Si53340 Data Sheet

S i533 4 0
1 :4 L O W - J I T T E R LVDS C L O C K B U F F E R W I T H 2: 1 I N P U T M U X
Features

4 LVDS outputs
 VDD: 1.8 / 2.5 / 3.3 V
 Ultra-low additive jitter: 45 fs rms  16-QFN (3 mm x 3 mm)
 Wide frequency range: dc to
 RoHS compliant, Pb-free
1250 MHz
 Industrial temperature range:
 2:1 input mux
–40 to +85 °C
 Universal input stage accepts
differential or LVCMOS clock
Applications





High-speed clock distribution

Ethernet switch/router

Optical Transport Network (OTN) 
SONET/SDH

PCI Express Gen 1/2/3

Storage
Telecom
Industrial
Servers
Backplane clock distribution
Ordering Information:
See page 19.
Pin Assignments
Description
The Si53340 is an ultra low jitter four output LVDS buffer. The Si53340
features a 2:1 input mux, making it ideal for redundant clocking
applications. Utilizing Silicon Laboratories’ advanced fan-out clock
technology, the Si53340 guarantees low additive jitter, low skew, and low
propagation delay variability from dc to 1250 MHz.
The Si53340 features minimal cross-talk and excellent supply noise
rejection, simplifying low jitter clock distribution in noisy environments.
Functional Block Diagram
Patents pending
Rev. 1.0 7/15
Copyright © 2015 by Silicon Laboratories
Si53340
S i5 3 340
TA B L E O F C O N T E N T S
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.1. Universal, Any-Format Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2. Input Bias Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.3. Input Mux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.4. Output Clock Termination Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.5. AC Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.6. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.7. Input Mux Noise Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.8. Power Supply Noise Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3. Pin Description: 16-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
6. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
7. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
7.1. Si53340 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
7.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Rev. 1.0
2
S i5 3 340
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Symbol
Ambient Operating
Temperature
Test Condition
TA
Supply Voltage Range
VDD
LVDS
Min
Typ
Max
Unit
–40
—
85
°C
1.71
1.8
1.89
V
2.38
2.5
2.63
V
2.97
3.3
3.63
V
Table 2. Input Clock Specifications
(VDD=1.8 V  5%, 2.5 V  5%, or 3.3 V  10%, TA=–40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Differential Input Common
Mode Voltage
VCM
VDD = 2.5 V 5%, 3.3 V 10%
0.05
—
—
V
Differential Input Swing
(peak-to-peak)
VIN
0.2
—
2.2
V
Input High Voltage
VIH
VDD = 2.5 V 5%, 3.3 V 10%
VDD x 0.7
—
—
V
Input Low Voltage
VIL
VDD = 2.5 V 5%, 3.3 V 10%
—
—
VDD x 0.3
V
Input Capacitance
CIN
CLK0 and CLK1 pins with
respect to GND
—
5
—
pF
Table 3. DC Common Characteristics
(VDD = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
—
140
—
mA
Supply Current
IDD
Input High Voltage
VIH
CLK_SEL
0.8 x VDD
—
—
V
Input Low Voltage
VIL
CLK_SEL
—
—
0.2 x VDD
V
Internal Pull-down
Resistor
RDOWN
CLK_SEL
—
25
—
k
Rev. 1.0
3
Si5 3340
Table 4. Output Characteristics—LVDS
(VDD = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Single-Ended Output
Swing
VSE
RL = 100 Ω across QN and QN
200
—
490
mV
Output Common
Mode Voltage
(VDD = 2.5 V or 3.3V)
VCOM1
VDD = 2.38 to 2.63 V, 2.97 to
3.63 V, RL = 100 Ω across QN
and QN
1.10
1.25
1.35
V
Output Common
Mode Voltage
(VDD = 1.8 V)
VCOM2
VDD = 1.71 to 1.89 V, RL = 100 Ω
across QN
and QN
0.85
0.97
1.25
V
Table 5. AC Characteristics
(VDD = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
dc
—
1250
MHz
Frequency
F
Duty Cycle
DC
20/80% TR/TF<10% of period
47
50
53
%
Minimum Input Clock
Slew Rate
SR
Required to meet prop delay and
additive jitter specifications
(20–80%)
0.75
—
—
V/ns
Output Rise/Fall Time
TR/TF
—
—
325
ps
Minimum Input Pulse
Width
TW
360
—
—
ps
—
50
65
fs
TPLH,
TPHL
650
850
1050
ns
Output to Output Skew1
TSK
—
—
50
ps
Part to Part Skew2
TPS
—
—
125
ps
10 kHz sinusoidal noise
—
–70
—
dBc
100 kHz sinusoidal noise
—
–65
—
dBc
500 kHz sinusoidal noise
—
–60
—
dBc
1 MHz sinusoidal noise
—
–57.5
—
dBc
Note: 50% input duty cycle.
Additive Jitter
(Differential Clock Input)
Propagation Delay
Power Supply Noise
Rejection3
J
PSRR
VDD = 2.5 / 3.3 V, F = 725 MHz,
0.75 V/ns input slew rate
Notes:
1. Output to output skew specified for outputs with an identical configuration.
2. Defined as skew between any output on different devices operating at the same supply voltages, temperatures, and
equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross
points.
3. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDD (3.3 V = 100 mVPP) and noise spur
amplitude measured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for further details.
4
Rev. 1.0
S i5 3 340
Table 6. Additive Jitter, Differential Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Amplitude
VIN
(Single-Ended,
Peak-to-Peak)
Differential
Clock Format
20%-80% Slew
Rate (V/ns)
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
Typ
Max
3.3
725
Differential
0.15
0.637
LVDS
50
65
3.3
156.25
Differential
0.5
0.458
LVDS
150
200
2.5
725
Differential
0.15
0.637
LVDS
50
65
2.5
156.25
Differential
0.5
0.458
LVDS
145
195
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. AC-coupled differential inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.
Table 7. Additive Jitter, Single-Ended Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Amplitude
VIN
(single-ended,
peak to peak)
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
SE 20%-80%
Slew Rate
(V/ns)
Clock Format
Typ
Max
3.3
156.25
Single-ended
2.18
1
LVDS
150
200
2.5
156.25
Single-ended
2.18
1
LVDS
145
195
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. DC-coupled single-ended inputs.
3. Measured differentially using a balun at the phase noise analyzer input (see Figure 1).
Figure 1. Differential Measurement Method Using a Balun
Rev. 1.0
5
Si5 3340
Table 8. Thermal Conditions
Parameter
Symbol
Test Condition
Value
Unit
Thermal Resistance,
Junction to Ambient
JA
Still air
57.6
°C/W
Thermal Resistance,
Junction to Case
JC
Still air
41.5
°C/W
Table 9. Absolute Maximum Ratings
Parameter
Symbol
Storage Temperature
Min
Typ
Max
Unit
TS
–55
—
150
C
Supply Voltage
VDD
–0.5
—
3.8
V
Input Voltage
VIN
–0.5
—
VDD+ 0.3
V
Output Voltage
VOUT
—
—
VDD+ 0.3
V
ESD Sensitivity
HBM
—
—
2000
V
ESD Sensitivity
CDM
—
—
500
V
Peak Soldering
Reflow Temperature
TPEAK
—
—
260
C
—
—
125
C
Maximum Junction
Temperature
Test Condition
HBM, 100 pF, 1.5 k
Pb-Free; Solder reflow profile
per JEDEC J-STD-020
TJ
Note: Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation
specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended
periods may affect device reliability.
6
Rev. 1.0
S i5 3 340
2. Functional Description
The Si53340 is a low-jitter, low-skew 1:4 LVDS buffer with an integrated 2:1 input mux. The device has a universal
input that accepts most common differential or LVCMOS input signals. A clock select pin is used to select the
active input clock.
2.1. Universal, Any-Format Input
The universal input stage enables simple interfacing to a wide variety of clock formats, including LVPECL, lowpower LVPECL, LVCMOS, LVDS, HCSL, and CML. Tables 10 and 11 summarize the various ac- and dc-coupling
options supported by the device. For the best high-speed performance, the use of differential formats is
recommended. For both single-ended and differential input clocks, the fastest possible slew rate is recommended
as low slew rates can increase the noise floor and degrade jitter performance. Though not required, a minimum
slew rate of 0.75 V/ns is recommended for differential formats and 1.0 V/ns for single-ended formats. See “AN766:
Understanding and Optimizing Clock Buffer’s Additive Jitter Performance” for more information.
Table 10. LVPECL, LVCMOS, and LVDS Input Clock Options
LVPECL
LVCMOS
LVDS
AC-Couple
DC-Couple
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
N/A
N/A
No
No
Yes
No
2.5/3.3 V
Yes
Yes
No
Yes
Yes
Yes
Table 11. HCSL and CML Input Clock Options
HCSL
CML
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
No
No
Yes
No
2.5/3.3 V
Yes (3.3 V)
Yes (3.3 V)
Yes
No
Figure 2. Differential HCSL, LVPECL, Low-Power LVPECL, LVDS, CML AC-Coupled Input
Termination
Figure 3. LVCMOS DC-Coupled Input Termination
Rev. 1.0
7
Si5 3340
Figure 4. Differential DC-Coupled Input Terminations
8
Rev. 1.0
S i5 3 340
2.2. Input Bias Resistors
Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected.
The noninverting input is biased with a 18.75 k pulldown to GND and a 75 k pullup to VDD. The inverting input is
biased with a 75 k pullup to VDD.
Figure 5. Input Bias Resistors
2.3. Input Mux
The Si53340 provides two clock inputs for applications that need to select between one of two clock sources. The
CLK_SEL pin selects the active clock input. The table below summarizes the input and output clock based on the
input mux and output enable pin settings.
Table 12. Input Mux Logic
CLK_SEL
CLK0
CLK1
Q1
Q
L
L
X
L
H
L
H
X
H
L
H
X
L
L
H
H
X
H
H
L
Notes:
1. On the next negative transition of CLK0 or CLK1.
2.4. Output Clock Termination Options
The recommended output clock termination options are shown below. Unused outputs can be left floating. Do not
short unused outputs to ground.
Rev. 1.0
9
Si5 3340
Figure 6. LVDS Output Termination
10
Rev. 1.0
S i5 3 340
2.5. AC Timing Waveforms
Figure 7. AC Waveforms
Rev. 1.0
11
Si5 3340
2.6. Typical Phase Noise Performance
Each of the following three figures shows three phase noise plots superimposed on the same diagram.
Source Jitter: Reference clock phase noise.
Total Jitter (SE): Combined source and clock buffer phase noise measured as a single-ended output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz.
Total Jitter (Diff'l): Combined source and clock buffer phase noise measured as a differential output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz. The differential measurement as shown in each figure is
made using a balun. See Figure 1 on page 6.
Note: To calculate the total RMS phase jitter when adding a buffer to your clock tree, use root-sum-square (RSS) addition.
The total jitter is a measure of the source plus the buffer's additive phase jitter. The additive jitter (rms) of the buffer
can then be calculated (via root-sum-square addition).
Figure 8. Source, Additive, and Total Jitter (156.25 MHz)
12
Rev. 1.0
S i5 3 340
Figure 9. Source, Additive, and Total Jitter (312.5 MHz)
Rev. 1.0
13
Si5 3340
Figure 10. Source, Additive, and Total Jitter (625 MHz)
14
Rev. 1.0
S i5 3 340
2.7. Input Mux Noise Isolation
The input clock mux is designed to minimize crosstalk between the CLK0 and CLK1. This improves phase jitter
performance when clocks are present at both the CLK0 and CLK1 inputs. Figure 11 below is a measurement the
input mux’s noise isolation.
Figure 11. Input Mux Noise Isolation
2.8. Power Supply Noise Rejection
The device supports on-chip supply voltage regulation to reject noise present on the power supply, simplifying low
jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs and
SoCs and may reduce board-level filtering requirements. For more information, see “AN491: Power Supply
Rejection for Low Jitter Clocks”.
Rev. 1.0
15
Si5 3340
3. Pin Description: 16-Pin QFN
Table 13. Pin Descriptions
16
Pin
Name
Type*
Description
1
GND
GND
2
CLK_SEL
I
MUX Input Select Pin (LVCMOS)
When CLK_SEL is high, CLK1 is selected
When CLK_SEL is low, CLK0 is selected
CLK_SEL contains an internal pull-down resistor
3
CLK1
I
Input Clock 1
4
CLK1
I
Input Clock 1 (Complement)
5
VDD
P
Core Voltage Supply.
Bypass with 1.0 μF capacitor and place as close to the VDD pin as possible.
6
CLK0
I
Input Clock 0
7
CLK0
I
Input Clock 0 (Complement)
8
NC
—
No connect. Leave this pin unconnected.
9
Q0
O
Output Clock 0
10
Q0
O
Output Clock 0 (complement)
11
Q1
O
Output Clock 1
Ground
Rev. 1.0
S i5 3 340
Table 13. Pin Descriptions (Continued)
Pin
Name
Type*
Description
12
Q1
O
Output Clock 1 (complement)
13
Q2
O
Output Clock 2
14
Q2
O
Output Clock 2 (complement)
15
Q3
O
Output Clock 3
16
Q1
O
Output Clock 3 (complement)
GND
Pad
GND
GND
Ground
*Pin types are: I = input, O = output, P = power, GND = ground.
Rev. 1.0
17
Si5 3340
4. Ordering Guide
18
Part Number
Package
Pb-Free, ROHS-6
Temperature
Si53340-B-GM
16-QFN
Yes
–40 to 85 C
Si53301/4-EVB
—
Yes
–40 to 85 C
Rev. 1.0
S i5 3 340
5. Package Outline
Figure 12 shows the package dimensions for the 3x3 mm 16-pin QFN package. Table 14 lists the values for the
dimensions shown in the illustration.
Figure 12. Si53340 3x3 mm 16-QFN Package Diagram
Table 14. Package Diagram Dimensions
Dimension
Min
Nom
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
b
0.18
0.25
0.30
D
D2
3.00 BSC.
1.65
1.70
e
0.50 BSC.
E
3.00 BSC.
1.75
E2
1.65
1.70
1.75
L
0.30
0.40
0.50
aaa
—
—
0.10
bbb
—
—
0.10
ccc
—
—
0.08
ddd
—
—
0.10
eee
—
—
0.05
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
Rev. 1.0
19
Si5 3340
6. PCB Land Pattern
Figure 13 shows the PCB land pattern dimensions for the 3x3 mm 16-pin QFN package. Table 15 lists the values
for the dimensions shown in the illustration.
Figure 13. Si53340 3x3 mm 16-QFN Package Land Pattern
Table 15. PCB Land Pattern Dimensions
Dimension
mm
C1
3.00
C2
3.00
E
0.50
X1
0.30
Y1
0.80
X2
1.75
Y2
1.75
Notes:
General
1. All dimensions shown are in millimeters (mm).
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is
calculated based on a Fabrication Allowance of 0.05 mm.
Solder Mask Design
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the
metal pad is to be 60 μm minimum, all the way around the pad.
Stencil Design
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure
good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
8. A 2x2 array of 0.65 mm square openings on a 0.90 mm pitch should be used for the center ground pad.
Card Assembly
9. A No-Clean, Type-3 solder paste is recommended.
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body
Components.
20
Rev. 1.0
S i5 3 340
7. Top Marking
7.1. Si53340 Top Marking
7.2. Top Marking Explanation
Mark Method:
Laser
Font Size:
0.635 mm (25 mils)
Right-Justified
Line 1 Marking:
Product ID
3340
Line 2 Marking:
TTTT = Mfg Code
Manufacturing Code from the Assembly Purchase
Order form.
Line 3 Marking
Circle = 0.5 mm Diameter
(Bottom-Left Justified)
Pin 1 Identifier
YWW = Date Code
Corresponds to the last digit of the current year (Y) and
the workweek (WW) of the mold date.
Rev. 1.0
21
S i5 3 340
DOCUMENT CHANGE LIST
Revision 0.9 to 1.0












Update operating conditions, including LVCMOS and
HCSL voltage support.
Removed voltage reference feature.
Updated Table 2, “Input Clock Specifications,” on
page 4.
Updated Table 3, “DC Common Characteristics,” on
page 4.
Updated Table 4, “Output Characteristics—LVDS,”
on page 5.
Updated Table 10, “LVPECL, LVCMOS, and LVDS
Input Clock Options,” on page 8.
Updated output voltage specifications.
Improved data for additive jitter specifications.
Improved typical phase noise plots.
Updated input/output termination recommendations.
Improved performance specifications with more
detail.
Updated ESD specifications.
Rev. 1.0
22
S i5 3 340
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
Rev. 1.0
23