93C76/86 8K/16K 5.0V Microwire Serial EEPROM FEATURES PACKAGE TYPES DIP Package CS 1 CLK DI DO 2 3 4 93C76/86 8 VCC 7 6 5 PE ORG VSS SOIC Package CS CLK DI DO 1 2 3 4 93C76/86 • Single 5.0V supply • Low power CMOS technology - 1 mA active current typical • ORG pin selectable memory configuration 1024 x 8- or 512 x 16-bit organization (93C76) 2048 x 8- or 1024 x 16-bit organization (93C86) • Self-timed ERASE and WRITE cycles (including auto-erase) • Automatic ERAL before WRAL • Power on/off data protection circuitry • Industry standard 3-wire serial I/O • Device status signal during ERASE/WRITE cycles • Sequential READ function • 10,000,000 ERASE/WRITE cycles guaranteed • Data retention > 200 years • 8-pin PDIP/SOIC package • Temperature ranges supported - Commercial (C): 0°C to +70°C - Industrial -40°C to +85°C - Automotive (E) -40°C to +125°C 8 7 6 5 VCC PE ORG VSS BLOCK DIAGRAM VCC VSS DESCRIPTION Memory Array The Microchip Technology Inc. 93C76/86 are 8K and 16K low voltage serial Electrically Erasable PROMs. The device memory is configured as x8 or x16 bits depending on the ORG pin setup. Advanced CMOS technology makes these devices ideal for low power non-volatile memory applications. These devices also have a Program Enable (PE) pin to allow the user to write protect the entire contents of the memory array. The 93C76/86 is available in standard 8-pin DIP and 8pin surface mount SOIC packages. Address Decoder Address Counter Data Register Output Buffer DO DI PE CS CLK Mode Decode Logic Clock Generator Microwire is a registered trademark of National Semiconductor Incorporated. 1996 Microchip Technology Inc. Preliminary This document was created with FrameMaker 4 0 4 DS21132C-page 1 93C76/86 1.0 ELECTRICAL CHARACTERISTICS 1.1 Maximum Ratings* 1.2 AC Waveform: VLO = 2.0V VCC ...................................................................................7.0V All inputs and outputs w.r.t. VSS ............... -0.6V to Vcc +1.0V Storage temperature ..................................... -65˚C to +150˚C Ambient temp. with power applied................. -65˚C to +125˚C Soldering temperature of leads (10 seconds) ............. +300˚C ESD protection on all pins................................................4 kV (Note 1) VHI = 4.0V for (Note 2) Input 0.5 VCC Output 0.5 VCC Note 1: For VCC ≤ 4.0V 2: For VCC > 4.0V PIN FUNCTION TABLE Name CS CLK DI DO VSS ORG PE VCC VHI = Vcc - 0.2V Timing Measurement Reference Level *Notice: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability TABLE 1-1: AC Test Conditions Function Chip Select Serial Data Clock Serial Data Input Serial Data Output Ground Memory Configuration Program Enable Power Supply TABLE 1-2: DC CHARACTERISTICS Applicable over recommended operating ranges shown below unless otherwise noted: VCC = +4.5V to +5.5V Commercial (C): Tamb = 0°C to -40°C Industrial (I): Tamb = -40°C to +85°C Automotive (E): Tamb = -40°C to +125°C Parameter High level input voltage Low level input voltage Low level output voltage High level output voltage Input leakage current Output leakage current Pin capacitance (all inputs/outputs) Symbol VIH1 VIL1 VOL1 VOL2 VOH1 VOH2 ILI ILO CINT Min. Max. Units 2.0 -0.3 — — 2.4 VCC-0.2 -10 -10 — VCC +1 0.8 0.4 0.2 — — 10 10 7 V V V V V V µA µA pF Operating current ICC write — 3 mA ICC read — 1.5 mA Standby current ICCS — 100 µA Note: This parameter is periodically sampled and not 100% tested. DS21132C-page 2 Preliminary Conditions — — IOL = 2.1 mA; VCC = 4.5V IOL =100 µA; VCC = 4.5V IOH = -400 µA; VCC = 4.5V IOH = -100 µA; VCC = 4.5V. VIN = 0.1V to VCC VOUT = 0.1V to VCC (Note Note:) Tamb = +25˚C, FCLK = 1 MHz FCLK = 2 MHz; VCC = 5.5V FCLK = 2 MHz; VCC = 5.5V CLK = CS = 0V; VCC = 5.5V 1996 Microchip Technology Inc. 93C76/86 TABLE 1-3: AC CHARACTERISTICS Applicable over recommended operating ranges shown below unless otherwise noted: VCC = +4.5V to +5.5V Commercial (C): Tamb = 0°C to -40°C Industrial (I): Tamb = -40°C to +85°C Automotive (E): Tamb = -40°C to +125°C Parameter Symbol FCLK Min. Max. Units Conditions Vcc ≥ 4.5V Clock frequency Clock high time Clock low time Chip select setup time Chip select hold time Chip select low time Data input setup time Data input hold time Data output delay time Data output disable time TCKH TCKL TCSS TCSH TCSL TDIS TDIH TPD TCZ — 300 200 50 0 250 100 100 — — 2 — — — — — — — 400 100 MHz ns ns ns ns ns ns ns ns ns Status valid time TSV — 500 ns Program cycle time TWC — 10 ms Endurance TEC TWL — — — 10M 15 30 — ms ms cycles Relative to CLK Relative to CLK Relative to CLK Relative to CLK CL = 100 pF (Note 1) CL = 100 pF ERASE/WRITE mode (Note 2) ERAL mode WRAL mode 25°C, VCC = 5.0V, Block Mode (Note 3) Note 1: This parameter is periodically sampled and not 100% tested. 2: Typical program cycle is 4 ms per word. 3: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our BBS or website. TABLE 1-4: Instruction READ EWEN ERASE ERAL WRITE WRAL EWDS TABLE 1-5: Instruction READ EWEN ERASE ERAL WRITE WRAL EWDS INSTRUCTION SET FOR 93C76: ORG=1 (X16 ORGANIZATION) SB Opcode 1 1 1 1 1 1 1 10 00 11 00 01 00 00 Address X A8 A7 A6 A5 A4 A3 A2 A1 A0 1 1 X X X X X X X X X A8 A7 A6 A5 A4 A3 A2 A1 A0 1 0 X X X X X X X X X A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1 X X X X X X X X 0 0 X X X X X X X X Data In — — — — D15 - D0 D15 - D0 — Data Out D15 - D0 High-Z (RDY/BSY) (RDY/BSY) (RDY/BSY) (RDY/BSY) High-Z Req. CLK Cycles 29 13 13 13 29 29 13 INSTRUCTION SET FOR 93C76: ORG=0 (X8 ORGANIZATION) SB Opcode 1 1 1 1 1 1 1 10 00 11 00 01 00 00 1996 Microchip Technology Inc. Address X A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 1 X X X X X X X X X X A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 0 X X X X X X X X X X A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1 X X X X X X X X X 0 0 X X X X X X X X X Preliminary Data In Data Out — — — — D7 - D0 D7 - D0 — D7 - D0 High-Z (RDY/BSY) (RDY/BSY) (RDY/BSY) (RDY/BSY) High-Z Req. CLK Cycles 22 14 14 14 22 22 14 DS21132C-page 3 93C76/86 TABLE 1-6: Instruction INSTRUCTION SET FOR 93C86: ORG=1 (X16 ORGANIZATION) SB Opcode 1 1 1 1 1 1 1 10 00 11 00 01 00 00 READ EWEN ERASE ERAL WRITE WRAL EWDS TABLE 1-7: Instruction Address A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 1 X X X X X X X X A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 0 X X X X X X X X A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1 X X X X X X X X 0 0 X X X X X X X X Data In — — — — D15 - D0 D15 - D0 — Data Out D15 - D0 High-Z (RDY/BSY) (RDY/BSY) (RDY/BSY) (RDY/BSY) High-Z Req. CLK Cycles 29 13 13 13 29 29 13 INSTRUCTION SET FOR 93C86: ORG=0 (X8 ORGANIZATION) SB Opcode Address 1 1 1 1 1 1 1 10 00 11 00 01 00 00 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 1 X X X X X X X X X A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 0 X X X X X X X X X A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1 X X X X X X X X X 0 0 X X X X X X X X X READ EWEN ERASE ERAL WRITE WRAL EWDS DS21132C-page 4 Preliminary Data In Data Out — D7 - D0 — High-Z — (RDY/BSY) — (RDY/BSY) D7 - D0 (RDY/BSY) D7 - D0 (RDY/BSY) — High-Z Req. CLK Cycles 22 14 14 14 22 22 14 1996 Microchip Technology Inc. 93C76/86 2.0 PRINCIPLES OF OPERATION When the ORG pin is connected to VCC, the x16 organization is selected. When it is connected to ground, the x8 organization is selected. Instructions, addresses and write data are clocked into the DI pin on the rising edge of the clock (CLK). The DO pin is normally held in a high-Z state except when reading data from the device, or when checking the READY/BUSY status during a programming operation. The READY/BUSY status can be verified during an Erase/Write operation by polling the DO pin; DO low indicates that programming is still in progress, while DO high indicates the device is ready. The DO will enter the high impedance state on the falling edge of the CS. 2.1 START Condition The START bit is detected by the device if CS and DI are both HIGH with respect to the positive edge of CLK for the first time. low all programming operations. Execution of a READ instruction is independent of both the EWEN and EWDS instructions. 2.4 Data Protection During power-up, all programming modes of operation are inhibited until VCC has reached a level greater than 1.4V. During power-down, the source data protection circuitry acts to inhibit all programming modes when VCC has fallen below 1.4V. The EWEN and EWDS commands give additional protection against accidentally programming during normal operation. After power-up, the device is automatically in the EWDS mode. Therefore, an EWEN instruction must be performed before any ERASE or WRITE instruction can be executed. Before a START condition is detected, CS, CLK, and DI may change in any combination (except to that of a START condition), without resulting in any device operation (READ, WRITE, ERASE, EWEN, EWDS, ERAL, and WRAL). As soon as CS is HIGH, the device is no longer in the standby mode. An instruction following a START condition will only be executed if the required amount of opcode, address and data bits for any particular instruction are clocked in. After execution of an instruction (i.e., clock in or out of the last required address or data bit) CLK and DI become don't care bits until a new start condition is detected. 2.2 DI/DO It is possible to connect the Data In and Data Out pins together. However, with this configuration it is possible for a “bus conflict” to occur during the “dummy zero” that precedes the READ operation, if A0 is a logic HIGH level. Under such a condition the voltage level seen at Data Out is undefined and will depend upon the relative impedances of Data Out and the signal source driving A0. The higher the current sourcing capability of A0, the higher the voltage at the Data Out pin. 2.3 Erase/Write Enable and Disable (EWEN, EWDS) The 93C76/86 powers up in the Erase/Write Disable (EWDS) state. All programming modes must be preceded by an Erase/Write Enable (EWEN) instruction. Once the EWEN instruction is executed, programming remains enabled until an EWDS instruction is executed or VCC is removed from the device. To protect against accidental data disturb, the EWDS instruction can be used to disable all Erase/Write functions and should fol- 1996 Microchip Technology Inc. Preliminary DS21132C-page 5 93C76/86 3.0 DEVICE OPERATION 3.1 READ The READ instruction outputs the serial data of the addressed memory location on the DO pin. A dummy zero bit precedes the 16 bit (x16 organization) or 8 bit (x8 organization) output string. The output data bits will toggle on the rising edge of the CLK and are stable after the specified time delay (TPD). Sequential read is possible when CS is held high and clock transitions continue. The memory address pointer will automatically increment and output data sequentially. 3.2 ERASE The ERASE instruction forces all data bits of the specified address to the logical “1” state. The self-timed programming cycle is initiated on the rising edge of CLK as the last address bit (A0) is clocked in. At this point, the CLK, CS, and DI inputs become don’t cares. The DO pin indicates the READY/BUSY status of the device if the CS is high. The READY/BUSY status will be displayed on the DO pin until the next start bit is received as long as CS is high. Bringing the CS low will place the device in standby mode and cause the DO pin to enter the high impedance state. DO at logical “0” indicates that programming is still in progress. DO at logical “1” indicates that the register at the specified address has been erased and the device is ready for another instruction. The ERASE cycle takes 3 ms per word (Typical). 3.3 WRITE The WRITE instruction is followed by 16 bits (or by 8 bits) of data to be written into the specified address. The self-timed programming cycle is initiated on the rising edge of CLK as the last data bit (D0) is clocked in. At this point, the CLK, CS, and DI inputs become don’t cares. The DO pin indicates the READY/BUSY status of the device if the CS is high. The READY/BUSY status will be displayed on the DO pin until the next start bit is received as long as CS is high. Bringing the CS low will place the device in standby mode and cause the DO pin to enter the high impedance state. DO at logical “0” indicates that programming is still in progress. DO at logical “1” indicates that the register at the specified address has been written and the device is ready for another instruction. the least significant 8 or 9 address bits are don’t care bits, depending on selection of x16 or x8 mode. Clocking of the CLK pin is not necessary after the device has entered the self clocking mode. The ERAL instruction is guaranteed at Vcc = +4.5V to +5.5V. The DO pin indicates the READY/BUSY status of the device if the CS is high. The READY/BUSY status will be displayed on the DO pin until the next start bit is received as long as CS is high. Bringing the CS low will place the device in standby mode and cause the DO pin to enter the high impedance state. DO at logical “0” indicates that programming is still in progress. DO at logical “1” indicates that the entire device has been erased and is ready for another instruction. The ERAL cycle takes 15 ms maximum (8 ms typical). 3.5 Write All (WRAL) The WRAL instruction will write the entire memory array with the data specified in the command. The WRAL cycle is completely self-timed and commences on the rising edge of the last address bit (A0). Note that the least significant 8 or 9 address bits are don’t cares, depending on selection of x16 or x8 mode. Clocking of the CLK pin is not necessary after the device has entered the self clocking mode. The WRAL command does include an automatic ERAL cycle for the device. Therefore, the WRAL instruction does not require an ERAL instruction but the chip must be in the EWEN status. The WRAL instruction is guaranteed at Vcc = +4.5V to +5.5V. The DO pin indicates the READY/BUSY status of the device if the CS is high. The READY/BUSY status will be displayed on the DO pin until the next start bit is received as long as CS is high. Bringing the CS low will place the device in standby mode and cause the DO pin to enter the high impedance state. DO at logical “0” indicates that programming is still in progress. DO at logical “1” indicates that the entire device has been written and is ready for another instruction. The WRAL cycle takes 30 ms maximum (16 ms typical). The WRITE cycle takes 3 ms per word (Typical). 3.4 Erase All (ERAL) The ERAL instruction will erase the entire memory array to the logical “1” state. The ERAL cycle is identical to the ERASE cycle except for the different opcode. The ERAL cycle is completely self-timed and commences on the rising edge of the last address bit (A0). Note that DS21132C-page 6 Preliminary 1996 Microchip Technology Inc. 93C76/86 FIGURE 3-1: SYNCHRONOUS DATA TIMING VIH CS TCSS VIL TCKH TCKL TCSH VIH CLK VIL TDIH TDIS VIH DI VIL DO (Read) TPD VOH VOL TCZ TPD TCZ TSV VOH DO (Program) VOL STATUS VALID The memory automatically cycles to the next register. FIGURE 3-2: READ TCSL CS CLK 1 DI 1 0 ... AN A0 HIGH IMPEDANCE DO FIGURE 3-3: EWEN 0 DN ... D0 DN ... D0 EWEN TCSL CS CLK DI 1 0 0 1 1 ... X X ORG=VCC, 8 X’s ORG=VSS, 9 X’s FIGURE 3-4: EWDS TCSL CS CLK DI 1 0 0 0 0 X ... X ORG=VCC, 8 X’s ORG=VSS, 9 X’S 1996 Microchip Technology Inc. Preliminary DS21132C-page 7 93C76/86 FIGURE 3-5: WRITE CS STANDBY CLK DI 1 0 1 ... AN ... DN A0 D0 TCZ HIGH IMPEDANCE DO READY BUSY TWC FIGURE 3-6: WRAL STANDBY CS CLK 1 DI 0 0 0 1 X ... X DN ... D0 TCZ HIGH IMPEDANCE DO ORG=VCC, 8 X’s ORG=VSS, 9 X’s FIGURE 3-7: BUSY READY TWL Guarantee at Vcc = +4.5V to +5.5V. ERASE CS STANDBY CLK DI 1 1 1 AN ... ... A0 TCZ DO HIGH IMPEDANCE BUSY READY TWC DS21132C-page 8 Preliminary 1996 Microchip Technology Inc. 93C76/86 FIGURE 3-8: ERAL CS STANDBY CLK DI 1 0 0 1 0 X ... X TCZ HIGH IMPEDANCE BUSY DO READY TEC ORG=VCC, 8 X’s ORG=VSS, 9 X’s Guarantee at VCC = +4.5V to +5.5V. 4.0 PIN DESCRIPTIONS 4.1 Chip Select (CS) Table 1-7 for more details). CLK and DI then become don't care inputs waiting for a new start condition to be detected. A HIGH level selects the device. A LOW level deselects the device and forces it into standby mode. However, a programming cycle which is already initiated will be completed, regardless of the CS input signal. If CS is brought LOW during a program cycle, the device will go into standby mode as soon as the programming cycle is completed. CS must be LOW for 250 ns minimum (TCSL) between consecutive instructions. If CS is LOW, the internal control logic is held in a RESET status. 4.2 Serial Clock (CLK) The Serial Clock is used to synchronize the communication between a master device and the 93C76/86. Opcode, address, and data bits are clocked in on the positive edge of CLK. Data bits are also clocked out on the positive edge of CLK. CLK can be stopped anywhere in the transmission sequence (at HIGH or LOW level) and can be continued anytime with respect to clock HIGH time (TCKH) and clock LOW time (TCKL). This gives the controlling master freedom in preparing opcode, address, and data. CLK is a “Don't Care” if CS is LOW (device deselected). If CS is HIGH, but START condition has not been detected, any number of clock cycles can be received by the device without changing its status (i.e., waiting for START condition). CLK cycles are not required during the self-timed WRITE (i.e., auto ERASE/WRITE) cycle. After detection of a start condition the specified number of clock cycles (respectively LOW to HIGH transitions of CLK) must be provided. These clock cycles are required to clock in all opcode, address, and data bits before an instruction is executed (see Table 1-4 through 1996 Microchip Technology Inc. Note: 4.3 CS must go LOW between consecutive instructions, except when performing a sequential read (Refer to Section 3.1 for more detail on sequential reads). Data In (DI) Data In is used to clock in a START bit, opcode, address, and data synchronously with the CLK input. 4.4 Data Out (DO) Data Out is used in the READ mode to output data synchronously with the CLK input (TPD after the positive edge of CLK). This pin also provides READY/BUSY status information during ERASE and WRITE cycles. READY/BUSY status information is available when CS is high. It will be displayed until the next start bit occurs as long as CS stays high. 4.5 Organization (ORG) When ORG is connected to VCC, the x16 memory organization is selected. When ORG is tied to VSS, the x8 memory organization is selected. There is an internal pull-up resistor on the ORG pin that will select x16 organization when left unconnected. 4.6 Program Enable (PE) This pin allows the user to enable or disable the ability to write data to the memory array. If the PE pin is floated or tied to VCC, the device can be programmed. If the PE pin is tied to VSS, programming will be inhibited. There is an internal pull-up on this device that enables programming if this pin is left floating. Preliminary DS21132C-page 9 93C76/86 NOTES: DS21132C-page 10 Preliminary 1996 Microchip Technology Inc. 93C76/86 93C76/86 Product Identification System To order or obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales office. 93C76/86 – \P Package: Temperature Range: Device: P = Plastic DIP (300 mil Body), 8-lead SN = Plastic SOIC (150 mil Body), 8-lead Blank = 0°C to +70°C I = -40°C to +85°C E = -40°C to +125°C 93C76/86 93C76T/86T Microwire Serial EEPROM Microwire Serial EEPROM (Tape and Reel) Sales and Support Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. Your local Microchip sales office (see below) 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277 3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required). Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302. DS21132C-page 11 Preliminary 1996 Microchip Technology Inc. WORLDWIDE SALES & SERVICE AMERICAS ASIA/PACIFIC EUROPE Corporate Office Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602 786-7200 Fax: 602 786-7277 Technical Support: 602 786-7627 Web: http://www.microchip.com Atlanta Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770 640-0034 Fax: 770 640-0307 Boston Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508 480-9990 Fax: 508 480-8575 Chicago Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 708 285-0071 Fax: 708 285-0075 Dallas Microchip Technology Inc. 14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809 Tel: 972 991-7177 Fax: 972 991-8588 Dayton Microchip Technology Inc. Suite 150 Two Prestige Place Miamisburg, OH 45342 Tel: 513 291-1654 Fax: 513 291-9175 Los Angeles Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 714 263-1888 Fax: 714 263-1338 New York Microchip Technology Inc. 150 Motor Parkway, Suite 416 Hauppauge, NY 11788 Tel: 516 273-5305 Fax: 516 273-5335 San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408 436-7950 Fax: 408 436-7955 Toronto Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905 405-6279 Fax: 905 405-6253 Hong Kong Microchip Technology RM 3801B, Tower Two Metroplaza 223 Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852 2 401 1200 Fax: 852 2 401 3431 India Microchip Technology No. 6, Legacy, Convent Road Bangalore 560 025 India Tel: 91 80 526 3148 Fax: 91 80 559 9840 Korea Microchip Technology 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku, Seoul, Korea Tel: 82 2 554 7200 Fax: 82 2 558 5934 Shanghai Microchip Technology Unit 406 of Shanghai Golden Bridge Bldg. 2077 Yan’an Road West, Hongiao District Shanghai, Peoples Republic of China Tel: 86 21 6275 5700 Fax: 011 86 21 6275 5060 Singapore Microchip Technology 200 Middle Road #10-03 Prime Centre Singapore 188980 Tel: 65 334 8870 Fax: 65 334 8850 Taiwan, R.O.C Microchip Technology 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tel: 886 2 717 7175 Fax: 886 2 545 0139 United Kingdom Arizona Microchip Technology Ltd. Unit 6, The Courtyard Meadow Bank, Furlong Road Bourne End, Buckinghamshire SL8 5AJ Tel: 44 1628 850303 Fax: 44 1628 850178 France Arizona Microchip Technology SARL Zone Industrielle de la Bonde 2 Rue du Buisson aux Fraises 91300 Massy - France Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79 Germany Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Muenchen, Germany Tel: 49 89 627 144 0 Fax: 49 89 627 144 44 Italy Arizona Microchip Technology SRL Centro Direzionale Colleone Pas Taurus 1 Viale Colleoni 1 20041 Agrate Brianza Milan Italy Tel: 39 39 6899939 Fax: 39 39 689 9883 JAPAN Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shin Yokohama Kohoku-Ku, Yokohama Kanagawa 222 Japan Tel: 81 45 471 6166 Fax: 81 45 471 6122 11/7/96 All rights reserved. 1996, Microchip Technology Incorporated, USA. 11/96 Printed on recycled paper. Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies. DS21132C-page 12 Preliminary 1996 Microchip Technology Inc.