IDT 89HPES12T3G2ZABCG

89HPES12T3G2
Data Sheet
12-Lane 3-Port
Gen2 PCI Express® Switch
Advance Information*
®
Device Overview
Legacy Support
– PCI compatible INTx emulation
– Bus locking
◆
Highly Integrated Solution
– Incorporates on-chip internal memory for packet buffering and
queueing
– Integrates twelve 5 Gbps embedded SerDes with 8b/10b
encoder/decoder (no separate transceivers needed)
• Receive equalization (RxEQ)
◆
Reliability, Availability, and Serviceability (RAS) Features
– Internal end-to-end parity protection on all TLPs ensures data
integrity even in systems that do not implement end-to-end
CRC (ECRC)
– Supports ECRC and Advanced Error Reporting
– Supports PCI Express Native Hot-Plug, Hot-Swap capable I/O
– Compatible with Hot-Plug I/O expanders used on PC motherboards
– Supports Hot-Swap
◆ Power Management
– Utilizes advanced low-power design techniques to achieve low
typical power consumption
– Support PCI Express Power Management Interface specification (PCI-PM 2.0)
The 89HPES12T3G2 is a member of IDT’s PRECISE™ family of PCI
Express® switching solutions. The PES12T3G2 is a 12-lane, 3-port
Gen2 peripheral chip that performs PCI Express Base switching with a
feature set optimized for high performance applications such as servers,
storage, and communications/networking. It provides connectivity and
switching functions between a PCI Express upstream port and two
downstream ports and supports switching between downstream ports.
Features
High Performance PCI Express Switch
– Twelve 5 Gbps Gen2 PCI Express lanes
– Three switch ports
• One x4 upstream port
• Two x4 downstream ports
– Low latency cut-through switch architecture
– Support for Max Payload Size up to 2048 bytes
– One virtual channel
– Eight traffic classes
– PCI Express Base Specification Revision 2.0 compliant
◆
Flexible Architecture with Numerous Configuration Options
– Automatic per port link width negotiation to x4, x2 or x1
– Automatic lane reversal on all ports
– Automatic polarity inversion
– Ability to load device configuration from serial EEPROM
◆
Block Diagram
3-Port Switch Core / 12 PCI Express Lanes
Frame Buffer
Port
Arbitration
Route Table
Scheduler
Transaction Layer
Transaction Layer
Transaction Layer
Data Link Layer
Data Link Layer
Data Link Layer
Multiplexer / Demultiplexer
Multiplexer / Demultiplexer
Multiplexer / Demultiplexer
Phy
Logical
Layer
Phy
Logical
Layer
Phy
Logical
Layer
SerDes
SerDes
SerDes
(Port 0)
(Port 2)
(Port 4)
Figure 1 Internal Block Diagram
IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.
1 of 31
© 2007 Integrated Device Technology, Inc.
*Notice: The information in this document is subject to change without notice
September 4, 2007
DSC 6930
Advance Information
◆
IDT 89HPES12T3G2 Data Sheet
Product Description
Utilizing standard PCI Express interconnect, the PES12T3G2
provides the most efficient fan-out solution for applications requiring high
throughput, low latency, and simple board layout with a minimum
number of board layers. It provides 12 GBps (96 Gbps) of aggregated,
full-duplex switching capacity through 12 integrated serial lanes, using
proven and robust IDT technology. Each lane provides 5 Gbps of bandwidth in both directions and is fully compliant with PCI Express Base
Specification, Revision 2.0.
SMBus Interface
The PES12T3G2 contains two SMBus interfaces. The slave interface provides full access to the configuration registers in the
PES12T3G2, allowing every configuration register in the device to be
read or written by an external agent. The master interface allows the
default configuration register values of the PES12T3G2 to be overridden following a reset with values programmed in an external serial
EEPROM. The master interface is also used by an external Hot-Plug I/O
expander.
Six pins make up each of the two SMBus interfaces. These pins
consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus
address pins. In the slave interface, these address pins allow the
SMBus address to which the device responds to be configured. In the
master interface, these address pins allow the SMBus address of the
serial configuration EEPROM from which data is loaded to be configured. The SMBus address is set up on negation of PERSTN by
sampling the corresponding address pins. When the pins are sampled,
the resulting address is assigned as shown in Table 1.
The PES12T3G2 is based on a flexible and efficient layered architecture. The PCI Express layer consists of SerDes, Physical, Data Link and
Transaction layers in compliance with PCI Express Base specification
Revision 2.0. The PES12T3G2 can operate either as a store and
forward or cut-through switch and is designed to switch memory and I/O
transactions. It supports eight Traffic Classes (TCs) and one Virtual
Channel (VC) with sophisticated resource management to enable efficient switching and I/O connectivity for servers, storage, and embedded
processors with limited connectivity.
Processor
Processor
Memory
Memory
Memory
Memory
North
Bridge
x4
PES12T3G2
x4
x4
x4
PCI Express
Slot
I/O
10GbE
I/O
10GbE
I/O
SATA
Figure 2 I/O Expansion Application
Bit
Slave
SMBus
Address
Master
SMBus
Address
1
SSMBADDR[1]
MSMBADDR[1]
2
SSMBADDR[2]
MSMBADDR[2]
3
SSMBADDR[3]
MSMBADDR[3]
4
0
MSMBADDR[4]
5
SSMBADDR[5]
1
6
1
0
7
1
1
Table 1 Master and Slave SMBus Address Assignment
As shown in Figure 2, the master and slave SMBuses may be used
in a unified or split configuration. In the unified configuration, shown in
Figure 2(a), the master and slave SMBuses are tied together and the
PES12T3G2 acts both as a SMBus master as well as a SMBus slave on
this bus. This requires that the SMBus master or processor that has
access to PES12T3G2 registers supports SMBus arbitration. In some
systems, this SMBus master interface may be implemented using
general purpose I/O pins on a processor or micro controller, and may
not support SMBus arbitration. To support these systems, the
PES12T3G2 may be configured to operate in a split configuration as
shown in Figure 2(b).
In the split configuration, the master and slave SMBuses operate as
two independent buses and thus multi-master arbitration is never
required. The PES12T3G2 supports reading and writing of the serial
EEPROM on the master SMBus via the slave SMBus, allowing in
system programming of the serial EEPROM.
2 of 31
*Notice: The information in this document is subject to change without notice
September 4, 2007
Advance Information
– Unused SerDes are disabled.
– Supports Advanced Configuration and Power Interface Specification, Revision 2.0 (ACPI) supporting active link state
◆
Testability and Debug Features
– Built in Pseudo-Random Bit Stream (PRBS) generator
– Numerous SerDes test modes
– Ability to read and write any internal register via the SMBus
– Ability to bypass link training and force any link into any mode
– Provides statistics and performance counters
◆
Nine General Purpose Input/Output Pins
– Each pin may be individually configured as an input or output
– Each pin may be individually configured as an interrupt input
– Some pins have selectable alternate functions
◆
Packaged in a 19mm x 19mm, 324-ball BGA with 1mm
ball spacing
IDT 89HPES12T3G2 Data Sheet
PES12T3G2
Processor
SMBus
Master
Serial
EEPROM
...
Other
SMBus
Devices
PES12T3G2
SSMBCLK
SSMBDAT
SSMBCLK
SSMBDAT
MSMBCLK
MSMBDAT
MSMBCLK
MSMBDAT
Processor
SMBus
Master
...
Other
SMBus
Devices
Serial
EEPROM
(b) Split Configuration and Management Buses
(a) Unified Configuration and Management Bus
Figure 2 SMBus Interface Configuration Examples
The PES12T3G2 supports PCI Express Hot-Plug on each downstream port. To reduce the number of pins required on the device, the PES12T3G2
utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following reset and configuration, whenever the state of a Hot-Plug output needs to be modified, the PES12T3G2 generates an SMBus transaction to the I/O expander with the
new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on the IOEXPINTN
input pin (alternate function of GPIO) of the PES12T3G2. In response to an I/O expander interrupt, the PES12T3G2 generates an SMBus transaction
to read the state of all of the Hot-Plug inputs from the I/O expander.
General Purpose Input/Output
The PES12T3G2 provides 9 General Purpose Input/Output (GPIO) pins that may be used by the system designer as bit I/O ports. Each GPIO pin
may be configured independently as an input or output through software control. Some GPIO pins are shared with other on-chip functions. These
alternate functions may be enabled via software, SMBus slave interface, or serial configuration EEPROM.
3 of 31
September 4, 2007
Advance Information
Hot-Plug Interface
IDT 89HPES12T3G2 Data Sheet
Pin Description
The following tables list the functions of the pins provided on the PES12T3G2. Some of the functions listed may be multiplexed onto the same pin.
The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low)
level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.
Signal
Type
Name/Description
PE0RP[3:0]
PE0RN[3:0]
I
PCI Express Port 0 Serial Data Receive. Differential PCI Express receive
pairs for port 0. Port 0 is the upstream port.
PE0TP[3:0]
PE0TN[3:0]
O
PCI Express Port 0 Serial Data Transmit. Differential PCI Express transmit pairs for port 0. Port 0 is the upstream port.
PE2RP[3:0]
PE2RN[3:0]
I
PCI Express Port 2 Serial Data Receive. Differential PCI Express receive
pairs for port 2.
PE2TP[3:0]
PE2TN[3:0]
O
PCI Express Port 2 Serial Data Transmit. Differential PCI Express transmit pairs for port 2.
PE4RP[3:0]
PE4RN[3:0]
I
PCI Express Port 4 Serial Data Receive. Differential PCI Express receive
pairs for port 4.
PE4TP[3:0]
PE4TN[3:0]
O
PCI Express Port 4 Serial Data Transmit. Differential PCI Express transmit pairs for port 4.
PEREFCLKP[0]
PEREFCLKN[0]
I
PCI Express Reference Clock. Differential reference clock pair input. This
clock is used as the reference clock by on-chip PLLs to generate the clocks
required for the system logic and on-chip SerDes. The frequency of the differential reference clock is determined by the REFCLKM signal.
REFCLKM
I
PCI Express Reference Clock Mode Select. This signal selects the frequency of the reference clock input.
0x0 - 100 MHz
0x1 - 125 MHz
This pin should be static and not change following the negation of
PERSTN.
Advance Information
Note: In the PES12T3G2, the two downstream ports are labeled port 2 and port 4.
Table 2 PCI Express Interface Pins
Signal
Type
Name/Description
MSMBADDR[4:1]
I
Master SMBus Address. These pins determine the SMBus address of the
serial EEPROM from which configuration information is loaded.
MSMBCLK
I/O
Master SMBus Clock. This bidirectional signal is used to synchronize
transfers on the master SMBus.
MSMBDAT
I/O
Master SMBus Data. This bidirectional signal is used for data on the master SMBus.
SSMBADDR[5,3:1]
I
SSMBCLK
I/O
Slave SMBus Clock. This bidirectional signal is used to synchronize transfers on the slave SMBus.
SSMBDAT
I/O
Slave SMBus Data. This bidirectional signal is used for data on the slave
SMBus.
Slave SMBus Address. These pins determine the SMBus address to
which the slave SMBus interface responds.
Table 3 SMBus Interface Pins
4 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Type
Name/Description
GPIO[0]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P2RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 2.
GPIO[1]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P4RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 4.
GPIO[2]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN0
Alternate function pin type: Input
Alternate function: I/O expander interrupt 0 input.
GPIO[3]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[4]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN2
Alternate function pin type: Input
Alternate function: I/O Expander interrupt 2 input
GPIO[5]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[6]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[7]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: GPEN
Alternate function pin type: Output
Alternate function: General Purpose Event (GPE) output
GPIO[11]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Advance Information
Signal
Table 4 General Purpose I/O Pins
5 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Type
Name/Description
CCLKDS
I
Common Clock Downstream. The assertion of this pin indicates that all
downstream ports are using the same clock source as that provided to
downstream devices.This bit is used as the initial value of the Slot Clock
Configuration bit in all of the Link Status Registers for downstream ports.
The value may be overridden by modifying the SCLK bit in each downstream port’s PCIELSTS register.
CCLKUS
I
Common Clock Upstream. The assertion of this pin indicates that the
upstream port is using the same clock source as the upstream device. This
bit is used as the initial value of the Slot Clock Configuration bit in the Link
Status Register for the upstream port. The value may be overridden by
modifying the SCLK bit in the P0_PCIELSTS register.
MSMBSMODE
I
Master SMBus Slow Mode. The assertion of this pin indicates that the
master SMBus should operate at 100 KHz instead of 400 KHz. This value
may not be overridden.
PERSTN
I
Fundamental Reset. Assertion of this signal resets all logic inside
PES12T3G2 and initiates a PCI Express fundamental reset.
RSTHALT
I
Reset Halt. When this signal is asserted during a PCI Express fundamental
reset, PES12T3G2 executes the reset procedure and remains in a reset
state with the Master and Slave SMBuses active. This allows software to
read and write registers internal to the device before normal device operation begins. The device exits the reset state when the RSTHALT bit is
cleared in the SWCTL register by an SMBus master.
SWMODE[2:0]
I
Switch Mode. These configuration pins determine the PES12T3G2 switch
operating mode.
0x0 - Normal switch mode
0x1 - Normal switch mode with Serial EEPROM initialization
0x2 - through 0x7 Reserved
These pins should be static and not change following the negation of
PERSTN.
Advance Information
Signal
Table 5 System Pins
Signal
Type
Name/Description
JTAG_TCK
I
JTAG Clock. This is an input test clock used to clock the shifting of data
into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is
independent of the system clock with a nominal 50% duty cycle.
JTAG_TDI
I
JTAG Data Input. This is the serial data input to the boundary scan logic or
JTAG Controller.
Table 6 Test Pins (Part 1 of 2)
6 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Signal
Type
Name/Description
JTAG_TDO
O
JTAG Data Output. This is the serial data shifted out from the boundary
scan logic or JTAG Controller. When no data is being shifted out, this signal
is tri-stated.
JTAG_TMS
I
JTAG Mode. The value on this signal controls the test mode select of the
boundary scan logic or JTAG Controller.
JTAG_TRST_N
I
JTAG Reset. This active low signal asynchronously resets the boundary
scan logic and JTAG TAP Controller. An external pull-up on the board is
recommended to meet the JTAG specification in cases where the tester
can access this signal. However, for systems running in functional mode,
one of the following should occur:
1) actively drive this signal low with control logic
2) statically drive this signal low with an external pull-down on the board
Signal
Type
Name/Description
REFRES0
I/O
Port 0 External Reference Resistor. Provides a reference for the Port 0
SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resistor should be connected from this pin to ground.
REFRES2
I/O
Port 2 External Reference Resistor. Provides a reference for the Port 2
SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resistor should be connected from this pin to ground.
REFRES4
I/O
Port 4 External Reference Resistor. Provides a reference for the Port 4
SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resistor should be connected from this pin to ground.
VDDCORE
I
Core VDD. Power supply for core logic.
VDDI/O
I
I/O VDD. LVTTL I/O buffer power supply.
VDDPEA
I
PCI Express Analog Power. Serdes analog power supply (1.0V).
VDDPEHA
I
PCI Express Analog High Power. Serdes analog power supply (2.5V).
VDDPETA
I
PCI Express Transmitter Analog Voltage. Serdes transmitter analog
power supply (1.0V).
VSS
I
Ground.
Advance Information
Table 6 Test Pins (Part 2 of 2)
Table 7 Power, Ground, and SerDes Resistor Pins
7 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Pin Characteristics
Note: Some input pads of the PES12T3G2 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate
levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left
floating can cause a slight increase in power consumption.
PCI Express Interface
SMBus
Type
Buffer
I/O
Type
PE0RN[3:0]
I
CML
Serial Link
PE0RP[3:0]
I
PE0TN[3:0]
O
PE0TP[3:0]
O
PE2RN[3:0]
I
PE2RP[3:0]
I
PE2TN[3:0]
O
PE2TP[3:0]
O
PE4RN[3:0]
I
PE4RP[3:0]
I
PE4TN[3:0]
O
PE4TP[3:0]
O
PEREFCLKN[0]
I
PEREFCLKP[0]
I
REFCLKM
I
LVTTL
Input
pull-down
I
LVTTL
Input
pull-up
Pin Name
MSMBADDR[4:1]
Internal
Resistor1
Diff. Clock
Input
Notes
Refer to Table 9
MSMBCLK
I/O
STI2
pull-up on board
MSMBDAT
I/O
STI
pull-up on board
I
Input
SSMBADDR[5,3:1]
pull-up
SSMBCLK
I/O
STI
pull-up on board
SSMBDAT
I/O
STI
pull-up on board
General Purpose I/O
GPIO[15:0]
I/O
LVTTL
STI,
High Drive
pull-up
System Pins
CCLKDS
I
LVTTL
Input
pull-up
CCLKUS
I
Input
pull-up
MSMBSMODE
I
Input
pull-down
EJTAG / JTAG
PERSTN
I
STI
RSTHALT
I
Input
pull-down
SWMODE[2:0]
I
Input
pull-down
JTAG_TCK
I
STI
pull-up
STI
pull-up
LVTTL
JTAG_TDI
I
JTAG_TDO
O
JTAG_TMS
I
STI
pull-up
JTAG_TRST_N
I
STI
pull-up
Table 8 Pin Characteristics (Part 1 of 2)
8 of 31
September 4, 2007
Advance Information
Function
IDT 89HPES12T3G2 Data Sheet
Function
SerDes Reference
Resistors
Pin Name
Type
Buffer
REFRES0
I/O
Analog
REFRES2
I/O
REFRES4
I/O
I/O
Type
Internal
Resistor1
Notes
Table 8 Pin Characteristics (Part 2 of 2)
1. Internal
Schmitt Trigger Input (STI).
Advance Information
2.
resistor values under typical operating conditions are 92K Ω for pull-up and 90K Ω for pull-down.
9 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Logic Diagram — PES12T3G2
Reference Clock
Frequency Selection
PEREFCLKP[0]
PEREFCLKN[0]
REFCLKM
PCI Express
Switch
SerDes Input
Port 2
PE2RP[0]
PE2RN[0]
PCI Express
Switch
SerDes Input
Port 4
PE4RP[0]
PE4RN[0]
System
Pins
PE2TP[0]
PE2TN[0]
...
PE2TP[3]
PE2TN[3]
PE2RP[3]
PE2RN[3]
PE4TP[0]
PE4TN[0]
...
...
Slave
SMBus Interface
PE0TP[3]
PE0TN[3]
PE0RP[3]
PE0RN[3]
...
Master
SMBus Interface
PE0TP[0]
PE0TN[0]
...
PE0RP[0]
PE0RN[0]
...
PCI Express
Switch
SerDes Input
Port 0
PE4RP[3]
PE4RN[3]
MSMBADDR[4:1]
MSMBCLK
MSMBDAT
SSMBADDR[5,3:1]
SSMBCLK
SSMBDAT
MSMBSMODE
CCLKDS
CCLKUS
RSTHALT
PERSTN
SWMODE[2:0]
PE4TP[3]
PE4TN[3]
PES12T3G2
9
4
GPIO[11,7:0]
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_TMS
JTAG_TRST_N
4
REFRES0
REFRES2
REFRES4
PCI Express
Switch
SerDes Output
Port 0
PCI Express
Switch
SerDes Output
Port 2
PCI Express
Switch
SerDes Output
Port 4
General Purpose
I/O
JTAG Pins
SerDes
Reference
Resistors
VDDCORE
3
VDDI/O
VDDPEA
VDDPEHA
Power/Ground
VDDPETA
VSS
Figure 3 PES12T3G2 Logic Diagram
10 of 31
September 4, 2007
Advance Information
Reference
Clocks
IDT 89HPES12T3G2 Data Sheet
System Clock Parameters
Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 13 and 14.
Description
Condition
Min
Typical
Max
Unit
100
1251
MHz
RefclkFREQ
Input reference clock frequency range
TC-RISE
Rising edge rate
Differential
0.6
4
V/ns
TC-FALL
Falling edge rate
Differential
0.6
4
V/ns
VIH
Differential input high voltage
Differential
+150
VIL
Differential input low voltage
Differential
VCROSS
Absolute single-ended crossing point
voltage
Single-ended
VCROSS-DELTA
Variation of VCROSS over all rising clock
edges
Single-ended
VRB
Ring back voltage margin
Differential
-100
TSTABLE
Time before VRB is allowed
Differential
500
TPERIOD-AVG
Average clock period accuracy
-300
2800
ppm
TPERIOD-ABS
Absolute period, including spread-spectrum and jitter
9.847
10.203
ns
TCC-JITTER
Cycle to cycle jitter
150
ps
VMAX
Absolute maximum input voltage
+1.15
V
VMIN
Absolute minimum input voltage
-0.3
Duty Cycle
Duty cycle
40
Rise/Fall Matching
Single ended rising Refclk edge rate versus falling Refclk edge rate
ZC-DC
Clock source output DC impedance
mV
+250
-150
mV
+550
mV
+140
mV
+100
mV
ps
V
60
%
20
%
40
Ω
60
Table 9 Input Clock Requirements
1.
The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM.
AC Timing Characteristics
Parameter
Gen 1
Description
Gen 2
Min1
Typ1
Max1
Min1
Typ1
Max1
399.88
400
400.12
199.94
200
200.06
Units
PCIe Transmit
UI
Unit Interval
TTX-EYE
Minimum Tx Eye Width
TTX-EYE-MEDIAN-toMAX-JITTER
Maximum time between the jitter median and maximum deviation from the median
TTX-RISE, TTX-FALL
TX Rise/Fall Time: 20% - 80%
TTX- IDLE-MIN
Minimum time in idle
0.75
0.75
0.125
ps
UI
UI
0.125
0.15
UI
20
20
UI
Table 10 PCIe AC Timing Characteristics (Part 1 of 2)
11 of 31
September 4, 2007
Advance Information
Parameter
IDT 89HPES12T3G2 Data Sheet
Parameter
TTX-IDLE-SET-TO-
Gen 1
Description
Min1
Typ1
Gen 2
Max1
Min1
Typ1
Max1
Units
8
8
ns
IDLE
Maximum time to transition to a valid Idle after sending
an Idle ordered set
TTX-IDLE-TO-DIFF-
Maximum time to transition from valid idle to diff data
8
8
ns
1.3
1.3
ns
DATA
TTX-SKEW
Transmitter data skew between any 2 lanes
TMIN-PULSED
Minimum Instantaneous Lone Pulse Width
TMEAS-HPF
Transmit Jitter Measurement Filter
TTX-HF-DJ-DD
Transmitter Deterministic Jitter > 1.5MHz Bandwidth
NA
0.15
UI
TRF-MISMATCH
Rise/Fall Time Differential Mismatch
NA
0.1
UI
200.06
ps
NA
0.9
HPF: 1.5MHz
UI
HPF: 1.0MHz
MHz
UI
Unit Interval
399.88
400
400.12
TRX-EYE (with jitter)
Minimum Receiver Eye Width (jitter tolerance)
TRX-EYE-MEDIUM TO
Max time between jitter median & max deviation
0.3
TRX-SKEW
Lane to lane input skew
20
TRX-HF-RMS
1.5 — 100 MHz RMS jitter
TRX-HF-DJ-DD
0.4
199.94
0.4
UI
UI
MAX JITTER
8
ns
NA
4.2
ps
Maximum tolerable DJ by the receiver
NA
8.8
ps
TRX-LF-RMS
10 KHz to 1.5 MHz RMS jitter
NA
4.2
ps
TRX-MIN-PULSE
Minimum receiver instantaneous eye width
NA
0.6
UI
Table 10 PCIe AC Timing Characteristics (Part 2 of 2)
1.
Minimum, Typical, and Maximum values meet the requirements under PCI Specification 2.0
Signal
Symbol
Reference
Min Max Unit
Edge
Timing
Diagram
Reference
GPIO
GPIO[15:0]1
Tpw2
None
50
—
ns
Table 11 GPIO AC Timing Characteristics
1.
GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if
they are asynchronous.
2.
The values for this symbol were determined by calculation, not by testing.
12 of 31
September 4, 2007
Advance Information
PCIe Receive
IDT 89HPES12T3G2 Data Sheet
Signal
Symbol
Reference
Edge
Min
Max
Unit
Timing
Diagram
Reference
Tper_16a
none
50.0
—
ns
See Figure 4.
10.0
25.0
ns
2.4
—
ns
1.0
—
ns
—
20
ns
—
20
ns
25.0
—
ns
JTAG
JTAG_TCK
Thigh_16a,
Tlow_16a
JTAG_TMS1,
JTAG_TDI
Tsu_16b
JTAG_TCK rising
Thld_16b
JTAG_TDO
Tdo_16c
JTAG_TCK falling
Tdz_16c2
JTAG_TRST_N
Tpw_16d2
none
Table 12 JTAG AC Timing Characteristics
The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N
changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK
when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.
2.
The values for this symbol were determined by calculation, not by testing.
Tlow_16a
Tper_16a
Thigh_16a
JTAG_TCK
Thld_16b
Tsu_16b
JTAG_TDI
Thld_16b
Tsu_16b
JTAG_TMS
Tdo_16c
Tdz_16c
JTAG_TDO
Tpw_16d
JTAG_TRST_N
Figure 4 JTAG AC Timing Waveform
13 of 31
September 4, 2007
Advance Information
1.
IDT 89HPES12T3G2 Data Sheet
Recommended Operating Supply Voltages
Symbol
Parameter
Minimum
Typical
Maximum
Unit
0.9
1.0
1.1
V
VDDCORE
Internal logic supply
VDDI/O
I/O supply except for SerDes LVPECL/CML
3.135
3.3
3.465
V
PCI Express Analog Power
0.95
1.0
1.1
V
VDDPEHA
PCI Express Analog High Power
2.25
2.5
2.75
V
VDDPETA
PCI Express Transmitter Analog Voltage
0.95
1.0
1.1
V
VSS
Common ground
0
0
0
V
1
VDDPEA
2
2.
Table 13 PES12T3G2 Operating Voltages
VDDPEA should have no more than 25mVpeak-peak AC power supply noise superimposed on the 1.0V nominal DC value.
VDDPEHA should have no more than 50mVpeak-peak AC power supply noise superimposed on the 2.5V nominal DC value.
Power-Up/Power-Down Sequence
During power supply ramp-up, VDDCORE must remain at least 1.0V below VDDI/O at all times. There are no other power-up sequence requirements for the various operating supply voltages.
The power-down sequence can occur in any order.
Recommended Operating Temperature
Grade
Temperature
Commercial
0°C to +70°C Ambient
Table 14 PES12T3G2 Operating Temperatures
14 of 31
September 4, 2007
Advance Information
1.
IDT 89HPES12T3G2 Data Sheet
Power Consumption
Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 13
(and also listed below).
Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in
Table 13 (and also listed below).
Core Supply
PCIe Analog
Supply
PCIe Analog
High Supply
PCIe Termination Supply
Typ
1.0V
Max
1.1V
Typ
1.0V
Max
1.1V
Typ
2.5V
Max
2.75V
Typ
1.0V
Max
1.1V
Typ
3.3V
Max
3.465V
Typ
Power
Max
Power
mA
750
1000
386
516
202
270
271
362
10
10
1.95W
2.81W
Watts
0.75
1.1
0.38
0.56
0.5
0.74
0.27
0.39
.03
.034
mA
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Watts
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
4/4/4
4/2/2
I/O Supply
Total
Table 15 PES12T3G2 Power Consumption
Thermal Considerations
This section describes thermal considerations for the PES12T3G2 (19mm2 CABGA324 package). The data in Table 16 below contains information
that is relevant to the thermal performance of the PES12T3G2 switch.
Symbol
TJ(max)
TA(max)
Parameter
Value
Units
Conditions
125
oC
Maximum
70
oC
Maximum
Junction Temperature
Ambient Temperature
θJC
Thermal Resistance, Junction-to-Case
7.6
oC/W
P
Power Dissipation of the Device
2.81
Watts
Maximum
Table 16 Thermal Specifications for PES12T3G2, 19x19 mm CABGA324 Package
Note: It is important for the reliability of this device in any user environment that the junction temperature not exceed the TJ(max) value
specified in Table 16. Consequently, the effective junction to ambient thermal resistance (θJA) for the worst case scenario must be
maintained below the value determined by the formula:
θJA = (TJ(max) - TA(max))/P
Given that the values of TJ(max), TA(max), and P are known, the value of desired θJA becomes a known entity to the system designer. How to
achieve the desired θJA is left up to the board or system designer, but in general, it can be achieved by adding the effects of θJC (value
provided in Table 16), thermal resistance of the chosen adhesive (θCS), that of the heat sink (θSA), amount of airflow, and properties of the
circuit board (number of layers and size of the board). As a general guideline, this device will not need a heat sink if the board has 8 or more
layers AND the board size is larger than 4"x12" AND airflow in excess of 0.5 m/s is available. It is strongly recommended that users perform
their own thermal analysis for their own board and system design scenarios.
15 of 31
September 4, 2007
Advance Information
Number of active
Lanes per Port
IDT 89HPES12T3G2 Data Sheet
DC Electrical Characteristics
Values based on systems running at recommended supply voltages, as shown in Table 13.
Note: See Table 8, Pin Characteristics, for a complete I/O listing.
Parameter
Description
Min1
Serial Link
Typ1
Gen 2
Max1
Min1
Typ1
Unit
Conditions
Max1
PCIe Transmit
VTX-DIFFp-p
Differential peak-to-peak output
voltage
800
1200
800
1200
mV
VTX-DIFFp-p-LOW
Low-Drive Differential Peak to
Peak Output Voltage
400
1200
400
1200
mV
VTX-DE-RATIO-
De-emphasized differential output voltage
-3
-4
-3.0
-3.5
-4.0
dB
-5.5
-6.0
-6.5
dB
3.6
V
3.5dB
VTX-DE-RATIO6.0dB
De-emphasized differential output voltage
VTX-DC-CM
DC Common mode voltage
VTX-CM-ACP
RMS AC peak common mode
output voltage
20
VTX-CM-DC-
Abs delta of DC common mode
voltage between L0 and idle
100
100
mV
Abs delta of DC common mode
voltage between D+ and D-
25
25
mV
delta
VTX-Idle-DiffP
Electrical idle diff peak output
20
20
mV
VTX-RCV-Detect
Voltage change during receiver
detection
600
600
mV
RLTX-DIFF
Transmitter Differential Return
loss
10
10dB:
0.05 1.25GHz
8dB:
1.25 2.5GHz
dB
RLTX-CM
Transmitter Common Mode
Return loss
6
6
dB
ZTX-DIFF-DC
DC Differential TX impedance
80
120
Ω
VTX-CM-ACpp
Peak-Peak AC Common
100
mV
VTX-DC-CM
Transmit Driver DC Common
Mode Voltage
3.6
V
600
mV
active-idle-delta
VTX-CM-DC-line-
NA
0
3.6
100
Transmitter Short Circuit Current
Limit
mV
120
NA
0
3.6
VTX-RCV-DETECT The amount of voltage change
allowed during Receiver Detection
ITX-SHORT
0
0
600
0
Advance Information
I/O Type
Gen 1
90
90
mA
Table 17 DC Electrical Characteristics (Part 1 of 3)
16 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Parameter
Description
Min1
Serial Link
(cont.)
Typ1
Gen 2
Max1
Min1
1200
120
Typ1
Unit
Conditions
Max1
PCIe Receive
VRX-DIFFp-p
Differential input voltage (peakto-peak)
175
1200
mV
RLRX-DIFF
Receiver Differential Return
Loss
10
10dB:
0.05 1.25GHz
8dB:
1.25 2.5GHz
dB
RLRX-CM
Receiver Common Mode Return
Loss
6
6
dB
ZRX-DIFF-DC
Differential input impedance
(DC)
80
100
120
Refer to return loss spec
Ω
ZRX--DC
DC common mode impedance
40
50
60
40
60
Ω
ZRX-COMM-DC
Powered down input common
mode impedance (DC)
200k
350k
50k
Ω
ZRX-HIGH-IMP-
DC input CM input impedance
for V>0 during reset or power
down
50k
50k
Ω
DC input CM input impedance
for V<0 during reset or power
down
1.0k
1.0k
Ω
DC-NEG
VRX-IDLE-DET-
Electrical idle detect threshold
175
mV
150
mV
DC-POS
ZRX-HIGH-IMP-
65
175
65
Advance Information
I/O Type
Gen 1
DIFFp-p
VRX-CM-ACp
Receiver AC common-mode
peak voltage
150
VRX-CM-ACp
PCIe REFCLK
CIN
Input Capacitance
1.5
—
1.5
—
IOL
—
2.5
IOH
—
IOL
pF
—
—
2.5
—
mA
VOL = 0.4v
-5.5
—
—
-5.5
—
mA
VOH = 1.5V
—
12.0
—
—
12.0
—
mA
VOL = 0.4v
IOH
—
-20.0
—
—
-20.0
—
mA
VOH = 1.5V
Other I/Os
LOW Drive
Output
High Drive
Output
Schmitt
Trigger
Input (STI)
VIL
-0.3
—
0.8
-0.3
—
0.8
V
—
VIH
2.0
—
VDDI/O
+ 0.5
2.0
—
VDDI/O +
0.5
V
—
Input
VIL
-0.3
—
0.8
-0.3
—
0.8
V
—
VIH
2.0
—
VDDI/O
+ 0.5
2.0
—
VDDI/O +
0.5
V
—
Table 17 DC Electrical Characteristics (Part 2 of 3)
17 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
I/O Type
Capacitance
Leakage
Parameter
Gen 1
Description
Gen 2
Unit
Conditions
Min1
Typ1
Max1
Min1
Typ1
Max1
CIN
—
—
8.5
—
—
8.5
pF
—
Inputs
—
—
+ 10
—
—
+ 10
μA
VDDI/O (max)
I/OLEAK W/O
Pull-ups/downs
—
—
+ 10
—
—
+ 10
μA
VDDI/O (max)
I/OLEAK WITH
Pull-ups/downs
—
—
+ 80
—
—
+ 80
μA
VDDI/O (max)
Table 17 DC Electrical Characteristics (Part 3 of 3)
Minimum, Typical, and Maximum values meet the requirements under PCI Specification 2.0.
Advance Information
1.
18 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Package Pinout — 324-BGA Signal Pinout for PES12T3G2
The following table lists the pin numbers and signal names for the PES12T3G2 device.
Function
Alt
Pin
Function
A1
VSS
B17
SWMODE_1
A2
VSS
B18
SWMODE_2
A3
PE0RN00
C1
A4
PE0RP00
A5
Alt
Pin
Function
D15
GPIO_01
D16
JTAG_TCK
C2
VSS
A6
Alt
Function
F13
VSS
PE4TP00
F14
VDDCORE
D17
VDDPETA
F15
VDDI/O
PE0TP00
D18
GPIO_03
F16
VSS
C3
PE0TN00
E1
VSS
F17
VDDPEA
PE0RN01
C4
VSS
E2
VDDPEA
F18
PE4RP00
A7
PE0RP01
C5
PE0TP01
E3
PE2TN03
G1
PE2RN03
A8
VSS
C6
PE0TN01
E4
JTAG_TMS
G2
VDDPEA
A9
PEREFCLKP0
C7
VDDPEA
E5
VDDCORE
G3
VDDPETA
A10
PEREFCLKN0
C8
VDDPETA
E6
VDDI/O
G4
VSS
A11
VSS
C9
VSS
E7
VDDPEHA
G5
VDDCORE
A12
PE0RN02
C10
PE0TP02
E8
VDDPEHA
G6
VDDI/O
A13
PE0RP02
C11
PE0TN02
E9
VDDPEHA
G7
VSS
A14
VSS
C12
VDDPETA
E10
VDDCORE
G8
VSS
A15
PE0RN03
C13
PE0TP03
E11
VDDPEHA
G9
VDDCORE
A16
PE0RP03
C14
PE0TN03
E12
VDDI/O
G10
VSS
A17
CCLKDS
C15
VSS
E13
VDDCORE
G11
VSS
A18
SWMODE_0
C16
CCLKUS
E14
VDDI/O
G12
VSS
B1
JTAG_TDI
C17
PERSTN
E15
GPIO_00
G13
VDDI/O
B2
VSS
C18
GPIO_02
E16
PE4TN00
G14
VDDPEHA
B3
VSS
D1
VSS
E17
VSS
G15
VSS
B4
VSS
D2
JTAG_TDO
E18
PE4RN00
G16
PE4TP01
B5
VSS
D3
VDDPETA
F1
PE2RP03
G17
VDDPETA
B6
VSS
D4
JTAG_TRST_N
F2
VDDPEHA
G18
VSS
B7
VSS
D5
VDDI/O
F3
PE2TP03
H1
VSS
B8
VSS
D6
VDDPEHA
F4
VDDCORE
H2
VSS
B9
VDDPEA
D7
VSS
F5
VDDI/O
H3
PE2TN02
B10
VDDPEA
D8
VDDCORE
F6
VSS
H4
VSS
B11
VDDPETA
D9
VDDCORE
F7
VDDCORE
H5
VDDPEHA
B12
VSS
D10
REFRES0
F8
VSS
H6
VSS
B13
VSS
D11
VDDPEA
F9
VSS
H7
VDDCORE
B14
VDDCORE
D12
VDDCORE
F10
VSS
H8
VSS
B15
VSS
D13
VSS
F11
VSS
H9
VSS
B16
VDDPEA
D14
RSTHALT
F12
VDDCORE
H10
VSS
1
1
1
Pin
1
Alt
Table 18 PES12T3G2 324-pin Signal Pin-Out (Part 1 of 3)
19 of 31
September 4, 2007
Advance Information
Pin
IDT 89HPES12T3G2 Data Sheet
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
H11
VDDCORE
K13
VSS
M15
VSS
P17
VSS
H12
VSS
K14
VDDCORE
M16
VDDPETA
P18
PE4RN03
H13
VSS
K15
VSS
M17
VDDPEA
R1
PE2RP00
H14
VDDPEHA
K16
PE4TP02
M18
PE4RP02
R2
VSS
H15
VDDCORE
K17
REFRES4
N1
PE2RN01
R3
PE2TP00
H16
PE4TN01
K18
VSS
N2
VDDPEA
R4
SSMBADDR_2
H17
VSS
L1
VSS
N3
VSS
R5
VDDI/O
H18
PE4RN01
L2
VDDPEA
N4
VSS
R6
MSMBSMODE
J1
PE2RP02
L3
PE2TN01
N5
VDDCORE
R7
VDDCORE
J2
VDDPETA
L4
VDDCORE
N6
VSS
R8
VSS
J3
PE2TP02
L5
VDDPEHA
N7
VDDI/O
R9
VSS
J4
REFRES2
L6
VSS
N8
VSS
R10
VSS
J5
VDDCORE
L7
VSS
N9
VSS
R11
VDDCORE
J6
VSS
L8
VSS
N10
VSS
R12
VSS
J7
VSS
L9
VSS
N11
VSS
R13
VDDI/O
J8
VSS
L10
VSS
N12
VDDI/O
R14
VSS
J9
VDDCORE
L11
VSS
N13
VSS
R15
VSS
J10
VSS
L12
VDDCORE
N14
VDDCORE
R16
GPIO_04
J11
VSS
L13
VSS
N15
VDDCORE
R17
VDDPEA
J12
VDDCORE
L14
VDDPEHA
N16
PE4TP03
R18
PE4RP03
J13
VSS
L15
VSS
N17
VDDPEHA
T1
PE2RN00
J14
VDDPEHA
L16
PE4TN02
N18
VSS
T2
VDDPETA
J15
VSS
L17
VDDPETA
P1
VSS
T3
VSS
J16
VDDPEA
L18
PE4RN02
P2
VSS
T4
SSMBADDR_5
J17
VDDPEA
M1
PE2RP01
P3
PE2TN00
T5
VSS
J18
PE4RP01
M2
VDDPETA
P4
SSMBADDR_1
T6
MSMBDAT
K1
PE2RN02
M3
PE2TP01
P5
VDDCORE
T7
MSMBADDR_3
K2
VDDPEA
M4
VSS
P6
VDDI/O
T8
VDDPEA
K3
VSS
M5
VDDPEHA
P7
VDDCORE
T9
NC
K4
VSS
M6
VDDI/O
P8
VDDPEHA
T10
NC
K5
VDDPEHA
M7
VDDCORE
P9
VDDPEHA
T11
VDDPEA
K6
VSS
M8
VSS
P10
VDDCORE
T12
NC
K7
VDDCORE
M9
VDDCORE
P11
VDDPEHA
T13
NC
K8
VSS
M10
VSS
P12
VDDCORE
T14
VDDPETA
K9
VSS
M11
VDDCORE
P13
VDDCORE
T15
VSS
K10
VDDCORE
M12
VSS
P14
VDDI/O
T16
GPIO_06
K11
VSS
M13
VDDI/O
P15
VSS
T17
GPIO_05
K12
VSS
M14
VDDCORE
P16
PE4TN03
T18
VSS
Alt
1
Table 18 PES12T3G2 324-pin Signal Pin-Out (Part 2 of 3)
20 of 31
September 4, 2007
Advance Information
Pin
IDT 89HPES12T3G2 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
U1
VSS
U10
VDDPETA
V1
VSS
V10
VSS
U2
VSS
U11
VSS
V2
VSS
V11
VSS
U3
SSMBCLK
U12
VSS
V3
SSMBDAT
V12
VSS
U4
SSMBADDR_3
U13
VSS
V4
VSS
V13
VSS
U5
VSS
U14
VSS
V5
MSMBADDR_4
V14
VSS
U6
MSMBCLK
U15
REFCLKM
V6
MSMBADDR_2
V15
VSS
U7
MSMBADDR_1
U16
GPIO_07
V7
VSS
V16
GPIO_11
U8
VDDPEA
U17
VSS
V8
VSS
V17
VSS
U9
VSS
U18
VSS
V9
VSS
V18
VSS
1
Alt
Table 18 PES12T3G2 324-pin Signal Pin-Out (Part 3 of 3)
Pin
GPIO
Alternate
E15
GPIO_00
P2RSTN
D15
GPIO_01
P4RSTN
C18
GPIO_02
IOEXPINTN0
R16
GPIO_04
IOEXPINTN2
U16
GPIO_07
GPEN
Advance Information
Alternate Signal Functions
Table 19 PES12T3G2 Alternate Signal Functions
No Connection Pins
NC Pins
T9
T10
T12
T13
Table 20 PES12T3G2 No Connection Pins
21 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
VDDCore
VDDCore
VDDI/O
VDDPEA
VDDPEHA
VDDPETA
B14
K7
D5
B9
D6
B11
D8
K10
E6
B10
E7
C8
D9
K14
E12
B16
E8
C12
D12
L4
E14
C7
E9
D3
E5
L12
F5
D11
E11
D17
E10
M7
F15
E2
F2
G3
E13
M9
G6
F17
G14
G17
F4
M11
G13
G2
H5
J2
F7
M14
M6
J16
H14
L17
F12
N5
M13
J17
J14
M2
F14
N14
N7
K2
K5
M16
G5
N15
N12
L2
L5
T2
G9
P5
P6
M17
L14
T14
H7
P7
P14
N2
M5
U10
H11
P10
R5
R17
N17
H15
P12
R13
T8
P8
J5
P13
T11
P9
J9
R7
U8
P11
J12
R11
Advance Information
Power Pins
Table 21 PES12T3G2 Power Pins
22 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Vss
Vss
Vss
Vss
Vss
Vss
A1
E1
H9
L1
N18
U13
A2
E17
H10
L6
P1
U14
A5
F6
H12
L7
P2
U17
A8
F8
H13
L8
P15
U18
A11
F9
H17
L9
P17
V1
A14
F10
J6
L10
R2
V2
B2
F11
J7
L11
R8
V4
B3
F13
J8
L13
R9
V7
B4
F16
J10
L15
R10
V8
B5
G4
J11
M4
R12
V9
B6
G7
J13
M8
R14
V10
B7
G8
J15
M10
R15
V11
B8
G10
K3
M12
T3
V12
B12
G11
K4
M15
T5
V13
B13
G12
K6
N3
T15
V14
B15
G15
K8
N4
T18
V15
C4
G18
K9
N6
U1
V17
C9
H1
K11
N8
U2
V18
C15
H2
K12
N9
U5
D1
H4
K13
N10
U9
D7
H6
K15
N11
U11
D13
H8
K18
N13
U12
Advance Information
Ground Pins
Table 22 PES12T3G2 Ground Pins
23 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Signals Listed Alphabetically
I/O Type
Location
Signal Category
CCLKDS
I
A17
System
CCLKUS
I
C16
GPIO_00
I/O
E15
GPIO_01
I/O
D15
GPIO_02
I/O
C18
GPIO_03
I/O
D18
GPIO_04
I/O
R16
GPIO_05
I/O
T17
GPIO_06
I/O
T16
GPIO_07
I/O
U16
GPIO_11
I/O
V16
JTAG_TCK
I
C1
JTAG_TDI
I
B1
JTAG_TDO
O
D2
JTAG_TMS
I
E4
JTAG_TRST_N
I
D4
MSMBADDR_1
I
U7
MSMBADDR_2
I
V6
MSMBADDR_3
I
T7
MSMBADDR_4
I
V5
MSMBCLK
I/O
U6
MSMBDAT
I/O
T6
I
R6
MSMBSMODE
No Connection
General Purpose Input/Output
Advance Information
Signal Name
JTAG
SMBus
System
See Table 20 for a list of NC pins
PE0RN00
I
A3
PE0RN01
I
A6
PE0RN02
I
A12
PCI Express
Table 23 89PES12T3G2 Alphabetical Signal List (Part 1 of 3)
24 of 31
September 4, 2007
Signal Name
I/O Type
Location
Signal Category
PE0RN03
I
A15
PCI Express (Cont.)
PE0RP00
I
A4
PE0RP01
I
A7
PE0RP02
I
A13
PE0RP03
I
A16
PE0TN00
O
C3
PE0TN01
O
C6
PE0TN02
O
C11
PE0TN03
O
C14
PE0TP00
O
C2
PE0TP01
O
C5
PE0TP02
O
C10
PE0TP03
O
C13
PE2RN00
I
T1
PE2RN01
I
N1
PE2RN02
I
K1
PE2RN03
I
G1
PE2RP00
I
R1
PE2RP01
I
M1
PE2RP02
I
J1
PE2RP03
I
F1
PE2TN00
O
P3
PE2TN01
O
L3
PE2TN02
O
H3
PE2TN03
O
E3
PE2TP00
O
R3
PE2TP01
O
M3
PE2TP02
O
J3
PE2TP03
O
F3
PE4RN00
I
E18
PE4RN01
I
H18
PE4RN02
I
L18
PE4RN03
I
P18
PE4RP00
I
F18
PE4RP01
I
J18
PE4RP02
I
M18
Advance Information
IDT 89HPES12T3G2 Data Sheet
Table 23 89PES12T3G2 Alphabetical Signal List (Part 2 of 3)
25 of 31
September 4, 2007
Signal Name
I/O Type
Location
Signal Category
PE4RP03
I
R18
PCI Express (Cont.)
PE4TN00
O
E16
PE4TN01
O
H16
PE4TN02
O
L16
PE4TN03
O
P16
PE4TP00
O
D16
PE4TP01
O
G16
PE4TP02
O
K16
PE4TP03
O
N16
PEREFCLKN0
I
A10
PEREFCLKP0
I
A9
PERSTN
I
C17
System
REFCLKM
I
U15
PCI Express
REFRES0
I/O
D10
SerDes Reference Resistors
REFRES2
I/O
J4
REFRES4
I/O
K17
RSTHALT
I
D14
System
SSMBADDR_1
I
P4
SMBus
SSMBADDR_2
I
R4
SSMBADDR_3
I
U4
SSMBADDR_5
I
T4
SSMBCLK
I/O
U3
SSMBDAT
I/O
V3
SWMODE_0
I
A18
SWMODE_1
I
B17
SWMODE_2
I
B18
Advance Information
IDT 89HPES12T3G2 Data Sheet
SMBus
System
VDDCORE, VDDI/O,
VDDPEA, VDDPEHA,
VDDPETA
See Table 21 for a listing of power pins.
VSS
See Table 22 for a listing of ground pins.
Table 23 89PES12T3G2 Alphabetical Signal List (Part 3 of 3)
26 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
PES12T3G2 Pinout — Top View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
A
A
X
X
C
B
X
C
X
D
X
D
E
E
F
F
X
G
X
G
H
H
X
J
J
K
K
X
L
X
M
L
X
M
N
N
P
P
R
R
X
T
X
T
X
U
U
V
V
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
18
17
VDDPETA (Transmitter Power)
Signals
VDDI/O (Power)
VDDPEA (Analog Power)
No Connect
Vss (Ground)
VDDPEHA (High Analog Power)
VDDCore (Power)
X
27 of 31
September 4, 2007
Advance Information
B
IDT 89HPES12T3G2 Data Sheet
Advance Information
PES12T3G2 Package Drawing — 324-Pin BC324/BCG324
28 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Advance Information
PES12T3G2 Package Drawing — Page Two
29 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Revision History
May 4, 2007: Initial publication of Advanced data sheet.
Advance Information
September 4, 2007: Added values to Table 16, Thermal Specifications.
30 of 31
September 4, 2007
IDT 89HPES12T3G2 Data Sheet
Ordering Information
A
AAA
NNAN
Product
Family
Operating
Voltage
Device
Family
Product
Detail
AN
AA
AAA
Generation Device
Revision
Series
Legend
A = Alpha Character
N = Numeric Character
A
Package Temp Range
Blank
Commercial Temperature
(0°C to +70°C Ambient)
BC
BC324 324-ball CABGA
BCG
BCG324 324-ball CABGA, Green
ZA
ZA revision
G2
Generation 2
12T3
12-lane, 3-port
PES
PCI Express Switch
H
1.0V +/- 0.1V Core Voltage
89
Serial Switching Product
Valid Combinations
89HPES12T3G2ZABC
324-ball BGA package, Commercial Temperature
89HPES12T3G2ZABCG
324-ball Green BGA package, Commercial Temperature
®
CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
31 of 31
for Tech Support:
email: [email protected]
phone: 408-284-8208
September 4, 2007
Advance Information
NN