 V −50 - mA −0.5 +6.5 V - ±50 mA Active mode [1][2] −0.5 VCC + 0.5 V Power-down mode [1][2] −0.5 +6.5 V - ±50 mA - 100 mA −100 - mA - 250 mW −65 +150 °C VO > VCC or VO < 0 V VO = 0 V to VCC Tamb = −40 °C to +125 °C [3] [1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. [2] When VCC = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation. [3] For SC-88 and SC-74A packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K. For XSON6 packages: above 45 °C the value of Ptot derates linearly with 2.4 mW/K. 9. Recommended operating conditions Table 6. Recommended operating conditions Symbol Parameter VCC Min Typ Max Unit supply voltage 1.65 - 5.5 V VI input voltage 0 - 5.5 V VO output voltage Tamb ambient temperature ∆t/∆V input transition rise and fall rate Conditions Active mode 0 - VCC V Power-down mode; VCC = 0 V 0 - 5.5 V −40 - +125 °C VCC = 1.65 V to 2.7 V - - 20 ns/V VCC = 2.7 V to 5.5 V - - 10 ns/V 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 4 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate 10. Static characteristics Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter HIGH-level input voltage VIH LOW-level input voltage VIL VOH HIGH-level output voltage −40 °C to +85 °C Conditions VCC = 1.65 V to 1.95 V Min Max Min Max Unit 0.65VCC - - 0.65VCC - V VCC = 2.3 V to 2.7 V 1.7 - - 1.7 - V VCC = 2.7 V to 3.6 V 2.0 - - 2.0 - V VCC = 4.5 V to 5.5 V 0.7VCC - - 0.7VCC - V VCC = 1.65 V to 1.95 V - - 0.35VCC - VCC = 2.3 V to 2.7 V - - 0.7 - 0.7 V VCC = 2.7 V to 3.6 V - - 0.8 - 0.8 V VCC = 4.5 V to 5.5 V - - 0.3VCC - 0.3VCC V VCC − 0.1 - - VCC − 0.1 - V 1.2 - - 0.95 - V 0.35VCC V VI = VIH or VIL IO = −100 µA; VCC = 1.65 V to 5.5 V IO = −4 mA; VCC = 1.65 V IO = −8 mA; VCC = 2.3 V 1.9 - - 1.7 - V IO = −12 mA; VCC = 2.7 V 2.2 - - 1.9 - V IO = −24 mA; VCC = 3.0 V 2.3 - - 2.0 - V IO = −32 mA; VCC = 4.5 V 3.8 - - 3.4 - V - - 0.10 - 0.10 V - - 0.45 - 0.70 V LOW-level output VI = VIH or VIL voltage IO = 100 µA; VCC = 1.65 V to 5.5 V VOL −40 °C to +125 °C Typ[1] IO = 4 mA; VCC = 1.65 V IO = 8 mA; VCC = 2.3 V - - 0.30 - 0.45 V IO = 12 mA; VCC = 2.7 V - - 0.40 - 0.60 V IO = 24 mA; VCC = 3.0 V - - 0.55 - 0.80 V IO = 32 mA; VCC = 4.5 V - - 0.55 - 0.80 V II input leakage current VI = 5.5 V or GND; VCC = 0 V to 5.5 V - ±0.1 ±5 - ±100 µA IOFF power-off leakage current VI or VO = 5.5 V; VCC = 0 V - ±0.1 ±10 - ±200 µA ICC supply current VI = 5.5 V or GND; IO = 0 A; VCC = 1.65 V to 5.5 V - 0.1 10 - 200 µA ∆ICC additional supply VI = VCC − 0.6 V; IO = 0 A; current VCC = 2.3 V to 5.5 V; per pin - 5 500 - 5000 µA CI input capacitance - 3 - - - pF [1] VCC = 3.3 V; VI = GND to VCC All typical values are measured at Tamb = 25 °C. 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 5 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate 11. Dynamic characteristics Table 8. Dynamic characteristics Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 8. Symbol Parameter −40 °C to +85 °C Conditions Min Max Min Max VCC = 1.65 V to 1.95 V 1.5 4.7 18.0 1.5 21.5 ns VCC = 2.3 V to 2.7 V 1.0 3.0 6.5 1.0 7.8 ns VCC = 2.7 V 1.0 3.0 6.0 1.0 7.5 ns VCC = 3.0 V to 3.6 V 1.0 2.6 5.0 1.0 6.2 ns VCC = 4.5 V to 5.5 V 1.0 1.9 3.6 1.0 4.4 ns - 12 - - - pF [2] propagation delay A, B and C to Y; see Figure 7 tpd power dissipation capacitance CPD −40 °C to +125 °C Unit Typ[1] [3] VI = GND to VCC; VCC = 3.3 V [1] Typical values are measured at Tamb = 25 °C and VCC = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively. [2] tpd is the same as tPLH and tPHL. [3] CPD is used to determine the dynamic power dissipation (PD in µW). PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; Σ(CL × VCC2 × fo) = sum of the outputs. 12. Waveforms VI A, B, C, input VM GND tPLH tPHL VOH VM Y output VOL 001aag692 Measurement points are given in Table 9. VOL and VOH are typical output voltage levels that occur with the output load. Fig 7. The input (A, B, C) to output (Y) propagation delays 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 6 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate Table 9. Measurement points Supply voltage Input Output VCC VM VM 1.65 V to 1.95 V 0.5VCC 0.5VCC 2.3 V to 2.7 V 0.5VCC 0.5VCC 2.7 V 1.5 V 1.5 V 3.0 V to 3.6 V 1.5 V 1.5 V 4.5 V to 5.5 V 0.5VCC 0.5VCC VEXT VCC VI RL VO G DUT RT CL RL mna616 Test data is given in Table 10. Definitions for test circuit: RL = Load resistance. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance should be equal to the output impedance Zo of the pulse generator. VEXT = External voltage for measuring switching times. Fig 8. Load circuit for switching times Table 10. Test data Supply voltage Input Load VEXT VCC VI tr = t f CL RL tPLH, tPHL 1.65 V to 1.95 V VCC ≤ 2.0 ns 30 pF 1 kΩ open 2.3 V to 2.7 V VCC ≤ 2.0 ns 30 pF 500 Ω open 2.7 V 2.7 V ≤ 2.5 ns 50 pF 500 Ω open 3.0 V to 3.6 V 2.7 V ≤ 2.5 ns 50 pF 500 Ω open 4.5 V to 5.5 V VCC ≤ 2.5 ns 50 pF 500 Ω open 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 7 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate 13. Package outline Plastic surface-mounted package; 6 leads SOT363 D E B y X A HE 6 5 v M A 4 Q pin 1 index A A1 1 2 e1 3 bp c Lp w M B e detail X 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A A1 max bp c D E e e1 HE Lp Q v w y mm 1.1 0.8 0.1 0.30 0.20 0.25 0.10 2.2 1.8 1.35 1.15 1.3 0.65 2.2 2.0 0.45 0.15 0.25 0.15 0.2 0.2 0.1 OUTLINE VERSION REFERENCES IEC SOT363 JEDEC JEITA SC-88 EUROPEAN PROJECTION ISSUE DATE 04-11-08 06-03-16 Fig 9. Package outline SOT363 (SC-88) 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 8 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate Plastic surface-mounted package (TSOP6); 6 leads D SOT457 E B y A HE 6 X v M A 4 5 Q pin 1 index A A1 c 1 2 3 Lp bp e w M B detail X 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A A1 bp c D E e HE Lp Q v w y mm 1.1 0.9 0.1 0.013 0.40 0.25 0.26 0.10 3.1 2.7 1.7 1.3 0.95 3.0 2.5 0.6 0.2 0.33 0.23 0.2 0.2 0.1 OUTLINE VERSION REFERENCES IEC SOT457 JEDEC JEITA SC-74 EUROPEAN PROJECTION ISSUE DATE 05-11-07 06-03-16 Fig 10. Package outline SOT457 (SC-74) 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 9 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm SOT886 b 1 2 3 4× (2) L L1 e 6 5 4 e1 e1 6× A (2) A1 D E terminal 1 index area 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A (1) max A1 max b D E e e1 L L1 mm 0.5 0.04 0.25 0.17 1.5 1.4 1.05 0.95 0.6 0.5 0.35 0.27 0.40 0.32 Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. OUTLINE VERSION SOT886 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 04-07-15 04-07-22 MO-252 Fig 11. Package outline SOT886 (XSON6) 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 10 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm 1 SOT891 b 3 2 4× (1) L L1 e 6 5 4 e1 e1 6× A (1) A1 D E terminal 1 index area 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max A1 max b D E e e1 L L1 mm 0.5 0.04 0.20 0.12 1.05 0.95 1.05 0.95 0.55 0.35 0.35 0.27 0.40 0.32 Note 1. Can be visible in some manufacturing processes. OUTLINE VERSION REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 05-04-06 07-05-15 SOT891 Fig 12. Package outline SOT891 (XSON6) 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 11 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate 14. Abbreviations Table 11. Abbreviations Acronym Description CDM Charged Device Model CMOS Complementary Metal Oxide Semiconductor DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model TTL Transistor-Transistor Logic 15. Revision history Table 12. Revision history Document ID Release date Data sheet status Change notice Supersedes 74LVC1G10_1 20071002 Product data sheet - - 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 12 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate 16. Legal information 16.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 16.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 16.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 17. Contact information For additional information, please visit: http://www.nxp.com For sales office addresses, send an email to: [email protected] 74LVC1G10_1 Product data sheet © NXP B.V. 2007. All rights reserved. Rev. 01 — 2 October 2007 13 of 14 74LVC1G10 NXP Semiconductors Single 3-input NAND gate 18. Contents 1 2 3 4 5 6 6.1 6.2 7 8 9 10 11 12 13 14 15 16 16.1 16.2 16.3 16.4 17 18 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Functional description . . . . . . . . . . . . . . . . . . . 3 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4 Recommended operating conditions. . . . . . . . 4 Static characteristics. . . . . . . . . . . . . . . . . . . . . 5 Dynamic characteristics . . . . . . . . . . . . . . . . . . 6 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package outline . . . . . . . . . . . . . . . . . . . . . . . . . 8 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 12 Legal information. . . . . . . . . . . . . . . . . . . . . . . 13 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 13 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Contact information. . . . . . . . . . . . . . . . . . . . . 13 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2007. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 2 October 2007 Document identifier: 74LVC1G10_1