10 xx06NIA100SA M135Fxx D4 14

10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
flow NPC 1
600 V / 100 A
Features
flow 1 housing
● Neutral-point-Clamped inverter
● Compact flow1 housing
● Low Inductance Layout
12mm height
17mm height
Target Applications
Schematic
● UPS
● Motor Drive
● Solar inverters
Types
● 10-F106NIA100SA-M135F
● 10-P106NIA100SA-M135FY
● 10-FY06NIA100SA-M135F08
● 10-PY06NIA100SA-M135F08Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
92
121
A
300
A
159
206
W
Buck IGBT
Collector-emitter break down voltage
DC collector current
V CE
IC
T j = T jmax
Pulsed collector current
I CRM
t p limited by T jmax
Power dissipation
P tot
T j = T jmax
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T s = 80 °C
T c = 80°C
T s = 80 °C
T c = 80°C
T j ≤ 150 °C
V GE = 15 V
T jmax
T j ≤ 150 °C
V CE ≤ V CES
Turn off safe operating area
±20
V
6
360
µs
V
175
°C
200
A
600
V
67
88
A
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
copyright Vincotech
V RRM
IF
I FRM
P tot
T j = T jmax
T s = 80 °C
T c = 80°C
t p limited by T jmax
T c = 100 °C
300
A
T j = T jmax
T s = 80 °C
T c = 80°C
74
112
W
175
°C
T jmax
1
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
T s = 80 °C
T c = 80°C
92
121
A
300
A
T s = 80 °C
T c = 80°C
159
240
W
Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j = T jmax
t p limited by T jmax
T j = T jmax
T j ≤ 150 °C
V GE = 15 V
T jmax
T j ≤ 150°C
V CE ≤ V CES
Turn off safe operating area
±20
V
6
360
µs
V
175
°C
200
A
Boost Sw. Prot. Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T j = T jmax
600
V
T s = 80 °C
T c = 80°C
80
106
A
200
A
T s = 80 °C
T c = 80°C
119
180
W
175
°C
t p limited by T jmax
T j = T jmax
T jmax
Boost Diode
Peak Repetitive Reverse Voltage
V RRM
600
V
T s = 80 °C
T c = 80°C
80
106
A
200
A
T s = 80 °C
T c = 80°C
119
180
W
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
IF
I FRM
P tot
T j = T jmax
t p limited by T jmax
T j = T jmax
Thermal Properties
Isolation Properties
Isolation voltage
V is
t = 2s
DC voltage
Creepage distance
17mm housing
4000
V
min 12,7
mm
min 12,7
Clearance
mm
12mm housing solder pins / Press-fit pins
copyright Vincotech
2
8,07 / 7,86
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,50
1,73
1,85
Buck IGBT
Gate emitter threshold voltage
V GE(th)
Collector-emitter saturation voltage
V CEsat
Collector-emitter cut-off current incl. Diode
Gate-emitter leakage current
R gint
t d(on)
Turn-off delay time
Fall time
600
20
0
t d(off)
tf
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
R th(j-s)
25
150
25
150
25
150
25
150
60
1,4
none
tr
Turn-on energy loss
Thermal resistance chip to heatsink
100
0
I GES
Turn-on delay time
0,0016
15
I CES
Integrated Gate resistor
Rise time
V CE = V GE
R gon = 8 Ω
R goff = 8 Ω
±15
350
100
25
150
25
150
25
150
25
150
25
150
25
150
V
V
µA
µA
Ω
160
189
26
31
270
296
100
123
1,887
2,405
2,903
3,808
ns
mWs
6280
f = 1 MHz
0
25
15
480
25
400
pF
186
100
25
phase-change
material
λ = 3,4 W/mK
620
nC
0,60
K/W
Buck Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
100
R gon = 8 Ω
±15
350
( di rf/dt )max
E rec
R th(j-s)
phase-change
material
λ = 3,4 W/mK
100
25
150
25
150
25
150
25
150
25
150
25
150
1,4
1,70
1,71
86
113
127
164
5,072
9,357
3385
1871
1,154
2,238
1,01
1,9
V
A
ns
µC
A/µs
mWs
K/W
Note: All characteristic values are related to gates of paralell IGBTs connected together
copyright Vincotech
3
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,5
1,73
1,85
Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE = V GE
V CEsat
0,0016
15
100
Collector-emitter cut-off incl diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
60
1,4
R gon = 8 Ω
R goff = 8 Ω
V
V
µA
µA
Ω
none
25
150
25
150
25
150
25
150
25
150
25
150
tr
t d(off)
25
150
25
150
25
150
25
150
164
169
29
32
273
298
97
116
1,93
2,55
3,22
4,27
ns
mWs
6280
f = 1 MHz
0
25
25
pF
400
186
15
480
100
25
phase-change
material
λ = 3,4 W/mK
620
nC
0,60
K/W
Boost Sw. Prot. Diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
R th(j-s)
100
25
125
1,2
phase-change
material
λ = 3,4 W/mK
1,69
1,65
1,9
0,80
V
K/W
Boost Diode
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
t rr
Reverse recovered charge
Q rr
Reverse recovery energy
Thermal resistance chip to heatsink
600
I RRM
Reverse recovery time
Peak rate of fall of recovery current
100
R gon = 8 Ω
±15
350
( di rf/dt )max
E rec
R th(j-s)
100
25
150
25
150
25
150
25
150
25
150
25
150
25
150
1,2
1,68
1,65
1,9
60
71
90
130
287
4,4
9,3
2960
551
1,03
2,37
phase-change
material
λ = 3,4 W/mK
V
μA
A
ns
µC
A/µs
mWs
0,80
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R 100
Δ R/R
Power dissipation
P
25
R 100 = 1486 Ω
100
Power dissipation constant
14
-12
200
mW
25
2
mW/K
K
B-value
B (25/50)
Tol. ±3%
25
3950
B-value
B (25/100)
Tol. ±3%
25
3996
Vincotech NTC Reference
copyright Vincotech
%
25
K
B
4
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Buck
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
IGBT
Typical output characteristics
I C = f(V CE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
V GE from
1
2
3
V CE (V)
4
0
At
tp =
Tj =
V GE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
1
2
3
4
5
IGBT
V CE (V)
5
250
μs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
FWD
a function of forward voltage
I F = f(V F)
250
IC (A)
IF (A)
100
80
200
60
150
40
100
Tj = Tjmax-25°C
20
50
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
4
250
10
μs
V
copyright Vincotech
6
8
10
V GE
(V) 12
0
At
tp =
5
0,5
250
1
1,5
2
2,5
V F (V)
3
μs
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Buck
Figure 5
IGBT
Figure 6
IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
10
Eon High T
E (mWs)
E (mWs)
8
Eoff High T
Eon Low T
8
6
Eoff Low T
6
Eoff High T
4
Eoff Low T
Eon High T
4
Eon Low T
2
2
0
0
0
50
100
150
I C (A)
0
200
With an inductive load at
Tj =
°C
25/150
V CE =
350
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
8
16
24
32
R G ( Ω)
40
With an inductive load at
Tj =
°C
25/150
V CE =
350
V
V GE =
±15
V
IC =
100
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
3,0
E (mWs)
3,0
FWD
Erec High T
2,5
2,5
2,0
2,0
1,5
1,5
Erec High T
Erec Low T
1,0
1,0
0,5
0,5
Erec Low T
0,0
0,0
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
R gon =
8
Ω
copyright Vincotech
8
16
24
32
R G ( Ω)
40
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
IC =
100
A
6
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Buck
Figure 9
IGBT
Figure 10
IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1,00
t (µ s)
t (µ s)
1,00
tdoff
tdon
tdoff
tdon
0,10
tf
0,10
tf
tr
tr
0,01
0,01
0,00
0,00
0
50
100
150
I C (A)
0
200
With an inductive load at
Tj =
150
°C
V CE =
350
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
8
16
24
32
R G ( Ω)
40
With an inductive load at
Tj =
150
°C
V CE =
350
V
V GE =
±15
V
IC =
100
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,20
FWD
0,4
trr Low T
t rr(µ s)
t rr(µ s)
trr High T
0,3
0,15
trr Low T
0,2
0,10
trr Low T
0,1
0,05
0,0
0,00
0
At
Tj =
V CE =
V GE =
R gon =
50
25/150
350
±15
8
copyright Vincotech
100
150
I C (A)
0
200
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
8
25/150
350
100
±15
16
24
32
R gon ( Ω)
40
°C
V
A
V
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Buck
Figure 13
FWD
Figure 14
FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
15
Qrr (µ C)
Qrr (µ C)
12
Qrr High T
Qrr High T
12
9
9
Qrr Low T
6
6
Qrr Low T
3
3
0
At
0
0
At
Tj =
V CE =
V GE =
R gon =
50
100
150
I C (A)
200
0
8
16
25/150
350
°C
V
At
Tj =
VR=
25/150
350
°C
V
±15
8
V
Ω
IF=
V GE =
100
±15
A
V
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
24
32
R gon ( Ω)
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
40
FWD
200
150
IrrM (A)
IrrM (A)
IRRM High T
160
120
IRRM Low T
90
120
60
80
IRRM High T
IRRM Low T
40
30
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/150
350
±15
8
copyright Vincotech
100
150
I C (A)
0
200
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
8
25/150
350
100
±15
16
24
32
R gon ( Ω) 40
°C
V
A
V
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Buck
Figure 17
FWD
Figure 18
FWD
Typical rate of fall of forward and reverse recovery current
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI 0/dt ,dI rec/dt = f(I c)
as a function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
10000
dIo/dt T
dIrec/dt T
direc / dt (A/µ s)
direc / dt (A/µ s)
5000
4000
dI0/dt T
dIrec/dt T
8000
3000
6000
2000
4000
1000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
100
I C (A)
150
0
200
8
16
25/150
350
±15
°C
V
V
At
Tj =
VR=
IF=
25/150
350
100
°C
V
A
8
Ω
V GE =
±15
V
Figure 19
IGBT
24
R gon (W) 40
32
Figure 20
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
FWD
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
101
Zth(j-s) (K/W)
Zth(j-s) (K/W)
100
100
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-2
10-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
101
At
D =
R th(j-s) =
tp/T
0,60
K/W
IGBT thermal model values
R (K/W) Tau (s)
4,52E-02 4,36E+00
1,01E-01 9,48E-01
2,76E-01 2,00E-01
1,04E-01 6,20E-02
5,77E-02 1,37E-02
1,50E-02 2,79E-03
copyright Vincotech
10-4
10-3
10-2
10-1
100
t p (s)
101
tp/T
1,01
K/W
FWD thermal model values
R (K/W) Tau (s)
6,88E-02 2,96E+00
1,71E-01 4,07E-01
5,09E-01 9,03E-02
1,60E-01 2,01E-02
6,67E-02 4,84E-03
3,19E-02 5,60E-04
9
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Buck
Figure 21
IGBT
Figure 22
IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T s)
function of heatsink temperature
I C = f(T s)
150
Ptot (W)
IC (A)
300
250
120
200
90
150
60
100
30
50
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
0
200
At
Tj =
V GE =
°C
Figure 23
FWD
50
175
15
100
150
T s ( o C)
°C
V
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
200
FWD
Forward current as a
function of heatsink temperature
I F = f(T s)
120
Ptot (W)
IF (A)
200
100
160
80
120
60
80
40
40
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
0
200
At
Tj =
°C
10
50
175
100
150
T s ( o C)
200
°C
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Buck
Figure 25
Safe operating area as a function
IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q g)
103
1mS
1
VGE (V)
IC (A)
16
10mS
100uS
14
100mS
10
2
IGBT
120V
DC
12
480V
10
101
8
100
6
4
10-1
2
0
100
At
D =
Ts =
V GE =
Tj =
101
102
V CE (V)
0
103
At
IC =
single pulse
80
±15
T jmax
copyright Vincotech
200
100
400
600
Q g (nC)
800
A
ºC
V
ºC
11
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Boost
Figure 1
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IGBT
Typical output characteristics
I C = f(V CE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
V GE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
V GE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
IGBT
1
2
3
V CE (V)
4
250
μs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical transfer characteristics
I C = f(V GE)
5
FWD
Typical diode forward current as
a function of forward voltage
I F = f(V F)
100
IC (A)
IF (A)
300
250
80
200
60
150
40
100
20
50
Tj = 25°C
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
4
250
10
μs
V
copyright Vincotech
6
8
10
0,0
V GE (V) 12
At
tp =
12
0,5
250
1,0
1,5
2,0
2,5
V F (V)
3,0
μs
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Boost
Figure 5
IGBT
Figure 6
IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
10
Eon High T
E (mWs)
E (mWs)
8
Eoff High T
Eon Low T
8
6
Eoff Low T
6
Eoff High T
Eon High T
4
Eoff Low T
4
Eon Low T
2
2
0
0
0
50
100
150
0
200
I C (A)
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
8
16
24
32
40
R G( Ω )
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
IC =
101
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
4
IGBT
E (mWs)
E (mWs)
3,5
Erec High T
3
3
2,5
2
2
Erec High T
Erec Low T
1,5
1
1
Erec Low T
0,5
0
0
50
100
150
I C (A)
0
200
0
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
R gon =
8
Ω
copyright Vincotech
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
IC =
101
A
13
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Boost
Figure 9
IGBT
Figure 10
IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
t ( µs)
1
t ( µs)
1
tdon
tdoff
tdoff
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
150
°C
V CE =
350
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
150
°C
V CE =
350
V
V GE =
±15
V
IC =
101
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,4
FWD
0,4
t rr(µ s)
t rr(µ s)
trr High T
trr High T
0,3
0,3
0,2
0,2
trr Low T
trr Low T
0,1
0,1
0,0
0,0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/150
350
±15
8
copyright Vincotech
100
150
I C (A)
200
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
14
8
25/150
350
101
±15
16
24
32
R gon ( Ω)
40
°C
V
A
V
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Boost
Figure 13
FWD
Figure 14
FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
15
Qrr (µ C)
Qrr (µ C)
10
Qrr High T
Qrr High T
12
8
9
6
Qrr Low T
6
4
Qrr Low T
3
2
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
50
100
150
I C (A)
200
0
8
16
25/150
350
°C
V
At
Tj =
VR=
25/150
350
°C
V
±15
8
V
Ω
IF=
V GE =
101
±15
A
V
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
24
32
R gon ( Ω)
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
40
FWD
150
IrrM (A)
IrrM (A)
150
IRRM High T
120
120
IRRM Low T
90
90
60
60
IRRM High T
IRRM Low T
30
30
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/150
350
±15
8
copyright Vincotech
100
150
I C (A)
0
200
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
15
8
25/150
350
101
±15
16
24
32
R gon ( Ω) 40
°C
V
A
V
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Boost
Figure 17
FWD
Figure 18
FWD
Typical rate of fall of forward and reverse recovery current
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI 0/dt ,dI rec/dt = f(I c)
as a function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
10000
dIo/dt T
direc / dt (A/µ s)
direc / dt (A/µ s)
5000
dIrec/dt T
4000
dI0/dt T
dIrec/dt T
8000
3000
6000
2000
4000
1000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
100
150
0
200
I C (A)
8
16
25/150
350
±15
°C
V
V
At
Tj =
VR=
IF=
25/150
350
101
°C
V
A
8
Ω
V GE =
±15
V
Figure 19
IGBT
24
32
R gon ( Ω)
Figure 20
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
40
FWD
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Zth(j-s) (K/W)
100
Zth(j-s) (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
101
10-5
At
D =
R th(j-s) =
tp/T
0,6
K/W
10-4
10-3
0,80
R (K/W)
4,52E-02
1,01E-01
2,64E-01
1,04E-01
R (K/W)
4,68E-02
1,19E-01
3,15E-01
1,67E-01
copyright Vincotech
100
t p (s)
101
K/W
FWD thermal model values
5,77E-02 1,37E-02
1,50E-02 2,79E-03
10-1
tp/T
IGBT thermal model values
Tau (s)
4,36E+00
9,48E-01
2,00E-01
6,20E-02
10-2
Tau (s)
4,82E+00
8,49E-01
1,49E-01
3,91E-02
1,01E-01 9,01E-03
4,79E-02 1,14E-03
16
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Boost
Figure 21
IGBT
Figure 22
IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T s)
function of heatsink temperature
I C = f(T s)
150
Ptot (W)
IC (A)
300
250
120
200
90
150
60
100
30
50
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
0
200
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
FWD
50
175
15
100
150
T s ( o C)
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
P tot = f(T s)
200
FWD
function of heatsink temperature
I F = f(T s)
150
Ptot (W)
IF (A)
240
200
120
160
90
120
60
80
30
40
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Ts ( o C)
200
0
At
Tj =
ºC
17
50
175
100
150
Ts ( o C)
200
ºC
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Boost
Figure 25
Boost Inverse Diode
Figure 26
Boost Inverse Diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F = f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
100
Zth(j-s) (K/W)
IF (A)
250
200
150
10-1
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
50
Tj = Tjmax-25°C
Tj = 25°C
0
10-2
0
At
tp =
0,5
1
250
1,5
2
2,5
V F (V)
3
10-5
10-4
At
D =
R th(j-s) =
μs
Figure 27
Boost Inverse Diode
10-3
10-2
100
t p (s)
101
tp/T
0,80
K/W
Figure 28
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
10-1
Boost Inverse Diode
Forward current as a
function of heatsink temperature
I F = f(T s)
150
IF (A)
Ptot (W)
240
200
120
160
90
120
60
80
30
40
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Ts ( o C)
0
200
At
Tj =
ºC
18
50
175
100
150
Ts ( o C)
200
ºC
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Thermistor
Figure 1
Thermistor
Figure 2
Typical NTC characteristic
Thermistor
Typical NTC resistance values
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R(T ) = R25 ⋅ e
R (Ω)
25000



 B25/100⋅ 1 − 1  
T

T25  


[Ω]
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Switching Definitions BUCK
General conditions
Tj
R gon
R goff
=
=
=
Figure 1
IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
150 °C
8Ω
8Ω
Figure 2
IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
250
%
tdoff
%
VCE
IC
100
200
VGE 90%
VCE 90%
VGE
75
150
IC
VCE
50
100
tEoff
VGE
tdon
25
50
0
0
VGE10%
IC 1%
-25
-0,2
VCE
IC 10%
3%
tEon
-50
0
0,2
0,4
0,6
time (us)
2,9
V
V
3
V GE (0%) =
V GE (100%) =
3,1
3,2
-15
15
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
-15
15
350
V
V C (100%) =
350
V
I C (100%) =
t doff =
t E off =
100
0,30
0,55
A
μs
μs
I C (100%) =
t don =
t E on =
100
0,19
0,39
A
μs
μs
Figure 3
Turn-off Switching Waveforms & definition of t f
IGBT
3,3
3,4
Figure 4
Turn-on Switching Waveforms & definition of t r
125
time(us)
3,5
IGBT
250
fitted
%
IC
%
VCE
IC
200
100
IC 90%
150
75
IC
60%
VCE
100
50
IC 90%
IC 40%
tr
50
25
IC10%
0
IC 10%
0
tf
-50
-25
0,1
0,2
0,3
0,4
time (us)
3,1
0,5
3,2
3,3
V C (100%) =
350
V
V C (100%) =
350
V
I C (100%) =
tf =
100
0,12
A
μs
I C (100%) =
tr =
100
0,03
A
μs
copyright Vincotech
20
3,4
time(us)
3,5
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Switching Definitions BUCK
Figure 5
Turn-off Switching Waveforms & definition of t Eoff
IGBT
Figure 6
Turn-on Switching Waveforms & definition of t Eon
IGBT
125
125
%
Poff
100
%
IC 1%
Eoff
Eon
100
75
75
50
50
Pon
25
25
VG
E90%
VCE
VGE 10%
3%
0
0
tEon
tEoff
-25
-25
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
34,85
3,81
0,55
0,4
2,9
0,6
time (us)
kW
mJ
μs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Turn-off Switching Waveforms & definition of t rr
3
3,1
34,85
2,41
0,39
3,2
3,3
3,4
3,5
time(us)
kW
mJ
μs
FWD
150
%
Id
100
trr
50
Vd
0
fitted
IRRM 10%
-50
-100
IRRM 90%
IRRM 100%
-150
3,1
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,2
3,3
350
100
-113
0,16
3,4
time(us)
3,5
V
A
A
μs
21
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Switching Definitions BUCK
Figure 8
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
FWD
Figure 9
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
FWD
125
%
%
Id
Qrr
100
100
Erec
tQrr
50
75
0
50
-50
25
-100
0
tErec
Prec
-150
-25
3,1
3,2
I d (100%) =
Q rr (100%) =
t Q rr =
3,3
100
9,36
0,33
3,4
3,5
3,6
3,7
time(us)
3,1
A
μC
μs
3,2
P rec (100%) =
E rec (100%) =
t E rec =
1,6
40
100
1,25
1
3,3
34,85
2,24
0,33
3,4
3,5
time(us) 3,6
kW
mJ
μs
40
80
3000
60
40
1,4 1
55
Measurement circuit
Figure 10
BUCK stage switching measurement circuit
copyright Vincotech
22
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Switching Definitions Boost
General conditions
Tj
R gon
R goff
=
=
=
Figure 1
IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
150 °C
8Ω
8Ω
Figure 2
IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
250
%
tdoff
%
VCE
IC
100
200
VGE 90%
VCE 90%
VGE
75
150
IC
VCE
50
100
tEoff
VGE
tdon
25
50
0
0
VGE10%
IC 1%
-25
-0,2
VCE
IC 10%
3%
tEon
-50
0
0,2
0,4
0,6
time (us)
2,9
V
V
3
V GE (0%) =
V GE (100%) =
3,1
3,2
-15
15
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
-15
15
350
V
V C (100%) =
350
V
I C (100%) =
t doff =
t E off =
100
0,30
0,57
A
μs
μs
I C (100%) =
t don =
t E on =
100
0,17
0,36
A
μs
μs
Figure 3
Turn-off Switching Waveforms & definition of t f
IGBT
3,3
3,4
Figure 4
Turn-on Switching Waveforms & definition of t r
125
time(us)
3,5
IGBT
250
fitted
%
VCE
IC
%
IC
200
100
IC 90%
150
75
IC
60%
VCE
100
50
IC 90%
IC 40%
tr
50
25
IC10%
0
IC 10%
0
tf
-50
-25
0,1
0,2
0,3
0,4
time (us)
3
0,5
3,1
3,2
3,3
V C (100%) =
350
V
V C (100%) =
350
V
I C (100%) =
tf =
100
0,12
A
μs
I C (100%) =
tr =
100
0,03
A
μs
copyright Vincotech
23
3,4
time(us)
3,5
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Switching Definitions Boost
Figure 5
Turn-off Switching Waveforms & definition of t Eoff
IGBT
Figure 6
Turn-on Switching Waveforms & definition of t Eon
IGBT
125
125
%
%
100
Eon
Eoff
Poff
100
Pon
75
75
50
50
25
25
VG
E90%
VCE
VGE 10%
3%
0
0
tEon
tEoff
IC 1%
-25
-25
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
35,15
4,27
0,57
0,4
2,9
0,6
time (us)
kW
mJ
μs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Turn-off Switching Waveforms & definition of t rr
3
3,1
35,15
2,55
0,36
3,2
3,3
3,4
3,5
time(us)
kW
mJ
μs
FWD
150
%
Id
100
trr
50
Vd
0
fitted
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
-150
3,1
3,2
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,3
350
100
-90
0,29
3,4
3,5
3,6
time(us)
3,7
V
A
A
μs
24
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Switching Definitions Boost
Figure 8
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
FWD
Figure 9
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
FWD
125
%
%
Id
Erec
Qrr
100
100
tQrr
50
75
0
50
-50
25
-100
0
tErec
Prec
-150
-25
3,1
3,2
I d (100%) =
Q rr (100%) =
t Q rr =
1,6
40
100
30
3,3
3,4
100
9,27
0,57
3,5
3,6
3,7
3,8
3,9
time(us)
3,1
A
μC
μs
3,2
P rec (100%) =
E rec (100%) =
t E rec =
1
3,3
3,4
35,15
2,37
0,57
3,5
3,6
3,7
3,8
time(us) 3,9
kW
mJ
μs
80
40
40
1,4
Measurement circuit
Figure 10
BOOST stage switching measurement circuit
copyright Vincotech
25
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 17mm housing, solder pins
10-F106NIA100SA-M135F
with thermal paste 17mm housing, solder pins
10-F106NIA100SA-M135F-/3/
without thermal paste 17mm housing, Press-fit pins
10-P106NIA100SA-M135FY
without thermal paste 12mm housing, solder pins
10-FY06NIA100SA-M135F08
with thermal paste 12mm housing, solder pins
10-FY06NIA100SA-M135F08-/3/
without thermal paste 12mm housing, Press-fit pins
10-PY06NIA100SA-M135F08Y
Text
Name
Date Code
UL & VIN
Lot
Serial
NN-NNNNNNNNNNNNNN-TTTTTTVV
WWYY
UL VIN
LLLLL
SSSS
Datamatrix
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Outline
Pin table [mm]
Pin
X
Y
Function
1
52,2
6,9
NTC1
2
52,2
0
NTC2
3
36,2
6,75
E37
4
33,2
7,9
G3
5
33,2
4,9
G7
6
9,2
5,75
E48
7
6,2
6,9
G4
8
6,2
3,9
G8
9
2,7
0
DC-
10
0
0
DC-
11
2,7
2,7
DC-
12
0
2,7
DC-
13
2,7
5,4
DC-
14
0
5,4
DC-
15
2,7
12,75
GND
16
0
12,75
GND
17
2,7
15,45
GND
18
0
15,45
GND
19
2,7
22,8
DC+
20
0
22,8
DC+
21
2,7
25,5
DC+
22
0
25,5
DC+
23
2,7
28,2
DC+
24
0
28,2
DC+
25
18,3
22,45
E15
26
21,3
21,3
G5
27
21,3
24,3
G1
28
43
22,15
E26
29
46
21
G6
30
46
24
G2
31
52,2
20,1
OUT
32
49,5
22,8
OUT
33
52,2
22,8
OUT
34
49,5
25,5
OUT
35
52,2
25,5
OUT
36
49,5
28,2
OUT
37
52,2
28,2
OUT
copyright Vincotech
17mm housing
12mm housing
26
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Ordering Code and Marking - Outline - Pinout
Pinout
Identification
ID
Component
Voltage
Current
Function
T1‖T5, T4‖T8
IGBT
600 V
100 A
Buck Switch
D9,D10
FWD
600 V
100 A
Buck Diode
T2‖T6,T3‖T7
IGBT
600 V
100 A
Boost Switch
D1‖D5,D4‖D8
FWD
600 V
100 A
Boost Diode
D2‖D6,D3‖D7
FWD
600 V
100 A
Boost Sw. Prot. Diode
NTC
NTC
copyright Vincotech
Comment
Thermistor
27
17 May. 2016 / Revision 4
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
100
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 1 packages see vincotech.com website.
Package data
Package data for flow 1 packages see vincotech.com website.
UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.
Document No.:
Date:
Modification:
Pages
10-xx06NIA100SA-M135Fxx-D4-14
17 May. 2016
New brand, new subtype added, new Rth values with PCM
all
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
28
17 May. 2016 / Revision 4
Similar pages