AZM AZ100EP16VST

ARIZONA MICROTEK, INC.
AZ10EP16VS
AZ100EP16VS
ECL/PECL Differential Receiver with Variable Output Swing
FEATURES
•
•
•
•
•
Silicon-Germanium for High Speed
Operation
150ps Typical Propagation Delay
AZ100EP16VS Functionally Equivalent
to ON Semiconductor MC100EP16VS
at 3.3V
Available in a 3x3mm MLP Package
S-Parameter (.s2p) and IBIS Model Files
available on Arizona Microtek Website
PACKAGE AVAILABILITY
PACKAGE
PART NUMBER
SOIC 8
AZ10EP16VSD
SOIC 8
AZ100EP16VSD
TSSOP 8
AZ10EP16VST
TSSOP 8
AZ100EP16VST
MLP 16 (3x3)
AZ10/100EP16VSL
MLP 16 (3x3)
RoHS Compliant /
Lead(Pb) Free
AZ10/100EP16VSL+
1
2
3
MARKING
AZM10
EP16VS
AZM100
EP16VS
AZTP
EP16VS
AZHP
EP16VS
AZM
16S
<Date Code>
AZM+
16S
<Date Code>
NOTES
1,2,3
1,2,3
1,2,3
1,2,3
1,2
1,2
Add R1 at end of part number for 7 inch (1K parts), R2 for 13 inch (2.5K parts) Tape
& Reel.
Date code format: “Y” or “YY” for year followed by “WW” for week.
Date code “YWW” or “YYWW” on underside of part.
DESCRIPTION
The AZ10/100EP16VS is a Silicon–Germanium (SiGe) differential receiver with variable output swing. The
EP16VS has functionality and output transition times similar to the EP16, with an input that controls the amplitude
of the Q/Q
¯ outputs.
Connecting the BOOST pin to VEE increases the output swing by about 15% above standard ECL/PECL levels.
The BOOST pin is internally tied to VEE for the SOIC 8 and TSSOP 8 packages, and is under external user control
for the MLP 16 package. When both the BOOST pin and the VCTRL pin are not connected, the part operates with the
standard ECL/PECL output and VBB levels of the AZ10/100EP16 device. To ensure best performance, the BOOST
pin should be tied to VEE when the variable swing feature is used.
The operational range of the EP16VS control input, VCTRL, is from VREF (full swing) to VCC (min. swing).
Maximum swing is achieved by leaving the VCTRL pin open or tied to VEE. Simple control of the output swing can be
obtained by a variable resistor between the VREF and VCC pins, with the wiper driving VCTRL. Typical application
circuits and results are described in this Data Sheet.
The EP16VS provides a VREF (VBB/VREF) output for a DC bias when AC coupling to the device. The VREF pin
should be used only as a bias for the EP16VS as its current sink/source capability is limited. Whenever used, the
VREF pin should be bypassed to ground via a 0.01μF capacitor.
Under open input conditions for D/D
¯ , the Q/Q
¯ outputs are not guaranteed.
NOTE: Specifications in ECL/PECL tables are valid when thermal equilibrium is established.
1630 S. STAPLEY DR., SUITE 127 • MESA, ARIZONA 85204 • USA • (480) 962-5881 • FAX (480) 890-2541
www.azmicrotek.com
AZ10EP16VS
AZ100EP16VS
PIN DESCRIPTION
PIN
D, D
¯
VCTRL
Q, Q
¯
VREF,
VBB/VREF
BOOST
VCC
VEE
NC
FUNCTION
Data Inputs
Output Swing Control
Data Outputs
Reference Voltage Output
Increases Output Swing
when tied to VEE *
Positive Supply
Negative Supply
No Connect
*BOOST should be tied to VEE for best performance when using the variable swing feature.
LOGIC DIAGRAM AND PINOUT ASSIGNMENT
VCTRL
1
8
VCC
D
2
7
Q
D
3
6
Q
VREF
4
5
VEE
SOIC 8 & TSSOP 8
TOP VIEW
VCTRL
1
D
2
D
3
VBB/
VREF
4
NC
NC
NC
VCC
16
15
14
13
MLP 16,
3x3 mm
MLP 16 Package:
10K/100K Selection
12
NC
11
Q
10
Q
9
BOOST
Connect pin 10K to VEE and float (NC) pin
100K to select 10K operation. Connect pin
100K to VEE and float (NC) pin 10K to select
100K operation.
Variable Swing Selection
5
6
NC
100K
7
VEE
8
10K
Bottom Center Pad may be left
open or tied to VEE
July 2007 * REV - 10
Connect pin BOOST to VEE to support variable
swing operation. Float (NC) pins BOOST and
VCTRL to disable variable swing operation.
All VEE connections must be less than 1Ω.
www.azmicrotek.com
2
AZ10EP16VS
AZ100EP16VS
Absolute Maximum Ratings are those values beyond which device life may be impaired.
Symbol
VCC
VI
VEE
VI
IOUT
TA
TSTG
Characteristic
PECL Power Supply (VEE = 0V)
PECL Input Voltage
(VEE = 0V)
ECL Power Supply
(VCC = 0V)
ECL Input Voltage
(VCC = 0V)
Output Current
--- Continuous
--- Surge
Operating Temperature Range
Storage Temperature Range
Rating
0 to +4.5
0 to +4.5
-4.5 to 0
-4.5 to 0
50
100
-40 to +85
-65 to +150
Unit
Vdc
Vdc
Vdc
Vdc
mA
°C
°C
10K ECL DC Characteristics (VEE = -3.0V to -3.6V, VCC = GND)
Symbol
Characteristic
1
VOH
Min
-1095
-40°C
Typ
Max
-845
Min
-1055
0°C
Typ
Output HIGH Voltage
Output LOW Voltage1,2
VOL
-1700 -2000
VCTRL = VREF -2000
BOOST = VEE
Output LOW Voltage1,2
VOL
VCTRL = VCC -1285
-1035 -1270
BOOST = VEE
Output LOW Voltage1,3
VOL
-1650 -1950
VCTRL = NC -1950
BOOST = NC
Reference Voltage2
VREF
-1700
-1500 -1670
VBB/VREF
BOOST = VEE
3
Reference Voltage
VBB/VREF
-1430
-1300 -1380
BOOST = NC
Input HIGH Current
80
IIH
D,D
¯
VCTRL
400
Input LOW Current
0.5
0.5
IIL
IEE
Power Supply Current
21
27
36
22
28
1.
Each output is terminated through a 50Ω resistor to VCC – 2V.
2.
BOOST is internally bonded to VEE for both the SOIC 8 and TSSOP 8 packages.
3.
Supported in MLP 16 package only.
Max
-805
Min
-1030
-1690
25°C
Typ
85°C
Typ
Min
-970
-2000
-1690
-2000
-1655
mV
-1020
-1265
-1015
-1255
-1005
mV
-1630
-1950
-1630
-1950
-1595
mV
-1470
-1650
-1450
-1600
-1400
mV
-1270
-1350
-1250
-1310
-1190
mV
80
400
μA
80
400
80
400
37
0.5
22
Max
2495
Min
2270
29
Max
-720
Unit
Max
-780
mV
μA
mA
38
0.5
24
Max
2520
Min
2330
1610
1300
1645
mV
2285
2045
2295
mV
1670
1350
1670
mV
1850
1700
1900
mV
2050
1990
2110
30
40
10K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V)
Symbol
Characteristic
1,2
VOH
Min
2205
-40°C
Typ
Max
2455
Min
2245
0°C
Typ
Output HIGH Voltage
Output LOW Voltage1,2,3
VOL
VCTRL = VREF
1300
1600
1300
1610
1300
BOOST = VEE
Output LOW Voltage1,2,3
VOL
2015
2265
2030
2280
2035
VCTRL = VCC
BOOST = VEE
Output LOW Voltage1,3,4
VOL
VCTRL = NC
1350
1650
1350
1670
1350
BOOST = NC
Reference Voltage3
VREF
1600
1800
1630
1830
1650
VBB/VREF
BOOST = VEE
4
Reference Voltage
1870
2000
1920
2030
1950
VBB/VREF
BOOST = NC
Input HIGH Current
80
80
IIH
D,D
¯
VCTRL
400
400
Input LOW Current
0.5
0.5
0.5
IIL
IEE
Power Supply Current
21
27
36
22
28
37
22
1.
For supply voltages other that 3.3V, use the ECL table values and ADD supply voltage value.
2.
Each output is terminated through a 50Ω resistor to VCC – 2V.
3.
BOOST is internally bonded to VEE for both the SOIC 8 and TSSOP 8 packages.
4.
Supported in MLP 16 package only.
July 2007 * REV - 10
www.azmicrotek.com
3
25°C
Typ
85°C
Typ
80
400
29
38
Max
2580
80
400
0.5
24
30
40
Unit
mV
mV
μA
μA
mA
AZ10EP16VS
AZ100EP16VS
100K ECL DC Characteristics (VEE = -3.0V to -3.6V, VCC = GND)
Symbol
Characteristic
1
VOH
Min
-1130
-40°C
Typ
Max
-840
Min
-1090
0°C
Typ
Output HIGH Voltage
Output LOW Voltage1,2
VOL
VCTRL = VREF -1950
-1700 -1950
BOOST = VEE
Output LOW Voltage1,2
VOL
VCTRL = VCC -1200
-940
-1190
BOOST = VEE
1,3
Output LOW Voltage
VOL
VCTRL = NC -1900
-1640 -1890
BOOST = NC
Reference Voltage2
VREF
-1650
-1450 -1650
VBB/VREF
BOOST = VEE
Reference Voltage3
VBB/VREF
-1440
-1320 -1380
BOOST = NC
Input HIGH Current
IIH
80
D,D
¯
VCTRL
400
Input LOW Current
0.5
0.5
IIL
IEE
Power Supply Current
20
26
35
21
27
1.
Each output is terminated through a 50Ω resistor to VCC – 2V.
2.
BOOST is internally bonded to VEE for both the SOIC 8 and TSSOP 8 packages.
3.
Supported in MLP 16 package only.
Max
-840
Min
-1090
-1700
25°C
Typ
85°C
Typ
Min
-1090
-1950
-1700
-1950
-1700
mV
-940
-1190
-940
-1190
-940
mV
-1640
-1890
-1640
-1890
-1640
mV
-1450
-1650
-1450
-1650
-1450
mV
-1260
-1380
-1260
-1380
-1260
mV
80
400
μA
-1550
80
400
80
400
36
0.5
22
Max
2460
Min
2210
28
Max
-840
Unit
Max
-840
mV
μA
mA
38
0.5
25
Max
2460
Min
2210
1600
1350
1600
mV
2360
2110
2360
mV
1660
1410
1660
mV
1850
1650
1850
mV
2040
1920
2040
31
41
100K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V)
Symbol
Characteristic
1,2
VOH
Min
2170
-40°C
Typ
Max
2460
Min
2210
0°C
Typ
Output HIGH Voltage
Output LOW Voltage1,2,3
VOL
VCTRL = VREF
1350
1600
1350
1600
1350
BOOST = VEE
Output LOW Voltage1,2,3
VOL
2100
2360
2110
2360
2110
VCTRL = VCC
BOOST = VEE
Output LOW Voltage1,3,4
VOL
VCTRL = NC
1410
1660
1410
1660
1410
BOOST = NC
Reference Voltage3
VREF
1650
1850
1650
1850
1650
VBB/VREF
BOOST = VEE
4
Reference Voltage
1860
1980
1920
2040
1920
VBB/VREF
BOOST = NC
Input HIGH Current
80
80
IIH
D,D
¯
VCTRL
400
400
Input LOW Current
0.5
0.5
0.5
IIL
IEE
Power Supply Current
20
26
35
21
27
36
22
1.
For supply voltages other that 3.3V, use the ECL table values and ADD supply voltage value.
2.
Each output is terminated through a 50Ω resistor to VCC – 2V.
3.
BOOST is internally bonded to VEE for both the SOIC 8 and TSSOP 8 packages.
4.
Supported in MLP 16 package only.
July 2007 * REV - 10
www.azmicrotek.com
4
25°C
Typ
85°C
Typ
80
400
28
38
Max
2460
80
400
0.5
25
31
41
Unit
mV
mV
μA
μA
mA
AZ10EP16VS
AZ100EP16VS
AC Characteristics (VEE = -3.0 to -3.6V, VCC = GND, VCTRL=VREF or VEE = GND, VCC = +3.0V to 3.6V, VCTRL = VREF)
Symbol
Characteristic
Min
tSKEW
Vpp
Maximum Toggle
Frequency5
Input to Output
(Diff)
Delay
(SE)
Duty Cycle Skew1 (Diff)
Minimum Input Swing2
VCMR
Common Mode Range3
fmax
tPLH / tPHL
-40°C
Typ
Max
Min
240
100
>4
100
150
155
4
150
VEE +
2.0
0°C
Typ
Max
Min
240
100
>4
20
VCC
150
155
4
150
VEE +
2.0
25°C
Typ
Max
Min
240
120
85°C
Typ
>4
15
VCC
>4
150
155
4
170
175
4
15
150
VEE +
2.0
VCC
150
VEE +
2.0
4
Av
Max
GHz
280
1000
900
800
VCTRL=VCC-2.0V
VCTRL=VCC-1.5V
VOUTpp (mV)
700
600
500
VCTRL=VCC-1.0V
400
300
VCTRL=VCC-0.5V
200
100
VCTRL=VCC
0
0
1000
2000
3000
4000
5000
FREQUENCY (MHz)
*Measured using a 750mV differential input source at 50% duty cycle. Valid
for SOIC 8, TSSOP 8, or MLP 16 with BOOST = VEE.
July 2007 * REV - 10
www.azmicrotek.com
5
6000
ps
15
ps
mV
VCC
V
Small Signal Gain
28
Output Rise/Fall Times Q
tr / t f
120
170
120
180
120
180
120
200
(20% - 80%)
1.
Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device.
2.
VPP is the minimum peak-to-peak differential input swing for which AC parameters are guaranteed.
3.
The VCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within
the specified range and the peak-to-peak voltage lies between VPP(min) and 1V.
4.
Differential input, differential output. 240Ω to VEE on Q/Q
¯ outputs, VCTRL = NC and BOOST = VEE (for MLP 16 package).
5.
See graph below.
Typical Large Signal Performance, AZ100EP16VS*
Unit
dB
ps
AZ10EP16VS
AZ100EP16VS
Typical AZ100EP16VS Voltage Output Swing at +25C, Nominal Supply
(see Figure 1 and Figure 2)
VSWING (% pk-pk differential)
100
1.240 V (100K ECL)
75
%OUT
100K ECL
50
25
0
0.0
0.4
0.8
1.2
VCTRL (V)
(BOOST tied to VEE forMLP 16, or SOIC 8/TSSOP 8 Package)
Figure 1: Voltage Source Implementation
VCTRL
D
VCC
VSWING
Q
(pk-pk)
D
Q
50
VEE
-2V
- 3.3V
Figure 2: Alternative Implementation
1k
VCTRL
VCC
D
Q
50
+ 3.3V
VSWING
(pk-pk)
D
Q
VREF
VEE
July 2007 * REV - 10
www.azmicrotek.com
6
240
240
1.6
AZ10EP16VS
AZ100EP16VS
PACKAGE DIAGRAM
SOIC 8
NOTES:
DIMENSIONS D AND E DO NOT
1.
INCLUDE MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION
2.
FOR D IS 0.15mm.
MAXIMUM MOLD PROTRUSION
3.
FOR E IS 0.25mm.
July 2007 * REV - 10
DIM
A
A1
A2
A3
bp
c
D
E
e
HE
L
Lp
Q
v
w
y
Z
θ
www.azmicrotek.com
7
MILLIMETERS
MIN
MAX
1.75
0.10
0.25
1.25
1.45
0.25
0.36
0.49
0.19
0.25
4.8
5.0
3.8
4.0
1.27
5.80
6.20
1.05
0.40
1.00
0.60
0.70
0.25
0.25
0.10
0.30
0.70
8O
0O
INCHES
MIN
MAX
0.069
0.004
0.010
0.049
0.057
0.01
0.014
0.019
0.0075
0.0100
0.19
0.20
0.15
0.16
0.050
0.228
0.244
0.041
0.016
0.039
0.024
0.028
0.01
0.01
0.004
0.012
0.028
0O
8O
AZ10EP16VS
AZ100EP16VS
PACKAGE DIAGRAM
TSSOP 8
DIM
A
A1
A2
A3
bp
c
D
E
e
HE
L
Lp
v
w
y
Z
θ
NOTES:
DIMENSIONS D AND E DO NOT
1.
INCLUDE MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION
2.
FOR D IS 0.15mm.
MAXIMUM MOLD PROTRUSION
3.
FOR E IS 0.25mm.
July 2007 * REV - 10
www.azmicrotek.com
8
MILLIMETERS
MIN
MAX
1.10
0.05
0.15
0.80
0.95
0.25
0.25
0.45
0.15
0.28
2.90
3.10
2.90
3.10
0.65
4.70
5.10
0.94
0.40
0.70
0.10
0.10
0.10
0.35
0.70
6O
0O
AZ10EP16VS
AZ100EP16VS
PACKAGE DIAGRAM
MLP 16 3x3mm
A
D
D
2
2.
INDEX AREA
(D/2 x E/2)
D2
D2/2
B
E2/2
E2
E
2
3x
E
e
2
e
2x
1
aaa C
2x
aaa C
TOP VIEW
bbb M C A B
5.
16 x b
L
3.
3x e
BOTTOM VIEW
ccc C
A3
A
4.
0.08 C
A1
SIDE
VIEW
C
SEATING
PLANE
MILLIMETERS
NOTES:
1. DIMENSIONING AND TOLERANCING
CONFORM TO ASME T14-1994.
2. THE TERMINAL #1 AND PAD
NUMBERING CONVENTION SHALL
CONFORM TO JESD 95-1 SPP-012.
3. DIMENSION b APPLIES TO METALLIZED
PAD AND IS MEASURED BETWEEN 0.25
AND 0.30 mm FROM PAD TIP.
4. COPLANARITY APPLIES TO THE
EXPOSED PADS AS WELL AS THE
TERMINALS.
5. INSIDE CORNERS OF METALLIZED PAD
MAY BE SQUARE OR ROUNDED
July 2007 * REV - 10
www.azmicrotek.com
9
DIM
A
A1
A3
b
D
D2
E
E2
e
L
aaa
bbb
ccc
MIN
MAX
0.80
1.00
0.05
0.00
0.25 REF
0.18
0.30
3.10
2.90
1.95
0.25
3.10
2.90
1.95
0.25
0.50 BSC
0.50
0.30
0.25
0.10
0.10
AZ10EP16VS
AZ100EP16VS
Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc.
makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona
Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license
rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems
intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part.
July 2007 * REV - 10
www.azmicrotek.com
10