70 W612M3A1K8SC02 L300FP70 D1 14

70-W612M3A1K8SC02-L300FP70
datasheet
flow MNPC 12w
1200 V / 1800 A
Features
3x flow SCREW 4w 12mm housing
● Mixed voltage NPC
● Low inductive
● High power screw interface
● Integrated DC-snubber capacitors
● High accuracy NTC
Target Applications
● Solar inverter
Schematic
● UPS
● High Speed Motor Drive
Types
● 70-W612M3A1K8SC02-L300FP70
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
1383
1618
A
5400
A
3600
A
3123
4004
W
Half Bridge IGBT( T1 ,T4 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
copyright Vincotech
t p limited by T jmax
V CE ≤ 1200V, T j ≤ T op max
Turn off safe operating area
Maximum Junction Temperature
T j = T jmax
T s = 80°C
T c = 80°C
T j = T jmax
T j ≤ 150°C
V GE = 15V
T jmax
1
T s = 80°C
T c = 80°C
±20
V
10
800
µs
V
175
°C
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Neutral Point Diode( D5 ,D6 )
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T j = T jmax
650
V
T s = 80°C
T c = 80°C
1005
1220
A
3600
A
T s = 80°C
T c = 80°C
1321
1693
W
175
°C
t p = 10ms, sin 180°
T j = T jmax
T jmax
Neutral Point IGBT( T2 ,T3 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CE
IC
I CRM
t p limited by T jmax
V CE ≤ 1200V, T j ≤ T op max
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j = T jmax
T s = 80°C
T c = 80°C
T j = T jmax
T s = 80°C
T c = 80°C
T j ≤ 150°C
V GE = 15V
T jmax
650
V
1063
1447
A
5400
A
3600
A
1985
2544
W
±20
V
6
360
µs
V
175
°C
Half Bridge Diode( D2 ,D3 )
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
copyright Vincotech
V RRM
IF
I FRM
P tot
T j = T jmax
1200
V
T s = 80°C
T c = 80°C
1021
1218
A
5400
A
T s = 80°C
T c = 80°C
2075
2660
W
175
°C
t p limited by T jmax
T j = T jmax
T jmax
2
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
630
V
-40...+105
°C
39
A
DC link Capacitor
Max.DC voltage
Operation Temperature
RMS Current
V MAX
TOP
IRMS
f = 10KHz
ΔT = 10°C
Ta ≤ 85°C
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Stage
copyright Vincotech
V is
t = 2s
DC voltage
CTI
>200
3
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Half Bridge IGBT( T1 ,T4 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE = V GE
V CEsat
0,0684
15
1800
25
125
25
125
5,3
5,8
6,3
2,16
2,42
2,5
V
V
Collector-emitter cut-off current incl. Diode
I CES
0
1200
25
0,6
mA
Gate-emitter leakage current
I GES
20
0
25
9000
nA
350
25
125
25
125
25
125
25
125
25
125
25
125
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
All gates paralleling
tr
t d(off)
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
R goff = 0,5 Ω
R gon = 0,5 Ω
Ω
0,42
+15/-10
1800
288
284
103
105
447
373
63
96
40,95
48,01
73,51
107,89
ns
mWs
112200
f = 1MHz
25
0
25
pF
6960
4200
600
±15
Thermal resistance chip to heatsink
R th(j-s)
phase-change
material
λ = 3,4 W/mK
Thermal resistance chip to case
R th(j-c)
Rth(j-c)= 0,75*Rth(j-s)
1800
25
nC
14400
0,03
0,02
K/W
Neutral Point Diode( D5 ,D6 )
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
25
125
IR
650
25
350
1800
25
125
25
125
25
125
25
125
25
125
I RRM
t rr
Q rr
R gon = 0,5 Ω
+15/-10
( di rf/dt )max
E rec
Thermal resistance chip to heatsink
R th(j-s)
phase-change
material λ = 3,4
W/mK
Thermal resistance chip to case
R th(j-c)
Rth(j-c)= 0,75*Rth(j-s)
copyright Vincotech
1800
VF
1,64
1,61
2,4
21,6
588
883
223
302
60,94
124,39
10380
9556
12,36
24,83
0,07
0,06
V
µA
A
ns
µC
A/µs
mWs
K/W
4
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Neutral Point IGBT( T2 ,T3 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off incl diode
V GE(th)
V CEsat
I GES
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Turn-off delay time
Fall time
0,0288
15
I CES
Gate-emitter leakage current
Rise time
V CE = V GE
1800
0
1200
25
20
0
25
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
5,1
All gates paralleling
R goff = 0,5 Ω
R gon = 0,5 Ω
5,80
6,4
1,57
1,80
2,0
+15/-8
350
1800
25
125
25
125
25
125
25
125
25
125
25
125
V
V
0,14
mA
9000
nA
Ω
0,16
tr
t d(off)
25
125
25
125
197
201
89
94
246
268
44
65
26,5
33,5
50,1
71,7
ns
mWs
110880
f = 1MHz
0
25
1800
6912
25
pF
3288
15
Thermal resistance chip to heatsink
R th(j-s)
phase-change
material λ = 3,4
W/mK
Thermal resistance chip to case
R th(j-c)
Rth(j-c)= 0,75*Rth(j-s)
960
1800
19200
25
0,05
0,04
nC
K/W
Half Bridge Diode( D2 ,D3 )
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Ir
Reverse recovery time
Reverse recovered charge
Q rr
Reverse recovery energy
25
125
1200
25
350
1800
25
125
25
125
25
125
25
125
125
125
I RRM
t rr
Peak rate of fall of recovery current
1800
VF
R gon = 0,5 Ω
+15/-8
( di rf/dt )max
E rec
Thermal resistance chip to heatsink
R th(j-s)
phase-change
material λ = 3,4
W/mK
Thermal resistance chip to case
R th(j-c)
Rth(j-c)= 0,75*Rth(j-s)
2,51
2,54
2,9
2160
910
1244
111
117
62
165
20865
20295
11,52
35,92
0,05
0,04
V
µA
A
ns
µC
A/µs
mWs
K/W
DC link Capacitor
C value
Equivalent series resistance
C
ESR
25
f = 10KHz
25
f = 1KHz
4800
1,58
µF
mΩ
+10
20
Climatic category
copyright Vincotech
4080
-10
Tolerance
Dissipation factor
3450
%
0,0004
40/105/56
5
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R25
Δ R/R
Power dissipation
P
22000
25
R 100 = 1484 Ω
100
-5
25
Power dissipation constant
Ω
+5
%
5
mW
mW/K
25
1,5
B-value
B (25/50)
Tol. ±1%
25
3962
K
B-value
B (25/100)
Tol. ±1%
25
4000
K
I
Vincotech NTC Reference
Module Properties
Module inductance (from chips to PCB)
LsCE
Mounting torque for screws to heatsink
MS
Mounting torque for terminal screws
Mt
Mounting torque for Interconn PCB screws
M
Weight
m
copyright Vincotech
2
Screw M5 –according to the valid handling instructions
FSWB-M-*-HI
Screw M6 –according to the valid handling instructions
FSWB-M-*-HI
Screw M4 –according to the valid handling instructions
FSWB-M-*-HI
6
nH
6
Nm
2,5
5
Nm
2
2,2
Nm
1930
g
4
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Half Bridge T1, T4 / D5, D6
Half Bridge IGBT and Neutral Point FWD
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
IGBT
Typical output characteristics
I C = f(V CE)
3200
IC (A)
IC (A)
3200
2800
2800
2400
2400
2000
2000
1600
1600
1200
1200
800
800
400
400
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
350
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
1500
5
V CE (V)
FWD
IC (A)
IF (A)
3200
2800
1200
2400
2000
900
1600
600
1200
Tj = 125°C
800
300
Tj = 125°C
Tj = 25°C
Tj = 25°C
400
0
0
0
At
tp =
V CE =
2
350
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
7
0,5
350
1
1,5
2
2,5
V F (V)
3
µs
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Half Bridge T1, T4 / D5, D6
Half Bridge IGBT and Neutral Point FWD
Figure 5
IGBT
Figure 6
FWD
Typical switching energy losses
Typical reverse recovery energy loss
as a function of collector current
E = f(I C)
as a function of collector current
E rec = f(I c)
E (mWs)
E (mWs)
150
Eoff High T
30
Erec High T
25
120
Eoff Low T
20
90
15
Erec Low T
Eon High T
60
10
Eon Low T
30
5
0
0
0
500
1000
1500
2000
I C (A)
2500
0
With an inductive load at
Tj =
°C
25/125
25/125
V CE =
350
V
V GE =
-8 / +15 V
R gon =
0,5
Ω
R goff =
0,5
Ω
500
1000
1500
2000
2500
I C (A)
With an inductive load at
Tj =
25/125
°C
25/125
V CE =
350
V
V GE =
-8 / +15 V
R gon =
0,5
Ω
Figure 7
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 8
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
1,00
FWD
t rr(ms)
0,30
t (ms)
tdoff
trr High T
0,25
tdon
trr Low T
tf
0,10
0,20
tr
0,15
0,01
0,10
0,05
0,00
0,00
0
500
1000
1500
2000
I C (A)
2500
0
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
-8 / +15 V
R gon =
0,5
Ω
R goff =
0,5
copyright Vincotech
500
1000
At
Tj =
V CE =
25/125
25/125
350
°C
V
V GE =
R gon =
-8 / +15
0,5
V
Ω
1500
2000
I C (A)
2500
Ω
8
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Half Bridge T1, T4 / D5, D6
Half Bridge IGBT and Neutral Point FWD
Figure 9
FWD
Figure 10
FWD
Typical reverse recovery charge as a
Typical reverse recovery current as a
function of collector current
Q rr = f(I C)
function of collector current
I RRM = f(I C)
150
Qrr (mC)
1000
IRRM High T
IrrM (A)
Qrr High T
120
800
90
600
IRRM Low T
Qrr Low T
60
400
30
200
0
0
0
500
1000
At
Tj =
V CE =
V GE =
25/125
350
-8 / +15
°C
V
V
R gon =
0,50
Ω
1500
Tj =
2000
#REF!
25/125
I C (A)
2500
0
°C
Figure 11
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
500
1000
At
Tj =
V CE =
V GE =
25/125
25/125
350
-8 / +15
°C
V
V
R gon =
0,50
Ω
1500
2000
I C (A) 2500
FWD
direc / dt (A/ms)
20000
dIrec/dt T
dIo/dt T
15000
10000
5000
0
0
500
1000
At
Tj =
V CE =
V GE =
25/125
25/125
350
-8 / +15
V
V
R gon =
0,5
Ω
copyright Vincotech
1500
2000
I C (A)
2500
°C
9
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Half Bridge T1, T4 / D5, D6
Half Bridge IGBT and Neutral Point FWD
Figure 12
IGBT
Figure 13
FWD
IGBT transient thermal impedance
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
as a function of pulse width
Z th(j-s) = f(t p)
100
ZthJH (K/W)
ZthJH (K/W)
100
10-1
10-1
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-3
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-4
10-5
10-4
At
D =
10-3
10-2
10-1
100
t p (s)
10-5
101
10-4
At
D =
tp/T
10-3
10-2
10-1
100
t p (s)
101
tp/T
FWD thermal model values with phase-change material
R th(j-s) =
R thJC =
0,072
K/W
0,056
K/W
IGBT thermal model values with phase-change material
R thJC =
R th(j-s) =
0,030
K/W
0,024
K/W
IGBT thermal model values
FWD thermal model values
With phase change material
R (K/W) Tau (s)
With phase change material
R (K/W) Tau (s)
0,0127
0,007
0,008
0,001
1,195
0,185
0,036
0,008
0,013
0,015
0,011
0,020
5,38
1,123
0,259
0,050
0,002
0,001
0,007
0,002
0,017
0,003
0,003
0,0004
Figure 14
Power dissipation as a
IGBT
Figure 15
Collector current as a
function of heatsink temperature
P tot = f(T h)
IGBT
function of heatsink temperature
I C = f(T h)
2000
Ptot (W)
IC (A)
6000
1800
5000
1600
1400
4000
1200
3000
1000
800
2000
600
400
1000
200
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
10
50
175
15
100
150
T h ( o C)
200
°C
V
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Half Bridge T1, T4 / D5, D6
Half Bridge IGBT and Neutral Point FWD
Figure 16
FWD
Figure 17
FWD
Power dissipation as a
Forward current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I F = f(T h)
1800
Ptot (W)
IF (A)
2500
2000
1600
1400
1200
1500
1000
800
1000
600
400
500
200
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Figure 18
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
IGBT
50
175
100
150
200
T h ( o C)
°C
Figure 19
Reverse bias safe operating area
IGBT
IC (A)
IC (A)
I C = f(V CE)
10uS
4000
IC MAX
3600
103
3200
100uS
Ic CHIP
2800
102
1mS
101
MAX
2400
2000
VCE
10mS
100mS
1600
DC
10
0
1200
800
10
-1
400
0
0
101
100
At
D =
Th =
single pulse
80
ºC
103
102
V GE =
Tj =
15
T jmax
200
600
800
1000
1200
1400
V CE (V)
At
Uccminus=Uccplus
V
ºC
Switching mode :
copyright Vincotech
400
V CE (V)
11
3 level switching
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Neutral Point T2, T3 / D2, D3
Neutral Point IGBT and Half Bridge FWD
Figure 1
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IGBT
Typical output characteristics
I C = f(V CE)
IC (A)
3200
IC (A)
3200
2800
2800
2400
2400
2000
2000
1600
1600
1200
1200
800
800
400
400
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
V CE (V)
350
µs
0
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
1500
5
FWD
IC (A)
IF (A)
3200
2800
1200
2400
2000
900
1600
600
1200
Tj = 125°C
Tj = 125°C
Tj = 25°C
800
Tj = 25°C
300
400
0
0
0
At
tp =
V CE =
2
350
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
12
1
350
2
3
V F (V)
4
µs
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Neutral Point T2, T3 / D2, D3
Neutral Point IGBT and Half Bridge FWD
Figure 5
IGBT
Figure 6
FWD
Typical switching energy losses
Typical reverse recovery energy loss
as a function of collector current
E = f(I C)
as a function of collector current
E rec = f(I c)
E (mWs)
80
E (mWs)
Eoff High T
30
Erec High T
25
Eoff Low T
60
20
15
40
Erec Low T
Eon High T
10
Eon Low T
20
5
0
0
0
500
1000
1500
2000
I C (A)
0
2500
With an inductive load at
Tj =
25/0
°C
V CE =
350
V
V GE =
+15/-8
V
R gon =
0,5
Ω
R goff =
0,5
Ω
500
1000
1500
2000
I C (A)
2500
With an inductive load at
Tj =
25/0
°C
V CE =
350
V
V GE =
+15/-8
V
R gon =
0,5
Ω
Figure 7
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 8
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
0,25
t rr(ms)
t ( µs)
1
tdoff
0,20
tdon
trr High T
0,1
0,15
tf
tr
trr Low T
0,10
0,01
0,05
0,001
0,00
0
500
With an inductive load at
Tj =
0
°C
V CE =
350
V
V GE =
+15/-8
V
copyright Vincotech
1000
1500
R gon =
R goff =
2000
0,5
0,5
I C (A)
2500
0
Ω
Ω
13
500
1000
At
Tj =
V CE =
25/0
350
°C
V
V GE =
R gon =
+15/-8
0,5
V
Ω
1500
2000
I C (A)
2500
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Neutral Point T2, T3 / D2, D3
Neutral Point IGBT and Half Bridge FWD
Figure 9
FWD
Figure 10
FWD
Typical reverse recovery charge as a
Typical reverse recovery current as a
function of collector current
Q rr = f(I C)
function of collector current
I RRM = f(I C)
150
1500
IrrM (A)
Qrr (mC)
Qrr High T
IRRM High T
120
1200
90
900
IRRM Low T
Qrr Low T
60
600
300
30
0
0
0
500
1000
1500
2000
I C (A)
0
2500
500
1000
At
Tj =
V CE =
V GE =
25/0
350
+15/-8
°C
V
V
At
Tj =
V CE =
V GE =
25/0
350
+15/-8
°C
V
V
R gon =
0,5
Ω
R gon =
0,5
Ω
direc / dt (A/ms)
Figure 11
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
30000
1500
2000
I C (A)
2500
FWD
dIrec/dt T
di0/dt T
25000
20000
15000
10000
5000
0
0
500
1000
At
Tj =
V CE =
V GE =
25/125
350
+15/-8
°C
R gon =
0,5
Ω
copyright Vincotech
1500
2000
I C (A)
2500
V
V
14
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Neutral Point T2, T3 / D2, D3
Neutral Point IGBT and Half Bridge FWD
Figure 12
IGBT
Figure 13
FWD
as a function of pulse width
Z th(j-s) = f(t p)
as a function of pulse width
Z th(j-s) = f(t p)
10-1
10-1
ZthJH (K/W)
FWD transient thermal impedance
ZthJH (K/W)
IGBT transient thermal impedance
10-2
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-3
10-3
10-5
10-4
At
D =
10-3
10-2
10-1
100
t p (s)
101
10-5
10-4
At
D =
tp/T
10-3
10-2
10-1
100
t p (s)
tp/T
IGBT thermal model values with phase-change material
R thJC =
R th(j-s) =
0,048
K/W
0,037
K/W
FWD thermal model values with phase-change material
R th(j-s) =
R thJC =
0,046
K/W
0,036
K/W
IGBT thermal model values
With phase-change material
FWD thermal model values
With phase-change material
R (K/W)
0,014
0,008
0,008
0,011
0,004
0,001
0,001
R (K/W)
0,007
0,011
0,009
0,014
0,003
0,002
Tau (s)
4,40
1,10
0,24
0,050
0,017
0,003
0,0005
Figure 14
IGBT
IGBT
Collector current as a
function of heatsink temperature
I C = f(T h)
4000
2000
IC (A)
Ptot (W)
Tau (s)
5,78
1,38
0,26
0,05
0,02
0,002
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
101
3500
1800
1600
3000
1400
2500
1200
2000
1000
800
1500
600
1000
400
500
200
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
ºC
15
50
100
At
Tj =
175
ºC
V GE =
15
V
150
T h ( o C)
200
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Neutral Point T2, T3 / D2, D3
Neutral Point IGBT and Half Bridge FWD
Figure 16
FWD
Figure 17
FWD
Power dissipation as a
Forward current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I F = f(T h)
4000
IF (A)
Ptot (W)
1800
1600
3500
1400
3000
1200
2500
1000
2000
800
1500
600
1000
400
500
200
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Figure 18
Reverse bias safe operating area
I C = f(V CE)
50
175
100
150
Th ( o C)
200
ºC
IGBT
IC (A)
4000
IC MAX
3600
Ic CHIP
3200
Ic MODULE
2800
2400
VCE MAX
2000
1600
1200
800
400
0
0
200
400
600
V CE (V)
800
At
Uccminus=Uccplus
Switching mode :
copyright Vincotech
3 level switching
16
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
17
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Switching Definitions Half Bridge
General conditions
Tj
= 125 °C
= 0,5 Ω
R gon
R goff
= 0,5 Ω
Figure 1
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
150
150
VCE
%
%
IC
125
125
tdoff
VGE
VGE
VCE
100
100
VGE 90%
VCE 90%
75
75
IC
tdon
50
50
tEoff
25
25
VGE 10%
IC 1%
VCE 3%
IC 10%
0
0
tEon
-25
-0,3
-25
-0,1
0,1
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,3
-10
15
350
1816
0,37
1,00
0,5
0,7
0,9
2,8
1,1
time (us)
V
V
V
A
µs
µs
3
3,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t f
3,4
-10
15
350
1816
0,28
0,69
3,6
time(us)
3,8
V
V
V
A
µs
µs
Figure 4
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t r
150
150
VCE
%
%
125
Ic
125
fitted
IC
100
VCE
100
IC 90%
IC 90%
75
75
tr
IC 60%
50
50
IC 40%
25
25
IC 10%
0
IC 10%
0
tf
-25
-25
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
time(us)
3,1
3,2
3,3
3,4
V C (100%) =
I C (100%) =
350
1816
V
A
V C (100%) =
I C (100%) =
350
1816
V
A
tf =
0,10
µs
tr =
0,11
µs
copyright Vincotech
18
3,5
time(us) 3,6
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Switching Definitions Half Bridge
Figure 5
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
IC 1%
Poff
100
Eoff
Eon
100
75
75
50
50
25
25
Pon
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-25
-25
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
635,53
107,89
1,00
0,4
0,6
0,8
time (us)
2,8
1
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
3
3,2
635,53
48,01
0,69
3,4
3,6
time(us)
3,8
kW
mJ
µs
Figure 7
Buck FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Vd
0
fitted
IRRM 10%
IRRM 90%
-50
IRRM 100%
-100
3,2
3,3
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,4
3,5
350
1816
-883
0,30
V
A
A
µs
3,6
3,7
time(us)
3,8
19
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Switching Definitions Half Bridge
Figure 8
Buck FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
125
%
Figure 9
Buck FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
125
%
Qrr
Id
100
Erec
100
75
tErec
75
tQrr
50
50
25
25
0
Prec
0
-25
-50
-25
2,9
3,2
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,5
1816
124,39
0,65
3,8
4,1
time(us)
4,4
2,9
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
20
3,2
3,5
635,53
24,83
0,65
3,8
4,1
time(us)
4,4
kW
mJ
µs
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Switching Definitions Neutral Point
General conditions
Tj
= 125 °C
= 0,5 Ω
R gon
R goff
= 0,5 Ω
Figure 1
Neutral Point IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Neutral Point IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
150
200
%
%
IC
125
tdoff
150
100
VGE
VCE
VGE 90%
VCE
90%
100
75
VGE
tdon
IC
50
50
tEoff
25
VGE 10%
VCE
IC
tEon
1%
0
-25
-0,2
0
0,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,4
-8
15
350
1797
0,27
0,55
0,6
time (us)
-50
2,85
0,8
V
V
V
A
µs
µs
2,97
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Neutral Point IGBT
Turn-off Switching Waveforms & definition of t f
VCE 3%
IC 10%
0
3,09
3,21
-8
15
350
1797
0,20
0,42
V
V
V
A
µs
µs
3,33
3,45
3,57
time(us)
Figure 4
Neutral Point IGBT
Turn-on Switching Waveforms & definition of t r
150
%
200
%
VCE
Ic
125
fitted
150
IC
100
Ic 90%
VCE
100
75
IC
Ic 60%
90%
tr
50
50
Ic 40%
25
IC 10%
Ic 10%
0
tf
0
-50
-25
0,1
0,2
0,3
0,4
time (us)
3
0,5
3,1
3,2
3,3
V C (100%) =
I C (100%) =
350
1797
V
A
V C (100%) =
I C (100%) =
350
1797
V
A
tf =
0,065
µs
tr =
0,094
µs
copyright Vincotech
21
3,4
time(us)
3,5
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Switching Definitions Neutral Point
Figure 5
Neutral Point IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Neutral Point IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
Poff
IC 1%
Eoff
100
Eon
100
75
75
50
50
Pon
25
25
Uge 90%
Uge 10%
Uce 3%
0
0
tEon
tEoff
-25
-25
-0,1
0
0,1
P off (100%) =
E off (100%) =
t E off =
0,2
629,03
71,68
0,55
0,3
0,4
0,5
2,9
0,6
time (us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
3
3,1
629,026
33,50
0,42
3,2
3,3
3,4
time(us)
3,5
kW
mJ
µs
Figure 7
Neutral Point FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Ud
fitted
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
-150
3,1
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,2
3,3
350
1797
-1244
0,18
3,4
time(us)
3,5
V
A
A
µs
22
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Switching Definitions Neutral Point
Figure 8
Neutral Point FWD
Turn-on Switching Waveforms & definition of t Qrr
Figure 9
Neutral Point FWD
Turn-on Switching Waveforms & definition of t Erec
(t Qrr= integrating time for Q rr)
(t Erec= integrating time for E rec)
150
125
%
%
Qrr
Id
100
100
Erec
tErec
75
tQint
50
50
0
Prec
25
-50
0
-100
-25
3
3,2
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
3,4
3,6
1797
165,13
1,00
3,8
4
4,2
4,4
time(us)
3
A
µC
µs
3,2
P rec (100%) =
E rec (100%) =
t E rec =
23
3,4
3,6
629,03
35,92
1,00
3,8
4
4,2
4,4
time(us)
kW
mJ
µs
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Outline
Outline
Driver pins
Low current connections
Pin
X1
Y1
Function
Group
1.1
4,5
78,65
G1-1
T1
M6
screw
1.2
4,5
81,55
E1-1
T1
1.3
39,5
78,65
G1-2
T1
1.4
39,5
81,55
E1-2
1.5
19,45
30,15
1.6
24,55
30,15
1.7
1,95
68,4
E2-1
T2
1.8
4,85
68,4
G2-1
T2
X2
Y2
Function
2.1
0
0
Phase
2.2
22
0
Phase
T1
2.3
44
0
Phase
DC+ desat
T1
2.4
0
110,4
DC+
DC+ desat
T1
2.5
22
110,4
Neutral
2.6
44
110,4
DC-
2.7
101
0
Phase
1.9
39,15
68,4
G2-2
T2
2.8
123
0
Phase
1.10
42,05
68,4
E2-2
T2
2.9
145
0
Phase
1.11
19,45
44,65
GND desat
T2
2.10
101
110,4
DC+
1.12
24,55
44,65
GND desat
T2
2.11
123
110,4
Neutral
1.13
-2,2
46
G3-1
T3
2.12
145
110,4
DC-
1.14
-2,2
48,9
E3-1
T3
2.13
202
0
Phase
1.15
46,2
46
G3-2
T3
2.14
224
0
Phase
1.16
46,2
48,9
E3-2
T3
2.15
246
0
Phase
1.17
-6,75
29,2
E4-1
T4
2.16
202
110,4
DC+
1.18
-6,75
32,1
G4-1
T4
2.17
224
110,4
Neutral
1.19
50,75
29,2
E4-2
T4
2.18
246
110,4
DC-
1.20
50,75
32,1
G4-2
T4
1.21
67,65
86,7
Therm12
Rt1
1.22
67,65
89,8
Therm11
Rt1
1.23
105,5
78,65
G1-3
T1
1.24
105,5
81,55
E1-3
T1
1.25
140,5
78,65
G1-4
T1
1.26
140,5
81,55
E1-4
T1
1.27 120,45
30,15
DC+ desat
T1
1.28 125,55
30,15
DC+ desat
T1
1.29 102,95
68,4
E2-3
T2
1.30 105,85
68,4
G2-3
T2
1.31 140,15
68,4
G2-4
T2
1.32 143,05
68,4
E2-4
T2
1.33 120,45
44,65
GND desat
T2
1.34 125,55
44,65
GND desat
T2
98,8
46
G3-3
T3
1.36
98,8
48,9
E3-3
T3
1.37
147,2
46
G3-4
T3
1.38
147,2
48,9
E3-4
T3
1.39
94,25
29,2
E4-3
T4
1.40
94,25
32,1
G4-3
T4
1.35
1.41 151,75
29,2
E4-4
T4
1.42 151,75
32,1
G4-4
T4
1.43 168,65
86,7
Therm22
Rt2
1.44 168,65
89,8
Therm21
Rt2
T1
1.45
206,5
78,65
G1-5
1.46
206,5
81,55
E1-5
T1
1.47
241,5
78,65
G1-6
T1
1.48
241,5
81,55
E1-6
T1
1.49 221,45
30,15
DC+ desat
T1
1.50 226,55
30,15
DC+ desat
T1
1.51 203,95
68,4
E2-5
T2
1.52 206,85
68,4
G2-5
T2
1.53 241,15
68,4
G2-6
T2
1.54 244,05
68,4
E2-6
T2
1.55 221,45
44,65
GND desat
T2
1.56 226,55
44,65
GND desat
T2
G3-5
T3
1.57
199,8
46
1.58
199,8
48,9
E3-5
T3
1.59
248,2
46
G3-6
T3
1.60
248,2
48,9
E3-6
T3
Pin
X1
Y1
Function
1.61 195,25
29,2
E4-5
T4
1.64
252,8
32,1
G4-6
T4
1.62 195,25
32,1
G4-5
T4
1.65
269,7
86,7
Therm32
Rt3
1.63 252,75
29,2
E4-6
T4
1.66
269,7
89,8
Therm31
Rt3
copyright Vincotech
Driver pins
24
Group
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Oredering Code
70-W612M3A1K8SC02-L300FP70
Standart
Date code
Lot
Serial
VIN
Text
Name
Date code
UL & Vinco
Lot
Serial
NN-NNNNNNNNNNNNNN-NNNNNNNN
WWYY
UL VIN
LLLLL
SSSS
Type&Ver
Lot number
Serial
Date code
TTTT-TTT
LLLLL
SSSS
WWYY
Datamatrix
UL
Pinout
Identification
ID
T1, T4
D5, D6
T2, T3
D1, D4
Rt1, Rt2, Rt3
copyright Vincotech
Component
IGBT
FWD
IGBT
FWD
NTC
Voltage
1200V
650V
650V
1200V
-
Current
1800A
1800A
1800A
1800A
-
25
Function
Half Bridge Switch
Neutral Point Diode
Neutral Point Switch
Half Bridge Diode
Thermistor
Comment
09 Mar. 2016 / Revision 1
70-W612M3A1K8SC02-L300FP70
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
5
Standard
<SPQ
Sample
Handling instruction
Handling instructions for Widebody 3phase packages see vincotech.com website.
Package data
Package data for Widebody 3phase packages see vincotech.com website.
UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.
Document No.:
Date:
70-W612M3A1K8SC02-L300FP70-D1-14
09 Marc. 2016
Modification:
Pages
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
26
09 Mar. 2016 / Revision 1
Similar pages