Low Power, Low Noise Voltage References with Sink/Source Capability ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 FEATURES APPLICATIONS Battery-powered instrumentations Portable medical instrumentations Data acquisition systems Industrial process controls Automotive NC 1 ADR36x 5 TRIM 4 VOUT TOP VIEW GND 2 (Not to Scale) VIN 3 NC = NO CONNECT 05467-001 Compact TSOT-23-5 packages Low temperature coefficient B grade: 9 ppm/°C A grade: 25 ppm/°C Initial accuracy B grade: ±3 mV maximum A grade: ±6 mV maximum Ultralow output noise: 6.8 μV p-p (0.1 Hz to 10 Hz) Low dropout: 300 mV Low supply current: 190 μA maximum No external capacitor required Output current: +5 mA/−1 mA Wide temperature range: −40°C to +125°C PIN CONFIGURATION Figure 1. 5-Lead TSOT (UJ Suffix) Table 1. Model ADR360B ADR360A ADR361B ADR361A ADR363B ADR363A ADR364B ADR364A ADR365B ADR365A ADR366B ADR366A 1 VOUT (V) 1 2.048 2.048 2.5 2.5 3.0 3.0 4.096 4.096 5.0 5.0 3.3 3.3 Temperature Coefficient (ppm/°C) 9 25 9 25 9 25 9 25 9 25 9 25 Accuracy (mV) ±3 ±6 ±3 ±6 ±3 ±6 ±4 ±8 ±4 ±8 ±4 ±8 Contact Analog Devices, Inc. for other voltage options. GENERAL DESCRIPTION The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 are precision 2.048 V, 2.5 V, 3.0 V, 4.096 V, 5.0 V, and 3.3 V band gap voltage references that feature low power, high precision in tiny footprints. Using Analog Devices’ patented temperature drift curvature correction techniques, the ADR36x references achieve a low temperature drift of 9 ppm/°C in the TSOT package. The ADR36x family of micropower, low dropout voltage references provides a stable output voltage from a minimum supply of 300 mV above the output. Their advanced design eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR36x precision voltage references ideally suited for battery-operated applications. Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TABLE OF CONTENTS Features .............................................................................................. 1 Thermal Resistance .......................................................................9 Applications....................................................................................... 1 ESD Caution...................................................................................9 Pin Configuration............................................................................. 1 Terminology .................................................................................... 10 General Description ......................................................................... 1 Typical Performance Characteristics ........................................... 11 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 16 ADR360—Specifications ................................................................. 3 Device Power Dissipation Considerations.............................. 16 ADR361—Specifications ................................................................. 4 Input Capacitor........................................................................... 16 ADR363—Specifications ................................................................. 5 Output Capacitor........................................................................ 16 ADR364—Specifications ................................................................. 6 Applications..................................................................................... 17 ADR365—Specifications ................................................................. 7 Basic Voltage Reference Connection ....................................... 17 ADR366—Specifications ................................................................. 8 Outline Dimensions ....................................................................... 19 Absolute Maximum Ratings............................................................ 9 Ordering Guide .......................................................................... 19 REVISION HISTORY 3/06—Rev. 0 to Rev. A Changes to Figure 15 Caption....................................................... 13 Changes to Figure 21 Caption....................................................... 14 Changes to Theory of Operation Section.....................................16 Changes to Figure 36.......................................................................18 4/05—Revision 0: Initial Version Rev. A | Page 2 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR360—SPECIFICATIONS Electrical Characteristics (VIN = 2.35 V to 15 V, TA = 25°C, unless otherwise noted.) Table 2. Parameter OUTPUT VOLTAGE Symbol VO INITIAL ACCURACY VOERR TEMPERATURE COEFFICIENT TCVO SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 1 Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C Min 2.042 2.045 Typ 2.048 2.048 Max 2.054 2.051 6 0.29 3 0.15 25 9 300 VIN = 2.45 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V 150 6.8 25 50 100 70 25 30 0.105 0.37 0.82 190 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 3 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR361—SPECIFICATIONS Electrical Characteristics (VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.) Table 3. Parameter OUTPUT VOLTAGE Symbol VO INITIAL ACCURACY VOERR TEMPERATURE COEFFICIENT TCVO SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 1 Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C Min 2.494 2.497 Typ 2.500 2.500 Max 2.506 2.503 6 0.24 3 0.12 25 9 300 VIN = 2.8 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3.5 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3.5 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V 150 8.25 25 50 100 70 25 30 0.125 0.45 1 190 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 4 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR363—SPECIFICATIONS Electrical Characteristics (VIN = 3.3 V to 15 V, TA = 25°C, unless otherwise noted.) Table 4. Parameter OUTPUT VOLTAGE Symbol VO INITIAL ACCURACY VOERR TEMPERATURE COEFFICIENT TCVO SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 1 Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C Min 2.994 2.997 Typ 3.000 3.000 Max 3.006 3.003 6 0.2 3 0.1 25 9 300 VIN = 3.3 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V 150 8.7 25 50 100 70 25 30 0.15 0.54 1.2 190 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 5 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR364—SPECIFICATIONS Electrical Characteristics (VIN = 4.4 V to 15 V, TA = 25°C, unless otherwise noted.) Table 5. Parameter OUTPUT VOLTAGE Symbol VO INITIAL ACCURACY VOERR TEMPERATURE COEFFICIENT TCVO SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 1 Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C Min 4.088 4.092 Typ 4.096 4.096 Max 4.104 4.100 8 0.2 4 0.1 25 9 300 VIN = 4.4 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 5 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V 150 11 25 50 100 70 25 30 0.205 0.735 1.75 190 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 6 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR365—SPECIFICATIONS Electrical Characteristics (VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.) Table 6. Parameter OUTPUT VOLTAGE Symbol VO INITIAL ACCURACY VOERR TEMPERATURE COEFFICIENT TCVO SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 1 Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C Min 4.992 4.996 Typ 5.000 5.000 Max 5.008 5.004 8 0.16 4 0.08 25 9 300 VIN = 5.3 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V 150 12.8 20 50 100 70 25 30 0.25 0.9 2 190 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 7 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR366—SPECIFICATIONS Electrical Characteristics (VIN = 3.6 V to 15 V, TA = 25°C, unless otherwise noted.) Table 7. Parameter OUTPUT VOLTAGE Symbol VO INITIAL ACCURACY VOERR TEMPERATURE COEFFICIENT TCVO SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 1 Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C Min 3.292 3.296 Typ 3.300 3.300 Max 3.308 3.304 8 0.25 4 0.125 25 9 300 VIN = 3.6 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4.2 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4.2 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V 150 9.3 25 50 100 70 25 30 0.165 0.6 1.35 190 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 8 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 8. Parameter Supply Voltage Output Short-Circuit Duration to GND VIN < 15 V VIN > 15 V Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating 18 V Indefinite 10 sec −65°C to +125°C −40°C to +125°C −65°C to +125°C 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 9. Thermal Resistance Package Type TSOT-23-5 (UJ-5) θJA 230 ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. A | Page 9 of 20 θJC 146 Unit °C/W ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TERMINOLOGY Temperature Coefficient The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by TCVO [ppm/°C] = Long-Term Stability Typical shift of output voltage at 25°C on a sample of parts subjected to a test of 1,000 hours at 25°C. ΔVO = VO (t 0 ) − VO (t1 ) ⎛ V (t )–VO (t1 ) ⎞ ΔVO [ppm ] = ⎜⎜ O 0 × 106 ⎟⎟ V t ( ) O 0 ⎝ ⎠ VO (T2 ) − VO (T1 ) × 106 VO (25°C ) × (T2 − T1 ) where: where: VO (25°C) = VO at 25°C. VO (T1) = VO at Temperature 1. VO (T2) = VO at Temperature 2. VO (t0) = VO at 25°C at Time 0. VO (t1) = VO at 25°C after 1,000 hours operation at 25°C. Line Regulation The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, partsper-million per volt, or microvolts per volt change in input voltage. Load Regulation The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts-per-million per milliampere, or ohms of dc output resistance. Thermal Hysteresis The change of output voltage after the device is cycled through temperature from +25°C to –40°C to +125°C and back to +25°C. This is a typical value from a sample of parts put through such a cycle. VO _ HYS = VO (25°C ) − VO _ TC VO _ HYS [ppm ] = VO (25°C ) − VO _ TC VO (25°C ) × 106 where: VO (25°C) = VO at 25°C. VO_TC = VO at 25°C after temperature cycle at +25°C to –40°C to +125°C and back to +25°C. Rev. A | Page 10 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TYPICAL PERFORMANCE CHARACTERISTICS 2.052 4.998 4.997 2.050 4.996 VOUT (V) VOUT (V) 4.995 2.048 4.994 4.993 4.992 2.046 –20 0 20 40 60 80 100 4.990 –40 120 05467-005 05467-002 2.044 –40 4.991 –25 –10 5 20 TEMPERATURE (°C) Figure 2. ADR360 Output Voltage vs. Temperature 50 65 80 95 110 125 Figure 5. ADR365 Output Voltage vs. Temperature 2.504 0.165 2.502 0.155 2.500 0.145 IDD (mA) VOUT (V) 35 TEMPERATURE (°C) 2.498 +125°C +25°C 0.135 –40°C 05467-003 2.494 –40 –25 –10 5 20 35 50 65 80 95 110 0.115 2.8 125 05467-006 0.125 2.496 4.1 5.3 6.6 7.8 9.1 10.3 11.6 12.8 14.1 VIN (V) TEMPERATURE (°C) Figure 3. ADR361 Output Voltage vs. Temperature Figure 6. ADR361 Supply Current vs. Input Voltage 3.003 0.17 3.002 +125°C 3.001 IDD (mA) 2.999 +25°C –40°C 2.997 2.996 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 0.14 5.3 05467-007 0.15 2.998 05467-004 VOUT (V) 0.16 3.000 6.3 7.3 8.3 9.3 10.3 11.3 12.3 13.3 VIN (V) Figure 4. ADR363 Output Voltage vs. Temperature Figure 7. ADR365 Supply Current vs. Input Voltage Rev. A | Page 11 of 20 14.3 0.18 9 0.16 8 0.14 7 LINE REGULATION (ppm/V) 0.12 VIN = 9V 0.10 0.08 VIN = 3.5V 0.06 0.04 0 –40 –25 –10 5 20 35 50 65 80 95 110 5 4 3 2 1 05467-036 0.02 6 0 –40 125 05467-009 LOAD REGULATION (mV/mA) ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 –25 –10 5 TEMPERATURE (°C) Figure 8. ADR361 Load Regulation vs. Temperature 35 50 65 80 95 110 125 Figure 11. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V 0.14 12 0.12 10 0.10 LINE REGULATION (ppm/V) VIN = 9V 0.08 0.06 VIN = 6V 0.04 8 6 4 2 0 –40 05467-037 0.02 –25 –10 5 20 35 50 65 80 95 110 0 –40 125 05467-010 LOAD REGULATION (mV/mA) 20 TEMPERATURE (°C) –20 0 TEMPERATURE (°C) 20 40 60 80 100 120 TEMPERATURE (°C) Figure 9. ADR365 Load Regulation vs. Temperature Figure 12. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V 1.6 25 1.4 15 10 0 –40 05467-008 5 –20 0 20 40 60 80 100 120 +125°C 1.2 1.0 0.8 0.6 –40°C +25°C 0.4 0.2 0 –2 05467-011 DIFFERENTIAL VOLTAGE (V) LINE REGULATION (ppm/V) 20 0 2 4 6 8 LOAD CURRENT (mA) TEMPERATURE (°C) Figure 10. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V Rev. A | Page 12 of 20 Figure 13. ADR361 Minimum Input Voltage vs. Load Current 10 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 1.8 XX +125°C 1.4 1.2 1.0 XX DIFFERENTIAL VOLTAGE (V) 1.6 0.8 +25°C 0.6 0.4 0 2 4 TIME = 1s/DIV 05467-012 0 –2 –40°C 6 8 XX 10 05467-015 2μV/DIV 0.2 LOAD CURRENT (mA) Figure 17. ADR363 0.1 Hz to 10 kHz Noise Figure 14. ADR365 Minimum Input Voltage vs. Load Current XX XX XX XX 2μV/DIV 05467-013 XX TIME = 1s/DIV XX 05467-016 50μV/DIV TIME = 1s/DIV Figure 18. ADR363 10 Hz to 10 kHz Noise Figure 15. ADR361 0.1 Hz to 10 Hz Noise XX XX XX XX XX TIME = 1s/DIV XX Figure 19. ADR365 0.1 Hz to 10 Hz Noise Figure 16. ADR361 10 Hz to 10 kHz Noise Rev. A | Page 13 of 20 05467-017 TIME = 1s/DIV 05467-014 2μV/DIV 50μV/DIV ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 XX XX 500mV/DIV XX XX VIN VOUT 500mV/DIV 05467-018 TIME = 1s/DIV XX Figure 20. ADR365 10 Hz to 10 kHz Noise 4μs/DIV XX Figure 23. ADR361 Line Transient Response (Increasing), No Capacitors 50 XX 45 VIN 40 500mV/DIV 35 30 XX OUTPUT IMPEDANCE (Ω) 05467-019 100μV/DIV 25 20 VOUT 15 500mV/DIV 5 0 100 1k 10μs/DIV XX 100k 10k 05467-020 05467-031 10 FREQUENCY (Hz) Figure 24. ADR361 Line Transient Response (Decreasing), No Capacitors Figure 21. Output Impedance vs. Frequency XX 10 500mV/DIV 0 VIN –20 XX –30 –40 –50 VOUT –60 20mV/DIV –80 –90 100 1k 10k 100k 100μs/DIV XX 1M FREQUENCY (Hz) Figure 25. ADR361 Line Transient Response, 0.1 μF Input Capacitor Figure 22. Ripple Rejection Ratio Rev. A | Page 14 of 20 05467-021 –70 05467-030 RIPPLE REJECTION (dB) –10 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 XX XX 5V/DIV LOAD ON LOAD OFF XX XX INPUT VOUT 100mV/DIV 2ms/DIV XX OUTPUT 400ns/DIV XX Figure 26. ADR361 Load Transient Response 05467-023 05467-032 2.5V/DIV Figure 29. ADR361 Turn-Off Response at 5 V XX XX VIN LOAD ON 5V/DIV XX XX VOUT 100mV/DIV 100μs/DIV XX 100μs/DIV XX Figure 27. ADR361 Load Transient Response, 0.1 μF Input, Output Capacitor Figure 30. ADR361 Turn-On Response, 0.1 μF Output Capacitor XX XX 5V/DIV 05467-034 2V/DIV 05467-033 VOUT VIN INPUT 5V/DIV XX XX VOUT 2V/DIV 10μs/DIV XX 2ms/DIV XX Figure 31. ADR361 Turn-Off Response, 0.1 μF Output Capacitor Figure 28. ADR361 Turn-On Response Time at 5 V Rev. A | Page 15 of 20 05467-035 OUTPUT 05467-022 2.5V/DIV ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 THEORY OF OPERATION Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR36x family is no exception. The uniqueness of these products lies in their architecture. The ideal zero TC band gap voltage is referenced to the output not to ground (see Figure 32). Therefore, if noise exists on the ground line, it is greatly attenuated on VOUT. The band gap cell consists of the PNP pair Q53 and Q52 running at unequal current densities. The difference in VBE results in a voltage with a positive TC, which is amplified by a ratio of 2× DEVICE POWER DISSIPATION CONSIDERATIONS The ADR36x family is capable of delivering load currents to 5 mA with an input voltage ranging from 2.348 V (ADR360 only) to 18 V. When this device is used in applications with large input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature because it could result in premature device failure. Use the following formula to calculate a device’s maximum junction temperature or dissipation: PD = R59 R54 This PTAT voltage, combined with the VBEs of Q53 and Q52, produces the stable band gap voltage. Reduction in the band gap curvature is performed by the ratio of Resistor R44 and Resistor R59, one of which is linearly temperature dependent. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance. Q2 Q1 TJ − TA θ JA In this equation, TJ and TA are, respectively, the junction and ambient temperatures, PD is the device power dissipation, and θJA is the device package thermal resistance. INPUT CAPACITOR Input capacitors are not required on the ADR36x. There is no limit for the value of the capacitor used on the input, but a 1 μF to 10 μF capacitor on the input improves transient response in applications where the supply suddenly changes. An additional 0.1 μF capacitor in parallel also helps reduce noise from the supply. VOUT (FORCE) OUTPUT CAPACITOR R54 Q53 R53 R44 R58 Q61 R49 62kΩ Q60 R50 30kΩ Q52 R101 R60 VOUT (SENSE) R100 TRIM R48 R61 Figure 32. Simplified Schematic 05467-024 R59 The ADR36x does not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 μF, filters out any low level noise voltage and does not affect the operation of the part. On the other hand, the load transient response can improve with an additional 1 μF to 10 μF output capacitor in parallel. A capacitor here acts as a source of stored energy for a sudden increase in load current. The only parameter that degrades by adding an output capacitor is the turn-on time. The degradation depends on the size of the capacitor chosen. Rev. A | Page 16 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 APPLICATIONS BASIC VOLTAGE REFERENCE CONNECTION The circuit in Figure 33 illustrates the basic configuration for the ADR36x family. Decoupling capacitors are not required for circuit stability. The ADR36x family is capable of driving capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic output capacitor is recommended to absorb and deliver the charge as is required by a dynamic load. Two reference ICs are used and fed from an unregulated input, VIN. The outputs of the individual ICs are connected in series, which provides two output voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, while VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see Table 10). For example, if both U1 and U2 are ADR361s, VOUT1 is 2.5 V and VOUT2 is 5.0 V. Table 10. Output TRIM 5 NC U1/U2 ADR361/ADR365 ADR361/ADR361 ADR365/ADR361 ADR36x GND 3 VIN VOUT 4 A Negative Precision Reference Without Precision Resistors Figure 33. Basic Configuration for the ADR36x Family Stacking Reference ICs for Arbitrary Outputs Some applications can require two reference voltage sources, which are a combined sum of standard outputs. Figure 34 shows how this stacked output reference can be implemented. 1 2 NC GND VIN 3 VIN A negative reference is easily generated by adding an op amp, A1 and is configured in Figure 35. VOUTF and VOUTS are at virtual ground and, therefore, the negative reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output. TRIM 5 ADR36x VOUT 4 NC 2 GND 3 VIN NC 2 GND 3 VIN TRIM 5 +VDD VOUT 4 TRIM 5 VOUT 4 – –VREF ADR36x + VOUT1 05467-026 1 1 ADR36x VOUT2 C2 0.1μF C1 0.1μF VOUT2 7.5 5.0 7.5 OUTPUT 0.1μF 0.1μF 05467-025 INPUT 2 VOUT1 2.5 2.5 5 Figure 34. Stacking Voltage References with the ADR36x –VDD Figure 35. Negative Reference Rev. A | Page 17 of 20 05467-027 1 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 General-Purpose Current Source Trim Terminal Many times in low power applications, the need arises for a precision current source that can operate on low supply voltages. The ADR36x can be configured as a precision current source (see Figure 36). The circuit configuration illustrated is a floating current source with a grounded load. The reference’s output voltage is bootstrapped across RSET, which sets the output current into the load. With this configuration, circuit precision is maintained for load currents ranging from the reference’s supply current, typically 150 μA, to approximately 5 mA. The ADR36x trim terminal can be used to adjust the output voltage over a nominal voltage. This feature allows a system designer to trim system errors by setting the reference to a voltage other than the standard voltage option. Resistor R1 is used for fine adjustment and can be omitted if desired. The resistor values should be carefully chosen to ensure that the maximum current drive of the part is not exceeded. NC TRIM 5 NC 2 GND 3 VIN ADR36x 2 GND 3 VIN +VDD TRIM 5 1 R1 100kΩ ADR36x VOUT 4 +VDD R1 ISET VOUT 4 RSET Figure 37. ADR36x Trim Configuration P1 RL ISET + ISY 05467-028 ISY POT 10kΩ Figure 36. Precision Current Source Rev. A | Page 18 of 20 VOUT 05467-029 1 R2 1kΩ ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 OUTLINE DIMENSIONS 2.90 BSC 5 4 2.80 BSC 1.60 BSC 1 2 3 PIN 1 0.95 BSC 1.90 BSC *0.90 0.87 0.84 *1.00 MAX 0.10 MAX 0.50 0.30 0.20 0.08 8° 4° 0° SEATING PLANE 0.60 0.45 0.30 *COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 38. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters ORDERING GUIDE Models 1 ADR360AUJZ-REEL7 2 ADR360BUJZ-REEL72 ADR361AUJZ-REEL72 ADR361BUJZ-REEL72 ADR363AUJZ-REEL72 ADR363BUJZ-REEL72 ADR364AUJZ-REEL72 ADR364BUJZ-REEL72 ADR365AUJZ-REEL72 ADR365BUJZ-REEL72 ADR366AUJZ-REEL72 ADR366BUJZ-REEL72 1 2 Output Voltage (VO) 2.048 2.048 2.5 2.5 3.0 3.0 4.096 4.096 5.0 5.0 3.3 3.3 Initial Accuracy (mV) (%) 6 0.29 3 0.15 6 0.24 3 0.12 6 0.2 3 0.1 8 0.2 4 0.1 8 0.16 4 0.08 8 0.25 4 0.125 Temperature Coefficient (ppm/°C) 25 9 25 9 25 9 25 9 25 9 25 9 Package Description 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 3,000 pieces per reel. Z = Pb-free part. Rev. 0 | Page 19 of 20 Package Option UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Branding R0C R0D R0E R0F R0G R0H R0J R0K R0L R0M R08 R09 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 NOTES ©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05467-3/06(A) Rev. A | Page 20 of 20