10-F006PPA020SB01-M685B10 Maximum Ratings

10-F006PPA020SB01-M685B10
preliminary datasheet
flowPIM 0 + PFC 2nd
600V/20A
Features
flowPIM0+PFC 2nd
● Clip in PCB mounting
● Trench Fieldstop IGBT's for low saturation losses
● Latest generation superjunction MOSFET for PFC
Target Applications
Schematic
● Industrial Drives
● Embedded Drives
Types
● 10-F006PPA020SB01-M685B10
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=150°C
Tj=Tjmax
Tjmax
1
Th=80°C
Tc=80°C
26
36
A
200
A
200
A2s
32
48
W
150
°C
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
20
24
A
159
A
PFC MOSFET
Drain to source breakdown voltage
VDS
Th=80°C
Tc=80°C
ID
Tj=Tjmax
IDpulse
Tj=25°C
EAS
ID=9,3A
VDD=50V
Tj=25°C
1135
mJ
Avalanche energy, repetitive
EAR
ID=9,3A
VDD=50V
Tj=25°C
1,72
mJ
Avalanche current, repetitive
IAR
9,3
A
MOSFET dv/dt ruggedness
dv/dt
50
V/ns
64
97
W
±20
V
15
V/ns
150
°C
600
V
23
30
A
99
A
36
54
W
150
°C
DC drain current
Pulsed drain current
Avalanche energy, single pulse
Power dissipation
Ptot
Gate-source peak voltage
VGS
Reverse diode dv/dt
dv/dt
Maximum Junction Temperature
Tjmax
VDS=0...480V
Tj=Tjmax
VDS=0...400V , ISD ≤ ID
Th=80°C
Tc=80°C
Tj=25°C
PFC Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
PFC Shunt
DC forward current
Power dissipation per Shunt
IF
Tc=25°C
55
A
Ptot
Tc=25°C
3
W
600
V
20
27
A
tp limited by Tjmax
60
A
VCE ≤ 600V, Tj ≤ Top max
60
A
41
62
W
±20
V
6
360
µs
V
175
°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
26
34
A
60
A
40
60
W
175
°C
500
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
DC link Capacitor
Max.DC voltage
VMAX
Tc=25°C
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
3
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Input Rectifier Diode
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
1600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,20
1,17
0,92
0,81
11
14
V
V
mΩ
0,05
Thermal grease
thickness≤50um
λ = 1 W/mK
2,20
mA
K/W
PFC MOSFET
Static drain to source ON resistance
Gate threshold voltage
Gate to Source Leakage Current
RDS(on)
V(GS)th
IDSS
Turn On Delay Time
td(ON)
Turn off delay time
Fall time
0,00172
IGSS
Zero Gate Voltage Drain Current
Rise Time
15
10
20
0
600
0
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
QGE
Gate to source charge
QGS
Gate to drain charge
QGD
Input capacitance
Ciss
Output capacitance
Coss
Rgoff=8 Ω
Rgon=8 Ω
Rgon=8 Ω
±15
400
10
480
21
25,8
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,4
70
140
3
mΩ
3,6
100
5
24
23
10
11
228
237
13
11
0,22
0,23
0,12
0,14
V
nA
nA
ns
mWs
170
21
nC
87
3800
pF
Gate resistance
Thermal resistance chip to heatsink per chip
f=1MHz
0
Tj=25°C
100
rG
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
215
0,85
Ω
1,09
K/W
PFC Diode
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
24
600
Rgon=8 Ω
±15
400
di(rec)max
/dt
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
21
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,40
1,55
1,7
480
7
6
12
13
0,14
0,13
0,012
0,013
1529
1550
V
µA
A
ns
µC
mWs
A/µs
1,96
K/W
PFC Shunt
R1 value
R
Temperature coeficient
tc
Internal heat resistance
Inductance
copyright Vincotech
mΩ
10
20°C to 60°C
30
ppm/K
Rthi
10
K/W
L
3
nH
4
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,6
6,5
1,1
1,58
1,76
1,9
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,00029
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
20
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
1,1
300
Rgoff=16 Ω
Rgon=16 Ω
±15
400
20
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
noen
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
67
67
27
29
126
145
54
75
0,68
0,96
0,48
0,71
ns
mWs
1100
f=1MHz
0
25
±15
480
Tj=25°C
71
pF
Tj=25°C
120
nC
2,32
K/W
32
20
Thermal grease
thickness≤50um
λ = 1 W/mK
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
30
IRRM
trr
Qrr
Rgon=16 Ω
±15
400
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
20
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,25
Thermal grease
thickness≤50um
λ = 1 W/mK
1,64
1,66
10
13
204
257
1,13
2,01
31
71
0,31
0,54
1,95
V
A
ns
µC
A/µs
mWs
2,40
K/W
100
nF
22000
Ω
DC link Capacitor
C value
C
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
B-value
B(25/50)
Tol. ±3%
B-value
B(25/100)
Tol. ±3%
5
210
mW
Tj=25°C
3,5
mW/K
Tj=25°C
Tj=25°C
5
%
Tc=100°C
Tj=25°C
Vincotech NTC Reference
copyright Vincotech
-5
K
4000
K
A
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
60
IC (A)
IC (A)
60
50
50
40
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
125
IC (A)
IF (A)
75
4
60
100
45
75
30
50
15
25
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
4
250
10
copyright Vincotech
8
12
V GE (V)
0
16
At
tp =
µs
V
6
1
250
2
3
V F (V)
4
µs
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Output Inverter
Output inverter IGBT
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,5
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Eon High T
2
Eon High T
1,2
1,5
Eon Low T
Eon Low T
0,9
Eoff High T
1
Eoff Low T
0,6
Eoff High T
Eoff Low T
0,5
0,3
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
16
32
48
64
RG(Ω)
80
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
±15
V
IC =
20
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,6
0,75
E (mWs)
E (mWs)
Erec
0,5
Tj = Tjmax -25°C
0,6
Tj = Tjmax -25°C
0,4
0,45
Erec
Erec
Tj = 25°C
0,3
0,3
0,2
Erec
Tj = 25°C
0,15
0,1
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
16
32
48
64
RG(Ω)
80
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
±15
V
IC =
20
A
7
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
1,00
t ( µs)
t ( µs)
tdoff
tdoff
tdon
tf
0,10
0,10
tf
tdon
tr
0,01
0,01
tr
0,00
0,00
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
125
VCE =
400
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
16
32
48
RG(Ω )
64
80
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
±15
V
IC =
20
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,4
t rr( µs)
0,30
Output inverter FWD
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
trr
0,25
trr
0,3
trr
0,20
0,15
0,2
Tj = 25°C
Tj = 25°C
0,10
0,1
0,05
0,00
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
±15
16
copyright Vincotech
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
20
25/125
400
20
±15
40
60
R g on ( Ω )
80
°C
V
A
V
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( µC)
2,5
Qrr( µC)
2,5
Qrr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
2,0
2,0
1,5
1,5
Qrr
Tj = 25°C
Qrr
1,0
Qrr
1,0
Tj = 25°C
0,5
0,5
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
±15
16
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
20
25/125
400
20
±15
40
60
80
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
40
IrrM (A)
15
R g on ( Ω)
IRRM
Tj = Tjmax -25°C
Tj = Tjmax - 25°C
12
30
IRRM
9
20
Tj = 25°C
6
Tj = 25°C
10
IRRM
3
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
±15
16
copyright Vincotech
10
15
20
25
I C (A)
30
°C
V
V
Ω
9
0
16
At
Tj =
VR =
IF =
VGE =
25/125
400
20
±15
32
48
64
R gon ( Ω )
80
°C
V
A
V
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
1000
6000
dI0/dt
direc / dt (A/ µs)
dI0/dt
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
800
dIrec/dt
5000
4000
600
3000
400
2000
200
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
±15
16
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
16
25/125
400
20
±15
32
48
80
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
R gon ( Ω )
64
10
0
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
0
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10
-5
At
D=
RthJH =
10
10
-3
10
-2
10
-1
10
0
t p (s)
1
10
10 10
2,32
K/W
RthJH =
1,88
K/W
IGBT thermal model values
Phase change interface
Tau (s)
4,4E+00
3,8E-01
8,1E-02
1,2E-02
1,4E-03
1,3E-04
copyright Vincotech
R (C/W)
0,06
0,24
1,02
0,27
0,12
0,17
-5
At
D=
RthJH =
tp / T
Thermal grease
R (C/W)
0,07
0,30
1,26
0,34
0,14
0,21
-4
10
-4
R (C/W)
0,07
0,27
1,13
0,52
0,20
0,21
10
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
tp / T
2,40
Thermal grease
Tau (s)
3,6E+00
3,1E-01
6,6E-02
9,6E-03
1,1E-03
1,0E-04
10
K/W
RthJH =
1,94
K/W
FWD thermal model values
Phase change interface
Tau (s)
4,6E+00
4,8E-01
8,5E-02
2,0E-02
2,8E-03
3,3E-04
R (C/W)
0,06
0,22
0,92
0,42
0,16
0,17
Tau (s)
3,7E+00
3,9E-01
6,9E-02
1,6E-02
2,3E-03
2,7E-04
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
35
Ptot (W)
IC (A)
80
30
60
25
20
40
15
10
20
5
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
Ptot (W)
IF (A)
75
150
60
30
45
20
30
10
15
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
11
50
175
100
150
T h ( o C)
200
°C
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
16
IC (A)
VGE (V)
103
120V
14
10uS
1mS
100mS
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
100uS
2
12
480V
10
DC
10mS
8
101
6
4
100
2
0
10-1
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
V CE (V)
2
0
103
20
60
80
100
120
140
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Output inverter IGBT
Figure 27
40
A
20
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
14
12
300
250
10
200
8
150
6
100
4
50
2
0
0
10
11
12
13
14
V GE (V)
15
12
13
14
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright Vincotech
12
15
16
17
18
19
V GE (V)
20
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Output Inverter
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
50
IC MAX
40
Ic CHIP
Ic
MODULE
30
VCE MAX
20
10
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
13
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
PFC
PFC MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
PFC MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
50
ID (A)
ID (A)
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGS from
2
4
6
V DS (V)
8
10
0
2
At
tp =
Tj =
VGS from
µs
250
25
°C
0 V to 20 V in steps of 2 V
PFC MOSFET
Figure 3
Typical transfer characteristics
4
6
8
10
250
µs
125
°C
0 V to 20 V in steps of 2 V
PFC FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
ID = f(VGS)
V DS (V)
100
ID (A)
IF (A)
25
20
80
15
60
Tj = 25°C
10
Tj = Tjmax-25°C
40
5
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
1
At
tp =
VDS =
250
10
copyright Vincotech
2
3
4
5
V GS (V)
6
0
At
tp =
µs
V
14
1
250
2
3
V F (V)
4
µs
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
PFC
PFC MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
PFC MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
0,8
E (mWs)
0,4
Eon
Eon
0,3
0,6
Eon
Tj =25°C
Eon
Eoff
0,2
0,4
Eoff
Tj = Tjmax -25°C
0,2
0,1
Eoff
Eoff
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
A
21
PFC MOSFET
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
PFC MOSFET
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,04
E (mWs)
E (mWs)
0,015
Tj = 25°C
Erec
0,012
0,03
Erec
Erec
Tj = Tjmax -25°C
0,009
Erec
0,02
0,006
Tj = 25°C
0,01
0,003
Tj = Tjmax - 25°C
0,000
0,00
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
copyright Vincotech
10
20
30
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
21
A
15
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
PFC
PFC MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
PFC MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( µs)
t ( µs)
1,00
tdoff
0,10
0,10
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
°C
125
VDS =
400
V
VGS =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG (Ω )
32
40
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
IC =
A
21
PFC FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
PFC FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,090
t rr( µs)
t rr( µs)
0,015
trr
0,012
trr
0,075
trr
trr
0,060
0,009
0,045
0,006
0,030
Tj = Tjmax-25°C
0,003
0,015
Tj = 25°C
0
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
8
copyright Vincotech
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
16
8
25/125
400
21
10
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
PFC
PFC FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
0,15
Qrr
Qrr ( µC)
Qrr ( µC)
0,15
Tj = 25°C
Qrr
Qrr
Tj = Tjmax - 25°C
0,12
0,12
Qrr
Tj = Tjmax - 25°C
Tj = 25°C
0,09
0,09
0,06
0,06
0,03
0,03
0
0,00
0
At
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
8
10
15
20
25
I C (A)
30
0
At
Tj =
°C
V
V
Ω
PFC FWD
8
25/125
400
21
10
VR =
IF =
VGS =
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
24
32
10
Tj = 25°C
8
R gon ( Ω)
40
°C
V
A
V
PFC FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
IrrM (A)
PFC FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
20
16
Tj = 25°C
Tj = Tjmax - 25°C
IRRM
6
12
IRRM
4
8
Tj = Tjmax -25°C
IRRM
2
4
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
8
copyright Vincotech
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
17
8
25/125
400
21
10
16
24
32
R go n ( Ω )
40
°C
V
A
V
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
PFC
PFC FWD
PFC FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
3000
6000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/ µs)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIrec/dt
2500
dI0/dt
dIrec/dt
5000
Tj = 25°C
2000
4000
1500
3000
Tj = Tjmax -25°C
1000
2000
Tj = 25°C
500
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
8,01
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
PFC MOSFET
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
R g on ( Ω)
40
°C
V
A
V
PFC FWD
10-3
10-2
10-1
100
t p (s)
10110
K/W
RthJH =
0,88
10
K/W
IGBT thermal model values
Phase change interface
Tau (s)
3,95E+00
4,91E-01
1,37E-01
2,28E-02
3,27E-03
5,12E-04
copyright Vincotech
R (C/W)
0,05
0,23
0,43
0,11
0,04
0,03
-2
-5
At
D=
RthJH =
tp / T
1,09
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
10-4
Thermal grease
R (C/W)
0,06
0,28
0,53
0,13
0,05
0,03
32
100
-2
At
D=
RthJH =
24
ZthJH (K/W)
ZthJH (K/W)
0
10-5
25/125
400
21
10
16
101
10-1
10
8
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
Tj = Tjmax - 25°C
10
-4
R (C/W)
0,10
0,50
0,95
0,26
0,16
18
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
tp / T
1,96
Thermal grease
Tau (s)
3,20E+00
3,98E-01
1,11E-01
1,85E-02
2,66E-03
4,15E-04
10
K/W
RthJH =
1,59
K/W
FWD thermal model values
Phase change interface
Tau (s)
3,09E+00
3,43E-01
8,40E-02
1,66E-02
2,77E-03
R (C/W)
0,08
0,41
0,77
0,21
0,13
Tau (s)
2,51E+00
2,78E-01
6,81E-02
1,35E-02
2,24E-03
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
PFC
PFC MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
PFC MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
35
IC (A)
Ptot (W)
150
30
120
25
90
20
15
60
10
30
5
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGS =
ºC
150
PFC FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
150
10
100
150
T h ( o C)
200
ºC
V
PFC FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
80
60
30
40
20
20
10
0
0
0
At
Tj =
50
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
ºC
19
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
PFC
PFC MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
PFC MOSFET
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
103
VGS (V)
ID (A)
10
8
10uS
102
120V
480V
6
1mS
10
100uS
10mS
1
4
100mS
DC
100
2
10-1
0
100
At
D=
Th =
VGS =
10
2
0
103
V DS (V)
At
ID =
single pulse
80
ºC
V
10
Tjmax
ºC
Tj =
30
21
60
90
120
150 Qg (nC) 180
A
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
50
IC MAX
40
Ic
MODULE
Ic CHIP
30
VCE MAX
20
10
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
copyright Vincotech
20
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
80
1
ZthJC (K/W)
IF (A)
10
60
100
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
0,5
1
1,5
V F (V)
10
2
10-5
At
D=
RthJH =
µs
250
-2
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
10-1
100
10110
tp / T
2,20
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
70
t p (s)
60
40
50
30
40
30
20
20
10
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
ºC
21
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
22
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 16 Ω
Rgon
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
200
%
%
tdoff
IC
VCE
100
150
VGE 90%
VCE 90%
75
VGE
VCE
100
IC
50
tdon
tEoff
50
25
IC
VGE
VGE10%
1%
tEon
0
-50
-25
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
time (us)
2,9
0,6
3
3,1
3,2
3,3
3,4
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
400
21
0,15
0,40
Output inverter IGBT
Figure 3
-15
15
400
21
0,07
0,24
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
100
VCE 3%
IC10%
0
%
VCE
IC
150
IC 90%
Ic
75
100
IC 60%
IC90%
50
tr
IC 40%
50
25
0
-25
-0,1
VCE
IC 10%
IC10%
0
tf
0
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,1
400
21
0,08
0,2
0,3
time (us)
-50
3,05
0,4
VC (100%) =
IC (100%) =
tr =
V
A
µs
23
3,1
3,15
3,2
400
21
0,03
V
A
µs
3,25
3,3
time(us)
3,35
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
150
125
Pon
%
%
Poff
Eoff
100
125
Eon
100
75
75
50
50
IC 1%
25
25
VGE 90%
VCE 3%
VGE 10%
0
0
tEoff
tEon
-25
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
8,37
0,71
0,40
0,4
time (us)
2,9
0,6
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter IGBT
Figure 7
Gate voltage vs Gate charge (measured)
3,1
8,37
0,96
0,24
3,2
3,3
time(us)
3,4
kW
mJ
µs
Output inverter FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
VGE (V)
20
%
Id
15
100
10
trr
50
5
Vd
0
fitted
0
IRRM 10%
-5
-50
IRRM 90%
IRRM 100%
-10
-100
-15
-20
-150
-50
0
50
100
150
200
2,9
3,0
3,1
3,2
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
-15
15
400
21
179,93
3,3
3,4
3,5
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
24
400
21
-13
0,26
V
A
A
µs
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Id
Qrr
Erec
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-100
-25
2,9
3,1
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,3
21
2,01
0,52
3,5
3,7
time(us)
3,9
2,8
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
25
3
3,2
8,37
0,54
0,52
3,4
3,6
time(us)
3,8
kW
mJ
µs
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Switching Definitions PFC
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
PFC MOSFET
Figure 1
PFC MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
150
%
%
tdoff
IC
125
100
IC
VGE 90%
VCE 90%
VCE
100
75
VGE
75
50
VGE
tdon
50
tEoff
IC 1%
25
25
VGE10%
VCE
0
VCE3%
IC10%
0
tEon
-25
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0
10
400
21
0,24
0,27
0,2
-25
2,95
0,3
3
3,1
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
PFC MOSFET
Figure 3
3,05
time (us)
0
10
400
21
0,02
0,08
V
V
V
A
µs
µs
PFC MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
150
125
fitted
%
%
IC
Ic
VCE
100
125
VCE
Ic 90%
100
75
IC90%
75
Ic 60%
tr
50
50
Ic 40%
25
25
Ic10%
IC 10%
0
-25
0,150
0
tf
0,175
0,200
0,225
-25
3,00
0,250
3,02
3,04
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
400
21
0,0110
3,06
3,08
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
26
400
21
0,0110
V
A
µs
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Switching Definitions PFC
PFC MOSFET
Figure 5
PFC MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
Pon
%
Eoff
100
Eon
100
75
75
50
50
Ic 1%
25
25
U ge10%
U ge90%
Uce 3%
Poff
0
0
tEon
tEoff
-25
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
8,4
0,14
0,27
0,2
time (us)
-25
2,95
0,3
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
PFC MOSFET
Figure 7
3,05
8,4
0,23
0,0825
time(us)
kW
mJ
µs
PFC FWD
Figure 8
Gate voltage vs Gate charge (measured)
3,1
Turn-off Switching Waveforms & definition of trr
150
Uge (V)
12
%
Id
10
100
8
trr
50
6
fitted
Ud
0
IRRM10%
4
IRRM90%
IRRM100%
-50
2
-100
0
-150
-2
-10
10
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
30
50
0
10
400
21
143,16
70
90
110
130
Qg (nC)
3
150
3,025
3,05
3,075
3,1
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
27
400
21
-6
0,01
V
A
A
µs
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Switching Definitions PFC
PFC FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
PFC FWD
150
150
%
%
Erec
Qrr
Id
100
100
tErec
tQint
50
50
0
0
Prec
-50
2,98
3,03
3,08
3,13
-50
2,98
3,18
3,03
3,08
Id (100%) =
Qrr (100%) =
tQint =
copyright Vincotech
21
0,13
0,10
3,13
3,18
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
28
8,40
0,03
0,10
kW
mJ
µs
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 17mm housing
Ordering Code
10-F006PPA020SB01-M685B10
in DataMatrix as
M685B10
in packaging barcode as
M685B10
Outline
Pinout
copyright Vincotech
29
Revision: 1
10-F006PPA020SB01-M685B10
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
30
Revision: 1