V23990-P639-A40-PM Maximum Ratings

V23990-P639-A40-PM
flow 90PIM 1
1200V/8A
Features
flow 90PIM 1
● Trench Fieldstop Technology IGBT4 for low saturation loss
● Supports design with 90° mounting angle between
heatsink and PCB
● Clip-in PCB mounting
● Clip or screw on heatsink mounting
Schematic
Target Applications
● Industrial drives
Types
● V23990-P639-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
28
36
A
200
A
200
A2s
33
50
W
Tjmax
150
°C
VCE
1200
V
15
19
A
tp limited by Tjmax
24
A
VCE ≤ 1200V, Tj ≤ Top max
24
A
58
87
W
±20
V
10
800
µs
V
175
°C
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2
V23990-P639-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
16
21
A
20
A
41
62
W
Tjmax
175
°C
VCE
1200
V
9
9
A
tp limited by Tjmax
12
A
VCE ≤ 1200V, Tj ≤ Top max
12
A
39
59
W
±20
V
10
800
µs
V
175
°C
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
VRRM
IF
IFRM
Ptot
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Brake Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpuls
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
Brake FWD
Peak Repetitive Reverse Voltage
VRRM
1200
V
Th=80°C
Tc=80°C
9
9
A
6
A
Th=80°C
Tc=80°C
23
35
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
IF
IFRM
Ptot
Tj=Tjmax
tp limited by Tjmax
Tj=Tjmax
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 2
V23990-P639-A40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
1
1,26
1,24
0,92
0,82
11
14
1,6
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Thermal resistance chip to heatsink per chip
1500
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mΩ
0,2
2,10
mA
K/W
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
8
1200
20
0
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1,6
1,92
2,22
2,3
0,001
120
Rgoff=32 Ω
Rgon=32 Ω
±15
600
8
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,0003
58
59
23
22
177
244
64
137
0,51
0,83
0,45
0,78
ns
mWs
490
f=1MHz
0
Tj=25°C
25
50
pF
30
±15
960
8
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
50
nC
1,65
K/W
Inverter FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
10
Rgon=32 Ω
±15
600
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
8
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,35
1,86
1,77
7
9
241
416
0,81
1,66
89
51
0,31
0,66
2,31
3
2,05
V
A
ns
µC
A/µs
mWs
K/W
Revision: 2
V23990-P639-A40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,87
2,21
2,1
Brake Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,00015
4
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,0005
120
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=64 Ω
Rgon=64 Ω
±15
600
4
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
83
79
28
32
178
243
77
132
0,26
0,39
0,24
0,41
ns
mWs
250
f=1MHz
0
25
25
Tj=25°C
pF
15
±15
960
4
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
23
nC
2,44
K/W
Brake FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
Reverse recovery time
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
Rgon=64 Ω
1200
IRRM
trr
Peak rate of fall of recovery current
3
Rgon=64 Ω
Rgon=64 Ω
±15
600
di(rec)max
/dt
Erec
RthJH
4
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,65
1,52
2,3
250
2,77
3,62
357
649
0,44
0,44
18
14
0,20
0,44
Thermal grease
thickness≤50um
λ = 1 W/mK
V
ǑA
A
ns
µC
A/µs
mWs
3,03
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
-5
5
%
Tc=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
Copyright by Vincotech
Tj=25°C
4
B
Revision: 2
V23990-P639-A40-PM
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
30
IC (A)
IC (A)
30
25
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
5
V CE (V)
6
0
At
tp =
Tj =
VGE from
250
Ǒs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
6
250
Ǒs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
35
IC (A)
IF (A)
9
5
30
7,5
25
6
20
4,5
15
3
10
1,5
5
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
VCE =
Tj = 25°C
0
2
250
10
4
6
8
10
V GE (V)
12
0
At
tp =
Ǒs
V
Copyright by Vincotech
5
0,5
250
1
1,5
2
2,5
3 V (V)
F
3,5
Ǒs
Revision: 2
V23990-P639-A40-PM
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
1,6
E (mWs)
2,0
Eon High T
Eon High T
1,6
1,2
Eoff High T
Eon Low T
1,2
Eon Low T
Eoff High T
0,8
0,8
Eoff Low T
Eoff Low T
0,4
0,4
0,0
0,0
0
4
8
12
I C (A)
0
16
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
25
50
75
100
125
RG(Ω)
150
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
8
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
1,0
E (mWs)
1,0
Erec
0,8
0,8
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,6
0,6
Erec
Erec
0,4
0,4
Tj = 25°C
Erec
Tj = 25°C
0,2
0,2
0,0
0,0
0
4
8
12
I C (A)
0
16
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Copyright by Vincotech
30
60
90
120
RG(Ω)
150
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
6
Revision: 2
V23990-P639-A40-PM
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tf
tdon
tf
0,10
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
4
8
12
I C (A)
0
16
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
30
60
90
120
RG(Ω )
150
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,6
t rr( µs)
0,8
t rr( µs)
trr
trr
0,5
Tj = Tjmax -25°C
0,6
Tj = Tjmax -25°C
0,4
trr
trr
0,3
0,4
0,2
Tj = 25°C
Tj = 25°C
0,2
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
32
8
12
I C (A)
0
16
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
32
25/150
600
8
±15
64
96
128
R gon ( Ω )
160
°C
V
A
V
Revision: 2
V23990-P639-A40-PM
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( µC)
2,0
Qrr( µC)
2,5
Qrr
2,0
Tj = Tjmax -25°C
Qrr
1,6
Tj = Tjmax -25°C
1,2
1,5
Tj = 25°C
Qrr
0,8
1,0
Qrr
Tj = 25°C
0,4
0,5
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
32
8
12
I C (A)
0
16
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
Output inverter FWD
30
25/150
600
8
±15
60
90
R gon ( Ω)
150
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
10
120
25
IrrM (A)
IrrM (A)
Tj = Tjmax -25°C
IRRM
20
8
IRRM
Tj = 25°C
6
15
4
10
2
5
Tj = Tjmax - 25°C
IRRM
Tj = 25°C
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
32
8
12
I C (A)
16
°C
V
V
Ω
Copyright by Vincotech
8
0
30
At
Tj =
VR =
IF =
VGE =
25/150
600
8
±15
60
90
120
R gon ( Ω )
150
°C
V
A
V
Revision: 2
V23990-P639-A40-PM
Output Inverter
Output inverter FWD
500
dI0/dt
dIrec/dt
400
2500
dI0/dt
dIrec/dt
2000
300
1500
200
1000
100
500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
32
8
12
I C (A)
0
16
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
25/150
600
8
±15
60
90
120
R gon ( Ω )
150
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
100
10
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10
-5
At
D=
RthJH =
10-4
-3
10
-2
10-1
10
0
t p (s)
1
10 1
10-5
At
D=
RthJH =
tp / T
1,65
Thermal grease
R (C/W)
0,08
0,25
0,72
0,40
0,19
10
K/W
IGBT thermal model values
Phase change material
Tau (s)
1,1E+00
2,5E-01
6,3E-02
1,5E-02
3,0E-03
Copyright by Vincotech
R (C/W)
0,06
0,20
0,59
0,33
0,16
10-4
R (C/W)
0,04
0,15
0,78
0,68
0,41
0,24
9
10-2
10-1
100
t p (s)
1
101
tp / T
2,31
Thermal grease
Tau (s)
8,7E-01
2,0E-01
5,1E-02
1,2E-02
2,4E-03
10-3
K/W
FWD thermal model values
Phase change material
Tau (s)
9,4E+00
9,0E-01
1,2E-01
3,5E-02
6,2E-03
9,3E-04
R (C/W)
0,03
0,13
0,63
0,55
0,33
0,20
Tau (s)
7,7E+00
7,3E-01
9,7E-02
2,9E-02
5,0E-03
7,5E-04
Revision: 2
V23990-P639-A40-PM
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
20
IC (A)
Ptot (W)
120
100
15
80
60
10
40
5
20
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
25
Ptot (W)
IF (A)
80
150
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 2
V23990-P639-A40-PM
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
20
IC (A)
VGE (V)
102
18
100uS
16
1mS
10
1
240V
14
960V
12
10mS
10
100
100mS
8
DC
6
10-1
4
2
0
100
At
D=
Th =
VGE =
101
102
V CE (V)
0
103
At
IC =
single pulse
80
ºC
V
±15
Tjmax
ºC
Tj =
Output inverter IGBT
Figure 27
20
8
30
40
50
60
Q g (nC)
70
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
16
100
IC(sc)
tsc(µS)
10
14
80
12
10
60
8
40
6
4
20
2
0
0
12
13
14
15
16
V GE (V)
12
17
14
16
20
V GE (V)
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
18
11
Revision: 2
V23990-P639-A40-PM
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
20
IC
MAX
CHIP
Ic
Ic
MODULE
15
VCE
MAX
10
5
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
Copyright by Vincotech
12
Revision: 2
V23990-P639-A40-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
15
IC (A)
IC (A)
15
12
12
9
9
6
6
3
3
0
0
0
1
2
3
4
5
6
0
V CE (V)
At
tp =
Tj =
VGE from
At
tp =
Tj =
VGE from
Ǒs
250
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
6
250
Ǒs
150
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
16
IF (A)
IC (A)
9
V CE (V)
7,5
12
6
Tj = 25°C
8
4,5
Tj = Tjmax-25°C
3
4
1,5
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
3
250
10
6
9
12
V GE (V)
0
15
At
tp =
Ǒs
V
Copyright by Vincotech
13
1
250
2
3
4
V F (V)
5
Ǒs
Revision: 2
V23990-P639-A40-PM
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,0
E (mWs)
E (mWs)
1,0
Eon
Eon
0,8
0,8
Tj = Tjmax -25°C
Eoff
0,6
0,6
Eon
Eon
Tj = Tjmax -25°C
Eoff
0,4
0,4
Eoff
Eoff
0,2
0,2
Tj = 25°C
Tj = 25°C
0,0
0,0
0
2
4
6
I C (A)
0
8
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
Rgoff =
64
Ω
64
128
192
256
RG (Ω )
320
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
4
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
0,8
0,6
0,5
Tj = Tjmax -25°C
0,6
Erec
Erec
0,4
Tj = Tjmax - 25°C
0,3
0,4
0,2
Erec
Erec
Tj = 25°C
0,2
0,1
Tj = 25°C
0
0
0
0
2
4
6
I C (A)
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
Copyright by Vincotech
64
8
128
192
256
RG (Ω )
320
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
4
A
14
Revision: 2
V23990-P639-A40-PM
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdon
tdoff
tf
0,10
tf
tr
0,10
tdon
tr
0,01
0,01
0,00
0,00
0
2
4
6
I C (A)
0
8
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
Rgoff =
64
Ω
64
128
192
RG (Ω )
256
320
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
4
A
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
Thermal grease
RthJH =
2,436
10-3
D=
K/W
Copyright by Vincotech
10-2
10-1
100
t p (s)
101
10-5
1
tp / T
Phase change material
RthJH =
1,98
K/W
10-4
At
Thermal grease
RthJH =
3,03
15
10-3
D=
K/W
10-2
10-1
100
t p (s)
101 1
tp / T
Phase change material
RthJH =
2,46
K/W
Revision: 2
V23990-P639-A40-PM
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
80
Ptot (W)
IC (A)
10
8
60
6
40
4
20
2
0
0
0
At
Tj =
50
175
100
T h ( o C)
150
0
200
At
Tj =
VGE =
ºC
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
10
IF (A)
Ptot (W)
50
T h ( o C)
40
8
30
6
20
4
10
2
0
0
0
At
Tj =
25
150
50
75
100
125
0
Th ( o C) 150
At
Tj =
ºC
Copyright by Vincotech
16
50
150
100
Th ( o C)
150
ºC
Revision: 2
V23990-P639-A40-PM
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
IF (A)
ZthJC (K/W)
80
60
Tj = 25°C
100
Tj = Tjmax-25°C
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
0
0
0,4
At
tp =
0,8
1,2
1,6
V F (V)
10-2
2
Ǒs
250
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
At
D=
RthJH =
2,10
10-3
10-2
10-1
100
101 1
tp / T
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
80
t p (s)
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
17
50
150
100
150
T h ( o C)
200
ºC
Revision: 2
V23990-P639-A40-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
18
Revision: 2
V23990-P639-A40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 32 Ω
Rgoff
= 32 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
125
%
tdoff
%
IC
VCE
200
100
VGE 90%
VCE 90%
150
75
IC
VCE
50
100
tEoff
VGE
tdon
25
50
IC 1%
VGE
VGE 10%
0
-25
-0,3
VCE 3%
IC 10%
0
tEon
-50
-0,1
0,1
0,3
0,5
0,7
3,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
8
0,24
0,67
4
4,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
Ǒs
Ǒs
Output inverter IGBT
Figure 3
4,2
-15
15
600
8
0,06
0,28
time(us)
4,4
V
V
V
A
Ǒs
Ǒs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
4,3
Turn-on Switching Waveforms & definition of tr
120
250
fitted
%
%
VCE
IC
100
200
IC 90%
80
150
60
IC 60%
40
VCE
100
IC 40%
tr
IC 90%
50
20
IC 10%
Ic
0
0
IC 10%
tf
-20
-50
0
VC (100%) =
IC (100%) =
tf =
0,1
0,2
600
8
0,14
Copyright by Vincotech
0,3
0,4
time (us)
0,5
3,9
VC (100%) =
IC (100%) =
tr =
V
A
Ǒs
19
4
4,1
600
8
0,02
4,2
time(us)
4,3
V
A
Ǒs
Revision: 2
V23990-P639-A40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
200
120
%
Pon
IC 1%
Eoff
%
100
Poff
150
80
Eon
100
60
40
50
20
VGE 10%
VGE 90%
VCE 3%
0
tEon
0
tEoff
-50
-20
-0,2
0
0,2
0,4
0,6
3,9
0,8
4
4,1
4,2
4,3
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
4,86
0,78
0,67
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
Ǒs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
4,4
time(us)
4,86
0,83
0,28
kW
mJ
Ǒs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
150
VGE (V)
20
%
Id
15
100
10
trr
50
5
Vd
fitted
0
0
IRRM 10%
-5
-50
-10
-100
IRRM 90%
IRRM 100%
-15
-20
-150
-10
0
10
20
30
40
50
60
70
3,8
4
4,2
4,4
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-15
15
600
8
62,70
Copyright by Vincotech
4,6
4,8
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
600
8
-9
0,42
V
A
A
Ǒs
Revision: 2
V23990-P639-A40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Id
Qrr
Erec
100
100
80
tQrr
tErec
50
60
0
40
-50
20
Prec
-100
0
-20
-150
3,8
Id (100%) =
Qrr (100%) =
tQrr =
4,2
4,6
8
1,66
1,00
Copyright by Vincotech
5
time(us)
3,8
5,4
4,2
4,6
5
5,4
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
ǑC
Ǒs
21
4,86
0,66
1,00
kW
mJ
Ǒs
Revision: 2
V23990-P639-A40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste
Ordering Code
V23990-P639-A40-PM
in DataMatrix as
in packaging barcode as
P639-A40
P639-A40
Outline
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Pin table
X
Y
53
46
39,5
32,5
28,1
18
15
12
9
3
0
0
3
8,5
11,5
17
20
33
36
39
46
53
0
0
0
0
0
0
0
0
0
0
0
7
7
7
7
7
7
7
7
7
7
7
Pin
25
26
27
28
Pin table
X
Y
29
28,5
31,8
28,5
36,5
43,5
28,5
28,5
Pin
29
30
31
32
Pin table
X
Y
52,55
25
52,55
16,9
52,55
52,55
8,6
2,8
Pinout
Copyright by Vincotech
22
Revision: 2
V23990-P639-A40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
23
Revision: 2