AD ADR360AUJZ

Low Power, Low Noise Voltage References
with Sink/Source Capability
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
FEATURES
APPLICATIONS
Battery-powered instrumentations
Portable medical instrumentations
Data acquisition systems
Industrial process controls
Automotive
NC 1
ADR36x
5
TRIM
4
VOUT
TOP VIEW
GND 2
(Not to Scale)
VIN 3
NC = NO CONNECT
05467-001
Compact TSOT-23-5 packages
Low temperature coefficient
B grade: 9 ppm/°C
A grade: 25 ppm/°C
Initial accuracy
B grade: ±3 mV maximum
A grade: ±6 mV maximum
Ultralow output noise: 6.8 μV p-p (0.1 Hz to 10 Hz)
Low dropout: 300 mV
Low supply current: 190 μA maximum
No external capacitor required
Output current: +5 mA/−1 mA
Wide temperature range: −40°C to +125°C
PIN CONFIGURATION
Figure 1. 5-Lead TSOT (UJ Suffix)
Table 1.
Model
ADR360B
ADR360A
ADR361B
ADR361A
ADR363B
ADR363A
ADR364B
ADR364A
ADR365B
ADR365A
ADR366B
ADR366A
1
VOUT
(V) 1
2.048
2.048
2.5
2.5
3.0
3.0
4.096
4.096
5.0
5.0
3.3
3.3
Temperature
Coefficient (ppm/°C)
9
25
9
25
9
25
9
25
9
25
9
25
Accuracy (mV)
±3
±6
±3
±6
±3
±6
±4
±8
±4
±8
±4
±8
Contact Analog Devices, Inc. for other voltage options.
GENERAL DESCRIPTION
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
are precision 2.048 V, 2.5 V, 3.0 V, 4.096 V, 5.0 V, and 3.3 V band
gap voltage references that feature low power, high precision in
tiny footprints. Using Analog Devices’ patented temperature
drift curvature correction techniques, the ADR36x references
achieve a low temperature drift of 9 ppm/°C in the TSOT
package.
The ADR36x family of micropower, low dropout voltage
references provides a stable output voltage from a minimum
supply of 300 mV above the output. Their advanced design
eliminates the need for external capacitors, which further
reduces board space and system cost. The combination of low
power operation, small size, and ease of use makes the ADR36x
precision voltage references ideally suited for battery-operated
applications.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2006 Analog Devices, Inc. All rights reserved.
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
TABLE OF CONTENTS
Features .............................................................................................. 1
Thermal Resistance .......................................................................9
Applications....................................................................................... 1
ESD Caution...................................................................................9
Pin Configuration............................................................................. 1
Terminology .................................................................................... 10
General Description ......................................................................... 1
Typical Performance Characteristics ........................................... 11
Revision History ............................................................................... 2
Theory of Operation ...................................................................... 16
ADR360—Specifications ................................................................. 3
Device Power Dissipation Considerations.............................. 16
ADR361—Specifications ................................................................. 4
Input Capacitor........................................................................... 16
ADR363—Specifications ................................................................. 5
Output Capacitor........................................................................ 16
ADR364—Specifications ................................................................. 6
Applications..................................................................................... 17
ADR365—Specifications ................................................................. 7
Basic Voltage Reference Connection ....................................... 17
ADR366—Specifications ................................................................. 8
Outline Dimensions ....................................................................... 19
Absolute Maximum Ratings............................................................ 9
Ordering Guide .......................................................................... 19
REVISION HISTORY
3/06—Rev. 0 to Rev. A
Changes to Figure 15 Caption....................................................... 13
Changes to Figure 21 Caption....................................................... 14
Changes to Theory of Operation Section.....................................16
Changes to Figure 36.......................................................................18
4/05—Revision 0: Initial Version
Rev. A | Page 2 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR360—SPECIFICATIONS
Electrical Characteristics (VIN = 2.35 V to 15 V, TA = 25°C, unless otherwise noted.)
Table 2.
Parameter
OUTPUT VOLTAGE
Symbol
VO
INITIAL ACCURACY
VOERR
TEMPERATURE COEFFICIENT
TCVO
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VO
∆VO_HYS
RRR
ISC
1
Conditions
A Grade
B Grade
A Grade
A Grade
B Grade
B Grade
A Grade, −40°C < TA < +125°C
B Grade, −40°C < TA < +125°C
Min
2.042
2.045
Typ
2.048
2.048
Max
2.054
2.051
6
0.29
3
0.15
25
9
300
VIN = 2.45 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3 V
−40°C < TA < +125°C
0.1 Hz to 10 Hz
1,000 hours
fIN = 60 kHz
VIN = 5 V
VIN = 15 V
150
6.8
25
50
100
70
25
30
0.105
0.37
0.82
190
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 3 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR361—SPECIFICATIONS
Electrical Characteristics (VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.)
Table 3.
Parameter
OUTPUT VOLTAGE
Symbol
VO
INITIAL ACCURACY
VOERR
TEMPERATURE COEFFICIENT
TCVO
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VO
∆VO_HYS
RRR
ISC
1
Conditions
A Grade
B Grade
A Grade
A Grade
B Grade
B Grade
A Grade, −40°C < TA < +125°C
B Grade, −40°C < TA < +125°C
Min
2.494
2.497
Typ
2.500
2.500
Max
2.506
2.503
6
0.24
3
0.12
25
9
300
VIN = 2.8 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3.5 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3.5 V
−40°C < TA < +125°C
0.1 Hz to 10 Hz
1,000 hours
fIN = 60 kHz
VIN = 5 V
VIN = 15 V
150
8.25
25
50
100
70
25
30
0.125
0.45
1
190
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 4 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR363—SPECIFICATIONS
Electrical Characteristics (VIN = 3.3 V to 15 V, TA = 25°C, unless otherwise noted.)
Table 4.
Parameter
OUTPUT VOLTAGE
Symbol
VO
INITIAL ACCURACY
VOERR
TEMPERATURE COEFFICIENT
TCVO
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VO
∆VO_HYS
RRR
ISC
1
Conditions
A Grade
B Grade
A Grade
A Grade
B Grade
B Grade
A Grade, −40°C < TA < +125°C
B Grade, −40°C < TA < +125°C
Min
2.994
2.997
Typ
3.000
3.000
Max
3.006
3.003
6
0.2
3
0.1
25
9
300
VIN = 3.3 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4 V
−40°C < TA < +125°C
0.1 Hz to 10 Hz
1,000 hours
fIN = 60 kHz
VIN = 5 V
VIN = 15 V
150
8.7
25
50
100
70
25
30
0.15
0.54
1.2
190
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 5 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR364—SPECIFICATIONS
Electrical Characteristics (VIN = 4.4 V to 15 V, TA = 25°C, unless otherwise noted.)
Table 5.
Parameter
OUTPUT VOLTAGE
Symbol
VO
INITIAL ACCURACY
VOERR
TEMPERATURE COEFFICIENT
TCVO
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VO
∆VO_HYS
RRR
ISC
1
Conditions
A Grade
B Grade
A Grade
A Grade
B Grade
B Grade
A Grade, −40°C < TA < +125°C
B Grade, −40°C < TA < +125°C
Min
4.088
4.092
Typ
4.096
4.096
Max
4.104
4.100
8
0.2
4
0.1
25
9
300
VIN = 4.4 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 5 V
−40°C < TA < +125°C
0.1 Hz to 10 Hz
1,000 hours
fIN = 60 kHz
VIN = 5 V
VIN = 15 V
150
11
25
50
100
70
25
30
0.205
0.735
1.75
190
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 6 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR365—SPECIFICATIONS
Electrical Characteristics (VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.)
Table 6.
Parameter
OUTPUT VOLTAGE
Symbol
VO
INITIAL ACCURACY
VOERR
TEMPERATURE COEFFICIENT
TCVO
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VO
∆VO_HYS
RRR
ISC
1
Conditions
A Grade
B Grade
A Grade
A Grade
B Grade
B Grade
A Grade, −40°C < TA < +125°C
B Grade, −40°C < TA < +125°C
Min
4.992
4.996
Typ
5.000
5.000
Max
5.008
5.004
8
0.16
4
0.08
25
9
300
VIN = 5.3 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V
−40°C < TA < +125°C
0.1 Hz to 10 Hz
1,000 hours
fIN = 60 kHz
VIN = 5 V
VIN = 15 V
150
12.8
20
50
100
70
25
30
0.25
0.9
2
190
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 7 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR366—SPECIFICATIONS
Electrical Characteristics (VIN = 3.6 V to 15 V, TA = 25°C, unless otherwise noted.)
Table 7.
Parameter
OUTPUT VOLTAGE
Symbol
VO
INITIAL ACCURACY
VOERR
TEMPERATURE COEFFICIENT
TCVO
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VO
∆VO_HYS
RRR
ISC
1
Conditions
A Grade
B Grade
A Grade
A Grade
B Grade
B Grade
A Grade, −40°C < TA < +125°C
B Grade, −40°C < TA < +125°C
Min
3.292
3.296
Typ
3.300
3.300
Max
3.308
3.304
8
0.25
4
0.125
25
9
300
VIN = 3.6 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4.2 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4.2 V
−40°C < TA < +125°C
0.1 Hz to 10 Hz
1,000 hours
fIN = 60 kHz
VIN = 5 V
VIN = 15 V
150
9.3
25
50
100
70
25
30
0.165
0.6
1.35
190
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 8 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 8.
Parameter
Supply Voltage
Output Short-Circuit Duration to GND
VIN < 15 V
VIN > 15 V
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
Rating
18 V
Indefinite
10 sec
−65°C to +125°C
−40°C to +125°C
−65°C to +125°C
300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 9. Thermal Resistance
Package Type
TSOT-23-5 (UJ-5)
θJA
230
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the
human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. A | Page 9 of 20
θJC
146
Unit
°C/W
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
TERMINOLOGY
Temperature Coefficient
The change of output voltage with respect to operating
temperature changes normalized by the output voltage at 25°C.
This parameter is expressed in ppm/°C and can be determined
by
TCVO [ppm/°C] =
Long-Term Stability
Typical shift of output voltage at 25°C on a sample of parts
subjected to a test of 1,000 hours at 25°C.
ΔVO = VO (t 0 ) − VO (t1 )
⎛ V (t )–VO (t1 )
⎞
ΔVO [ppm ] = ⎜⎜ O 0
× 106 ⎟⎟
V
t
(
)
O 0
⎝
⎠
VO (T2 ) − VO (T1 )
× 106
VO (25°C ) × (T2 − T1 )
where:
where:
VO (25°C) = VO at 25°C.
VO (T1) = VO at Temperature 1.
VO (T2) = VO at Temperature 2.
VO (t0) = VO at 25°C at Time 0.
VO (t1) = VO at 25°C after 1,000 hours operation at 25°C.
Line Regulation
The change in output voltage due to a specified change in input
voltage. This parameter accounts for the effects of self-heating.
Line regulation is expressed in either percent per volt, partsper-million per volt, or microvolts per volt change in input
voltage.
Load Regulation
The change in output voltage due to a specified change in load
current. This parameter accounts for the effects of self-heating.
Load regulation is expressed in either microvolts per
milliampere, parts-per-million per milliampere, or ohms of dc
output resistance.
Thermal Hysteresis
The change of output voltage after the device is cycled through
temperature from +25°C to –40°C to +125°C and back to
+25°C. This is a typical value from a sample of parts put
through such a cycle.
VO _ HYS = VO (25°C ) − VO _ TC
VO _ HYS [ppm ] =
VO (25°C ) − VO _ TC
VO (25°C )
× 106
where:
VO (25°C) = VO at 25°C.
VO_TC = VO at 25°C after temperature cycle at +25°C to –40°C to
+125°C and back to +25°C.
Rev. A | Page 10 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
TYPICAL PERFORMANCE CHARACTERISTICS
2.052
4.998
4.997
2.050
4.996
VOUT (V)
VOUT (V)
4.995
2.048
4.994
4.993
4.992
2.046
–20
0
20
40
60
80
100
4.990
–40
120
05467-005
05467-002
2.044
–40
4.991
–25
–10
5
20
TEMPERATURE (°C)
Figure 2. ADR360 Output Voltage vs. Temperature
50
65
80
95
110
125
Figure 5. ADR365 Output Voltage vs. Temperature
2.504
0.165
2.502
0.155
2.500
0.145
IDD (mA)
VOUT (V)
35
TEMPERATURE (°C)
2.498
+125°C
+25°C
0.135
–40°C
05467-003
2.494
–40
–25
–10
5
20
35
50
65
80
95
110
0.115
2.8
125
05467-006
0.125
2.496
4.1
5.3
6.6
7.8
9.1
10.3
11.6
12.8
14.1
VIN (V)
TEMPERATURE (°C)
Figure 3. ADR361 Output Voltage vs. Temperature
Figure 6. ADR361 Supply Current vs. Input Voltage
3.003
0.17
3.002
+125°C
3.001
IDD (mA)
2.999
+25°C
–40°C
2.997
2.996
–40
–20
0
20
40
60
80
100
120
TEMPERATURE (°C)
0.14
5.3
05467-007
0.15
2.998
05467-004
VOUT (V)
0.16
3.000
6.3
7.3
8.3
9.3
10.3
11.3
12.3
13.3
VIN (V)
Figure 4. ADR363 Output Voltage vs. Temperature
Figure 7. ADR365 Supply Current vs. Input Voltage
Rev. A | Page 11 of 20
14.3
0.18
9
0.16
8
0.14
7
LINE REGULATION (ppm/V)
0.12
VIN = 9V
0.10
0.08
VIN = 3.5V
0.06
0.04
0
–40
–25
–10
5
20
35
50
65
80
95
110
5
4
3
2
1
05467-036
0.02
6
0
–40
125
05467-009
LOAD REGULATION (mV/mA)
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
–25
–10
5
TEMPERATURE (°C)
Figure 8. ADR361 Load Regulation vs. Temperature
35
50
65
80
95
110
125
Figure 11. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V
0.14
12
0.12
10
0.10
LINE REGULATION (ppm/V)
VIN = 9V
0.08
0.06
VIN = 6V
0.04
8
6
4
2
0
–40
05467-037
0.02
–25
–10
5
20
35
50
65
80
95
110
0
–40
125
05467-010
LOAD REGULATION (mV/mA)
20
TEMPERATURE (°C)
–20
0
TEMPERATURE (°C)
20
40
60
80
100
120
TEMPERATURE (°C)
Figure 9. ADR365 Load Regulation vs. Temperature
Figure 12. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V
1.6
25
1.4
15
10
0
–40
05467-008
5
–20
0
20
40
60
80
100
120
+125°C
1.2
1.0
0.8
0.6
–40°C
+25°C
0.4
0.2
0
–2
05467-011
DIFFERENTIAL VOLTAGE (V)
LINE REGULATION (ppm/V)
20
0
2
4
6
8
LOAD CURRENT (mA)
TEMPERATURE (°C)
Figure 10. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V
Rev. A | Page 12 of 20
Figure 13. ADR361 Minimum Input Voltage vs. Load Current
10
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
1.8
XX
+125°C
1.4
1.2
1.0
XX
DIFFERENTIAL VOLTAGE (V)
1.6
0.8
+25°C
0.6
0.4
0
2
4
TIME = 1s/DIV
05467-012
0
–2
–40°C
6
8
XX
10
05467-015
2μV/DIV
0.2
LOAD CURRENT (mA)
Figure 17. ADR363 0.1 Hz to 10 kHz Noise
Figure 14. ADR365 Minimum Input Voltage vs. Load Current
XX
XX
XX
XX
2μV/DIV
05467-013
XX
TIME = 1s/DIV
XX
05467-016
50μV/DIV
TIME = 1s/DIV
Figure 18. ADR363 10 Hz to 10 kHz Noise
Figure 15. ADR361 0.1 Hz to 10 Hz Noise
XX
XX
XX
XX
XX
TIME = 1s/DIV
XX
Figure 19. ADR365 0.1 Hz to 10 Hz Noise
Figure 16. ADR361 10 Hz to 10 kHz Noise
Rev. A | Page 13 of 20
05467-017
TIME = 1s/DIV
05467-014
2μV/DIV
50μV/DIV
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
XX
XX
500mV/DIV
XX
XX
VIN
VOUT
500mV/DIV
05467-018
TIME = 1s/DIV
XX
Figure 20. ADR365 10 Hz to 10 kHz Noise
4μs/DIV
XX
Figure 23. ADR361 Line Transient Response (Increasing), No Capacitors
50
XX
45
VIN
40
500mV/DIV
35
30
XX
OUTPUT IMPEDANCE (Ω)
05467-019
100μV/DIV
25
20
VOUT
15
500mV/DIV
5
0
100
1k
10μs/DIV
XX
100k
10k
05467-020
05467-031
10
FREQUENCY (Hz)
Figure 24. ADR361 Line Transient Response (Decreasing), No Capacitors
Figure 21. Output Impedance vs. Frequency
XX
10
500mV/DIV
0
VIN
–20
XX
–30
–40
–50
VOUT
–60
20mV/DIV
–80
–90
100
1k
10k
100k
100μs/DIV
XX
1M
FREQUENCY (Hz)
Figure 25. ADR361 Line Transient Response, 0.1 μF Input Capacitor
Figure 22. Ripple Rejection Ratio
Rev. A | Page 14 of 20
05467-021
–70
05467-030
RIPPLE REJECTION (dB)
–10
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
XX
XX
5V/DIV
LOAD ON
LOAD OFF
XX
XX
INPUT
VOUT
100mV/DIV
2ms/DIV
XX
OUTPUT
400ns/DIV
XX
Figure 26. ADR361 Load Transient Response
05467-023
05467-032
2.5V/DIV
Figure 29. ADR361 Turn-Off Response at 5 V
XX
XX
VIN
LOAD ON
5V/DIV
XX
XX
VOUT
100mV/DIV
100μs/DIV
XX
100μs/DIV
XX
Figure 27. ADR361 Load Transient Response,
0.1 μF Input, Output Capacitor
Figure 30. ADR361 Turn-On Response, 0.1 μF Output Capacitor
XX
XX
5V/DIV
05467-034
2V/DIV
05467-033
VOUT
VIN
INPUT
5V/DIV
XX
XX
VOUT
2V/DIV
10μs/DIV
XX
2ms/DIV
XX
Figure 31. ADR361 Turn-Off Response, 0.1 μF Output Capacitor
Figure 28. ADR361 Turn-On Response Time at 5 V
Rev. A | Page 15 of 20
05467-035
OUTPUT
05467-022
2.5V/DIV
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
THEORY OF OPERATION
Band gap references are the high performance solution for low
supply voltage and low power voltage reference applications,
and the ADR36x family is no exception. The uniqueness of
these products lies in their architecture. The ideal zero TC band
gap voltage is referenced to the output not to ground (see
Figure 32). Therefore, if noise exists on the ground line, it is
greatly attenuated on VOUT. The band gap cell consists of the
PNP pair Q53 and Q52 running at unequal current densities.
The difference in VBE results in a voltage with a positive TC,
which is amplified by a ratio of
2×
DEVICE POWER DISSIPATION CONSIDERATIONS
The ADR36x family is capable of delivering load currents to
5 mA with an input voltage ranging from 2.348 V (ADR360
only) to 18 V. When this device is used in applications with
large input voltages, care should be taken to avoid exceeding the
specified maximum power dissipation or junction temperature
because it could result in premature device failure. Use the
following formula to calculate a device’s maximum junction
temperature or dissipation:
PD =
R59
R54
This PTAT voltage, combined with the VBEs of Q53 and Q52,
produces the stable band gap voltage.
Reduction in the band gap curvature is performed by the ratio
of Resistor R44 and Resistor R59, one of which is linearly
temperature dependent. Precision laser trimming and other
patented circuit techniques are used to further enhance the drift
performance.
Q2
Q1
TJ − TA
θ JA
In this equation, TJ and TA are, respectively, the junction and
ambient temperatures, PD is the device power dissipation, and
θJA is the device package thermal resistance.
INPUT CAPACITOR
Input capacitors are not required on the ADR36x. There is no
limit for the value of the capacitor used on the input, but a 1 μF
to 10 μF capacitor on the input improves transient response in
applications where the supply suddenly changes. An additional
0.1 μF capacitor in parallel also helps reduce noise from the supply.
VOUT (FORCE)
OUTPUT CAPACITOR
R54
Q53
R53
R44
R58
Q61
R49
62kΩ
Q60
R50
30kΩ
Q52
R101
R60
VOUT (SENSE)
R100
TRIM
R48
R61
Figure 32. Simplified Schematic
05467-024
R59
The ADR36x does not require output capacitors for stability
under any load condition. An output capacitor, typically 0.1 μF,
filters out any low level noise voltage and does not affect the
operation of the part. On the other hand, the load transient
response can improve with an additional 1 μF to 10 μF output
capacitor in parallel. A capacitor here acts as a source of stored
energy for a sudden increase in load current. The only
parameter that degrades by adding an output capacitor is the
turn-on time. The degradation depends on the size of the
capacitor chosen.
Rev. A | Page 16 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
APPLICATIONS
BASIC VOLTAGE REFERENCE CONNECTION
The circuit in Figure 33 illustrates the basic configuration for
the ADR36x family. Decoupling capacitors are not required for
circuit stability. The ADR36x family is capable of driving
capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic
output capacitor is recommended to absorb and deliver the
charge as is required by a dynamic load.
Two reference ICs are used and fed from an unregulated input,
VIN. The outputs of the individual ICs are connected in series,
which provides two output voltages, VOUT1 and VOUT2. VOUT1 is
the terminal voltage of U1, while VOUT2 is the sum of this voltage
and the terminal voltage of U2. U1 and U2 are chosen for the
two voltages that supply the required outputs (see Table 10). For
example, if both U1 and U2 are ADR361s, VOUT1 is 2.5 V and
VOUT2 is 5.0 V.
Table 10. Output
TRIM 5
NC
U1/U2
ADR361/ADR365
ADR361/ADR361
ADR365/ADR361
ADR36x
GND
3
VIN
VOUT 4
A Negative Precision Reference Without Precision
Resistors
Figure 33. Basic Configuration for the ADR36x Family
Stacking Reference ICs for Arbitrary Outputs
Some applications can require two reference voltage sources,
which are a combined sum of standard outputs. Figure 34 shows
how this stacked output reference can be implemented.
1
2
NC
GND
VIN
3
VIN
A negative reference is easily generated by adding an op amp,
A1 and is configured in Figure 35. VOUTF and VOUTS are at virtual
ground and, therefore, the negative reference can be taken
directly from the output of the op amp. The op amp must be
dual-supply, low offset, and rail-to-rail if the negative supply
voltage is close to the reference output.
TRIM 5
ADR36x
VOUT 4
NC
2
GND
3
VIN
NC
2
GND
3
VIN
TRIM 5
+VDD
VOUT 4
TRIM 5
VOUT 4
–
–VREF
ADR36x
+
VOUT1
05467-026
1
1
ADR36x
VOUT2
C2
0.1μF
C1
0.1μF
VOUT2
7.5
5.0
7.5
OUTPUT
0.1μF
0.1μF
05467-025
INPUT
2
VOUT1
2.5
2.5
5
Figure 34. Stacking Voltage References with the ADR36x
–VDD
Figure 35. Negative Reference
Rev. A | Page 17 of 20
05467-027
1
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
General-Purpose Current Source
Trim Terminal
Many times in low power applications, the need arises for a
precision current source that can operate on low supply
voltages. The ADR36x can be configured as a precision current
source (see Figure 36). The circuit configuration illustrated is a
floating current source with a grounded load. The reference’s
output voltage is bootstrapped across RSET, which sets the output
current into the load. With this configuration, circuit precision
is maintained for load currents ranging from the reference’s
supply current, typically 150 μA, to approximately 5 mA.
The ADR36x trim terminal can be used to adjust the output
voltage over a nominal voltage. This feature allows a system
designer to trim system errors by setting the reference to a
voltage other than the standard voltage option. Resistor R1 is
used for fine adjustment and can be omitted if desired. The
resistor values should be carefully chosen to ensure that the
maximum current drive of the part is not exceeded.
NC
TRIM 5
NC
2
GND
3
VIN
ADR36x
2
GND
3
VIN
+VDD
TRIM 5
1
R1
100kΩ
ADR36x
VOUT 4
+VDD
R1
ISET
VOUT 4
RSET
Figure 37. ADR36x Trim Configuration
P1
RL
ISET + ISY
05467-028
ISY
POT
10kΩ
Figure 36. Precision Current Source
Rev. A | Page 18 of 20
VOUT
05467-029
1
R2
1kΩ
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
OUTLINE DIMENSIONS
2.90 BSC
5
4
2.80 BSC
1.60 BSC
1
2
3
PIN 1
0.95 BSC
1.90
BSC
*0.90
0.87
0.84
*1.00 MAX
0.10 MAX
0.50
0.30
0.20
0.08
8°
4°
0°
SEATING
PLANE
0.60
0.45
0.30
*COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
Figure 38. 5-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-5)
Dimensions shown in millimeters
ORDERING GUIDE
Models 1
ADR360AUJZ-REEL7 2
ADR360BUJZ-REEL72
ADR361AUJZ-REEL72
ADR361BUJZ-REEL72
ADR363AUJZ-REEL72
ADR363BUJZ-REEL72
ADR364AUJZ-REEL72
ADR364BUJZ-REEL72
ADR365AUJZ-REEL72
ADR365BUJZ-REEL72
ADR366AUJZ-REEL72
ADR366BUJZ-REEL72
1
2
Output
Voltage
(VO)
2.048
2.048
2.5
2.5
3.0
3.0
4.096
4.096
5.0
5.0
3.3
3.3
Initial Accuracy
(mV)
(%)
6
0.29
3
0.15
6
0.24
3
0.12
6
0.2
3
0.1
8
0.2
4
0.1
8
0.16
4
0.08
8
0.25
4
0.125
Temperature
Coefficient
(ppm/°C)
25
9
25
9
25
9
25
9
25
9
25
9
Package
Description
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
3,000 pieces per reel.
Z = Pb-free part.
Rev. 0 | Page 19 of 20
Package
Option
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
Temperature
Range
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
Branding
R0C
R0D
R0E
R0F
R0G
R0H
R0J
R0K
R0L
R0M
R08
R09
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
NOTES
©2006 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D05467-3/06(A)
Rev. A | Page 20 of 20