AZ100LVEL16VT ARIZONA MICROTEK, INC. ECL/PECL Oscillator Gain Stage & Buffer with Selectable Enable FEATURES • • • • • • • High Bandwidth for ≥1GHz Similar Operation as AZ100LVEL16VR except in Disabled Condition: QHG is High Operating Range of 3.0V to 5.5V Minimizes External Components Selectable Enable Polarity and Threshold (CMOS/TTL or PECL) Available in a 3x3 mm or 2x2 mm MLP Package S-Parameter (.s2p) and IBIS Model Files Available on Arizona Microtek Website PACKAGE AVAILABILITY PACKAGE MARKING NOTES MLP 8 (2x2x0.75) AZ100LVEL16VTNA P9 <Date Code> MLP 8 (2x2x0.75) RoHS Compliant / Lead (Pb) Free AZ100LVEL16VTNA+ P9+ <Date Code> 1,2 MLP 8 (2x2x0.75) AZ100LVEL16VTNB P8 <Date Code> 1,2,4 MLP 8 (2x2x0.75) RoHS Compliant / Lead (Pb) Free AZ100LVEL16VTNB+ P8+ <Date Code> 1,2 MLP 8 (2x2x0.75) AZ100LVEL16VTNC P2 <Date Code> 1,2,5 MLP 8 (2x2x0.75) RoHS Compliant / Lead (Pb) Free AZ100LVEL16VTNC+ P2+ <Date Code> 1,2 MLP 8 (2x2x0.75) AZ100LVEL16VTND P3 <Date Code> 1,2 MLP 8 (2x2x0.75) RoHS Compliant / Lead (Pb) Free AZ100LVEL16VTND+ P3+ <Date Code> 1,2 MLP 16 (3x3) AZ100LVEL16VTL MLP 16 (3x3) RoHS Compliant / Lead (Pb) Free DIE 1 DESCRIPTION PART NUMBER 2 3 4 5 6 AZ100LVEL16VTL+ AZ100LVEL16VTXP AZM 16T <Date Code> AZM+ 16T <Date Code> N/A 1,2,3 1,2 1,2 6 Add R1 at end of part number for 7 inch (1K parts), R2 for 13 inch (2.5K parts) Tape & Reel. Date code format: “Y” or “YY” for year followed by “WW” for week. Parts marked TNA for date codes prior to 4WW (prior to 2004). Parts marked TNB for date codes prior to 4WW (prior to 2004). Parts marked TNC for date codes prior to 4WW (prior to 2004). Waffle Pack The AZ100LVEL16VT is a specialized oscillator gain stage with high gain output buffer including an enable. The QHG/Q ¯ HG outputs have a voltage gain several times greater than the Q/Q ¯ outputs. MLP 16, 3x3 mm Package (VTL) or DIE (VTX) The AZ100LVEL16VTL and AZ100LVEL16VTX provide a selectable enable input (EN) that allows continuous oscillator operation. See truth table for the Enable function. If Enable pull-up is desired in the CMOS/TTL mode, an external ≤20 kΩ resistor connecting EN to VCC will override the on-chip pull-down resistor. When disabled, the QHG output is forced high and the Q ¯ HG output is forced low. The AZ100LVEL16VTL/VTX also provides a VBB and 470 Ω internal bias resistors from D to VBB and D ¯ to VBB. The VBB pin can support 1.5 mA sink/source current. Bypassing VBB to ground with a 0.01 μF capacitor is recommended. The outputs Q and Q ¯ each have a selectable on-chip pull-down current source. See truth table below for current source functions. External resistors may also be used to increase pull-down current to a maximum total of 25 mA. 1630 S. STAPLEY DR., SUITE 127 • MESA, ARIZONA 85204 • USA • (480) 962-5881 • FAX (480) 890-2541 www.azmicrotek.com AZ100LVEL16VT ¯ HG each have an optional on-chip pull-down current source of 10 mA. When pad/pin VEEP is Outputs QHG and Q left open (NC), the output current sources are disabled and the QHG /Q ¯ HG operate as standard PECL/ECL. When VEEP is connected to VEE, the current sources are activated. The QHG /Q ¯ HG pull-down current can be decreased, by using a resistor to connect VEEP to VEE. (See graph on page 5.) MLP 8, 2x2 mm Package, VTNA, VTNB, VTNC & VTND Versions All MLP 8, 2x2mm versions of the AZ100LVEL16VT provide an enable input that allows continuous oscillator operation. VTNA and VTNB utilize an enable (EN ¯¯ ) that operates in the PECL/ECL mode. When the EN ¯¯ input is LOW, the Q ¯ and QHG/Q ¯ HG outputs follow the data inputs. When EN ¯¯ is HIGH, the QHG output is forced high and the Q ¯ HG output is forced low. VTNC and VTND utilize an enable (EN) that operates in the CMOS/TTL mode. When the EN input is HIGH, the Q ¯ and QHG/Q ¯ HG outputs follow the data inputs. When EN is LOW, the QHG output is forced high and the Q ¯ HG output is forced low. For VTNA and VTND, both D and D ¯ inputs are brought out and tied to the VBB pin through 470 Ω internal bias resistors. In VTNB and VTNC, the D ¯ input is internally tied directly to the VBB pin and the D input is tied to the VBB pin through a 470 Ω internal bias resistor. Bypassing VBB to ground with a 0.01 μF capacitor is recommended. All MLP 8, 2x2mm versions (VTNA, VTNB, VTNC & VTND) have the Q, QHG, and Q ¯ HG current sources disabled, while the Q ¯ output operates with a 4 mA current source to VEE. NOTE: Specifications in the ECL/PECL tables are valid when thermal equilibrium is established. ENABLE TRUTH TABLE MLP 16 (VTL) or DIE (VTX) 4mA EA. Q EN-SEL EN Q/Q ¯ QHG NC PECL Low, VEE or NC Data Data NC PECL High or VCC Data High VEE* Data High CMOS Low or VEE VEE* CMOS High or VCC Data Data Data High VEE* NC, no external pull-up Data Data VEE* NC, with ≤20kΩ to VCC *Connections to VCC or VEE must be less than 1Ω. Q ¯ HG Data Low Low Data Low Data D/D ¯ Q/Q ¯ QHG/Q ¯ HG VBB EN-SEL EN/EN ¯¯ CS-SEL VEEP VEE VCC QHG D 470 Ω VBB 470 Ω QHG 10mA EA. EN VEEP VEE EN-SEL MLP 16 (VTL) or DIE (VTX) FUNCTION Data Inputs Data Outputs Data Outputs w/High Gain Reference Voltage Output Selects Enable Logic Enable Input Selects Q and Q ¯ Current Source Magnitude Optional QHG and Q ¯ HG Current Sources Negative Supply Positive Supply April 2007 * REV - 9 CS-SEL D CMOS / TTL THRESHOLD PIN DESCRIPTION PIN Q www.azmicrotek.com 2 CURRENT SOURCE TRUTH TABLE MLP 16 (VTL) or DIE (VTX) CS-SEL Q Q ¯ NC 4mA typ. 4mA typ. VEE* 8mA typ. 8mA typ. VCC* 0 4mA typ. *Connections to VCC or VEE must be less than 1Ω. AZ100LVEL16VT Absolute Maximum Ratings are those values beyond which device life may be impaired. Symbol VCC VI VEE VI IOUT TA TSTG Characteristic PECL Power Supply (VEE = 0V) PECL Input Voltage (VEE = 0V) ECL Power Supply (VCC = 0V) ECL Input Voltage (VCC = 0V) ¯ HG --- Continuous Output Current QHG/Q --- Surge Q/Q ¯ --- Continuous Output Current --- Surge Operating Temperature Range Storage Temperature Range Rating 0 to +8.0 0 to +6.0 -8.0 to 0 -6.0 to 0 50 100 25 50 -40 to +85 -65 to +150 Unit Vdc Vdc Vdc Vdc mA °C °C 100K ECL DC Characteristics (VEE = -3.0V to -5.5V, VCC = GND) Symbol VOH VOH VOL VIH VIL VBB IIL IIH IEE 1. 2. 3. 4. -40°C Characteristic 2 Min -1045 -1085 -1925 0°C Max -835 -880 -1555 Min -995 -1025 -1900 25°C Max -835 -880 -1620 Min -995 -1025 -1900 85°C Max -835 -880 -1620 Output HIGH Voltage Output HIGH Voltage4 Output LOW Voltage2,4 Input HIGH Voltage -880 -880 -1165 -880 D/D ¯ , EN/EN ¯¯ (PECL) -1165 -1165 VCC VCC VEE+2000 VCC EN (CMOS/TTL) VEE+2000 VEE+2000 Input LOW Voltage -1475 -1810 -1475 -1810 -1475 D/D ¯ , EN/EN ¯¯ (PECL) -1810 VEE + 800 VEE VEE + 800 VEE VEE + 800 EN (CMOS/TTL) VEE Reference Voltage -1390 -1250 -1390 -1250 -1390 -1250 Input LOW Current EN3 0.5 0.5 0.5 Input HIGH Current EN3 150 150 150 Power Supply Current1 48 48 48 Specified with VEEP and CS-SEL open for VTL and VTX. Subtract 4mA for VTNA, VTNB, VTNC & VTND. Specified with VEEP and CS-SEL connected to VEE for VTL and VTX only. Specified with EN-SEL open for VTL and VTX only. ¯ HG connected with 50 Ω to VCC –2V for VTNA, VTNB, VTNC & VTND. Specified with QHG/Q Unit Min -995 -1025 -1900 Max -835 -880 -1620 -1165 VEE+2000 -880 VCC mV -1810 VEE -1390 0.5 -1475 VEE + 800 -1250 mV 150 54 mV mV mV mV μA μA mA 100K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V) Symbol VOH VOH VOL VIH VIL VBB IIL IIH IEE 1. 2. 3. 4. 5. -40°C Characteristic 1,3 Min 2255 2215 1375 0°C Max 2465 2420 1745 Min 2305 2275 1400 25°C Max 2465 2420 1655 Min 2305 2275 1480 85°C Max 2465 2420 1680 Output HIGH Voltage Output HIGH Voltage1,5 Output LOW Voltage1,3,5 Input HIGH Voltage 2135 2420 2135 2420 2135 2420 D/D ¯ , EN/EN ¯¯ (PECL)1 EN (CMOS/TTL) 2000 VCC 2000 VCC 2000 VCC Input LOW Voltage 1490 1825 1490 1825 1490 1825 D/D ¯ , EN/EN ¯¯ (PECL)1 EN (CMOS/TTL) GND 800 GND 800 GND 800 Reference Voltage1 1910 2050 1910 2050 1910 2050 Input LOW Current EN4 0.5 0.5 0.5 Input HIGH Current EN4 150 150 150 Power Supply Current2 48 48 48 For supply voltages other that 3.3V, use the ECL table values and ADD supply voltage value. Specified with VEEP and CS-SEL open for VTL and VTX. Subtract 4mA for VTNA, VTNB, VTNC & VTND. Specified with VEEP and CS-SEL connected to VEE for VTL and VTX only. Specified with EN-SEL open for VTL and VTX only. ¯ HG connected with 50 Ω to VCC –2V for VTNA, VTNB, VTNC & VTND. Specified with QHG/Q April 2007 * REV - 9 www.azmicrotek.com 3 Unit Min 2305 2275 1400 Max 2465 2420 1680 2135 2000 2420 VCC mV 1490 GND 1910 0.5 1825 800 2050 mV 150 54 mV mV mV mV μA μA mA AZ100LVEL16VT 100K PECL DC Characteristics (VEE = GND, VCC = +5.0V) Symbol VOH VOH VOL VIH VIL VBB IIL IIH IEE 1. 2. 3. 4. 5. -40°C Characteristic Min 3955 3915 3075 1,3 0°C Max 4165 4120 3445 Min 4005 3975 3100 25°C Max 4165 4120 3338 Min 4005 3975 3100 85°C Max 4165 4120 3338 Output HIGH Voltage Output HIGH Voltage1,5 Output LOW Voltage1,3,5 Input HIGH Voltage 3835 4120 3835 4120 3835 4120 D/D ¯ , EN/EN ¯¯ (PECL)1 EN (CMOS/TTL) 2000 VCC 2000 VCC 2000 VCC Input LOW Voltage 3190 3525 3190 3525 3190 3525 D/D ¯ , EN/EN ¯¯ (PECL)1 EN (CMOS/TTL) GND 800 GND 800 GND 800 1 Reference Voltage 3610 3750 3610 3750 3610 3750 Input LOW Current EN4 0.5 0.5 0.5 Input HIGH Current EN4 150 150 150 Power Supply Current2 48 48 48 For supply voltages other that 5.0V, use the ECL table values and ADD supply voltage value. Specified with VEEP and CS-SEL open for VTL and VTX. Subtract 4mA for VTNA, VTNB, VTNC & VTND. Specified with VEEP and CS-SEL connected to VEE for VTL and VTX only. Specified with EN-SEL open for VTL and VTX only. ¯ HG connected with 50 Ω to VCC –2V for VTNA, VTNB, VTNC & VTND. Specified with QHG/Q Unit Min 4005 3975 3100 Max 4165 4120 3338 3835 2000 4120 VCC mV 3190 GND 3610 0.5 3525 800 3750 mV 150 54 mV mV mV mV μA μA mA AC Characteristics (VEE = -3.0V to -5.5V; VCC = GND or VEE = GND; VCC = +3.0V to +5.5V) Symbol Characteristic Min -40°C Typ Max Min 0°C Typ Max Min 25°C Typ EN (VTL, VTX) ; EN EN (VTL, VTX, VTNC, VTND) (VTNA, VTNB) Q Q Q HG Q HG TIMING DIAGRAM April 2007 * REV - 9 www.azmicrotek.com 4 (PECL) (CMOS) Min 85°C Typ Max Propagation Delay tPLH / tPHL 400 400 400 430 (SE) D to Q/Q ¯ Outputs1 ¯ HG Outputs1 (SE) 550 550 550 630 D to QHG/Q tSKEW Duty Cycle Skew2 (SE) 5 20 5 20 5 20 5 20 80 80 80 80 Minimum Input Swing3 DIFF VPP SE 160 160 160 160 Output Rise/Fall Times1 100 260 100 260 100 260 100 260 tr / t f (20% - 80%) 1. For VTL and VTX, output specified with VEEP and CS-SEL connected to VEE with an AC coupled 50Ω load. For VTNA, VTNB, VTNC & ¯ HG. VTND, AC coupled 50Ω on Q ¯ to VCC –2V and DC coupled 50Ω to VCC –2V on QHG/Q 2. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device. 3. VPP is the minimum peak-to-peak input swing for which AC parameters guaranteed. The device has a voltage gain of ≈ 20 to Q/Q ¯ outputs and a ¯ HG outputs. voltage gain of ≈ 100 to QHG/Q D Max Unit ps ps mV ps AZ100LVEL16VT AZ100LVEL16VTL MLP 16 3x3 mm Q Q NC VCC 16 15 14 13 NC 1 12 CS-SEL D 2 11 D 3 10 QHG VBB 4 9 5 6 7 8 EN NC VEE VEEP QHG EN-SEL TOP VIEW Bottom Center Pad may be left open or tied to VEE ADJUSTABLE HIGH GAIN OUTPUT CURRENT HIGH GAIN OUTPUT CURRENTS (mA) 12 10 8 6 4 2 0 0 20 40 60 80 100 120 140 VEEP TO VEE RESISTOR VALUE (OHMS) April 2007 * REV - 9 www.azmicrotek.com 5 160 180 200 0 1.1 -15 1 -30 0.9 -45 0.8 -60 0.7 -75 0.6 Phase 1.2 S11 MAG 8mA S11 MAG 4mA S11 PHASE 8mA S11 PHASE 4mA Phase Magnitude AZ100LVEL16VT S12 MAG 8mA S12 MAG 4mA S12 PHASE 8mA S12 PHASE 4mA -90 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) S11, D to Q ¯ (50 Ω external AC, 4 & 8mA internal DC Load on Q ¯) 195 0.04 170 0.03 145 Magnitude 0.05 0.02 120 0.01 95 0 70 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) S12, D to Q ¯ (50 Ω external AC, 4 & 8mA internal DC Load on Q ¯) April 2007 * REV - 9 www.azmicrotek.com 6 45 195 40 165 35 135 30 105 25 75 20 45 15 15 10 -15 5 -45 0 S21 MAG 8mA Phase Magnitude AZ100LVEL16VT S21 MAG 4mA S21 PHASE 8mA S21 PHASE 4mA -75 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) S21, D to Q ¯ (50 Ω external AC, 4 & 8mA internal DC Load on Q ¯) 225 0.8 200 0.7 175 Phase Magnitude 0.9 0.6 150 0.5 125 0.4 100 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 Frequency (MHz) S22, D to Q ¯ (50 Ω external AC, 4 & 8mA internal DC Load on Q ¯) April 2007 * REV - 9 www.azmicrotek.com 7 1350 S22 MAG 8mA S22 MAG 4mA S22 PHASE 8mA S22 PHASE 4mA AZ100LVEL16VT LOGIC DIAGRAMS AND PINOUTS FOR 2x2mm PACKAGE 4mA MLP 8, 2x2mm Q V EE D Q HG D 470 Ω Q HG 470 Ω D 1 D 2 8 Q 7 VCC 6 QHG 5 QHG VEE V BB VBB 3 EN EN MLP 8, 2x2mm AZ100LVEL16VTNA 4 TOP VIEW 4mA Q VEE ¯¯¯ EN operation follows PECL functionality. D QHG See Timing 470Ω Diagram above. QHG VBB EN MLP 8, 2x2mm Bottom Pad is the VEE 8return. AZ100LVEL16VTNB D 1Center Q VBB 2 7 VCC EN 3 6 QHG 5 QHG VEE MLP 8, 2x2mm AZ100LVEL16VTNB ¯¯¯ EN operation follows PECL functionality. See Timing Diagram above. April 2007 * REV - 9 AZ100LVEL16VTNA www.azmicrotek.com 8 4 TOP VIEW Bottom Center Pad may be left open or tied to VEE. Pin 4 is the VEE return. AZ100LVEL16VT LOGIC DIAGRAMS AND PINOUTS FOR 2x2mm PACKAGE MLP 8, 2x2mm 4mA Q V EE D Q HG 470 Ω Q HG V BB EN D 1 AZ100LVEL16VTNC 8 VBB 2 7 VCC EN 3 6 QHG 5 QHG VEE CMOS / TTL THRESHOLD 4 MLP 8, 2x2mm AZ100LVEL16VTNC EN operation follows CMOS/TTL functionality. See Timing Diagram above. Bottom Center Pad may be left open or tied to VEE. Pin 4 is the VEE return. MLP 8, 2x2mm 4mA Q V EE D Q HG D Q HG 470 470 EN 1 D 2 EN MLP 8, 2x2mm AZ100LVEL16VTND EN operation follows CMOS/TTL functionality. See Timing Diagram above. April 2007 * REV - 9 D AZ100LVEL16VTND www.azmicrotek.com 9 8 Q 7 VCC 6 QHG 5 QHG VEE VBB 3 V BB CMOS / TTL THRESHOLD TOP VIEW Q 4 TOP VIEW Bottom Center Pad is the VEE return. AZ100LVEL16VT DIE PAD COORDINATES AZ100LVEL16VT DIE: LV16VT A B L M J DIE SIZE: 950u X 950u DIE THICKNESS: 14 MILS C D K BOND PAD: 85u X 85u E F I H G PAD CENTER COORDINATES NAME A B C D E F G H I J K L M April 2007 * REV - 9 PAD DESIGNATION D D ¯ VBB EN VEE VEEP EN-SEL Q ¯ HG QHG CS-SEL VCC Q Q ¯ www.azmicrotek.com 10 X(Microns) -342.5 -342.5 -342.5 -342.5 -33.5 126.5 312.5 312.5 312.5 312.5 302.5 142.5 -140.5 Y(Microns) 312.5 144.5 -87.0 -255.0 -312.5 -312.5 -248.5 -98.5 51.5 201.5 342.5 342.5 342.5 AZ100LVEL16VT PACKAGE DIAGRAM MLP 8 2x2mm Pin 1 Dot By Marking 2.000±0.050 MLP 8 (2x2mm) 2.000±0.050 TOP VIEW Pin 1 Identification R0.100 TYP 0.350±0.050 0.250±0.050 0.500 bsc 8 1 7 6 2 1.200±0.050 exp. pad 3 5 4 0.600±0.050 exp. pad BOTTOM VIEW 0.750±0.050 0.000-0.050 1 2 SIDE VIEW Note: All dimensions are in mm April 2007 * REV - 9 www.azmicrotek.com 11 3 4 0.203±0.025 1.750 Ref. AZ100LVEL16VT PACKAGE DIAGRAM MLP 16 3X3mm A D D 2 2. INDEX AREA (D/2 x E/2) D2 D2/2 B E2/2 E2 E 2 3x E e 2 e 2x 1 aaa C 2x aaa C TOP VIEW bbb M C A B 5. 16 x b L 3. 3x e BOTTOM VIEW ccc C A3 A 4. 0.08 C A1 SIDE VIEW NOTES: 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME T14-1994. 2. THE TERMINAL #1 AND PAD NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. 3. DIMENSION b APPLIES TO METALLIZED PAD AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM PAD TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS. 5. INSIDE CORNERS OF METALLIZED PAD MAY BE SQUARE OR ROUNDED April 2007 * REV - 9 www.azmicrotek.com 12 C SEATING PLANE MILLIMETERS DIM A A1 A3 b D D2 E E2 e L aaa bbb ccc MIN MAX 0.80 1.00 0.05 0.00 0.25 REF 0.18 0.30 3.10 2.90 1.95 0.25 3.10 2.90 1.95 0.25 0.50 BSC 0.30 0.50 0.25 0.10 0.10 AZ100LVEL16VT Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part. April 2007 * REV - 9 www.azmicrotek.com 13