v5.0 40MX and 42MX FPGA Families Fe a t ur es High C apaci t y • • • • • • Commercial, Military Temperature and MIL-STD-883 Ceramic Packages Single-Chip ASIC Alternative 3,000 to 54,000 System Gates Up to 2.5 kbits Configurable Dual-Port SRAM Fast Wide-Decode Circuitry Up to 202 User-Programmable I/O Pins • QML Certification • Ceramic Devices Available to DSCC SMD E ase of Int egr at io n • Mixed Voltage Operation (5.0V or 3.3V I/O) High P er f or m ance • • • • • • Synthesis-Friendly Architecture to Support ASIC Design Methodologies 5.6 ns Clock-to-Out 250 MHz Performance 5 ns Dual-Port SRAM Access 100 MHz FIFOs 7.5 ns 35-Bit Address Decode • Up to 100% Resource Utilization and 100% Pin Fixing • Deterministic, User-Controllable Timing • Unique In-System Diagnostic and Verification Capability with Silicon Explorer II HiR el Feat ur es • Low Power Consumption • Commercial, Industrial, and Military Temperature Plastic Packages • IEEE Standard 1149.1 (JTAG) Boundary Scan Testing • 5.0V and 3.3V Programmable PCI-Compliant I/O Pr od uc t P r o f i l e Device A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 3,000 N/A 6,000 N/A 14,000 N/A 24,000 N/A 36,000 N/A 54,000 2,560 — 295 — 9.5 ns — 547 — 9.5 ns 348 336 N/A 5.6 ns 624 608 N/A 6.1 ns 954 912 24 6.1 ns 1,230 1,184 24 6.3 ns N/A — 147 1 57 No No N/A — 273 1 69 No No N/A 348 516 2 104 No No N/A 624 928 2 140 No No N/A 954 1,410 2 176 Yes Yes 10 1,230 1,822 6 202 Yes Yes 44, 68 100 80 — — — 44, 68, 84 100 80 — — — 84 100, 160 100 176 — — 84 100, 160, 208 100 176 — — 84 160, 208 — 176 — — — 208, 240 — — 208, 256 272 Capacity System Gates SRAM Bits Logic Modules Sequential Combinatorial Decode Clock-to-Out SRAM Modules (64x4 or 32x8) Dedicated Flip-Flops Maximum Flip-Flops Clocks User I/O (Maximum) PCI Boundary Scan Test (BST) Packages (by pin count) PLCC PQFP VQFP TQFP CQFP PBGA F eb r u a r y 2 0 0 1 © 2001 Actel Corporation 1 40MX and 42MX FPGA Families G en er al D e sc r i p t i on MHz on-chip operation and 6.1 ns clock-to-output performance with capacities spanning from 36,000 to 54,000 system gates. MX devices comply 100 percent to the electrical and timing specifications detailed in the PCI specification. However, as with all programmable logic devices, the performance of the final product depends upon the user's design and optimization techniques. Actel’s 40MX and 42MX families provide a high-performance, single-chip solution for shortening the system design and development cycle, offering a cost-effective alternative to ASICs. The 40MX and 42MX devices are excellent choices for integrating logic that is currently implemented in multiple PALs, CPLDs, and FPGAs. Example applications include high-speed controllers and address decoding, peripheral bus interfaces, DSP, and co-processor functions. The MX24 and MX36 devices also include system-level features such as IEEE Standard 1149.1 (JTAG) Boudary Scan Testing, dual-port SRAM, and fast wide-decode modules. The A42MX36 device offers dual-port SRAM for implementing fast FIFOs, LIFOs, and temporary data storage. The large number of storage elements can efficiently address applications requiring wide datapath manipulation and can perform transformation functions such as those required for telecommunications, networking, and DSP. The MX device architecture is based on Actel’s patented antifuse technology implemented in a 0.45µ triple-metal CMOS process. With capacities ranging from 3,000 to 54,000 system gates, the synthesis-friendly MX devices provide performance up to 250 MHz, are live on power-up, and require up to five times lower stand-by power consumption than any other FPGA device. Actel’s MX FPGAs provide up to 202 user I/Os and are available in a wide variety of packages and speed grades. All products in the 40MX and 42MX families are available 100 percent tested over the military temperature range. In addition, the largest member of the family, the A42MX36, is available in both CQ208 and CQ256 ceramic packages screened to MIL-STD-883 levels. For easy prototyping and conversion from plastic to ceramic, the CQ208 and PQ208 devices are pin compatible. Actel’s 42MX devices also feature MultiPlex I/Os, which support mixed voltage systems, enable programmable PCI, deliver high-performance operation at both 5.0V and 3.3V, and provide a low-power mode. The MX PCI-Compliant devices are fully compliant with the PCI Local Bus Specification (version 2.1). They deliver 200 O r d e r i n g I nf o r m a t i o n A42MX16 – PQ 100 Application (Temperature Range) Blank = Commercial (0 to +70°C) I = Industrial (–40 to +85°C) M = Military (–55 to +125°C) B = MIL-STD-883 Package Lead Count Package Type PL = Plastic Leaded Chip Carrier PQ = Plastic Quad Flat Pack TQ = Thin (1.4 mm) Quad Flat Pack VQ = Very Thin (1.0 mm) Quad Flat Pack BG = Ball Grid Array CQ = Ceramic Quad Flat Pack Speed Grade Blank = Standard Speed –1 = Approximately 15% Faster than Standard –2 = Approximately 25% Faster than Standard –3 = Approximately 35% Faster than Standard –F = Approximately 40% Slower than Standard Part Number A40MX02= A40MX04= A42MX09= A42MX16= A42MX24= A42MX36= 2 3,000 System Gates 6,000 System Gates 14,000 System Gates 24,000 System Gates 36,000 System Gates 54,000 System Gates v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s Pr od uc t P l a n Speed Grade1 Application Std –1 –2 –3 –F2 C I M B 44-Pin Plastic Leaded Chip Carrier (PLCC) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 68-Pin Plastic Leaded Chip Carrier (PLCC) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 100-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 80-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 44-Pin Plastic Leaded Chip Carrier (PLCC) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 68-Pin Plastic Leaded Chip Carrier (PLCC) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 84-Pin Plastic Leaded Chip Carrier (PLCC) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 100-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 80-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 84-Pin Plastic Leaded Chip Carrier (PLCC) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 100-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 160-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 176-Pin Thin Plastic Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 100-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 84-Pin Plastic Leaded Chip Carrier (PLCC) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 100-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 160-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 176-Pin Thin Plastic Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 100-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 84-Pin Plastic Leaded Chip Carrier (PLCC) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 160-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 176-Pin Thin Plastic Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 240-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 272-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — — 3 ✔ ✔3 — ✔3 ✔3 faster faster faster slower than than than than A40MX02 Device A40MX04 Device A42MX09 Device A42MX16 Device A42MX24 Device A42MX36 Device 208-Pin Ceramic Quad Flat Pack (CQFP) ✔ ✔ 256-Pin Ceramic Quad Flat Pack (CQFP) ✔ ✔ Contact your Actel sales representative for product availability. Applications: C = Commercial Availability: ✔ = Available Standard I = Industrial P = Planned Standard M = Military — = Not Planned Standard Standard v5.0 ✔ ✔ — — — — ✔ ✔ *Speed Grade: –1 = Approx. –2 = Approx. –3 = Approx. –F = Approx. † Only Std, –1, –2 Speed Grade • Only Std, –1 Speed Grade 15% 25% 35% 40% 3 40MX and 42MX FPGA Families D ev el o pm e n t T oo l S up po r t enabling 100 percent real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy-to-use integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC’s standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to only a few seconds. The MX devices are fully supported by Actel’s line of FPGA development tools, including the Actel DeskTOP series and Designer Series tools. The Actel DeskTOP series is an integrated design environment for PCs that includes design entry, simulation, synthesis, and place-and-route tools. Designer Series, Actel’s suite of FPGA development point tools for PCs and Workstations, includes the ACTgen Macro Builder, timing-driven place-and-route and analysis tools, and device programming software. In addition, the MX devices contain ActionProbe circuitry that provides built-in access to every node in a design, Pl a s t i c D e vi c e Re so u r ce s User I/Os PLCC 44-Pin PLCC 68-Pin PLCC 84-Pin A40MX02 34 57 — 57 — — — 57 — — — A40MX04 34 57 69 69 — — — 69 — — — A42MX09 — — 72 83 101 — — — 83 104 — A42MX16 — — 72 83 125 140 — — 83 140 — A42MX24 — — 72 — 125 176 — — — 150 — A42MX36 — — — — — 176 202 — — — 202 Device PQFP PQFP PQFP PQFP 100-Pin 160-Pin 208-Pin 240-Pin VQFP 80-Pin VQFP TQFP PBGA 100-Pin 176-Pin 272-Pin Package Definitions (Contact your Actel sales representative for product availability.) PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array C er a m i c De v i ce R es ou r c es User I/Os Device A42MX36 CQFP CQFP 208-Pin 256-Pin 176 202 Package Definitions (Contact your Actel sales representative for product availability.) CQFP = Ceramic Quad Flat Pack 4 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s Po w e r R eq ui r em e nt s M X Ar ch i t e ct u r a l O ve r vi ew 40MX The 40MX and 42MX devices are composed of fine-grained building blocks that enable fast, efficient logic designs. All devices within these families are composed of logic modules, I/O modules, routing resources, and clock networks, which are the building blocks for designing fast logic designs. In addition, the A42MX36 device contains embedded dual-port SRAM and wide decode modules. The dual-port SRAM modules are optimized for high-speed datapath functions such as FIFOs, LIFOs, and scratchpad memory. The “Product Profile” on page 1 lists the specific logic resources contained within each device. The 40MX FPGAs will operate in 5.0V-only systems or 3.3V-only systems. VCC Input Output 5.0V 5.0V 5.0V 3.3V 3.3V 3.3V 42MX The 42MX FPGAs will operate in 5.0V-only systems, 3.3V-only systems, or mixed 5.0V/3.3V systems. VCCA VCCI Input Output 5.0V 5.0V 5.0V 5.0V 3.3V 3.3V 3.3V 3.3V 5.0V 3.3V 3.3V, 5.0V 3.3V M i xe d Vo l t a ge P ow e r U p an d P o w er D ow n When powering up the device in the mixed voltage mode (VCCA = 5.0V and VCCI = 3.3V), VCCA must be greater than or equal to VCCI throughout the power-up sequence. If VCCI is 0.5V greater than VCCA when both are above 1.5V, then the I/Os’ input protection junction on the I/Os will be forward biased, causing them to draw large amounts of current. When VCCA and VCCI are in the 1.5V to 2.0V region and VCCI is greater than VCCA, all I/Os would momentarily behave as outputs that are in a logical high state, and ICC rises to high levels. For power down, any sequence with VCCA and VCCI can be implemented. Logi c Modu les The 40MX logic module is an eight-input, one-output logic circuit designed to implement a wide range of logic functions with efficient use of interconnect routing resources (Figure 1). The logic module can implement the four basic logic functions (NAND, AND, OR, and NOR) in gates of two, three, or four inputs. Each function may have many versions with different combinations of active LOW inputs. The logic module can also implement a variety of D-latches, exclusivity functions, AND-ORs, and OR-ANDs. No dedicated hard-wired latches or flip-flops are required in the array, since latches and flip-flops can be constructed from logic modules wherever needed in the application. Lo w P ow e r M o de The 42MX devices have a power-saving feature enabled by a special Low Power pin (LP). In this mode, the device consumes very minimal power, with standby current as low as 15µA (see “Electrical Specifications” on page 13 and 14). All µ I/Os are tristated, all input buffers are turned off, and the core of the device is turned off. Since the core is turned off, the state of the registers and the contents of the SRAM are lost. The device enters low power mode 800ns after the LP pin is set High. It will resume normal operation 200µs after the LP pin is driven to a logic Low. Figure 1 • 40MX Logic Module v5.0 5 40MX and 42MX FPGA Families The 42MX devices contain three types of logic modules: combinatorial (C-modules), sequential (S-modules), and decode (D-modules). A0 B0 S0 The C-module, shown in Figure 2, implements the following function: D00 Y=!S1*!S0*D00+!S1*S0*D01+S1*!S0*D10+S1*S0*D11 D01 Y where S0=A0*B0 D10 S1=A1+B1 D11 The S-module, shown in Figure 3, is designed to implement high-speed sequential functions within a single logic module. The S-module implements the same combinatorial logic function as the C-module while adding a sequential element. The sequential element can be configured as either a D flip-flop or a transparent latch. To increase flexibility, the S-module register can be bypassed so that it implements purely combinatorial logic. S1 A1 B1 Figure 2 • C-Module Implementation D00 D00 D01 Y D10 D Q D01 OUT S0 D11 D11 CLR S1 Y D10 S0 D Q GATE S1 Up to 7-Input Function Plus Latch Up to 7-Input Function Plus D-Type Flip-Flop with Clear D00 D0 D01 Y D1 S D Q OUT D11 S1 GATE CLR OUT S0 Up to 8-Input Function Same as C-Module) Up to 4-Input Function Plus Latch with Clear Figure 3 • S-Module Implementation 6 Y D10 v5.0 OUT 4 0 M X a n d 4 2 M X F PG A F a m il ie s Some of the 42MX devices contain D-modules, which are arranged around the periphery of the devices. D-modules contain wide-decode circuitry, which provides a fast, wide-input AND function similar to that found in product-term architectures (Figure 4). The D-module allows 42MX devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hard-wired to an output pin, but it can also be fed back into the array to be incorporated into other logic. offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]) which are connected to segmented vertical routing tracks. The 42MX dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring fast FIFO and LIFO queues. Actel’s ACTgen Macro Builder provides the capability to quickly design memory functions, such as FIFOs, LIFOs, and RAM arrays. In addition, unused SRAM blocks can be used to implement registers for other logic within the design. Dua l- Po rt S R AM Mod ules The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the 42MX dual-port SRAM block is shown in Figure 5. The 42MX SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities WD[7:0] 7 Inputs Hard-Wire to I/O Programmable Inverter Feedback to Array Figure 4 • D-Module Implementation Latches [7:0] [5:0] WRAD[5:0] [5:0] Write Port Logic SRAM Module 32 x 8 or 64 x 4 (256 Bits) RDAD[5:0] Latches Read Logic Latches REN RCLK MODE BLKEN WEN Read Port Logic Write Logic WCLK RD[7:0] Routing Tracks Figure 5 • 42MX Dual-Port SRAM Block v5.0 7 40MX and 42MX FPGA Families Mul ti P lex I/ O M odul es Horizontal Routing MultiPlex I/O supports the most common voltage standards today: pure 5.0V operation, pure 3.3V operation, and mixed 3.3V operation with 5.0V I/O tolerance for maximum performance. Internal array performance is retained in 3.3V systems by using complimentary pass gates that operate as fast as they do at 5.0V at 3.3V. Horizontal channels are located between the rows of modules and are composed of several routing tracks. The horizontal routing tracks within the channel are divided into one or more segments. The minimum horizontal segment length is the width of a module pair, and the maximum horizontal segment length is the full length of the channel. Any segment that spans more than one-third at the row length is considered a long horizontal segment. A typical channel is shown in Figure 8 on page 9. Non-dedicated horizontal routing tracks are used to route signal nets; dedicated routing tracks are used for global clock networks and for power and ground tie-off tracks. MultiPlex I/O includes selectable PCI output drives in certain 42MX devices, enabling 100% PCI-compliance for both 5.0V and 3.3V systems. For low-power systems, MultiPlex I/O is used to turn off all inputs and outputs to cut current consumption to below 100µA. The MultiPlex I/O modules provide the interface between the device pins and the logic array. The top of Figure 6 is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro selection, can be implemented in the module. (Refer to the Macro Library Guide for more information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be configured for input, output, or bi-directional operation. EN Q D PAD From Array All 42MX devices contain flexible I/O structures (Figure 7 on page 9), where each output pin has a dedicated output-enable control. The I/O module can be used to latch input or output data, or both, providing a fast set-up time. In addition, the Actel Designer Series software tools can build a D-type flip-flop using a C-module to register input and output signals. To achieve 5.0V or 3.3V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide PCI fuse is programmed. When the PCI fuse is not programmed, the output drive is standard. (See the bottom portion of Figure 6.) G/CLK* Q D To Array G/CLK* * Can be Configured as a Latch or D Flip-Flop (Using C-Module) Schematic Actel’s Designer Series development tools provide a design library of I/O macrofunctions that can implement all I/O configurations supported by the MX FPGAs. STD Signal Rou ti ng St r uct ur e The MX architecture uses vertical and horizontal routing tracks to interconnect the various logic and I/O modules. These routing tracks are metal interconnects that may be either of continuous length or broken into pieces called segments. Varying segment lengths allows the interconnect of over 90% of design tracks to occur with only two antifuse connections. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track. All interconnects can be accomplished with a maximum of four antifuses. Output PCI Drive PCI Enable Fuse Figure 6 • 42MX I/O Module Vertical Routing Another set of routing tracks run vertically through the module. There are three types of vertical tracks: input, output, and long, which are also divided into one or more segments. Each segment in an input track is dedicated to the input of a particular module; each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during 8 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s OE From Internal Logic To Internal Logic Figure 7 • 40MX I/O Module routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array, where edge effects occur. Long vertical tracks contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 8. internally-generated clock signal to a clock network. Since both clock networks are identical, it does not matter whether CLK0 or CLK1 is being used. The clock input pads can also be used as normal I/Os, bypassing the clock networks (Figure 9). The A42MX36 device has four additional register control resources, called quadrant clock networks (Figure 10 on page 10). Each quadrant clock provides a local, high-fanout resource to the contiguous logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O pins or from the internal array and can be used as a secondary register clock, register clear, or output enable. Segmented Horizontal Routing Tracks Antifuse Structures An antifuse is a “normally open” structure as opposed to the normally connected fuse structure used in PROMs or PALs. The use of antifuses to implement a programmable logic device results in highly testable structures as well as efficient programming algorithms. The structure is highly-testable because there are no pre-existing connections; therefore, temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed and individual circuit structures to be tested, which can be done before and after programming. For example, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified. Logic Modules Antifuses Vertical Routing Tracks Figure 8 • Routing Structure CLKB CLKINB CLKA CLKINA From Pads Cl ock Net wor ks The 40MX devices have one global clock distribution network (CLK). Two low-skew, high-fanout clock distribution networks are provided in each 42MX device. These networks are referred to as CLK0 and CLK1. Each network has a clock module (CLKMOD) that selects the source of the clock signal and may be driven as follows: CLKMOD S0 S1 Internal Signal CLKO(17) Clock Drivers • Externally from the CLKA pad CLKO(16) CLKO(15) • Externally from the CLKB pad • Internally from the CLKINTA input CLKO(2) • Internally from the CLKINTB input The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. The user controls the clock module by selecting one of two clock macros from the macro library. The macro CLKBUF is used to connect one of the two external clock pins to a clock network, and the macro CLKINT is used to connect an CLKO(1) Clock Tracks Figure 9 • Clock Networks v5.0 9 40MX and 42MX FPGA Families T est C ir cu it ry interconnections. The TMS and TCK signals are shared among all devices in the test chain so that all components operate in the same state. All devices contain Actel’s ActionProbe test circuitry which test and debug a design once it is programmed into a device. Once a device has been programmed, the ActionProbe test circuitry allows the designer to probe any internal node during device operation to aid in debugging a design. In addition, 42MX devices contain IEEE Standard 1149.1 boundary scan test circuitry. The 42MX family implements a subset of the IEEE Standard 1149.1 BST instruction in addition to a private instruction, which allows the use of Actel’s ActionProbe facility with BST. Refer to the IEEE Standard 1149.1 specification for detailed information regarding BST. IEEE Standard 1149.1 Boundary Scan Testing (BST) Boundary Scan Circuitry IEEE Standard 1149.1 defines a four-pin Test Access Port (TAP) interface for testing integrated circuits in a system. The 42MX family provides five BST pins: Test Data In (TDI), Test Data Out (TDO), Test Clock (TCK), and Test Mode Select Test Reset (TRST) (42MX24A only). Devices are configured in a test “chain” where BST data can be transmitted serially between devices via TDO-to-TDI The 42MX boundary scan circuitry consists of a Test Access Port (TAP) controller, test instruction register, a JPROBE register, a bypass register, and a boundary scan register. Figure 11 on page 11 shows a block diagram of the 42MX boundary scan circuitry. QCLKA QCLKB QCLKC Quad Clock Module QCLK1 QCLK3 Quad Clock Module *QCLK1IN *QCLK3IN S0 S1 S1 S0 Quad Clock Module Quad Clock Module QCLK2 QCLK4 *QCLK2IN *QCLK4IN S0 S1 S1 S0 *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals. Figure 10 • Quadrant Clock Network 10 QCLKD v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s JPROBE Register Boundary Scan Register Output MUX TDO Bypass Register Control Logic JTAG TMS TAP Controller TCK Instruction Decode JTAG TDI Instruction Register Figure 11 • 42MX IEEE 1149.1 Boundary Scan Circuitry When a device is operating in BST mode, four I/O pins are used for the TDI, TDO, TMS, and TCK signals. An active reset (nTRST) pin is not supported; however, the 42MX device contain power-on circuitry that resets the boundary scan circuitry upon power-up. Table 1 summarizes the functions of the IEEE 1149.1 BST signals. Table 1 • IEEE 1149.1 BST Signals JTAG fuse programmed: • TCK must be terminated—logical high or low doesn’t matter (to avoid floating input) • TDI, TMS may float or at logical high (internal pull-up is present) • TDO may float or connect to TDI of another device (it’s an output) Signal Name Function JTAG fuse not programmed: TDI Test Data In Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. • TCK, TDI, TDO, TMS are user I/O. If not used, they will be configured as tristated output. TDO Test Data Out Serial data output for BST instructions and test data. TMS Test Mode Select Serial data input for BST mode. Data is shifted in on the rising edge of TCK. TCK Test Clock Clock signal to shift the BST data into the device. JTAG All SX-A devices are IEEE 1149.1 (JTAG) compliant. SX-A devices offer superior diagnostic and testing capabilities by providing JTAG and probing capabilites. These functions are controlled through the special JTAG pins in conjunction with the program fuse. BST Instructions Boundary scan testing within the 42MX devices is controlled by a Test Access Port (TAP) state machine. The TAP controller drives the three-bit instruction register, a bypass register, and the boundary scan data registers within the device. The TAP controller uses the TMS signal to control the testing of the device. The BST mode is determined by the bitstream entered on the TMS pin. Table 2 describes the test instructions supported by the 42MX devices. Reset The TMS pin is equipped with an internal pull-up resistor. This allows the TAP controller to remain in or return to the Test-Logic-Reset state when there is no input or when a logical 1 is on the TMS pin. To reset the controller, TMS must be HIGH for at least five TCK cycles. v5.0 11 40MX and 42MX FPGA Families Table 2 • BST Instructions Test Mode Code Description EXTEST 000 Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. SAMPLE/ PRELOAD 001 Allows a snapshot of the signals at the device pins to be captured and examined during device operation. JPROBE 011 A private instruction allowing the user to connect Actel’s Micro Probe registers to the test chain. USER 100 INSTRUCTION Allows the user to build application-specific instructions such as RAM READ and RAM WRITE. HIGH Z 101 Refer to the IEEE Standard 1149.1 specification. CLAMP 110 Refer to the IEEE Standard 1149.1 specification. BYPASS 111 Enables the bypass register between the TDI and TDO pins. The test data passes through the selected device to adjacent devices in the test chain. 12 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 5 . 0V O p er a t i n g C o nd i t i o ns a nd M i xe d 5. 0 V / 3. 3 V Op e r at i ng C on di t i on s A bs o l ut e M a xi m u m R at i ng s 1 R e co m m e nd e d O p era t i n g C o nd i t i o ns Free Ai r Tem per at ure Rang e Parameter Symbol Parameter Limits VCCA/ VCCI DC Supply Voltage VI Units –0.5 to +7.0 V Input Voltage –0.5 to VCC +0.5 V VO Output Voltage –0.5 to VCC +0.5 V TSTG Storage Temperature –65 to +150 °C Notes: 1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions. 2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCCA + 0.5V or less than GND – 0.5V, the internal protection diode will be forward-biased and can draw excessive current. Commercial Industrial Military Units Temperature Range1 0 to +70 Power Supply Tolerance ±5 ±10 ±10 %VCC VCCI 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCA 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCI2 3.14 to 3.47 3.0 to 3.6 3.0 to 3.6 V –40 to +85 –55 to +125 °C Notes: 1. Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military. 2. Operating condition for I/Os in mixed voltage mode. E l ec t r i c a l Sp e ci f i c a t i on s Commercial Symbol Industrial Military Units Min. VOH1 Commercial ‘–F’ Parameter (IOH = –10 mA) 2 TTL Max. 2.4 Min. Max. Min. Max. Min. Max. 2.4 V (IOH = –6 mA) TTL V (IOH = –4 mA) TTL VOL 1 (IOL = 10 3.7 mA) 2 TTL 0.5 VIH IIL (VIN = 0.5) IIH (VIN = 2.7) Input Transition Time tR, tF CIO I/O 2 Capacitance2, 3 Standby Current, ICC 4 V 0.40 0.40 V V –0.3 0.8 –0.3 0.8 –0.3 0.8 –0.3 0.8 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 V –10 –10 –10 –10 µA –10 –10 –10 –10 µA 500 500 500 500 ns 10 10 10 10 pF Notes 5 & 6 25.0 Notes 6 & 7 25 mA ICC – 0.5 mA ICC(D) Dynamic VCCI Supply Current Low Power Mode Standby Current V 0.5 (IOL = 6 mA) TTL VIL 3.7 See the “Power Dissipation” section on page 18. Note 8 ICC – 0.5 ICC – 0.5 Notes: 1. Only one output tested at a time. VCCI = min. 2. Not tested, for information only. 3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f = 1 MHz. 4. All outputs unloaded. All inputs = VCCI or GND. ICC limit includes IPP and ISV during normal operation. 5. A40MX02 and A40MX04 ICC = 3 mA, A42MX09 ICC = 5 mA, A42MX16 ICC = 6 mA, A42MX24, A42MX24A, and A42MX36 ICC = 25 mA. 6. ICC Max = 2 mA is available by special request. Contact your local Actel Sales representative for additional information. 7. A40MX02 and A40MX04 ICC = 10 mA, A42MX09, A42MX16, A42MX24, A42MX24A, and A42MX36 ICC = 25 mA. 8. In Low Power Mode, A42MX09 ICC = 50 µA; A42MX16, A42MX24, and A42MX36 ICC = 100 µA. A40MX02 and A40MX04 = N/A. v5.0 13 40MX and 42MX FPGA Families 3. 3 V O pe r a t i ng C on d i t i on s A bs ol u t e M ax i m u m Ra t i n gs 1 R ec o m m en d ed O pe r a t i ng C on d i t i o ns V C C = V C C A and V C C I Fr ee Air Te m per at ure R ange Parameter Symbol Parameter Limits Units –0.5 to +7.0 V Commercial Industrial Military Units Temperature Range1 0 to +70 –40 to +85 –55 to +125 °C Power Supply Tolerance ±5 ±10 ±10 %V VCC DC Supply Voltage VI Input Voltage –0.5 to VCC +0.5 V VCCI 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V VO Output Voltage –0.5 to VCC +0.5 V VCCA 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V ±20 mA –65 to +150 °C IIO TSTG I/O Source Sink Current2 Storage Temperature Note: 1. Ambient temperature (TA) is used for commercial, and industrial; case temperature (TC) is used for military. Notes: 1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions. 2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5V or less than GND – 0.5V, the internal protection diodes will forward-bias and can draw excessive current. El e c t r i c al S p ec i f i c at i o n s Commercial Commercial ‘–F’ Industrial Military Parameter Units Min. VOH1 VOL1 Max. Min. (IOH = –4 mA) 2.15 2.15 (IOH = –3.2 mA) 2.4 2.4 (IOL = 6 mA) 0.4 Max. Min. Max. 2.4 Min. Max. 2.4 V V 0.4 0.48 0.48 V VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 –0.3 0.8 V VIH 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V IIL IIH Input Transition Time tR, tF CIO I/O 2 Capacitance2, 3 Standby Current, ICC 4 –10 –10 –10 –10 µA –10 –10 –10 –10 µA 500 500 500 500 ns 10 10 10 10 pF Notes 5 & 6 25 Notes 6 & 7 25 mA ICC – 5.0 mA ICC(D) Dynamic VCC Supply Current Low Power Mode Standby Current See the “Power Dissipation” section on page 18. Note 8 ICC – 5.0 ICC – 5.0 Notes: 1. Only one output IV curve tested at a time. VCC = min. 2. Not tested, for information only. 3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f = 1 MHz. 4. All outputs unloaded. All inputs = VCC or GND. 5. A40MX02 and A40MX04 ICC = 3 mA, A42MX09 ICC = 5 mA, A42MX16 ICC = 6 mA, A42MX24 and A42MX36 ICC = 25 mA. 6. ICC Max = 1.5mA is available by special request. Contact your Actel Sales representative for additional information. 7. A40MX02 and A40MX04 ICC = 10 mA, A42MX09, A42MX16, A42MX24, and A42MX36 ICC = 25 mA. 8. In Low Power Mode, A42MX09 ICC = 15 µA; A42MX16, A42MX24, A42MX36 ICC = 50 µA. A40MX02 and A40MX04 = N/A. 14 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s O ut p u t D r i ve C ha r a ct e r i s t i c s f o r 5. 0 V PC I S i g na l i n g MX PCI device I/O drivers were designed specifically for high-performance PCI systems. Figure 12 on page 17 shows the typical output drive characteristics of the MX devices. MX output drivers are compliant with the PCI Local Bus Specification. DC S pec if i cat ion (5. 0V P CI S igna li ng) 1 PCI Symbol Parameter Condition Minimum MX Maximum Minimum Maximum 2 Units VCC Supply Voltage 4.75 5.25 4.75 5.25 VIH Input High Voltage 2.0 VCC + 0.5 2.0 VCC + 0.3 V VIL Input Low Voltage –0.5 0.8 –0.3 0.8 V IIH Input High Leakage Current VIN = 2.7 70 — 10 µA IIL Input Low Leakage Current VIN=0.5 –70 — –10 µA VOH Output High Voltage VOL Output Low Voltage CIN Input Pin Capacitance CCLK CLK Pin Capacitance LPIN IOUT = –2 mA 2.4 IOUT = –6 mA V 3.84 IOUT = 3 mA, 6 mA V 0.55 — 0.33 V 10 — 10 pF 12 — 10 pF 5 Pin Inductance 20 — <8 nH3 nH Notes: 1. PCI Local Bus Specification Section 4.2.1.1. 2. Maximum rating for VCC –0.5V to 7.0V. 3. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance. AC S pec if i cat ion s (5.0 V P C I S i gnal ing ) 1 PCI Symbol Parameter Condition Minimum ICL Low Clamp Current –5 < VIN ≤ –1 Slew (r) Output Rise Slew Rate 0.4V to 2.4V load 1 Slew (f) Output Fall Slew Rate 2.4V to 0.4V load 1 MX Maximum Minimum Maximum Units –60 –10 mA 5 1.8 2.8 V/ns 5 2.8 4.3 V/ns –25 + (VIN +1) /0.015 Note: 1. PCI Local Bus Specification Section 4.2.1.2. v5.0 15 40MX and 42MX FPGA Families O ut p u t D r i ve C ha r a ct e r i s t i c s f o r 3 . 3V P C I Si gn al i n g DC S pec if i cat ion (3. 3V P CI S igna li ng) 1 PCI Symbol Parameter VCC Minimum Maximum Minimum Maximum Units Supply Voltage 3.0 3.6 3.0 3.6 V VIH Input High Voltage 0.5 VCC + 0.5 0.5 VCC + 0.3 V VIL Input Low Voltage –0.5 0.8 –0.3 0.8 V IIH Input High Leakage Current 70 10 µA IIL Input Leakage Current –70 –10 µA VOH Output High Voltage IOUT = –2 mA VOL Output Low Voltage IOUT = 3 mA, 6 mA CIN Input Pin Capacitance CCLK CLK Pin Capacitance LPIN Condition MX VIN = 2.7 0.9 3.3 5 Pin Inductance V 0.1 0.1 VCC V 10 10 pF 12 10 pF 20 <8 nH3 nH Notes: 1. PCI Local Bus Specification Section 4.2.2.1. 2. Maximum rating for VCC –0.5V to 7.0V. 3. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance. AC S pec if i cat ion s for (3. 3V P CI S igna li ng) 1 PCI Symbol Parameter Condition Minimum ICL Low Clamp Current –5 < VIN ≤ –1 Slew (r) Output Rise Slew Rate 0.2V to 0.6V load 1 Slew (f) Output Fall Slew Rate 0.6V to 0.2V load 1 Maximum Minimum Maximum Units –60 –10 mA 4 1.8 2.8 V/ns 4 2.8 4.0 V/ns –25 + (VIN +1) /0.015 Note: 1. PCI Local Bus Specification Section 4.2.2.2. 16 MX v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 0.50 0.45 0.40 PCI IOL Maximum 0.35 0.30 0.25 Current (A) 0.20 MX PCI IOL 0.15 0.10 PCI IOL Minimum 0.05 0.00 0 –0.05 1 2 3 4 PCI IOH Maximum 5 6 MX PCI IOH –0.10 –0.15 PCI IOH Minimum –0.20 Voltage Out (V) Figure 12 • Typical Output Drive Characteristics (Based upon measured data) v5.0 17 40MX and 42MX FPGA Families Pa c ka ge T he r m a l C ha r a ct e r i s t i c s The device junction-to-case thermal characteristic is θjc, and the junction-to-ambient air characteristic is θja. The thermal characteristics for θja are shown with two different air flow rates. Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military. Maximum junction temperature is 150°C. A sample calculation of the absolute maximum power dissipation allowed for a PQFP 160-pin package at commercial temperature is as follows: Max. junction temp. (°C) – Max. commercial temp. – 70°C ----------------------------------------------------------------------------------------------------------------------------- = 150°C --------------------------------= 2.5W θ ja (°C/W) 32°C/W θja Plastic Packages Pin Count θjc Still Air 300 ft/min Plastic Quad Flat Pack 100 12 34°C/W 31°C/W Plastic Quad Flat Pack 160 10 32°C/W 24°C/W Plastic Quad Flat Pack 208 8 30°C/W 23°C/W Plastic Quad Flat Pack 240 3.5 19°C/W 16°C/W Plastic Leaded Chip Carrier 44 16 43°C/W 31°C/W Plastic Leaded Chip Carrier 68 13 36°C/W 25°C/W Plastic Leaded Chip Carrier 84 12 32°C/W 22°C/W Thin Plastic Quad Flat Pack 176 11 28°C/W 21°C/W Very Thin Plastic Quad Flat Pack 80 12 39°C/W 33°C/W Very Thin Plastic Quad Flat Pack 100 10 38°C/W 32°C/W Plastic Ball Grid Array 272 3 20°C/W 14.5°C/W θja Pin Count θjc Ceramic Quad Flat Pack 208 6.3 22°C/W Ceramic Quad Flat Pack 256 6.2 20°C/W Ceramic Packages Po w e r D i ss i pa t i o n Gener al P ow er E quat i on P = [ICCstandby + ICCactive] * VCCI + IOL* VOL* N + IOH * (VCCI – VOH) * M where: ICCstandby is the current flowing when no inputs or outputs are changing. ICCactive is the current flowing due to CMOS switching. Still Air S t at ic Po wer C om pon ent Actel FPGAs have small static power components that result in power dissipation lower than PALs or CPLDs. By integrating multiple PALs/CPLDs into one FPGA, an even greater reduction in board-level power dissipation can be achieved. The power due to standby current is typically a small component of the overall power. Standby power is calculated for commercial, worst-case conditions: ICC 2 mA IOL, IOH are TTL sink/source currents. VOL, VOH are TTL level output voltages. N equals the number of outputs driving TTL loads to VOL. M equals the number of outputs driving TTL loads to VOH. Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active. 18 VCCA 5.25 V Power 10.5 mW The static power dissipation by TTL loads depends on the number of outputs driving HIGH or LOW, and on the DC load current. Again, this number is typically small. For instance, a 32-bit bus sinking 4 mA at 0.33V will generate 42 mW with all outputs driving LOW, and 140 mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time. v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s Act i ve P ower C om po nent where: Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This component is frequency-dependent and a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation. m n p q1 E quiv al ent C apac it ance The power dissipated by a CMOS circuit can be expressed by the equation: Power (µW) = CEQ * VCCA2 * F (1) where: CEQ = Equivalent capacitance expressed in picofarads (pF) VCCA = Power supply in volts (V) F = Switching frequency in megahertz (MHz) Equivalent capacitance is calculated by measuring ICCactive at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below. = Number of logic modules switching at frequency fm = Number of input buffers switching at frequency fn = Number of output buffers switching at frequency fp = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r1 = lFixed capacitance due to first routed array clock r2 = Fixed capacitance due to second routed array clock CEQM = Equivalent capacitance of logic modules in pF CEQI = Equivalent capacitance of input buffers in pF CEQO = Equivalent capacitance of output buffers in pF CEQCR = Equivalent capacitance of routed array clock in pF CL = Output load capacitance in p fm = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz fp = Average output buffer switching rate in MHz fq1 = Average first routed array clock rate in MHz fq2 = Average second routed array clock rate in MHz Fix ed Capa cit anc e V alu es for M X F PG As (pF ) r1 routed_Clk1 r2 routed_Clk2 A40MX02 41.4 N/A A40MX04 68.6 N/A Device Type C E Q Valu es f or A ct el MX FP G A s Modules (CEQM) 3.5 A42MX09 118 118 Input Buffers (CEQI) 6.9 A42MX16 165 165 A42MX24 185 185 A42MX36 220 220 Output Buffers (CEQO) 18.2 Routed Array Clock Buffer Loads (CEQCR) 1.4 To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. The equation below shows a piece-wise linear summation over all components. Power = VCCA2 * [(m x CEQM * fm)Modules + (n * CEQI * fn)Inputs + (p * (CEQO + CL) * fp)outputs + 0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1 + 0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 (2) v5.0 19 40MX and 42MX FPGA Families Det er m ini ng Av er age S wi tch ing Frequ ency To determine the switching frequency for a design, the data input values to the circuit must be clearly understood. The following guidelines represent worst-case scenarios; these can be used to generally predict the upper limits of power dissipation. Logic Modules (m) = 80% of Combinatorial Modules Inputs Switching (n) = # of Inputs/4 Outputs Switching (p) = # of Outputs/4 First Routed Array Clock Loads (q1) = 40% of Sequential Modules Second Routed Array Clock Loads (q2) = 40% of Sequential Modules Load Capacitance (CL) = 35 pF Logic Modules (m) = 80% of Combinatorial Modules Average Logic Module Switching Rate (fm) = F/10 Average Input Switching Rate (fn) = F/5 Average Output Switching Rate (fp) = F/10 Average First Routed Array Clock Rate (fq1) = F Average Second Routed Array Clock Rate (fq2) = F/2 40 M X Ti m i ng M od e l * Input Delay Internal Delays Predicted Routing Delays I/O Module Output Delay I/O Module tINYL = 0.62 ns t IRD2 = 2.59 ns Logic Module tDLH = 3.32 ns tIRD1 = 2.09 ns tIRD4 = 3.64 ns tIRD8 = 5.73 ns Array Clock tCKH = 4.55 ns tPD = 1.24 ns tCO = 1.24 ns tRD1 = 1.28 ns tRD2 = 1.80 ns tRD4 = 2.33 ns tRD8 = 4.93 ns FO = 128 FMAX = 180 MHz * Values are shown for 40MX ‘–3’ speed devices at 5.0V worst-case commercial conditions. 20 v5.0 tENHZ = 7.92 ns 4 0 M X a n d 4 2 M X F PG A F a m il ie s 42 M X Ti m i ng M od e l * Input Delays Internal Delays I/O Module tINYL = 1.16 ns Predicted Routing Delays Output Delays I/O Module tIRD1 = 2.24 ns† Combinatorial Logic Module D Q tDLH = 2.70 ns tRD1 = 0.80 ns tRD2 = 1.00 ns tRD4 = 1.50 ns tRD8 = 2.50 ns tPD = 1.55 ns G Sequential Logic Module tINH = 0.00 ns tINSU = 0.54 ns tINGL = 1.40 ns Combinatorial Logic included in tSUD Array Clocks tCKH = 2.70 ns FMAX = 245 MHz FO = 32 D I/O Module tDLH = 2.70 ns D Q tRD1 = 0.80 ns Q tENHZ = 5.40 ns G tSUD = 0.36 ns tHD = 0.00 ns tCO = 1.37 ns tOUTH = 0.00 ns tOUTSU = 0.30 ns tGLH = 2.90 ns tLCO = 5.60 ns (light loads, pad-to-pad) *Values are shown for A42MX09 ‘–2’ at 5.0V worst-case commercial conditions † Input module predicted routing delay v5.0 21 40MX and 42MX FPGA Families 42 M X Ti m i ng M od e l ( Lo g i c F un c t i on s us i ng Q ua dr an t C l o ck s) * Input Delays Internal Delays Predicted Routing Delays Output Delays I/O Module tINPY = 1.14 ns t IRD1 = 2.18 ns I/O Module Combinatorial Module D Q tDLH = 2.84 ns tRD1 = 1.04 ns tRD2 = 1.42 ns tRD4 = 2.18 ns tPD = 1.46 ns G tINH = 0.00 ns tINSU = 0.53 ns tINGO = 1.55 ns Decode Module tRDD = 0.38 ns tPDD = 1.78 ns I/O Module tDLH = 2.84 ns Sequential Logic Module Combinatorial Logic included in tSUD D tRD1 = 1.04 ns Q tENHZ = 5.80 ns tCO = 1.43 ns tCKH = 3.03 ns** FMAX = 163 MHz * Preliminary values are shown for A42MX36 ‘–2’ at 5.0V worst-case commercial conditions ** Load-dependent 22 D G tSUD = 0.30 ns tHD = 0.00 ns Quadrant Clocks Q v5.0 tLH = 0.00 ns tLSU = 0.53 ns tGHL= 3.27 ns 4 0 M X a n d 4 2 M X F PG A F a m il ie s 42 M X Ti m i ng M od e l ( SR A M F un ct i on s) * Input Delays I/O Module tINPY = 1.14 ns t IRD1 = 2.18 ns D Q G tINSU = 0.53 ns tINH = 0.00 ns tINGO = 1.55 ns Predicted Routing Delays WD [7:0] WRAD [5:0] Array Clocks I/O Module tDLH = 2.84 ns RD [7:0] RDAD [5:0] tRD1 = 1.04 ns BLKEN REN D WEN WCLK RCLK G tADSU = 1.80 ns tADH = 0.00 ns tWENSU = 2.90 ns tBENS = 2.90 ns tADSU = 1.80 ns tADH = 0.00 ns tRENSU = 0.80 ns tRCO = 3.80 ns Q tGHL= 5.50 ns tLSU = 0.30 ns tLH = 0.00 ns FMAX = 151 MHz *Values are shown for A42MX36 ‘–2’ at 5.0V worst-case commercial conditions. v5.0 23 40MX and 42MX FPGA Families P ar am e t e r M ea s ur e m e nt O ut put Buf f er De lay s E D In 50% PAD VOL 50% VOH E 1.5V 1.5V PAD To AC test loads (shown below) TRIBUFF 50% VCCI E 50% 1.5V PAD PAD GND 10% VOL tDLH tENZL tDHL 50% VOH 50% tENHZ tENZH tENLZ 90% 1.5V A C Tes t Loa ds Load 1 (Used to measure propagation delay) Load 2 (Used to measure rising/falling edges) VCCI GND To the output under test 35 pF R to VCCI for tPLZ/tPZL R to GND for tPHZ/tPZH R = 1 kΩ To the output under test 35 pF Inp ut Bu ff er D ela ys PAD Modu le Del ay s S A B Y INBUF S, A or B 3V PAD 1.5V 1.5V VCCI Y GND 24 50% 50% tPLH 50% 50% tINYH 50% 50% Y 0V Y tPHL Y 50% tPHL tINYL v5.0 50% tPLH 4 0 M X a n d 4 2 M X F PG A F a m il ie s S eq u en t i a l M od ul e T i m i ng C ha r a ct er i st i c s Fl ip- Fl ops and La tch es D E CLK Y PRE CLR (Positive Edge-Triggered) tHD 1 D tSUD tA tWCLKA G, CLK tSUENA tWCLKI tHENA E tCO Q tRS PRE, CLR tWASYN Note: D represents all data functions involving A, B, and S for multiplexed flip-flops. v5.0 25 40MX and 42MX FPGA Families Se q ue nt i al T i m i n g C h ar ac t er i st i c s (continued) Inpu t Buffer Lat ch es PAD DATA IBDL G PAD CLK CLKBUF DATA tINH G tINSU tHEXT CLK tSUEXT Out put B uffer L at ches D PAD OBDLHS G D tOUTSU G tOUTH 26 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s D ec od e M od ul e T i m i ng A B C D E F G A–G, H Y H 50% Y tPHL tPLH SR A M T i m i ng C ha r a ct er i s t i c s Read Port Write Port WRAD [5:0] BLKEN WEN RDAD [5:0] RAM Array LEW 32x8 or 64x4 (256 Bits) WCLK REN RCLK WD [7:0] RD [7:0] v5.0 27 40MX and 42MX FPGA Families D ua l - Po r t S R A M Ti m i n g W av ef or m s 42MX S R AM Wr it e O per at ion tRCKHL tRCKHL WCLK tADSU WD[7:0] WRAD[5:0] tADH Valid tWENSU tWENH tBENSU tBENH WEN BLKEN Note: Valid Identical timing for falling edge clock. 42MX S R AM S ync hronou s Rea d Ope ra ti on tCKHL tRCKHL RCLK tRENSU tRENH tADSU tADH REN Valid RDAD[5:0] tRCO tDOH RD[7:0] Note: 28 Old Data Identical timing for falling edge clock. v5.0 New Data 4 0 M X a n d 4 2 M X F PG A F a m il ie s 42MX S R AM As yn chrono us Re ad Op er ati on— Typ e 1 (Read Address Controlled) tRDADV RDAD[5:0] ADDR1 ADDR2 tRPD tDOH Data 1 RD[7:0] Data 2 42MX S R AM As yn chrono us Re ad Op er ati on— Typ e 2 (Write Address Controlled) WEN WD[7:0] WRAD[5:0] BLKEN tWENSU tWENH Valid tADH tADSU WCLK tRPD tDOH RD[7:0] Old Data v5.0 New Data 29 40MX and 42MX FPGA Families Pr ed i ct ab l e Pe rf o r m a nc e: Ti g h t D el a y D i s t r i b ut i on s Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases. From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer routing tracks. The MX FPGAs deliver a tight fanout delay distribution, which is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path. Actel’s patented antifuse offers a very low resistive/capacitive interconnect. The antifuses, fabricated in 0.45 µ lithography, offer nominal levels of 100 ¾ resistance and 7.0 femtofarad (fF) capacitance per antifuse. MX fanout distribution is also tight due to the low number of antifuses required for each interconnect path. The proprietary architecture limits the number of antifuses per path to a maximum of four, with 90 percent of interconnects using only two antifuses. Ti m i ng C ha r a ct e r i s t i c s Lo ng T r ack s Some nets in the design use long tracks, which are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections, which increase capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks add approximately a 3 ns to a 6 ns delay, which is represented statistically in higher fanout (FO=8) routing delays in the data sheet specifications section, beginning on page 34. T im i ng Der at in g A timing derating factor of 0.45 is used to reflect best-case processing. Note that this factor is relative to the standard speed timing parameters and must be multiplied by the appropriate voltage and temperature derating factors for a given application. T i m i n g D e r at i ng Fa c t or s C om m er cial t o Indus t ri al Industrial (Commercial Specification) x Max. 0.69 1.11 C om m er cial W o rs t- Ca se t o T y pica l Device timing characteristics fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all MX devices. For mixed voltage of the A42MX devices, the timing numbers are defined in the 3.3V section for I/Os while for the internal logic resources, the timing numbers are defined in the 5.0V section. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after place-and-route of the user’s design is complete. Delay values may then be determined by using the Designer Series utility or by performing simulation with post-layout delays. Commerical Typical (TJ = 25°C, VCC = 5.0V) (Commercial, Worst-Case Condition) x Note: Cr it ic al Net s and Ty pi cal Net s Propagation delays in this data sheet apply to typical nets. The abundant routing resources in the MX architecture allows for deterministic timing using Actel’s Designer Series development tools, which include TDPR, a timing-driven place-and-route tool. Using Timer, the designer can specify timing-critical nets and system clock frequency. Using these timing specifications, the place-and-route software optimizes the layout of the design to meet the user’s specifications. 30 Min. v5.0 0.85 This derating factor applies to all routing and propagation delays. 4 0 M X a n d 4 2 M X F PG A F a m il ie s 42 M X Te m p era t u r e an d Vo l t a ge D era ti n g Fa ct ors (Normalized to T J = 25°C, V CCA /V C CI = 5.0V) Temperature 42MX Voltage –55°C –40°C 0°C 25°C 70°C 85°C 125°C 4.50 0.93 0.95 1.05 1.09 1.25 1.29 1.41 4.75 0.88 0.90 1.00 1.03 1.18 1.22 1.34 5.00 0.85 0.87 0.96 1.00 1.15 1.18 1.29 5.25 0.84 0.86 0.95 0.97 1.12 1.14 1.28 5.50 0.83 0.85 0.94 0.96 1.10 1.13 1.26 (Normalized to TJ = 25°C, VCCA/VCCI = 5.0V) 1.50 Derating Factor 1.40 1.30 –55 C 1.20 –40 C 1.10 0C 1.00 25 C 0.90 70 C 0.80 85 C 0.70 125 C 0.60 4.50 4.75 5.00 5.25 5.50 Voltage (V) Note: This derating factor applies to all routing and propagation delays. v5.0 31 40MX and 42MX FPGA Families 40 M X Te m p era t u r e an d V o l t a ge D era ti n g Fa ct ors (Normalized to T J = 25°C, V CCA /V C CI = 5.0V) Temperature 40MX Voltage –55°C –40°C 0°C 25°C 70°C 85°C 125°C 4.50 0.89 0.93 1.02 1.09 1.25 1.31 1.45 4.75 0.84 0.88 0.97 1.03 1.18 1.24 1.37 5.00 0.82 0.85 0.94 1.00 1.15 1.20 1.33 5.25 0.80 0.82 0.91 0.97 1.12 1.16 1.29 5.50 0.79 0.82 0.90 0.96 1.10 1.15 1.28 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCCA/VCCI = 5.0V) 1.50 Derating Factor 1.40 1.30 –55 C 1.20 –40 C 1.10 0C 1.00 25 C 0.90 70 C 0.80 85 C 0.70 125 C 0.60 4.50 4.75 5.00 Voltage (V) Note: 32 This derating factor applies to all routing and propagation delays. v5.0 5.25 5.50 4 0 M X a n d 4 2 M X F PG A F a m il ie s PC I S ys t e m T i m i ng S pe ci f i ca t i o n PC I M o d el s Table 3 and Table 4 list the critical PCI timing parameters and the corresponding timing parameter for the MX PCI-compliant devices. Actel provides synthesizable VHDL and Verilog-HDL models for a PCI Target interface, a PCI Target and Target+DMA Master interface. Contact your Actel sales representative for more details. Table 3 • Clock Specification for 33 MHz PCI PCI Symbol Parameter TCYC A42MX24 A42MX36 Min. Max. Min. Max. Min. Max. Units CLK Cycle Time 30 — 4.0 — 4.0 — ns THIGH CLK High Time 11 — 1.9 — 1.9 — ns TLOW CLK Low Time 11 — 1.9 — 1.9 — ns Table 4 • Timing Parameters for 33 MHz PCI PCI Symbol Parameter TVAL A42MX24 A42MX36 Min. Max. Min. Max. Min. Max. Units CLK to Signal Valid—Bused Signals 2 11 2.0 9.0 2.0 9.0 ns TVAL(PTP) CLK to Signal Valid—Point-to-Point 2 12 2.0 9.0 2.0 9.0 ns TON Float to Active 2 — 2.0 4.0 2.0 4.0 ns — 8.31 ns TOFF Active to Float — 28 — 8.31 TSU Input Set-Up Time to CLK—Bused Signals 7 — 1.5 — 1.5 — ns TSU(PTP) Input Set-Up Time to CLK—Point-to-Point 10, 12 — 1.5 — 1.5 — ns TH Input Hold to CLK 0 — 0 — 0 — ns Note: 1. TOFF is system dependent. MX PCI devices have 7.4 ns turn-off time, reflection is typically an additional 10 ns. v5.0 33 40MX and 42MX FPGA Families A 40 M X0 2 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units ns Logic Module Propagation Delays tPD1 Single Module 1.2 1.4 1.6 1.9 2.7 tPD2 Dual-Module Macros 2.7 3.1 3.5 4.1 5.7 ns tCO Sequential Clock-to-Q 1.2 1.4 1.6 1.9 2.7 ns tGO Latch G-to-Q 1.2 1.4 1.6 1.9 2.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.4 1.6 1.9 2.7 ns Logic Module Predicted Routing Delays 1 tRD1 FO=1 Routing Delay 1.3 1.5 1.7 2.0 2.8 ns tRD2 FO=2 Routing Delay 1.8 2.1 2.4 2.8 3.9 ns tRD3 FO=3 Routing Delay 2.3 2.7 3.0 3.6 5.0 ns tRD4 FO=4 Routing Delay 2.9 3.3 3.7 4.4 6.1 ns tRD8 FO=8 Routing Delay 4.9 5.7 6.5 7.6 10.6 ns Logic Module Sequential tSUD Timing2 Flip-Flop (Latch) Data Input Set-Up 3.1 3.5 4.0 4.7 6.6 ns 3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.8 4.3 5.0 7.0 ns Flip-Flop (Latch) Asynchronous Pulse Width 3.3 3.8 4.3 5.0 7.0 ns tA Flip-Flop Clock Input Period 4.8 5.6 6.3 7.5 10.4 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) tHD tWASYN 181 168 154 134 80 MHz Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Series or later Timer to check the hold time for this macro. 34 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 40 M X0 2 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Wor st - Cas e C om m erci al Co ndit i ons , V C C = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH tINYL Pad-to-Y LOW Input Module Predicted Routing 0.7 0.8 0.9 1.1 1.5 ns 0.6 0.7 0.8 1.0 1.3 ns Delays1 tIRD1 FO=1 Routing Delay 2.1 2.4 2.2 3.2 4.5 ns tIRD2 FO=2 Routing Delay 2.6 3.0 3.4 4.0 5.6 ns tIRD3 FO=3 Routing Delay 3.1 3.6 4.1 4.8 6.7 ns tIRD4 FO=4 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD8 FO=8 Routing Delay 5.7 6.6 7.5 8.8 12.4 ns Global Clock Network tCKH Input Low to HIGH FO = 16 FO = 128 4.6 4.6 5.3 5.3 6.0 6.0 7.0 7.0 9.8 9.8 ns tCKL Input High to LOW FO = 16 FO = 128 4.8 4.8 5.6 5.6 6.3 6.3 7.4 7.4 10.4 10.4 ns Minimum Pulse Width HIGH FO = 16 FO = 128 2.2 2.4 2.6 2.7 2.9 3.1 3.4 3.6 4.8 5.1 tPWL Minimum Pulse Width LOW FO = 16 FO = 128 2.2 2.4 2.6 2.7 2.9 3.01 3.4 3.6 4.8 5.1 tCKSW Maximum Skew tPWH tP fMAX Minimum Period Maximum Frequency FO = 16 FO = 128 FO = 16 FO = 128 FO = 16 FO = 128 0.4 0.5 4.7 4.8 0.5 0.6 5.4 5.6 188 181 0.5 0.7 6.1 6.3 175 168 0.6 0.8 7.2 7.5 160 154 ns ns 0.8 1.2 10.0 10.4 139 134 ns ns 83 80 MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. v5.0 35 40MX and 42MX FPGA Families A 40 M X0 2 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Wor st - Cas e C om m erci al Co ndit i ons , V C C = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 3.3 3.8 4.3 5.1 7.2 ns tDHL Data-to-Pad LOW 4.0 4.6 5.2 6.1 8.6 ns tENZH Enable Pad Z to HIGH 3.7 4.3 4.9 5.8 8.0 ns tENZL Enable Pad Z to LOW 4.7 5.4 6.1 7.2 10.1 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.1 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH2 Delta LOW to HIGH 0.02 0.02 0.03 0.03 0.04 ns/pF dTHL2 Delta HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 3.9 4.5 5.1 6.05 8.5 ns tDHL Data-to-Pad LOW 3.4 3.9 4.4 5.2 7.3 ns tENZH Enable Pad Z to HIGH 3.4 3.9 4.4 5.2 7.3 ns tENZL Enable Pad Z to LOW 4.9 5.6 6.4 7.5 10.5 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.0 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH 2 Delta LOW to HIGH 0.03 0.04 0.04 0.05 0.07 ns/pF dTHL 2 Delta HIGH to LOW 0.02 0.02 0.03 0.03 0.04 ns/pF Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. 36 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 40 M X0 2 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (Worst-Case Commercial Conditions, V CC = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 3.7 ns Logic Module Propagation Delays tPD1 Single Module tPD2 Dual-Module Macros 3.7 4.3 4.9 5.7 8.0 ns tCO Sequential Clock-to-Q 1.7 2.0 2.3 2.7 3.7 ns tGO Latch G-to-Q 1.7 2.0 2.3 2.7 3.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.7 2.0 2.3 2.7 3.7 ns 1.7 Logic Module Predicted Routing Delays 2.0 2.3 2.7 1 tRD1 FO=1 Routing Delay 2.0 2.2 2.5 3.0 4.2 ns tRD2 FO=2 Routing Delay 2.7 3.1 3.5 4.1 5.7 ns tRD3 FO=3 Routing Delay 3.4 3.9 4.4 5.2 7.3 ns tRD4 FO=4 Routing Delay 4.2 4.8 5.4 6.3 8.9 ns tRD8 FO=8 Routing Delay 7.1 8.2 9.2 10.9 15.2 ns Logic Module Sequential tSUD Timing2 Flip-Flop (Latch) Data Input Set-Up 4.3 4.9 5.6 6.6 9.2 ns 3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 4.3 4.9 5.6 6.6 9.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.3 6.0 7.0 9.8 ns Flip-Flop (Latch) Asynchronous Pulse Width 4.6 5.3 6.0 7.0 9.8 ns tA Flip-Flop Clock Input Period 6.8 7.8 8.9 10.4 14.6 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) tHD tWASYN 109 101 92 80 48 MHz Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Series or later Timer to check the hold time for this macro. v5.0 37 40MX and 42MX FPGA Families A 40 M X0 2 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Wor st - Cas e C om m erci al Co ndit i ons , V C C = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH tINYL Pad-to-Y LOW Input Module Predicted Routing 1.0 1.1 1.3 1.5 2.1 ns 0.9 1.0 1.1 1.3 1.9 ns Delays1 tIRD1 FO=1 Routing Delay 2.9 3.4 3.8 4.5 6.3 ns tIRD2 FO=2 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD3 FO=3 Routing Delay 4.4 5.0 5.7 6.7 9.4 ns tIRD4 FO=4 Routing Delay 5.1 5.9 6.7 7.8 11.0 ns tIRD8 FO=8 Routing Delay 8.0 9.26 10.5 12.6 17.3 ns Global Clock Network tCKH Input LOW to HIGH FO = 16 FO = 128 6.4 6.4 7.4 7.4 8.3 8.3 9.8 9.8 13.7 13.7 ns tCKL Input HIGH to LOW FO = 16 FO = 128 6.7 6.7 7.8 7.8 8.8 8.8 10.4 10.4 14.5 14.5 ns Minimum Pulse Width HIGH FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 tPWL Minimum Pulse Width LOW FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 tCKSW Maximum Skew FO = 16 FO = 128 tPWH tP fMAX Minimum Period Maximum Frequency FO = 16 FO = 128 FO = 16 FO = 128 0.6 0.8 6.5 6.8 0.6 0.9 7.5 7.8 113 109 0.7 1.0 8.5 8.9 105 101 0.8 1.2 10.1 10.4 96 92 ns ns 1.2 1.6 14.1 14.6 83 80 ns ns 50 48 MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 38 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 40 M X0 2 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Wor st - Cas e C om m erci al Co ndit i ons , V C C = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 4.7 5.4 6.1 7.2 10.0 ns tDHL Data-to-Pad LOW 5.6 6.4 7.3 8.6 12.0 ns tENZH Enable Pad Z to HIGH 5.2 6.0 6.8 8.1 11.3 ns tENZL Enable Pad Z to LOW 6.6 7.6 8.6 10.1 14.1 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH2 Delta LOW to HIGH 0.03 0.03 0.04 0.04 0.06 ns/pF dTHL2 Delta HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 5.5 6.4 7.2 8.5 11.9 ns tDHL Data-to-Pad LOW 4.8 5.5 6.2 7.3 10.2 ns tENZH Enable Pad Z to HIGH 4.7 5.5 6.2 7.3 10.2 ns tENZL Enable Pad Z to LOW 6.8 7.9 8.9 10.5 14.7 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH 2 Delta LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL 2 Delta HIGH to LOW 0.03 0.03 0.04 0.04 0.06 ns/pF Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. v5.0 39 40MX and 42MX FPGA Families A 40 M X0 4 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Logic Module Propagation Delays tPD1 Single Module tPD2 Dual-Module Macros 2.3 3.1 3.5 4.1 5.7 ns tCO Sequential Clock-to-Q 1.2 1.4 1.6 1.9 2.7 ns tGO Latch G-to-Q 1.2 1.4 1.6 1.9 2.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.4 1.6 1.9 2.7 ns 1.2 Logic Module Predicted Routing Delays 1.4 1.6 1.9 2.7 ns 1 tRD1 FO=1 Routing Delay 1.2 1.6 1.8 2.1 3.0 ns tRD2 FO=2 Routing Delay 1.9 2.2 2.5 2.9 4.1 ns tRD3 FO=3 Routing Delay 2.4 2.8 3.2 3.7 5.2 ns tRD4 FO=4 Routing Delay 2.9 3.4 3.9 4.5 6.3 ns tRD8 FO=8 Routing Delay 5.0 5.8 6.6 7.8 10.9 ns Logic Module Sequential tSUD Timing2 Flip-Flop (Latch) Data Input Set-Up 3.1 3.5 4.0 4.7 6.6 ns 3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.8 4.3 5.0 7.0 ns Flip-Flop (Latch) Asynchronous Pulse Width 3.3 3.8 4.3 5.0 7.0 ns tA Flip-Flop Clock Input Period 4.8 5.6 6.3 7.5 10.4 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) tHD tWASYN 181 167 154 134 80 MHz Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Series or later Timer to check the hold time for this macro. 40 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 40 M X0 4 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Wor st - Cas e C om m erci al Co ndit i ons , V C C = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH tINYL Pad-to-Y LOW Input Module Predicted Routing 0.7 0.8 0.9 1.1 1.5 ns 0.6 0.7 0.8 1.0 1.3 ns Delays1 tIRD1 FO=1 Routing Delay 2.1 2.4 2.2 3.2 4.5 ns tIRD2 FO=2 Routing Delay 2.6 3.0 3.4 4.0 5.6 ns tIRD3 FO=3 Routing Delay 3.1 3.6 4.1 4.8 6.7 ns tIRD4 FO=4 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD8 FO=8 Routing Delay 5.7 6.6 7.5 8.8 12.4 ns Global Clock Network tCKH Input LOW to HIGH FO = 16 FO = 128 4.6 4.6 5.3 5.3 6.0 6.0 7.1 7.1 9.9 9.9 ns tCKL Input HIGH to LOW FO = 16 FO = 128 4.8 4.8 5.6 5.6 6.3 6.3 7.5 7.5 10.4 10.4 ns Minimum Pulse Width HIGH FO = 16 FO = 128 2.2 2.4 2.6 2.7 2.9 3.1 3.4 3.6 4.8 5.1 tPWL Minimum Pulse Width LOW FO = 16 FO = 128 2.2 2.4 2.6 2.7 2.9 3.1 3.4 3.6 4.8 5.1 tCKSW Maximum Skew tPWH tP fMAX Minimum Period Maximum Frequency FO = 16 FO = 128 FO = 16 FO = 128 FO = 16 FO = 128 0.4 0.5 4.7 4.8 0.5 0.6 5.4 5.6 188 181 0.5 0.7 6.1 6.3 175 168 0.6 0.8 7.2 7.5 160 154 ns ns 0.8 1.2 10.1 10.4 139 134 ns ns 83 80 MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. v5.0 41 40MX and 42MX FPGA Families A 40 M X0 4 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Wor st - Cas e C om m erci al Co ndit i ons , V C C = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 3.3 3.8 4.3 5.1 7.2 ns tDHL Data-to-Pad LOW 4.0 4.6 5.2 6.1 8.6 ns tENZH Enable Pad Z to HIGH 3.7 4.3 4.9 5.8 8.1 ns tENZL Enable Pad Z to LOW 4.7 5.4 6.1 7.2 10.1 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.1 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH2 Delta LOW to HIGH 0.02 0.02 0.03 0.03 0.04 ns/pF dTHL2 Delta HIGH to LOW 0.02 0.03 0.03 0.04 0.06 ns/pF CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 3.9 4.5 5.1 6.1 8.5 ns tDHL Data-to-Pad LOW 3.4 3.9 4.4 5.2 7.3 ns tENZH Enable Pad Z to HIGH 3.4 3.9 4.4 5.2 7.3 ns tENZL Enable Pad Z to LOW 4.9 5.6 6.4 7.5 10.5 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.1 ns tENLZ Enable Pad LOW to Z 5.0 6.8 7.7 9.0 12.6 ns dTLH 2 Delta LOW to HIGH 0.03 0.04 0.04 0.05 0.07 ns/pF dTHL 2 Delta HIGH to LOW 0.02 0.02 0.03 0.03 0.04 ns/pF Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. 42 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 40 M X0 4 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (Worst-Case Commercial Conditions, V CC = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 3.7 ns Logic Module Propagation Delays tPD1 Single Module tPD2 Dual-Module Macros 3.7 4.3 4.9 5.7 8.0 ns tCO Sequential Clock-to-Q 1.7 2.0 2.3 2.7 3.7 ns tGO Latch G-to-Q 1.7 2.0 2.3 2.7 3.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.7 2.0 2.3 2.7 3.7 ns 1.7 2.0 2.3 2.7 1 Logic Module Predicted Routing Delays tRD1 FO=1 Routing Delay 1.9 2.2 2.5 3.0 4.2 ns tRD2 FO=2 Routing Delay 2.7 3.1 3.5 4.1 5.7 ns tRD3 FO=3 Routing Delay 3.4 3.9 4.4 5.2 7.3 ns tRD4 FO=4 Routing Delay 4.1 4.8 5.4 6.3 8.9 ns tRD8 FO=8 Routing Delay 7.1 8.1 9.2 10.9 15.2 ns Logic Module Sequential tSUD Timing2 Flip-Flop (Latch) Data Input Set-Up 4.3 5.0 5.6 6.6 9.2 ns 3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 4.3 5.0 5.6 6.6 9.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.3 5.6 7.0 9.8 ns Flip-Flop (Latch) Asynchronous Pulse Width 4.6 5.3 5.6 7.0 9.8 ns tA Flip-Flop Clock Input Period 6.8 7.8 8.9 10.4 14.6 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) tHD tWASYN 109 101 92 80 48 MHz Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Series or later Timer to check the hold time for this macro. v5.0 43 40MX and 42MX FPGA Families A 40 M X0 4 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Wor st - Cas e C om m erci al Co ndit i ons , V C C = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH tINYL Pad-to-Y LOW Input Module Predicted Routing 1.0 1.1 1.3 1.5 2.1 ns 0.9 1.0 1.1 1.3 1.9 ns Delays1 tIRD1 FO=1 Routing Delay 2.9 3.34 3.8 4.5 6.3 ns tIRD2 FO=2 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD3 FO=3 Routing Delay 4.4 5.0 5.7 6.7 9.4 ns tIRD4 FO=4 Routing Delay 5.1 5.9 6.7 7.8 11.0 ns tIRD8 FO=8 Routing Delay 8.0 9.3 10.5 12.4 17.2 ns Global Clock Network tCKH Input LOW to HIGH FO = 16 FO = 128 6.4 6.4 7.4 7.4 8.4 8.4 9.9 9.9 13.8 13.8 ns tCKL Input HIGH to LOW FO = 16 FO = 128 6.8 6.8 7.8 7.8 8.9 8.9 10.4 10.4 14.6 14.6 ns Minimum Pulse Width HIGH FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 tPWL Minimum Pulse Width LOW FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 tCKSW Maximum Skew FO = 16 FO = 128 tPWH tP fMAX Minimum Period Maximum Frequency FO = 16 FO = 128 FO = 16 FO = 128 0.6 0.8 6.5 6.8 0.6 0.9 7.5 7.8 113 109 0.7 1.0 8.5 8.9 105 101 0.8 1.2 10.1 10.4 96 92 ns ns 1.2 1.6 14.1 14.6 83 80 ns ns 50 48 MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 44 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 40 M X0 4 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Wor st - Cas e C om m erci al Co ndit i ons , V C C = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 4.7 5.4 6.1 7.2 10.0 ns tDHL Data-to-Pad LOW 5.6 6.4 7.3 8.6 12.0 ns tENZH Enable Pad Z to HIGH 5.2 6.0 6.9 8.1 11.3 ns tENZL Enable Pad Z to LOW 6.6 7.6 8.6 10.1 14.1 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH2 Delta LOW to HIGH 0.03 0.03 0.04 0.04 0.06 ns/pF dTHL2 Delta HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 5.5 6.4 7.2 8.5 11.9 ns tDHL Data-to-Pad LOW 4.8 5.5 6.2 7.3 10.2 ns tENZH Enable Pad Z to HIGH 4.7 5.5 6.2 7.3 10.2 ns tENZL Enable Pad Z to LOW 6.8 7.9 8.9 10.5 14.7 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH 2 Delta LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL 2 Delta HIGH to LOW 0.03 0.03 0.04 0.04 0.06 ns/pF Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. v5.0 45 40MX and 42MX FPGA Families A 42 M X0 9 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Logic Module Propagation Delays1 tPD1 Single Module 1.2 1.3 1.5 1.8 2.5 ns tCO Sequential Clock-to-Q 1.3 1.4 1.6 1.9 2.7 ns tGO Latch G-to-Q 1.2 1.4 1.6 1.8 2.6 ns tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.6 1.8 2.1 2.9 ns Logic Module Predicted Routing Delays2 tRD1 FO=1 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns tRD2 FO=2 Routing Delay 0.9 1.0 1.2 1.4 1.9 ns tRD3 FO=3 Routing Delay 1.2 1.3 1.5 1.7 2.4 ns tRD4 FO=4 Routing Delay 1.4 1.5 1.7 2.0 2.9 ns tRD8 FO=8 Routing Delay 2.3 2.6 2.9 3.4 4.8 ns Logic Module Sequential Timing 3, 4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.3 0.4 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 0.4 0.5 0.5 0.6 0.8 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.4 3.8 4.3 5.0 7.0 ns Flip-Flop (Latch) Asynchronous Pulse Width 4.5 4.9 5.6 6.6 9.2 ns tA Flip-Flop Clock Input Period 3.5 3.8 4.3 5.1 7.1 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.3 0.3 0.4 0.4 0.6 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.3 0.3 0.4 0.4 0.6 ns fMAX Flip-Flop (Latch) Clock Frequency tWASYN 268 244 224 195 117 MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 46 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X0 9 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V C C = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.0 1.2 1.3 1.6 2.2 ns tINYL Pad-to-Y LOW 0.8 0.9 1.0 1.2 1.7 ns tINGH G to Y HIGH 1.3 1.4 1.6 1.9 2.7 ns tINGL G to Y LOW 1.3 1.4 1.6 1.9 2.7 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 2.0 2.2 2.5 3.0 4.2 ns tIRD2 FO=2 Routing Delay 2.3 2.5 2.9 3.4 4.7 ns tIRD3 FO=3 Routing Delay 2.5 2.8 3.2 3.7 5.2 ns tIRD4 FO=4 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns tIRD8 FO=8 Routing Delay 3.7 4.1 4.7 5.5 7.7 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 256 2.4 2.7 2.7 3.0 3.0 3.4 3.6 4.0 5.0 5.5 ns ns tCKL Input HIGH to LOW FO = 32 FO = 256 3.5 3.9 3.9 4.3 4.4 4.9 5.2 5.7 7.3 8.0 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 256 1.2 1.3 1.4 1.5 1.5 1.7 1.8 2.0 2.5 2.7 ns ns tPWL Minimum Pulse Width LOW FO = 32 FO = 256 1.2 1.3 1.4 1.5 1.5 1.7 1.8 2.0 2.5 2.7 ns ns tCKSW Maximum Skew FO = 32 FO = 256 tSUEXT Input Latch External Set-Up FO = 32 FO = 256 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO = 32 FO = 256 2.3 2.2 2.6 2.4 3.0 3.3 3.5 3.9 4.9 5.5 ns ns tP Minimum Period FO = 32 FO = 256 3.4 3.7 3.7 4.1 4.0 4.5 4.7 5.2 7.8 8.6 ns ns fMAX Maximum Frequency FO = 32 FO = 256 0.3 0.3 0.3 0.3 296 268 269 244 0.4 0.4 247 224 0.5 0.5 215 195 0.6 0.6 129 117 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. v5.0 47 40MX and 42MX FPGA Families A 42 M X0 9 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 2.5 2.7 3.1 3.6 5.1 ns tDHL Data-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tENZH Enable Pad Z to HIGH 2.6 2.9 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 2.9 3.2 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 4.9 5.4 6.2 7.3 10.2 ns tENLZ Enable Pad LOW to Z 5.3 5.9 6.7 7.9 11.1 ns tGLH G-to-Pad HIGH 2.6 2.9 3.3 3.8 5.3 ns tGHL G-to-Pad LOW tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 2.6 2.9 5.2 3.3 5.8 3.8 6.6 5.3 7.7 10.8 ns ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 7.4 8.2 9.3 10.9 15.3 ns dTLH2 Capacity Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL2 Capacity Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF CMOS Output Module Timing 1 tDLH Data-to-Pad HIGH 2.4 2.7 3.1 3.6 5.1 ns tDHL Data-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tENZH Enable Pad Z to HIGH 2.7 2.9 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 2.9 3.2 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 4.9 5.4 6.2 7.3 10.2 ns tENLZ Enable Pad LOW to Z 5.3 5.9 6.7 7.9 11.1 ns tGLH G-to-Pad HIGH 4.2 4.6 5.2 6.1 8.6 ns tGHL G-to-Pad LOW 4.2 4.6 5.2 6.1 8.6 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.2 5.8 6.6 7.7 10.8 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 7.4 8.2 9.3 10.9 15.3 ns 2 Capacity Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL2 Capacity Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF dTLH Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. 48 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X0 9 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (Wor st - Cas e C om m erci al Co ndit i ons , V CC = 3. 0V, T J = 7 0°C ) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 1 Logic Module Propagation Delays tPD1 Single Module 1.6 1.8 2.1 2.5 3.5 ns tCO Sequential Clock-to-Q 1.8 2.0 2.3 2.7 3.8 ns tGO Latch G-to-Q 1.7 1.9 2.1 2.5 3.5 ns tRS Flip-Flop (Latch) Reset-to-Q 2.0 2.2 2.5 2.9 4.1 ns Logic Module Predicted Routing Delays2 tRD1 FO=1 Routing Delay 1.0 1.1 1.2 1.4 2.0 ns tRD2 FO=2 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns tRD3 FO=3 Routing Delay 1.6 1.8 2.0 2.4 3.3 ns tRD4 FO=4 Routing Delay 1.9 2.1 2.4 2.9 4.0 ns tRD8 FO=8 Routing Delay 3.2 3.6 4.1 4.8 6.7 ns Logic Module Sequential Timing 3, 4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.5 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.6 0.7 0.8 1.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.7 5.3 6.0 7.0 9.8 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.2 6.9 7.8 9.2 12.9 ns tA Flip-Flop Clock Input Period 5.0 5.6 6.2 7.1 9.9 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.3 0.3 0.3 0.4 0.6 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.3 0.3 0.3 0.4 0.6 ns fMAX Flip-Flop (Latch) Clock Frequency 161 146 135 117 70 MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. v5.0 49 40MX and 42MX FPGA Families A 42 M X0 9 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V C C = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.5 1.6 1.8 2.17 3.0 ns tINYL Pad-to-Y LOW 1.2 1.3 1.4 1.7 2.4 ns tINGH G to Y HIGH 1.8 2.0 2.3 2.7 3.7 ns tINGL G to Y LOW 1.8 2.0 2.3 2.7 3.7 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 2.8 3.2 3.6 4.2 5.9 ns tIRD2 FO=2 Routing Delay 3.2 3.5 4.0 4.7 6.6 ns tIRD3 FO=3 Routing Delay 3.5 3.9 4.4 5.2 7.3 ns tIRD4 FO=4 Routing Delay 3.9 4.3 4.9 5.7 8.0 ns tIRD8 FO=8 Routing Delay 5.2 5.8 6.6 7.7 10.8 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 256 4.1 4.5 4.5 5.0 5.1 5.6 6.0 6.7 8.4 9.3 ns ns tCKL Input HIGH to LOW FO = 32 FO = 256 5.0 5.4 5.5 6.0 6.2 6.8 7.3 8.0 10.2 11.2 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 256 1.7 1.9 1.9 2.1 2.1 2.3 2.5 2.7 3.5 3.8 ns ns tPWL Minimum Pulse Width LOW FO = 32 FO = 256 1.7 1.9 1.9 2.1 2.1 2.3 2.5 2.7 3.5 3.8 ns ns tCKSW Maximum Skew FO = 32 FO = 256 tSUEXT Input Latch External Set-Up FO = 32 FO = 256 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO = 32 FO = 256 3.3 3.7 3.7 4.1 4.2 4.6 4.9 5.5 6.9 7.6 ns ns tP Minimum Period FO = 32 FO = 256 5.6 6.1 6.2 6.8 6.7 7.4 7.8 8.5 12.9 14.2 ns ns fMAX Maximum Frequency FO = 32 FO = 256 0.4 0.4 0.5 0.5 177 161 161 146 0.5 0.5 148 135 0.6 0.6 129 117 0.9 0.9 77 70 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 50 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X0 9 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 3.4 3.8 4.3 5.1 7.1 ns tDHL Data-to-Pad LOW 4.0 4.5 5.1 6.1 8.3 ns tENZH Enable Pad Z to HIGH 3.7 4.1 4.6 5.5 7.6 ns tENZL Enable Pad Z to LOW 4.1 4.5 5.1 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 6.9 7.6 8.6 10.2 14.2 ns tENLZ Enable Pad LOW to Z 7.5 8.3 9.4 11.1 15.5 ns tGLH G-to-Pad HIGH 5.8 6.5 7.3 8.6 12.0 ns tGHL G-to-Pad LOW tLSU I/O Latch Set-Up 0.7 0.8 0.9 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.7 tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading dTLH2 Capacity Loading, LOW to HIGH dTHL2 Capacity Loading, HIGH to LOW CMOS Output Module Timing 5.8 6.5 7.3 8.6 12.0 ns 9.7 10.9 12.9 18.0 ns 12.2 13.5 15.4 18.1 25.3 ns 0.00 0.00 0.00 0.10 0.01 ns/pF 0.09 0.10 0.10 0.10 0.10 ns/pF 1 tDLH Data-to-Pad HIGH 3.4 3.8 5.5 6.4 9.0 ns tDHL Data-to-Pad LOW 4.1 4.5 4.2 5.0 7.0 ns tENZH Enable Pad Z to HIGH 3.7 4.1 4.6 5.5 7.6 ns tENZL Enable Pad Z to LOW 4.1 4.5 5.1 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 6.9 7.6 8.6 10.2 14.2 ns tENLZ Enable Pad LOW to Z 7.5 8.3 9.4 11.1 15.5 ns tGLH G-to-Pad HIGH 5.8 6.5 7.3 8.6 12.0 ns tGHL G-to-Pad LOW 5.8 6.5 7.3 8.6 12.0 ns tLSU I/O Latch Set-Up 0.7 0.8 0.9 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.7 9.7 10.9 12.9 18.0 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 12.2 13.5 15.4 18.1 25.3 ns dTLH Capacity Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF dTHL Capacity Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. v5.0 51 40MX and 42MX FPGA Families A 42 M X1 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (Wor st - Cas e C om m erci al Co ndit i ons , V CC = 4. 75V, T J = 70° C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 1 Logic Module Propagation Delays tPD1 Single Module 1.4 1.5 1.7 2.0 2.8 ns tCO Sequential Clock-to-Q 1.4 1.6 1.8 2.1 3.0 ns tGO Latch G-to-Q 1.4 1.5 1.7 2.0 2.8 ns tRS Flip-Flop (Latch) Reset-to-Q 1.6 1.7 2.0 2.3 3.3 ns Logic Module Predicted Routing Delays2 tRD1 FO=1 Routing Delay 0.8 0.9 1.0 1.2 1.6 ns tRD2 FO=2 Routing Delay 1.0 1.2 1.3 1.5 2.1 ns tRD3 FO=3 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns tRD4 FO=4 Routing Delay 1.6 1.7 2.0 2.3 3.2 ns tRD8 FO=8 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns Logic Module Sequential Timing3,4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.3 0.4 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 0.7 0.8 0.9 1.0 1.4 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.4 3.8 4.3 5.0 7.1 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.5 5.0 5.6 6.6 9.2 ns tA Flip-Flop Clock Input Period 6.8 7.6 8.6 10.1 14.1 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns fMAX Flip-Flop (Latch) Clock Frequency 215 1955 1795 1565 94 MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , point and position whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 52 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X1 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.1 1.2 1.3 1.6 2.2 ns tINYL Pad-to-Y LOW 0.8 0.9 1.0 1.2 1.7 ns tINGH G to Y HIGH 1.4 1.6 1.8 2.1 2.9 ns tINGL G to Y LOW 1.4 1.6 1.8 2.1 2.9 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 1.8 2.0 2.3 2.7 4.0 ns tIRD2 FO=2 Routing Delay 2.1 2.3 2.6 3.1 4.3 ns tIRD3 FO=3 Routing Delay 2.3 2.6 3.0 3.5 4.9 ns tIRD4 FO=4 Routing Delay 2.6 3.0 3.3 3.9 5.4 ns tIRD8 FO=8 Routing Delay 3.6 4.0 4.6 5.4 7.5 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 384 2.6 2.9 2.9 3.2 3.3 3.6 3.9 4.3 5.4 6.0 ns ns tCKL Input HIGH to LOW FO = 32 FO = 384 3.8 4.5 4.2 5.0 4.8 5.6 5.6 6.6 7.8 9.2 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 384 3.2 3.7 3.5 4.1 4.0 4.59 4.7 5.4 6.6 7.6 ns ns tPWL Minimum Pulse Width LOW FO = 32 FO = 384 3.2 3.7 3.5 4.1 4.0 4.6 4.7 5.4 6.6 7.6 ns ns tCKSW Maximum Skew tSUEXT Input Latch External Set-Up FO = 32 FO = 384 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO = 32 FO = 384 2.8 3.2 3.1 3.5 5.5 4.0 4.1 4.7 5.7 6.6 ns ns tP Minimum Period FO = 32 FO = 384 4.2 4.6 4.67 5.1 5.1 5.6 5.8 6.4 9.7 10.7 ns ns fMAX Maximum Frequency FO = 32 FO = 384 FO = 32 FO = 384 0.3 0.3 0.4 0.4 237 215 215 195 0.4 0.4 198 179 0.5 0.5 172 156 0.7 0.7 103 94 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. v5.0 53 40MX and 42MX FPGA Families A 42 M X1 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 2.5 2.8 3.2 3.7 5.2 ns tDHL Data-to-Pad LOW 3.0 3.3 3.7 4.4 6.1 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.4 4.0 5.6 ns tENZL Enable Pad Z to LOW 3.0 3.3 3.8 4.4 6.2 ns tENHZ Enable Pad HIGH to Z 5.4 6.0 6.8 8.0 11.2 ns tENLZ Enable Pad LOW to Z 5.0 5.6 6.3 7.4 10.4 ns tGLH G-to-Pad HIGH 2.9 3.2 3.6 4.3 6.0 ns tGHL G-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.7 6.3 7.1 8.4 11.9 ns Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns dTLH 2 Capacitive Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL 2 Capacitive Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF tACO CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 3.2 3.6 4.0 4.7 6.6 ns tDHL Data-to-Pad LOW 2.5 2.7 3.1 3.6 5.1 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.4 4.0 5.6 ns tENZL Enable Pad Z to LOW 3.0 3.3 3.8 4.4 6.2 ns tENHZ Enable Pad HIGH to Z 5.4 6.0 6.8 8.0 11.2 ns tENLZ Enable Pad LOW to Z 5.0 5.6 6.3 7.4 10.4 ns tGLH G-to-Pad HIGH 5.1 5.6 6.4 7.5 10.5 ns tGHL G-to-Pad LOW 5.1 5.6 6.4 7.5 10.5 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.7 6.3 7.1 8.4 11.9 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns 2 Capacitive Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF dTLH Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. 54 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X1 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (Wor st - Cas e C om m erci al Co ndit i ons , V CC = 3. 0V, T J = 7 0°C ) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 1 Logic Module Propagation Delays tPD1 Single Module 1.9 2.1 2.4 2.8 4.0 ns tCO Sequential Clock-to-Q 2.0 2.2 2.5 3.0 4.2 ns tGO Latch G-to-Q 1.9 2.1 2.4 2.8 4.0 ns tRS Flip-Flop (Latch) Reset-to-Q 2.2 2.4 2.8 3.3 4.6 ns Logic Module Predicted Routing Delays2 tRD1 FO=1 Routing Delay 1.1 1.2 1.4 1.6 2.3 ns tRD2 FO=2 Routing Delay 1.5 1.6 1.8 2.1 3.0 ns tRD3 FO=3 Routing Delay 1.8 2.0 2.3 2.7 3.8 ns tRD4 FO=4 Routing Delay 2.2 2.4 2.7 3.2 4.5 ns tRD8 FO=8 Routing Delay 3.6 4.0 4.5 5.3 7.5 ns Logic Module Sequential Timing3, 4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.5 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 1.0 1.1 1.2 1.4 2.0 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.8 5.3 6.0 7.1 9.9 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.2 6.9 7.9 9.2 12.9 ns tA Flip-Flop Clock Input Period 9.5 10.6 12.0 14.1 19.8 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.7 0.8 0.9 1.01 1.4 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.7 0.8 0.89 1.01 1.4 ns fMAX Flip-Flop (Latch) Clock Frequency 129 117 108 94 56 MHz Notes: 1. For dual-module macros use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. v5.0 55 40MX and 42MX FPGA Families A 42 M X1 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.5 1.6 1.9 2.2 3.1 ns tINYL Pad-to-Y LOW 1.1 1.3 1.4 1.7 2.4 ns tINGH G to Y HIGH 2.0 2.2 2.5 2.9 4.1 ns tINGL G to Y LOW 2.0 2.2 2.5 2.9 4.1 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns tIRD2 FO=2 Routing Delay 2.9 3.2 3.7 4.3 6.1 ns tIRD3 FO=3 Routing Delay 3.3 3.6 4.1 4.9 6.8 ns tIRD4 FO=4 Routing Delay 3.6 4.0 4.6 5.4 7.6 ns tIRD8 FO=8 Routing Delay 5.1 5.6 6.4 7.5 10.5 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 384 4.4 4.8 4.8 5.3 5.5 6.0 6.5 7.1 9.0 9.9 ns ns tCKL Input HIGH to LOW FO = 32 FO = 384 5.3 6.2 5.9 6.9 6.7 7.9 7.8 9.2 11.0 12.9 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 384 5.7 6.6 6.3 7.4 7.1 8.3 8.4 9.8 11.8 13.7 ns ns tPWL Minimum Pulse Width LOW FO = 32 FO = 384 5.3 6.2 5.9 6.9 6.7 7.9 7.8 9.2 11.0 12.9 ns ns tCKSW Maximum Skew FO = 32 FO = 384 tSUEXT Input Latch External Set-Up FO = 32 FO = 384 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO = 32 FO = 384 3.9 4.5 4.3 4.9 4.9 5.6 5.7 6.6 8.0 9.2 ns ns tP Minimum Period FO = 32 FO = 384 7.0 7.7 7.8 8.6 8.4 9.3 9.7 10.7 16.2 17.8 ns ns fMAX Maximum Frequency FO = 32 FO = 384 0.5 2.2 0.5 2.4 142 129 129 117 0.6 2.7 119 108 0.7 3.2 103 94 1.0 4.5 62 56 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 56 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X1 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 3.5 3.9 4.4 5.2 7.3 ns tDHL Data-to-Pad LOW 4.1 4.6 5.2 6.1 8.6 ns tENZH Enable Pad Z to HIGH 3.8 4.2 4.8 5.6 7.8 ns tENZL Enable Pad Z to LOW 4.2 4.6 5.3 6.2 8.7 ns tENHZ Enable Pad HIGH to Z 7.6 8.4 9.5 11.2 15.7 ns tENLZ Enable Pad LOW to Z 7.0 7.8 8.8 10.4 14.5 ns tGLH G-to-Pad HIGH 4.8 5.3 6.0 7.2 10.0 ns tGHL G-to-Pad LOW 4.8 5.3 6.0 7.2 10.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 11.3 12.5 14.2 16.7 23.3 ns dTLH 2 Capacitive Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF dTHL 2 Capacitive Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF tACO CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 4.5 5.0 5.6 6.6 9.3 ns tDHL Data-to-Pad LOW 3.4 3.8 4.3 5.1 7.1 ns tENZH Enable Pad Z to HIGH 3.8 4.2 4.8 5.6 7.8 ns tENZL Enable Pad Z to LOW 4.2 4.6 5.3 6.2 8.7 ns tENHZ Enable Pad HIGH to Z 7.6 8.4 9.5 11.2 15.7 ns tENLZ Enable Pad LOW to Z 7.0 7.8 8.8 10.4 14.5 ns tGLH G-to-Pad HIGH 7.1 7.9 8.9 10.5 14.7 ns tGHL G-to-Pad LOW 7.1 7.9 8.9 10.5 14.7 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 11.3 12.5 14.2 16.7 23.3 ns 2 Capacitive Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF dTLH Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. v5.0 57 40MX and 42MX FPGA Families A 42 M X2 4 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (Wor st - Cas e C om m erci al Co ndit i ons , V CC = 4. 75V, T J = 70° C) ‘–3’ Speed Parameter Description Min. Logic Module Combinatorial Functions Max. ‘–2’Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 1 tPD Internal Array Module Delay tPDD Internal Decode Module Delay Logic Module Predicted Routing Delays 1.2 1.3 1.5 1.8 2.5 ns 1.4 1.6 1.8 2.1 3.0 ns 2 tRD1 FO=1 Routing Delay 0.8 0.9 1.0 1.2 1.7 ns tRD2 FO=2 Routing Delay 1.0 1.2 1.3 1.5 2.1 ns tRD3 FO=3 Routing Delay 1.3 1.4 1.6 1.9 2.6 ns tRD4 FO=4 Routing Delay 1.5 1.7 1.9 2.2 3.1 ns tRD5 FO=8 Routing Delay 2.4 2.7 3.0 3.6 5.0 ns Logic Module Sequential Timing 3, 4 tCO Flip-Flop Clock-to-Output 1.3 1.4 1.6 1.9 2.7 ns tGO Latch Gate-to-Output 1.2 1.3 1.5 1.8 2.5 ns tSU Flip-Flop (Latch) Set-Up Time 0.3 0.4 0.4 0.5 0.7 ns tH Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.4 0.5 0.5 0.6 0.8 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.7 4.2 4.9 6.9 ns Flip-Flop (Latch) Asynchronous Pulse Width 4.4 4.8 5.3 6.5 9.0 ns tWASYN 1.4 1.6 1.8 2.1 2.9 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 58 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A42MX24 Timing Characteristics (Nominal 5.0V Operation) (continued) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.0 1.1 1.3 1.5 2.1 ns tINGO Input Latch Gate-to-Output 1.3 1.4 1.6 1.9 2.6 ns tINH Input Latch Hold tINSU Input Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tILA Latch Active Pulse Width 4.7 5.2 5.9 6.9 9.7 ns 0.0 0.0 0.0 0.0 0.0 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 1.8 2.0 2.3 2.7 3.8 ns tIRD2 FO=2 Routing Delay 2.1 2.3 2.6 3.1 4.3 ns tIRD3 FO=3 Routing Delay 2.3 2.5 2.9 3.4 4.8 ns tIRD4 FO=4 Routing Delay 2.5 2.8 3.2 3.7 5.2 ns tIRD8 FO=8 Routing Delay 3.4 3.8 4.3 5.1 7.1 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=486 2.6 2.9 2.9 3.2 3.3 3.6 3.9 4.3 5.4 5.9 ns ns tCKL Input HIGH to LOW FO=32 FO=486 3.7 4.3 4.1 4.7 4.6 5.4 5.4 6.3 7.6 8.8 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=486 2.2 2.4 2.4 2.6 2.7 3.0 3.2 3.5 4.5 4.9 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=486 2.2 2.4 2.4 2.6 2.7 3.0 3.2 3.5 4.5 4.9 ns ns tCKSW Maximum Skew tSUEXT Input Latch External Set-Up FO=32 FO=486 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO=32 FO=486 2.8 3.3 3.1 3.7 3.5 4.2 4.1 4.9 5.7 6.9 ns ns tP Minimum Period (1/fMAX) FO=32 FO=486 4.7 5.1 5.2 5.7 5.7 6.2 6.5 7.1 10.9 11.9 ns ns fMAX Maximum Datapath Frequency FO=32 FO=486 FO=32 FO=486 0.5 0.5 0.6 0.6 210 193 191 175 0.7 0.7 176 161 0.8 0.8 153 140 1.1 1.1 92 84 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. v5.0 59 40MX and 42MX FPGA Families A42MX24 Timing Characteristics (Nominal 5.0V Operation) (continued) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 2.4 2.7 3.1 3.6 5.1 ns tDHL Data-to-Pad LOW 2.8 3.2 3.6 4.2 5.9 ns tENZH Enable Pad Z to HIGH 2.5 2.8 3.2 3.8 5.3 ns tENZL Enable Pad Z to LOW 2.8 3.1 3.5 4.2 5.9 ns tENHZ Enable Pad HIGH to Z 5.2 5.7 6.5 7.6 10.7 ns tENLZ Enable Pad LOW to Z 4.8 5.3 6.0 7.1 9.9 ns tGLH G-to-Pad HIGH 2.9 3.2 3.6 4.3 6.0 ns tGHL G-to-Pad LOW tLSU I/O Latch Output Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 2.9 3.2 3.6 4.3 6.0 ns 5.6 6.1 6.9 8.1 11.4 ns Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 10.6 11.8 13.4 15.7 22.0 ns dTLH 2 Capacitive Loading, LOW to HIGH 0.04 0.04 0.04 0.05 0.07 ns/pF dTHL 2 Capacitive Loading, HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF tACO CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 3.1 3.5 3.9 4.6 6.4 ns tDHL Data-to-Pad LOW 2.4 2.6 3.0 3.5 4.9 ns tENZH Enable Pad Z to HIGH 2.5 2.8 3.2 3.8 5.3 ns tENZL Enable Pad Z to LOW 2.8 3.1 3.5 4.2 5.8 ns tENHZ Enable Pad HIGH to Z 5.2 5.7 6.5 7.6 10.7 ns tENLZ Enable Pad LOW to Z 4.8 5.3 6.0 7.1 9.9 ns tGLH G-to-Pad HIGH 4.9 5.4 6.2 7.2 10.1 ns tGHL G-to-Pad LOW 4.9 5.4 6.2 7.2 10.1 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O tACO 5.5 6.1 6.9 8.1 11.3 ns 10.6 11.8 13.4 15.7 22.0 ns 2 Capacitive Loading, LOW to HIGH 0.04 0.04 0.04 0.05 0.07 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF dTLH Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. 60 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X2 4 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (Wor st - Cas e C om m erci al Co ndit i ons , V CC = 3. 0V, T J = 7 0°C ) ‘–3’ Speed Parameter Description Min. Max. ‘–2’Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 1 Logic Module Combinatorial Functions tPD Internal Array Module Delay tPDD Internal Decode Module Delay Logic Module Predicted Routing Delays 2.0 1.8 2.1 2.5 3.4 ns 1.1 2.2 2.5 3.0 4.2 ns 2 tRD1 FO=1 Routing Delay 1.7 1.3 1.4 1.7 2.3 ns tRD2 FO=2 Routing Delay 2.0 1.6 1.8 2.1 3.0 ns tRD3 FO=3 Routing Delay 1.1 2.0 2.2 2.6 3.7 ns tRD4 FO=4 Routing Delay 1.5 2.3 2.6 3.1 4.3 ns tRD5 FO=8 Routing Delay 1.8 3.7 4.2 5.0 7.0 ns Logic Module Sequential Timing 3, 4 tCO Flip-Flop Clock-to-Output 2.1 2.0 2.3 2.7 3.7 ns tGO Latch Gate-to-Output 3.4 1.9 2.1 2.5 3.4 ns tSU Flip-Flop (Latch) Set-Up Time 0.4 0.5 0.6 0.7 0.9 ns tH Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.6 0.7 0.8 1.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.2 5.8 6.9 9.6 ns Flip-Flop (Latch) Asynchronous Pulse Width 6.1 6.8 7.7 9.0 12.6 ns tWASYN 2.0 2.2 2.5 2.9 4.1 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. v5.0 61 40MX and 42MX FPGA Families A42MX24 Timing Characteristics (Nominal 3.3V Operation) (continued) (Worst-Case Commercial Conditions, V CC = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.4 1.6 1.8 2.2 3.0 ns tINGO Input Latch Gate-to-Output 1.8 1.9 2.2 2.6 3.6 ns tINH Input Latch Hold tINSU Input Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tILA Latch Active Pulse Width 6.5 7.3 8.2 9.7 13.5 ns 0.0 0.0 0.0 0.0 0.0 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns tIRD2 FO=2 Routing Delay 2.9 3.2 3.6 4.3 6.0 ns tIRD3 FO=3 Routing Delay 3.2 3.6 4.0 4.8 6.6 ns tIRD4 FO=4 Routing Delay 3.5 3.9 4.4 5.2 7.3 ns tIRD8 FO=8 Routing Delay 4.8 5.3 6.1 7.1 10.0 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=486 4.4 4.8 4.8 5.3 5.5 6.0 6.5 7.1 9.1 10.0 ns ns tCKL Input HIGH to LOW FO=32 FO=486 5.1 6.0 5.7 6.6 6.4 7.5 7.6 8.8 10.6 12.4 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=486 3.0 3.3 3.3 3.7 3.8 4.2 4.5 4.9 6.3 6.9 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=486 3.0 3.3 3.4 3.7 3.8 4.2 4.5 4.9 6.3 6.9 ns ns tCKSW Maximum Skew tSUEXT Input Latch External Set-Up FO=32 FO=486 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO=32 FO=486 3.9 4.6 4.3 5.2 4.9 5.8 5.7 6.9 8.1 9.6 ns ns tP Minimum Period (1/fMAX) FO=32 FO=486 7.8 8.6 8.7 9.5 9.47 10.4 10.8 11.9 18.2 19.9 ns ns fMAX Maximum Datapath Frequency FO=32 FO=486 FO=32 FO=486 0.8 0.8 0.8 0.8 126 116 115 105 1.0 1.0 106 97 1.1 1.1 92 84 1.6 1.6 55 50 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 62 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A42MX24 Timing Characteristics (Nominal 3.3V Operation) (continued) (Worst-Case Commercial Conditions, V CC = 3.0V, T J = 70°C) ‘–3 Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 3.4 3.8 4.3 5.0 7.1 ns tDHL Data-to-Pad LOW 4.0 4.4 5.0 5.9 8.3 ns tENZH Enable Pad Z to HIGH 3.6 4.0 4.5 5.3 7.4 ns tENZL Enable Pad Z to LOW 3.9 4.4 5.0 5.8 8.2 ns tENHZ Enable Pad HIGH to Z 7.2 8.0 9.07 10.7 14.9 ns tENLZ Enable Pad LOW to Z 6.7 7.5 8.5 9.9 13.9 ns tGLH G-to-Pad HIGH 4.8 5.3 6.0 7.2 10.0 ns tGHL G-to-Pad LOW tLSU I/O Latch Output Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.67 8.5 9.6 11.3 15.9 ns Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 14.8 16.5 18.7 22.0 30.8 ns dTLH 2 Capacitive Loading, LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL 2 Capacitive Loading, HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF tACO 4.8 5.3 6.0 7.2 10.0 ns CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 4.8 5.3 5.5 6.4 9.0 ns tDHL Data-to-Pad LOW 3.5 3.9 4.1 4.9 6.8 ns tENZH Enable Pad Z to HIGH 3.6 4.0 4.5 5.3 7.4 ns tENZL Enable Pad Z to LOW 3.4 4.0 5.0 5.8 8.2 ns tENHZ Enable Pad HIGH to Z 7.2 8.0 9.01 10.7 14.9 ns tENLZ Enable Pad LOW to Z 6.7 7.5 8.5 9.9 13.9 ns tGLH G-to-Pad HIGH 6.8 7.6 8.6 10.1 14.2 ns tGHL G-to-Pad LOW 6.8 7.6 8.6 10.1 14.2 ns tLSU I/O Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.7 8.5 9.6 11.3 15.9 ns Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 14.8 16.5 18.7 22.0 30.8 ns tACO 2 Capacitive Loading, LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF dTLH Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. v5.0 63 40MX and 42MX FPGA Families A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (Wor st - Cas e C om m erci al Co ndit i ons , V CC = 4. 75V, T J = 70° C) ‘–3’ Speed Parameter Description Min. Logic Module Combinatorial Functions Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 1 tPD Internal Array Module Delay tPDD Internal Decode Module Delay Logic Module Predicted Routing Delays 1.3 1.5 1.7 2.0 2.7 ns 1.6 1.8 2.0 2.4 3.3 ns 2 tRD1 FO=1 Routing Delay 0.9 1.0 1.2 1.4 2.0 ns tRD2 FO=2 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns tRD3 FO=3 Routing Delay 1.6 1.8 2.0 2.4 3.4 ns tRD4 FO=4 Routing Delay 2.0 2.2 2.5 2.9 4.1 ns tRD5 FO=8 Routing Delay 3.3 3.7 4.2 4.9 6.9 ns tRDD Decode-to-Output Routing Delay 0.3 0.4 0.4 0.5 0.7 ns Logic Module Sequential Timing 3, 4 tCO Flip-Flop Clock-to-Output 1.3 1.4 1.6 1.9 2.7 ns tGO Latch Gate-to-Output 1.3 1.4 1.6 1.9 2.7 ns tSU Flip-Flop (Latch) Set-Up Time 0.3 0.34 0.4 0.5 0.7 ns tH Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.7 0.8 0.9 1.0 1.4 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.7 4.2 4.9 6.9 ns Flip-Flop (Latch) Asynchronous Pulse Width 4.4 4.8 5.5 6.4 9.0 ns tWASYN 1.6 1.7 2.0 2.3 3.2 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 64 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) Logic Module Timing Parameter Description ‘–3’ Speed Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Synchronous SRAM Operations tRC Read Cycle Time 6.8 7.5 8.5 10.0 14.0 ns tWC Write Cycle Time 6.8 7.5 8.5 10.0 14.0 ns tRCKHL Clock HIGH/LOW Time 3.4 3.8 4.3 5.0 7.0 ns tRCO Data Valid After Clock HIGH/LOW tADSU Address/Data Set-Up Time 1.6 1.8 2.0 2.4 3.4 ns tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSU Read Enable Set-Up 0.6 0.7 0.8 0.9 1.3 ns tRENH Read Enable Hold 3.4 3.8 4.3 5.0 7.0 ns tWENSU Write Enable Set-Up 2.7 3.0 3.4 4.0 5.6 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tBENS Block Enable Set-Up 2.8 3.1 3.5 4.1 5.7 ns tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 ns 3.4 3.78 4.3 5.0 7.0 ns Asynchronous SRAM Operations tRPD Asynchronous Access Time tRDADV Read Address Valid 8.8 9.8 11.1 13.0 18.2 ns tADSU Address/Data Set-Up Time 1.6 1.8 2.0 2.4 3.4 ns tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSUA Read Enable Set-Up to Address Valid 0.6 0.7 0.8 0.9 1.3 ns tRENHA Read Enable Hold 3.4 3.8 4.3 5.0 7.0 ns tWENSU Write Enable Set-Up 2.7 3.0 3.4 4.0 5.6 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tDOH Data Out Hold Time 8.1 9.0 1.2 1.34 v5.0 10.2 1.5 12.0 1.8 16.8 2.5 ns ns 65 40MX and 42MX FPGA Families A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.0 1.1 1.3 1.5 2.1 ns tINGO Input Latch Gate-to-Output 1.4 1.6 1.8 2.1 2.9 ns tINH Input Latch Hold tINSU Input Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tILA Latch Active Pulse Width 4.7 5.2 5.9 6.9 9.7 ns 0.0 0.0 0.0 0.0 0.0 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 2.0 2.2 2.5 2.9 4.1 ns tIRD2 FO=2 Routing Delay 2.3 2.6 2.9 3.4 4.8 ns tIRD3 FO=3 Routing Delay 2.6 2.9 3.3 3.9 5.5 ns tIRD4 FO=4 Routing Delay 3.0 3.3 3.8 4.4 6.2 ns tIRD8 FO=8 Routing Delay 4.3 4.8 5.5 6.4 9.0 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=635 2.7 3.0 3.0 3.3 3.4 3.8 4.0 4.4 5.6 6.2 ns ns tCKL Input HIGH to LOW FO=32 FO=635 3.8 4.9 4.2 5.4 4.8 6.1 5.6 7.2 7.8 10.1 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=635 1.8 2.0 2.0 2.2 2.2 2.5 2.6 2.9 3.6 4.1 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=635 1.8 2.0 2.0 2.2 2.2 2.5 2.6 2.9 3.6 4.1 ns ns tCKSW Maximum Skew tSUEXT Input Latch External Set-Up FO=32 FO=635 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO=32 FO=635 2.8 3.3 3.2 3.7 3.6 4.2 4.2 4.9 5.9 6.9 ns ns tP Minimum Period (1/fMAX) FO=32 FO=635 5.5 6.0 6.1 6.6 6.6 7.2 7.6 8.3 12.7 13.8 ns ns fHMAX Maximum Datapath Frequency FO=32 FO=635 FO=32 FO=635 0.8 0.8 0.8 0.8 180 166 164 151 0.9 0.9 151 139 1.0 1.0 131 121 1.4 1.4 79 73 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 66 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V C C = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 2.6 2.8 3.2 3.8 5.3 ns tDHL Data-to-Pad LOW 3.0 3.3 3.7 4.4 6.2 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 3.0 3.3 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 5.3 5.8 6.6 7.8 10.9 ns tENLZ Enable Pad LOW to Z 4.9 5.5 6.2 7.3 10.2 ns tGLH G-to-Pad HIGH 2.9 3.3 3.7 4.4 6.1 ns tGHL G-to-Pad LOW tLSU I/O Latch Output Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 5.7 6.3 7.1 8.4 11.8 ns Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.8 8.6 9.8 11.5 16.1 ns dTLH 2 Capacitive Loading, LOW to HIGH 0.07 0.08 0.09 0.10 0.14 ns/pF dTHL 2 Capacitive Loading, HIGH to LOW 0.07 0.08 0.09 0.10 0.14 ns/pF tACO 2.9 3.3 3.7 4.4 6.1 ns CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 3.5 3.9 4.5 5.2 7.3 ns tDHL Data-to-Pad LOW 2.5 2.7 3.1 3.6 5.1 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 2.9 3.3 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 5.3 5.8 6.6 7.8 10.9 ns tENLZ Enable Pad LOW to Z 4.9 5.5 6.2 7.3 10.2 ns tGLH G-to-Pad HIGH 5.0 5.6 6.3 7.5 10.4 ns tGHL G-to-Pad LOW 5.0 5.6 6.3 7.5 10.4 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 5.7 6.3 7.1 8.4 11.8 ns Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.78 8.6 9.8 11.5 16.1 ns tACO 2 Capacitive Loading, LOW to HIGH 0.07 0.08 0.09 0.10 0.14 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.07 0.08 0.09 0.10 0.14 ns/pF dTLH Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. v5.0 67 40MX and 42MX FPGA Families A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (Wor st - Cas e C om m erci al Co ndit i ons , V CC = 3. 0V, T J = 7 0°C ) ‘–3’ Speed Parameter Description Min. Logic Module Combinatorial Functions Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 1 tPD Internal Array Module Delay tPDD Internal Decode Module Delay Logic Module Predicted Routing Delays 1.9 2.1 2.3 2.7 3.8 ns 2.2 2.5 2.8 3.3 4.7 ns 2 tRD1 FO=1 Routing Delay 1.3 1.5 1.7 2.0 2.7 ns tRD2 FO=2 Routing Delay 1.8 2.0 2.3 2.7 3.7 ns tRD3 FO=3 Routing Delay 2.3 2.5 2.8 3.4 4.7 ns tRD4 FO=4 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns tRD5 FO=8 Routing Delay 4.6 5.2 5.8 6.9 9.6 ns tRDD Decode-to-Output Routing Delay 0.5 0.5 0.6 0.7 1.0 ns Logic Module Sequential Timing 3, 4 tCO Flip-Flop Clock-to-Output 1.8 2.0 2.3 2.7 3.7 ns tGO Latch Gate-to-Output 1.8 2.0 2.3 2.7 3.7 ns tSU Flip-Flop (Latch) Set-Up Time 0.4 0.5 0.6 0.7 0.9 ns tH Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 1.0 1.1 1.2 1.4 2.0 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.2 5.8 6.9 9.6 ns Flip-Flop (Latch) Asynchronous Pulse Width 6.1 6.8 7.7 9.0 12.6 ns tWASYN 2.2 2.4 2.7 3.2 4.5 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 68 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 3.0V, T J = 70°C) Logic Module Timing Parameter Description ‘–3’ Speed Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Synchronous SRAM Operations tRC Read Cycle Time 9.5 10.5 11.9 14.0 19.6 ns tWC Write Cycle Time 9.5 10.5 11.9 14.0 19.6 ns tRCKHL Clock HIGH/LOW Time 4.8 5.3 6.0 7.0 9.8 ns tRCO Data Valid After Clock HIGH/LOW tADSU Address/Data Set-Up Time 2.3 2.5 2.8 3.4 4.8 ns tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSU Read Enable Set-Up 0.9 1.0 1.1 1.3 1.8 ns tRENH Read Enable Hold 4.8 5.3 6.0 7.0 9.8 ns tWENSU Write Enable Set-Up 3.8 4.2 4.8 5.6 7.8 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tBENS Block Enable Set-Up 3.9 4.3 4.9 5.7 8.0 ns tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 ns 4.8 5.3 6.0 7.0 9.8 ns Asynchronous SRAM Operations tRPD Asynchronous Access Time tRDADV Read Address Valid tADSU tADH 11.3 12.6 14.3 16.8 23.5 ns 12.3 13.7 15.5 18.2 25.5 ns Address/Data Set-Up Time 2.3 2.5 2.8 3.4 4.8 ns Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSUA Read Enable Set-Up to Address Valid 0.9 1.0 1.1 1.3 1.8 ns tRENHA Read Enable Hold 4.8 5.3 6.0 7.0 9.8 ns tWENSU Write Enable Set-Up 3.8 4.2 4.8 5.6 7.8 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tDOH Data Out Hold Time 1.8 2.0 v5.0 2.1 2.5 3.5 ns 69 40MX and 42MX FPGA Families A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V CC = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.4 1.6 1.8 2.1 3.0 ns tINGO Input Latch Gate-to-Output 2.0 2.2 2.5 2.9 4.1 ns tINH Input Latch Hold tINSU Input Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tILA Latch Active Pulse Width 6.5 7.3 8.2 9.7 13.5 ns 0.0 0.0 0.0 0.0 0.0 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 2.8 3.1 3.5 4.07 5.7 ns tIRD2 FO=2 Routing Delay 3.2 3.5 4.1 4.8 6.7 ns tIRD3 FO=3 Routing Delay 3.7 4.1 4.7 5.5 7.7 ns tIRD4 FO=4 Routing Delay 4.2 4.6 5.3 6.2 8.7 ns tIRD8 FO=8 Routing Delay 6.1 6.8 7.7 9.0 12.6 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=635 4.6 5.0 5.1 5.6 5.7 6.3 6.7 7.4 9.3 10.3 ns ns tCKL Input HIGH to LOW FO=32 FO=635 5.3 6.8 5.9 7.6 6.7 8.6 7.8 10.1 11.0 14.1 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=635 2.5 2.8 2.7 3.1 3.1 3.5 3.6 4.1 5.1 5.7 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=635 2.5 2.8 2.7 3.1 3.1 3.5 3.6 4.1 5.1 5.7 ns ns tCKSW Maximum Skew tSUEXT Input Latch External Set-Up FO=32 FO=635 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO=32 FO=635 4.0 4.6 4.4 5.2 5.0 5.9 5.9 6.9 8.2 9.6 ns ns tP Minimum Period (1/fMAX) FO=32 FO=635 9.2 9.9 10.2 11.0 11.1 12.0 12.7 13.8 21.2 23.0 ns ns fHMAX Maximum Datapath Frequency FO=32 FO=635 FO=32 FO=635 1.0 1.0 1.2 1.2 108 100 98 91 1.3 1.3 90 83 1.5 1.5 79 73 2.2 2.2 47 44 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 70 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Commercial Conditions, V C C = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 3.6 4.0 4.5 5.3 7.4 ns tDHL Data-to-Pad LOW 4.2 4.6 5.2 6.2 8.6 ns tENZH Enable Pad Z to HIGH 3.7 4.2 4.7 5.5 7.7 ns tENZL Enable Pad Z to LOW 4.1 4.6 5.2 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 7.34 8.2 9.3 10.9 15.3 ns tENLZ Enable Pad LOW to Z 6.9 7.6 8.7 10.2 14.3 ns tGLH G-to-Pad HIGH 4.9 5.5 6.2 7.3 10.2 ns tGHL G-to-Pad LOW tLSU I/O Latch Output Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.9 8.8 10.0 11.8 16.5 ns Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 10.9 12.1 13.7 16.1 22.5 ns dTLH 2 Capacitive Loading, LOW to HIGH 0.10 0.11 0.12 0.14 0.20 ns/pF dTHL 2 Capacitive Loading, HIGH to LOW 0.10 0.11 0.12 0.14 0.20 ns/pF tACO 4.9 5.5 6.2 7.3 10.2 ns CMOS Output Module Timing1 tDLH Data-to-Pad HIGH 4.9 5.5 6.2 7.3 10.3 ns tDHL Data-to-Pad LOW 3.4 3.8 4.3 5.1 7.1 ns tENZH Enable Pad Z to HIGH 3.7 4.1 4.7 5.5 7.7 ns tENZL Enable Pad Z to LOW 4.1 4.6 5.2 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 7.4 8.2 9.3 10.9 15.3 ns tENLZ Enable Pad LOW to Z 6.9 7.6 8.7 10.2 14.3 ns tGLH G-to-Pad HIGH 7.0 7.8 8.9 10.4 14.6 ns tGHL G-to-Pad LOW 7.0 7.8 8.9 10.4 14.6 ns tLSU I/O Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.9 8.8 10.0 11.8 16.5 ns Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 10.9 12.1 13.7 16.1 22.5 ns tACO 2 Capacitive Loading, LOW to HIGH 0.10 0.11 0.12 0.14 0.20 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.10 0.11 0.12 0.14 0.20 ns/pF dTLH Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. v5.0 71 40MX and 42MX FPGA Families A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (Wor st - Cas e M il it ar y Cond it ion s, V C C = 4.5V, T J = 125 °C ) ‘–2’ Speed Parameter Description Min. Logic Module Combinatorial Functions Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units 1 tPD Internal Array Module Delay tPDD Internal Decode Module Delay Logic Module Predicted Routing Delays 1.5 1.7 2.0 2.7 ns 1.8 2.0 2.4 3.3 ns 2 tRD1 FO=1 Routing Delay 1.0 1.2 1.4 2.0 ns tRD2 FO=2 Routing Delay 1.4 1.6 1.9 2.7 ns tRD3 FO=3 Routing Delay 1.8 2.0 2.4 3.4 ns tRD4 FO=4 Routing Delay 2.2 2.5 2.9 4.1 ns tRD5 FO=8 Routing Delay 3.7 4.2 4.9 6.9 ns tRDD Decode-to-Output Routing Delay 0.4 0.4 0.5 0.7 ns Logic Module Sequential Timing 3, 4 tCO Flip-Flop Clock-to-Output 1.4 1.6 1.9 2.7 ns tGO Latch Gate-to-Output 1.4 1.6 1.9 2.7 ns tSU Flip-Flop (Latch) Set-Up Time 0.4 0.4 0.5 0.7 ns tH Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.8 0.9 1.0 1.4 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.7 4.2 4.9 6.9 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.8 5.5 6.4 9.0 ns 1.7 2.0 2.3 3.2 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 72 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Military Conditions, V C C = 4.5V, T J = 125°C) Logic Module Timing Parameter Description ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Synchronous SRAM Operations tRC Read Cycle Time 7.5 8.5 10.0 14.0 ns tWC Write Cycle Time 7.5 8.5 10.0 14.0 ns tRCKHL Clock HIGH/LOW Time 3.8 4.3 5.0 7.0 ns tRCO Data Valid After Clock HIGH/LOW tADSU Address/Data Set-Up Time 1.8 2.0 2.4 3.4 ns tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 ns tRENSU Read Enable Set-Up 0.7 0.8 0.9 1.3 ns tRENH Read Enable Hold 3.8 4.3 5.0 7.0 ns tWENSU Write Enable Set-Up 3.0 3.4 4.0 5.6 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 ns tBENS Block Enable Set-Up 3.1 3.5 4.1 5.7 ns tBENH Block Enable Hold 0.0 0.0 0.0 0.0 ns 3.8 4.3 5.0 7.0 ns Asynchronous SRAM Operations tRPD Asynchronous Access Time tRDADV Read Address Valid tADSU Address/Data Set-Up Time 1.8 2.1 2.4 3.4 ns tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 ns tRENSUA Read Enable Set-Up to Address Valid 0.7 0.8 0.9 1.3 ns tRENHA Read Enable Hold 3.8 4.3 5.0 7.0 ns tWENSU Write Enable Set-Up 3.0 3.4 4.0 5.6 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 ns tDOH Data Out Hold Time 9.0 9.8 10.2 11.1 1.4 v5.0 12.0 13.0 1.5 16.8 18.2 1.8 ns ns 2.5 ns 73 40MX and 42MX FPGA Families A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Military Conditions, V C C = 4.5V, T J = 125°C) ‘–2’ Speed Parameter Description Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.1 1.3 1.5 2.1 ns tINGO Input Latch Gate-to-Output 1.6 1.8 2.1 2.9 ns tINH Input Latch Hold 0.0 0.0 0.0 tINSU Input Latch Set-Up 0.5 0.6 0.7 1.0 ns tILA Latch Active Pulse Width 5.2 5.9 6.9 9.7 ns 0.0 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 2.2 2.5 2.9 4.1 ns tIRD2 FO=2 Routing Delay 2.6 2.9 3.4 4.8 ns tIRD3 FO=3 Routing Delay 2.9 3.3 3.9 5.5 ns tIRD4 FO=4 Routing Delay 3.3 3.8 4.4 6.2 ns tIRD8 FO=8 Routing Delay 4.8 5.5 6.4 9.0 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=635 3.0 3.3 3.4 3.8 4.0 4.4 5.6 6.2 ns ns tCKL Input HIGH to LOW FO=32 FO=635 4.2 5.4 4.8 6.1 5.6 7.2 7.8 10.1 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=635 2.0 2.2 2.2 2.5 2.6 2.9 3.7 4.1 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=635 2.0 2.2 2.2 2.5 2.6 2.9 3.7 4.1 ns ns tCKSW Maximum Skew FO=32 FO=635 tSUEXT Input Latch External Set-Up FO=32 FO=635 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO=32 FO=635 3.2 3.7 3.6 4.2 4.2 4.9 5.9 6.9 ns ns tP Minimum Period (1/fMAX) FO=32 FO=635 6.1 6.6 6.6 7.2 7.6 8.3 12.7 13.8 ns ns fHMAX Maximum Datapath Frequency FO=32 FO=635 0.8 0.8 164 151 0.9 0.9 151 139 1.0 1.0 131 121 1.4 1.4 79 73 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 74 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 5 . 0V O pe r a t i o n) (continued) (Worst-Case Military Conditions, V C C = 4.5V, T J = 125°C) ‘–2’ Speed Parameter Description Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. ‘–F’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 2.8 3.2 3.8 5.3 ns tDHL Data-to-Pad LOW 3.3 3.7 4.4 6.2 ns tENZH Enable Pad Z to HIGH 3.0 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 3.3 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 5.8 6.6 7.8 11.0 ns tENLZ Enable Pad LOW to Z 5.5 6.2 7.3 10.2 ns tGLH G-to-Pad HIGH 3.3 3.7 4.4 6.1 ns tGHL G-to-Pad LOW 6.1 ns tLSU I/O Latch Output Set-Up 0.5 0.6 0.7 1.0 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 3.3 3.7 6.3 4.4 7.1 8.4 11.8 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 8.6 9.8 11.5 16.1 ns dTLH2 Capacitive Loading, LOW to HIGH 0.08 0.09 0.10 0.14 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.08 0.09 0.10 0.14 ns/pF CMOS Output Module Timing 1 tDLH Data-to-Pad HIGH 3.9 4.5 5.2 7.3 ns tDHL Data-to-Pad LOW 2.7 3.1 3.7 5.1 ns tENZH Enable Pad Z to HIGH 3.0 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 3.3 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 5.8 6.6 7.8 10.9 ns tENLZ Enable Pad LOW to Z 5.5 6.2 7.3 10.2 ns tGLH G-to-Pad HIGH 5.6 6.3 7.5 10.4 ns tGHL G-to-Pad LOW 5.6 6.3 7.5 10.4 ns tLSU I/O Latch Set-Up 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 6.3 7.1 8.4 11.8 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 8.6 9.78 11.5 16.1 ns 2 Capacitive Loading, LOW to HIGH 0.08 0.09 0.10 0.14 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.08 0.09 0.10 0.14 ns/pF dTLH Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. v5.0 75 40MX and 42MX FPGA Families A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (Wor st - Cas e M il it ar y Cond it ion s, V C C = 3.0V, T J = 125 °C ) ‘–2’ Speed Parameter Description Min. Logic Module Combinatorial Functions Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units 1 tPD Internal Array Module Delay tPDD Internal Decode Module Delay Logic Module Predicted Routing Delays 2.4 2.7 3.2 ns 2.9 3.3 3.9 ns 2 tRD1 FO=1 Routing Delay 1.7 2.0 2.3 ns tRD2 FO=2 Routing Delay 2.3 2.6 3.1 ns tRD3 FO=3 Routing Delay 2.9 3.3 3.9 ns tRD4 FO=4 Routing Delay 3.6 4.0 4.7 ns tRD5 FO=8 Routing Delay 6.0 6.8 8.0 ns tRDD Decode-to-Output Routing Delay 6.7 0.8 0.9 ns Logic Module Sequential Timing 3, 4 tCO Flip-Flop Clock-to-Output 2.4 2.7 3.1 ns tGO Latch Gate-to-Output 2.4 2.7 3.1 ns tSU Flip-Flop (Latch) Set-Up Time 0.6 0.7 0.8 ns tH Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 1.3 1.4 1.7 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 6.0 6.8 8.0 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 7.9 8.9 10.5 ns 2.9 3.2 3.8 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 3. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 76 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Military Conditions, V C C = 3.0V, T J = 125°C) Logic Module Timing Parameter Description ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units Synchronous SRAM Operations tRC Read Cycle Time 12.1 13.8 16.2 ns tWC Write Cycle Time 12.1 13.8 16.2 ns tRCKHL Clock HIGH/LOW Time 6.1 6.9 8.1 ns tRCO Data Valid After Clock HIGH/LOW tADSU Address/Data Set-Up Time 2.9 3.2 3.9 ns tADH Address/Data Hold Time 0.0 0.0 0.0 ns tRENSU Read Enable Set-Up 1.2 1.5 ns tRENH Read Enable Hold 6.1 6.9 8.1 ns tWENSU Write Enable Set-Up 4.8 5.5 6.4 ns tWENH Write Enable Hold 0.0 0.0 0.0 ns tBENS Block Enable Set-Up 4.9 5.6 6.6 ns tBENH Block Enable Hold 0.0 0.0 0.0 ns 6.2 7.0 8.2 ns Asynchronous SRAM Operations tRPD Asynchronous Access Time tRDADV Read Address Valid tADSU Address/Data Set-Up Time 2.9 3.2 3.9 ns tADH Address/Data Hold Time 0.0 0.0 0.0 ns tRENSUA Read Enable Set-Up to Address Valid 1.1 1.2 1.5 ns tRENHA Read Enable Hold 6.1 6.9 8.1 ns tWENSU Write Enable Set-Up 4.8 5.5 6.4 ns tWENH Write Enable Hold 0.0 0.0 0.0 ns tDOH Data Out Hold Time 14.7 15.9 18.0 2.4 v5.0 16.6 19.5 21.1 2.5 ns ns 2.9 ns 77 40MX and 42MX FPGA Families A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Military Conditions, V C C = 3.0V, T J = 125°C) ‘–2’ Speed Parameter Description Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.9 2.1 2.5 ns tINGO Input Latch Gate-to-Output 2.6 2.9 3.4 ns tINH Input Latch Hold tINSU Input Latch Set-Up 0.8 0.9 1.1 ns tILA Latch Active Pulse Width 8.4 9.5 11.2 ns 0.0 0.0 0.0 ns Input Module Predicted Routing Delays1 tIRD1 FO=1 Routing Delay 3.6 4.0 4.8 ns tIRD2 FO=2 Routing Delay 4.2 4.7 5.6 ns tIRD3 FO=3 Routing Delay 4.8 5.4 6.4 ns tIRD4 FO=4 Routing Delay 5.4 6.1 7.2 ns tIRD8 FO=8 Routing Delay 7.9 8.9 10.5 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=635 5.9 6.5 6.7 7.3 7.8 8.6 ns ns tCKL Input HIGH to LOW FO=32 FO=635 6.9 8.8 7.8 10.0 9.1 11.7 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=635 3.1 3.5 3.5 4.0 4.2 4.7 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=635 3.1 3.5 3.5 4.0 4.2 4.7 ns ns tCKSW Maximum Skew FO=32 FO=635 tSUEXT Input Latch External Set-Up FO=32 FO=635 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO=32 FO=635 5.1 5.9 5.8 6.7 6.8 7.9 ns ns tP Minimum Period (1/fMAX) FO=32 FO=635 11.8 12.7 12.8 13.8 14.7 15.9 ns ns fHMAX Maximum Datapath Frequency FO=32 FO=635 1.4 1.4 85 78 1.6 1.6 78 71 1.8 1.8 67 62 ns ns MHz MHz Note: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 78 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s A 42 M X3 6 Ti m i n g Ch a r ac t e r i s t i cs ( N o m i na l 3 . 3V O pe r a t i o n) (continued) (Worst-Case Military Conditions, V C C = 3.0V, T J = 125°C) ‘–2’ Speed Parameter Description Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units TTL Output Module Timing1 tDLH Data-to-Pad HIGH 4.6 5.2 6.2 ns tDHL Data-to-Pad LOW 5.3 6.1 7.2 ns tENZH Enable Pad Z to HIGH 4.8 5.4 6.4 ns tENZL Enable Pad Z to LOW 5.3 6.0 7.1 ns tENHZ Enable Pad HIGH to Z 9.5 10.8 12.7 ns tENLZ Enable Pad LOW to Z 8.9 10.0 11.8 ns tGLH G-to-Pad HIGH 6.3 7.2 8.4 ns tGHL G-to-Pad LOW 8.4 ns tLSU I/O Latch Output Set-Up 0.8 0.9 1.1 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 10.2 11.6 13.7 tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 14.0 15.9 18.7 ns dTLH2 Capacitive Loading, LOW to HIGH 0.13 0.14 0.16 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.13 0.14 0.16 ns/pF CMOS Output Module Timing 6.3 7.2 ns 1 tDLH Data-to-Pad HIGH 6.4 7.3 8.5 ns tDHL Data-to-Pad LOW 4.5 5.1 5.9 ns tENZH Enable Pad Z to HIGH 4.8 5.5 6.4 ns tENZL Enable Pad Z to LOW 5.3 6.0 7.1 ns tENHZ Enable Pad HIGH to Z 9.5 10.8 12.7 ns tENLZ Enable Pad LOW to Z 8.9 10.0 11.8 ns tGLH G-to-Pad HIGH 9.1 10.3 12.1 ns tGHL G-to-Pad LOW 9.1 10.3 12.1 ns tLSU I/O Latch Set-Up 0.8 0.9 1.1 ns tLH I/O Latch Hold 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 10.2 13.7 13.7 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 14.0 18.7 18.7 ns 2 Capacitive Loading, LOW to HIGH 0.13 0.16 0.16 ns/pF dTHL2 Capacitive Loading, HIGH to LOW 0.13 0.16 0.16 ns/pF dTLH Notes: 1. Delays based on 35 pF loading. 2. Slew rates measured from 10% to 90% VCCI. v5.0 79 40MX and 42MX FPGA Families Pi n D es c r i pt i on s CLK, CLKA, CLKB Global Clock (Input) accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. QCLKA,B,C,D Quadrant Clock (Input/Output) TTL clock inputs for clock distribution networks. The clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O. Quadrant clock inputs. When not used as a register control signal, these pins can function as general-purpose I/Os. DCLK Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. Diagnostic Clock (Input) TTL clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. GND Ground (Input) Input LOW supply voltage. I/O Input/Output (Input, Output) Input, output, tri-state, or bi-directional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven LOW by the Designer Series software. LP Low Power Mode Controls the low power mode of all 42MX devices. This pin must be set HIGH to switch the device to low power mode. To exit the LOW power mode, the LP pin must be set LOW. MODE Mode (Input) Controls the use of multifunction pins (DCLK, PRA, PRB, SDI, TDO). To provide verification capability, the MODE pin should be held HIGH. To facilitate this, the MODE pin should be terminated to GND through a 10K¾ resistor so that the MODE pin can be pulled HIGH when required. NC No Connection This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. PRA, I/O Probe A (Output) The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. PRB, I/O Probe B (Output) The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin’s probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is 80 SDI SDO, TDO, I/O Serial Data Input (Input) Serial Data (Output) Serial data output for diagnostic probe and device programming. SDO is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. SDO is not available for 40MX devices. TCK Test Clock Clock signal to shift the Boundary Scan Test (BST) data into the device. This pin functions as an I/O when the test fuse is not programmed. BST pins are only available in the A42MX24, A42MX24A, and A42MX36 devices. TDI Test Data In Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when the test fuse is not programmed. BST pins are only available in the A42MX24 and A42MX36 devices. TDO Test Data Out Serial data output for BST instructions and test data. This pin functions as an I/O when the test fuse is not programmed. BST pins are only available in the A42MX24 and A42MX36 devices. TMS Test Mode Select Serial data input for boundary scan test mode. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when the test fuse is not programmed. BST pins are only available in the A42MX24 and A42MX36 devices. VCC Supply Voltage (Input) Input HIGH supply voltage. V C CA Supply Voltage (Input) Input HIGH supply voltage, supplies array core only. V C CI Supply Voltage (Input) Input HIGH supply voltage, supplies I/O cells only. WD Wide Decode Output When a wide decode module is used in a 42MX device, this pin can be used as a dedicated output from the wide decode module. This direct connection eliminates additional interconnect delays associated with regular logic modules. To implement the direct I/O connection, connect an output buffer of any type to the output of the wide decode macro and place this output on one of the reserved WD pins. v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s Pa c ka ge P i n A s si g nm e n t s 44-Pin PLCC 1 44 44-Pin PLCC 44- pin P LCC Pin Number A40MX02 Function A40MX04 Function Pin Number A40MX02 Function A40MX04 Function 1 I/O I/O 23 I/O I/O 2 I/O I/O 24 I/O I/O 3 VCC VCC 25 VCC VCC 4 I/O I/O 26 I/O I/O 5 I/O I/O 27 I/O I/O 6 I/O I/O 28 I/O I/O 7 I/O I/O 29 I/O I/O 8 I/O I/O 30 I/O I/O 9 I/O I/O 31 I/O I/O 10 GND GND 32 GND GND 11 I/O I/O 33 CLK, I/O CLK, I/O 12 I/O I/O 34 MODE MODE 13 I/O I/O 35 VCC VCC 14 VCC VCC 36 SDI, I/O SDI, I/O 15 I/O I/O 37 DCLK, I/O DCLK, I/O 16 VCC VCC 38 PRA, I/O PRA, I/O 17 I/O I/O 39 PRB, I/O PRB, I/O 18 I/O I/O 40 I/O I/O 19 I/O I/O 41 I/O I/O 20 I/O I/O 42 I/O I/O 21 GND GND 43 GND GND 22 I/O I/O 44 I/O I/O v5.0 81 40MX and 42MX FPGA Families Pa c ka ge P i n A s si g nm e n t s 68-Pin PLCC 1 68 68-Pin PLCC 68- Pi n PL CC Pin Number A40MX02 Function A40MX04 Function Pin Number A40MX02 Function A40MX04 Function Pin Number A40MX02 Function A40MX04 Function 1 I/O I/O 24 I/O I/O 47 I/O I/O 2 I/O I/O 25 VCC VCC 48 I/O I/O 3 I/O I/O 26 I/O I/O 49 GND GND 4 VCC VCC 27 I/O I/O 50 I/O I/O 5 I/O I/O 28 I/O I/O 51 I/O I/O 6 I/O I/O 29 I/O I/O 52 CLK, I/O CLK, I/O 7 I/O I/O 30 I/O I/O 53 I/O I/O 8 I/O I/O 31 I/O I/O 54 MODE MODE 9 I/O I/O 32 GND GND 55 VCC VCC 10 I/O I/O 33 I/O I/O 56 SDI, I/O SDI, I/O 11 I/O I/O 34 I/O I/O 57 DCLK, I/O DCLK, I/O 12 I/O I/O 35 I/O I/O 58 PRA, I/O PRA, I/O 13 I/O I/O 36 I/O I/O 59 PRB, I/O PRB, I/O 14 GND GND 37 I/O I/O 60 I/O I/O 15 GND GND 38 VCC VCC 61 I/O I/O 16 I/O I/O 39 I/O I/O 62 I/O I/O 17 I/O I/O 40 I/O I/O 63 I/O I/O 18 I/O I/O 41 I/O I/O 64 I/O I/O 19 I/O I/O 42 I/O I/O 65 I/O I/O 20 I/O I/O 43 I/O I/O 66 GND GND 21 VCC VCC 44 I/O I/O 67 I/O I/O 22 I/O I/O 45 I/O I/O 68 I/O I/O 23 I/O I/O 46 I/O I/O 82 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s Pa c ka ge P i n A s si g nm e n t s (continued) 84-Pin PLCC 1 84 84-Pin PLCC v5.0 83 40MX and 42MX FPGA Families 84- Pi n PL CC Pin A40MX04 A42MX09 A42MX16 A42MX24 Number Function Function Function Function 84 Pin A40MX04 A42MX09 A42MX16 Number Function Function Function A42MX24 Function 43 I/O VCCA VCCA VCCA 44 I/O I/O I/O I/O (WD) I/O 45 I/O I/O I/O I/O (WD) PRB, I/O PRB, I/O 46 VCC I/O I/O I/O (WD) I/O I/O I/O (WD) 47 I/O I/O I/O I/O (WD) GND GND GND 48 I/O I/O I/O I/O I/O I/O I/O 49 I/O GND GND GND I/O I/O I/O (WD) 50 I/O I/O I/O I/O (WD) I/O I/O I/O (WD) 51 I/O I/O I/O I/O (WD) 52 I/O SDO, I/O 1 I/O 2 I/O I/O I/O 3 I/O I/O I/O 4 VCC PRB, I/O 5 I/O 6 I/O 7 I/O 8 I/O I/O CLKB, I/O CLKB, I/O CLKB, I/O 9 I/O 10 I/O 11 I/O I/O I/O I/O 53 I/O I/O I/O I/O 12 NC MODE MODE MODE 54 I/O I/O I/O I/O 13 I/O I/O I/O I/O 55 I/O I/O I/O I/O 14 I/O I/O I/O I/O 56 I/O I/O I/O I/O 15 I/O I/O I/O I/O 57 I/O I/O I/O I/O 16 I/O I/O I/O I/O 58 I/O I/O I/O I/O 17 I/O I/O I/O I/O 59 I/O I/O I/O I/O 18 GND I/O I/O I/O 60 GND I/O I/O I/O 19 GND I/O I/O I/O 61 GND I/O I/O I/O 20 I/O I/O I/O I/O 62 I/O I/O I/O TCK, I/O 21 I/O I/O I/O I/O 63 I/O GND (LP) GND (LP) GND (LP) 22 I/O VCCA VCCI VCCI 64 CLK, I/O VCCA VCCA VCCA 23 I/O VCCI VCCA VCCA 65 I/O VCCI VCCI VCCI 24 I/O I/O I/O I/O 66 MODE I/O I/O I/O 25 VCC I/O I/O I/O 67 VCC I/O I/O I/O 26 VCC I/O I/O I/O 68 VCC I/O I/O I/O 27 I/O I/O I/O I/O 69 I/O I/O I/O I/O 28 I/O GND GND GND 70 I/O GND GND GND DCLK, I/O DCLK, I/O DCLK, I/O SDO, I/O SDO, TDO (WD) 29 I/O I/O I/O I/O 71 I/O I/O I/O I/O 30 I/O I/O I/O I/O 72 SDI, I/O I/O I/O I/O 31 I/O I/O I/O I/O 73 DCLK, I/O I/O I/O I/O 32 I/O I/O I/O I/O 74 PRA, I/O I/O I/O I/O 33 VCC I/O I/O I/O 75 PRB, I/O I/O I/O I/O 34 I/O I/O I/O TMS, I/O 76 I/O SDI, I/O SDI, I/O SDI, I/O 35 I/O I/O I/O TDI, I/O 77 I/O I/O I/O I/O 36 I/O I/O I/O I/O (WD) 78 I/O I/O I/O I/O (WD) 37 I/O I/O I/O I/O 79 I/O I/O I/O I/O (WD) 38 I/O I/O I/O I/O (WD) 80 I/O I/O I/O I/O (WD) 39 I/O I/O I/O I/O (WD) 81 I/O PRA, I/O PRA, I/O PRA, I/O 40 GND I/O I/O I/O 82 GND I/O I/O I/O 41 I/O I/O I/O I/O 83 I/O 42 I/O I/O I/O I/O 84 I/O v5.0 CLKA, I/O CLKA, I/O VCCA VCCA CLKA, I/O VCCA 4 0 M X a n d 4 2 M X F PG A F a m il ie s Pa c ka ge P i n A s si g nm e n t s (continued) 100-Pin PQFP Package (Top View) 100-Pin PQFP 100 1 v5.0 85 40MX and 42MX FPGA Families 100- P in P Q FP Pin Number 86 A40MX02 A40MX04 A42MX09 A42MX16 Function Function Function Function 1 NC NC I/O 2 NC NC 3 NC NC I/O 4 NC NC 5 NC 6 Pin Number I/O A40MX02 A40MX04 A42MX09 A42MX16 Function Function Function Function 40 I/O I/O VCCA VCCA 41 I/O I/O I/O I/O I/O 42 I/O I/O I/O I/O MODE MODE 43 VCC VCC I/O I/O NC I/O I/O 44 VCC VCC I/O I/O PRB, I/O PRB, I/O I/O I/O 45 I/O I/O I/O I/O 7 I/O I/O I/O I/O 46 I/O I/O GND GND 8 I/O I/O I/O I/O 47 I/O I/O I/O I/O 9 I/O I/O GND GND 48 NC I/O I/O I/O 10 I/O I/O I/O I/O 49 NC I/O I/O I/O 11 I/O I/O I/O I/O 50 NC I/O I/O I/O 12 I/O I/O I/O I/O 51 NC NC I/O I/O 13 GND GND I/O I/O 52 NC NC SDO, I/O SDO, I/O 14 I/O I/O I/O I/O 53 NC NC I/O I/O 15 I/O I/O I/O I/O 54 NC NC I/O I/O 16 I/O I/O VCCA VCCA 55 NC NC I/O I/O 17 I/O I/O VCCI VCCA 56 VCC VCC I/O I/O 18 I/O I/O I/O I/O 57 I/O I/O GND GND 19 VCC VCC I/O I/O 58 I/O I/O I/O I/O 20 I/O I/O I/O I/O 59 I/O I/O I/O I/O 21 I/O I/O I/O I/O 60 I/O I/O I/O I/O 22 I/O I/O GND GND 61 I/O I/O I/O I/O 23 I/O I/O I/O I/O 62 I/O I/O I/O I/O 24 I/O I/O I/O I/O 63 GND GND I/O I/O 25 I/O I/O I/O I/O 64 I/O I/O 26 I/O I/O I/O I/O 65 I/O I/O VCCA VCCA 27 NC NC I/O I/O 66 I/O I/O VCCI VCCI 28 NC NC I/O I/O 67 I/O I/O VCCA VCCA 29 NC NC I/O I/O 68 I/O I/O I/O I/O 30 NC NC I/O I/O 69 VCC VCC I/O I/O 31 NC I/O I/O I/O 70 I/O I/O I/O I/O 32 NC I/O I/O I/O 71 I/O I/O I/O I/O 33 NC I/O I/O I/O 72 I/O I/O GND GND 34 I/O I/O GND GND 73 I/O I/O I/O I/O 35 I/O I/O I/O I/O 74 I/O I/O I/O I/O 36 GND GND I/O I/O 75 I/O I/O I/O I/O 37 GND GND I/O I/O 76 I/O I/O I/O I/O 38 I/O I/O I/O I/O 77 NC NC I/O I/O 39 I/O I/O I/O I/O 78 NC NC I/O I/O DCLK, I/O DCLK, I/O v5.0 GND (LP) GND (LP) 4 0 M X a n d 4 2 M X F PG A F a m il ie s 100- P in P Q FP (C ont inu ed) Pin Number A40MX02 A40MX04 A42MX09 A42MX16 Function Function Function Function Pin Number A40MX02 A40MX04 A42MX09 A42MX16 Function Function Function Function 79 NC NC SDI, I/O SDI, I/O 90 CLK, I/O CLK, I/O VCCA VCCA 80 NC I/O I/O I/O 91 I/O I/O I/O I/O 81 NC I/O I/O I/O 92 MODE MODE 82 NC I/O I/O I/O 93 VCC VCC I/O I/O 83 I/O I/O I/O I/O 94 VCC VCC PRB, I/O PRB, I/O 84 I/O I/O GND GND 95 NC I/O I/O I/O 85 I/O I/O I/O I/O 96 NC I/O GND GND 86 GND GND I/O I/O 97 NC I/O I/O I/O 87 GND GND PRA, I/O PRA, I/O 98 SDI, I/O SDI, I/O I/O I/O 88 I/O I/O I/O I/O 99 I/O I/O 89 I/O I/O I/O I/O CLKA, I/O CLKA, I/O v5.0 100 DCLK, I/O DCLK, I/O PRA, I/O PRA, I/O CLKB, I/O CLKB, I/O 87 40MX and 42MX FPGA Families Pa c ka ge P i n A s si g nm e n t s (continued) 160-Pin PQFP Package (Top View) 160 1 160-Pin PQFP 88 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 160- P in P Q FP Pin Number A42MX09 Function A42MX16 Function A42MX24 Fucntion Pin Number A42MX09 Function A42MX16 Function A42MX24 Fucntion 1 I/O I/O I/O 41 I/O I/O I/O 2 DCLK, I/O DCLK, I/O DCLK, I/O 42 I/O I/O I/O 3 NC I/O I/O 43 I/O I/O I/O 4 I/O I/O I/O (WD) 44 GND GND GND 5 I/O I/O I/O (WD) 45 I/O I/O I/O 6 NC VCCI VCCI 46 I/O I/O I/O 7 I/O I/O I/O 47 I/O I/O I/O 8 I/O I/O I/O 48 I/O I/O I/O 9 I/O I/O I/O 49 GND GND GND 10 NC I/O I/O 50 I/O I/O I/O 11 GND GND GND 51 I/O I/O I/O 12 NC I/O I/O 52 NC I/O I/O 13 I/O I/O I/O (WD) 53 I/O I/O I/O 14 I/O I/O I/O (WD) 54 NC VCCA VCCA 15 I/O I/O I/O 55 I/O I/O I/O 16 PRB, I/O PRB, I/O PRB, I/O 56 I/O I/O I/O 17 I/O I/O I/O 57 VCCA VCCA VCCA 18 CLKB, I/O CLKB, I/O CLKB, I/O 58 VCCI VCCI VCCI 19 I/O I/O I/O 59 GND GND GND 20 VCCA VCCA VCCA 60 VCCA VCCA VCCA 21 CLKA, I/O CLKA, I/O CLKA, I/O 61 GND (LP) GND (LP) GND (LP) 22 I/O I/O I/O 62 I/O I/O TCK, I/O 23 PRA, I/O PRA, I/O PRA, I/O 63 I/O I/O I/O 24 NC I/O I/O (WD) 64 GND GND GND 25 I/O I/O I/O (WD) 65 I/O I/O I/O 26 I/O I/O I/O 66 I/O I/O I/O 27 I/O I/O I/O 67 I/O I/O I/O 28 NC I/O I/O 68 I/O I/O I/O 29 I/O I/O I/O (WD) 69 GND GND GND 30 GND GND GND 70 NC I/O I/O 31 NC I/O I/O (WD) 71 I/O I/O I/O 32 I/O I/O I/O 72 I/O I/O I/O 33 I/O I/O I/O 73 I/O I/O I/O 34 I/O I/O I/O 74 I/O I/O I/O 35 NC VCCI VCCI 75 NC I/O I/O 36 I/O I/O I/O (WD) 76 I/O I/O I/O 37 I/O I/O I/O (WD) 77 NC I/O I/O 38 SDI, I/O SDI, I/O SDI, I/O 78 I/O I/O I/O 39 I/O I/O I/O 79 NC I/O I/O 40 GND GND GND 80 GND GND GND v5.0 89 40MX and 42MX FPGA Families 160- P in P Q FP (C ont inu ed) Pin Number A42MX09 Function A42MX16 Function A42MX24 Fucntion Pin Number A42MX09 Function A42MX16 Function A42MX24 Fucntion 81 I/O I/O I/O 121 I/O I/O I/O 82 SDO, I/O SDO, I/O SDO, TDO, I/O 122 I/O I/O I/O 83 I/O I/O I/O (WD) 123 I/O I/O I/O 84 I/O I/O I/O (WD) 124 NC I/O I/O 85 I/O I/O I/O 125 GND GND GND 86 NC VCCI VCCI 126 I/O I/O I/O 87 I/O I/O I/O 127 I/O I/O I/O 88 I/O I/O I/O (WD) 128 I/O I/O I/O 89 GND GND GND 129 NC I/O I/O 90 NC I/O I/O 130 GND GND GND 91 I/O I/O I/O 131 I/O I/O I/O 92 I/O I/O I/O 132 I/O I/O I/O 93 I/O I/O I/O 133 I/O I/O I/O 94 I/O I/O I/O 134 I/O I/O I/O 95 I/O I/O I/O 135 NC VCCA VCCA 96 I/O I/O I/O (WD) 136 I/O I/O I/O 97 I/O I/O I/O 137 I/O I/O I/O 98 VCCA VCCA VCCA 138 NC VCCA VCCA 99 GND GND GND 139 VCCI VCCI VCCI 100 NC I/O I/O 140 GND GND GND 101 I/O I/O I/O 141 NC I/O I/O 102 I/O I/O I/O 142 I/O I/O I/O 103 NC I/O I/O 143 I/O I/O I/O 104 I/O I/O I/O 144 I/O I/O I/O 105 I/O I/O I/O 145 GND GND GND 106 I/O I/O I/O (WD) 146 NC I/O I/O 107 I/O I/O I/O (WD) 147 I/O I/O I/O 108 I/O I/O I/O 148 I/O I/O I/O 109 GND GND GND 149 I/O I/O I/O 110 NC I/O I/O 150 NC VCCA VCCA 111 I/O I/O I/O (WD) 151 NC I/O I/O 112 I/O I/O I/O (WD) 152 NC I/O I/O 90 113 I/O I/O I/O 153 NC I/O I/O 114 NC VCCI VCCI 154 NC I/O I/O 115 I/O I/O I/O (WD) 155 GND GND GND 116 NC I/O I/O (WD) 156 I/O I/O I/O 117 I/O I/O I/O 157 I/O I/O I/O 118 I/O I/O TDI, I/O 158 I/O I/O I/O 119 I/O I/O TMS, I/O 159 MODE MODE MODE 120 GND GND GND 160 GND GND GND v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s Pa c ka ge P i n A s si g nm e n t s (continued) 208-Pin PQFP Package (Top View) 208 1 208-Pin PQFP v5.0 91 40MX and 42MX FPGA Families 208- P in P Q FP Pin Number A42MX16 Function 1 GND GND 2 NC VCCA 3 MODE MODE 4 I/O 5 6 92 A42MX24 Function A42MX36 Function Pin Number A42MX16 Function A42MX24 Function A42MX36 Function GND 43 NC I/O I/O VCCA 44 I/O I/O I/O MODE 45 I/O I/O I/O I/O I/O 46 I/O I/O I/O I/O I/O I/O 47 I/O I/O I/O I/O I/O I/O 48 I/O I/O I/O 7 I/O I/O I/O 49 I/O I/O I/O 8 I/O I/O I/O 50 NC I/O I/O 9 NC I/O I/O 51 NC I/O I/O 10 NC I/O I/O 52 GND GND GND 11 NC I/O I/O 53 GND GND GND 12 I/O I/O I/O 54 I/O TMS, I/O TMS, I/O 13 I/O I/O I/O 55 I/O TDI, I/O TDI, I/O 14 I/O I/O I/O 56 I/O I/O I/O 15 I/O I/O I/O 57 I/O I/O (WD) I/O (WD) 16 NC I/O I/O 58 I/O I/O (WD) I/O (WD) 17 VCCA VCCA VCCA 59 I/O I/O I/O 18 I/O I/O I/O 60 VCCI VCCI VCCI 19 I/O I/O I/O 61 NC I/O I/O 20 I/O I/O I/O 62 NC I/O I/O 21 I/O I/O I/O 63 I/O I/O I/O 22 GND GND GND 64 I/O I/O I/O 23 I/O I/O I/O 65 I/O I/O QCLKA, I/O 24 I/O I/O I/O 66 I/O I/O (WD) I/O (WD) 25 I/O I/O I/O 67 NC I/O (WD) I/O (WD) 26 I/O I/O I/O 68 NC I/O I/O 27 GND GND GND 69 I/O I/O I/O 28 VCCI VCCI VCCI 70 I/O I/O (WD) I/O (WD) 29 VCCA VCCA VCCA 71 I/O I/O (WD) I/O (WD) 30 I/O I/O I/O 72 I/O I/O I/O 31 I/O I/O I/O 73 I/O I/O I/O 32 VCCA VCCA VCCA 74 I/O I/O I/O 33 I/O I/O I/O 75 I/O I/O I/O 34 I/O I/O I/O 76 I/O I/O I/O 35 I/O I/O I/O 77 I/O I/O I/O 36 I/O I/O I/O 78 GND GND GND 37 I/O I/O I/O 79 VCCA VCCA VCCA 38 I/O I/O I/O 80 NC VCCI VCCI 39 I/O I/O I/O 81 I/O I/O I/O 40 I/O I/O I/O 82 I/O I/O I/O 41 NC I/O I/O 83 I/O I/O I/O 42 NC I/O I/O 84 I/O I/O I/O v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 208- P in P Q FP (C ont inu ed) Pin Number A42MX16 Function A42MX24 Function A42MX36 Function Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 85 I/O I/O (WD) I/O (WD) 127 I/O I/O I/O 86 I/O I/O (WD) I/O (WD) 128 I/O TCK, I/O TCK, I/O 87 I/O I/O I/O 129 GND (LP) GND (LP) GND (LP) 88 I/O I/O I/O 130 VCCA VCCA VCCA 89 NC I/O I/O 131 GND GND GND 90 NC I/O I/O 132 VCCI VCCI VCCI 91 I/O I/O QCLKB, I/O 133 VCCA VCCA VCCA 92 I/O I/O I/O 134 I/O I/O I/O 93 I/O I/O (WD) I/O (WD) 135 I/O I/O I/O 94 I/O I/O (WD) I/O (WD) 136 VCCA VCCA VCCA 95 NC I/O I/O 137 I/O I/O I/O 96 NC I/O I/O 138 I/O I/O I/O 97 NC I/O I/O 139 I/O I/O I/O 98 VCCI VCCI VCCI 140 I/O I/O I/O 99 I/O I/O I/O 141 NC I/O I/O 100 I/O I/O (WD) I/O (WD) 142 I/O I/O I/O 101 I/O I/O (WD) I/O (WD) 143 I/O I/O I/O 102 I/O I/O I/O 144 I/O I/O I/O 103 SDO, I/O 145 I/O I/O I/O 104 I/O 146 NC I/O I/O 105 GND GND GND 147 NC I/O I/O 106 NC VCCA VCCA 148 NC I/O I/O 107 I/O I/O I/O 149 NC I/O I/O 108 I/O I/O I/O 150 GND GND GND 109 I/O I/O I/O 151 I/O I/O I/O 110 I/O I/O I/O 152 I/O I/O I/O 111 I/O I/O I/O 153 I/O I/O I/O 112 NC I/O I/O 154 I/O I/O I/O 113 NC I/O I/O 155 I/O I/O I/O 114 NC I/O I/O 156 I/O I/O I/O 115 NC I/O I/O 157 GND GND GND 116 I/O I/O I/O 158 I/O I/O I/O 117 I/O I/O I/O 159 SDI, I/O SDI, I/O SDI, I/O 118 I/O I/O I/O 160 I/O I/O I/O 119 I/O I/O I/O 161 I/O I/O (WD) I/O (WD) 120 I/O I/O I/O 162 I/O I/O (WD) I/O (WD) 121 I/O I/O I/O 163 I/O I/O I/O 122 I/O I/O I/O 164 VCCI VCCI VCCI 123 I/O I/O I/O 165 NC I/O I/O 124 I/O I/O I/O 166 NC I/O I/O SDO, TDO, I/O SDO, TDO, I/O I/O I/O 125 I/O I/O I/O 167 I/O I/O I/O 126 GND GND GND 168 I/O I/O (WD) I/O (WD) v5.0 93 40MX and 42MX FPGA Families 208- P in P Q FP (C ont inu ed) Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 169 I/O I/O (WD) I/O (WD) 189 I/O I/O I/O 170 I/O I/O I/O 190 I/O I/O (WD) I/O (WD) 171 NC I/O QCLKD, I/O 191 I/O I/O (WD) I/O (WD) 172 I/O I/O I/O 192 I/O I/O I/O 94 Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 173 I/O I/O I/O 193 NC I/O I/O 174 I/O I/O I/O 194 NC I/O (WD) I/O (WD) 175 I/O I/O I/O 195 NC I/O (WD) I/O (WD) 176 I/O I/O (WD) I/O (WD) 196 I/O I/O QCLKC, I/O 177 I/O I/O (WD) I/O (WD) 197 NC I/O I/O 178 PRA, I/O PRA, I/O PRA, I/O 198 NC I/O I/O 179 I/O I/O I/O 199 I/O I/O I/O 180 CLKA, I/O CLKA, I/O CLKA, I/O 200 I/O I/O I/O 181 NC I/O I/O 201 NC I/O I/O 182 NC VCCI VCCI 202 VCCI VCCI VCCI 183 VCCA VCCA VCCA 203 I/O I/O (WD) I/O (WD) 184 GND GND GND 204 I/O I/O (WD) I/O (WD) 185 I/O I/O I/O 205 I/O I/O I/O 186 CLKB, I/O CLKB, I/O CLKB, I/O 206 I/O I/O I/O 187 I/O I/O I/O 207 DCLK, I/O DCLK, I/O DCLK, I/O 188 PRB, I/O PRB, I/O PRB, I/O 208 I/O I/O I/O v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s Pa c ka ge P i n A s si g nm e n t s (continued) • • • 240-Pin PQFP Package (Top View) 240 1 240-Pin PQFP • • • • • • • • • v5.0 95 40MX and 42MX FPGA Families 240- P in P Q FP Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 1 I/O 41 I/O 81 I/O 121 GND 2 DCLK, I/O 42 I/O 82 I/O 122 I/O 3 I/O 43 I/O 83 I/O 123 SDO, TDO, I/O 4 I/O 44 I/O 84 I/O 124 I/O 5 I/O 45 QCLKD, I/O 85 VCCA 125 I/O (WD) 6 I/O (WD) 46 I/O 86 I/O 126 I/O (WD) 7 I/O (WD) 47 I/O (WD) 87 I/O 127 I/O 8 VCCI 48 I/O (WD) 88 VCCA 128 VCCI 9 I/O 49 I/O 89 VCCI 129 I/O 10 I/O 50 I/O 90 VCCA 130 I/O 11 I/O 51 I/O 91 GND (LP) 131 I/O 12 I/O 52 VCCI 92 TCK, I/O 132 I/O (WD) 96 13 I/O 53 I/O 93 I/O 133 I/O (WD) 14 I/O 54 I/O (WD) 94 GND 134 I/O 15 QCLKC, I/O 55 I/O (WD) 95 I/O 135 QCLKB, I/O 16 I/O 56 I/O 96 I/O 136 I/O 17 I/O (WD) 57 SDI, I/O 97 I/O 137 I/O 18 I/O (WD) 58 I/O 98 I/O 138 I/O 19 I/O 59 VCCA 99 I/O 139 I/O 20 I/O 60 GND 100 I/O 140 I/O 21 I/O (WD) 61 GND 101 I/O 141 I/O 22 I/O (WD) 62 I/O 102 I/O 142 I/O (WD) 23 I/O 63 I/O 103 I/O 143 I/O (WD) 24 PRB, I/O 64 I/O 104 I/O 144 I/O 25 I/O 65 I/O 105 I/O 145 I/O 26 CLKB, I/O 66 I/O 106 I/O 146 I/O 27 I/O 67 I/O 107 I/O 147 I/O 28 GND 68 I/O 108 VCCI 148 I/O 29 VCCA 69 I/O 109 I/O 149 I/O 30 VCCI 70 I/O 110 I/O 150 VCCI 31 I/O 71 VCCI 111 I/O 151 VCCA 32 CLKA, I/O 72 I/O 112 I/O 152 GND 33 I/O 73 I/O 113 I/O 153 I/O 34 PRA, I/O 74 I/O 114 I/O 154 I/O 35 I/O 75 I/O 115 I/O 155 I/O 36 I/O 76 I/O 116 I/O 156 I/O 37 I/O (WD) 77 I/O 117 I/O 157 I/O 38 I/O (WD) 78 I/O 118 VCCA 158 I/O 39 I/O 79 I/O 119 GND 159 I/O (WD) 40 I/O 80 I/O 120 GND 160 I/O (WD) v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 240- P in P Q FP (C ont inu ed) Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 161 I/O 181 VCCA 201 I/O 221 I/O 162 I/O 182 GND 202 I/O 222 I/O 163 I/O (WD) 183 I/O 203 I/O 223 I/O 164 I/O (WD) 184 I/O 204 I/O 224 I/O 165 I/O 185 I/O 205 I/O 225 I/O 166 QCLKA, I/O 186 I/O 206 VCCA 226 I/O 167 I/O 187 I/O 207 I/O 227 VCCI 168 I/O 188 I/O 208 I/O 228 I/O 169 I/O 189 I/O 209 VCCA 229 I/O 170 I/O 190 I/O 210 VCCI 230 I/O 171 I/O 191 I/O 211 I/O 231 I/O 172 VCCI 192 VCCI 212 I/O 232 I/O 173 I/O 193 I/O 213 I/O 233 I/O 174 I/O (WD) 194 I/O 214 I/O 234 I/O 175 I/O (WD) 195 I/O 215 I/O 235 I/O 176 I/O 196 I/O 216 I/O 236 I/O 177 I/O 197 I/O 217 I/O 237 GND 178 TDI, I/O 198 I/O 218 I/O 238 MODE 179 TMS, I/O 199 I/O 219 VCCA 239 VCCA 180 GND 200 I/O 220 I/O 240 GND v5.0 97 40MX and 42MX FPGA Families Package Pin Assignments (continued) 80-Pin VQFP 1 80 80-Pin VQFP 98 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 80- Pi n VQFP Pin Number A40MX02 Function A40MX04 Function Pin Number A40MX02 Function A40MX04 Function 1 I/O I/O 41 NC I/O 2 NC I/O 42 NC I/O 3 NC I/O 43 NC I/O 4 NC I/O 44 I/O I/O 5 I/O I/O 45 I/O I/O 6 I/O I/O 46 I/O I/O 7 GND GND 47 GND GND 8 I/O I/O 48 I/O I/O 9 I/O I/O 49 I/O I/O 10 I/O I/O 50 CLK, I/O CLK, I/O 11 I/O I/O 51 I/O I/O 12 I/O I/O 52 MODE MODE 13 VCC VCC 53 VCC VCC 14 I/O I/O 54 NC I/O 15 I/O I/O 55 NC I/O 16 I/O I/O 56 NC I/O 17 NC I/O 57 SDI, I/O SDI, I/O 18 NC I/O 58 DCLK, I/O DCLK, I/O 19 NC I/O 59 PRA, I/O PRA, I/O 20 VCC VCC 60 NC NC 21 I/O I/O 61 PRB, I/O PRB, I/O 22 I/O I/O 62 I/O I/O 23 I/O I/O 63 I/O I/O 24 I/O I/O 64 I/O I/O 25 I/O I/O 65 I/O I/O 26 I/O I/O 66 I/O I/O 27 GND GND 67 I/O I/O 28 I/O I/O 68 GND GND 29 I/O I/O 69 I/O I/O 30 I/O I/O 70 I/O I/O 31 I/O I/O 71 I/O I/O 32 I/O I/O 72 I/O I/O 33 VCC VCC 73 I/O I/O 34 I/O I/O 74 VCC VCC 35 I/O I/O 75 I/O I/O 36 I/O I/O 76 I/O I/O 37 I/O I/O 77 I/O I/O 38 I/O I/O 78 I/O I/O 39 I/O I/O 79 I/O I/O 40 I/O I/O 80 I/O I/O v5.0 99 40MX and 42MX FPGA Families Pa c ka ge P i n A s si g nm e n t s (continued) 100- P in VQF P P ackag e (T op V iew ) 100 1 100-Pin VQFP 100 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 100-Pin VQFP Package Pin Number A42MX09 Function A42MX16 Function Pin Number A42MX09 Function A42MX16 Function 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 I/O MODE I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O VCCA I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O SDO, I/O I/O MODE I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O NC VCCI I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O VCCA I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O SDO, I/O 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O GND (LP) VCCA VCCI VCCA I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O SDI, I/O I/O I/O I/O I/O GND I/O I/O PRA, I/O I/O CLKA, I/O VCCA I/O CLKB, I/O I/O PRB, I/O I/O GND I/O I/O I/O I/O I/O DCLK, I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O GND (LP) VCCA VCCI VCCA I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O SDI, I/O I/O I/O I/O I/O GND I/O I/O PRA, I/O I/O CLKA, I/O VCCA I/O CLKB, I/O I/O PRB, I/O I/O GND I/O I/O I/O I/O I/O DCLK, I/O v5.0 101 40MX and 42MX FPGA Families Pa c ka ge P i n A s si g nm e n t s (continued) 176-Pin TQFP Package (Top View) 176 1 176-Pin TQFP 102 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 176- P in T Q FP Pin Number A42MX09 Function A42MX16 Function A42MX24 Function Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 1 GND GND GND 45 GND GND GND 2 MODE MODE MODE 46 I/O I/O TMS, I/O 3 I/O I/O I/O 47 I/O I/O TDI, I/O 4 I/O I/O I/O 48 I/O I/O I/O 5 I/O I/O I/O 49 I/O I/O I/O (WD) 6 I/O I/O I/O 50 I/O I/O I/O (WD) 7 I/O I/O I/O 51 I/O I/O I/O 8 NC NC I/O 52 NC VCCI VCCI 9 I/O I/O I/O 53 I/O I/O I/O 10 NC I/O I/O 54 NC I/O I/O 11 NC I/O I/O 55 NC I/O I/O (WD) 12 I/O I/O I/O 56 I/O I/O I/O (WD) 13 NC VCCA VCCA 57 NC NC I/O 14 I/O I/O I/O 58 I/O I/O I/O 15 I/O I/O I/O 59 I/O I/O I/O (WD) 16 I/O I/O I/O 60 I/O I/O I/O (WD) 17 I/O I/O I/O 61 NC I/O I/O 18 GND GND GND 62 I/O I/O I/O 19 NC I/O I/O 63 I/O I/O I/O 20 NC I/O I/O 64 NC I/O I/O 21 I/O I/O I/O 65 I/O I/O I/O 22 NC I/O I/O 66 NC I/O I/O 23 GND GND GND 67 GND GND GND 24 NC VCCI VCCI 68 VCCA VCCA VCCA 25 VCCA VCCA VCCA 69 I/O I/O I/O (WD) 26 NC I/O I/O 70 I/O I/O I/O (WD) 27 NC I/O I/O 71 I/O I/O I/O 28 VCCI VCCA VCCA 72 I/O I/O I/O 29 NC I/O I/O 73 I/O I/O I/O 30 I/O I/O I/O 74 NC I/O I/O 31 I/O I/O I/O 75 I/O I/O I/O 32 I/O I/O I/O 76 I/O I/O I/O 33 NC NC I/O 77 NC NC I/O (WD) 34 I/O I/O I/O 78 NC I/O I/O (WD) 35 I/O I/O I/O 79 I/O I/O I/O 36 I/O I/O I/O 80 NC I/O I/O 37 NC I/O I/O 81 I/O I/O I/O 38 NC NC I/O 82 NC VCCI VCCI 39 I/O I/O I/O 83 I/O I/O I/O 40 I/O I/O I/O 84 I/O I/O I/O (WD) 41 I/O I/O I/O 85 I/O I/O I/O (WD) 42 I/O I/O I/O 86 NC I/O I/O 43 I/O I/O I/O 87 SDO, I/O SDO, I/O SDO, TDO, I/O 44 I/O I/O I/O 88 I/O I/O I/O v5.0 103 40MX and 42MX FPGA Families 176- P in T Q FP (C ont inu ed) Pin Number A42MX09 Function A42MX16 Function A42MX24 Function Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 89 GND GND GND 133 GND GND GND 90 I/O I/O I/O 134 I/O I/O I/O 91 I/O I/O I/O 135 SDI, I/O SDI, I/O SDI, I/O 92 I/O I/O I/O 136 NC I/O I/O 93 I/O I/O I/O 137 I/O I/O I/O (WD) 94 I/O I/O I/O 138 I/O I/O I/O (WD) 95 I/O I/O I/O 139 I/O I/O I/O 96 NC I/O I/O 140 NC VCCI VCCI 97 NC I/O I/O 141 I/O I/O I/O 98 I/O I/O I/O 142 I/O I/O I/O 104 99 I/O I/O I/O 143 NC I/O I/O 100 I/O I/O I/O 144 NC I/O I/O (WD) 101 NC NC I/O 145 NC NC I/O (WD) 102 I/O I/O I/O 146 I/O I/O I/O 103 NC I/O I/O 147 NC I/O I/O 104 I/O I/O I/O 148 I/O I/O I/O 105 I/O I/O I/O 149 I/O I/O I/O 106 GND GND GND 150 I/O I/O I/O (WD) 107 NC I/O I/O 151 NC I/O I/O (WD) 108 NC I/O TCK, I/O 152 PRA, I/O PRA, I/O PRA, I/O 109 GND (LP) GND (LP) GND (LP) 153 I/O I/O I/O 110 VCCA VCCA VCCA 154 CLKA, I/O CLKA, I/O CLKA, I/O 111 GND GND GND 155 VCCA VCCA VCCA 112 VCCI VCCI VCCI 156 GND GND GND 113 VCCA VCCA VCCA 157 I/O I/O I/O 114 NC I/O I/O 158 CLKB, I/O CLKB, I/O CLKB, I/O 115 NC I/O I/O 159 I/O I/O I/O 116 NC VCCA VCCA 160 PRB, I/O PRB, I/O PRB, I/O 117 I/O I/O I/O 161 NC I/O I/O (WD) 118 I/O I/O I/O 162 I/O I/O I/O (WD) 119 I/O I/O I/O 163 I/O I/O I/O 120 I/O I/O I/O 164 I/O I/O I/O 121 NC NC I/O 165 NC NC I/O (WD) 122 I/O I/O I/O 166 NC I/O I/O (WD) 123 I/O I/O I/O 167 I/O I/O I/O 124 NC I/O I/O 168 NC I/O I/O 125 NC I/O I/O 169 I/O I/O I/O 126 NC NC I/O 170 NC VCCI VCCI 127 I/O I/O I/O 171 I/O I/O I/O (WD) 128 I/O I/O I/O 172 I/O I/O I/O (WD) 129 I/O I/O I/O 173 NC I/O I/O 130 I/O I/O I/O 174 I/O I/O I/O 131 I/O I/O I/O 175 DCLK, I/O DCLK, I/O DCLK, I/O 132 I/O I/O I/O 176 I/O I/O I/O v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s Pa c ka ge P i n A s si g nm e n t s 208-Pin CQFP (Top View) 208 207 206 205 204 203 202 201 200 164 163 162 161 160 159 158 157 Pin #1 Index 1 156 2 155 3 154 4 153 5 152 6 151 7 150 8 149 A42MX36 208-Pin CQFP 44 113 45 112 46 111 47 110 48 109 49 108 50 107 51 106 52 105 53 54 55 56 57 58 59 60 61 v5.0 97 98 99 100 101 102 103 104 105 40MX and 42MX FPGA Families 208-Pin CQFP Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 1 GND 40 I/O 79 VCCA 118 I/O 2 VCCA 41 I/O 80 VCCI 119 I/O 3 MODE 42 I/O 81 I/O 120 I/O 4 I/O 43 I/O 82 I/O 121 I/O 5 I/O 44 I/O 83 I/O 122 I/O 6 I/O 45 I/O 84 I/O 123 I/O 7 I/O 46 I/O 85 I/O (WD) 124 I/O 8 I/O 47 I/O 86 I/O (WD) 125 I/O 9 I/O 48 I/O 87 I/O 126 GND 10 I/O 49 I/O 88 I/O 127 I/O 11 I/O 50 I/O 89 I/O 128 TCK, I/O 12 I/O 51 I/O 90 I/O 129 GND (LP) 13 I/O 52 GND 91 QCLKB, I/O 130 VCCA 14 I/O 53 GND 92 I/O 131 GND 15 I/O 54 TMS, I/O 93 I/O (WD) 132 VCCI 16 I/O 55 TDI, I/O 94 I/O (WD) 133 VCCA 17 VCCA 56 I/O 95 I/O 134 I/O 18 I/O 57 I/O (WD) 96 I/O 135 I/O 19 I/O 58 I/O (WD) 97 I/O 136 VCCA 20 I/O 59 I/O 98 VCCI 137 I/O 21 I/O 60 VCCI 99 I/O 138 I/O 22 GND 61 I/O 100 I/O (WD) 139 I/O 23 I/O 62 I/O 101 I/O (WD) 140 I/O 24 I/O 63 I/O 102 I/O 141 I/O 25 I/O 64 I/O 103 TDO, I/O 142 I/O 26 I/O 65 QCLKA, I/O 104 I/O 143 I/O 27 GND 66 I/O (WD) 105 GND 144 I/O 28 VCCI 67 I/O (WD) 106 VCCA 145 I/O 29 VCCA 68 I/O 107 I/O 146 I/O 30 I/O 69 I/O 108 I/O 147 I/O 31 I/O 70 I/O (WD) 109 I/O 148 I/O 32 VCCA 71 I/O (WD) 110 I/O 149 I/O 33 I/O 72 I/O 111 I/O 150 GND 34 I/O 73 I/O 112 I/O 151 I/O 35 I/O 74 I/O 113 I/O 152 I/O 36 I/O 75 I/O 114 I/O 153 I/O 37 I/O 76 I/O 115 I/O 154 I/O 38 I/O 77 I/O 116 I/O 155 I/O 39 I/O 78 GND 117 I/O 156 I/O 106 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 208-Pin CQFP (Continued) Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 157 GND 170 I/O 183 VCCA 196 QCLKC, I/O 158 I/O 171 QCLKD, I/O 184 GND 197 I/O 159 SDI, I/O 172 I/O 185 I/O 198 I/O 160 I/O 173 I/O 186 CLKB, I/O 199 I/O 161 I/O (WD) 174 I/O 187 I/O 200 I/O 162 I/O (WD) 175 I/O 188 PRB, I/O 201 I/O 163 I/O 176 I/O (WD) 189 I/O 202 VCCI 164 VCCI 177 I/O (WD) 190 I/O (WD) 203 I/O (WD) 165 I/O 178 PRA, I/O 191 I/O (WD) 204 I/O (WD) 166 I/O 179 I/O 192 I/O 205 I/O 167 I/O 180 CLKA, I/O 193 I/O 206 I/O 168 I/O (WD) 181 I/O 194 I/O (WD) 207 DCLK, I/O 169 I/O (WD) 182 VCCI 195 I/O (WD) 208 I/O v5.0 107 40MX and 42MX FPGA Families Pa c ka ge P i n A s si g nm e n t s (continued) 256-Pin CQFP (Top View) 256 255 254 253 252 251 250 249 248 200 199 198 197 196 195 194 193 Pin #1 Index 1 192 2 191 3 190 4 189 5 188 6 187 7 186 8 185 A42MX36 256-Pin CQFP 56 137 57 136 58 135 59 134 60 133 61 132 62 131 63 130 64 129 65 66 67 68 69 70 71 72 73 108 121 122 123 124 125 126 127 128 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 256-Pin CQFP Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 1 NC 44 I/O 87 I/O, (WD) 130 NC 2 GND 45 I/O 88 I/O, (WD) 131 GND 3 I/O 46 I/O 89 I/O 132 I/O 4 I/O 47 I/O 90 I/O 133 I/O 5 I/O 48 GND 91 I/O 134 I/O 6 I/O 49 I/O 92 I/O 135 I/O 7 I/O 50 I/O 93 I/O 136 I/O 8 I/O 51 I/O 94 I/O 137 I/O 9 I/O 52 I/O 95 VCCI 138 I/O 10 GND 53 I/O 96 VCCA 139 GND 11 I/O 54 I/O 97 GND 140 I/O 12 I/O 55 I/O 98 GND 141 I/O 13 I/O 56 I/O 99 I/O 142 I/O 14 I/O 57 I/O 100 I/O 143 I/O 15 I/O 58 I/O 101 I/O 144 I/O 16 I/O 59 I/O 102 I/O 145 I/O 17 I/O 60 VCCA 103 I/O 146 I/O 18 I/O 61 GND 104 I/O 147 I/O 19 I/O 62 GND 105 I/O, (WD) 148 I/O 20 I/O 63 NC 106 I/O, (WD) 149 I/O 21 I/O 64 NC 107 I/O 150 I/O 22 I/O 65 NC 108 I/O 151 I/O 23 I/O 66 I/O 109 I/O, (WD) 152 I/O 24 I/O 67 SDO, TDO, I/O 110 I/O, (WD) 153 I/O 25 I/O 68 I/O 111 I/O 154 I/O 26 VCCA 69 I/O (WD) 112 QCLKA, I/O 155 VCCA 27 I/O 70 I/O (WD) 113 I/O 156 I/O 28 I/O 71 I/O 114 GND 157 I/O 29 VCCA 72 VCCI 115 I/O 158 VCCA 30 VCCI 73 I/O 116 I/O 159 VCCI 31 GND 74 I/O 117 I/O 160 GND 32 VCCA 75 I/O 118 I/O 161 I/O 33 GND 76 I/O (WD) 119 VCCI 162 I/O 34 TCK, I/O 77 GND 120 I/O 163 I/O 35 I/O 78 I/O, (WD) 121 I/O, (WD) 164 I/O 36 GND 79 I/O 122 I/O, (WD) 165 GND 37 I/O 80 QCLKB, I/O 123 I/O 166 I/O 38 I/O 81 I/O 124 I/O 167 I/O 39 I/O 82 I/O 125 I/O 168 I/O 40 I/O 83 I/O 126 I/O 169 I/O 41 I/O 84 I/O 127 GND 170 VCCA 42 I/O 85 I/O 128 NC 171 I/O 43 I/O 86 I/O 129 NC 172 I/O v5.0 109 40MX and 42MX FPGA Families 256-Pin CQFP (Continued) Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 173 I/O 194 I/O 215 I/O (WD) 236 I/O 174 I/O 195 DCLK, I/O 216 I/O (WD) 237 I/O 110 175 I/O 196 I/O 217 I/O 238 I/O 176 I/O 197 I/O 218 PRB, I/O 239 I/O 177 I/O 198 I/O 219 I/O 240 QCLKD, I/O 178 I/O 199 I/O (WD) 220 CLKB, I/O 241 I/O 179 I/O 200 I/O (WD) 221 I/O 242 I/O (WD) 180 GND 201 VCCI 222 GND 243 GND 181 I/O 202 I/O 223 GND 244 I/O (WD) 182 I/O 203 I/O 224 VCCA 245 I/O 183 I/O 204 I/O 225 VCCI 246 I/O 184 I/O 205 I/O 226 I/O 247 I/O 185 I/O 206 GND 227 CLKA, I/O 248 VCCI 186 I/O 207 I/O 228 I/O 249 I/O 187 I/O 208 I/O 229 PRA, I/O 250 I/O (WD) 188 MODE 209 QCLKC, I/O 230 I/O 251 I/O (WD) 189 VCCA 210 I/O 231 I/O 252 I/O 190 GND 211 I/O (WD) 232 I/O (WD) 253 SDI, I/O 191 NC 212 I/O (WD) 233 I/O (WD) 254 I/O 192 NC 213 I/O 234 I/O 255 GND 193 NC 214 I/O 235 I/O 256 NC v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s Pa c ka ge P i n A s si g nm e n t s (continued) 272- P in BGA P ack age (T op Vie w) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A B C D E F G 272-Pin PBGA H J K L M N P R T U V W Y v5.0 111 40MX and 42MX FPGA Families 272-Pin PBGA Ball A42MX36 Function Ball A42MX36 Function Ball A42MX36 Function Ball A42MX36 Function A1 GND C4 I/O E19 I/O K10 GND A2 GND C5 I/O (WD) E20 I/O K11 GND A3 I/O C6 I/O F1 I/O K12 GND A4 I/O (WD) C7 QCLKC, I/O F2 I/O K17 I/O A5 I/O C8 I/O F3 I/O K18 VCCA 112 A6 I/O C9 I/O F4 VCCI K19 VCCA A7 I/O (WD) C10 CLKB F17 I/O K20 GND (LP) A8 I/O (WD) C11 PRA, I/O F18 I/O L1 I/O A9 I/O C12 I/O (WD) F19 I/O L2 I/O A10 I/O C13 I/O F20 I/O L3 VCCA A11 CLKA C14 QCLKD, I/O G1 I/O L4 VCCA A12 I/O C15 I/O G2 I/O L9 GND A13 I/O C16 I/O (WD) G3 I/O L10 GND A14 I/O C17 SDI, I/O G4 VCCI L11 GND A15 I/O C18 I/O G17 VCCI L12 GND A16 I/O (WD) C19 I/O G18 I/O L17 VCCI A17 I/O C20 I/O G19 I/O L18 I/O A18 I/O D1 I/O G20 I/O L19 I/O A19 GND D2 I/O H1 I/O L20 TCK, I/O A20 GND D3 I/O H2 I/O M1 I/O B1 GND D4 I/O H3 I/O M2 I/O B2 GND D5 VCCI H4 VCCA M3 I/O B3 DCLK, I/O D6 I/O H17 I/O M4 VCCI B4 I/O D7 I/O H18 I/O M9 GND B5 I/O D8 VCCA H19 I/O M10 GND B6 I/O D9 I/O (WD) H20 I/O M11 GND B7 I/O (WD) D10 VCCI J1 I/O M12 GND B8 I/O D11 I/O J2 I/O M17 I/O B9 PRB, I/O D12 VCCI J3 I/O M18 I/O B10 I/O D13 I/O J4 VCCI M19 I/O B11 I/O D14 VCCI J9 GND M20 I/O B12 I/O (WD) D15 I/O J10 GND N1 I/O B13 I/O D16 VCCA J11 GND N2 I/O B14 I/O D17 GND J12 GND N3 I/O B15 I/O (WD) D18 I/O J17 VCCA N4 VCCI B16 I/O D19 I/O J18 I/O N17 VCCI B17 I/O (WD) D20 I/O J19 I/O N18 I/O B18 I/O E1 I/O J20 I/O N19 I/O B19 GND E2 I/O K1 I/O N20 I/O B20 GND E3 I/O K2 I/O P1 I/O C1 I/O E4 VCCA K3 I/O P2 I/O C2 MODE E17 VCCI K4 VCCI P3 I/O C3 GND E18 I/O K9 GND P4 VCCA v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s 272-Pin PBGA (Continued) Ball A42MX36 Function Ball A42MX36 Function Ball A42MX36 Function Ball A42MX36 Function P17 I/O U6 I/O (WD) V11 I/O W16 I/O (WD) P18 I/O U7 I/O V12 I/O W17 I/O P19 I/O U8 I/O V13 I/O (WD) W18 I/O (WD) P20 I/O U9 I/O (WD) V14 I/O W19 GND R1 I/O U10 VCCA V15 I/O (WD) W20 GND R2 I/O U11 VCCI V16 I/O Y1 GND R3 I/O U12 I/O V17 I/O Y2 GND R4 VCCI U13 I/O V18 SDO, TDO, I/O Y3 I/O R17 VCCI U14 QCLKB, I/O V19 I/O Y4 TDI, I/O R18 I/O U15 I/O V20 I/O Y5 I/O (WD) R19 I/O U16 VCCI W1 GND Y6 I/O R20 I/O U17 I/O W2 GND Y7 QCLKA, I/O T1 I/O U18 GND W3 I/O Y8 I/O T2 I/O U19 I/O W4 TMS, I/O Y9 I/O T3 I/O U20 I/O W5 I/O Y10 I/O T4 I/O V1 I/O W6 I/O Y11 I/O T17 VCCA V2 I/O W7 I/O Y12 I/O T18 I/O V3 GND W8 I/O (WD) Y13 I/O T19 I/O V4 GND W9 I/O (WD) Y14 I/O T20 I/O V5 I/O W10 I/O Y15 I/O U1 I/O V6 I/O W11 I/O Y16 I/O U2 I/O V7 I/O W12 I/O Y17 I/O U3 I/O V8 I/O (WD) W13 I/O (WD) Y18 I/O (WD) U4 I/O V9 I/O W14 I/O Y19 GND U5 VCCI V10 I/O W15 I/O Y20 GND v5.0 113 40MX and 42MX FPGA Families Li s t o f C ha ng e s The following table lists critical changes that were made in the current version of the document. Previous version Changes in current version (v6.0) Page v4.0 Because the changes in this data sheet are extensive and technical in nature, this should ALL be viewed as a new document. Please read it as you would a data sheet that is published for the first time. Note that the “Package Characteristics and Mechanical Drawings” section has been eliminated from the data sheet. The mechanical drawings are now contained in a separate document, “Package Characteristics and Mechanical Drawings,” available on the Actel web site. D at a S he et Ca t e g o r i e s In order to provide the latest information to designers, some data sheets are published before data has been fully characterized. These data sheets are marked as “Advanced” or Preliminary” data sheets. The definition of these categories are as follows: Adv anc ed The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. P rel im i nar y The data sheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Unm ar ked (pr odu ct ion) The data sheet contains information that is considered to be final. 114 v5.0 4 0 M X a n d 4 2 M X F PG A F a m il ie s v5.0 115 Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners. http://www.actel.com Actel Europe Ltd. Daneshill House, Lutyens Close Basingstoke, Hampshire RG24 8AG United Kingdom Tel: +44 (0)1256 305600 Fax: +44 (0)1256 355420 Actel Corporation 955 East Arques Avenue Sunnyvale, California 94086 USA Tel: (408) 739-1010 Fax: (408) 739-1540 Actel Asia-Pacific EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Tel: +81 03-3445-7671 Fax: +81 03-3445-7668 5172136-6/2.01