M81706AFP

M81706AFP
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
HVIC
High Voltage Half-Bridge Driver
600 Volts/+120mA/-250mA
8
5
RECOMMENDED MOUNT PAD
D
T
E
R
A C
S
1
4
DETAIL "A"
B
DETAIL "B"
DETAIL "A"
H
DETAIL
"B"
J
N
F
E
K
G
PIN NUMBER
1
2
3
4
L
VCC
HIN
LIN
GND
8
7
6
5
VB
HO
VS
LO
Q
P
M
8 VB
VREG
HIN 2
UV DETECT
FILTER
HV
LEVEL
SHIFT
INTER
LOCK
VREG/VCC
LEVEL
SHIFT
RQ
R
S
PULSE
GEN
UV DETECT
FILTER
LIN 3
VREG/VCC
LEVEL
SHIFT
DELAY
7 HO
6 VS
1 VCC
5 LO
4 GND
Outline Drawing and Circuit Diagram
Dimensions
A
B
C
D
E
F
G
H
J
6/05
Inches
0.24±0.01
0.2±0.008
0.17±0.008
0.08 Max.
0.05
0.015±0.002
0.004
0.06
0.002 Min.
Millimeters
6.2±0.3
5.0±0.2
4.4±0.2
1.9 Max.
1.27
0.4±0.05
0.1
1.5
0.05 Min.
Dimensions
K
L
M
N
P
Q
R
S
T
Inches
0.04
0.015±0.008
0.006±0.002
10° Max.
0.03
0.023
0.05 Min.
0.23
0.76
Millimeters
0.9
0.4±0.2
0.15±0.05
10° Max.
0.745
0.595
1.27 Min.
5.72
0.76
Description:
M81706AFP is a high voltage
Power MOSFET and IGBT module
driver for half-bridge applications.
Features:
£ Shoot Through Interlock
£ High Voltage Level Shift
£ Output Current +120/-250mA
£ Half-Bridge Driver
£ SOP-8 Package
Applications:
£ HID Ballast
£ PDP
£ MOSFET Driver
£ IGBT Driver
£ Inverter Module Control
Ordering Information:
M81706AFP is a +120/-250mA,
600 Volt HVIC, High Voltage
Half-Bridge Driver
1
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81706AFP
HVIC, High Voltage Half-Bridge Driver
600 Volts/+120mA/-250mA
Absolute Maximum Ratings, Ta = 25°C unless otherwise specified
Characteristics
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
Symbol
M81706AFP
Units
VB
-0.5 ~ 624
Volts
VS
VB-24 ~ VB+0.5
Volts
High Side Floating Supply Voltage (VBS = VB – VS)
VBS
-0.5 ~ 24
Volts
High Side Output Voltage
VHO
VS-0.5 ~ VB+0.5
Volts
Low Side Fixed Supply Voltage
VCC
-0.5 ~ 24
Volts
Low Side Output Voltage
VLO
-0.5 ~ VCC+0.5
Volts
Logic Input Voltage (HIN, LIN)
VIN
-0.5 ~ VCC+0.5
Volts
Package Power Dissipation (Ta = 25°C, On Board)
Pd
0.6
Watts
Linear Derating Factor (Ta > 25°C, On Board)
Kθ
6.0
mW/°C
Rth(j-c)
50
°C/W
Tj
-20 ~ 125
°C
Junction to Case Thermal Resistance
Junction Temperature
Operation Temperature
Topr
-20 ~ 100
°C
Storage Temperature
Tstg
-40 ~ 125
°C
Recommended Operating Conditions
Characteristics
Symbol
Test Conditions
Min.
Typ.
Max.
Units
High Side Floating Supply Absolute Voltage
VB
VS+10
—
VS+20
Volts
High Side Floating Supply Offset Voltage
VS
0
—
500
Volts
High Side Floating Supply Voltage
VBS
10
—
20
Volts
High Side Output Voltage
VHO
VB = VB – VS
VS
—
VB
Volts
Low Side Fixed Supply Voltage
VCC
10
—
20
Volts
Logic Supply Voltage
VLO
0
—
VCC
Volts
Logic Input Voltage
VIN
0
—
VCC
Volts
HIN, LIN
Electrical Characteristics
Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified
Characteristics
Floating Supply Leakage Current
2
Symbol
IFS
Test Conditions
VB = VS = 600V
Min.
Typ.
Max.
Units
—
—
1.0
µA
VBS Standby Current
IBS
HIN = LIN = 0V
—
0.2
0.5
mA
VCC Standby Current
ICC
HIN = LIN = 0V
0.2
0.5
1.0
mA
High Level Output Voltage
VOH
IO = -20mA, LO, HO
13.6
14.2
—
Volts
Low Level Output Voltage
VOL
IO = 20mA, LO, HO
—
0.3
0.6
Volts
High Level Input Threshold Voltage
VIH
HIN, LIN
2.7
—
—
Volts
Low Level Input Threshold Voltage
VIL
HIN, LIN
—
—
0.8
Volts
High Level Input Bias Current
IIH
VIN = 5V
—
5
20
µA
Low Level Input Bias Current
IIL
VIN = 0V
—
—
2.0
µA
VBS Supply UV Reset Voltage
VBSuvr
8.0
8.9
9.8
Volts
VBS Supply UV Trip Voltage
VBSuvt
7.4
8.2
9.0
Volts
VBS Supply UV Hysteresis Voltage
VBSuvh
0.5
0.7
—
Volts
VBS Supply UV Filter Time
tVBSuv
—
7.5
—
µs
VCC Supply UV Reset Voltage
VCCuvr
8.0
8.9
9.8
Volts
6/05
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81706AFP
HVIC, High Voltage Half-Bridge Driver
600 Volts/+120mA/-250mA
Electrical Characteristics
Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified
Characteristics
Symbol
Min.
Typ.
Max.
Units
VBS Supply UV Trip Voltage
VCCuvt
Test Conditions
7.4
8.2
9.0
Volts
VCC Supply UV Hysteresis Voltage
VCCuvh
0.5
0.7
—
Volts
VCC Supply UV Filter Time
tVCCuv
—
7.5
—
µs
Output High Level Short Circuit Pulsed Current
IOH
VO = 0V, VIN = 5V, PW < 10µs
120
200
—
mA
Output Low Level Short Circuit Pulsed Current
IOL
VO = 15V, VIN = 0V, PW < 10µs
250
350
—
mA
Output High Level ON Resistance
ROH
IO = -20mA, ROH = (VOH – VO)/IO
—
40
70
Ω
Output Low Level ON Resistance
ROL
IO = 20mA, ROL = VO /IO
—
15
30
Ω
High Side Turn-On Propagation Delay
tdLH(HO)
CL = 1000pF between HO – VS
—
120
240
ns
High Side Turn-Off Propagation Delay
tdHL(HO)
CL = 1000pF between HO – VS
—
170
280
ns
High Side Turn-On Rise Time
trH
CL = 1000pF between HO – VS
—
130
220
ns
High Side Turn-Off Fall Time
tfH
CL = 1000pF between HO – VS
—
50
80
ns
LowSide Turn-On Propagation Delay
tdLH(LO)
CL = 1000pF between LO – GND
—
120
240
ns
Low Side Turn-Off Propagation Delay
tdHL(LO)
CL = 1000pF between LO – GND
—
170
280
ns
Low Side Turn-On Rise Time
trL
CL = 1000pF between LO – GND
—
130
220
ns
Low Side Turn-Off Fall Time
tfL
CL = 1000pF between LO – GND
—
50
80
ns
Delay Matching, High Side and Low Side Turn-On
ΔtdLH
| tdLH(HO) – tdLH(LO) |
—
0
30
ns
Delay Matching, High Side and Low Side Turn-Off
ΔtdHL
| tdHL(HO) – tdHL(LO) |
—
0
30
ns
THERMAL DERATING FACTOR
CHARACTERISTICS
PACKAGE POWER DISSIPATION, Pd, (WATTS)
0.8
0.6
0.4
0.2
0
0
25
50
75
100
125
TEMPERATURE, (°C)
FUNCTION TABLE (X : HORL)
HIN
LIN
VBS UV
VCC UV
L
L
H
H
L
H
H
H
H
L
H
H
H
H
H
H
X
L
L
H
X
H
L
H
L
X
H
L
H
X
H
L
HO
L
L
H
L
L
L
L
L
LO
L
H
L
L
L
H
L
L
Behavorial State
LO = HO = Low
LO = High
HO = High
LO = HO = Low
LO = Low, VBS UV Tripped
LO = High, VBS UV Tripped
LO = Low, VCC UV Tripped
HO = LO = Low, VCC UV Tripped
NOTE: “L” state of VBS UV, VCC UV means that UV trip voltage.
In the case of both input signals (HIN and LIN) are “H”, output signals (HO and LO) become “L”.
6/05
3
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
M81706AFP
HVIC, High Voltage Half-Bridge Driver
600 Volts/+120mA/-250mA
TIMING DIAGRAM
1. Input/Output Timing Diagram
HIGH ACTIVE – When input signal (HIN or LIN) is “H”, then output signal (HO or LO) is “H”. In the case of both input signals (HIN and LIN)
are “H”, then output signals (HO and LO) become “L”.
HIN
LIN
HO
LO
2. VCC(VBS) Supply Under Voltage Lockout Timing Diagram
When VCC supply voltage keeps lower UV trip voltage (VCCuvt = VCCuvr – VCCuvh) for VCC supply UV filter time, output signal becomes
“L”. And then, when VCC supply voltage is higher than UV reset voltage, output signal LO becomes “H”.
VCCuvh
VCC
VCCuvr
VCCuvt
tVCCuv
LO
LIN
When VCC supply voltage keeps lower UV trip voltage (VCCuvt = VCCuvr – VCCuvh) for VCC supply UV filter time, output signal becomes
“L”. And then, when VCC supply voltage is higher than UV reset voltage, input signal (LIN) is “L”; output signal HO becomes “H”.
VBS(H)
LIN(L)
VCCuvh
VCC
VCCuvr
VCCuvt
tVCCuv
HO
HIN
When VBS supply voltage keeps lower UV trip voltage (VBSuvt = VBSuvr – VBSuvh) for VBS supply UV filter time, output signal becomes
“L”. And then, VBS supply voltage is higher than UV reset voltage, output signal HO keeps “L” until next input signal HIN is “H”.
VBSuvh
VBS
VBSuvt
tVBSuv
VBSuvr
HO
HIN
3. Allowable Supply Voltage Transient
It is recommended supplying VCC first and VBS second. In the case of shutting off supply voltage, shut off VBS
first and shut off VCC second. At the time of starting VCC and VBS, power supply should be increased slowly. If it is increased
rapidly, output signal (HO or LO) may be “H”.
Note: This device has high voltage between closely spaced pins. In most applications, supplemental insulation will be required.
4
6/05