ETC AB-152

®
DC MOTOR SPEED CONTROLLER:
Control a DC Motor without Tachometer Feedback
by Bruce Trump
DC motor speed is often regulated with a closed-loop speed
controller using tachometer feedback (Figure 1). It is possible, however, to control dc motor speed without tachometer feedback.
Figure 2 shows an open-loop type speed control circuit that
drives a dc motor at a speed proportional to a control
voltage, VIN. It does this by exploiting a basic characteristic
of dc motors—its speed-dependent reverse EMF voltage.
The motor is modeled as a series winding resistance, RM,
and a reverse EMF generator. The op amp circuitry provides
a negative resistance drive equal to the winding resistance.
This causes the reverse EMF to be proportional to the input
control voltage. Motor speed and direction are determined
by the magnitude and polarity of the control voltage.
Operation can be visualized by first imagining a perfect
frictionless motor with no mechanical load. An input voltage provides a proportional op amp output voltage, VO.
Without a mechanical load, the motor draws no current
because the reverse EMF exactly matches motor drive
voltage.
When a mechanical load is applied, current flows through
the motor and the sense resistor, RS. This creates a voltage,
VS, that is summed with the input control signal at the noninverting op amp input. This positive feedback increases the
drive voltage applied to the motor, maintaining constant
speed. Proper speed control is achieved by setting the gain
at the non-inverting input so that it compensates for the
voltage drop in the series winding resistance and the sense
resistor.
Circuit values are calculated with the following design procedure. Example values correspond to Figure 1.
1. Determine gain. The input control voltage must be capable
of producing the needed output voltage swing to drive the
motor. In the example circuit, a ±2V input must deliver
±20V to the motor with no mechanical load. R1 and R2 are
chosen to provide the required gain of –10. G = –R2/R1.
2. Determine the winding resistance, RM, by measuring with
an ohmmeter. Use the average of several readings taken at
different rotor positions.
3. Choose the value of the sense resistor, RS. Use a convenient
value that is less than RMR1/R2. This assures that a reasonable value of R3 can be used to adjust the speed regulation
behavior. In the example (12Ω)(1kΩ)/10kΩ = 1.2Ω, a
standard value of 1Ω is chosen.
4. Calculate the nominal value of R3:
R3 =
10 kΩ
R2
=
= 5kΩ
R M / R S − R 2 / R1 12Ω / 1Ω − 10 kΩ / 1kΩ
+25V
(1)
R2
10kΩ
R1
1kΩ
VIN
OPA548
R3
5kΩ
RM = 12Ω
(2)
RM
RCL
dc
Motor
(1)
EMF
–25V
Control
Voltage
dc
Motor
1Ω
RS
M
T
Tachometer
NOTES: (1) 4.7µF tantalum recommended. (2) Current limit
set resistor 14.7kΩ = 2.5A.
FIGURE 1. Tachometer-Feedback Speed Controller.
FIGURE 2. Open-Loop Motor Speed Controller.
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant
any BURR-BROWN product for use in life support devices and/or systems.
©
1999 Burr-Brown Corporation
AB-152
Printed in U.S.A. October, 1999
The speed regulation can be fine-tuned. A tendency to slow
down under load means that the gain through the positive
feedback path is insufficient (undercompensated)—decrease
the value of R3 to increase positive feedback. Too much gain
in the positive feedback path causes the motor speed to surge
or increase with load (overcompensated)—increase the value
of R3. If the speed regulation is overcompensated with R3
removed, the value of RS must be reduced.
Motor resistance increases with temperature, so the compensation should be tuned at operating temperature. Although
performance may fall somewhat short of a well-designed
tachometer feedback system, this approach is cost-effective
and often yields adequate regulation. It provides a dramatic
improvement over simple uncompensated voltage drive.
CHOOSING AMPLIFIER A1
The op amp, A1, is chosen for an appropriate voltage and
current rating. A variety of monolithic op amps are capable
of extended voltage and current outputs (see Table I).
Single-supply types have an input common-mode voltage
range that includes the negative power supply voltage.
These devices can be operated from dual (±) supplies or a
single power supply (with unidirectional motor rotation). A
negative input control voltage is required.
PRODUCT
OPA544
OPA547
OPA548
OPA549
±VS MAX (V)
MAX CURRENT (A)
SINGLE SUPPLY
±35
±30
±30
±30
2
0.5
3
9
✔
✔
✔
TABLE I. Power Op Amp Selection.
2