10 PY07N3A015SM M892F08Y D2 14

10-PY07N3A015SM-M892F08Y
datasheet
flow 3xNPC 1
650 V / 15 A
Features
flow 1 housing
● Neutral-point-Clamped inverter
●
●
●
●
Ultra fast switching
Low Inductance layout
Very compact design
Press-fit pins
Target Applications
Schematic
● Solar inverters
● UPS
● SMPS
Types
● 10-PY07N3A015SM-M892F08Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
20
27
A
tp limited by Tjmax
45
A
Tj≤175°C
VCE<=VCES
45
A
43
66
W
Buck IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CES
IC
I CRM
Turn off safe operating area
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Power dissipation
P tot
Gate-emitter peak voltage
V GE
±20
V
Maximum Junction Temperature
T jmax
175
°C
600
V
22
30
A
150
A
42
64
W
150
°C
Buck FWD
Peak Repetitive Reverse Voltage
V RRM
Tj=25°C
Forward average current
I FAV
Tj=Tjmax
Surge forward current
I FSM
tp=10ms
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
copyright Vincotech
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
25
33
A
tp limited by Tjmax
60
A
Tj≤150°C
VCE<=VCES
60
A
59
90
W
±20
V
6
360
µs
V
150
°C
650
V
19
25
A
20
A
39
59
W
175
°C
650
V
19
25
A
20
A
39
59
W
175
°C
Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CES
IC
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
Maximum Junction Temperature
t SC
V CC
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
T jmax
Boost Inverse Diode
Peak Repetitive Reverse Voltage
V RRM
Tc=25°C
Forward average current
I FAV
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Boost FWD
Peak Repetitive Reverse Voltage
V RRM
Tj=25°C
Forward average current
I FAV
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
copyright Vincotech
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
t=2s
DC voltage
3
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
3,3
4
4,7
1,64
1,77
2,22
Buck IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,0004
15
15
Collector-emitter cut-off current incl. Diode
I CES
0
650
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
200
Rgoff=32 Ω
Rgon=32 Ω
±15
350
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
none
tr
t d(off)
0,04
V
73
72
8
9
72
86
10
11
0,199
0,277
0,072
0,127
ns
mWs
930
f=1MHz
0
25
15
520
Tj=25°C
240
pF
Tj=25°C
38
nC
2,20
K/W
4
15
Phase-Change
Material
ʎ=3,4W/mK
Buck FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
t rr
Reverse recovered charge
Q rr
Reverse recovered energy
Thermal resistance chip to heatsink
copyright Vincotech
600
I RRM
Reverse recovery time
Peak rate of fall of recovery current
15
Rgon=32 Ω
±15
350
( di rf/dt )max
E rec
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,47
1,73
100
17
23
22
36
0,225
0,523
1736
1606
0,024
0,060
1,65
4
2,6
V
µA
A
ns
µC
A/µs
mWs
K/W
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,1
5,8
6,4
1,03
1,54
1,76
1,87
Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,00029
15
20
Collector-emitter cut-off incl diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
200
none
tr
t d(off)
0,01
Rgoff=16 Ω
Rgon=16 Ω
350
±15
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
65
66
15
17
139
161
65
73
0,210
0,267
0,395
0,542
ns
mWs
1100
f=1MHz
0
25
15
480
Tj=25°C
71
pF
Tj=25°C
120
nC
1,60
K/W
32
20
Phase-Change
Material
ʎ=3,4W/mK
Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
R th(j-s)
10
Tj=25°C
Tj=125°C
1,68
1,56
Phase-Change
Material
ʎ=3,4W/mK
1,87
2,44
V
K/W
Boost FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Q rr
Reverse recovery energy
Thermal resistance chip to heatsink
650
I RRM
t rr
Peak rate of fall of recovery current
10
Rgon=16 Ω
±15
350
( di rf/dt )max
E rec
R th(j-s)
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,23
1,67
1,56
1,87
0,14
12
14
156
278
0,68
1,22
1738
153
0,187
0,348
Phase-Change
Material
ʎ=3,4W/mK
V
µA
A
ns
µC
A/µs
mWs
2,44
K/W
21511
Ω
Thermistor
Rated resistance
Tj=25°C
R
Deviation of R100
Δ R/R
Power dissipation
P
R100=1486 Ω
Tj=100°C
Power dissipation constant
-4,5
+4,5
%
Tj=25°C
210
mW
Tj=25°C
3,5
mW/K
B-value
B(25/50)
Tj=25°C
3884
K
B-value
B(25/100)
Tj=25°C
3964
K
F
Vincotech NTC Reference
copyright Vincotech
5
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Buck
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
45
IC (A)
IC (A)
45
IGBT
40
40
35
35
30
30
25
25
20
20
15
15
10
10
5
5
0
0
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
0,0
V CE (V)
At
tp =
Tj =
V GE from
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
0,5
1,0
1,5
2,0
2,5
3,0
3,5
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
FWD
60
IF (A)
IC (A)
16
4,0
14
50
12
40
10
8
30
Tj = Tjmax-25°C
6
20
Tj = 25°C
Tj = Tjmax-25°C
4
Tj = 25°C
10
2
0
0
0
At
tp =
V CE =
1
250
5
copyright Vincotech
2
3
4
5
6
7 V (V) 8
GE
0
At
tp =
µs
V
6
1
250
2
3
4
V F (V)
5
µs
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Buck
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
IGBT
0,6
0,5
Eon High T
E (mWs)
E (mWs)
Eon High T
Eon Low T
Eon Low T
0,5
0,4
0,4
0,3
0,3
Eoff High T
0,2
0,2
Eoff Low T
Eoff High T
0,1
0,1
Eoff Low T
0,0
0,0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
20
40
60
80
100
120
R G ( Ω)
140
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
IC =
15
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
FWD
0,10
E (mWs)
E (mWs)
0,10
Erec High T
0,08
0,08
0,06
0,06
0,04
0,04
Erec High T
Erec Low T
0,02
0,02
Erec Low T
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
32
Ω
copyright Vincotech
20
40
60
80
100
120 R ( Ω) 140
G
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
15
A
7
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Buck
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
t (ms)
t (ms)
1,00
IGBT
tdon
tdoff
tdoff
0,10
0,10
tdon
tf
tr
tf
0,01
0,01
tr
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
20
40
60
80
100
120
R G ( Ω)
140
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
15
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,07
t rr(ms)
t rr(ms)
0,05
FWD
0,04
trr High T
0,06
trr High T
0,05
0,03
trr Low T
0,04
trr Low T
0,03
0,02
0,02
0,01
0,01
0,00
0,00
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
350
±15
32
copyright Vincotech
10
15
20
25
I C (A)
0
30
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
20
25/125
350
15
±15
40
60
80
100
120
R gon ( Ω)
140
°C
V
A
V
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Buck
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
0,7
Qrr (µC)
Qrr (µC)
0,8
FWD
Qrr High T
0,7
0,6
0,6
0,5
Qrr High T
0,5
0,4
0,4
0,3
0,3
Qrr Low T
Qrr Low T
0,2
0,2
0,1
0,1
0
0,0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
350
±15
32
10
15
20
25
I C (A)
0
30
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
20
25/125
350
15
±15
40
60
80
100
120
140
R gon ( Ω )
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
50
35
IrrM (A)
IrrM (A)
40
IRRM High T
IRRM High T
40
30
25
30
IRRM Low T
20
20
15
IRRM Low T
10
10
5
0
0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
350
±15
32
copyright Vincotech
10
15
20
25
0
I C (A) 30
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
9
20
25/125
350
15
±15
40
60
80
100
120
R gon ( Ω)
140
°C
V
A
V
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Buck
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
2500
FWD
4500
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
di0/dt T
2000
dIrec/dt T
dI0/dt T
4000
3500
3000
1500
2500
2000
1000
1500
1000
500
500
0
0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
350
±15
32
10
15
20
25
0
I C (A) 30
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
101
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
80
100
120
140
R gon ( Ω)
°C
V
A
V
FWD
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-5
10110
At
D =
R thJH =
K/W
10-4
10-3
1,65
R (K/W)
0,11
0,17
0,76
0,59
0,40
0,17
R (K/W)
0,05
0,10
0,71
0,40
0,21
0,17
10
10-1
100
t p (s)
10110
K/W
FWD thermal model values
Tau (s)
2,1E+00
4,5E-01
9,1E-02
2,4E-02
5,0E-03
9,0E-04
10-2
tp/T
IGBT thermal model values
copyright Vincotech
60
10-1
tp/T
2,20
25/125
350
15
±15
40
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
ZthJH (K/W)
IGBT
ZthJH (K/W)
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
20
Tau (s)
4,1E+00
5,7E-01
7,9E-02
2,0E-02
4,7E-03
9,2E-04
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Buck
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
80
IGBT
Ptot (W)
IC (A)
35
30
60
25
20
40
15
10
20
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
50
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
175
15
100
150
T h ( o C)
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
FWD
40
Ptot (W)
IF (A)
100
200
35
80
30
25
60
20
40
15
10
20
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
11
50
150
100
150
T h ( o C)
200
°C
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Buck
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
IGBT
Figure 26
Gate voltage vs Gate charge
V GE = f(Q g)
15
IC (A)
VGE (V)
103
10
IGBT
12,5
2
130V
100mS
520V
10
1mS
10mS
100uS
101
7,5
DC
100
5
10-1
2,5
0
100
10
At
D =
1
10
0
103
V CE (V)
2
At
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
Th =
V GE =
Tj =
Figure 27
Reverse bias safe operating area
10
0
20
30
Q g (nC)
40
A
IGBT
I C = f(V CE)
IC (A)
55
50
IC MAX
45
Ic
35
Ic CHIP
MODULE
40
30
VCE MAX
25
20
15
10
5
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
R gon =
R goff =
125 °C
32
32
copyright Vincotech
Ω
Ω
12
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Boost
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
60
IC (A)
IC (A)
60
50
50
40
40
30
30
20
20
10
10
0
0
0,0
At
tp =
Tj =
V GE from
0,5
1,0
1,5
2,0
2,5
V CE (V)
3,0
0,0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
0,5
1,0
1,5
2,0
2,5
V CE (V)
3,0
250
µs
124
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
20
FWD
45
IF (A)
IC (A)
IGBT
18
40
16
35
14
30
12
25
10
20
8
15
6
Tj = Tjmax-25°C
4
10
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
5
2
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
12
0
V GE (V) 14
At
tp =
µs
V
13
0,5
250
1
1,5
2
2,5
3
V F (V) 3,5
µs
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Boost
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
E (mWs)
1
Eoff High T
IGBT
0,7
Eon High T
0,6
Eoff High T
0,8
Eon Low T
0,5
Eoff Low T
Eoff Low T
0,6
0,4
Eon High T
0,3
Eon Low T
0,4
0,2
0,2
0,1
0
0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/124
°C
V CE =
350
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
10
20
30
40
50
60
R G( Ω )
70
With an inductive load at
Tj =
25/124
°C
V CE =
350
V
V GE =
±15
V
IC =
15
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
E (mWs)
0,5
Erec High T
FWD
0,4
0,35
0,4
0,3
Erec High T
0,25
0,3
0,2
Erec Low T
0,2
Erec Low T
0,15
0,1
0,1
0,05
0
0,0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/124
°C
V CE =
350
V
V GE =
±15
V
R gon =
16
Ω
copyright Vincotech
10
20
30
40
50
60
RG (Ω )
70
With an inductive load at
Tj =
25/124
°C
V CE =
350
V
V GE =
±15
V
IC =
15
A
14
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Boost
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
IGBT
tdoff
tdoff
tdon
tf
0,1
0,1
tf
tdon
tr
0,01
0,01
tr
0,001
0,001
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
124
°C
V CE =
350
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
10
20
30
40
50
60
R G( Ω )
70
With an inductive load at
Tj =
124
°C
V CE =
350
V
V GE =
±15
V
IC =
15
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
t rr(ms)
0,6
t rr(ms)
0,35
FWD
trr High T
0,30
0,5
trr High T
0,25
0,4
trr Low T
0,20
trr Low T
0,3
0,15
0,2
0,10
0,1
0,05
0,00
0,0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/124
350
±15
16
copyright Vincotech
10
15
20
25
I C (A)
30
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
15
10
25/124
350
15
±15
20
30
40
50
60
R gon ( Ω)
70
°C
V
A
V
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Boost
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
1,8
1,6
Qrr (µC)
Qrr (µC)
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Qrr High T
FWD
1,4
1,2
Qrr High T
1,4
1
1,2
0,8
1,0
Qrr Low T
Qrr Low T
0,8
0,6
0,6
0,4
0,4
0,2
0,2
0
0,0
0
At
At
Tj =
V CE =
V GE =
R gon =
5
25/124
350
±15
16
10
15
20
25
0
I C (A) 30
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
25/124
350
15
±15
20
30
40
50
60
R gon ( Ω)
70
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
35
IrrM (A)
18
IrrM (A)
10
IRRM High T
16
30
IRRM Low T
14
25
12
20
10
8
15
6
10
4
IRRM High T
5
2
IRRM Low T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/124
350
±15
16
copyright Vincotech
10
15
20
25
I C (A)
30
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
16
10
25/124
350
15
±15
20
30
40
50
60
R gon ( Ω) 70
°C
V
A
V
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Boost
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
direc / dt (A/ms)
2500
direc / dt (A/ms)
dIrec/dt T
dI0/dt T
2000
FWD
8000
dIrec/dt T
dI0/dt T
7000
6000
5000
1500
4000
3000
1000
2000
1000
500
0
0
-1000
0
At
Tj =
V CE =
V GE =
R gon =
5
25/124
350
±15
16
10
15
20
25
I C (A) 30
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
10
20
25/124
350
15
±15
°C
V
A
V
30
40
50
60 R ( Ω) 70
gon
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
101
ZthJH (K/W)
ZthJH (K/W)
101
FWD
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
101
10-5
At
D =
R thJH =
tp/T
1,60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
K/W
10-4
10-3
2,44
R (K/W)
0,07
0,30
0,70
0,38
0,15
R (K/W)
0,06
0,17
0,60
0,58
0,61
0,42
17
100
t p (s)
101
K/W
FWD thermal model values
copyright Vincotech
10-1
tp/T
IGBT thermal model values
Tau (s)
3,986
0,314
0,055
0,007
0,0005
10-2
Tau (s)
5,6E+00
6,5E-01
1,5E-01
3,9E-02
8,9E-03
2,0E-03
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Boost
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
40
Ptot (W)
IC (A)
120
IGBT
35
100
30
80
25
60
20
15
40
10
20
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
75
200
FWD
Ptot (W)
IF (A)
30
25
60
20
45
15
30
10
15
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
45
IF (A)
10
1
ZthJC (K/W)
40
Boost Inverse Diode
35
30
100
25
20
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
Tj = Tjmax-25°C
Tj = 25°C
5
0
0
At
tp =
0,5
1
250
1,5
2
2,5
3
3,5
4
V F (V)
10
4,5
µs
Figure 27
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Boost Inverse Diode
-2
10-5
10-4
At
D =
R thJH =
tp/T
10-3
2,44
10-2
100
t p (s)
10110
K/W
Figure 28
Forward current as a
function of heatsink temperature
I F = f(T h)
Boost Inverse Diode
30
Ptot (W)
IF (A)
75
10-1
25
60
20
45
15
30
10
15
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
19
50
175
100
150
Th ( o C)
200
ºC
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
20
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Switching Definitions BOOST
General
Tj
R gon
R goff
conditions
= 125 °C
= 16 Ω
= 16 Ω
Figure 1
Boost IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Boost IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
200
125
%
tdoff
%
VCE
100
IC
150
VCE 90%
VGE 90%
75
VCE
VGE
IC
100
VGE
50
tdon
tEoff
50
25
IC 1%
0
-25
-0,1
0
0,1
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,2
-15
15
350
15
0,16
0,41
0,3
time (us)
tEon
-50
2,95
0,4
V
V
V
A
µs
µs
3
3,05
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Boost IGBT
Turn-off Switching Waveforms & definition of t f
VCE 3%
IC 10%
VGE 10%
0
-15
15
350
15
0,066
0,17
3,1
3,15
time(us)
3,2
V
V
V
A
µs
µs
Figure 4
Boost IGBT
Turn-on Switching Waveforms & definition of t r
125
200
fitted
%
VCE
%
IC
IC
100
150
IC 90%
75
VCE
100
IC 90%
IC 60%
50
tr
IC 40%
50
25
IC 10%
IC10%
0
0
tf
-50
3,04
-25
0
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,1
0,2
350
15
0,073
0,3
time (us)
0,4
V
A
µs
3,06
V C (100%) =
I C (100%) =
tr =
21
3,08
350
15
0,017
3,1
3,12
3,14
3,16
time(us)
3,18
V
A
µs
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Switching Definitions BOOST
Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of t Eon
125
175
%
100
Pon
%
150
IC 1%
Poff
Eoff
125
75
Eon
100
75
50
50
25
25
VGE 90%
VGE 10%
0
-25
-0,1
0
0,1
P off (100%) =
E off (100%) =
t E off =
5,26
0,54
0,41
VCE 3%
0
tEoff
0,2
0,3
-25
2,95
time (us) 0,4
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
tEon
3
3,05
5,26
0,27
0,17
3,1
3,15
time(us)
3,2
kW
mJ
µs
Figure 7
Boost IGBT
Turn-off Switching Waveforms & definition of t rr
125
%
100
Id
75
trr
50
25
fitted
0
IRRM 10%
-25
-50
-75 I
RRM 90%
-125
3,05
Vd
IRRM 100%
-100
3,1
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,15
350
15
-14
0,28
3,2
3,25
3,3
3,35
3,4
time(us)
V
A
A
µs
22
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Switching Definitions BOOST
Figure 8
Boost FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Boost FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Erec
Id
100
Qrr
100
tErec
75
tQrr
50
50
0
Prec
25
-50
0
-25
-100
3
3,1
I d (100%) =
Q rr (100%) =
t Q rr =
3,2
15
1,22
0,55
3,3
3,4
3,5
3,6
3
3,7
time(us)
A
µC
µs
3,1
3,2
P rec (100%) =
E rec (100%) =
t E rec =
3,3
5,26
0,35
0,55
3,4
3,5
3,6
3,7
time(us)
kW
mJ
µs
Measurement circuit
Figure 10
BOOST stage switching measurement circuit
BUCK IGBT
T1
BOOST IGBT
VDC
+350V
-15V
BUCK FRED
D13+15V
T3
BOOST FRED
Vcc
Vce
Ic
V
L2
V
A
T4
115uH
D14
T2
-15V
V Vge
0.00001
0.000003
Q
Q
Q
+15V
Rgon
16_Ohm
Q
Rgoff
-15V
Q
16_Ohm
Q
copyright Vincotech
23
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Switching Definitions BUCK
General
Tj
R gon
R goff
conditions
= 125 °C
= 32 Ω
= 32 Ω
Figure 1
BUCK IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
BUCK IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
250
125
%
%
tdoff
VCE
200
100
VGE 90%
VCE 90%
75
IC
150
VGE
IC
VCE
100
50
tEoff
VGE
tdon
25
50
IC 1%
VCE 3%
IC 10%
VGE 10%
0
tEon
0
-25
-0,05
0
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,05
-15
15
350
15
0,09
0,16
0,1
-50
2,95
0,15
time (us)
V
V
V
A
µs
µs
3,05
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
BUCK IGBT
Turn-off Switching Waveforms & definition of t f
fitted
-15
15
350
15
0,07
0,17
250
%
VCE
IC
3,1
3,15
time(us)
3,2
V
V
V
A
µs
µs
Figure 4
BUCK IGBT
Turn-on Switching Waveforms & definition of t r
125
%
3
IC
200
100
IC 90%
150
75
VCE
IC 60%
100
50
IC 40%
tr
IC 90%
50
25
IC10%
0
IC 10%
0
tf
-50
3,06
-25
0
0,03
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,06
350
15
0,01
0,09
0,12
time (us)
0,15
V
A
µs
V C (100%) =
I C (100%) =
tr =
24
3,08
3,1
350
15
0,01
3,12
3,14
3,16
time(us)
3,18
V
A
µs
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Switching Definitions BUCK
Figure 5
BUCK IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
BUCK IGBT
Turn-on Switching Waveforms & definition of t Eon
125
250
%
%
IC 1%
Eoff
100
200
75
150
Pon
Eon
Poff
100
50
50
25
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-25
-0,05
0
P off (100%) =
E off (100%) =
t E off =
0,05
5,23
0,13
0,16
0,1
time (us)
-50
2,95
0,15
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
3
3,05
5,23
0,28
0,17
3,1
3,15
time(us)
3,2
kW
mJ
µs
Figure 7
BUCK IGBT
Turn-off Switching Waveforms & definition of t rr
150
%
100
Id
trr
50
0
Vd
fitted
IRRM 10%
-50
-100
IRRM 90%
-150
-200
3,05
IRRM 100%
3,07
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,09
3,11
350
15
-23
0,04
V
A
A
µs
3,13
3,15
time(us)
3,17
25
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Switching Definitions BUCK
Figure 8
BUCK FRED
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
BUCK FRED
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Qrr
Id
Erec
100
100
tErec
75
tQrr
50
50
Prec
0
25
-50
0
-100
-150
3,05
-25
3,075
I d (100%) =
Q rr (100%) =
t Q rr =
3,1
3,125
15
0,52
0,07
3,15
3,175
time(us)
-50
3,05
3,2
A
µC
µs
3,075
3,1
P rec (100%) =
E rec (100%) =
t E rec =
3,125
5,23
0,06
0,07
3,15
3,175
time(us)
3,2
kW
mJ
µs
Measurement circuit
Figure 10
BUCK stage switching measurement circuit
BUCK IGBT
T1
BOOST IGBT
-15V
BUCK FRED D13
T3
BOOST FRED
VDC
47kohm
47kohm
700
Vcc
Vce
3*470uF
-15V
T4
3*470uF
V
L2
V
115uH
D14
+15V
Vge
L
1mH
V
T2
A
0.00001
Q
Q
+15V
0.000003
Q
Rgon
32_Ohm
Q
Rgoff
-15V
Q
32_Ohm
Q
copyright Vincotech
26
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
10-PY07N3A015SM-M892F08Y
Standard in flow1 12mm housing
in DataMatrix as
M892F08Y
in packaging barcode as
M892F08Y
Outline
Pin table
Pin
X
Y
1
2
3
0
6
9,7
28,2
28,2
28,2
4
5
15,7
18,7
28,2
28,2
6
7
24,7
27,7
28,2
28,2
8
9
33,8
36,8
28,2
28,2
10
11
42,8
46,2
28,2
28,2
12
52,2
28,2
13
14
52,2
52,2
23,7
20,7
15
16
41,25
38,25
20,6
20,6
17
18
32,55
29,55
20,6
20,6
19
20
21
18,7
18,7
15,7
20,7
23,7
23,7
22
23
24
25
26
15,7
4,75
1,75
8,35
11,35
20,7
20,6
20,6
12,2
12,2
Pin
X
Y
27
19,95
12,2
36
37,95
0
28
29
22,95
44,35
12,2
12,2
37
38
29,2
26,2
0
0
30
31
32
33
47,35
52,2
52,2
46,75
12,2
8,9
5,9
0
39
40
41
42
23,2
20,4
11,8
9
0
0
0
0
34
35
43,95
40,95
0
0
43
44
6
3
0
0
Pin table
Pinout
copyright Vincotech
27
09 Oct. 2014 / Revision 2
10-PY07N3A015SM-M892F08Y
datasheet
flow 3xNPC 1
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
28
09 Oct. 2014 / Revision 2
Similar pages