Download Datasheet

L9680
Automotive advanced airbag IC for mid/high end applications
Datasheet - production data
 System voltage diagnostics with integrated
ADC
 Squib deployment drivers
– 12 channel HSD/LSD
– 25 V max deployment voltage
– Various deployment profiles
– Current monitoring
– Rmeasure, STB, STG & Leakage
diagnostics
– High & low side driver FET tests
*$3*36
TQFP100 exposed pad down
(14x14x1.0mm)
 High side safing switch regulator and enable
control
Features
 AEC-Q100 qualified
 Boost regulator for energy reserve
– 1.882 MHz operation, Iload = 70 mA max
– Output voltage user selectable, 23 V/ 33 V
±5%
– Capacitor value & ESR diagnostics
 Boost regulator for PSI-5 SYNC pulse
– 1.882 MHz operation,
– Output voltage, 12 V/14.75 V, user
configurable
 Four channel remote sensor interface
– PSI-5 satellite sensors
– Active wheel speed sensors
 Three channel GPO, HSD or LSD configurable,
with PWM 0-100% control
 Nine channel hall-effect, resistive or switch
sensor interface
 User customizable safing logic
 Specific disarm signal for passenger airbag
 Temporal and algorithmic Watchdog timers
 End of life disposal interface
 Buck regulator for remote sensor
– 1.882 MHz operation
– Output voltage, 7.2 V/9 V ±4%, user
configurable
 Temperature sensor
 Buck regulator for micro controller unit
– 1.882 MHz operation
– Output voltage user selectable, 3.3 V or
5.0 V ±3%
 Operating temperature, -40 to 95 °C
 32 bit SPI communications
 Integrated energy reserve crossover switch
– 3 Ω - 912 mA max
– Switch active output indicator
 Battery voltage monitor & shutdown control
with Wake-up control
May 2016
This is information on a product in full production.
 5.5 V minimum operating voltage at device
battery pin
 Packaging - 100 pin
Table 1. Device summary
Order code
L9680
L9680TR
DocID029257 Rev 1
Package
TQFP100
Pacing
Tray
Tape & Reel
1/277
www.st.com
Contents
L9680
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
Operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4
Pin out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5
Overview and block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6
2/277
5.1
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2
Deployment drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3
Remote sensor interfaces (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4
DC sensor interfaces (9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5
General purpose outputs (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.6
Arming logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7
Other features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Start-up and power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2
Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.1
POWER OFF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.2
SLEEP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.3
ACTIVE mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.4
PASSIVE mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.5
Power-up and power-down sequences . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.6
IC operating states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3
ERBOOST switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4
Energy reserve capacitor charging and discharging circuits . . . . . . . . . . 40
6.5
ER CAP diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5.1
ER CAP measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5.2
ER CAP ESR measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.6
ER switch and COVRACT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.7
SYNCBOOST boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DocID029257 Rev 1
L9680
7
Contents
6.8
SATBUCK regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.9
VCC buck regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.10
VCOREMON external core voltage monitor . . . . . . . . . . . . . . . . . . . . . . . 49
6.11
VSF regulator and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.12
Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.13
Reset control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SPI interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.1
SPI protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2
Global SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3
Global SPI tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Global SPI read/write register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3.1
Fault status register (FLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3.2
System configuration register (SYS_CFG) . . . . . . . . . . . . . . . . . . . . . . 70
7.3.3
System control register (SYS_CTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3.4
SPI Sleep command register (SPI_SLEEP) . . . . . . . . . . . . . . . . . . . . . 75
7.3.5
System status register (SYS_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3.6
Power state register (POWER_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3.7
Deployment configuration registers (DCR_x) . . . . . . . . . . . . . . . . . . . . 80
7.3.8
Deployment command (DEPCOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3.9
Deployment status registers (DSR_x) . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.10
Deployment current monitor registers (DCMTSxy) . . . . . . . . . . . . . . . . 85
7.3.11
Deploy enable register (SPIDEPEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3.12
Deployment ground loss register (LP_GNDLOSS) . . . . . . . . . . . . . . . . 86
7.3.13
Device version register (VERSION_ID) . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.14
Watchdog retry configuration register (WD_RETRY_CONF) . . . . . . . . 88
7.3.15
Microcontroller fault test register (MCU_FLT_TEST) . . . . . . . . . . . . . . . 88
7.3.16
Watchdog timer configuration register (WDTCR) . . . . . . . . . . . . . . . . . 89
7.3.17
WD1 timer control register (WD1T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.18
WD state register (WDSTATE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.19
Clock configuration register (CLK_CONF) . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.20
Scrap seed read command register (SCRAP_SEED) . . . . . . . . . . . . . . 93
7.3.21
Scrap key write command register (SCRAP_KEY) . . . . . . . . . . . . . . . . 94
7.3.22
Scrap state entry command register (SCRAP_STATE) . . . . . . . . . . . . . 94
7.3.23
Safing state entry command register (SAFING_STATE) . . . . . . . . . . . . 95
7.3.24
WD2 recover write command register (WD2_RECOVER) . . . . . . . . . . 95
DocID029257 Rev 1
3/277
8
Contents
L9680
7.4
4/277
7.3.25
WD2 seed read command register (WD2_SEED) . . . . . . . . . . . . . . . . . 96
7.3.26
WD2 key write command register (WD2_KEY) . . . . . . . . . . . . . . . . . . . 96
7.3.27
WD test command register (WD_TEST) . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.28
System diagnostic register (SYSDIAGREQ) . . . . . . . . . . . . . . . . . . . . . 98
7.3.29
Diagnostic result register for deployment loops (LPDIAGSTAT) . . . . . . 99
7.3.30
Loops diagnostic configuration command register for low leve
diagnostic (LPDIAGREQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3.31
Loops diagnostic configuration command register for high level
diagnostic (LPDIAGREQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3.32
DC sensor diagnostic configuration command register (SWCTRL) . . . 106
7.3.33
ADC request and data registers (DIAGCTRL_x) . . . . . . . . . . . . . . . . . 108
7.3.34
Configuration register for switching regulators (SW_REGS_CONF) . . 111
7.3.35
Global configuration register for GPO driver function (GPOCR) . . . . . 113
7.3.36
GPOx control register (GPOCTRLx) . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.37
GPO fault status register (GPOFLTSR) . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.38
Wheel speed sensor test request register (WSS_TEST) . . . . . . . . . . 118
7.3.39
PSI5/WSS configuration register for channel x (RSCRx) . . . . . . . . . . 119
7.3.40
Remote sensor control register (RSCTRL) . . . . . . . . . . . . . . . . . . . . . 123
7.3.41
WSS Threshold configuration register 1 (RS_AUX_CONF1) . . . . . . . 124
7.3.42
WSS Threshold configuration register 2 (RS_AUX_CONF2) . . . . . . . 124
7.3.43
Safing algorithm configuration register (SAF_ALGO_CONF) . . . . . . . 125
7.3.44
Arming signals register (ARM_STATE) . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3.45
ARMx assignment registers to specific Loops (LOOP_MATRIX_ARMx) 127
7.3.46
ARMx enable pulse stretch timer status (AEPSTS_ARMx) . . . . . . . . . 128
7.3.47
Passenger inhibit upper threshold for DC sensor 0 (PADTHRESH_HI) 129
7.3.48
Passenger inhibit lower threshold for DC sensor 0 (PADTHRESH_LO) 129
7.3.49
Assignment of PSINH signal to specific Loop(s) (LOOP_MATRIX_PSINH) 130
7.3.50
Safing records enable register (SAF_ENABLE) . . . . . . . . . . . . . . . . . 130
7.3.51
Safing records request mask registers (SAF_REQ_MASK_x) . . . . . . 131
7.3.52
Safing records request target registers (SAF_REQ_TARGET_x) . . . . 133
7.3.53
Safing records response mask registers (SAF_RESP_MASK_x) . . . . 135
7.3.54
Safing records response mask registers (SAF_RESP_TARGET_x) . . 137
7.3.55
Safing records data mask registers (SAF_DATA_MASK_x) . . . . . . . . 139
7.3.56
Safing record threshold registers (SAF_THRESHOLD_x) . . . . . . . . . 141
7.3.57
Safing control x registers (SAF_CONTROL_x) . . . . . . . . . . . . . . . . . . 143
7.3.58
Safing record compare complete register (SAF_CC) . . . . . . . . . . . . . 146
Remote sensor SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
DocID029257 Rev 1
L9680
Contents
7.5
Remote sensor SPI tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.5.1
7.6
8
Remote sensor SPI read/write registers . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.6.1
Remote sensor data/fault registers (RSDRx @FLT = 0) . . . . . . . . . . . 149
7.6.2
Remote sensor data/fault registers w/o fault (RSDRx @ FLT=1) . . . . 152
7.6.3
Remote sensor x current registers y (RSTHRx_y) . . . . . . . . . . . . . . . 156
7.6.4
Arming signals register (ARM_STATE) . . . . . . . . . . . . . . . . . . . . . . . . 157
7.6.5
Safing record compare complete register (SAF_CC) . . . . . . . . . . . . . 158
Deployment drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.1
Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.1.1
Deployment current selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.1.2
Deploy command expiration timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.1.3
Deployment control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.1.4
Deployment current monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.1.5
Deployment success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.2
Energy reserve - deployment voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.3
Deployment ground return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.4
Deployment driver protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.5
9
Remote sensor SPI global status word . . . . . . . . . . . . . . . . . . . . . . . . 148
8.4.1
Delayed low-side deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.4.2
Low-side voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.4.3
Short to battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.4.4
Short to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.4.5
Intermittent open squib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.5.1
Low level diagnostic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.5.2
High level diagnostic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Remote sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.1
9.2
PSI5 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.1.1
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.1.2
Sensor data integrity: LCID and CRC . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.1.3
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Active wheel speed sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.2.1
Wheel speed data register formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.2.2
Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
DocID029257 Rev 1
5/277
8
Contents
L9680
9.3
10
Short to ground, current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.3.2
Short to battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.3.3
Cross link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.3.4
Leakage to battery, sensor open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.3.5
Leakage to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.3.6
Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Temporal watchdog (WD1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.1.1
Watchdog timer configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.1.2
Watchdog timer operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.2
Algorithmic watchdog (WD2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.3
Watchdog reset assertion timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.4
Watchdog timer disable input (WDT/TM) . . . . . . . . . . . . . . . . . . . . . . . . 191
DC sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.1
12
9.3.1
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.1
11
Remote sensor interface fault protection . . . . . . . . . . . . . . . . . . . . . . . . 184
Passenger inhibit interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Safing logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
12.1
Safing logic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
12.2
SPI sensor data decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
12.3
In-frame and out-of-frame responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
12.4
Safing state machine operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.4.1
12.5
Safing engine output logic (ARMxINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 206
12.5.1
12.6
Simple threshold comparison operation . . . . . . . . . . . . . . . . . . . . . . . 205
Arming pulse stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Additional communication line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
13
General purpose output (GPO) drivers . . . . . . . . . . . . . . . . . . . . . . . . 213
14
System voltage diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
14.1
15
6/277
Analog to digital algorithmic converter . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
DocID029257 Rev 1
L9680
16
Contents
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
16.1
Configuration and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
16.2
Internal analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.3
Internal regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
16.4
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
16.5
Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
16.6
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
16.7
SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
16.8
ERBoost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
16.9
ER CAP current generators and diagnostic . . . . . . . . . . . . . . . . . . . . . . 239
16.10 ER switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
16.11 COVRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
16.12 SYNCBOOST converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
16.13 SATBUCK converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
16.14 VCC regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
16.15 VSF regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
16.16 Deployment drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
16.17 Deployment driver diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
16.17.1 Squib resistance measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
16.17.2 Squib leakage test (VRCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
16.17.3 High/low side FET test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
16.17.4 Deployment timer test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
16.18 Remote sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
16.18.1 PSI-5 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
16.18.2 WSS interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
16.19 DC sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
16.20 Safing engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
16.21 General purpose output drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
16.22 Analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
16.23 Voltage diagnostics (Analog MUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
16.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
17
Quality information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
17.1
OTP memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
DocID029257 Rev 1
7/277
8
Contents
L9680
18
Errata sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
19
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
19.1
20
8/277
TQFP100 (14x14x1.4 mm exp. pad down) package information . . . . . . 274
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
DocID029257 Rev 1
L9680
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Functions disabling by state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
SPI MOSI and MISO frames layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Global SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Global SPI Global Status Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Remote sensor SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
GSW - Remote sensor SPI global status word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Short between loops diagnostics decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
HS FET TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
LS FET TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Watchdog timer status description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
WD2 states and signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Example of combine function operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Short to ground fault in LS mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Short to battery fault in HS mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Diagnostics control register (DIAGCTRLx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Diagnostics divider ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Configuration and control DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Configuration and control AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Open ground detection DC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
GND_OPEN_AC - Open ground detection DC specifications . . . . . . . . . . . . . . . . . . . . . 229
Internal analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Internal regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Internal regulators AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Temporal watchdog timer AC specifications (WD1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Algorithmic watchdog timer DC specifications (WD2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Algorithmic watchdog timer AC specifications (WD2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Oscillators specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Reset DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Reset AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Global and remote sensor SPI DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
SPI AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
ERBoost regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
ERBoost regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
ERBOOST Converter external components design info. . . . . . . . . . . . . . . . . . . . . . . . . . 238
ER CAP current generators and diagnostic DC specifications . . . . . . . . . . . . . . . . . . . . . 239
ER CAP current generators and diagnostic AC specifications . . . . . . . . . . . . . . . . . . . . . 240
ER Switch DC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
ER Switch AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
COVRACT DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
COVRACT AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
SYNCBOOST converter DC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
SYNCBOOST converter AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
SYNCBOOST converter external components design info. . . . . . . . . . . . . . . . . . . . . . . . 243
SATBUCK converter DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
SATBUCK converter AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
DocID029257 Rev 1
9/277
10
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
10/277
L9680
SATBUCK converter external components design info . . . . . . . . . . . . . . . . . . . . . . . . . . 245
VCC converter DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
VCC converter AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
VCC converter external components design info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
VSF regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
VSF regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Deployment drivers – DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Deployment drivers – AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Deployment drivers diagnostics - Squib resistance measurement . . . . . . . . . . . . . . . . . . 253
Squib Leakage Test (VRCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
High/low side FET test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Deployment timer test - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
PSI-5 satellite transceiver - DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
PSI-5 satellite transceiver - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
WSS sensor - DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
WSS sensor - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
DC Sensor interface specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Arming Interface – DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Arming interface – AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
GPO interface DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
GPO driver interface – AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Voltage diagnostics (Analog MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Temperature sensor specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Errata sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
TQFP100 (14x14x1.4 mm exp. pad down) package mechanical data . . . . . . . . . . . . . . . 275
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
DocID029257 Rev 1
L9680
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Pin connection diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Device function block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Power supply block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Power control state flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Wake-up input signal behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Normal power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Normal power down sequence through POWERMODE SHUTDOWN state - no ER cap
active discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Normal power down sequence through Powermode Shutdown state - ER cap
active discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Normal power down sequence through ER state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
IC operating state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
ERBOOST regulator block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ERBOOST regulator state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ER charge state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ER discharge state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ER CAP measurement block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ER CAP measurement timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ER ESR measurement block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
ER ESR measurement timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ER switch state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
SYNCBOOST regulator block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SYNCBOOST regulator state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SATBUCK regulator state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
VCC regulator state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
VSF control logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Internal voltage monitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Reset control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Deployment driver control blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Deployment driver control logic - Enable signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Deployment driver control logic - Turn-on signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Deployment driver block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Global SPI deployment enable state diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Current monitor counter behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Deployment loop diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
SRx pull-down enable logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Deployment timer diagnostic sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
High level loop diagnostic flow1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
High level loop diagnostic flow2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Remote sensor interface logic blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
PSI-5 remote sensor protocol (10-bit, 1-bit parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Manchester bit encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Remote sensor synchronization pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
PSI5 slot timing control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Manchester decoder state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Wheel speed sensor protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
WD1 Temporal watchdog state diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Watchdog timer refresh diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
DocID029257 Rev 1
11/277
12
List of figures
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
12/277
L9680
Algorithmic watchdog timer flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
DC sensor interface block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Passenger inhibit logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Top level safing engine flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Safing engine – 32-bit message decoding flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Safing engine – 16-bit Message decoding flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Safing engine - Validate data flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Safing engine - Combine function flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Safing engine threshold comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Safing engine - Compare complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
In-frame example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Out-of-frame example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Safing engine arming flow diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Safing engine diagnostic logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
ARMx input/output control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Pulse stretch timer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Scrap SEED-KEY state diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Scrap ACL state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Disposal PWM signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
GPO driver and diagnostic block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
GPO Over temperature logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
ADC MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
ADC conversion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
SPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Deployment drivers diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
TQFP100 (14x14x1.4 mm exp. pad down) package outline. . . . . . . . . . . . . . . . . . . . . . . 274
DocID029257 Rev 1
L9680
1
Description
Description
The L9680 is an advanced airbag system chip solution targeted for mature airbag market
and integrated safety markets. This device is family compatible with the L9678 and L9679
devices. Safety system integration is enabled through higher power supply currents and
integrated active wheel speed sensor interface. The active wheel speed interface is shared
with the PSI-5 satellite interface to create a generic remote safety sensor interface
compliant to both systems.
High frequency power supply design allows further cost reduction by using smaller and less
expensive external components. All switching regulators operate at 1.882 MHz while buck
converters have integrated synchronous rectifiers.
Additional attention is given to system integrity and diagnostics. The reserve capacitor is
electrically isolated from the boost regulator by a 65 mA nominal fixed current source,
controlling in-rush an additional capacitor discharge fixed current source is integrated to
diagnose the reserve capacitor value and ESR. The same current sources can be used to
discharge the capacitor at shutdown.
Thanks to low quiescent current, the device can be directly connected to battery. In this way,
the device start-up and shutdown are controlled through the wake-up input function. The
power supply and crossover function are controlled automatically through the internal state
machine.
The user can select both ECU logic voltage (VCC at 3.3 V or 5.0 V) and energy reserve
output voltage (at either 23 V or 33 V). Deployment voltage is set to a maximum of 25 V for
all profiles and can be controlled through external safing switch circuit using the high side
safing switch reference enabled through the system SPI interface or the arming logic.
DocID029257 Rev 1
13/277
276
Absolute maximum ratings
2
L9680
Absolute maximum ratings
This part may be irreparably damaged if taken outside the specified absolute maximum
ratings. Operation above the absolute maximum ratings may also cause a decrease in
reliability.
The operating junction temperature range is -40 °C to +150 °C. The maximum junction
temperature must not be exceeded except when in deployment and within the deploy power
stages. Deployment is possible starting with a junction temperature of 150 °C. A power
dissipation calculation has to be performed for the final application limiting the available
functionality to a subset of it in order to respect to the power dissipation capability.
Table 2. Absolute maximum ratings
Pin#
Pin name
1
CS_RS
2
Min
Max
Unit
Remote SPI interface chip select
-0.3
VCC+0.3  6.5
V
SCLK_RS
Remote SPI interface clock
-0.3
VCC+0.3  6.5
V
3
MOSI_RS
Remote SPI interface data in
-0.3
VCC+0.3  6.5
V
4
MISO_RS
Remote SPI interface data out
-0.3
VCC+0.3  6.5
V
5
RESET
Reset output
-0.3
VCC+0.3  6.5
V
6
MISO_G
Global SPI interface data out
-0.3
VCC+0.3  6.5
V
7
MOSI_G
Global SPI interface data in
-0.3
VCC+0.3  6.5
V
8
SCLK_G
Global SPI interface clock
-0.3
VCC+0.3  6.5
V
9
CS_G
Global SPI interface chip select
-0.3
VCC+0.3  6.5
V
10
WDT/TM
Watchdog disable
-0.3
20
V
11
SR4
Squib 4 low-side pin
-0.3
40
V
12
SF4
Squib 4 high-side pin
-1.0
40
V
13
SS45
Squib 4 & 5 deployment supply pin
-0.3
40
V
14
SF5
Squib 5 high-side pin
-1.0
40
V
15
SR5
Squib 5 low-side pin
-0.3
40
V
16
SR0
Squib 0 low-side pin
-0.3
40
V
17
SF0
Squib 0 high-side pin
-1.0
40
V
18
SS01
Squib 0 & 1 deployment supply pin
-0.3
40
V
19
SF1
Squib 1 high-side pin
-1.0
40
V
20
SR1
Squib 1 low-side pin
-0.3
40
V
21
SR8
Squib 8 low-side pin
-0.3
40
V
22
SF8
Squib 8 high-side pin
-1.0
40
V
23
SS89
Squib 8 & 9 deployment supply pin
-0.3
40
V
24
SF9
Squib 9 high-side pin
-1.0
40
V
25
SR9
Squib 9 low-side pin
-0.3
40
V
26
DCS8
-2
40
V
14/277
Pin function
DC Sensor interface channel 8
DocID029257 Rev 1
L9680
Absolute maximum ratings
Table 2. Absolute maximum ratings (continued)
Pin#
Pin name
27
DCS7
28
Pin function
Min
Max
Unit
DC Sensor interface channel 7
-2
40
V
DCS6
DC Sensor interface channel 6
-2
40
V
29
DCS5
DC Sensor interface channel 5
-2
40
V
30
DCS4
DC Sensor interface channel 4
-2
40
V
31
DCS3
DC Sensor interface channel 3
-2
40
V
32
DCS2
DC Sensor interface channel 2
-2
40
V
33
DCS1
DC Sensor interface channel 1
-2
40
V
34
DCS0
DC Sensor interface channel 0
-2
40
V
35
RSU0
PSI-5/WSS ch. 0 remote sensor output
-1
40
V
36
RSU1
PSI-5/WSS ch. 1 remote sensor output
-1
40
V
37
RSU2
PSI-5/WSS ch. 2 remote sensor output
-1
40
V
38
RSU3
PSI-5/WSS ch. 3 remote sensor output
-1
40
V
39
GPOD0
GPO driver 0 drain output pin
-1
40
V
40
GPOS0
GPO driver 0 source output pin
-1
40
V
41
GPOS1
GPO driver 1 source output pin
-1
40
V
42
GPOD1
GPO driver 1 drain output pin
-1
40
V
43
GPOD2
GPO driver 2 drain output pin
-1
40
V
44
GPOS2
GPO driver 2 source output pin
-1
40
V
45
COVRACT
External Crossover Switch Driver
-0.3
40
V
46
VCOREMON
External Regulator Monitor
-0.3
VCC+0.3  6.5
V
47
MCUFAULTB
Active Low MCU Fault Monitoring Input
-0.3
VCC+0.3  6.5
V
48
SATSYNC
Initiate Satellite Sensor Sync Pulse
-0.3
VCC+0.3  6.5
V
49
PSINHB
Active Low Passenger Airbag Inhibit Control
-0.3
VCC+0.3  6.5
V
50
GNDSUB1
Substrate ground / Squib ground
-0.3
0.3
V
51
SRB
Squib B low-side pin
-0.3
40
V
52
SFB
Squib B high-side pin
-1.0
40
V
53
SSAB
Squib A & B deployment supply pin
-0.3
40
V
54
SFA
Squib A high-side pin
-1.0
40
V
55
SRA
Squib A low-side pin
-0.3
40
V
56
SR3
Squib 3 low-side pin
-0.3
40
V
57
SF3
Squib 3 high-side pin
-1.0
40
V
58
SS23
Squib 2 & 3 deployment supply pin
-0.3
40
V
59
SF2
Squib 2 high-side pin
-1.0
40
V
60
SR2
Squib 2 low-side pin
-0.3
40
V
61
SR7
Squib 7 low-side pin
-0.3
40
V
DocID029257 Rev 1
15/277
276
Absolute maximum ratings
L9680
Table 2. Absolute maximum ratings (continued)
Pin#
Pin name
62
SF7
63
SS67
64
Min
Max
Unit
Squib 7 high-side pin
-1.0
40
V
Squib 6 & 7 deployment supply pin
-0.3
40
V
SF6
Squib 6 high-side pin
-1.0
40
V
65
SR6
Squib 6 low-side pin
-0.3
40
V
66
GNDA
Analog ground
-0.3
0.3
V
67
SAF_CS0
SPI interface safing sensor chip select 0
-0.3
VCC+0.3  6.5
V
68
SAF_CS1
SPI interface safing sensor chip select 1
-0.3
VCC+0.3  6.5
V
69
SAF_CS2
SPI interface safing sensor chip select 2
-0.3
VCC+0.3  6.5
V
70
SAF_CS3
SPI interface safing sensor chip select 3
-0.3
VCC+0.3  6.5
V
71
WD2_LockOut
WD2 fault output
-0.3
VCC+0.3  6.5
V
72
WS3
Wheel speed output Ch3
-0.3
VCC+0.3  6.5
V
73
WS2
Wheel speed output Ch2
-0.3
VCC+0.3  6.5
V
74
WS1
Wheel speed output Ch1
-0.3
VCC+0.3  6.5
V
75
WS0
Wheel speed output Ch0
-0.3
VCC+0.3  6.5
V
76
VCCSEL
VCC select / VCOREMON disable input
-0.3
40
V
77
ACL
EOL disposal control input
-0.3
40
V
78
WAKEUP
Wake-up control input
-0.3
40
V
79
VBATMON
Battery line voltage monitor
-18(1)
40
V
80
VSF
Safing regulator supply output
-0.3
40
V
81
VIN
Battery connection
-0.3
40
V
82
VER
Reserve voltage
-0.3
40
V
83
ERBOOST
Energy reserve regulator output
-0.3
40
V
84
ERBSTSW
ER Boost switching output
-0.3
40
V
85
BSTGND
Boost regulators ground
-0.3
0.3
V
86
SYNCBSTSW
SYNC Boost switching output
-0.3
40
V
87
SYNCBOOST
SYNC boost output voltage
-0.3
40
V
88
SATBCKSW
SAT Buck switching output
-0.3
40
V
89
SATGND
SAT Buck regulator ground
-0.3
0.3
V
90
SATBUCK
SAT Buck output voltage
-0.3
40
-
91
VCCBCKSW
VCC Buck switch output
-0.3
40
V
92
VCCGND
VCC Buck Ground
-0.3
0.3
V
93
CVDD
Internal 3.3V regulator output
-0.3
4.6
V
94
GNDD
Digital ground
-0.3
0.3
-
95
VCC
VCC Buck voltage
-0.3
6.5
V
96
ARM1
Arming output 1
-0.3
VCC+0.3  6.5
V
16/277
Pin function
DocID029257 Rev 1
L9680
Absolute maximum ratings
Table 2. Absolute maximum ratings (continued)
Pin#
Pin name
97
ARM2
98
Pin function
Min
Max
Unit
Arming output 2
-0.3
VCC+0.3  6.5
V
ARM3
Arming output 3
-0.3
VCC+0.3  6.5
V
99
ARM4
Arming output 4
-0.3
VCC+0.3  6.5
V
100
GNDSUB2
Substrate ground / Squib ground
-0.3
0.3
V
-
Exposed pad
down
Substrate ground / Squib ground
-0.3
0.3
V
1. VBATMON negative AMR is -18 V or -20 mA.
DocID029257 Rev 1
17/277
276
Operative maximum ratings
3
L9680
Operative maximum ratings
Within the operating ratings the part operates as specified and without parameter
deviations. Once taken beyond the operative ratings and returned back within, the part will
recover with no damage or degradation.
Additional supply voltage and temperature conditions are given separately at the beginning
of each specification table.
Table 3. Operative maximum ratings
Pin
#
Pin name
1
CS_RS
2
Min
Max
Unit
Remote SPI interface chip select
-0.1
VCC+0.1  5.5
V
SCLK_RS
Remote SPI interface clock
-0.1
VCC+0.1  5.5
V
3
MOSI_RS
Remote SPI interface data in
-0.1
VCC+0.1  5.5
V
4
MISO_RS
Remote SPI interface data out
-0.1
VCC+0.1  5.5
V
5
RESET
Reset output
-0.1
VCC+0.1  5.5
V
6
MISO_G
Global SPI interface data out
-0.1
VCC+0.1  5.5
V
7
MOSI_G
Global SPI interface data in
-0.1
VCC+0.1  5.5
V
8
SCLK_G
Global SPI interface clock
-0.1
VCC+0.1  5.5
V
9
CS_G
Global SPI interface chip select
-0.1
VCC+0.1  5.5
V
10
WDT/TM
Watchdog disable
-0.1
15
V
11
SR4
Squib 4 low-side pin
-0.1
SS45
V
12
SF4
Squib 4 high-side pin
-1.0
SS45
V
13
SS45
Squib 4 & 5 deployment supply pin
-0.1
VER
V
14
SF5
Squib 5 high-side pin
-1.0
SS45
V
15
SR5
Squib 5 low-side pin
-0.1
SS45
V
16
SR0
Squib 0 low-side pin
-0.1
SS01
V
17
SF0
Squib 0 high-side pin
-1.0
SS01
V
18
SS01
Squib 0 & 1 deployment supply pin
-0.1
VER
V
19
SF1
Squib 1 high-side pin
-1.0
SS01
V
20
SR1
Squib 1 low-side pin
-0.1
SS01
V
21
SR8
Squib 8 low-side pin
-0.1
SS89
V
22
SF8
Squib 8 high-side pin
-1.0
SS89
V
23
SS89
Squib 8 & 9 deployment supply pin
-0.1
VER
V
24
SF9
Squib 9 high-side pin
-1.0
SS89
V
25
SR9
Squib 9 low-side pin
-0.1
SS89
V
26
DCS8
DC sensor interface channel 8
-1
18
V
27
DCS7
DC sensor interface channel 7
-1
18
V
18/277
Pin function
DocID029257 Rev 1
L9680
Operative maximum ratings
Table 3. Operative maximum ratings (continued)
Pin
#
Pin name
28
DCS6
29
Pin function
Min
Max
Unit
DC sensor interface channel 6
-1
18
V
DCS5
DC sensor interface channel 5
-1
18
V
30
DCS4
DC sensor interface channel 4
-1
18
V
31
DCS3
DC sensor interface channel 3
-1
18
V
32
DCS2
DC sensor interface channel 2
-1
18
V
33
DCS1
DC sensor interface channel 1
-1
18
V
34
DCS0
DC Sensor interface channel 0
-1
18
V
35
RSU0
PSI-5/WSS ch. 0 remote sensor output
-1
VRSU_SYNC_MAX
V
36
RSU1
PSI-5/WSS ch. 1 remote sensor output
-1
VRSU_SYNC_MAX
V
37
RSU2
PSI-5/WSS ch. 2 remote sensor output
-1
VRSU_SYNC_MAX
V
38
RSU3
PSI-5/WSS ch. 3 remote sensor output
-1
VRSU_SYNC_MAX
V
39
GPOD0
GPO driver 0 drain output pin
-0.1
40
V
40
GPOS0
GPO driver 0 source output pin
-1
40
V
41
GPOS1
GPO driver 1 source output pin
-1
40
V
42
GPOD1
GPO driver 1 drain output pin
-0.1
40
V
43
GPOD2
GPO driver 2 drain output pin
-0.1
40
V
44
GPOS2
GPO driver 2 source output pin
-1
40
V
45
COVRACT
External crossover switch driver
-0.1
40
V
46
VCOREMON
External regulator monitor
-0.1
VCC+0.1  5.5
V
47
MCUFAULTB
Active low MCU fault monitoring input
-0.1
VCC+0.1  5.5
V
48
SATSYNC
Initiate satellite sensor sync pulse
-0.1
VCC+0.1  5.5
V
49
PSINHB
Active low passenger airbag inhibit control
-0.1
VCC+0.1  5.5
V
50
GNDSUB1
Substrate ground / Squib ground
-0.1
0.1
V
51
SRB
Squib B low-side pin
-0.1
SSAB
V
52
SFB
Squib B high-side pin
-1.0
SSAB
V
53
SSAB
Squib A & B deployment supply pin
-0.1
VER
V
54
SFA
Squib A high-side pin
-1.0
SSAB
V
55
SRA
Squib A low-side pin
-0.1
SSAB
V
56
SR3
Squib 3 low-side pin
-0.1
SS23
V
57
SF3
Squib 3 high-side pin
-1.0
SS23
V
58
SS23
Squib 2 & 3 deployment supply pin
-0.1
VER
V
59
SF2
Squib 2 high-side pin
-1.0
SS23
V
60
SR2
Squib 2 low-side pin
-0.1
SS23
V
61
SR7
Squib 7 low-side pin
-0.1
SS67
V
DocID029257 Rev 1
19/277
276
Operative maximum ratings
L9680
Table 3. Operative maximum ratings (continued)
Pin
#
Pin name
62
SF7
63
SS67
64
Min
Max
Unit
Squib 7 high-side pin
-1.0
SS67
V
Squib 6 & 7 deployment supply pin
-0.1
VER
V
SF6
Squib 6 high-side pin
-1.0
SS67
V
65
SR6
Squib 6 low-side pin
-0.1
SS67
V
66
GNDA
Analog ground
-0.1
0.1
V
67
SAF_CS0
SPI interface safing sensor chip select 0
-0.1
VCC+0.1 <= 5.5
V
68
SAF_CS1
SPI interface safing sensor chip select 1
-0.1
VCC+0.1 <= 5.5
V
69
SAF_CS2
SPI interface safing sensor chip select 2
-0.1
VCC+0.1 <= 5.5
V
70
SAF_CS3
SPI interface safing sensor chip select 3
-0.1
VCC+0.1 <= 5.5
V
71
WD2_LockOut
WD2 Fault Output
-0.1
VCC+0.1 <= 5.5
V
72
WS3
Wheel Speed Output Ch3
-0.1
VCC+0.1 <= 5.5
V
73
WS2
Wheel Speed Output Ch2
-0.1
VCC+0.1 <= 5.5
V
74
WS1
Wheel Speed Output Ch1
-0.1
VCC+0.1 <= 5.5
V
75
WS0
Wheel Speed Output Ch0
-0.1
VCC+0.1 <= 5.5
V
76
VCCSEL
VCC select / VCOREMON disable input
-0.1
35
V
77
ACL
EOL disposal control input
-0.1
35
V
78
WAKEUP
Wake-up control input
-0.1
VIN
V
79
VBATMON
Battery line voltage monitor
-1
18
V
80
VSF
Safing regulator supply output
-0.1
27
V
81
VIN
Battery connection
-0.1
35
V
82
VER
Reserve voltage
-0.1
35
V
83
ERBOOST
Energy reserve regulator output
-0.1
35
V
84
ERBSTSW
ER Boost switching output
-0.1
35
V
85
BSTGND
Boost regulators ground
-0.1
0.1
V
86
SYNCBSTSW
SYNC Boost switching output
-0.1
35
V
87
SYNCBOOST
SYNC boost output voltage
-0.1
35
V
88
SATBCKSW
SAT Buck switching output
-0.1
35
V
89
SATGND
SAT Buck regulator ground
-0.1
0.1
V
90
SATBUCK
SAT Buck output voltage
-0.1
10
-
91
VCCBCKSW
VCC Buck switch Output
-0.1
10
V
92
VCCGND
VCC Buck Ground
-0.1
0.1
V
93
CVDD
Internal 3.3V regulator output
-0.1
3.6
V
94
GNDD
Digital ground
-0.1
0.1
-
95
VCC
VCC Buck Voltage
-0.1
5.5
V
20/277
Pin function
DocID029257 Rev 1
L9680
Operative maximum ratings
Table 3. Operative maximum ratings (continued)
Pin
#
Pin name
96
ARM1
97
Min
Max
Unit
Arming Output 1
-0.1
VCC+0.1 <= 5.5
V
ARM2
Arming Output 2
-0.1
VCC+0.1 <= 5.5
V
98
ARM3
Arming Output 3
-0.1
VCC+0.1 <= 5.5
V
99
ARM4
Arming Output 4
-0.1
VCC+0.1 <= 5.5
V
100
GNDSUB2
Substrate ground / Squib ground
-0.1
0.1
V
Exposed Pad Down Substrate ground / Squib ground
-0.1
0.1
V
-
Pin function
DocID029257 Rev 1
21/277
276
Pin out
4
L9680
Pin out
The L9680 pin out is shown below. The IC is housed in a 100 pin package (14 x 14 x
1.0mm) with a 7.6 x 7.6 mm exposed pad down.
%67*1'
(5%676:
(5%2267
9&&6(/
6<1&%676:
$&/
6<1&%2267
:$.(83
6$7%&.6:
9%$7021
6$7*1'
96)
6$7%&.
9(5
9&&%&.6:
9,1
9&&*1'
&9''
9&&
$50
*1''
$50
$50
$50
*1'68%
Figure 1. Pin connection diagram (top view)
&6B56
:6
6&/.B56
:6
026,B56
:6
0,62B56
:6
5(6(7
:'B/RFN2XW
0,62B*
6$)B&6
026,B*
6$)B&6
6&/.B*
6$)B&6
&6B*
6$)B&6
:'770
*1'$
65
65
6)
6)
66
66
6)
6)
65
65
65
65
6)
6)
66
66
6)
6)
65
65
65
65$
6)
6)$
66
66$%
6)
6)%
65
65%
'&6
'&6
'&6
'&6
'&6
'&6
'&6
'&6
'&6
568
568
568
568
*32'
*326
*326
*32'
*32'
*326
&295$&7
9&25(021
0&8)$8/7%
6$76<1&
36,1+%
*1'68%
([SRVHGSDGGRZQ
*$3*36
The exposed pad is electrically shorted to the substrate pins GNDSUB1 and GNDSUB2.
These three connection nodes are to be kept shorted on the application.
22/277
DocID029257 Rev 1
L9680
Overview and block diagram
5
Overview and block diagram
The L9680 IC is an application specific standard component air bag system chip. Its main
functions include, power management, deployment drivers, remote sensor interfaces (PSI-5
satellite sensors or active wheel speed sensors), diagnostics, deployment arming, halleffect sensor interface, general purpose output drivers, watchdog timer, microcontroller
failsafe input and control and a dedicated passenger airbag disarm signal. A block diagram
for this IC is shown in Figure 2.
6<1&%2267
;
;
(5%676:
;
(5%2267
;
;
;
6<1&%RRVW
5HJXODWRU
9
$50
;
36,+1%
6$)B&6
;
$50
6$)B&6
;
$50
6$)B&6
;
6$)B&6
$&/
;
$50
:'770
;
9&&%&.*1'
9&&
;
5(6(7
9&&6(/
9&25(021
9&&%&.6:
6$7%8&.
;
9&&%XFN5HJXODWRU
99
6$7%XFN5HJXODWRU
9
6<1&%676: ;
%67*1'
;
;
;
;
;
;
;
;
*1'68%
([SRVHG3DG
;
9(5
;
96)
'HSOR\PHQW'ULYHUV
*OREDO&RQILJXUDWLRQ
&RQWURO
5HPRWH6HQVRU
&RQILJXUDWLRQ
&RQWURO
&RQILJXUDEOH
*HQHUDO3XUSRVH
2XWSXW'ULYHUV
+665(*
:DNHXS
3RZHU0RGLQJ
&RQWURO
;
;
;
;
;
««
:6
:6
;
;
:6
;
:6
;
'&
DocID029257 Rev 1
;
'&
;
0,62B56
;
6&/.B56
;
5HPRWH6HQVRU
,QWHUIDFH
026,B56
;
&6B56
*326
;
0,62B*
;
026,B*
;
6&/.B*
;
'&6HQVRU
,QWHUIDFH
&6B*
;
*326
&295$&7
;
*32'
*1'$
;
*326
&9''
;
*32'
;
*32'
;
*1''
;
;
66$%
;
6)
;
65
;
(5&$3'LDJQRVWLFV
DQG
&KDUJH&RQWURO
:$.(83 ;
66
;
(QHUJ\5HVHUYH
&URVVRYHU&RQWURO
9%$7021 ;
;
;
(5%RRVW5HJXODWRU
99
;
0&8)$8/7%
:DWFKGRJ
%LDV'LDJQRVWLFV$'&
9,1
:'B/2&.287
$UPLQJ6FUDSSLQJ&38,QWHJULW\0RQLWRU
«««
;
;
«««
6$7*1'
;
;
;
;
*1'68%
([SRVHG3DG
6$7%&.6:
Figure 2. Device function block diagram
;
6)%
;
65%
;
6$76<1&
;
568
;
568
;
568
;
568
*$3*36
23/277
276
Overview and block diagram
5.1
Power supply












5.2
Integrated 1.882 MHz boost regulator, 33 V ± 5% or 23 V ± 5% nominal output
Integrated 1.882 MHz boost regulator,12 V/14.75 V nominal output, user selectable via
SPI command
Integrated 1.882 MHz synchronous buck regulator, 7.2 V/9 V ± 4% nominal output,
user selectable via SPI command
Integrated 1.882 MHz synchronous buck regulator, 5 V ± 3% or 3.3 V ± 3% nominal
output, user selectable via VCCSEL pin
Over and under voltage detection and shutdown for all regulators
Under-voltage lockout to guarantee buck regulator outputs disabled and discharged
Integrated energy reserve capacitor fixed constant current source (65 mA, nominal)
switch for controlled inrush and charge characteristics
Integrated energy reserve diagnostics, capacitor value and ESR
Integrated energy reserve crossover switch with current limit and battery input voltage
monitoring
Crossover switch ‘active’ output signal
Integrated 25 V/20 V SPI selectable linear regulator for high side safing FET gate
supply enabled via SPI or arming logic
Reset output
Deployment drivers









24/277
L9680
12 high side deployment drivers, 12 low side deployment drivers
User programmable deployment options
–
1.20 A or 1.75 A minimum
–
programmable time in 0.1ms increments
Capability to deploy a squib with a minimum current of 1.2 / 1.75 A and the low side
FET shorted to ground up to 25 V on SSxy
Independently-controlled high-side and low-side FETs
Squib resistance measurement
Firing current monitor feature
High and low side FET tests
Open & shorts diagnostics, including between loop drivers
Independent fire enable logic, SPI and discrete digital input
DocID029257 Rev 1
L9680
5.3
Overview and block diagram
Remote sensor interfaces (4)





5.4
DC sensor interfaces (9)




5.5
Nine integrated switch interfaces with current sense capability
Compatible with Hall-effect, resistive and switch sensors
Current limit protected
System dedicated path to disable the passenger airbag with input from DC sensor
interface
General purpose outputs (3)




5.6
Quad channel receiver, user selectable
–
standard PSI-5 v1.3 compatible with sync pulse or
–
active wheel speed sensors
High side drivers for active wheel speed sensor mode (with driver protection)
Current limit with short circuit protection diagnostics
PSI-5 satellite sensor mode
–
Auto-adjusting current trip points for each satellite channel
–
Even parity, 8 or 10 bit messages, 125k or 189kbps
–
Satellite message error detection
Active wheel speed sensor mode
–
Standard active dual level sensors, 7ma/14ma
–
Three level sensors with direction and air gap data, 7ma/14ma/28ma
–
PWM encoded two level sensor, 2 edges/tooth
–
PWM encoded two level sensor, 1 edge/tooth
–
Standard active two and three level sensor data decoding available through SPI
Three configurable high-side or low-side drivers
ON-OFF mode and PWM 0-100% fine control
Diagnostics for short circuit protection and open load detection
Current limit and reverse battery protected
Arming logic







User configurable safing algorithms with 16 safing records
Four digital sensor interfaces through SPI
Independent user programmable thresholds
Independent user programmable latch timers
Four discrete and independent arming logic outputs
Four discrete and independent internal arming signals
End-of-life interface
DocID029257 Rev 1
25/277
276
Overview and block diagram
5.7
Other features








26/277
L9680
One dedicated 32-bit SPI bus for global configuration and control
One dedicated 32-bit SPI bus for remote sensor configuration and control
Microcontroller ‘state of health’ input and control function
Integrated watchdog control with 2 independent structures: windowed WD and
algorithmic WD
Temperature sensor
Independent thermal shutdown protection on the ER boost switch, the SYNC boost
switch, the energy reserve crossover switch, the energy reserve charge paths, the
remote sensor interfaces and the general purpose outputs
All diagnostics are digital and are available through SPI communications
Configurable logic operation, 5 V or 3.3 V
DocID029257 Rev 1
L9680
Start-up and power control
6
Start-up and power control
6.1
Power supply overview
The L9680 IC contains a complete power management system able to provide all necessary
voltages for a high feature airbag system or integrated safety system. A general block
diagram is shown in Figure 3. The power supply block contains the following features:

Two 3.3 V internal regulators for operating internal logic (CVDD) and analog circuits
(VINT3V3). An external CVDD pin is used to provide filtering capacitance to digital
section supply rail.

Energy reserve supply (ERBOOST) achieved through an integrated 1.882 MHz
switching boost regulator. The energy reserve capacitor is charged using an internal
constant current source controllable through SPI. Besides, a second current source is
available to discharge the capacitor. The primary function for the second current source
is to diagnose the integrity of the energy reserve capacitor, value and ESR. During
system shutdown, the device can enable the discharge current source via SPI
command to quickly dissipate the remaining energy stored in the energy reserve
capacitor.

Sync pulse supply (SYNCBOOST) is achieved through an integrated 1.882 MHz
switching boost regulator. The SYNCBOOST regulator ensures a minimum voltage is
available for operating the satellite sync signal and also provides the input voltage to
the remote sensor buck regulator. The sync pulse boost regulator is disabled for battery
voltage levels resulting in an output voltage above the set regulation point.

The integrated current limited ER switch requires no external components. This switch
is controlled through the integrated power control state machine and is enabled either
once a loss of battery is detected or a shutdown command is received. Under the same
conditions also the discrete digital pin COVRACT is activated allowing the control of an
external optional cross-over switch.

Two 1.882MHz synchronous buck regulators for remote sensor supply and VCC. The
SATBUCK regulator, remote sensor buck supply, is sourced from the SYNCBOOST
regulator and can be selected to be either 7.2 V or 9 V nominal. The VCC regulator is
sourced from the SATBUCK regulator and is user selectable through the VCCSEL pin
to either 5 V or 3.3 V nominal voltage.

Battery voltage sense input comparator with hysteresis and wake-up input are the
primary control signals for the power supply control state machine.

Based on own mission profile and ECU total current consumption, the user must
evaluate if the activation of fast slope option of each ERBoost, SyncBoost and SatBuck
regulator (bit 8/9/10, $3F SW_REGS_CONF SPI register) is needed to increase the
overall efficiency.
DocID029257 Rev 1
27/277
276
Start-up and power control
L9680
Figure 3. Power supply block diagram
Vbat
+
+
ERBSTSW
ER CAP
VER
ERBOOST
VSF
VSF
Regulator
ER
Boost
ER Charge /
Discharge
and ER CAP Diag
ER
Switch
VBAT _MON
Battery
monitor
VIN
IGN
WAKEUP
Wake up
VINT3V3
Regulator
VDD
Regulator
CVDD
GNDSUBx
SYNCBSTSW
SYNC
BOOST
Logic block
Oscillator s
GNDD
BSTGND
SYNCBOOST
SATBCKSW
SAT
BUCK
L9680
SATGND
SATBCK
VCCBCKSW
VCC
Buck
VCCSEL
Output
Buffer
VCCGND
VCC
RESET
GNDSUBx
GAPGPS02249
28/277
DocID029257 Rev 1
L9680
6.2
Start-up and power control
Power mode control
Start-up and power down of the L9680 are controlled by the WAKEUP pin, VBATMON pin,
VIN pin, device status and the SPI interface. There are four main power modes: power-off,
sleep, active and passive mode.
Each power mode is described below and represented in the state flow diagram shown in
Figure 4. The descriptions include references to conditions and sometimes nominal values.
The absolute values for each condition are listed in the electrical specifications section.
Figure 4. Power control state flow diagram
)URP
DQ\VWDWH
325
32:(5
2))
VWDWH
:DNH8S)LOW $1'
63,B6<6B&7/63,B2)) 32:(52))02'(
$OOVXSSOLHVGLVDEOHG
:$.(83
:8BPRQ
:$.(83!
:8BPRQ
:$.(83
021,725
VWDWH
>:$.(83:8BRII$1'
:DNH8S)LOW @
:$.(83!
:8BRQ
:DNH8S)LOW $1'
9,19,1*22'
$:$.(
6WDWH
6/((302'(
:DNH8S)LOW 25
9,19,1%$'
:DNH8S)LOW $1'
9,1!9,1*22'
67$5783
VWDWH
:DNH8S)LOW $1'
9,1!9,1*22'
7ZDNHXS!PV
:DNH8S)LOW $1'63,B6/((3
581
VWDWH
7!7YLQJRRGBEON
$&7,9(02'(
9,19,1*22'
32:(502'(
6+87'2:1
VWDWH
:DNH8S)LOW $1'63,B6/((3
(5
VWDWH
9%$7PRQ!9%*22'
EODQNLQJWLPHPV
:DNH8S)LOW $1'63,B6/((3
7ZDNHXS7LPHU&OHDUHGLI6WDWH :$.(83021,725RU$:$.( DQG:DNH8S)LOW DocID029257 Rev 1
9,1*22'
EODQNLQJ
VWDWH
3$66,9(02'(
*$3*36
29/277
276
Start-up and power control
6.2.1
L9680
POWER OFF mode
During the POWER-OFF Mode all supplies are disabled keeping the system in a quiescent
state with very low current draw from battery. As soon as WAKEUP>WU_mon the IC will
move to SLEEP Mode.
6.2.2
SLEEP mode
During the Sleep mode the VINT3V3 and CVDD internal regulators are turned on and the IC
is ready for full activation of all the other supplies. As soon as VIN voltage is over a minimum
threshold, all the other supplies are turned on and the IC enters the ACTIVE mode.
6.2.3
ACTIVE mode
This is the normal operating mode for the system.
All power supplies are enabled and the energy reserve boost converter starts to increase
the voltage at ERBOOST. Likewise, the SYNCBOOST boost converter continues to charge
and regulate to a nominal 12 V (default level at startup). Once the SYNCBOOST has
reached a good value, the SATBUCK regulator starts up. In turn, when SATBUCK has
ramped up, VCC regulator is enabled. Once the VCC buck regulator is in regulation, RESET
is released allowing the system microcontroller and other components to begin their poweron sequence. Among these, also the ER charge current generator can be enabled by the
microcontroller via a dedicated SPI command.
The active mode can be left when either WAKEUP pin or VIN voltage drop down. For the
very first 9ms after having entered the active mode, the WAKEUP pin low would
immediately cause the IC to switch back to sleep mode. After that time, WAKEUP pin low
must be first confirmed by a μC SPI_SLEEP command prior to cause the system to switch
to passive mode. Passive mode is also entered in case of VIN voltage low.
6.2.4
PASSIVE mode
In this state, the reserve capacitor charge current and the ERBOOST boost converter are
disabled. When in passive mode the device activates both the COVRACT output pin and the
integrated ER switch to allow VIN to be connected to the ER capacitor. In this time, VIN is
supposed to be increased up to almost VER level and the system operation relies on energy
from the ER capacitor. Two scenarios are possible: high or low battery. If VIN < VINGOOD,
the device moved from RUN state in ACTIVE mode to the ER state. Here, the ER capacitor
is depleted while supplying all the regulators until the POR on internal regulator occurs. The
threshold to decide the ER switch activation is based on VIN, because VIN is the supply
voltage rail for ERBOOST regulator. If the device has still a good battery level, it entered the
POWERMODE SHUTDOWN thanks to a microcontroller command to switch off. In this
case, the VER node will be discharged down to approximately VIN level, which then will be
supplied out of the battery line. System will continue to run up to a dedicated SPI command
to disable the SATBUCK regulator, which will lead the device to enter the POWEROFF
state.
The wake-up pin is filtered to suppress undesired state changes resulting from transients or
glitches. Typical conditions are shown in the chart below and summarized by state.
30/277
DocID029257 Rev 1
L9680
Start-up and power control
Figure 5. Wake-up input signal behaviour
ACTIVE MODE
SLEEP MODE
PASSIVE MODE
1
2
3
5
4
6
WU_on
WU_off
WAKEUP
t
<1ms
1ms
<1ms
10ms
1ms
WakeUpFilt
t
GAPGPS02251
Condition summary:
1.
2.
3.
4.
5.
6.
No change of sleep mode state but current consumption may exceed specification for
sleep mode.
The sleep mode current returns to within specified limits.
Power supply exits sleep mode. Switchers start operating if applicable voltages exceed
under voltage lockouts. As Twakeup timeout is not elapsed, a low level at WAKEUP
instantaneously sends the system back to sleep.
Sleep reset is released and the entire system starts operating. An SPI command to
enter sleep state would not be executed.
No change in system status, an SPI command to turn off switchers would be ignored.
No change in system status, but an SPI command to turn off switchers would be
accepted and turn the system off.
With the below table, all the functionalities of the device are shown with respect of the power
states. When one function is flagged, the related circuitry cannot be activated on that state.
Table 4. Functions disabling by state
Power MODE
Functions
Power
off
Sleep
Power
off
Wakeup
Awake
monitor
Active
Startup
Passive
Run
Wakeup detector
X
Internal regulators
X
X
ERBOOST regulator
X
X
X
SYNCBOOST regulator
X
X
X
ER CAP charge current
X
X
X
ER CAP discharge current
X
X
X
ER switch
X
X
X
X
X
COVRACT
X
X
X
X
X
Power mode
shutdown
ER
VINGOOD
blanking
X
X
DocID029257 Rev 1
X
X
X
X
X
31/277
276
Start-up and power control
L9680
Table 4. Functions disabling by state (continued)
Power MODE
Functions
Power
off
Sleep
Power
off
Wakeup
Awake
monitor
Active
SATBUCK regulator
X
X
X
VCC regulator
X
X
X
Deployment Drivers
X
X
X
VSF Safing FET regulator
X
X
X
Remote Sensor Interfaces
X
X
X
Watchdog
X
X
X
Diagnostics
X
X
X
DC Sensor Interface
X
X
X
GPO drivers
X
X
X
Safing Logic
X
X
X
32/277
Startup
DocID029257 Rev 1
Run
Passive
Power mode
shutdown
ER
VINGOOD
blanking
L9680
6.2.5
Start-up and power control
Power-up and power-down sequences
The behaviour of the IC during normal power-up and power-down is shown in Figure 6 to
Figure 9. The following sequences represent just a subset of all possible power-up and
power-down scenarios. In Figure 6 a normal IC power-up controlled by the state of the
WAKEUP pin is shown.
Figure 6. Normal power-up sequence
<50μA
VIN current
<50μA
VBGOOD
VBAT _MON VBBAD
WU_on
WU_mon
WAKE UP
WU_off
VINT_UV
VINT
<1ms
POR
VIN
>1ms
VINGOOD
VINBAD
ERBSTSW
and
SYNCBSTSW
VIN-Vdiode
ERBOOST
VER
0V
VIN-Vdiode
SYNCBOOST_OK
SYNCBOOST
0V
SAT BCKSW
SATBUCK_OK
SATBUCK
0V
VCCBCKSW
0V
VCC_UV
VCC
0V
RESET
0V
RESET_Hold_Time
SPI
command
SPI_SYS_CTL(ER_CUR_EN)=01
GAPGPS02252
DocID029257 Rev 1
33/277
276
Start-up and power control
L9680
Figure 7. Normal power down sequence through POWERMODE SHUTDOWN state no ER cap active discharge
63,B6/((3
63,FRPPDQG
9%$7 B021
9,1
9%*22'
9EDW9GLRGH
9,1*22'
PV
:$.( 83
63,B2))
!PV
!PV
9,17B89
9,17
325
(5%676:
(5%2267
(5GLVFKDUJHE\UHJXODWRUV
9(5
&295$&7
(56:,7&+
(QDEOH
6<1&%676:
6<1&%2267
9,19GLRGH
6$7 %&.6:
6$7%8&.
9&&%&.6:
9&&B89
9&&
5(6(7
*$3*36
34/277
DocID029257 Rev 1
L9680
Start-up and power control
Figure 8. Normal power down sequence through Powermode Shutdown state - ER
cap active discharge
63,B6/((3
63,FRPPDQG
63,B6<6B&7/
(5B&85B(1 63,B2))
9%$7 B021
9EDW9GLRGH
9,1
9,1*22'
PV
:$.( 83
!PV
!PV
9,17B89
9,17
325
(5%676:
(5%2267
9EDW9GLRGH
(5GLVFKDUJHE\UHJXODWRUV
9(5
9(5B9%$7021B97+
9,19
(5GLVFKDUJHE\P$
&XUUHQWJHQHUDWRU
(5B6:,7&+
(QDEOH
&295$&7
6<1&%676:
9,19GLRGH
6<1&%2267
6$7 %&.6:
6$7%8&.
9&&%&.6:
9&&B89
9&&
5(6(7
*$3*36
DocID029257 Rev 1
35/277
276
Start-up and power control
L9680
Figure 9. Normal power down sequence through ER state
9%*22'
9%%$'
9
9%$7 B021
9EDW9GLRGH
9,1
9,1*22'
9,1%$'
:$.( 83
:8BRQ
:8BRII
9,17B89
9,17
325
(5%676:
(5%2267
(5GLVFKDUJHE\UHJXODWRUV
9(5
&295$&7
(56:,7&+
HQDEOH
6<1&%676:
6<1&%2267
6$7 %&.6:
6$7%8&.
9&&%&.6:
9&&B89
9&&
5(6(7
*$3*36
36/277
DocID029257 Rev 1
L9680
6.2.6
Start-up and power control
IC operating states
Different states can be identified while operating the device. These states allow safe and
predictable initialization, test, operation and final disposal of the part (scrapping).
As soon as the RESET signal is de-asserted at the beginning of the ACTIVE mode, the
microcontroller powers up. At this stage, L9680 is in the Init state: during this state the
device must be initialized by the controller. In particular, the watchdog timer window can be
programmed during this state.
When the watchdog service begins (upon the first successful watchdog feed), the device
switches to Diag state for diagnostics purposes. The remaining configuration of the device is
allowed in this state, in particular for safing records and deployment masks. Several tests
are also enabled while in this state and all these tests are mutually exclusive to one another.
HS and LS switch tests of the squib drivers can only be processed during this Diag state.
Also high side safing FET can only be run during this state. When not in Diag state, any
commands for squib driver switch tests will be ignored. Other checks are also performed: on
the arming outputs to check for non-stuck-at conditions on the pins and on the configured
firing time configuration through one of the ARMx pin. The SSM remains in this state until
commanded to transition into the Safing state or Scrap state via the dedicated SPI
commands.
Upon reception of the SAFING_STATE command while in Diag state, the device enters
Safing state. This is the primary run-time state for normal operation, and the logic performs
the safing function, including monitoring of sensor data and setting of the ARMx signals. The
only means of exiting Safing state is by the assertion of the SSM_Reset signal.
The Scrap state is entered upon reception of the SCRAP_STATE command while in Diag
state. While in Scrap state, the part allows the main microcontroller to initiate a transition to
Arming state, and monitoring of the Remote Sensor SPI interface and the safing logic is
disabled. From Scrap state, the device can transition to Arming state only, and the only
means of moving back to Init state is through an SSM_Reset.
In order to protect from inadvertent entry into Arming state, and to prevent undesired
activation of the safing signals, a handshake mechanism is used to control entry into, and
exit from Arming state. This handshake is described further in Section 11.6. While in Arming
state, the arming outputs are asserted. Exit from Arming state occurs when the periodic
SCRAP_KEY commands cease (timeout), the key value is incorrect, or when SSM_Reset is
asserted. Upon exit, the device re-enters Scrap state, except for the case of SSM_Reset,
which results in entry into Init state.
The device operating states are shown in Figure 10.
DocID029257 Rev 1
37/277
276
Start-up and power control
L9680
Figure 10. IC operating state diagram
6605HVHW
&RQILJXUDWLRQHQDEOHGIRU
: DWFKGRJWLPLQJWKUHVKROGV
+6/6*32
$50LQRXWVHOHFW
36,1+
,QLW
6WDWH
7HVWLQJHQDEOHGIRU
$50[96)36,1+
'HSOR\WLPH
+6/6+66)(7
:66
:'B29(55,'(25:'B581
:'B29(55,'(25:'B581
&RQILJXUDWLRQDQDEOHGIRU
6DILQJ5HFRUGVDQGFRQWURO
'HSOR\PDVN
+6/6*32
36,:66VHOHFW
'LDJ
6WDWH
63,6&5$3B67$7(
63,6$),1*B67$7(
$50[96)GHWHUPLQHG
%\VDILQJHQJLQH
6FUDS
6WDWH
6DILQJ
6WDWH
$&/%$' 25
A6&5$3.(<VWDWH
$50[ 96) $&/*22' $1'
6&5$3.(<VWDWH
$UPLQJ
6WDWH
$50[ 96) *$3*36
6.3
ERBOOST switching regulator
The L9680 IC uses an advanced energy reserve switching regulator operating at 1.882MHz
nominal. The higher switching frequency enables the user to select smaller less expensive
inductors and moves the operating frequency to permit easier compliance with system
emissions.
The ERBoost switching regulator uses a classical peak current mode control loop to
properly regulate the output voltage and includes an over-voltage protection that
immediately switch off the PowerMOS to protect the device. The regulator includes also a
soft start circuit which apply a ramp on the over current threshold from the 40% of
IOC_ERBST value to the maximum one with 16 steps and within 1024 μs. The soft start is
restarted every time the regulator has a transition from the ER_BST_OFF to the
ER_BST_ON state.
The energy reserve boost regulator charges the external system tank capacitor through an
integrated fixed current source significantly reducing in-rush currents typical of large energy
reserve capacitors. The boost circuit provides energy for the reserve capacitor with
assumed run time load of less than 20 mA and to the VSF regulator. Once system shutdown
is initiated or a loss of battery condition is diagnosed, the boost regulator is by default
disabled so that system power can be taken from the energy reserve capacitor.
Alternatively, the ER Boost could be kept on even during the ER State by setting the
SYS_CFG(KEEP_ER_BOOST_ON) bit.
The energy reserve boost regulator defaults to 23 V at power-on and can be set to 33 V
nominal by the user through an SPI command. The boost converter can also be disabled by
the user through an SPI command. Enabling, disabling and setting the boost output voltage
38/277
DocID029257 Rev 1
L9680
Start-up and power control
is done through the System Control (SYS_CTL) register. Boost converter diagnostics
include over voltage and under voltage and the circuit is fully protected against shorts. Boost
fault status is available through the SPI in Fault Status Register (FLTSR). The integrated
FET featuring the boost switch is protected against short to battery by means of a thermal
shutdown circuit. When thermal fault is detected the FET is switched off and latched in this
state until the related fault flag ERBST_OT in the FLTSR register is read. In case of loss of
BSTGND ground the FET is not turned on. Loss of ground can be detected also when the
FET is off thanks to a pull-up current present on the BSTGND pin. The FET will be
automatically reactivated as soon as ground connection is restored. Over-voltage protection
from load dump and inductive flyback is provided via an active clamp and an ER_Boost
disable circuitry, see Figure 11.
Figure 11. ERBOOST regulator block diagram
9,1
(5%67B&/$03 B(17+
(5%67
'ULYHU &RQWURO
(5%67B',6$%/( 7+
HUEVW BHQ
(5%2267
(5%676:
&RPS
&/$03
%67*1'
*$3*36
Normal run time power for the system is provided directly from the battery input, not from the
boost. Boost energy is available to the system through the energy reserve crossover switch
once battery is lost or a commanded system shutdown is initiated.
DocID029257 Rev 1
39/277
276
Start-up and power control
L9680
Figure 12. ERBOOST regulator state diagram
32:(52))B02'(
256/((3B02'(
(5%2267
SRZHUPRGHFRQWURO
'HIDXOW6<6B&7/(5B%67B(1 DW325 $FWLYHBPRGH $1'
9%$7021!9%*22'
25
(5BVWDWH $1'
6<6B&)*.((3B(5%67B21 $1'
9,1!9,1*22'
$1'
6<6B&7/(5B%67B(1 $1'
*1'%2267BORVV $1'
(5%67B27 $1'
(5%67B',6$%/( 63,B6<6B&7/(5B%67B(1 $1'
(5%67B27 (5%672))
(5%6767%<
(5%6721
(5%6727
>$FWLYHBPRGH 25
9%$70219%%$'
$1'
(5BVWDWH 25
63,B)/7655($'
6<6B&)*.((3B(5%67B21 @
$1'
25
(5%67B27 9,19,1%$'
(5%67B27 25
6<6&7/(5B%67B(1 25
*1'%2267BORVV 25
(5%67B',6$%/( (5%67B27 *$3*36
6.4
Energy reserve capacitor charging and discharging circuits
The energy reserve capacitor connected to VER pin can be charged in an efficient way by
means of a current generator. Its capability is 65 mA nominal, so that for example a 10 mF
capacitor can be charged in approximately 4 s to 24 V. The current generator is activated or
deactivated by SPI command only while in ACTIVE mode. When not in ACTIVE mode, the
generator is always switched off in order to decouple ERBOOST node voltage from VER
reserve voltage.
Figure 13. ER charge state diagram
(5&KDUJH
SRZHUPRGHFRQWURO
660B5HVHW
63,B6<6B&7/(5B&85B(1>@ $1'
(5&+$5*(B27 'HIDXOW6<6B&7/(5B&85B(1>@ DW
660B5(6(7 (5&+$5*(
67%<
(5&+$5*(
2))
$FWLYHBPRGH $1'
6<6B&7/(5B&85B(1>@ $1'
³(5&$3(65',$*QRWLQSURJUHVV´
$FWLYHBPRGH 25
6<6B&7/(5B&85B(1>@
(5&+$5*(
21
(5&+$5*(B27 63,B)/7655($'
$1'
(5&+$5*(B27 (5&+$5*(
27
(5&+$5*(B27 *$3*36
L9680 also offers a safe control to discharge the ER capacitor by means of a fixed current
generator. This discharge can be controlled via SPI command while not in SLEEP mode.
Furthermore, this discharge circuit is mutually exclusive with the ER charging circuit, to
avoid inefficient way of controlling the charge on the VER energy reserve capacitor.
40/277
DocID029257 Rev 1
L9680
Start-up and power control
Figure 14. ER discharge state diagram
(5'LVFKDUJH
SRZHUPRGHFRQWURO
660B5HVHW
'HIDXOW6<6B&7/(5B&85B(1>@ DW
660B5(6(7 6/((3B02'( 25
(5B67$7( 25
63,(5B&85B(1>@
(5',6&+$5*(
2))
5HVHW7
6/((3B02'( 25
(5B67$7( 25
63,(5B&85B(1>@
25
32:(5B02'(B6+87'2:1 $1'
9(5B9%$7021B&203 >$FWLYHBPRGH 25
32:(5B02'(B6+87'2:1 $1'
9(5B9%$7021B&203 @
$1'
6<6B&7/(5B&85B(1>@ $1'
³(5&$3(65',$*QRWLQSURJUHVV´
(5',6&+$5*(
21
6WDUW7PV
(5',6&+$5*(
67%<
(5B'LVFKDUJH2))
32:(5B02'(B6+87'2:1 32:(5B02'(B6+87'2:1 $1'7WLPHRXW
9(5B9%$7021B&203 ZKHQ9(59%$70219YHUBYEDWPRQBWK
*$3*36
6.5
ER CAP diagnostic
The L9680 IC contains a full integrated solution to check the connection, value and series
resistance of energy reserve capacitor independent from ER Cap leakage current and Boost
Voltage level.
6.5.1
ER CAP measurement
The IC contains two current generators used to charge and discharge the energy reserve
capacitor connected on ER pin. The simplified block diagram is shown in the figure below.
Figure 15. ER CAP measurement block diagram
(5&DS
(5%2267
9(5
(5B&+$5*(
(65
&
(1
, OHDN
&$3PHV
(5B',6&+$5*(
$'&
ELW
*1'$
*1'B$'&
*$3*36
To obtain an accurate ER CAP measurement, the VER voltage conversion must be required
when both current generators are off, namely no current flows through ER cap permits to
avoid ESR error contribution.
DocID029257 Rev 1
41/277
276
Start-up and power control
L9680
The user can decide the charge and discharge time based on the ER CAP used in
application, in order to maximize the differential voltage and then improve the accuracy.
Anyway, a timeout on ER Discharge current has been implemented to prevent thermal
issue, so the discharge time cannot be longer than 350 ms.
Figure 16. ER CAP measurement timing diagram
(65!
9HQG
9VWDUW
9(5W
9VWRS
(65 (5B&+$5*(
(5B',6&+$5*(
7
7
*$3*36
The following formulas can be used to retrieve the ER CAP value from the voltage and
timing measurements.
I 1 + I LEAK
I 2 – I LEAK
- T 1 + --------------------------T
V 1 + V 2 = -------------------------2
C
C
2IT
C = ---------------------------------------------------------------V start + V end – 2  V stop
T1 = discharge time
T2 = charge time, same as discharge time
T1 = T2 = T
V1 = Vstart - Vstop
V2 = Vend - Vstop
I1 = discharge current
I2 = charge current, same as discharge current
I1 = I 2 = I
ILEAK = leakage current
42/277
DocID029257 Rev 1
L9680
6.5.2
Start-up and power control
ER CAP ESR measurement
The IC contains the capability to perform a measurement of the equivalent series resistance
of energy reserve capacitor. In this case the discharge current is 10 times higher to create a
voltage difference proportional to the ER CAP ESR. The voltage measurement and
conversion is automatically executed once the user requires the ESR measurement through
the LPDIAGREQ register.
Figure 17. ER ESR measurement block diagram
(5&DS
9(5
(65
, OHDN
&
/HYHOVKLIWHU
6+
(5B',6&+$5*(
*1'$
$'&
ELW
*1'B$'&
*$3*36
Upon an ESR measurement is requested, the IC executes an internal automatic sequence
to take three voltage measurements at the ER node, toggling the ER discharge current
source on and off as shown in Figure 18. The test lasts for TESR_DIAG. After this time has
elapsed, the results can be retrieved by reading the DIAGCTRL_x registers. The three ER
voltage measurements are provided at the same time in DIAGCTRLA, DIAGCTRLB and
DIAGCTRLC registers. During the execution of the ESR measurement no other activity on
ADC is allowed. The user must ensure no other ADC requests are queued to be executed at
the same time of ESR measurement. The ESR diagnostic, once initiated, will continue
without interruption even if the device enters in ER State because of a battery loss event.
DocID029257 Rev 1
43/277
276
Start-up and power control
L9680
Figure 18. ER ESR measurement timing diagram
&6B*GLDJQRVWLFUHTXHVWIURPPLFURFRQWUROOHU
—V
— V
(5B',6&+$5*(
(1$%/(
—V
—V
— V
— V
9(5YROWDJH
9D9E9F
VWDUWVDPSOLQJ
9D VWRSVDPSOLQJ
VWDUWRIFRQY
9E VWRSVDPSOLQJ
VWDUWRIFRQY
9F VWRSVDPSOLQJ
VWDUWRIFRQY
*$3*36
The ER CAP ESR can be calculated according to the following formula:
VC – VB
- + OFF ER_ESR
ESR ERCAP = ---------------------------------------------------------------------------------------G ER_ESR  I ER_DISCHARGE_HIGH
6.6
ER switch and COVRACT pin
L9680 allows the system to run out of the reserve capacitor energy stored on VER node by
means of the charging boost regulator. In this way, an extended operation can take place
even in case of battery lost. The ER switch implements a connection from the VER pin to
the VIN node, supply input for the SYNCBOOST regulator and for internal power supplies.
The ER switch is automatically activated upon entering the PASSIVE mode. Voltage
difference between VIN and VER is monitored in order to prevent VER back-feeding when
VIN exceeds VER by VER_SW_OV_TH. The ER switch is automatically deactivated upon the
above mentioned overvoltage detection.
During PASSIVE mode the discrete digital output pin COVRACT is activated to allow for
external optional cross-over switch control (except during VINGOOD blanking state, where
the COVRACT is deactivated).
44/277
DocID029257 Rev 1
L9680
Start-up and power control
Figure 19. ER switch state diagram
(56ZLWFK
77LPHRXW
325
³'HSOR\PHQWLQSURJUHVV´
(5BVZLWFKB67%<
6WDUW7PV
(5BVZLWFKB2))
3DVVLYHBPRGH $1'
(5B6:B29 3DVVLYHBPRGH 25
(5B6:B29 (5B6:,7&+B76' $1'
³GHSOR\PHQWQRWLQ
SURJUHVV´
(5B6:,7&+B76' (5B6:,7&+B76' (5BVZLWFKB2))B27
(5BVZLWFKB21
(5B6:,7&+B76' $1'
³GHSOR\PHQWQRWLQSURJUHVV´
(5B6:B29 ZKHQ9,19(5!9HUBVZBRYBWK
*$3*36
6.7
SYNCBOOST boost regulator
The SYNCBOOST boost regulator also operates at 1.882 MHz allowing the user to select
smaller less expensive external components. The regulator provides a 12 V/14.75 V
nominal for the sync pulse feature used in PSI-5 bussed satellite sensor configuration. The
regulator also provides the power for the SATBUCK regulator.
The SyncBoost switching regulator uses a classical peak current mode control loop to
properly regulate the output voltage and includes an over-voltage protection that
immediately switch off the PowerMOS to protect the device. The regulator includes also a
soft start circuit which apply a ramp on the over current threshold from the 40% of
IOC_SYNCBST value to the maximum one with 16 steps and within 1024 μs. The soft start is
restarted every time the regulator is enabled, namely there is a transition from the
SYNCBOOST_OFF state to the SYNCBOOST_ON state.
In normal operation, the SYNCBOOST regulator operates directly from battery providing a
voltage level to operate the sync pulse driver circuit. Should the input voltage be greater
than regulation point, the output voltage will track the input voltage less any drops in the
external components.
The boost regulator is enabled automatically by the power control state machine, but can be
disabled on purpose via SPI command through the SYS_CTL(SYNCBST_EN) bit. The
regulation point is fixed at a nominal 12 V at startup. User may increase the output
regulation voltage to 14.75 V nominal by setting the SATV bit via a dedicated SPI command,
should an extended voltage range be needed.
Boost converter diagnostics include over voltage and under voltage, reported by the
S_BST_NOK bit in the POWER_STATE register, and the circuit is fully protected against
shorts. The integrated FET featuring the boost switch is protected against short to battery by
means of a thermal shutdown circuit. When thermal fault is detected the FET is switched off
and latched in this state until the related fault flag ERBST_OT in the FLTSR register is read.
DocID029257 Rev 1
45/277
276
Start-up and power control
L9680
In case of loss of ground the FET is not turned on. Loss of ground can be detected also
when the FET is off thanks to a pull-up current present on the BSTGND pin. The FET will be
automatically reactivated as soon as ground connection is restored. Over-voltage protection
from load dump and inductive flyback is provided via an active clamp and a SYNC_Boost
disable circuitry, see Figure 20.
Figure 20. SYNCBOOST regulator block diagram
6<1&%67B&/$03 B(17+
6<1&%67B
',6$%/( 7+
V\QFEVW BHQ
6<1&%2267
6<1&%676:
6<1&%67
'ULYHU &RQWURO
9,1
&RPS
&/$03
%67*1'
*$3*36
Figure 21. SYNCBOOST regulator state diagram
6<1&%2267
SRZHUPRGHFRQWURO
ULVLQJHGJHRI6<1&%67B5(67$57$1'
6<6B&7/5(67$57B6<%67B6(/ 25
9,1B6<1&%67B5(67$57 $1'
6<6B&7/5(67$57B6<%67B6(/ 25
H[LWIURP(5B67$7( 25
63,UHFHLYHG6<6B&7/.((3B6<1&%67B21 6<1&%2267
7(032))
32:(52))B02'(
256/((3B02'(
77LPHRXW
6<1&B%67B67%<
6WDUW7PV
6<1&%22672))
9,1!9,1*22'
$1'
6<6B&7/6<1&%67B(1 $1'
%67*1'BORVV $1'
6<1&%67B',6$%/( $1'
6<1&%67B27 $1'
9,16<1&B',6 $1'
6<1&%67B29 9,19,1%$'
25
6<6B&7/6<1&%67B(1 25
%67*1'BORVV 25
6<1&%67B',6$%/( 25
9,16<1&B',6 25
6<1&%67B29 6<1&%67B27 6<1&%67B27 $1'
³GHSOR\PHQWQRWLQSURJUHVV´
6<1&%67B5(67$57 ZKHQ6<1&%2267RXWSXWYROWDJH9V\QFEVWBUHVWDUWBWK
9,1B6<1&%67B5(67$57 ZKHQ9,1YROWDJH!9YLQBV\QFEVWBUHVWDUWBWK
&KDQJHRI6<6B&7/.((3B6<1&%67B21ELWLVDXWRPDWLFDOO\GHQLHGZKHQ(5B67$7(LVDFWLYH ,Q6<1&%2267B7(03B2))VWDWHLI6<6B&7/.((3B6<1&%67B21 LVUHFHLYHGZHPRYHWR2))VWDWH
46/277
6<1&%67B27 6<1&%6727
5HVHW7
6<1&%226721
7UDQVLWLRQIURP581B67$7(WR(5 B67$7( $1'6<6B&7/.((3B6<1&%67B21 'HIDXOW6<6B&7/6<1&%67B(1 DW325
'HIDXOW6<6B&7/.((3B6<1&%67B21 DW325
DocID029257 Rev 1
*$3*36
L9680
6.8
Start-up and power control
SATBUCK regulator
The SATBUCK regulator provides a nominal 7.2 V regulated output voltage at startup for the
remote satellite and wheel speed interface circuitry and the VCC buck regulator. The buck
regulator is enabled automatically by the power control state machine. This regulator is
protected against short circuits. Should the user need a higher voltage range for the remote
sensor interface, a specific SPI command allows the output voltage to be increased at 9 V
nominal by setting the SAT_V bit. Fault status is available through SPI in the Fault Status
Register (FLTSR). The buck converter operates at 1.882 MHz allowing the user to select
smaller less expensive external components. Moreover, the synchronous buck regulator
integrates the external recirculation diode.
Figure 22. SATBUCK regulator state diagram
32:(52))B02'(
256/((3B02'(
6$7%8&.
SRZHUPRGHFRQWURO
6$7%XFNB21 6<1&%2267B2. $1'
9&&B29 $1'
6$7*1'BORVV 9&&B29 25
6$7*1'BORVV 6$7%XFNB21 6<1&%2267B2. ZKHQ9V\QFERRVW!9V\QFEVWBRN
*$3*36
6.9
VCC buck regulator
The VCC buck regulator also operates at 1.882 MHz and is user selectable to either 3.3 V or
5 V nominal output voltage. The user can select the output voltage through the VCCSEL
pin. To select 5 V operation, the user must bias VCCSEL to a level higher than
VTH2_H_VCCSEL for instance SyncBoost. For 3.3 V operation, the VCCSEL pin must be
biased to a level lower than VTH2_L_VCCSEL. An internal weak pull down is connected to
VCCSEL to ensure the input remains at ground potential in case of open pin. The internal
power control state machine will read the VCCSEL input pin and latch the resulting state
upon the SATBUCK voltage reaches the good value (SATBUCK_OK = 1). Upon latching the
VCCSEL state, the VCC buck regulator cannot be changed by the user.
The VCC regulator has over and under voltage detections and shutdown capability and it is
also protected against short circuits. During start-up an internal pull up current is enabled in
order to detect a potential VCC pin open fault trough the over voltage detection. This pull up
current is disabled once in VCC_ON or VCC_SHUTDOWN states. During normal operation,
VCC_ON state, the VCC pin open fault is quickly detected through the Under Voltage
Detection Low to prevent any MCU damage.
DocID029257 Rev 1
47/277
276
Start-up and power control
L9680
An open VCC pin shall lead to an under voltage condition on VCC supply monitor. The SPI
related signals (SCLK, MISO, MOSI, CS) or other digital nets shall not power the VCC pin
due to back-feeding paths.
Figure 23. VCC regulator state diagram
9&&%8&.
SRZHUPRGHFRQWURO
32:(52))B02'(
25
6/((3B02'(
9&&B2))
9&&SXOOXSGLVDEOHG
$OO2XSXW%XIIHUGLVDEOHG
7WLPHRXW
6$7%8&.B2. $1'
9&&*1'BORVV 9&&BUDPSXS
>9&&B89 259&&B89/ $1'7WLPHRXW@
25
9&&B29 25
9&25(B29 25
9&&*1'BORVV 6WDUW7PV
9&&SXOOXSHQDEOHG
9&&B89 $1'
9&&B89/ $1'
7WLPHRXW
9&&B21
9&&SXOOXSGLVDEOHG
$OO2XWSXW%XIIHUHQDEOHG
9&&B6+87'2:1
6WDUW7PV
9&&SXOOXSGLVDEOHG
%XFNLVQRWUXQQLQJ
9&&B89/ 25
9&&B29 25
9&&*1'BORVV 9&25(B29 25
9&25(B89 $1'',6B9&25(021 9&&B89/ ZKHQ9&&9&&XYO
9&&B89 ZKHQ9&&9&&XY
9&&B29 ZKHQ9&&!9&&RY
',6B9&25(021 9&&6(/!9WKBYFFVHO
6$7%8&.B2. ZKHQ6$7%8&.!9VDWEFNBRN
*$3*36
48/277
DocID029257 Rev 1
L9680
6.10
Start-up and power control
VCOREMON external core voltage monitor
The device includes the possibility to monitor the external core voltage of MCU in case an
additional external regulator is used to provide the 1.2V rail. The internal power control state
machine will read the VCCSEL input pin and latch the resulting state upon the VCCBUCK
regulator enters in the VCC_ON state: if VCCSEL is lower than VTH1_L_VCCSEL the VCORE
monitor will be enabled, otherwise, if VCCSEL is higher than VTH1_H_VCCSEL, the VCORE
monitor will be disabled.
In summary:

VCCSEL < VTH1_L_VCCSEL (VCCSEL shorted to ground), to select VCC = 3.3 V and to
enable the VCORE monitor

VTH1_H_VCCSEL < VCCSEL < VTH2_L_VCCSEL (VCCSEL shorted to VCC), to select
VCC = 3.3 V and to disable the VCORE monitor.

VCCSEL > VTH2_H_VCCSEL (VCCSEL shorted to SYNCBOOST), to select VCC = 5 V
and to disable the VCORE monitor.
The VCORE monitor is enabled once the VCC regulator is in VCC_ON state, therefore the
external MCU core voltage regulator (1.2 V) must reach the regulation within 4ms after the
VCC regulator power-up.
Upon latching the VCCSEL state, the VCOREMON activation cannot be changed by the
user.
In case of VCCSEL open pin, an internal pull down current would force VCCSEL to ground
and then the VCORE monitor will be enabled function.
6.11
VSF regulator and control
The L9680 provides a low current linear regulator that can be used in the system design to
bias the external high side safing switch. The regulator output is 20 V nominal (configurable
to 25 V via SPI command). VSF is enabled if any of the ARMxINT signal is asserted, as
shown in Figure 24. The VSF regulator supply input is ERBOOST.
Figure 24. VSF control logic
6$)(6(/
$50,17
$50,17
$50,17
$50,17
6$),1*67$7(
$50B(1
96)B(1
',$*67$7(
'67(6796)
$50,1*67$7(
*$3*36
VSF voltage can be monitored by the user through the internal ADC. Characteristics for this
function are shown in the electrical performance tables.
DocID029257 Rev 1
49/277
276
Start-up and power control
6.12
L9680
Oscillators
The device integrates two trimmed oscillators, both of them with spread spectrum capability
selectable via the CLK_CNF register.
The main oscillator runs at 16 MHz typ and is used to provide clock to the internal
synchronous logic. Moreover, this frequency is divided down by factor 8.5 to generate
clocks for the switching regulators (1.882 MHz typ).
The auxiliary oscillator runs at 7.5 MHz typ and is used to monitor the main oscillator. In
case the main oscillator frequency was lower than fOSC_LOW_TH threshold or higher than
fOSC_HIGH_TH threshold, the condition is detected by the frequency monitor circuit and then
latched into the CLKFRERR flag in the FLTSR register and a POR is issued.
6.13
Reset control
The device provides reset logic to safely control system operation in the event of internal
ECU failures. Several internal reset signals are generated depending on the type of failure
detected. In Figure 25 the voltage monitoring diagram is shown.
Figure 25. Internal voltage monitors
5HIHUHQFHIRU
&RQWUROOLQJDOOVXSSOLHV
9%*5
5HIHUHQFH
9,179
9%*0
0RQLWRU
9%*B5($'<
9,179
0RQLWRU
9''
9''
0RQLWRU
9&25(SLQ
9&25(
0RQLWRU
9&&
9&&
0RQLWRU
0&8)$8/7%SLQ
*1'68%[
29B9,179
89B9,179
29B&9''
89B&9''
9&25(B29
9&25(B89
9&&B89
PV
2QHVKRW
3XOVHJHQ
*1'$
0RQLWRU
*1''
*1''
0RQLWRU
9&25(B(55
9&&B29
—V
'HJOLWFK
)LOWHU
*1'$
95(*B(55
9&&B(55
0&8)/7B(55
*1'$B(55
*1'B(55
%67*1'
%67*1'
0RQLWRU
*1''B(55
%67*1'BORVV
*$3*36
An active low pin output (RESET pin) is driven from the L9680 to allow resetting of external
devices such as the microcontroller, sensors, and other ICs within the ECU.
50/277
DocID029257 Rev 1
L9680
Start-up and power control
Three internal reset signals are generated by the device:

POR
Power On Reset - This reset is asserted when a failure is detected in the internal
supplies or bandgap circuits. When active, all other resets are asserted.

WSM_RESET
Watchdog State Machine Reset - This reset is generated when the POR is active or
when a failure is detected in the VCC or VCORE supply.

SSM_RESET
System State Machine Reset - This reset is asserted when the POR or the
WSM_RESET are active, or when a failure is detected in either Watchdog state
machine, or again when the MCUFAULTB pin is active.
The RESET pin is the active-low signal driven on the output pin, and is an inverted form of
SSM_RESET.
The cause of the RESET activation is latched and reported into the Fault Status Register
FLTSR and cleared upon SPI reading.
The reset generated by the MCUFLT_ERR can be masked by the MCU_FLT_TEST test
mode signal. This allows verification of MCUFLT pin operation and, in turn, microcontroller
fault conditions without asserting a reset. The MCURST bit is still set whether in test mode
or not.
The reset logic shall be controlled as shown in the diagram below:
Figure 26. Reset control logic
&/.)5(55
*1'B(55
9%*B5($'<
325
6833/<B325
95(*B(55
9&&B(55
:60B5HVHW
9&25(B(55
',6B9&25(021
5HVHWBKROGBWLPH
0&8)/7B(55
0&8B660567
0&8B)/7B70
:'5(6(7VWDWH
660B5HVHW
:'5(6(7VWDWH
5(6(7SLQ
:'67233,1*VWDWH
:'B660567
:'B70
6
63,B5HDG
*$3*36
DocID029257 Rev 1
5
0&8567
51/277
276
SPI interfaces
7
L9680
SPI interfaces
The L9680 system solution device has many user selectable features controlled through
serial communications by the integrated microcontroller. The device features two SPI
interfaces: one global SPI and one Remote Sensor SPI. The global SPI interface provides
general configuration, control and status functions for the device, while the Remote Sensor
SPI provides dedicated access to Remote Sensor Data and Status Registers.
7.1
SPI protocol
Each SPI interface (Global and Remote Sensor) use their own dedicated set of 4 I/O pins:
CS_G, SCLK_G, MOSI_G and MISO_G for Global SPI; CS_RS, SCLK_RS, MOSI_RS and
MISO_RS for Remote Sensor SPI. Both the SPI interfaces use the same protocol described
here below (the suffix ‘_X’ used in the SPI pin names below is intended to stand for either
‘_G’ or ‘_RS’ depending on the particular SPI interface considered)
The IC SPI interface is composed by an input shift register, an output shift register and four
control signals. MOSI_X is the data input to the input shift register. MISO_X is the data
output from the output shift register. SCLK_X is the clock input used to shift data into the
input shift register or out from the output one while CS_X is the active low chip select input.
All SPI communications are executed in exact 32 bit increments. The general format of the
32 bit transmission for the SPI interface is shown in Table 5.
Data sent to the IC (i.e. MOSI_X) consists of a target read register ID (RID), a target write
register ID (WID), write data parity (WPAR) and 16 bits of data (WRITE). WRITE data is the
data to be written to the target write register indicated by WID. Data returned from the IC
(i.e. MISO_X) consists of a global status word (GSW), read data parity (RPAR) and 20 bits
of data (READ). READ data will be the contents of the target read register as indicated by
the RID bits. The parity bits WPAR and RPAR cover all the 32 bits of the MOSI and MISO
frames, respectively. Odd parity type is used.
Table 5.
SPI MOSI and MISO frames layout
SPI register R/W
SPI_MOSI
SPI_MISO
SPI_MOSI
SPI_MISO
31
GID
30
29
28
15
14
13
12
27
26
25
RID[6:0]
GSW[10:0]
11
10
9
24
23
22
21
8
7
6
WRITE[15:0]
READ[15:0]
5
20
19
WID[6:0]
RPAR
4
3
18
17
16
WPAR
READ[19:16]
2
1
0
The communications is controlled through CS_X, enabling and disabling communication.
When CS_X is at logic high, all SPI communication I/O is tri-stated and no data is accepted.
When CS_X is low, data is latched on the rising edge of SCLK_X and data is shifted on the
falling edge. The MOSI_X pin receives serial data from the master with MSB first. Likewise
for MISO_X, data is read MSB first, LSB last.
The L9680 contains a data validation method through the SCLK_X input to keep
transmissions with not exactly 32 bits from being written to the device. The SCLK_X input
counts the number of received clocks and should the clock counter exceed or count fewer
52/277
DocID029257 Rev 1
L9680
SPI interfaces
than 32 clocks, the received message is discarded and a SPI_FLT bit is flagged in the
Global Status Word (GSW). The SPI_FLT bit is also set in case of parity error detected on
the MOSI_X frame. Any attempt to access to a register with forbidden access mode (read or
write) is not leading to changes to the internal registers but the SPI_FLT bit is not set in this
case.
7.2
Global SPI register map
The Global SPI interface consists of several 32-bit registers to allow for configuration,
control and status of the IC as well as special manufacturing test modes. The register
definition is defined by the read register ID (RID) and the write register ID (WID) as shown in
Table 6. Global ID bit (GID) is used to extend available register addresses, but it is shared
between RID and WID; only RID and WID with the same GID value can be addressed within
the same SPI word. The operating states here show in which states the SPI command is
processed.
The L9680 checks the validity of the received WID and RID fields in the MOSI_G frame.
Should a SPI write command with WID matching a writable register be received in an illegal
operating state, the command will be discarded and the ERR_WID bit will be flagged in the
next Global Status Word GSW. The ERR_WID flag is not set in case WID is addressing a
read/only register. Should a SPI read command be received containing an unused RID
address, the command will be discarded and the ERR_RID bit will be flagged in the current
GSW.
DocID029257 Rev 1
53/277
276
Global SPI register map
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
R
FLTSR
Diag Ssafing Scrap Arming
DocID029257 Rev 1
0
0 0 0 0 0 0 0 $00
Global fault status register
0
0 0 0 0 0 0 1 $01 R/W
SYS_CFG
Power supply configuration(2)
X
X
X
X
X
0
0 0 0 0 0 1 0 $02 R/W
SYS_CTL
Register for power management
X
X
X
X
X
0
0 0 0 0 0 1 1 $03
W
SPI_SLEEP
Sleep Mode command
X
X
X
X
X
0
0 0 0 0 1 0 0 $04
R
SYS_STATE
Read register to report in which state the
power control state machine is and also in
which operating state the device is
0
0 0 0 0 1 0 1 $05
R
POWER_STATE
0
0 0 0 0 1 1 0 $06 R/W
DCR_0
X
X
X
X
0
0 0 0 0 1 1 1 $07 R/W
DCR_1
X
X
X
X
0
0 0 0 1 0 0 0 $08 R/W
DCR_2
X
X
X
X
0
0 0 0 1 0 0 1 $09 R/W
DCR_3
X
X
X
X
0
0 0 0 1 0 1 0 $0A R/W
DCR_4
X
X
X
X
0
0 0 0 1 0 1 1 $0B R/W
DCR_5
X
X
X
X
0
0 0 0 1 1 0 0 $0C R/W
DCR_6
X
X
X
X
0
0 0 0 1 1 0 1 $0D R/W
DCR_7
X
X
X
X
0
0 0 0 1 1 1 0 $0E R/W
DCR_8
X
X
X
X
0
0 0 0 1 1 1 1 $0F R/W
DCR_9
X
X
X
X
0
0 0 1 0 0 0 0 $10 R/W
DCR_A
X
X
X
X
0
0 0 1 0 0 0 1 $11 R/W
DCR_B
X
X
X
X
0
0 0 1 0 0 1 0 $12 R/W
DEPCOM
0
0 0 1 0 0 1 1 $13
R
DSR_0
0
0 0 1 0 1 0 0 $14
R
DSR_1
0
0 0 1 0 1 0 1 $15
R
DSR_2
SPI interfaces
54/277
Table 6.
Power state register (feedback on regulators'
status and voltage thresholds)
Deployment configuration register
Deployment command register
X
X
Deployment status register
L9680
Global SPI register map (continued)
L9680
Table 6.
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
DocID029257 Rev 1
0 0 1 0 1 1 0 $16
R
DSR_3
0
0 0 1 0 1 1 1 $17
R
DSR_4
0
0 0 1 1 0 0 0 $18
R
DSR_5
0
0 0 1 1 0 0 1 $19
R
DSR_6
0
0 0 1 1 0 1 0 $1A
R
DSR_7
0
0 0 1 1 0 1 1 $1B
R
DSR_8
0
0 0 1 1 1 0 0 $1C
R
DSR_9
0
0 0 1 1 1 0 1 $1D
R
DSR_A
0
0 0 1 1 1 1 0 $1E
R
DSR_B
0
0 0 1 1 1 1 1 $1F
R
DCMTS01
0
0 1 0 0 0 0 0 $20
R
DCMTS23
0
0 1 0 0 0 0 1 $21
R
DCMTS45
0
0 1 0 0 0 1 0 $22
R
DCMTS67
0
0 1 0 0 0 1 1 $23
R
DCMTS89
0
0 1 0 0 1 0 0 $24
R
DCMTSAB
0
0 1 0 0 1 0 1 $25 R/W
0
0 1 0 0 1 1 0 $26
R
LP_GNDLOSS
0
0 1 0 0 1 1 1 $27
R
VERSION_ID
0
0 1 0 1 0 0 0 $28 R/W
0
0 1 0 1 0 0 1 $29
0
0 1 0 1 0 1 0 $2A R/W
WDTCR
0
0 1 0 1 0 1 1 $2B R/W
0
0 1 0 1 1 0 0 $2C
0
0 1 0 1 1 0 1 $2D R/W
0
0 1 0 1 1 1 0 $2E
W
R
R
SPIDEPEN
WD_RETRY_CONF
Deployment status register
Deployment current monitor register
Lock/Unlock command
X
Loss of ground fault for squib loops
Device version
Watchdog Retry Configuration
X
Microcontroller Fault test
X
Watchdog first level configuration
X
WD1T
Watchdog first level key transmission
WD_STATE
Watchdog first and second level state
CLK_CONF
Clock configuration
MCU_FLT_TEST
SCRAP_SEED
X
Scrap Seed command
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SPI interfaces
55/277
0
Diag Ssafing Scrap Arming
Global SPI register map (continued)
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
Diag Ssafing Scrap Arming
DocID029257 Rev 1
0
0 1 0 1 1 1 1 $2F
W
SCRAP_KEY
Scrap Key command
0
0 1 1 0 0 0 0 $30
W
SCRAP_STATE
Scrap State command
X
0
0 1 1 0 0 0 1 $31
W
SAFING_STATE
Safing State command
X
0
0 1 1 0 0 1 0 $32
W
WD2_RECOVER
Watchdog second level recovery command
0
0 1 1 0 0 1 1 $33
R
WD2_SEED
Watchdog second level seed transmission
0
0 1 1 0 1 0 0 $34
W
WD2_KEY
0
0 1 1 0 1 0 1 $35
W
WD_TEST
0
0 1 1 0 1 1 0 $36 R/W
SYSDIAGREQ
Diagnostic command for system safing
0
0 1 1 0 1 1 1 $37
LPDIAGSTAT
Diagnostic result register for deployment
loops
0
0 1 1 1 0 0 0 $38 R/W
LPDIAGREQ
Diagnostic configuration command for
deployment loops
0
0 1 1 1 0 0 1 $39 R/W
SWCTRL
0
0 1 1 1 0 1 0 $3A R/W
0
X
X
X
X
X
X
X
Watchdog second level key transmission
X
X
X
X
X
Watchdog first and second level test
X
X
X
X
X
X
X
X
X
DC sensor diagnostic configuration
X
X
X
X
DIAGCTRL_A
In WID is AtoD converter control register A. In
RID is AtoD result A request.
X
X
X
X
0 1 1 1 0 1 1 $3B R/W
DIAGCTRL_B
In WID is AtoD converter control register B. In
RID is AtoD result B request.
X
X
X
X
0
0 1 1 1 1 0 0 $3C R/W
DIAGCTRL_C
In WID is AtoD converter control register C. In
RID is AtoD result C request.
X
X
X
X
0
0 1 1 1 1 0 1 $3D R/W
DIAGCTRL_D
In WID is AtoD converter control register D. In
RID is AtoD result D request.
X
X
X
X
0
0 1 1 1 1 1 0 $3E
0
0 1 1 1 1 1 1 $3F R/W
SW_REGS_CONF
Configuration register for switching regulators
X
X
X
X
0
1 0 0 0 0 0 0 $40
0
1 0 0 0 0 0 1 $41
0
1 0 0 0 0 1 0 $42 R/W
GPOCR
0
1 0 0 0 0 1 1 $43 R/W
GPOCTRL0
X
X
X
R
SPI interfaces
56/277
Table 6.
X
X
X
General Purpose Output 0 control register
X
X
L9680
General Purpose Output configuration
Global SPI register map (continued)
L9680
Table 6.
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
Diag Ssafing Scrap Arming
DocID029257 Rev 1
1 0 0 0 1 0 0 $44 R/W
GPOCTRL1
General Purpose Output 1 control register
X
X
X
X
X
0
1 0 0 0 1 0 1 $45 R/W
GPOCTRL2
General Purpose Output 2 control register
X
X
X
X
X
0
1 0 0 0 1 1 0 $46
GPOFLTSR
General Purpose Output fault status register
0
1 0 0 0 1 1 1 $47
0
1 0 0 1 0 0 0 $48 R/W
WSS_TEST
WSS testmode request
X
0
1 0 0 1 0 0 1 $49
0
1 0 0 1 0 1 0 $4A R/W
RSCR0
PSI5/WSS configuration register
X
0
1 0 0 1 0 1 1 $4B R/W
RSCR1
X
0
1 0 0 1 1 0 0 $4C R/W
RSCR2
X
0
1 0 0 1 1 0 1 $4D R/W
RSCR3
X
0
1 0 0 1 1 1 0 $4E R/W
RSCTRL
X
X
X
0
1 0 0 1 1 1 1 $4F
0
1 0 1 0 0 0 0 $50
0
1 0 1 0 0 0 1 $51
0
1 0 1 0 0 1 0 $52
0
1 0 1 0 0 1 1 $53
0
1 0 1 0 1 0 0 $54
0
1 0 1 0 1 0 1 $55
0
1 0 1 0 1 1 0 $56
0
1 0 1 0 1 1 1 $57
0
1 0 1 1 0 0 0 $58
0
1 0 1 1 0 0 1 $59
0
1 0 1 1 0 1 0 $5A
0
1 0 1 1 0 1 1 $5B
0
1 0 1 1 1 0 0 $5C
R
Remote sensor control register
X
SPI interfaces
57/277
0
Global SPI register map (continued)
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
Diag Ssafing Scrap Arming
DocID029257 Rev 1
0
1 0 1 1 1 0 1 $5D
0
1 0 1 1 1 1 0 $5E
0
1 0 1 1 1 1 1 $5F
0
1 1 0 0 0 0 0 $60
0
1 1 0 0 0 0 1 $61
0
1 1 0 0 0 1 0 $62
0
1 1 0 0 0 1 1 $63
0
1 1 0 0 1 0 0 $64 R/W
RS_AUX_CONF1
WSS Threshold configuration register 1
X
0
1 1 0 0 1 0 1 $65 R/W
RS_AUX_CONF2
WSS Threshold configuration register 2
X
0
1 1 0 0 1 1 0 $66 R/W
SAF_ALGO_CONF
Safing Algorithm configuration register
X
0
1 1 0 0 1 1 1 $67
0
1 1 0 1 0 0 0 $68
0
1 1 0 1 0 0 1 $69
0
1 1 0 1 0 1 0 $6A
0
1 1 0 1 0 1 1 $6B
0
1 1 0 1 1 0 0 $6C
0
1 1 0 1 1 0 1 $6D
0
1 1 0 1 1 1 0 $6E R/W
LOOP_MATRIX_ARM1
Assignment of ARM 1 pin to which LOOPS
X
0
1 1 0 1 1 1 1 $6F R/W
LOOP_MATRIX_ARM2
Assignment of ARM 2 pin to which LOOPS
X
0
1 1 1 0 0 0 0 $70 R/W
LOOP_MATRIX_ARM3
Assignment of ARM 3 pin to which LOOPS
X
0
1 1 1 0 0 0 1 $71 R/W
LOOP_MATRIX_ARM4
Assignment of ARM 4 pin to which LOOPS
X
0
1 1 1 0 0 1 0 $72
0
1 1 1 0 0 1 1 $73
R
AEPSTS_ARM1
0
1 1 1 0 1 0 0 $74
R
AEPSTS_ARM2
0
1 1 1 0 1 0 1 $75
R
AEPSTS_ARM3
R
ARM_STATE
SPI interfaces
58/277
Table 6.
Status of arming signals
L9680
Arming pulse stretch timer value
Global SPI register map (continued)
L9680
Table 6.
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
R
AEPSTS_ARM4
Diag Ssafing Scrap Arming
DocID029257 Rev 1
1 1 1 0 1 1 0 $76
Arming pulse stretch timer value
0
1 1 1 0 1 1 1 $77
0
1 1 1 1 0 0 0 $78 R/W
PADTHRESH_HI
0
1 1 1 1 0 0 1 $79 R/W
PADTHRESH_LO
0
1 1 1 1 0 1 0 $7A R/W
LOOP_MATRIX_PSINH
0
1 1 1 1 0 1 1 $7B
0
1 1 1 1 1 0 0 $7C
0
1 1 1 1 1 0 1 $7D
0
1 1 1 1 1 1 0 $7E
0
1 1 1 1 1 1 1 $7F R/W
SAF_ENABLE
1
0 0 0 0 0 0 0 $80 R/W
SAF_REQ_MASK_1
X
1
0 0 0 0 0 0 1 $81 R/W
SAF_REQ_MASK_2
X
1
0 0 0 0 0 1 0 $82 R/W
SAF_REQ_MASK_3
X
1
0 0 0 0 0 1 1 $83 R/W
SAF_REQ_MASK_4
X
1
0 0 0 0 1 0 0 $84 R/W
SAF_REQ_MASK_5
X
1
0 0 0 0 1 0 1 $85 R/W
SAF_REQ_MASK_6
X
1
0 0 0 0 1 1 0 $86 R/W
SAF_REQ_MASK_7
1
0 0 0 0 1 1 1 $87 R/W
SAF_REQ_MASK_8
1
0 0 0 1 0 0 0 $88 R/W
SAF_REQ_MASK_9
X
1
0 0 0 1 0 0 1 $89 R/W
SAF_REQ_MASK_10
X
1
0 0 0 1 0 1 0 $8A R/W
SAF_REQ_MASK_11
X
1
0 0 0 1 0 1 1 $8B R/W
SAF_REQ_MASK_12
X
1
0 0 0 1 1 0 0 $8C R/W
SAF_REQ_MASK_13
X
1
0 0 0 1 1 0 1 $8D R/W
SAF_REQ_MASK_14_pt1
X
Passenger Inhibit Thresholds
X
X
Assignment of PSINH signal to which LOOPS
X
Safing record enable
X
Safing record request mask
X
X
X
X
X
SPI interfaces
59/277
0
Global SPI register map (continued)
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
Diag Ssafing Scrap Arming
DocID029257 Rev 1
1
0 0 0 1 1 1 0 $8E R/W
SAF_REQ_MASK_14_pt2
X
1
0 0 0 1 1 1 1 $8F R/W
SAF_REQ_MASK_15_pt1
X
1
0 0 1 0 0 0 0 $90 R/W
SAF_REQ_MASK_15_pt2
1
0 0 1 0 0 0 1 $91 R/W
SAF_REQ_MASK_16_pt1
X
1
0 0 1 0 0 1 0 $92 R/W
SAF_REQ_MASK_16_pt2
X
1
0 0 1 0 0 1 1 $93 R/W
SAF_REQ_TARGET_1
X
1
0 0 1 0 1 0 0 $94 R/W
SAF_REQ_TARGET_2
X
1
0 0 1 0 1 0 1 $95 R/W
SAF_REQ_TARGET_3
X
1
0 0 1 0 1 1 0 $96 R/W
SAF_REQ_TARGET_4
X
1
0 0 1 0 1 1 1 $97 R/W
SAF_REQ_TARGET_5
X
1
0 0 1 1 0 0 0 $98 R/W
SAF_REQ_TARGET_6
X
1
0 0 1 1 0 0 1 $99 R/W
SAF_REQ_TARGET_7
X
1
0 0 1 1 0 1 0 $9A R/W
SAF_REQ_TARGET_8
X
1
0 0 1 1 0 1 1 $9B R/W
SAF_REQ_TARGET_9
X
1
0 0 1 1 1 0 0 $9C R/W
SAF_REQ_TARGET_10
1
0 0 1 1 1 0 1 $9D R/W
SAF_REQ_TARGET_11
X
1
0 0 1 1 1 1 0 $9E R/W
SAF_REQ_TARGET_12
X
1
0 0 1 1 1 1 1 $9F R/W
SAF_REQ_TARGET_13
X
1
0 1 0 0 0 0 0 $A0 R/W SAF_REQ_TARGET_14_pt1
X
1
0 1 0 0 0 0 1 $A1 R/W SAF_REQ_TARGET_14_pt2
X
1
0 1 0 0 0 1 0 $A2 R/W SAF_REQ_TARGET_15_pt1
X
1
0 1 0 0 0 1 1 $A3 R/W SAF_REQ_TARGET_15_pt2
X
1
0 1 0 0 1 0 0 $A4 R/W SAF_REQ_TARGET_16_pt1
X
1
0 1 0 0 1 0 1 $A5 R/W SAF_REQ_TARGET_16_pt2
X
1
0 1 0 0 1 1 0 $A6 R/W
Safing record request target
Safing record response mask
X
X
X
L9680
SAF_RESP_MASK_1
Safing record request mask
SPI interfaces
60/277
Table 6.
Global SPI register map (continued)
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
Diag Ssafing Scrap Arming
DocID029257 Rev 1
0 1 0 0 1 1 1 $A7 R/W
SAF_RESP_MASK_2
X
1
0 1 0 1 0 0 0 $A8 R/W
SAF_RESP_MASK_3
X
1
0 1 0 1 0 0 1 $A9 R/W
SAF_RESP_MASK_4
X
1
0 1 0 1 0 1 0 $AA R/W
SAF_RESP_MASK_5
X
1
0 1 0 1 0 1 1 $AB R/W
SAF_RESP_MASK_6
X
1
0 1 0 1 1 0 0 $AC R/W
SAF_RESP_MASK_7
X
1
0 1 0 1 1 0 1 $AD R/W
SAF_RESP_MASK_8
X
1
0 1 0 1 1 1 0 $AE R/W
SAF_RESP_MASK_9
X
1
0 1 0 1 1 1 1 $AF R/W
SAF_RESP_MASK_10
1
0 1 1 0 0 0 0 $B0 R/W
SAF_RESP_MASK_11
1
0 1 1 0 0 0 1 $B1 R/W
SAF_RESP_MASK_12
X
1
0 1 1 0 0 1 0 $B2 R/W
SAF_RESP_MASK_13
X
1
0 1 1 0 0 1 1 $B3 R/W
SAF_RESP_MASK_14_pt1
X
1
0 1 1 0 1 0 0 $B4 R/W
SAF_RESP_MASK_14_pt2
X
1
0 1 1 0 1 0 1 $B5 R/W
SAF_RESP_MASK_15_pt1
X
1
0 1 1 0 1 1 0 $B6 R/W
SAF_RESP_MASK_15_pt2
X
1
0 1 1 0 1 1 1 $B7 R/W
SAF_RESP_MASK_16_pt1
X
1
0 1 1 1 0 0 0 $B8 R/W
SAF_RESP_MASK_16_pt2
X
1
0 1 1 1 0 0 1 $B9 R/W
SAF_RESP_TARGET_1
X
1
0 1 1 1 0 1 0 $BA R/W
SAF_RESP_TARGET_2
X
1
0 1 1 1 0 1 1 $BB R/W
SAF_RESP_TARGET_3
X
1
0 1 1 1 1 0 0 $BC R/W
SAF_RESP_TARGET_4
1
0 1 1 1 1 0 1 $BD R/W
SAF_RESP_TARGET_5
X
1
0 1 1 1 1 1 0 $BE R/W
SAF_RESP_TARGET_6
X
1
0 1 1 1 1 1 1 $BF R/W
SAF_RESP_TARGET_7
X
Safing record response target
X
X
X
SPI interfaces
61/277
1
Safing record response mask
L9680
Table 6.
Global SPI register map (continued)
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
Diag Ssafing Scrap Arming
DocID029257 Rev 1
1
1 0 0 0 0 0 0 $C0 R/W
SAF_RESP_TARGET_8
X
1
1 0 0 0 0 0 1 $C1 R/W
SAF_RESP_TARGET_9
X
1
1 0 0 0 0 1 0 $C2 R/W
SAF_RESP_TARGET_10
X
1
1 0 0 0 0 1 1 $C3 R/W
SAF_RESP_TARGET_11
X
1
1 0 0 0 1 0 0 $C4 R/W
SAF_RESP_TARGET_12
X
1
1 0 0 0 1 0 1 $C5 R/W
SAF_RESP_TARGET_13
1
1 0 0 0 1 1 0 $C6 R/W SAF_RESP_TARGET_14_pt1
1
1 0 0 0 1 1 1 $C7 R/W SAF_RESP_TARGET_14_pt2
X
1
1 0 0 1 0 0 0 $C8 R/W SAF_RESP_TARGET_15_pt1
X
1
1 0 0 1 0 0 1 $C9 R/W SAF_RESP_TARGET_15_pt2
X
1
1 0 0 1 0 1 0 $CA R/W SAF_RESP_TARGET_16_pt1
X
1
1 0 0 1 0 1 1 $CB R/W SAF_RESP_TARGET_16_pt2
X
1
1 0 0 1 1 0 0 $CC R/W
SAF_DATA_MASK_1
X
1
1 0 0 1 1 0 1 $CD R/W
SAF_DATA_MASK_2
X
1
1 0 0 1 1 1 0 $CE R/W
SAF_DATA_MASK_3
X
1
1 0 0 1 1 1 1 $CF R/W
SAF_DATA_MASK_4
X
1
1 0 1 0 0 0 0 $D0 R/W
SAF_DATA_MASK_5
X
1
1 0 1 0 0 0 1 $D1 R/W
SAF_DATA_MASK_6
X
1
1 0 1 0 0 1 0 $D2 R/W
SAF_DATA_MASK_7
1
1 0 1 0 0 1 1 $D3 R/W
SAF_DATA_MASK_8
X
1
1 0 1 0 1 0 0 $D4 R/W
SAF_DATA_MASK_9
X
1
1 0 1 0 1 0 1 $D5 R/W
SAF_DATA_MASK_10
X
1
1 0 1 0 1 1 0 $D6 R/W
SAF_DATA_MASK_11
X
1
1 0 1 0 1 1 1 $D7 R/W
SAF_DATA_MASK_12
X
1
1 0 1 1 0 0 0 $D8 R/W
SAF_DATA_MASK_13
X
Safing record response target
Safing record data mask
SPI interfaces
62/277
Table 6.
X
X
X
L9680
Global SPI register map (continued)
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
Diag Ssafing Scrap Arming
DocID029257 Rev 1
1 0 1 1 0 0 1 $D9 R/W
SAF_DATA_MASK_14_pt1
X
1
1 0 1 1 0 1 0 $DA R/W
SAF_DATA_MASK_14_pt2
X
1
1 0 1 1 0 1 1 $DB R/W
SAF_DATA_MASK_15_pt1
1
1 0 1 1 1 0 0 $DC R/W
SAF_DATA_MASK_15_pt2
1
1 0 1 1 1 0 1 $DD R/W
SAF_DATA_MASK_16_pt1
X
1
1 0 1 1 1 1 0 $DE R/W
SAF_DATA_MASK_16_pt2
X
1
1 0 1 1 1 1 1 $DF R/W
SAF_THRESHOLD_1
X
1
1 1 0 0 0 0 0 $E0 R/W
SAF_THRESHOLD_2
X
1
1 1 0 0 0 0 1 $E1 R/W
SAF_THRESHOLD_3
X
1
1 1 0 0 0 1 0 $E2 R/W
SAF_THRESHOLD_4
X
1
1 1 0 0 0 1 1 $E3 R/W
SAF_THRESHOLD_5
X
1
1 1 0 0 1 0 0 $E4 R/W
SAF_THRESHOLD_6
X
1
1 1 0 0 1 0 1 $E5 R/W
SAF_THRESHOLD_7
X
1
1 1 0 0 1 1 0 $E6 R/W
SAF_THRESHOLD_8
1
1 1 0 0 1 1 1 $E7 R/W
SAF_THRESHOLD_9
1
1 1 0 1 0 0 0 $E8 R/W
SAF_THRESHOLD_10
X
1
1 1 0 1 0 0 1 $E9 R/W
SAF_THRESHOLD_11
X
1
1 1 0 1 0 1 0 $EA R/W
SAF_THRESHOLD_12
X
1
1 1 0 1 0 1 1 $EB R/W
SAF_THRESHOLD_13
X
1
1 1 0 1 1 0 0 $EC R/W
SAF_THRESHOLD_14
X
1
1 1 0 1 1 0 1 $ED R/W
SAF_THRESHOLD_15
X
1
1 1 0 1 1 1 0 $EE R/W
SAF_THRESHOLD_16
X
1
1 1 0 1 1 1 1 $EF R/W
SAF_CONTROL_1
X
1
1 1 1 0 0 0 0 $F0 R/W
SAF_CONTROL_2
1
1 1 1 0 0 0 1 $F1 R/W
SAF_CONTROL_3
Safing record threshold
Safing record control
X
X
X
X
X
X
SPI interfaces
63/277
1
Safing record data mask
L9680
Table 6.
Global SPI register map (continued)
Operating State(1)
GID
RID / WID
Hex R/W
Name
Description
Init
Diag Ssafing Scrap Arming
DocID029257 Rev 1
1
1 1 1 0 0 1 0 $F2 R/W
SAF_CONTROL_4
X
1
1 1 1 0 0 1 1 $F3 R/W
SAF_CONTROL_5
X
1
1 1 1 0 1 0 0 $F4 R/W
SAF_CONTROL_6
X
1
1 1 1 0 1 0 1 $F5 R/W
SAF_CONTROL_7
X
1
1 1 1 0 1 1 0 $F6 R/W
SAF_CONTROL_8
X
1
1 1 1 0 1 1 1 $F7 R/W
SAF_CONTROL_9
X
1
1 1 1 1 0 0 0 $F8 R/W
SAF_CONTROL_10
1
1 1 1 1 0 0 1 $F9 R/W
SAF_CONTROL_11
X
1
1 1 1 1 0 1 0 $FA R/W
SAF_CONTROL_12
X
1
1 1 1 1 0 1 1 $FB R/W
SAF_CONTROL_13
X
1
1 1 1 1 1 0 0 $FC R/W
SAF_CONTROL_14
X
1
1 1 1 1 1 0 1 $FD R/W
SAF_CONTROL_15
X
1
1 1 1 1 1 1 0 $FE R/W
SAF_CONTROL_16
X
1
1 1 1 1 1 1 1 $FF
R
SAF_CC
Safing record control
SPI interfaces
64/277
Table 6.
X
Safing Record Compare Complete
1. A check mark indicates in which operating state a WRITE-command is valid.
2. KEEP_ERBOOST_ON, LOW_POWER_MODE, VSF_V and VINGOOD_FILT_SEL bits are writable in all states, the other bits of SYS_CFG are only writable in INIT state.
L9680
L9680
7.3
SPI interfaces
Global SPI tables
A summary of all the registers contained within the global SPI map are shown below and are
referenced throughout the specification as they apply. The SPI register tables also specify
the effect of the internal reset signals assertion on each bit field (the symbol '-' is used to
indicate that the register is not affected by the relevant reset signal').
Global SPI global status word
The Global SPI of L9680 contains an 11-bit word that returns global status information. The
Global Status Word (GSW) of the Global SPI is the most significant 11 bits of MISO_G data.
Table 7. Global SPI Global Status Word
MISO_G GSW
31
10
Name
SPIFLT
POR WSM SSM
0
0
Description
0
SPI Fault, set if previous SPI frame had wrong parity check
or wrong number of bits, cleared upon read
0 No fault
1 Fault
30
9
DEPOK
0
0
0
General Deployment Successful Flag, logical OR of the
corresponding CHxDS bits (bit 15) in DSRx Registers
0 All the DSRx-CHDS bits are 0
1 At least one of the DSRx-CHDS bits is 1
29
8
0
0
0
0
Unused
28
7
WDT/TM_S
0
0
0
State of WDT/TM pin
0 WDT/TM=0
1 WDT/TM=1
27
6
ERSTATE
0
0
0
Set when Powermode state machine is in ER state
0 Powermode state machine is not in ER state
1 Powermode state machine is in ER state
0
Fault present in Power State Register, logical OR between
bits from 18 to 9 of POWER_STATE Register
0 All the bits from 18 to 9 in the POWER_STATE Registers
are 0s
1 At least one of the bits from 18 to 9 in the
POWER_STATE Registers is 1
1
Fault present in Fault Status Register (FLTSR), logical OR
between all bits of FLTSR
0 All the bits in the Fault Status Register (FLTSR) are 0s
1 At least one of the bits in the Fault Status Register
(FLTSR) is 1
0
ADC Conversion of request C or D has been completed so
new results are available
0 No new data available
1 New data available
0
ADC Conversion of request A or B has been completed so
new results are available
0 No new data available
1 New data available
26
25
24
23
5
4
3
2
POWERFLT
FLT
CONVRDY2
CONVRDY1
0
1
0
0
0
1
0
0
DocID029257 Rev 1
65/277
276
SPI interfaces
L9680
Table 7. Global SPI Global Status Word (continued)
MISO_G GSW
22
21
66/277
1
0
Name
ERR_WID
ERR_RID
POR WSM SSM
0
0
0
0
Description
0
Write address of previous SPI frame is not permitted in
current operating phase
0 No Error
1 Error
0
Read address received in the actual SPI frame is unused so
data in the response is don't care
0 No Error
1 Error
DocID029257 Rev 1
L9680
SPI interfaces
Global SPI read/write register
R
Read:
0000
Write:
-
ERCHARGE_OT
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
WD2_WDR
WD1_LO
WD1_TM
WD1_WDR
MCURST
WSMRST
SSMRST
VCORE_ERR
WD2 retry cnt
0
-
-
POR
12
SSM
Type:
13
WSM
00
14
POR
ID:
15
CLKFRERR
MCUFLT_TEST
MISO
16
ERCHARGE_OT
MOSI
17
WD2_TM
18
WD2_LO
19
OTPCRC_ERR
Fault status register (FLTSR)
ERBST_OT
7.3.1
ER charge over temperature bit
Set when over-temp condition detected, cleared on SPI read or POR=1
0 No Fault
1 Fault
MCUFLT_TEST
1
1
1
MCU FAULT test mode - reflects MCU_FLT_TM signal state
0 MCU FLT TM=0
1 MCU FLT TM=1
ERBST_OT
0
-
-
ER Boost over-temperature bit
Set when over-temp condition detected, cleared on SPI read or POR=1
0 No Fault
1 Fault
CLKFRERR
0
-
-
Internal oscillator cross-check error bit
Set when osc. error detected, cleared on SPI read or SUPPLY_POR=1
0 No Fault
1 Fault
WD2_retry_cnt[3:0]
$0
$0
OTPCRC_ERR
0
-
$0 Value of WD2 retry counter
-
OTP CRC error bit
Set when OTP error detected (tested at release of POR), cleared by POR=1
0 No Fault
1 Fault
WD2_LO
0
0
-
WD2 lockout - reflects WD2 lockout state
DocID029257 Rev 1
67/277
276
SPI interfaces
L9680
0 WD2 Lockout inactive
1 WD2 Lockout active
WD2_TM
0
0
0
WD2 test mode - reflects WD2TM signal state
0 WD2TM=0
1 WD2TM=1
WD2_WDR
0
0
-
WD2 reset latch - set when WD2RESET or STOPPING states are entered,
cleared upon read
0 WD2RST signal = 0
1 WD2RST signal = 1
WD1_LO
0
0
-
WD1 lockout - reflects WD1 lockout state
Set and cleared per Watchdog Timer Flow Diagram
0 WD1 Lockout inactive
1 WD1 Lockout active
WD1_TM
0
0
0
WD1 test mode - reflects WD1TM signal state
Set and cleared per Watchdog Timer Flow Diagram
0 WD1TM=0
1 WD1TM=1
WD1_WDR
0
0
-
WD1 reset latch
Set and cleared per Watchdog Timer Flow Diagram
0 WD1_WDR signal = 0
1 WD1_WDR signal = 1
MCURST
0
0
-
MCU reset latch - set when MCUFLT pin goes low, cleared upon read
0 MCURST signal = 0
1 MCURST signal = 1
WSMRST
1
1
-
Watchdog state machine reset
Set when WSM reset goes to '1', cleared upon SPI read
0 WSM reset has not occurred
1 WSM reset has occurred
SSMRST
1
1
1
Safing state machine reset
Set when SSM reset goes to '1', cleared upon SPI read
0 SSM reset has not occurred
1 SSM Reset has occurred
VCORE_ERR
68/277
0
-
-
VCOREMON pin status - set when VCOREMON pin goes out of range, reset
upon read
DocID029257 Rev 1
L9680
SPI interfaces
0 VCORMON in range (VCORE_UV<VCOREMON<VCORE_OV)
1 VCOREMON out of range (VCOREMON<VCORE_UV, or VCOREMON>VCORE_OV)
POR
1
-
-
Power on Reset
Set when POR goes to '1', cleared upon SPI read
0 POR reset has not occurred
1 POR Reset has occurred
DocID029257 Rev 1
69/277
276
SPI interfaces
RW
Read:
0100
Write:
0002
EN_AUTO_SWITCH_OFF
SSM
Type:
WSM
01
0
0
0
VINGOOD_FILT_SEL
WD1_TO_DIS
VINGOOD_FILT_SEL
WD1_TO_DIS
Enable auto switch off ISRC current source and DCS regulator after
measurement completion
0 Auto switch off disabled
1 Auto switch off enabled
LOW_POWER_MODE
0
-
-
Selection of over current detection for SYNCBOOST, SATBUCK and
VCCBUCK
0 High current level
1 Low current level
KEEP_ERBST_ON
0
0
0
ER Boost behaviour during ER state
0 ER Boost is disabled
1 ER Boost stay enabled
PSINHSEL
70/277
1
1
1
PSINH engine mode select
Updated by SSM_RESET or SPI write
DocID029257 Rev 1
0
VSF_V
1
VSF_V
2
SAFESEL
3
SAFESEL
4
DCS_PAD_V
5
DCS_PAD_V
6
VMEAS
7
VMEAS
8
SQMEAS
9
SQMEAS
10
RSU_SYNCPULSE_SHIFT_CONF RSU_SYNCPULSE_SHIFT_CONF
0
POR
ID:
0
11
HI_LEV_DIAG_TIME
0
12
HI_LEV_DIAG_TIME
0
X
13
PSINHSEL
0
14
PSINHSEL
-
15
KEEP_ERBST_ON
MISO
16
KEEP_ERBST_ON
MOSI
17
LOW_POWER_MODE
18
LOW_POWER_MODE
19
EN_AUTO_SWITCH_OFF
System configuration register (SYS_CFG)
EN_AUTO_SWITCH_OFF
7.3.2
L9680
L9680
SPI interfaces
0 Internal
1 External
HI_LEV_DIAG_TIME
0
0
0
Selection of duration of high level squib diagnostics
0 Short time (see high level diag diagram)
1 Long time (see high level diag diagram)
RSU_SYNCPULSE_
SHIFT_CONF
0
0
0
Selection of sync pulses shift duration
0 Long time
1 Short time
SQMEAS
00
00
00 Sample number in DC sensor, squib measurement and temperature
conversions
Updated by SSM_RESET or SPI write
00
01
10
11
VMEAS
00
00
8 samples
16 samples
4 samples
2 sample
00 Sample number in any other voltage measurement conversions
Updated by SSM_RESET or SPI write
00
01
10
11
DCS_PAD_V
0
0
0
4 samples
16 samples
8 samples
1 sample
Passenger inhibit measurement mode
0 Current
1 Voltage
SAFESEL
1
1
1
Safing engine mode select
Updated by SSM_RESET or SPI write
0 Internal safing engine
1 external safing engine
DocID029257 Rev 1
71/277
276
SPI interfaces
VSF_V
L9680
0
0
0
VSF voltage select
Updated by SSM_RESET or SPI write
0 20V
1 25V
VINGOOD_FILT_SEL
0
-
-
Selector of filter time for VINGOOD going low (time is fixed to 3.5 μs for
VINGOOD going high)
0 1 μs
1 3.5 μs
WD1_TO_DIS
0
0
-
Disable of initial 500ms timeout function of WD1 state machine
Updated by WSM_RESET or SPI write
0 timeout function is enabled
1 timeout function is disabled
72/277
DocID029257 Rev 1
L9680
SPI interfaces
RW
Read:
0200
Write:
0004
RESTART_SYBST_SEL
SSM
Type:
WSM
02
POR
ID:
0
-
-
4
3
SYNCBST_EN
SPI_OFF
x
ERSWITCH_LIM_SEL
SYBST_V
SPI_OFF
0
ERSWITCH_LIM_SEL
SYBST_V
7
2
1
0
SAT_V
5
VSUP_EN
8
SAT_V
6
ER_BST_EN
9
ER_BST_EN
10
ER_CUR_EN
11
ER_CUR_EN
ER_BST_V
0
ER_BST_V
0
12
VBATMON_TH_SEL
0
13
VBATMON_TH_SEL
0
14
VIN_TH_SEL
-
15
VIN_TH_SEL
MISO
16
KEEP_SYNCBST_ON
MOSI
17
KEEP_SYNCBST_ON
18
PD&VRCM_SEL
19
PD&VRCM_SEL
System control register (SYS_CTL)
RESTART_SYBST_SEL RESTART_SYBST_SEL
7.3.3
Selection of comparator used to restart sync boost in erstate (don't care in
case SYS_CTL(KEEP_SYNCBST_ON) bit is high)
0 VIN comparator is used; syncboost is switched off entering erstate and
switched on once VIN goes above VIN_fastslope threshold.
1 SYNCBST comparator is used; syncboost is switched off entering
erstate and switched on when SYNCBST voltage falls down
VSYNCBST_RESTART_TH threshold (this condition requires that
SYNCBST voltage has been pulled up above the same threshold
previously).
PD&VRCM_SEL
0
0
0
Squib pull down current level and VRCM leakage to GND threshold selection
0 1 mA pull down current and 450 μA VRCM leakage to GND threshold
1 5 mA pull down current and 2 mA VRCM leakage to GND threshold
KEEP_SYNCBST_ON
1
-
-
SYNC Boost behaviour during ER state
0 SYNC Boost is disabled entering in ER state
1 SYNC Boost stay enabled in ER state. If boost is OFF in ER state and
this command is received during that state the boost is switched on.
VIN_TH_SEL
0
0
0
VIN comparators threshold selector
0 VINGOOD= VINgood0
1 VINGOOD= VINgood1
DocID029257 Rev 1
73/277
276
SPI interfaces
VBATMON_TH_SEL
L9680
00
00
00 VBATMON comparators threshold selector
00 VINGOOD= VINgood0
01 VINGOOD= VINgood1
10 VINGOOD= VINgood2
11 VINGOOD= VINgood3
ER_BST_V
0
0
0
ER Boost voltage select
Updated by SSM_RESET or SPI write
0 set 23V boost
1 set 33V boost
ER_CUR_EN
00
00
00 ER charge / discharge control
00 Current sources off
01 ER charge enabled
10 ER discharge enabled
11 Current sources off
ER_BST_EN
1
1
1
Boost enable
Updated by SSM_RESET or SPI write
0 ER_BOOST OFF request
1 ER_BOOST ON request
SYNCBST_EN
1
1
1
Syncboost enable
Updated by SSM_RESET or SPI write
0 SYNC_BOOST OFF request
1 SYNC_BOOST ON request
SPI_OFF
0
0
0
Go to POWER OFF state from POWERMODE SHUTDOWN state
Updated by SSM_RESET or SPI write while in POWERMODE SHUTDOWN
state
0 no effect
1 transition to POWER OFF state
ERSWITCH_LIM_SEL
0
-
-
ERswitch current limitation select
Updated by POR or SPI write
0 Low current limit
1 High current limit is no more available
SYBST_V
0
0
0
Sync Boost voltage select
Updated by SSM_RESET or SPI write
0 Low - syncboost=12V
1 High - syncboost=14.75V
74/277
DocID029257 Rev 1
L9680
SPI interfaces
0
SAT_V
0
0
SatBuck and Satellite Interface voltage select
Updated by SSM_RESET or SPI write
0 Low - satbuck=7.2V
1 High - satbuck=9V
7.3.4
SPI Sleep command register (SPI_SLEEP)
19
18
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
W
Read:
-
Write:
0006
POR
Type:
0
-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SSM
0
03
N/A N/A N/A Non-latched command that allows transition into
POWERMODE_SHUTDOWN state according to the Power Control State
Flow Diagram
SLEEP_MODE
System status register (SYS_STATE)
16
-
0
0
0
04
Type:
R
Read:
0400
Write:
POR
ID:
OPER_CTL_STATE[2:0]
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
POWER_CTL_STATE
MOSI
17
OPER_CTL_STATE
18
SSM
19
MISO
15
$3C95X
ID:
7.3.5
16
WSM
MISO
17
-
WSM
MOSI
000 000 000 Reports Operating Control State
Updated per Power Up Phases diagram
000 = INIT
DocID029257 Rev 1
75/277
276
SPI interfaces
L9680
001 = DIAG
010 = SAFING
011 = SCRAP
100 = ARMING
101 unused
110 unused
111 unused
POWER_CTL_STATE[2:0]
000
-
-
Reports Power Control State
Updated per Power Control State Flow Diagram
000 = AWAKE
001 = STARTUP
010 = RUN
011 = ER
100 = POWER MODE SHUTDOWN
101 unused
110 unused
111 unused
76/277
DocID029257 Rev 1
L9680
R
Read:
0500
Write:
-
WAKEUP
12
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ER_BST_NOK
VCC_UV
VCC_OV
0
ER_BST_ON
ER_CHRG_ON
ER_LCDIS_ON
ER_HCDIS_ON
ER_SW_ON
S_BST_ACT
SATBUCK_ACT
VCC_ACT
-
-
-
VSF_ACT
13
SSM
Type:
14
WSM
05
15
POR
ID:
VINBAD
VBBAD
MISO
16
WAKEUP
MOSI
17
SATBUCK_NOK
18
S_BST_NOK
19
NOT_VINGOOD
Power state register (POWER_STATE)
NOT_VBGOOD
7.3.6
SPI interfaces
WAKEUP pin status
Set and cleared based on voltage
0 WAKEUP pin < WU_off
1 WAKEUP pin > WU_on
VBBAD
-
-
-
VBATMON bad pin status
Set and cleared based on voltage
1 VBATMON < VBBAD
0 VBATMON > VBBAD
NOT_VBGOOD
-
-
-
VBATMON good pin status
Set and cleared based on voltage
1 VBATMON < VBGOOD
0 VBATMON > VBGOOD
VINBAD
-
-
-
VIN bad pin status
Set and cleared based on voltage
0 VIN > VINBAD
1 VIN < VINBAD
NOT_VINGOOD
-
-
-
VIN good pin status
Set and cleared based on voltage
0 VIN > VINGOOD
1 VIN < VINGOOD
S_BST_NOK
-
-
-
SYNCBOOST bad pin status
DocID029257 Rev 1
77/277
276
SPI interfaces
L9680
Set based on voltage, cleared on SPI read
1 V_SYNCBOOST < SYNCBOOST_OK
0 V_SYNCBOOST > SYNCBOOST_OK
SATBUCK_NOK
-
-
-
SATBUCK bad pin status
Set based on voltage, cleared on SPI read
1 V_SATBUCK < SATBUCK_OK
0 V_SATBUCK > SATBUCK_OK
ER_BST_NOK
-
-
-
ERBOOST pin status
Set and cleared based on voltage
1 V_ERBOOST < ERBOOST_OK
0 V_ERBOOST > ERBOOST_OK
VCC_UV
-
-
-
VCC_UV status
Set based on voltage, cleared on SPI read
0 VCC > VCC_UV
1 VCC < VCC_UV
VCC_OV
-
-
-
VCC_OV status
Set based on voltage, cleared on SPI read
0 VCC < VCC_OV
1 VCC > VCC_OV
ER_BST_ON
0
-
-
ERBOOST_ON state
Updated according to ER_BOOST Control Behavior diagram
0 RBOOST_OFF or ERBOOST_OT state or ER_BST_STBY state (boost
not running)
1 ERBOOST_ON state (boost running)
ER_CHRG_ON
0
0
0
ERCHARGE_ON state
Updated according to ER_CHARGE Power Mode Control diagram
0 ERCHARGE_ON = 0
1 ERCHARGE_ON = 1
ER_LCDIS_ON
0
-
-
ER Low Current Discharge State
Updated according to ER Low current discharge state diagram
0 ER_LCDIS_OFF
1 ER_LCDIS_ON
78/277
DocID029257 Rev 1
L9680
SPI interfaces
ER_HCDIS_ON
0
-
-
ER High Current Discharge State
Updated according to ER High Current discharge state diagram
0 ER_HCDIS_OFF
1 ER_HCDIS_ON
ER_SW_ON
0
-
-
ER_SWITCH State
Updated according to ER Switch state diagram
0 ER_SWITCH_OFF
1 ER_SWITCH_ON
S_BST_ACT
0
-
-
SYNCBOOST Active state
Updated according to SYNCBOOST Power Mode Control state diagram
0 SYNCBOOST supply in SYNCBOOST_OFF state
1 SYNCBOOST supply in SYNCBOOST_ON state
SATBUCK_ACT
0
0
0
SATBUCK Active state
Updated according to SATBUCK Power Mode Control state diagram
0 SATBUCK supply in SATBUCK_OFF state
1 SATBUCK supply in SATBUCK_ON state
VCC_ACT
0
-
-
Buck Active state
Updated according to VCC Power Mode Control state diagram
0 VCC supply in VCC_OFF or VCC_SHUTDOWN states
1 VCC supply in VCC_RAMPUP or VCC_ON states
VSF_ACT
0
0
0
VSF Active state
Updated according to VSF Control Logic diagram
0 VSF_EN = 0
1 VSF_EN = 1
DocID029257 Rev 1
79/277
276
SPI interfaces
7.3.7
L9680
Deployment configuration registers (DCR_x)
MISO
16
-
0
0
0
0
15
14
13
12
X
X
X
X
Deploy_Time
0
0
0
0
Deploy_Time
ID:
06 (DCR_0)
07 (DCR_1)
08 (DCR_2)
09 (DCR_3)
0A (DCR_4)
0B (DCR_5)
0C (DCR_6)
0D (DCR_7)
0E (DCR_8)
0F (DCR_9)
10 (DCR_A)
11 (DCR_B)
Type:
RW
Read:
0600 (DCR_0)
0700 (DCR_1)
0800 (DCR_2)
0900 (DCR_3)
0A00 (DCR_4)
0B00 (DCR_5)
0C00 (DCR_6)
0D00 (DCR_7)
0E00 (DCR_8)
0F00 (DCR_9)
80/277
11
10
9
DocID029257 Rev 1
8
7
6
5
4
3
2
1
X
0
0
PD_CURR_CSR PD_CURR_CSR
MOSI
17
Dep_expire_time Dep_expire_time
18
Dep_Current
19
Dep_Current
Deployment Configuration Channel 0 (DCR_0)
Deployment Configuration Channel 1 (DCR_1)
Deployment Configuration Channel 2 (DCR_2)
Deployment Configuration Channel 3 (DCR_3)
Deployment Configuration Channel 5 (DCR_5)
Deployment Configuration Channel 6 (DCR_6)
Deployment Configuration Channel 7 (DCR_7)
Deployment Configuration Channel 8 (DCR_8)
Deployment Configuration Channel 9 (DCR_9)
Deployment Configuration Channel A (DCR_A)
Deployment Configuration Channel B (DCR_B)
L9680
SPI interfaces
1000 (DCR_A)
1100 (DCR_B)
SSM
WSM
000C (DCR_0)
000E (DCR_1)
0010 (DCR_2)
0012 (DCR_3)
0014 (DCR_4)
0016 (DCR_5)
0018 (DCR_6)
001A (DCR_7)
001C (DCR_8)
001E (DCR_9)
0020 (DCR_A)
0022 (DCR_B)
POR
Write:
Deploy_Time[5:0] 0000 0000 0000 Default deployment time = 0 us (no deployment, 8 us pulse output on ARM1
00 00 00 pin during PULSE TEST)
Deployment time: actual deployment time (ms) = Deploy_Time*0.064ms
(0.064ms/count up to 4.032ms max)
Dep_Current[1:0]
00
00
00 Deployment Current limit select
Updated by SSM_RESET or SPI write while in DIAG state
00
01
10
11
Dep_expire_time[1:0]
00
00
Unused (no deploy)
1.75A min
1.2A min
Unused (no deploy)
00 Deploy command expiration timer select
Updated by SSM_RESET or SPI write while in DIAG state
00
01
10
11
PD_CURR_CSR
0
0
0
500ms
250ms
125ms
0ms
Pull down current control for Commmon SR connection
Updated by SSM_RESET or SPI write
0 PD Current OFF only for channel selected for diagnostic measurement,
ON for all other channel
1 PD Current OFF for both channels of the channel pair selected for
diagnostic measurement, ON for all other channel
DocID029257 Rev 1
81/277
276
SPI interfaces
0
0
0
0
0
0
0
0
12
Type:
RW
Read:
1200
Write:
0024
POR
ID:
CHxDEPREQ
7
6
5
4
3
2
1
0
CH0DEP CH0DEPREQ
X
8
CH1DEP CH1DEPREQ
X
9
CH2DEP CH2DEPREQ
X
10
CH3DEP CH3DEPREQ
X
-
11
CH4DEP CH4DEPREQ
12
CH5DEP CH5DEPREQ
13
CH6DEP CH6DEPREQ
14
CH7DEP CH7DEPREQ
15
CH8DEP CH8DEPREQ
MISO
16
CH9DEP CH9DEPREQ
MOSI
17
CHADEP CHADEPREQ
18
CHBDEP CHBDEPREQ
19
SSM
Deployment command (DEPCOM)
WSM
7.3.8
L9680
N/A N/A N/A Channel x Deploy Request - non-latched channel-specific deploy request
0 No change to deployment control for channel x
1 Clear and start Expiration timer if in ARMING or SAFING state and in
DEPLOY_ENABLED state
CHxDEP
0
0
0
Channel x deployment expiration timer enable
Set when SPI_DEPCOM(CHxDEPREQ=1) AND in ARMING or SAFING state
AND in DEP_ENABLED state
Cleared on SSM_RESET OR when in DEP_DISABLED state OR when
Deploy Expiration Timer x reaches timeout threshold
1 Expiration timer enabled - Deploy command still valid
0 Expiration Timer disabled - Deploy command no more valid
82/277
DocID029257 Rev 1
L9680
7.3.9
SPI interfaces
Deployment status registers (DSR_x)
MISO
17
16
-
0
0
0
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
DCRxERR
18
CHxSTAT
19
MOSI
CHxDS
Deployment Status Channel 0 (DSR_0)
Deployment Status Channel 1 (DSR_1)
Deployment Status Channel 2 (DSR_2)
Deployment Status Channel 3 (DSR_3)
Deployment Status Channel 5 (DSR_5)
Deployment Status Channel 6 (DSR_6)
Deployment Status Channel 7 (DSR_7)
Deployment Status Channel 8 (DSR_8)
Deployment Status Channel 9 (DSR_9)
Deployment Status Channel A (DSR_A)
Deployment Status Channel B (DSR_B)
ID:
13 (DSR_0)
14 (DSR_1)
15 (DSR_2)
16 (DSR_3)
17 (DSR_4)
18 (DSR_5)
19 (DSR_6)
1A (DSR_7)
1B (DSR_8)
1C (DSR_9)
1D (DSR_A)
1E (DSR_B)
Type:
R
Read:
1300 (DSR_0)
1400 (DSR_1)
1500 (DSR_2)
1600 (DSR_3)
1700 (DSR_4)
1800 (DSR_5)
1900 (DSR_6)
1A00 (DSR_7)
1B00 (DSR_8)
1C00 (DSR_9)
1D00 (DSR_A)
1E00 (DSR_B)
Write:
-
DocID029257 Rev 1
DEP_CHx_ExpTimer
83/277
276
WSM
SSM
CHxDS
L9680
POR
SPI interfaces
0
0
0
Channel x deployment successful
Updated according to Deployment Driver Control Logic
(set when deployment terminates on ch x due to deploy timer timeout,
cleared on SSM_RESET OR when deployment starts on ch x)
0 Deployment not successful
1 Deployment successful
CHxSTAT
0
0
0
Channel x deployment status
Updated according to Deployment Driver Control Logic
(set when deployment starts on ch x, cleared on SSM_RESET OR when
deployment terminates due to deploy timer timeout, LS Over current OR
GND Loss)
0 Deployment not in progress
1 Deployment in progress
DCRxERR
0
0
0
Deployment configuration register error
0 Deploy configuration change accepted and stored in memory
1 Deploy configuration change rejected because deploy is in progress
(or DEP_EXPIRE_TIME changed when in DEP_ENABLED state)
DEP_CHx_ExpTimer[5:0] 0000 0000 0000 Channel x Deployment Expiration Timer value 8ms/count
00 00 00 Updated according to Deployment Driver Control Logic
(Cleared on SSM_RESET OR when Exp Timer times out OR when
SPI_DEPREQx is received while in DEP_ENABLED state AND in ARMING
or SAFING states)
84/277
DocID029257 Rev 1
L9680
SPI interfaces
7.3.10
Deployment current monitor registers (DCMTSxy)
Deployment Current Monitor Status Channel 0,1 (DDCMTS01)
Deployment Current Monitor Status Channel 2,3 (DDCMTS23)
Deployment Current Monitor Status Channel 4,5 (DDCMTS45)
Deployment Current Monitor Status Channel 6,7 (DDCMTS67)
Deployment Current Monitor Status Channel 8,9 (DDCMTS89)
Deployment Current Monitor Status Channel A,B (DDCMTSAB)
19
18
0
0
MOSI
MISO
17
16
0
0
-
15
14
X
X
11
10
9
8
7
6
X
X
X
X
X
X
X
X
Type:
R
Read:
1F00 (DDCMTS01)
2000 (DDCMTS23)
2100 (DDCMTS45)
2202 (DDCMTS67)
2300 (DDCMTS89)
2400 (DDCMTSAB)
Write:
-
5
4
3
2
1
0
X
X
X
X
X
X
Current_Mon_Timer_x[7:0]
SSM
1F (DDCMTS01)
20 (DDCMTS23)
21 (DDCMTS45)
22 (DDCMTS67)
23 (DDCMTS89)
24 (DDCMTSAB)
WSM
12
Current_Mon_Timer_y[7:0]
ID:
POR
13
Current_Mon_Timer_y[7:0]
$00 $00 $00 Channel y current monitor timer value corresponding to SPI command
DCMTSxy.
Set to default (cleared) on SSM_RESET or when a new deployment starts on
channel y. Increments each 16μs while deployment current exceeds
monitor threshold on channel y
Current_Mon_Timer_x[7:0]
$00 $00 $00 Channel x current monitor timer value corresponding to SPI command
DCMTSxy.
Set to default (cleared) on SSM_RESET or when a new deployment starts on
channel x. Increments each 16μs while deployment current exceeds
monitor threshold on channel y
DocID029257 Rev 1
85/277
276
SPI interfaces
7.3.11
L9680
Deploy enable register (SPIDEPEN)
19
18
0
0
0
0
15
14
13
12
11
10
9
-
7
6
5
4
3
2
1
0
DEPEN_WR[15:0]
25
Type:
RW
Read:
2500
Write:
004A
POR
ID:
DEPEN_WR[15:0]
8
DEPEN_STATE[15:0]
SSM
MISO
16
WSM
MOSI
17
N/A N/A N/A Non-latched encoded value for LOCK / UNLOCK command
$0FF0 LOCK - enter DEP_DISABLED state
$F00F UNLOCK - enter DEP_ENABLED state.
DEPEN_STATE[15:0] $0FF0 $0FF0 $0FF0Deploy Enabled State
Updated according to Global SPI Deployment Enable State Diagram
$0FF0 In DEP_DISABLED state
$F00F In DEP_ENABLED state
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
GNDLOSSB
GNDLOSSA
GNDLOSS9
GNDLOSS8
GNDLOSS7
GNDLOSS6
GNDLOSS5
GNDLOSS4
GNDLOSS3
GNDLOSS2
GNDLOSS1
GNDLOSS0
MISO
15
SSM
19
18
MOSI
WSM
Deployment ground loss register (LP_GNDLOSS)
POR
7.3.12
17
16
0
0
0
-
0
0
0
ID:
26
Type:
R
Read:
2600
Write:
-
GNDLOSSx
Loop x Squib Ground loss
Cleared upon SSM_RESET or SPI read. Set when GND loss is detected
during deployment or loop diag's (HS sw test, LS sw test, squib resistance)
0 Loss of ground not detected
1 Loss of ground detected
86/277
DocID029257 Rev 1
L9680
7.3.13
SPI interfaces
Device version register (VERSION_ID)
19
18
0
0
MOSI
MISO
17
16
0
0
-
R
Read:
2700
Write:
-
DEVICE ID
12
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
SSM
Type:
13
WSM
27
14
POR
ID:
15
-
-
-
DEVICE ID
VERSN
Identification of the device
Static value - never updated
001 Low end
010 Medium end
011 High end
VERSN
-
-
-
Identification of the silicon version
Static value - never updated
000000 AA version
000001 AB version
001000 BA version
001001 BB version
010000 CA version
010001 CB version
010010 CC version
DocID029257 Rev 1
87/277
276
SPI interfaces
7.3.14
L9680
Watchdog retry configuration register (WD_RETRY_CONF)
19
18
17
0
0
0
MOSI
MISO
16
15
14
0
0
0
-
RW
Read:
2800
Write:
0050
10
9
8
7
6
5
4
3
2
1
0
WD2_ERR_TH
WD2_RETRY_TH
X
X
X
X
X
WD1_RETRY_TH
WD2_ERR_TH
WD2_RETRY_TH
0
0
0
0
0
WD1_RETRY_TH
SSM
Type:
11
WSM
28
12
POR
ID:
13
WD2_ERR_TH
4
4
-
WD2 error counter threshold (number of W2 reset permitted before going to
WD2_STOP state)
WD2_RETRY_TH
4
4
-
WD2 retry counter threshold (number of W2 errors permitted before asserting
WD2_Lockout and increment WD2_ERRcnt)
WD1_RETRY_TH
7
7
-
WD1 retry counter threshold (number of WD errors permitted before latching
WD1_LOCKOUT=1)
Microcontroller fault test register (MCU_FLT_TEST)
19
18
0
0
MISO
16
15
14
13
12
11
10
0
0
0
0
0
0
0
0
-
29
Type:
W
Read:
-
Write:
0052
$0FF0 POR
ID:
MCU_FLT_TEST
9
8
7
0
0
0
5
4
3
2
1
0
0
0
0
0
0
0
0
MCU Fault Test Mode - Allows the masking of the MCUFLT_ERR and
prevents reset
$0FF0 Mask MCUFLT_ERR
$F00F Do not mask MCUFLT_ERR
88/277
6
MCU_FLT_TEST Mode
$0FF0 SSM
MOSI
17
$0FF0WSM
7.3.15
DocID029257 Rev 1
L9680
Watchdog timer configuration register (WDTCR)
19
18
MOSI
MISO
17
16
-
0
0
14
X
0
RW
Read:
2A00
Write:
0054
SSM
Type:
0
WSM
2A
0
POR
ID:
WD1_MODE
15
13
12
WD1_MODE WD1_MODE
7.3.16
SPI interfaces
0
0
-
11
10
9
8
7
6
5
4
3
2
WDTMIN[6:0]
WDTDELTA[6:0]
WDTMIN[6:0]
WDTDELTA[6:0]
1
0
WD1 Mode
Updated by WSM_RESET or SPI write while in WD1_INIT state
0 Fast WD1 mode - nominal 8μs timer resolution (2ms max value)
1 Slow WD1 mode - nominal 64μs timer resolution (16.3ms max value)
WDTMIN[6:0]
$32 $32
-
WD1 window minimum value - resolution according to WD1_MODE bit ($32 =
400μs in WD1 fast mode)
Updated by WSM_RESET or SPI write while in WD1_INIT state
WDTMIN[6:0]
$19 $19
-
WD1 window delta value - WDTMAX=WDTMIN+WDTDELTA - resolution
according to WD1_MODE bit ($19 = 200μs in WD1 fast mode)
Updated by WSM_RESET or SPI write while in WD1_INIT state
DocID029257 Rev 1
89/277
276
SPI interfaces
7.3.17
L9680
WD1 timer control register (WD1T)
19
18
0
0
MOSI
MISO
17
16
0
0
-
RW
Read:
2B01
Write:
0056
WD1CTL[1:0]
X
X
X
12
11
10
9
8
7
6
5
4
3
2
X
X
X
X
X
X
X
X
X
X
X
WD1CTL[1:0]
0
0
0
0
0
0
WD1CTL[1:0]
WD1_TIMER
SSM
Type:
13
WSM
2B
14
POR
ID:
15
00
00
00 WD1 Control command
1
0
Updated by SSM_RESET or SPI write
00 NOP
01 Code 'A'
10 Code 'B'
11 NOP
WD1_TIMER
$00 $00 $00 WD1 Window timer value
Cleared by SSM_RESET or by WD1 refresh, incremented every 8μs or 64μs
while in WD1_RUN or WD1_TEST states
90/277
DocID029257 Rev 1
L9680
WD state register (WDSTATE)
18
MISO
17
16
0
0
0
2C
Type:
R
Read:
2C00
Write:
POR
ID:
0
WD1_ERR_CNT[3:0] 0000 0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
WD1_ERR_CNT[3:0]
WD_STATE[2:0]
WD2_ERR_CNT[3:0]
WD2_STATE[2:0]
SSM
19
MOSI
WSM
7.3.18
SPI interfaces
-
Watchdog 1 error counter
Updated according to Watchdog State Diagram
WD1_STATE[2:0]
000 000
-
Watchdog state
Updated according to Watchdog State Diagram
000 INITIAL
001 RUN
010 TEST
011 RESET
100 OVERRIDE
WD2_ERR_CNT[3:0] 0000 0000
-
Watchdog 2 error counter
Updated according to Watchdog State Diagram
WD2_STATE[3:0] 0000 0000
-
Watchdog state
Updated according to Watchdog State Diagram
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
INITIAL
OVERRIDE
INITSEED
RUN
TEST
QUAL
LOCK
STOPPING
STOP
RESET
DocID029257 Rev 1
91/277
276
SPI interfaces
Clock configuration register (CLK_CONF)
0
RW
Read:
2D00
Write:
005A
VCCBCK_F_SEL[1:0]
X
X
X
X
X
X
0
0
0
0
0
0
SSM
Type:
10
WSM
2D
11
POR
ID:
0
12
00
-
-
9
8
7
6
VCCBuck switching frequency select
Updated by POR or SPI write
00 1.88 MHz
01 2.13 MHz
10 2.00 MHz
11 2.00 MHz
SATBCK_F_SEL[1:0]
00
-
-
SatBuck switching frequency select
Updated by POR or SPI write
00 1.88 MHz
01 2.13 MHz
10 2.00 MHz
11 2.00 MHz
SYBST_F_SEL[1:0]
00
-
-
Sync Boost switching frequency select
Updated by POR or SPI write
00 1.88 MHz
01 2.13 MHz
10 2.00 MHz
11 2.00 MHz
AUX_SS_DIS
1
-
-
Auxiliary oscillator Spread Spectrum disable
Updated by POR or SPI write
0 Spread Spectrum enabled
1 Spread Spectrum disabled
92/277
DocID029257 Rev 1
5
4
3
2
1
0
ERBST_F_SEL ERBST_F_SEL[1:0]
0
13
MAIN_SS_DIS
0
14
MAIN_SS_DIS
-
15
AUX_SS_DIS
MISO
16
AUX_SS_DIS
MOSI
17
SYBST_F_SEL SYBST_F_SEL[1:0]
18
SATBCK_F_SEL SATBCK_F_SEL[1:0]
19
VCCBCK_F_SEL VCCBCK_F_SEL[1:0]
7.3.19
L9680
L9680
SPI interfaces
0
MAIN_SS_DIS
-
-
Main oscillator Spread Spectrum disable
Updated by POR or SPI write
0 Spread Spectrum enabled
1 Spread Spectrum disabled
ERBST_F_SEL[1:0] 00
-
-
ER Boost switching frequency select
Updated by POR or SPI write
00 1.88 MHz
01 2.13 MHz
10 2.00 MHz
11 2.00 MHz
Scrap seed read command register (SCRAP_SEED)
18
0
0
MOSI
MISO
17
16
0
0
-
2E
Type:
R
Read:
-
Write:
2E00
POR
ID:
15
14
13
12
11
10
9
8
7
6
5
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
4
3
2
1
0
X
X
X
X
X
SEED[7:0]
SSM
19
WSM
7.3.20
N/A N/A N/A
SEED[7:0]
$00 $00 $00 Random scrap seed value - generated from a free-running 8-bit counter
DocID029257 Rev 1
93/277
276
SPI interfaces
Scrap key write command register (SCRAP_KEY)
18
0
0
MOSI
MISO
17
16
0
0
-
2F
Type:
W
Read:
-
Write:
005E
POR
ID:
15
14
13
12
11
10
9
8
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
7
6
5
4
0
0
0
0
3
2
1
0
0
0
0
KEY[7:0]
0
SSM
19
WSM
7.3.21
L9680
N/A N/A N/A
KEY[7:0]
Scrap state entry command register (SCRAP_STATE)
19
18
MISO
17
16
15
14
13
12
11
10
9
0
0
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
$3535
0
30
Type:
W
Read:
-
Write:
0060
POR
ID:
0
0
0
0
0
0
0
0
0
SSM
MOSI
WSM
7.3.22
$00 $00 $00 KEY value submitted to the SCRAP state machine (correct value is derived
from the seed value using a simple logical inversion on the even-numbered
bits (0, 2, 4, 6))
N/A N/A N/A
Non-latched Scrap State entry command
Enter Scrap state from DIAG state
94/277
DocID029257 Rev 1
L9680
Safing state entry command register (SAFING_STATE)
19
18
0
0
MISO
16
15
14
13
12
11
10
9
0
0
0
0
0
0
0
0
0
-
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
$ACAC
31
Type:
W
Read:
-
Write:
0062
POR
ID:
0
0
SSM
MOSI
17
WSM
7.3.23
SPI interfaces
N/A N/A N/A
Non-latched Safing State entry command
Enter safing state from DIAG state and clear arming pulse stretch counter (if
received in DIAG or SAFING state)
WD2 recover write command register (WD2_RECOVER)
18
MOSI
MISO
17
16
0
0
0
32
Type:
W
Read:
-
Write:
0064
POR
ID:
0
15
14
13
12
11
10
9
8
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
0
0
0
$AA
0
0
0
0
0
SSM
19
WSM
7.3.24
N/A N/A N/A
Non-latched command to clear WD2_retry counter during WD2 LOCK state
DocID029257 Rev 1
95/277
276
SPI interfaces
WD2 seed read command register (WD2_SEED)
18
0
0
MOSI
MISO
17
16
0
0
-
33
Type:
R
Read:
-
Write:
3300
POR
ID:
15
14
X
X
13
12
11
10
9
8
7
6
5
X
X
X
X
X
X
X
X
X
WD2_PREV_KEY[7:0]
4
3
2
1
0
X
X
X
X
X
WD2_SEED[7:0]
SSM
19
WSM
7.3.25
L9680
N/A N/A N/A
WD2_PREV_KEY[7:0]
$0D $0D $0D Previous WD2 key value - stored key from previous comparison
WD2_SEED[7:0]
WD2 key write command register (WD2_KEY)
18
MOSI
MISO
17
16
0
0
0
34
Type:
W
Read:
-
Write:
0068
POR
ID:
0
15
14
13
12
11
10
9
8
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
0
0
0
KEY[7:0]
0
0
0
0
0
SSM
19
WSM
7.3.26
$F0 $F0 $F0 Random WD2 seed value - generated from a free-running 8-bit counter
N/A N/A N/A
KEY[7:0]
96/277
Previous WD2 key value - stored key from previous comparison
$0D $0D $0D (correct value is derived from WD2_KEY = WD2_SEED ‡ WD2_PREV_KEY
+ $01 where ‡ denotes a bit-wise XOR)
DocID029257 Rev 1
L9680
WD test command register (WD_TEST)
19
18
0
0
MISO
16
15
14
13
0
0
0
0
0
-
12
11
10
9
8
7
6
5
0
0
0
0
0
0
WD1_TEST = $3C
35
Type:
W
Read:
-
Write:
006A
POR
ID:
0
0
4
3
2
1
0
0
0
WD2_TEST = $3C
0
0
0
SSM
MOSI
17
WSM
7.3.27
SPI interfaces
N/A N/A N/A
$0D $0D $0D Non-latched WD1 and WD2 Test Commands
WD1_TEST and WD2_TEST SPI command as described in Watchdog State
Diagram
DocID029257 Rev 1
97/277
276
SPI interfaces
System diagnostic register (SYSDIAGREQ)
19
18
0
0
MISO
16
0
0
-
36
Type:
RW
Read:
3600
Write:
006C
POR
ID:
WSM
MOSI
17
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
X
X
X
X
X
X
X
X
X
X
X
X
DSTEST[3:0]
0
0
0
0
0
0
0
0
0
0
0
0
DSTEST[3:0]
0
SSM
7.3.28
L9680
DSTEST[3:0] 0000 0000 0000 Diagnostic State Test selection
Updated by SSM_RESET or SPI write while in DIAG state
0000 = all outputs inactive
0001 = ARM 1 pin active
0010 = ARM 2 pin active
0011 = ARM 3 pin active
0100 = ARM 4 pin active
0101 = PSINHB pin inactive (high)
0110 = VSF regulator active
0111 = HS squib driver FET active
1000 = LS squib driver FET active
1001 = Output deployment timing pulses on ARM1 (separated by 8 ms)
1010 = HS squib driver FET active to test full path (FET switched off by the
comparator used in the deployment current timer monitor)
1011 - 1111 = all outputs inactive
98/277
DocID029257 Rev 1
L9680
R
Read:
3700
Write:
-
DIAG_LEVEL
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
STG
STB
SQP
0
0
0 Diagnostic mode selector
LEAK_CHSEL
11
SSM
Type:
12
WSM
37
13
POR
ID:
FP
14
SBL
0
15
RES_MEAS_CHSEL/HIGH_LEV_DIAG_SELECTED
TIP
MISO
16
-
DIAG_LEVEL
MOSI
17
HSR_LO
18
HSR_HI
19
HS_DRV_OK
Diagnostic result register for deployment loops (LPDIAGSTAT)
FETON
7.3.29
SPI interfaces
Not present for low level diagnostic
Updated by SSM_RESET or SPI write to LPDIAGREQ
0 low level mode
1 high level mode
TIP
0
0
0 High level diagnostic test is running
Updated by SSM_RESET or Loops diagnostic state machine
0 High level diagnostic test is not running
1 High level diagnostic test is running
FP
0
0
0 Fault present before requested diagnostic
Updated by SSM_RESET or Loops diagnostic state machine
0 Fault not present before requested diagnostic
1 Fault present before requested diagnostic
FETON
0
0
0 FET activation during diagnostic
Updated by SSM_RESET or Loops diagnostic state machine or when HS or
LS FET is activated during DIAG state
DocID029257 Rev 1
99/277
276
SPI interfaces
L9680
0 FET is off during diagnostic
1 FET is on during diagnostic
HS_DRV_OK
0
0
0 FET Test Status
Updated by SSM_RESET or Loops diagnostic state machine or when driver
full path test is run test is run
0 HS squib driver full path test did not complete successfully
1 HS squib driver full path test complete successfully
HSR_HI
0
0
0 HSR Diagnostic - HIGH Range
Updated by SSM_RESET or Loops diagnostic state machine or when squib
resistance test is run
0 HSR measurement < HSR HIGH value
1 HSR measurement > HSR HIGH value
HSR_LO
0
0
0 HSR Diagnostic - Low Range
Updated by SSM_RESET or Loops diagnostic state machine or when squib
resistance test is run
1 HSR measurement< HSR LOW value
0 HSR measurement > HSR LOW value
RES_MEAS_CHSEL[3:0] 0000 0000 0000 Channel selected for
resistance measurement
HIGH_LEV_DIAG_SELECTED[3:0]
Updated by SSM_RESET or Loops diagnostic state machine or as
determined by squib resistance channel selected
0000 = Ch 0
0000 No diagnostic selected
0001 = Ch 1
0001 VRCM CHECK
0010 = Ch 2
0010 Leakage CHECK
0011 = Ch 3
0011 Short Between Loops CHECK
0100 = Ch 4
0100 Unused
0101 = Ch 5
0101Squib resistance range CHECK
0110 = Ch 6
0110 Squib resistance measurement
0111 = Ch 7
0111 FET test
1000 = Ch 8
1000 - 1111 Unused
1001 = Ch 9
1010 = Ch A
1011 = Ch B
0100 - 1111 None Selected
100/277
DocID029257 Rev 1
L9680
SPI interfaces
SBL
0
0
0 Short between loop state
Updated by SSM_RESET or Loops diagnostic state machine
0 Short between squib loops is not present
1 Short between squib loops is present
STG
0
0
0 Short to Ground Test Status
Updated by SSM_RESET or Loops diagnostic state machine or as
determined by squib leakage diagnostic
0 STG not detected
1 STG detected
STB
0
0
0 Short to Battery Test Status
Updated by SSM_RESET or Loops diagnostic state machine or as
determined by squib leakage diagnostic
0 STB not detected
1 STB detected
SQP
0
0
0 Squib PIN where leakage test has been performed
Updated by SSM_RESET or Loops diagnostic state machine or as
determined by squib leakage diagnostic
0 SRx
1 SFx
LEAK_CHSEL[3:0] 0000 0000 0000 Channel selected for leakage measurement
Updated by SSM_RESET or Loops diagnostic state machine or as
determined by squib leakage diagnostic
0000 = Ch 0
0001 = Ch 1
0010 = Ch 2
0011 = Ch 3
0100 = Ch 4
0101 = Ch 5
0110 = Ch 6
0111 = Ch 7
1000 = Ch 8
1001 = Ch 9
1010 = Ch A
1011 = Ch B
1100 - 1111 None Selected
DocID029257 Rev 1
101/277
276
SPI interfaces
Loops diagnostic configuration command register for low level
diagnostic (LPDIAGREQ)
RW
Read:
3800
Write:
0070
DIAG_LEVEL
SSM
Type:
WSM
38
POR
ID:
0
0
0
5
4
3
2
1
0
LEAK_CHSEL[3:0]
6
LEAK_CHSEL[3:0]
7
RES_MEAS_CHSEL[3:0]RES_MEAS_CHSEL[3:0]
8
VRCM[1:0]
9
VRCM[1:0]
10
ISINK
11
ISINK
0
12
ISRC [1:0]
0
13
ISRC [1:0]
0
-
0
14
PD_CURR
15
PD_CURR
MISO
16
ISRC_CURR_SEL
MOSI
17
ISRC_CURR_SEL
18
DIAG_LEVEL
19
DIAG_LEVEL
7.3.30
L9680
Diagnostic mode selector
Updated by SSM_RESET or SPI write
0 low level mode
1 N/A - see description below
ISRC_CURR_SEL
0
0
0
Selection of ISRC current value
0 40mA
1 8mA
PD_CURR
0
0
0
Pull down current control
Updated by SSM_RESET or SPI write
0 Request OFF only for channels connected to VRCM or ISINK or ISRC,
ON for all other channels
1 Request OFF for all channels
ISRC [1:0]
00
00
00 High side current source for channel selected in RES_MEAS_CHSEL[3:0]
Updated by SSM_RESET or SPI write
00 = OFF
102/277
DocID029257 Rev 1
L9680
SPI interfaces
01 = ON 40 mA/ 8 mA current for channel selected in
RES_MEAS_CHSEL, OFF on all other channels
10 = ON bypass current for channel selected in RES_MEAS_CHSEL,
OFF ON all other channels
11 = ON ISRC 40mA or 8mA current for channel selected in
RES_MEAS_CHSEL and connect the SRM Differential Amplifier to
the other squib channel of the selected channel pair
ISINK
0
0
0
Low Side current sink control (max 50mA)
Updated by SSM_RESET or SPI write
0 All channels OFF
1 ON for channel selected by RES_MEAS_CHSEL[3:0], OFF on all other
channels
VRCM[1:0]
00
00
00 Voltage Regulator Current Monitor control
Updated by SSM_RESET or SPI write
00 VRCM not connected
01 VRCM connected to SFx of channel selected by LEAK_CHSEL[3:0]
10 VRCM connected to SRx of channel selected by LEAK_CHSEL[3:0]
and pull down current of the same channel disabled
11 VRCM connected to SRx of channel selected by LEAK_CHSEL[3:0]
and pull down current of the same channel enabled (ISINK and ISRC
must be switched off)
RES_MEAS_CHSEL[3:0] 0000 0000 0000 Squib Resistance Measurement Channel select - selects the channel and
muxes for the resistance test, and the channel for HS driver test (full path fet
test) activation
Updated by SSM_RESET or SPI write
0000 Channel 0
0001 Channel 1
0010 Channel 2
0011 Channel 3
0100 Channel 4
0101 Channel 5
0110 Channel 6
0111 Channel 7
1000 Channel 8
1001 Channel 9
1010 Channel A
1011 Channel B
0100 - 1111 None Selected
DocID029257 Rev 1
103/277
276
SPI interfaces
L9680
LEAK_CHSEL[3:0] 0000 0000 0000 Squib Leakage Measurement Channel select - selects the channel and
muxes for the leakage test, and the channel for HS/LS FET test activation.
Updated by SSM_RESET or SPI write
0000 Channel 0
0001 Channel 1
0010 Channel 2
0011 Channel 3
0100 Channel 4
0101 Channel 5
0110 Channel 6
0111 Channel 7
1000 Channel 8
1001 Channel 9
1010 Channel A
1011 Channel B
0100 - 1111 None Selected
104/277
DocID029257 Rev 1
L9680
SPI interfaces
-
0
0
0
RW
Read:
3800
Write:
0070
DIAG_LEVEL
12
11
10
9
8
X
X
X
X
X
X
X
0
0
0
0
0
0
0
SSM
Type:
13
WSM
38
14
POR
ID:
0
15
0
0
0
7
6
5
4
3
2
1
0
LOOP_DIAG_CHSEL[3:0] LOOP_DIAG_CHSEL[3:0]
MISO
16
SQP
MOSI
17
SQP
18
HIGH_LEVEL_DIAG_SEL HIGH_LEVEL_DIAG_SEL
19
DIAG_LEVEL
Loops diagnostic configuration command register for high level
diagnostic (LPDIAGREQ)
DIAG_LEVEL
7.3.31
Diagnostic mode selector
0 0 N/A - see description above
1 1 high level mode
HIGH_LEVEL_DIAG_SEL 000 000 000 Selection of high level squib diagnostic
Updated by SSM_RESET or SPI write
000 No diagnostic selected
001 VRCM CHECK
010 Leakage CHECK
011 Short Between Loops CHECK
100 Unused
101 Squib resistance range CHECK
110 Squib resistance measurement
111 FET test
SQP
0
0
0
Squib pin select for all leakage diagnostic
Updated by SSM_RESET or SPI write
DocID029257 Rev 1
105/277
276
SPI interfaces
L9680
0 SRx
1 SFx
LOOP_DIAG_CHSEL[3:0] 0000 0000 0000 Channel select - selects the channel and muxes for all squib diagnostic.
Updated by SSM_RESET or SPI write
0000 Channel 0
0001 Channel 1
0010 Channel 2
0011 Channel 3
0100 Channel 4
0101 Channel 5
0110 Channel 6
0111 Channel 7
1000 Channel 8
1001 Channel 9
1010 Channel A
1011 Channel B
1100 - 1111 None Selected
MISO
16
-
0
0
0
RW
Read:
3900
Write:
0072
PSINHPOL
12
11
10
9
8
X
X
X
X
X
X
X
0
0
0
0
0
0
0
SSM
Type:
13
WSM
39
14
POR
ID:
0
15
0
0
0
7
6
5
4
SWOEN
MOSI
17
X
X
CHID[3:0]
SWOEN
18
DCS_PDCURR DCS_PDCURR
19
PSINHPOL
DC sensor diagnostic configuration command register (SWCTRL)
PSINHPOL
7.3.32
3
2
1
0
0
CHID[3:0]
Selector of in range/ out of range for passenger inhibit function
0 if result is inside thresholds the counter is initialized to start value
1 if result is outside thresholds the counter is initialized to start value
DCS_PDCURR
0
0
0
Disable of all pull down current for DC sensor
Updated by SSM_RESET or SPI write
106/277
DocID029257 Rev 1
0
L9680
SPI interfaces
0 OFF for channel under voltage or current measurement, ON for all other
channels
1 OFF for all channels
SWOEN
0
0
0
Switch Output Enable
Updated by SSM_RESET or SPI write
0 OFF
1 ON
CHID[3:0] 0000 0000 0000 Channel ID - selects DC sensor channel for output activation
Updated by SSM_RESET or SPI write
0000 Channel 0
0001 Channel 1
0010 Channel 2
0011 Channel 3
0100 Channel 4
0101 Channel 5
0110 Channel 6
0111 Channel 7
1000 Channel 8
0100 - 1111 None Selected
DocID029257 Rev 1
107/277
276
SPI interfaces
7.3.33
L9680
ADC request and data registers (DIAGCTRL_x)
ADC A control command (DIAGCTRL_A)
19
18
MISO
17
16
NEWDATA_A
MOSI
0
15
14
13
12
11
10
9
8
7
X
X
X
X
X
X
X
X
X
0
ID:
3A
Type:
RW
Read:
3A00
Write:
0074
6
5
4
3
2
1
0
1
0
1
0
ADCREQ_A[6:0]
ADCREQ_A[6:0]
ADCRES_A[9:0]
ADC B control command (DIAGCTRL_B)
19
18
MISO
16
NEWDATA_B
MOSI
17
0
15
14
13
12
11
10
9
8
7
X
X
X
X
X
X
X
X
X
0
ID:
3B
Type:
RW
Read:
3B00
Write:
0076
6
5
4
3
2
ADCREQ_B[6:0]
ADCREQ_B[6:0]
ADCRES_B[9:0]
ADC C control command (DIAGCTRL_C)
19
18
MISO
17
-
NEWDATA_C
MOSI
0
0
ID:
3C
Type:
RW
Read:
3C00
Write:
0078
108/277
16
15
14
13
12
11
10
9
8
7
X
X
X
X
X
X
X
X
X
ADCREQ_C[6:0]
DocID029257 Rev 1
6
5
4
3
2
ADCREQ_C[6:0]
ADCRES_C[9:0]
L9680
SPI interfaces
ADC D control command (DIAGCTRL_D)
19
18
MISO
17
16
NEWDATA_D
MOSI
0
14
13
12
11
10
9
8
7
X
X
X
X
X
X
X
X
X
0
RW
Read:
3D00
Write:
007A
SSM
Type:
WSM
3D
6
ADCREQ_D[6:0]
POR
ID:
NEWDATA_x
15
0
0
0
5
4
3
2
1
0
ADCREQ_D[6:0]
ADCRES_D[9:0]
New data available from convertion
Updated by SSM_RESET or ADC state machine
0 cleared on read
1 convertion finished
ADCREQ_x[6:0]
$00 $00 $00 ADC Request select command
Updated by SSM_RESET or SPI write to DIAGCTRL_x
Measurement
$00 Unused
$01 Ground Ref
$02 Full scale Ref
$03 DCSx voltage
$04 DCSx current
$05 DCSx resistance
$06 Squib x resistance
$07 Internal BG reference voltage (BGR)
$08 Internal BG monitor voltage (BGM)
$09 Vcore
$0A Temperature
$0B DCS 0 voltage
$0C DCS 1 voltage
$0D DCS 2 voltage
$0E DCS 3 voltage
$0F DCS 4 voltage
$10 DCS 5 voltage
$11 DCS 6 voltage
$12 DCS 7 voltage
$13 DCS 8 voltage
DocID029257 Rev 1
109/277
276
SPI interfaces
L9680
$14 Vb voltage of ER ESR measure (valid only for ADCREQ_x field of
MISO response when ESR measure results are available)
$15 Va voltage of ER ESR measure (valid only for ADCREQ_x field of
MISO response when ESR measure results are available)
$16 Vc voltage of ER ESR measure (valid only for ADCREQ_x field of
MISO response when ESR measure results are available)
$20 VBATMON pin voltage
$21 VIN pin voltage
$22 Internal analog supply voltage (VINT)
$23 Internal digital supply voltage (VDD)
$24 ERBOOST pin voltage
$25 SYNCBOOST pin voltage
$26 VER pin voltage
$27 SATBUCK voltage
$28 VCC voltage
$29 WAKEUP pin voltage
$2A VSF pin voltage
$2B WDTDIS pin voltage
$2C GPOD0 pin voltage
$2D GPOS0 pin voltage
$2E GPOD1 pin voltage
$2F GPOS1 pin voltage
$30 GPOD2 pin voltage
$31 GPOS2 pin voltage
$32 RSU0 pin Voltage
$33 RSU1 pin Voltage
$34 RSU2 pin Voltage
$35 RSU3 pin Voltage
$36 SS0 pin voltage
$37 SS1 pin voltage
$38 SS2 pin voltage
$39 SS3 pin voltage
$3A SS4 pin voltage
$3B SS5 pin voltage
$3C SS6 pin voltage
$3D SS7 pin voltage
$3E SS8 pin voltage
$3F SS9 pin voltage
$40 SSA pin voltage
$41 SSB pin voltage
$46 SF0
$47 SF1
$48 SF2
$49 SF3
$4A SF4
$4B SF5
$4C SF6
$4D SF7
110/277
DocID029257 Rev 1
L9680
SPI interfaces
$4E SF8
$4F SF9
$50 SFA
$51 SFB
ADCRES_x[9:0] $000 $000 $000 10-bit ADC result value corresponding to ADCREQ_x request
Updated by SSM_RESET or ADC state machine
RW
Read:
3F00
Write:
007E
LOW_ERBST_ILIM_ERON
SSM
Type:
WSM
3F
POR
ID:
0
-
-
2
1
0
ERBST_PH_SEL[1:0]
3
ERBST_PH_SEL
4
SYBST_PH_SEL[1:0]
5
SYBST_PH_SEL
6
SATBCK_PH_SEL[1:0]
ERBST_FORCE_F_SLOPE ERBST_FORCE_F_SLOPE
7
SATBCK_PH_SEL
8
VCCBCK_PH_SEL[1:0]
9
VCCBCK_PH_SEL
10
SYBST_FORCE_F_SLOPE SYBST_FORCE_F_SLOPE
VCCBCK_LS_ON_DELAY
11
VCCBCK_LS_ON_DELAY
0
12
SATBCK_LS_ON_DELAY
0
13
SATBCK_LS_ON_DELAY
0
-
0
14
EN_SAT_GNDLOSS_DET
15
EN_SAT_GNDLOSS_DET
MISO
16
EN_VCC_GNDLOSS_DET
MOSI
17
EN_VCC_GNDLOSS_DET
18
LOW_ERBST_ILIM_ERON
19
SATBCK_FORCE_F_SLOPE SATBCK_FORCE_F_SLOPE
Configuration register for switching regulators (SW_REGS_CONF)
LOW_ERBST_ILIM_ERON
7.3.34
ERBoost current limitation behavior selection
Updated by POR or SPI write
0 ERBoost current limitation is NOT reduced if ER Switch is activated
1 ERBoost current limitation is reduced if ER Switch is activated
EN_VCC_GNDLOSS_DET
0
-
-
New VCC ground loss detection enable
Updated by POR or SPI write
0 run time ground loss detection disabled
1 run time ground loss detection enabled
EN_SAT_GNDLOSS_DET
0
-
-
New SAT ground loss detection enable
Updated by POR or SPI write
0 run time ground loss detection disabled
DocID029257 Rev 1
111/277
276
SPI interfaces
L9680
1 run time ground loss detection enabled
SATBCK_LS_ON_DELAY
0
-
-
SATBuck low side activation delay
Updated by POR or SPI write
0 No delay is applied
1 Delay is applied
VCCBCK_LS_ON_DELAY
0
-
-
SVCCBuck low side activation delay
Updated by POR or SPI write
0 No delay is applied
1 Delay is applied
SATBCK_FORCE_F_SLOPE
0
-
-
SatBuck fast slope selection
Updated by POR or SPI write
0 Fast slope activation depends on VIN voltage
1 Fast slope is forced ON
SYBST_FORCE_F_SLOPE
0
-
-
SyncBoost fast slope selection
Updated by POR or SPI write
0 Fast slope activation depends on VIN voltage
1 Fast slope is forced ON
ERBST_FORCE_F_SLOPE
0
-
-
ER Boost fast slope selection
Updated by POR or SPI write
0 Fast slope activation depends on VIN voltage
1 Fast slope is forced ON
VCCBCK_PH_SEL[1:0]
11
-
-
VCCBuck phase shifting selection (if switching frequency is different respect
to another regulator, the phase shift between them is not guaranteed)
Updated by POR or SPI write
00 0 ns switching ON shift respect to t0
01 125 ns switching ON shift respect to t0
10 250 ns switching ON shift respect to t0
11 375 ns switching ON shift respect to t0
SATBCK_PH_SEL[1:0]
10
-
-
SatBuck phase shifting selection (if switching frequency is different respect to
another regulator, the phase shift between them is not guaranteed)
Updated by POR or SPI write
00 0 ns switching ON shift respect to t0
01 125 ns switching ON shift respect to t0
10 250 ns switching ON shift respect to t0
11 375 ns switching ON shift respect to t0
112/277
DocID029257 Rev 1
L9680
SPI interfaces
SYBST_PH_SEL[1:0]
01
-
-
SyncBoost phase shifting selection (if switching frequency is different respect
to another regulator, the phase shift between them is not guaranteed)
Updated by POR or SPI write
00 0 ns switching ON shift respect to t0
01 125 ns switching ON shift respect to t0
10 250 ns switching ON shift respect to t0
11 375 ns switching ON shift respect to t0
ERBST_PH_SEL[1:0]
00
-
-
ER Boost phase shifting selection (if switching frequency is different respect
to another regulator, the phase shift between them is not guaranteed)
Updated by POR or SPI write
00 0 ns switching ON shift respect to t0
01 125 ns switching ON shift respect to t0
10 250 ns switching ON shift respect to t0
11 375 ns switching ON shift respect to t0
18
MOSI
MISO
17
16
-
0
0
0
RW
Read:
4200
Write:
0084
GPOxLS
12
11
10
9
8
7
6
5
4
3
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
SSM
Type:
13
WSM
42
14
POR
ID:
0
15
0
0
0
2
1
0
GPO0LSGPO0LS
19
GPO1LSGPO1LS
Global configuration register for GPO driver function (GPOCR)
GPO2LSGPO2LS
7.3.35
GPO driver configuration bit
Updated by SSM_RESET or SPI write
0 High-side Driver configuration for GPOx (ER_BOOST_OK is required to
enable GPO as HS)
1 Low-side Driver configuration for GPOx (ER_BOOST_OK is not required
to enable GPO as LS)
DocID029257 Rev 1
113/277
276
SPI interfaces
7.3.36
L9680
GPOx control register (GPOCTRLx)
Channel 0 (GPOCTRL0)
Channel 1 (GPOCTRL1)
Channel 2 (GPOCTRL2)
19
18
MOSI
MISO
17
16
0
0
0
0
15
14
13
12
11
10
9
8
7
6
X
X
X
X
X
X
X
X
X
X
GPOxPWM[5:0]
0
0
0
0
0
0
0
0
0
0
GPOxPWM[5:0]
ID:
43 (GPOCTRL0)
44 (GPOCTRL1)
45 (GPOCTRL2)
Type:
RW
Read:
4300 (GPOCTRL0)
4400 (GPOCTRL1)
4500 (GPOCTRL2)
Write:
0086 (GPOCTRL0)
0088 (GPOCTRL1)
008A (GPOCTRL2)
POR
GPOxPWM
WSM
5
3
2
SSM
000000 000000 000000 6 bit value for PWM% with scaling of 1.6% per count
Updated by SSM_RESET or SPI write
114/277
4
DocID029257 Rev 1
1
0
L9680
SPI interfaces
R
Read:
4600
Write:
-
GPO2DISABLE
12
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
GPO2OFFOPN
GPO2SHORT
GPO1TEMP
GPO1LIM
GPO1ONOPN
GPO1OFFOPN
GPO1SHORT
GPO0TEMP
GPO0LIM
GPO0ONOPN
GPO0OFFOPN
GPO0SHORT
SSM
Type:
13
WSM
46
14
POR
ID:
0
15
1
1
1
GPO2LIM
GPO1DISABLE
MISO
16
GPO2DISABLE
MOSI
17
GPO2TEMP
18
GPOS_NOT_CONF
19
GPO2ONOPN
GPO fault status register (GPOFLTSR)
GPO0DISABLE
7.3.37
GPO 2 disable state
0 GPO enable to work
1 GPO disabled due to thermal fault or configuration not received or
ERBOOST not OK (only HS mode)
GPO1DISABLE
1
1
1
GPO 1 disable state
0 GPO enable to work
1 GPO disabled due to thermal fault or configuration not received or
ERBOOST not OK (only HS mode)
GPO0DISABLE
1
1
1
GPO 0 disable state
0 GPO enable to work
1 GPO disabled due to thermal fault or configuration not received or
ERBOOST not OK (only HS mode)
GPOS_NOT_CONF
1
1
1
GPOs configuration status
0 GPOs configured (activation is permitted)
1 GPOs not yet configured (activation is denied)
GPO2TEMP
0
0
0
GPO 2Thermal Fault
Cleared as reported in GPO-Over Temp diagram, set by detection circuit
0 Fault not detected
1 Fault detected
DocID029257 Rev 1
115/277
276
SPI interfaces
GPO2LIM
L9680
0
0
0
GPO 2 Current Limit Flag
Cleared by SSM_RESET or SPI read, set by detection circuit while ON
0 Fault not detected
1 Fault detected
GPO2ONOPN
0
0
0
GPO 2 Open Detection
Cleared by SSM_RESET or SPI read, set by detection circuit while ON
0 Fault not detected
1 Fault detected
GPO2OFFOPN
0
0
0
GPO 2 Open detection in OFF condition
Cleared by SSM_RESET or SPI read, set by detection circuit while OFF
0 Fault not detected
1 Fault detected
GPO2SHORT
0
0
0
GPO 2 Short Detection in OFF condition (short to battery in HS mode, short
to ground in LS mode)
Cleared by SSM_RESET or SPI read, set by detection circuit while OFF
0 Fault not detected
1 Fault detected
GPO1TEMP
0
0
0
GPO 1 Thermal Fault
Cleared as reported in GPO-Over Temp diagram, set by detection circuit
0 Fault not detected
1 Fault detected
GPO1LIM
0
0
0
GPO 1 Current Limit Flag
Cleared by SSM_RESET or SPI read, set by detection circuit while ON
0 Fault not detected
1 Fault detected
GPO1ONOPN
0
0
0
GPO 1 Open Detection
Cleared by SSM_RESET or SPI read, set by detection circuit while ON
0 Fault not detected
1 Fault detected
GPO1OFFOPN
0
0
0
GPO 1 Open detection in OFF condition
Cleared by SSM_RESET or SPI read, set by detection circuit while OFF
0 Fault not detected
1 Fault detected
116/277
DocID029257 Rev 1
L9680
SPI interfaces
GPO1SHORT
0
0
0
GPO 1 Short Detection in OFF condition (short to battery in HS mode, short
to ground in LS mode)
Cleared by SSM_RESET or SPI read, set by detection circuit while OFF
0 Fault not detected
1 Fault detected
GPO0TEMP
0
0
0
GPO 0 Thermal Fault
Cleared as reported in GPO-Over Temp diagram, set by detection circuit
0 Fault not detected
1 Fault detected
GPO0LIM
0
0
0
GPO 0 Current Limit Flag
Cleared by SSM_RESET or SPI read, set by detection circuit while ON
0 Fault not detected
1 Fault detected
GPO0ONOPN
0
0
0
GPO 0 Open Detection
OK Cleared by SSM_RESET or SPI read, set by detection circuit while ON
0 Fault not detected
1 Fault detected
GPO0OFFOPN
0
0
0
GPO 0 Open detection in OFF condition
Cleared by SSM_RESET or SPI read, set by detection circuit while OFF
0 Fault not detected
1 Fault detected
GPO0SHORT
0
0
0
GPO 0 Short Detection in OFF condition (short to battery in HS mode, short
to ground in LS mode)
Cleared by SSM_RESET or SPI read, set by detection circuit while OFF
0 Fault not detected
1 Fault detected
DocID029257 Rev 1
117/277
276
SPI interfaces
Wheel speed sensor test request register (WSS_TEST)
19
18
MOSI
MISO
17
16
0
0
0
0
ID:
48
Type:
RW
Read:
4800
Write:
0090
POR
WSSSEL [6:0]
15
14
13
12
11
10
9
X
X
X
X
X
X
X
WSSSEL [6:0]
X
0
0
0
0
0
0
0
WSSSEL [6:0]
X
WSM
8
7
6
5
4
1
0
000000 000000 000000 Wheel Speed Sensor Selection - code below uniquely selects one
of the four WSx outputs to place a static output level on
0
0
0
WSx Output Test Value
1 Output for selected WSx set 'high'
0 Output for selected WSx set 'low'
118/277
2
SSM
1010011 WSS Test Mode for WS3 Output
1010101 WSS Test Mode for WS2 Output
1011001 WSS Test Mode for WS1 Output
1010110 WSS Test Mode for WS0 Output
all other WSS Test Mode disabled
WSSTP
3
WSSTPWSSTP
7.3.38
L9680
DocID029257 Rev 1
L9680
7.3.39
SPI interfaces
PSI5/WSS configuration register for channel x (RSCRx)
RW
Read:
4A00 (RSCR0)
4B00 (RSCR1)
4C00 (RSCR2)
4D00 (RSCR3)
Write:
0094 (RSCR0)
0096 (RSCR1)
0098 (RSCR2)
009B (RSCR3)
2
1
WSFILT[3:0]
STS[3:0]
3
WSFILT[3:0]
STS[3:0]
4
AVG/SSDIS
5
AVG/SSDIS
6
RSPTEN
7
RSPTEN
8
BLKTxSEL
9
SSM
Type:
10
WSM
4A (RSCR0)
4B (RSCR1)
4C (RSCR2)
4D (RSCR3)
POR
ID:
11
BLKTxSEL
0
12
TSxDIS
0
13
TSxDIS
0
14
FIX_THRESH
-
0
15
FIX_THRESH
MISO
16
PERIOD_MEAS_DISABLEPERIOD_MEAS_DISABLE
MOSI
17
REDUCED_RANGE
18
REDUCED_RANGE
19
BLOCK_CURR_IN_MSG BLOCK_CURR_IN_MSG
PSI5/WSS configuration register for channel 0 (RSCR0)
PSI5/WSS configuration register for channel 1 (RSCR1
PSI5/WSS configuration register for channel 2 (RSCR2)
PSI5/WSS configuration register for channel 3 (RSCR3
0
0 Tracking speed of base and delta current
0
PSI5 configured channel
REDUCED_RANGE
0
0 Fast tracking of Ibase if rx_sat_pre_filt is low; Slow tracking otherwise.
Fast tracking of Idelta if rx_sat_pre_filt is high; Blocked otherwise.
1 Fast tracking of Ibase if current is less than (Ibase+(Idelta/4));
Slow tracking otherwise.
Fast tracking of Idelta if current is higher than (top current -(Idelta/4));
Slow otherwise.
DocID029257 Rev 1
119/277
276
SPI interfaces
BLOCK_CURR_IN_MSG
L9680
0
0
0 Tracking enable of base and delta current during message transmission
0 Ibase tracking is enabled during blanking and after start bits recognition.
Idelta tracking is disabled during blanking and enabled after start bits
recognition.
1 Ibase tracking is enabled during blanking and disabled after start bits
recognition.
Idelta tracking is disabled during blanking and enabled after start bits
recognition
PERIOD_MEAS_DISABLE
0
0
0
Disabling of start bits period measure to decode following bits
0 Period is measured
1 Period is not measured (default is used)
FIX_THRESH
0
0
0
PSI5 selection of fixed or auto adaptive thresholds
0 auto adaptive threshold
1 fixed threshold (threshold is latched when this bit is set to high, we
recommend to set this bit before enabling of the interface)
TSxDIS
0
0
0 Time Slot Control Disable
0 Slot control enabled
1 Slot control disabled
BLKTxSEL
0
0
0
Blanking Time Selection
0 Blanking time = 5ms
1 Blanking time = 10ms
WSFILT[3:0] 0010 0010 0010 Wheel speed filter time selection
RSPTEN
0
0
0
189k:
125k:
(16+x)*Tosc
(24+x)*Tosc
Tosc=1/16MHz
Pass Through mode Enable
0 Off
1 On
AVG/SSDIS
0
0
0
Current average enable during message transmission
0 Off (base and delta work as configured with bits 12, 14, 15)
1 On: base is freezed during data message and during blanking time and delta
is averaged during message (fcut of the filter=2500 Hz) while is freezed
during blanking time.
120/277
DocID029257 Rev 1
L9680
SPI interfaces
STSx[3:0] 0000 0000 0000 Sensor Type Selection
0000 Synchronous PSI5, parity, 8-bit, 125k (P8P-500/3L)
0001 Synchronous PSI5, parity, 8-bit, 189k (P8P-500/3H)
0010 Synchronous PSI5, parity, 10-bit, 125k (P10P-500/3L)
0011 Synchronous PSI5, parity, 10-bit, 189k (P10P-500/3H)
0100 unused (default automatically selected)
0101 unused (default automatically selected)
0110 unused (default automatically selected)
0111 unused (default automatically selected)
1000 NA
1001 NA
1010 NA
1011 NA
1100 unused (default automatically selected)
1101 unused (default automatically selected)
1110 unused (default automatically selected)
1111 unused (default automatically selected)
Wheel speed configured channel
REDUCED_RANGE
0
0
0 Tracking speed of base and delta current
X NA
BLOCK_CURR_IN_MSG
0
0
0 Tracking enable of base and delta current during message transmission
X NA
PERIOD_MEAS_DISABLE
0
0
0
Disabling of start bits period measure to decode following bits
X NA
FIX_THRESH
0
0
0
PSI5 selection of fixed or auto adaptive thresholds
0 auto adaptive threshold
1 fixed thresholds (configured through SPI registers)
TSxDIS
0
0
0 Time Slot Control Disable
X NA
BLKTxSEL
0
0
0
Blanking Time Selection
X NA
WSFILT[3:0] 0010 0010 0010 Wheel speed filter time selection (500ns per bit)
0000 8 us
- - - - 500ns/bit
1111 15.5μs:
DocID029257 Rev 1
121/277
276
SPI interfaces
RSPTEN
L9680
0
0
0
Pass Through mode Enable (only for PWM 2-edges sensors)
0 Off
1 On
AVG/SSDIS
0
0
0
WSx output pulses disabled in case of Standstill condition
(valid only for PWM Encoded 2 edges sensors)
0 WSx enabled during Standstill
1 WSx disabled during Standstill
STSx[3:0] 0000 0000 0000 Sensor Type Selection
0000 NA
0001 NA
0010 NA
0011 NA
0100 unused (default automatically selected)
0101 unused (default automatically selected)
0110 unused (default automatically selected)
0111 unused (default automatically selected)
1000 Two-Level, Standard
1001 Three-Level, VDA
1010 PWM Encoded, 2-Level, 2 edges/tooth
1011 PWM Encoded, 2-Level, 1 edge/tooth
1100 unused (default automatically selected)
1101 unused (default automatically selected)
1110 unused (default automatically selected)
1111 unused (default automatically selected)
122/277
DocID029257 Rev 1
L9680
0
0
R/W
Read:
4E00
Write:
009C
CHxEN
10
9
8
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
SSM
Type:
11
WSM
4E
12
POR
ID:
0
13
0
0
0
7
6
5
4
3
2
1
0
SYNC0ESYNC0E
0
14
CH0EN CH0EN
-
15
SYNC1ESYNC1E
MISO
16
CH1EN CH1EN
MOSI
17
SYNC2ESYNC2E
18
CH2EN CH2EN
19
SYNC3ESYNC3E
Remote sensor control register (RSCTRL)
CH3EN CH3EN
7.3.40
SPI interfaces
Channel x Output enable
Updated by SSM_RESET or SPI write
0 Off
1 On
SYNCxEN
0
0
0
Channel x Sync Pulse Enable
0 Off
1 On
DocID029257 Rev 1
123/277
276
SPI interfaces
WSS Threshold configuration register 1 (RS_AUX_CONF1)
18
0
0
0
0
-
64
Type:
R/W
Read:
6400
Write:
00C8
POR
ID:
WSS_LOW_THRESH [7:0]
7.3.42
13
12
11
10
9
8
7
6
5
4
3
2
X
X
X
X
X
X
X
X
WSS_LOW_THRESH [7:0]
0
0
0
0
0
0
0
0
WSS_LOW_THRESH [7:0]
1
0
$33 $33 $33 Low threshold setting in case of fixed threshold is selected (93,75 μA +/-9%
each LSB). Low threshold = ($36+WSS_LOW_THRESH)*93,75 μA)
18
MOSI
17
16
0
0
0
65
Type:
R/W
Read:
6500
Write:
00CB
POR
ID:
WSS_LOW_THRESH [7:0]
124/277
14
WSS Threshold configuration register 2 (RS_AUX_CONF2)
19
MISO
15
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
X
X
X
X
X
X
X
X
WSS_LOW_THRESH [7:0]
0
0
0
0
0
0
0
0
WSS_LOW_THRESH [7:0]
1
0
SSM
MISO
16
WSM
MOSI
17
SSM
19
WSM
7.3.41
L9680
$34 $34 $34 Delta threshold setting in case of fixed threshold is selected (93,75 μA +/-9%
each LSB).
High threshold =
($6C+WSS_LOW_THRESH+WSS_OFFSET_THRESH)*93,75 μA)
DocID029257 Rev 1
L9680
Safing algorithm configuration register (SAF_ALGO_CONF)
-
0
0
0
R/W
Read:
6600
Write:
00CC
NO_DATA
SSM
Type:
WSM
66
14
POR
ID:
0
15
0
0
0
X
0
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ADD_VAL ADD_VAL
MISO
16
SUB_VAL SUB_VAL
MOSI
17
ARMP_TH ARMP_TH
18
ARMN_THARMN_TH
19
NO_DATA NO_DATA
7.3.43
SPI interfaces
Event counter no data select
Updated by SSM_RESET or SPI write while in DIAG state
0 Event counter reset to 0 if CC=0 or (ABS value of response > limit
determined by LIM_SELx) and LIM_ENx=1 when SPI read of SAF_CC bit
is performed (end of sample cycle)
1 Event counter decremented by SUB_VAL if CC=0 or (ABS value of
response > limit determined by LIM_SELx) and LIM_ENx=1 when
SPI read of SAF_CC bit is performed (end of sample cycle)
ARMN_TH 0011 0011 0011 Negative event counter threshold to assert arming
Updated by SSM_RESET or SPI write while in DIAG state
0000 Negative event counter disabled
ARMP_TH 0011 0011 0011 Positive event counter threshold to assert arming
Updated by SSM_RESET or SPI write while in DIAG state
0000 Positive event counter disabled
SUB_VAL
011 011 011 Decremental step size of the event counter
Updated by SSM_RESET or SPI write while in DIAG state
ADD_VAL
001 001 001 Incremental step size of the event counter
Updated by SSM_RESET or SPI write while in DIAG state
DocID029257 Rev 1
125/277
276
SPI interfaces
0
0
R
Read:
6A00
Write:
-
ARMINT_x
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
SSM
Type:
11
WSM
6A
12
POR
ID:
0
13
ARMINT_1
0
14
ARMINT2
-
15
ARMINT_3
MISO
16
ARMINT_4
MOSI
17
ACL_VALID
18
ACL_PIN_STATE
19
PSINH_EXP_TIME
Arming signals register (ARM_STATE)
PSINHINT
7.3.44
L9680
-
-
-
State of armint signals
Updated per Safing Engine output logic diagram in case of internal safing
engine otherwise is the echo of ARMx pins
ACL_VALID
0
0
0
Valid ACL detection
0 Cleared when ACL_BAD=2
1 Set when ACL_GOOD=3
ACL_PIN_STATE
-
-
-
Echo of ACL pin
PSINH_EXP_TIME
0
0
0
State of PSINH expiration timer
0 If timer is 0
1 If timer is counting
PSINHINT
-
-
-
State of PSINHINT signal
Updated per PSINH output logic diagram in case of internal engine otherwise
is the echo of PSINH pin inverted
126/277
DocID029257 Rev 1
L9680
7.3.45
SPI interfaces
ARMx assignment registers to specific Loops (LOOP_MATRIX_ARMx)
X
0
0
0
0
8
7
6
5
4
3
2
1
0
ARMx_L0 ARMx_L0
X
9
ARMx_L1 ARMx_L1
X
10
ARMx_L2 ARMx_L2
0
X
11
ARMx_L3 ARMx_L3
0
12
ARMx_L4 ARMx_L4
0
13
ARMx_L5 ARMx_L5
0
14
ARMx_L6 ARMx_L6
-
15
ARMx_L7 ARMx_L7
MISO
16
ARMx_L8 ARMx_L8
MOSI
17
ARMx_L9 ARMx_L9
18
ARMx_LA ARMx_LA
19
ARMx_LB ARMx_LB
Assignment of ARM1 to specific loops (LOOP_MATRIX_ARM1)
Assignment of ARM2 to specific loops (LOOP_MATRIX_ARM2)
Assignment of ARM3 to specific loops (LOOP_MATRIX_ARM3)
Assignment of ARM4 to specific loops (LOOP_MATRIX_ARM4)
RW
Read:
6E00 (LOOP_MATRIX_ARM1)
6F00 (LOOP_MATRIX_ARM2)
7000 (LOOP_MATRIX_ARM3)
7100 (LOOP_MATRIX_ARM4)
Write:
00DC (LOOP_MATRIX_ARM1)
00DE (LOOP_MATRIX_ARM2)
00E0 (LOOP_MATRIX_ARM3)
00E2 (LOOP_MATRIX_ARM4)
ARMx_Ly
SSM
Type:
WSM
6E (LOOP_MATRIX_ARM1)
6F (LOOP_MATRIX_ARM2)
70 (LOOP_MATRIX_ARM3)
71 (LOOP_MATRIX_ARM4)
POR
ID:
0
0
0
Configures ARMx for Loop_y
Updated by SSM_RESET or SPI write while in DIAG state
0 ARMx signal is not associated with Loopy
1 ARMx signal is associated with Loopy
DocID029257 Rev 1
127/277
276
SPI interfaces
7.3.46
L9680
ARMx enable pulse stretch timer status (AEPSTS_ARMx)
ARM1 enable pulse stretch timer status (AEPSTS_ARM1)
ARM2 enable pulse stretch timer status (AEPSTS_ARM2)
ARM3 enable pulse stretch timer status (AEPSTS_ARM3)
ARM4 enable pulse stretch timer status (AEPSTS_ARM4)
19
18
MOSI
MISO
17
16
0
0
0
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
R
Read:
7300 (AEPSTS_ARM1)
7400 (AEPSTS_ARM2)
7500 (AEPSTS_ARM3)
7600 (AEPSTS_ARM4)
Write:
SSM
Type:
WSM
73 (AEPSTS_ARM1)
74 (AEPSTS_ARM2)
75 (AEPSTS_ARM3)
76 (AEPSTS_ARM4)
POR
ID:
Timer Count[9:0]
Timer Count $000 $000 $000 10-bit ARMing Enable Pulse Stretcher timer value
Cleared by SSM_RESET
Loaded with initial value based on ARMx bit and DWELL[1:0] of
SAF_CONTROL_y while safing is met for record y provided current value is <
DWELL[1:0] value
Decremented every 2ms while > 0
Contains remaining pulse stretcher timer value
128/277
DocID029257 Rev 1
L9680
Passenger inhibit upper threshold for DC sensor 0 (PADTHRESH_HI)
18
0
0
MOSI
MISO
17
16
0
0
-
78
Type:
RW
Read:
7800
Write:
00F0
POR
ID:
15
14
13
12
11
10
9
8
7
6
5
4
3
X
X
X
X
X
X
PADTHRESH_HI
0
0
0
0
0
0
PADTHRESH_HI
2
1
0
SSM
19
WSM
7.3.47
SPI interfaces
PADTHRESH_HI $000 $000 $000 Upper threshold - measurements above this upper value will assert the
PSINH signal and deactivate loops identified in the PSINH mask
Passenger inhibit lower threshold for DC sensor 0 (PADTHRESH_LO)
18
MISO
17
16
0
0
0
79
Type:
RW
Read:
7900
Write:
00F2
POR
ID:
0
15
14
13
12
11
10
X
X
X
X
X
X
9
8
7
6
PADTHRESH_LO
5
4
3
0
0
0
0
0
0
PADTHRESH_LO
2
1
0
SSM
19
MOSI
WSM
7.3.48
PADTHRESH_LO $3FF $3FF $3FF Lower threshold - measurements below this lower value will assert the PSINH
signal and deactivate loops identified in the PSINH mask
DocID029257 Rev 1
129/277
276
SPI interfaces
PSINH_L7 PSINH_L7
PSINH_L6 PSINH_L6
PSINH_L5 PSINH_L5
PSINH_L0 PSINH_L0
0
12
11
10
9
8
7
6
5
4
3
2
1
0
EN_SAF1 EN_SAF1
1
PSINH_L1 PSINH_L1
2
EN_SAF2 EN_SAF2
0
3
PSINH_L2 PSINH_L2
0
4
EN_SAF3 EN_SAF3
0
5
PSINH_L3 PSINH_L3
PSINH_Ly
6
EN_SAF4 EN_SAF4
00F4
0
7
PSINH_L4 PSINH_L4
Write:
0
8
EN_SAF5 EN_SAF5
7A00
0
9
EN_SAF6 EN_SAF6
Read:
0
10
EN_SAF7 EN_SAF7
RW
X
SSM
Type:
X
WSM
7A
X
POR
ID:
0
X
11
EN_SAF8 EN_SAF8
0
12
PSINH_L8 PSINH_L8
0
13
EN_SAF9 EN_SAF9
0
14
PSINH_L9 PSINH_L9
-
15
EN_SAF10EN_SAF10
MISO
16
EN_SAF11 EN_SAF11
MOSI
17
PSINH_LBPSINH_LB
18
EN_SAF12EN_SAF12
19
PSINH_LAPSINH_LA
Assignment of PSINH signal to specific Loop(s)
(LOOP_MATRIX_PSINH)
EN_SAF13EN_SAF13
7.3.49
L9680
Configures PSINH for Loop_y
0 PSINH signal is not associated with Loopy
1 PSINH signal is associated with Loopy
Safing records enable register (SAF_ENABLE)
MOSI
MISO
17
16
0
0
-
0
0
RW
Read:
7F00
Write:
00FE
EN_SAFx
SSM
Type:
WSM
7F
14
POR
ID:
15
0
0
0
13
EN_SAF14EN_SAF14
18
EN_SAF15EN_SAF15
19
EN_SAF16EN_SAF16
7.3.50
Safing Record enable
Updated by SSM_RESET or SPI write
0 Disable
1 Enable
130/277
DocID029257 Rev 1
L9680
7.3.51
SPI interfaces
Safing records request mask registers (SAF_REQ_MASK_x)
Safing record request mask for record 1 (SAF_REQ_MASK_1)
Safing record request mask for record 2 (SAF_REQ_MASK_2)
Safing record request mask for record 3 (SAF_REQ_MASK_3)
Safing record request mask for record 4 (SAF_REQ_MASK_4)
Safing record request mask for record 5 (SAF_REQ_MASK_5)
Safing record request mask for record 6 (SAF_REQ_MASK_6)
Safing record request mask for record 7 (SAF_REQ_MASK_7)
Safing record request mask for record 8 (SAF_REQ_MASK_8)
Safing record request mask for record 9 (SAF_REQ_MASK_9)
Safing record request mask for record 10 (SAF_REQ_MASK_10)
Safing record request mask for record 11 (SAF_REQ_MASK_11)
Safing record request mask for record 12 (SAF_REQ_MASK_12)
Safing record request mask for record 13 (SAF_REQ_MASK_13)
Safing record request mask for record 14_pt1 (SAF_REQ_MASK_14)_pt1
Safing record request mask for record 14_pt2 (SAF_REQ_MASK_14)_pt2
Safing record request mask for record 15_pt1 (SAF_REQ_MASK_15)_pt1
Safing record request mask for record 15_pt2 (SAF_REQ_MASK_15)_pt2
Safing record request mask for record 16_pt1 (SAF_REQ_MASK_16)_pt1
Safing record request mask for record 16_pt2 (SAF_REQ_MASK_16)_pt2
19
18
MOSI
MISO
17
16
15
14
13
12
11
0
0
10
9
8
7
6
5
4
3
2
1
0
SAF_REQ_MASKx[15:0]
0
0
SAF_REQ_MASKx[15:0]
ID:
80 (SAF_REQ_MASK_1)
81 (SAF_REQ_MASK_2)
82 (SAF_REQ_MASK_3)
83 (SAF_REQ_MASK_4)
84 (SAF_REQ_MASK_5)
85 (SAF_REQ_MASK_6)
86 (SAF_REQ_MASK_7)
87 (SAF_REQ_MASK_8)
88 (SAF_REQ_MASK_9)
89 (SAF_REQ_MASK_10)
8A (SAF_REQ_MASK_11)
8B (SAF_REQ_MASK_12)
8C (SAF_REQ_MASK_13)
8D (SAF_REQ_MASK_14_pt1
8E (SAF_REQ_MASK_14_pt2)
8F (SAF_REQ_MASK_15_pt1)
90 (SAF_REQ_MASK_15_pt2)
91 (SAF_REQ_MASK_16_pt1)
92 (SAF_REQ_MASK_16_pt2)
Type:
RW
Read:
8000 (SAF_REQ_MASK_1)
8100 (SAF_REQ_MASK_2)
DocID029257 Rev 1
131/277
276
SPI interfaces
L9680
8200 (SAF_REQ_MASK_3)
8300 (SAF_REQ_MASK_4)
8400 (SAF_REQ_MASK_5)
8500 (SAF_REQ_MASK_6)
8600 (SAF_REQ_MASK_7)
8700 (SAF_REQ_MASK_8)
8800 (SAF_REQ_MASK_9)
8900 (SAF_REQ_MASK_10)
8A00 (SAF_REQ_MASK_11)
8B00 (SAF_REQ_MASK_12)
8C00 (SAF_REQ_MASK_13)
8D00 (SAF_REQ_MASK_14_pt1
8E00 (SAF_REQ_MASK_14_pt2)
8F00 (SAF_REQ_MASK_15_pt1)
9000 (SAF_REQ_MASK_15_pt2)
9100 (SAF_REQ_MASK_16_pt1)
9200 (SAF_REQ_MASK_16_pt2)
SSM
WSM
8000 (SAF_REQ_MASK_1)
8002 (SAF_REQ_MASK_2)
8004 (SAF_REQ_MASK_3)
8006 (SAF_REQ_MASK_4)
8008 (SAF_REQ_MASK_5)
800A (SAF_REQ_MASK_6)
800C (SAF_REQ_MASK_7)
800E (SAF_REQ_MASK_8)
8010 (SAF_REQ_MASK_9)
8012 (SAF_REQ_MASK_10)
8014 (SAF_REQ_MASK_11)
8016 (SAF_REQ_MASK_12)
8018 (SAF_REQ_MASK_13)
801A (SAF_REQ_MASK_14_pt1
801C (SAF_REQ_MASK_14_pt2)
801E (SAF_REQ_MASK_15_pt1)
8020 (SAF_REQ_MASK_15_pt2)
8022 (SAF_REQ_MASK_16_pt1)
8424 (SAF_REQ_MASK_16_pt2)
POR
Write:
SAF_REQ_MASKx[15:0] $0000 $0000 $0000 Safing Request Mask for safing record x - 16-bit request mask that is bitwise ANDed with MOSI data from SPI monitor
Updated by SSM_RESET or SPI write while in DIAG state
132/277
DocID029257 Rev 1
L9680
7.3.52
SPI interfaces
Safing records request target registers (SAF_REQ_TARGET_x)
Safing record request mask for record 1 (SAF_REQ_TARGET_1)
Safing record request mask for record 2 (SAF_REQ_TARGET_2)
Safing record request mask for record 3 (SAF_REQ_TARGET_3)
Safing record request mask for record 4 (SAF_REQ_TARGET_4)
Safing record request mask for record 5 (SAF_REQ_TARGET_5)
Safing record request mask for record 6 (SAF_REQ_TARGET_6)
Safing record request mask for record 7 (SAF_REQ_TARGET_7)
Safing record request mask for record 8 (SAF_REQ_TARGET_8)
Safing record request mask for record 9 (SAF_REQ_TARGET_9)
Safing record request mask for record 10 (SAF_REQ_TARGET_10)
Safing record request mask for record 11 (SAF_REQ_TARGET_11)
Safing record request mask for record 12 (SAF_REQ_TARGET_12)
Safing record request mask for record 13 (SAF_REQ_TARGET_13)
Safing record request mask for record 14_pt1 (SAF_REQ_TARGET_14)_pt1
Safing record request mask for record 14_pt2 (SAF_REQ_TARGET_14)_pt2
Safing record request mask for record 15_pt1 (SAF_REQ_TARGET_15)_pt1
Safing record request mask for record 15_pt2 (SAF_REQ_TARGET_15)_pt2
Safing record request mask for record 16_pt1 (SAF_REQ_TARGET_16)_pt1
Safing record request mask for record 16_pt2 (SAF_REQ_TARGET_16)_pt2
19
18
MOSI
MISO
17
16
15
14
13
12
11
0
0
10
9
8
7
6
5
4
3
2
1
0
SAF_REQ_TARGET[15:0]
0
0
SAF_REQ_TARGET[15:0]
ID:
93 (SAF_REQ_TARGET_1)
94 (SAF_REQ_TARGET_2)
95 (SAF_REQ_TARGET_3)
96 (SAF_REQ_TARGET_4)
97 (SAF_REQ_TARGET_5)
98 (SAF_REQ_TARGET_6)
99 (SAF_REQ_TARGET_7)
9A (SAF_REQ_TARGET_8)
9B (SAF_REQ_TARGET_9)
9C (SAF_REQ_TARGET_10)
9D (SAF_REQ_TARGET_11)
9E (SAF_REQ_TARGET_12)
9F (SAF_REQ_TARGET_13)
A0 (SAF_REQ_TARGET_14_pt1
A1 (SAF_REQ_TARGET_14_pt2)
A2 (SAF_REQ_TARGET_15_pt1)
A3 (SAF_REQ_TARGET_15_pt2)
A4 (SAF_REQ_TARGET_16_pt1)
A5 (SAF_REQ_TARGET_16_pt2)
Type:
RW
Read:
9300 (SAF_REQ_TARGET_1)
9400 (SAF_REQ_TARGET_2)
DocID029257 Rev 1
133/277
276
SPI interfaces
L9680
9500 (SAF_REQ_TARGET_3)
9600 (SAF_REQ_TARGET_4)
9700 (SAF_REQ_TARGET_5)
9800 (SAF_REQ_TARGET_6)
9900 (SAF_REQ_TARGET_7)
9A00 (SAF_REQ_TARGET_8)
9B00 (SAF_REQ_TARGET_9)
9C00 (SAF_REQ_TARGET_10)
9D00 (SAF_REQ_TARGET_11)
9E00 (SAF_REQ_TARGET_12)
9F00 (SAF_REQ_TARGET_13)
A000 (SAF_REQ_TARGET_14_pt1
A100 (SAF_REQ_TARGET_14_pt2)
A200 (SAF_REQ_TARGET_15_pt1)
A300 (SAF_REQ_TARGET_15_pt2)
A400 (SAF_REQ_TARGET_16_pt1)
A500 (SAF_REQ_TARGET_16_pt2)
SSM
WSM
8026 (SAF_REQ_TARGET_1)
8028 (SAF_REQ_TARGET_2)
802A (SAF_REQ_TARGET_3)
802C (SAF_REQ_TARGET_4)
802E (SAF_REQ_TARGET_5)
8030 (SAF_REQ_TARGET_6)
8032 (SAF_REQ_TARGET_7)
8034 (SAF_REQ_TARGET_8)
8036 (SAF_REQ_TARGET_9)
8038 (SAF_REQ_TARGET_10)
803A (SAF_REQ_TARGET_11)
803C (SAF_REQ_TARGET_12)
803E (SAF_REQ_TARGET_13)
8040 (SAF_REQ_TARGET_14_pt1
8042 (SAF_REQ_TARGET_14_pt2)
8044 (SAF_REQ_TARGET_15_pt1)
8246 (SAF_REQ_TARGET_15_pt2)
8048 (SAF_REQ_TARGET_16_pt1)
804A (SAF_REQ_TARGET_16_pt2)
POR
Write:
SAF_REQ_TARGET[15:0 $0000 $0000 $0000 Safing Request target for safing record x - 16-bit request target that is
compared to the bit-wise AND result of the SAF_REQ_MASKx and MOSI
data from SPI monitor
Updated by SSM_RESET or SPI write while in DIAG state
134/277
DocID029257 Rev 1
L9680
7.3.53
SPI interfaces
Safing records response mask registers (SAF_RESP_MASK_x)
Safing record response mask for record 1 (SAF_RESP_MASK_1)
Safing record response mask for record 2 (SAF_RESP_MASK_2)
Safing record response mask for record 3 (SAF_RESP_MASK_3)
Safing record response mask for record 4 (SAF_RESP_MASK_4)
Safing record response mask for record 5 (SAF_RESP_MASK_5)
Safing record response mask for record 6 (SAF_RESP_MASK_6
Safing record response mask for record 7 (SAF_RESP_MASK_7))
Safing record response mask for record 8 (SAF_RESP_MASK_8)
Safing record response mask for record 9 (SAF_RESP_MASK_9)
Safing record response mask for record 10 (SAF_RESP_MASK_10)
Safing record response mask for record 11 (SAF_RESP_MASK_11)
Safing record response mask for record 12 (SAF_RESP_MASK_12)
Safing record response mask for record 13 (SAF_RESP_MASK_13)
Safing record response mask for record 14_pt1 (SAF_RESP_MASK_14_pt1)
Safing record response mask for record 14_pt2 (SAF_RESP_MASK_14_pt2)
Safing record response mask for record 15_pt1 (SAF_RESP_MASK_15_pt1)
Safing record response mask for record 15_pt2 (SAF_RESP_MASK_14_pt2)
Safing record response mask for record 16_pt1 (SAF_RESP_MASK_16_pt1)
Safing record response mask for record 16_pt2 (SAF_RESP_MASK_16_pt2)
19
18
MOSI
MISO
ID:
17
16
15
14
13
12
11
0
0
10
9
8
7
6
5
4
3
2
1
0
SAF_RESP_MASKx[15:0]
0
0
SAF_RESP_MASKx[15:0]
A6 (SAF_RESP_MASK_1)
A7 (SAF_RESP_MASK_2
A8 (SAF_RESP_MASK_3
A9 (SAF_RESP_MASK_4
AA (SAF_RESP_MASK_5
AB (SAF_RESP_MASK_6
AC (SAF_RESP_MASK_7
AD (SAF_RESP_MASK_8
AE (SAF_RESP_MASK_9
AF (SAF_RESP_MASK_10
B0 (SAF_RESP_MASK_11
B1 (SAF_RESP_MASK_12
B2 (SAF_RESP_MASK_13)
B3 (SAF_RESP_MASK_14_pt1)
B4 (SAF_RESP_MASK_14_pt2)
B5 (SAF_RESP_MASK_15_pt1)
B6 (SAF_RESP_MASK_15_pt2)
DocID029257 Rev 1
135/277
276
SPI interfaces
L9680
B7 (SAF_RESP_MASK_16_pt1
B8 (SAF_RESP_MASK_16_pt2
Type:
RW
Read:
804C (SAF_RESP_MASK_1)
804E (SAF_RESP_MASK_2
8050 (SAF_RESP_MASK_3
8052 (SAF_RESP_MASK_4
8054 (SAF_RESP_MASK_5
8056 (SAF_RESP_MASK_6
8058 (SAF_RESP_MASK_7
805A (SAF_RESP_MASK_8
805C (SAF_RESP_MASK_9
805E (SAF_RESP_MASK_10
8060 (SAF_RESP_MASK_11
8062 (SAF_RESP_MASK_12
8064 (SAF_RESP_MASK_13)
8066 (SAF_RESP_MASK_14_pt1)
8068 (SAF_RESP_MASK_14_pt2)
806A (SAF_RESP_MASK_15_pt1)
806C (SAF_RESP_MASK_15_pt2)
806E (SAF_RESP_MASK_16_pt1
8070 (SAF_RESP_MASK_16_pt2
SSM
Write:
WSM
A600 (SAF_RESP_MASK_1)
A700 (SAF_RESP_MASK_2
A800 (SAF_RESP_MASK_3
A900 (SAF_RESP_MASK_4
AA00 (SAF_RESP_MASK_5
AB00 (SAF_RESP_MASK_6
AC00 (SAF_RESP_MASK_7
AD00 (SAF_RESP_MASK_8
AE00 (SAF_RESP_MASK_9
AF00 (SAF_RESP_MASK_10
B000 (SAF_RESP_MASK_11
B100 (SAF_RESP_MASK_12
B200 (SAF_RESP_MASK_13)
B300 (SAF_RESP_MASK_14_pt1)
B400 (SAF_RESP_MASK_14_pt2)
B500 (SAF_RESP_MASK_15_pt1)
B600 (SAF_RESP_MASK_15_pt2)
B700 (SAF_RESP_MASK_16_pt1
B801 (SAF_RESP_MASK_16_pt1
POR
Read:
SAF_RESP_MASKx[15:0] 0000 0000 0000 Safing Response Mask for safing record x - 16-bit response mask that is bit-
wise ANDed with MISO data from SPI monitor
16-bit request target that is compared to the bit-wise AND result of the
SAF_REQ_MASKx and MOSI data from SPI
Updated by SSM_RESET or SPI write while in DIAG state
136/277
DocID029257 Rev 1
L9680
7.3.54
SPI interfaces
Safing records response mask registers (SAF_RESP_TARGET_x)
Safing record response target for record 1 (SAF_RESP_TARGET_1)
Safing record response target for record 2 (SAF_RESP_TARGET_2)
Safing record response target for record 3 (SAF_RESP_TARGET_3)
Safing record response target for record 4 (SAF_RESP_TARGET_4)
Safing record response target for record 5 (SAF_RESP_TARGET_5)
Safing record response target for record 6 (SAF_RESP_TARGET_6)
Safing record response target for record 7 (SAF_RESP_TARGET_7)
Safing record response target for record 8 (SAF_RESP_TARGET_8)
Safing record response target for record 9 (SAF_RESP_TARGET_9)
Safing record response target for record 10 (SAF_RESP_TARGET_10)
Safing record response target for record 11 (SAF_RESP_TARGET_11)
Safing record response target for record 11 (SAF_RESP_TARGET_12)
Safing record response target for record 13 (SAF_RESP_TARGET_13)
Safing record response target for record 14_pt1 (SAF_RESP_TARGET_14)_pt1
Safing record response target for record 14_pt2 (SAF_RESP_TARGET_14)_pt2
Safing record response target for record 15_pt1 (SAF_RESP_TARGET_15)_pt1
Safing record response target for record 15_pt2 (SAF_RESP_TARGET_15)_pt2
Safing record response target for record 16_pt1 (SAF_RESP_TARGET_16)_pt1
Safing record response target for record 16_pt2 (SAF_RESP_TARGET_16)_pt2
19
18
MOSI
MISO
ID:
17
16
15
14
13
12
11
0
0
10
9
8
7
6
5
4
3
2
1
0
SAF_RESP_TARGETx[15:0]
0
0
SAF_RESP_TARGETx[15:0]
B9 (SAF_RESP_TARGET_1)
BA (SAF_RESP_TARGET_2
BB (SAF_RESP_TARGET_3
BC (SAF_RESP_TARGET_4
BD (SAF_RESP_TARGET_5
BE (SAF_RESP_TARGET_6
BF (SAF_RESP_TARGET_7
C0 (SAF_RESP_TARGET_8
C1 (SAF_RESP_TARGET_9
C2 (SAF_RESP_TARGET_10
C3 (SAF_RESP_TARGET_11
C4 (SAF_RESP_TARGET_12
C5 (SAF_RESP_TARGET_13
C6 (SAF_RESP_TARGET_14_pt1
C7 (SAF_RESP_TARGET_14_pt2
C8 (SAF_RESP_TARGET_15_pt1
C9 (SAF_RESP_TARGET_15_pt2
CA (SAF_RESP_TARGET_16_pt1
CB (SAF_RESP_TARGET_16_pt2
DocID029257 Rev 1
137/277
276
SPI interfaces
L9680
B900 (SAF_RESP_TARGET_1)
BA00 (SAF_RESP_TARGET_2
BB00 (SAF_RESP_TARGET_3
BC00 (SAF_RESP_TARGET_4
BD00 (SAF_RESP_TARGET_5
BE00 (SAF_RESP_TARGET_6
BF00 (SAF_RESP_TARGET_7
C000 (SAF_RESP_TARGET_8
C100 (SAF_RESP_TARGET_9
C200 (SAF_RESP_TARGET_10
C300 (SAF_RESP_TARGET_11
C400 (SAF_RESP_TARGET_12
C500 (SAF_RESP_TARGET_13
C600 (SAF_RESP_TARGET_14_pt1
C700 (SAF_RESP_TARGET_14_pt2
C800 (SAF_RESP_TARGET_15_pt1
C900 (SAF_RESP_TARGET_15_pt2
CA00 (SAF_RESP_TARGET_16_pt1
CB00 (SAF_RESP_TARGET_16_pt2)
Write:
8072 (SAF_RESP_TARGET_1)
8074 (SAF_RESP_TARGET_2
8076 (SAF_RESP_TARGET_3
8078 (SAF_RESP_TARGET_4
807A (SAF_RESP_TARGET_5
807C (SAF_RESP_TARGET_6
807E (SAF_RESP_TARGET_7
8080 (SAF_RESP_TARGET_8
8082 (SAF_RESP_TARGET_9
8084 (SAF_RESP_TARGET_10
8086 (SAF_RESP_TARGET_11
8088 (SAF_RESP_TARGET_12
808A (SAF_RESP_TARGET_13
808C (SAF_RESP_TARGET_14_pt1
808E (SAF_RESP_TARGET_14_pt2
8090 (SAF_RESP_TARGET_15_pt1
8092 (SAF_RESP_TARGET_15_pt2
8094 (SAF_RESP_TARGET_16_pt1
CB00 (SAF_RESP_TARGET_16_pt2)
SSM
Read:
WSM
RW
POR
Type:
SAF_RESP_TARGETx[15:0] 0000 0000 0000 Safing Response target for safing record x - 16-bit response target that is
compared to the bit-wise AND result of the SAF_RESP_MASKx and MISO
data from SPI monitor
Updated by SSM_RESET or SPI write while in DIAG state
138/277
DocID029257 Rev 1
L9680
7.3.55
SPI interfaces
Safing records data mask registers (SAF_DATA_MASK_x)
Safing record data mask for record 1 (SAF_DATA_MASK_1)
Safing record data mask for record 2 (SAF_DATA_MASK_2)
Safing record data mask for record 3 (SAF_DATA_MASK_3)
Safing record data mask for record 4 (SAF_DATA_MASK_4)
Safing record data mask for record 5 (SAF_DATA_MASK_5)
Safing record data mask for record 6 (SAF_DATA_MASK_6)
Safing record data mask for record 7 (SAF_DATA_MASK_7)
Safing record data mask for record 8 (SAF_DATA_MASK_8)
Safing record data mask for record 9 (SAF_DATA_MASK_9)
Safing record data mask for record 10 (SAF_DATA_MASK_10)
Safing record data mask for record 11 (SAF_DATA_MASK_11)
Safing record data mask for record 12 (SAF_DATA_MASK_12)
Safing record data mask for record 13 (SAF_DATA_MASK_13)
Safing record data mask for record 14 (SAF_DATA_MASK_14_pt1)
Safing record data mask for record 14 (SAF_DATA_MASK_14_pt2)
Safing record data mask for record 15 (SAF_DATA_MASK_15_pt1)
Safing record data mask for record 15 (SAF_DATA_MASK_15_pt2)
Safing record data mask for record 16 (SAF_DATA_MASK_16_pt1)
Safing record data mask for record 16 (SAF_DATA_MASK_16_pt2)
19
18
MOSI
MISO
ID:
17
16
15
14
13
12
11
0
0
10
9
8
7
6
5
4
3
2
1
0
SAF_DATA_MASKx[15:0]
0
0
SAF_DATA_MASKx[15:0]
CC (SAF_DATA_MASK_1)
CD (SAF_DATA_MASK_2)
CE (SAF_DATA_MASK_3)
CF (SAF_DATA_MASK_4)
D0 (SAF_DATA_MASK_5)
D1 (SAF_DATA_MASK_6)
D2 (SAF_DATA_MASK_7)
D3 (SAF_DATA_MASK_8)
D4 (SAF_DATA_MASK_9)
D5 (SAF_DATA_MASK_10)
D6 (SAF_DATA_MASK_11)
D7 (SAF_DATA_MASK_12)
D8 (SAF_DATA_MASK_13)
D9 (SAF_DATA_MASK_14_pt1)
DA (SAF_DATA_MASK_14_pt2)
DB (SAF_DATA_MASK_15_pt1)
DC (SAF_DATA_MASK_15_pt2)
DocID029257 Rev 1
139/277
276
SPI interfaces
L9680
DD (SAF_DATA_MASK_16_pt1)
DE (SAF_DATA_MASK_16_pt2)
CC00 (SAF_DATA_MASK_1)
CD00 (SAF_DATA_MASK_2)
CE00 (SAF_DATA_MASK_3)
CF00 (SAF_DATA_MASK_4)
D000 (SAF_DATA_MASK_5)
D100 (SAF_DATA_MASK_6)
D200 (SAF_DATA_MASK_7)
D300 (SAF_DATA_MASK_8)
D400 (SAF_DATA_MASK_9)
D500 (SAF_DATA_MASK_10)
D600 (SAF_DATA_MASK_11)
D700 (SAF_DATA_MASK_12)
D800 (SAF_DATA_MASK_13)
D900 (SAF_DATA_MASK_14_pt1)
DA00 (SAF_DATA_MASK_14_pt2)
DB00 (SAF_DATA_MASK_15_pt1)
DC00 (SAF_DATA_MASK_15_pt2)
DD00 (SAF_DATA_MASK_16_pt1)
DE00 (SAF_DATA_MASK_16_pt2)
Write:
8099 (SAF_DATA_MASK_1)
809A (SAF_DATA_MASK_2)
809C (SAF_DATA_MASK_3)
809E (SAF_DATA_MASK_4)
80A0 (SAF_DATA_MASK_5)
80A2 (SAF_DATA_MASK_6)
80A4 (SAF_DATA_MASK_7)
80A6 (SAF_DATA_MASK_8)
80A8 (SAF_DATA_MASK_9)
80AA (SAF_DATA_MASK_10)
80AC (SAF_DATA_MASK_11)
80AE (SAF_DATA_MASK_12)
80B0 (SAF_DATA_MASK_13)
80B2 (SAF_DATA_MASK_14_pt1)
80B4 (SAF_DATA_MASK_14_pt2)
80B6 (SAF_DATA_MASK_15_pt1)
80B8 (SAF_DATA_MASK_15_pt2)
80BA (SAF_DATA_MASK_16_pt1)
80BC (SAF_DATA_MASK_16_pt2)
SSM
Read:
WSM
RW
POR
Type:
SAF_DATA_MASKx[15:0] 0000 0000 0000 Safing Data Mask for safing record x - 16-bit data mask that is bit-wise
ANDed with MISO data from SPI monitor
Updated by SSM_RESET or SPI write while in DIAG state
140/277
DocID029257 Rev 1
L9680
7.3.56
SPI interfaces
Safing record threshold registers (SAF_THRESHOLD_x)
Safing record threshold for record 1 (SAF_THRESHOLD_1)
Safing record threshold for record 2 (SAF_THRESHOLD_2)
Safing record threshold for record 3 (SAF_THRESHOLD_3)
Safing record threshold for record 4 (SAF_THRESHOLD_4)
Safing record threshold for record 5 (SAF_THRESHOLD_5)
Safing record threshold for record 6 (SAF_THRESHOLD_6)
Safing record threshold for record 7 (SAF_THRESHOLD_7)
Safing record threshold for record 8 (SAF_THRESHOLD_8)
Safing record threshold for record 9 (SAF_THRESHOLD_9)
Safing record threshold for record 10 (SAF_THRESHOLD_11)
Safing record threshold for record 12 (SAF_THRESHOLD_12)
Safing record threshold for record 13 (SAF_THRESHOLD_13)
Safing record threshold for record 14 (SAF_THRESHOLD_14)
Safing record threshold for record 15 (SAF_THRESHOLD_15)
Safing record threshold for record 16 (SAF_THRESHOLD_16)
19
18
MOSI
MISO
17
16
15
14
13
12
0
0
11
10
9
8
7
6
5
4
3
2
1
0
SAF_THRESHOLDx[15:0]
0
0
SAF_THRESHOLDx[15:0]
ID:
DF (SAF_THRESHOLD_1)
E0 (SAF_THRESHOLD_2)
E1 (SAF_THRESHOLD_3)
E2 (SAF_THRESHOLD_4)
E3 (SAF_THRESHOLD_5)
E4 (SAF_THRESHOLD_6)
E5 (SAF_THRESHOLD_7)
E6 (SAF_THRESHOLD_8)
E7 (SAF_THRESHOLD_9)
E8 (SAF_THRESHOLD_10)
E9 (SAF_THRESHOLD_11)
EA (SAF_THRESHOLD_12)
EB (SAF_THRESHOLD_13)
EC (SAF_THRESHOLD_14)
ED (SAF_THRESHOLD_15)
EE (SAF_THRESHOLD_16)
Type:
RW
Read:
DF00 (SAF_THRESHOLD_1)
E000 (SAF_THRESHOLD_2)
E100 (SAF_THRESHOLD_3)
E200 (SAF_THRESHOLD_4)
E300 (SAF_THRESHOLD_5)
E400 (SAF_THRESHOLD_6)
E500 (SAF_THRESHOLD_7)
E600 (SAF_THRESHOLD_8)
DocID029257 Rev 1
141/277
276
SPI interfaces
L9680
E700 (SAF_THRESHOLD_9)
E800 (SAF_THRESHOLD_10)
E900 (SAF_THRESHOLD_11)
EA00 (SAF_THRESHOLD_12)
EB00 (SAF_THRESHOLD_13)
EC00 (SAF_THRESHOLD_14)
ED00 (SAF_THRESHOLD_15)
EE00 (SAF_THRESHOLD_16)
SSM
WSM
80BE (SAF_THRESHOLD_1)
80C0 (SAF_THRESHOLD_2)
80C2 (SAF_THRESHOLD_3)
80C4 (SAF_THRESHOLD_4)
80C6 (SAF_THRESHOLD_5)
80C8 (SAF_THRESHOLD_6)
80CA (SAF_THRESHOLD_7)
80CC (SAF_THRESHOLD_8)
80CE (SAF_THRESHOLD_9)
80D0 (SAF_THRESHOLD_10)
80D2 (SAF_THRESHOLD_11)
80D4 (SAF_THRESHOLD_12)
80D6 (SAF_THRESHOLD_13)
80D8 (SAF_THRESHOLD_14)
80DA (SAF_THRESHOLD_15)
80DB (SAF_THRESHOLD_16)
POR
Write:
SAF_THRESHOLD_x $FFFF $FFFF $FFFF Safing threshold for safing record x - 16-bit threshold used for safing data
comparison
Updated by SSM_RESET or SPI write while in DIAG state
142/277
DocID029257 Rev 1
L9680
7.3.57
SPI interfaces
Safing control x registers (SAF_CONTROL_x)
ID:
EF (SAF_CONTROL_1)
F0 (SAF_CONTROL_2)
F1 (SAF_CONTROL_3)
F2 (SAF_CONTROL_4)
F3 (SAF_CONTROL_5)
F4 (SAF_CONTROL_6)
F5 (SAF_CONTROL_7
F6 (SAF_CONTROL_8)
F7 (SAF_CONTROL_9)
F8 (SAF_CONTROL_10)
F9 (SAF_CONTROL_11)
FA (SAF_CONTROL_12)
FB (SAF_CONTROL_13)
FC (SAF_CONTROL_14)
FD (SAF_CONTROL_15)
FE (SAF_CONTROL_16)
Type:
RW
Read:
EF00 (SAF_CONTROL_1)
F000 (SAF_CONTROL_2)
F100 (SAF_CONTROL_3)
DocID029257 Rev 1
5
4
ARM2x
3
2
1
0
ARM1x
6
CSx[2:0]
IFx
ARM1x
7
ARM2x
8
ARM3x
9
ARM3x
ARMSELx
10
ARM4x
0
11
ARM4x
0
12
DWELLx[1:0] DWELLx[1:0]
0
ARMSELx
13
COMBx
0
14
COMBx
-
15
LIM Enx
MISO
16
LIM Enx
MOSI
17
LIM SELx
18
SPIFLDSELx SPIFLDSELx
19
LIM SELx
Safing control registers for record 1 (SAF_CONTROL_1)
Safing control registers for record 2 (SAF_CONTROL_2)
Safing control registers for record 3 (SAF_CONTROL_3)
Safing control registers for record 4 (SAF_CONTROL_4)
Safing control registers for record 5 (SAF_CONTROL_5)
Safing control registers for record 6 (SAF_CONTROL_6)
Safing control registers for record 7 (SAF_CONTROL_7)
Safing control registers for record 8 (SAF_CONTROL_8)
Safing control registers for record 9 (SAF_CONTROL_9)
Safing control registers for record 10 (SAF_CONTROL_10)
Safing control registers for record 11 (SAF_CONTROL_11)
Safing control registers for record 12 (SAF_CONTROL_12)
Safing control registers for record 13 (SAF_CONTROL_13)
Safing control registers for record 14 (SAF_CONTROL_14)
Safing control registers for record 15 (SAF_CONTROL_15)
Safing control registers for record 16 (SAF_CONTROL_16)
CSx[2:0]
IFx
143/277
276
SPI interfaces
L9680
F200 (SAF_CONTROL_4)
F300 (SAF_CONTROL_5)
F400 (SAF_CONTROL_6)
F500 (SAF_CONTROL_7
F600 (SAF_CONTROL_8)
F700 (SAF_CONTROL_9)
F800 (SAF_CONTROL_10)
F900 (SAF_CONTROL_11)
FA00 (SAF_CONTROL_12)
FB00 (SAF_CONTROL_13)
FC00 (SAF_CONTROL_14)
FD00 (SAF_CONTROL_15)
FE00 (SAF_CONTROL_16)
SSM
ARMSELx
WSM
80DE (SAF_CONTROL_1)
80E0 (SAF_CONTROL_2)
80E2 (SAF_CONTROL_3)
80E4 (SAF_CONTROL_4)
80E6 (SAF_CONTROL_5)
80E8 (SAF_CONTROL_6)
80EA (SAF_CONTROL_7
80EC (SAF_CONTROL_8)
80EE (SAF_CONTROL_9)
80F0 (SAF_CONTROL_10)
80F2 (SAF_CONTROL_11)
80F4 (SAF_CONTROL_12)
80F6 (SAF_CONTROL_13)
80F8 (SAF_CONTROL_14)
80FA (SAF_CONTROL_15)
80FC (SAF_CONTROL_16)
POR
Write:
00
00
00 ARMINT select for safing recode x - correlates A
Updated by SSM_RESET or SPI write while in DIAG state
00 ARMP OR ARMN
01 ARMP
10 ARMN
11 ARMP OR ARMN
SPIFLDSELx
0
0
0
SPI field select for safing record x - determines which 16-bit field in long
SPI messages (>31 bit) to use for response on MISO of SPI monitor.
In case of messages less than 32 bits this bit is don't care. Updated by
SSM_RESET or SPI write while in DIAG state.
Updated by SSM_RESET or SPI write while in DIAG state
0 First 16 bits of SPI MISO frame used for Response Mask and Data
Mask bit-wise AND
1 Last 16 bits of SPI MISO frame used for Response Mask and Data
Mask bit-wise AND
144/277
DocID029257 Rev 1
L9680
SPI interfaces
LIM SELx
0
0
0
Data range limit select for safing record x - When enabled, determines
the range limit used for incoming sensor data
Updated by SSM_RESET or SPI write while in DIAG state
0 8-bit data range limit - incoming |data| >120d is not recognized as
valid data
1 10-bit data range limit - incoming |data| > 480d is not recognized as
valid data
LIM Enx
0
0
0
Data range limit enable for safing record x
Updated by SSM_RESET or SPI write while in DIAG state
0 Data range limit disabled
1 Data range limit enabled
COMBx
0
0
0
Combine function enable for safing record x
Updated by SSM_RESET or SPI write while in DIAG state
0 Combine function disabled
1 Combine function enabled
For record pairs = x,x+1, the comparison for record x uses |data(x)
+ data(x+1)| and the comparison for record x+1 uses |data(x) data(x+1)| Record pairs are 1,2; 3,4; 5,6; 7,8; 9,10; 11,12
DWELLx[1:0]
00
00
00
Safing dwell extension time select for safing record x
Updated by SSM_RESET or SPI write while in DIAG state
00 2048 ms
01 256 ms
10 32 ms
11 0 ms
ARM4x
0
0
0
ARM4INT select for safing record x - correlates safing result to ARM4INT
Updated by SSM_RESET or SPI write while in DIAG state
0 Safing record x not assigned to ARM4INT
1 Safing record x assigned to ARM4INT
ARM3x
0
0
0
ARM3INT select for safing record x - correlates safing result to ARM3INT
Updated by SSM_RESET or SPI write while in DIAG state
0 Safing record x not assigned to ARM3INT
1 Safing record x assigned to ARM3INT
ARM2x
0
0
0
ARM2INT select for safing record x - correlates safing result to ARM2INT
Updated by SSM_RESET or SPI write while in DIAG state
0 Safing record x not assigned to ARM2INT
1 Safing record x assigned to ARM2INT
ARM1x
0
0
0
ARM1INT select for safing record x - correlates safing result to ARM1INT
Updated by SSM_RESET or SPI write while in DIAG state
DocID029257 Rev 1
145/277
276
SPI interfaces
L9680
0 Safing record x not assigned to ARM1INT
1 Safing record x assigned to ARM1INT
CSx[2:0]
000
000 SPI Monitor CS select for safing record x
Updated by SSM_RESET or SPI write while in DIAG state
000
000 None selected for record x
001 SAF_CS0 selected for record x
010 SAF_CS1 selected for record x
011 SAF_CS2 selected for record x
100 SAF_CS3 selected for record x
101 CS_RS selected for record x
110 None selected for record x
111 None selected for record x
IFx
0
0
0
SPI format select for safing record x - selects response protocol for SPI
monitor
Updated by SSM_RESET or SPI write while in DIAG state
0 Out of frame response for record x
1 In Frame response for record x
R
Read:
FF00
Write:
-
CC_xx
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0CC_6
0CC_5
CC_4
CC_3
CC_2
CC_1
SSM
Type:
9
WSM
FF
10
POR
ID:
0
11
0CC_7
0
12
0CC_8
0
13
0CC_9
0
14
0CC_10
-
15
0CC_11
MISO
16
0CC_12
MOSI
17
0
0
0
0CC_14
18
0CC_15
19
0CC_13
Safing record compare complete register (SAF_CC)
0CC_16
7.3.58
Indicates compare complete status of each of the 16 safing records, and
defines the end of the sample cycle for safing
Cleared by SSM_RESET or upon SPI read, set by safing engine when
request, response mask and target registers match the incoming SPI frame
0 Compare not completed for record x
1 Compare completed for record x
146/277
DocID029257 Rev 1
L9680
SPI interfaces
7.4
Remote sensor SPI register map
The Remote Sensor SPI interface consists of twelve 32-bit read registers (one for each
logical channel) to allow for access to decoded sensor data and fault registers. The registers
are addressed by the read register ID and the Global ID bit.
The L9680 checks the validity of the received RID field in the MOSI_RS frame. Should a SPI
read command be received containing an unused RID address, the command will be
discarded and the ERR_RID bit will be flagged in the current GSW.
Table 8. Remote sensor SPI register map
Operating State
GID
RID / WID
Hex
R/W
Name
Description
Init Diag Safing Scrap Arming
0
1
0
1
0
0
0
0
$50
R
RSDR0
0
1
0
1
0
0
0
1
$51
R
RSDR1
0
1
0
1
0
0
1
0
$52
R
RSDR2
0
1
0
1
0
0
1
1
$53
R
RSDR3
0
1
0
1
0
1
0
0
$54
R
RSDR4
0
1
0
1
0
1
0
1
$55
R
RSDR5
0
1
0
1
0
1
1
0
$56
R
RSDR6
0
1
0
1
0
1
1
1
$57
R
RSDR7
0
1
0
1
1
0
0
0
$58
R
RSDR8
0
1
0
1
1
0
0
1
$59
R
RSDR9
0
1
0
1
1
0
1
0
$5A
R
RSDR10
0
1
0
1
1
0
1
1
$5B
R
RSDR11
0
1
0
1
1
1
0
0
$5C
R
RSTHR0_L
0
1
0
1
1
1
0
1
$5D
R
RSTHR1_L
0
1
0
1
1
1
1
0
$5E
R
RSTHR2_L
0
1
0
1
1
1
1
1
$5F
R
RSTHR3_L
0
1
1
0
0
0
0
0
$60
R
RSTHR0_H
0
1
1
0
0
0
0
1
$61
R
RSTHR1_H
0
1
1
0
0
0
1
0
$62
R
RSTHR2_H
0
1
1
0
0
0
1
1
$63
R
RSTHR3_H
0
1
1
0
1
0
1
0
$6A
R
ARM_STATE
Arming signals
status register
SAF_CC
Safing record
compare
complete
register
1
1
1
1
1
1
1
1
$FF
R
Remote
sensor
data/status
registers
(PSI-5 or
WSS)
Remote
sensor
(PSI-5 or
WSS)
Remote
sensor current
2 registers
(WSS only)
DocID029257 Rev 1
147/277
276
SPI interfaces
7.5
L9680
Remote sensor SPI tables
A summary of all the registers contained within the remote sensor SPI map are shown
below and are referenced throughout the specification as they apply. The SPI register tables
also specify the effect of the internal reset signals assertion on each bit field (the symbol ‘-‘is
used to indicate that the register is not affected by the relevant reset signal’).
7.5.1
Remote sensor SPI global status word
The Remote Sensor SPI of L9680 contains an 11-bit word that returns global status
information. The Global Status Word (GSW) of the Remote Sensor SPI is the most
significant 11 bits of MISO_RS data.
Table 9. GSW - Remote sensor SPI global status word
MISO_RS GSW
Name
POR
WSM SSM
Description
SPI Fault, set if previous SPI frame had wrong parity check or
wrong number of bits, cleared upon read ‘
31
10
SPIFLT
0
0
0
0 No fault
1 Fault
30
9
0
0
0
0
Unused
Remote Sensor Interface Fault Present, logical OR of the
corresponding FLTBIT bits (bit 15) for all faults but NODATA
29
8
RSFLT
0
0
0
0 All the RSDRx-FLTBIT bits are 0
1 At least one of the RSDRx-FLTBIT bits is 1 and the
associated fault code is different from NODATA
28
7
0
0
0
0
Unused
27
6
0
0
0
0
Unused
26
5
0
0
0
0
Unused
25
4
0
0
0
0
Unused
24
3
0
0
0
0
Unused
23
2
0
0
0
0
Unused
22
1
0
0
0
0
Unused
21
0
ERR_RI
D
Read address received in the actual SPI frame is unused so
data in the response is don't care
0
0
0
0 No Error
1 Error
148/277
DocID029257 Rev 1
L9680
SPI interfaces
7.6
Remote sensor SPI read/write registers
7.6.1
Remote sensor data/fault registers (RSDRx @FLT = 0)
PSI5/WSS Remote Sensor 0 Data and Fault Flag Register ch 0, slot 1 / ch 0 (RSDR0)
PSI5/WSS Remote Sensor 1 Data and Fault Flag Register ch 1, slot 1 / ch 1 (RSDR1)
PSI5/WSS Remote Sensor 2 Data and Fault Flag Register ch 2, slot 1 / ch 2 (RSDR2)
PSI5/WSS Remote Sensor 3 Data and Fault Flag Register ch 3, slot 1 / ch 3 (RSDR3)
PSI5 configuration register for channel 0, slot 2 (RSDR4)
PSI5 configuration register for channel 1, slot 2 (RSDR5)
PSI5 configuration register for channel 2, slot 2 (RSDR6)
PSI5 configuration register for channel 3, slot 2 (RSDR7)
PSI5 configuration register for channel 0, slot 2 (RSDR8)
PSI5 configuration register for channel 1, slot 2 (RSDR9)
PSI5 configuration register for channel 2, slot 2 (RSDR10)
PSI5 configuration register for channel 3, slot 2 (RSDR11)
19
18
17
16
12
11
10
9
8
7
6
5
4
3
2
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
MISO_RS
CRC
0
FLT=0
13
MISO_RS
CRC
FLT=0
14
STDSTL
MOSI_RS
15
Latch_D0 On/Off
Bit 15 = 0 NO FAULT Condition
ID:
50 (RSDR0)
51 (RSDR1)
52 (RSDR2)
53 (RSDR3)
54 (RSDR4)
55 (RSDR5)
56 (RSDR6)
57 (RSDR7)
58 (RSDR8)
59 (RSDR9)
5A (RSDR10)
5B (RSDR11)
Type:
R
Read:
5000 (RSDR0)
5100 (RSDR1)
5200 (RSDR2)
5300 (RSDR3)
5400 (RSDR4)
5500 (RSDR5)
5600 (RSDR6)
LCID [3:0]
LCID [1:0]
DocID029257 Rev 1
DATA [9:0]
DATA [11:0]
149/277
276
SPI interfaces
L9680
5700 (RSDR7)
5800 (RSDR8)
5900 (RSDR9)
5A00 (RSDR10)
5B00 (RSDR11)
WSM
SSM
POR
Write:
-
-
PSI5 configured channel
CRC[2:0]
-
CRC based on bits [16:0]
Updated based on bits [16:0]
FLT
1
1
1
Fault Status - Depending on Fault Status, the DATA bits are defined differently
Cleared when all of the following bits are '0': STG, STB, CURRENT_HI,
OPENDET, RSTEMP, INVALID, SLOT_ERROR, NODATA
Set when any of the following bits are '1': STG, STB, CURRENT_HI,
OPENDET, RSTEMP, INVALID, SLOT_ERROR, NODATA
0 No fault
1 Fault
On/Off
0
0
0
Channel On/Off Status
Cleared by SSM_RESET or when channel is commanded OFF via SPI
RSCTRL or when the STG bit is set or the RSTEMP bit is set
Set when channel is commanded ON by SPI RSCTRL
0 Off
1 On
LCID[3:0]
-
-
-
Logical Channel ID
Updated based on SPI read request
0000
0001
0010
0100
0101
0110
1000
1001
1010
1100
1010
1110
RSU0
RSU0
RSU0
RSU1
RSU1
RSU1
RSU2
RSU2
RSU2
RSU3
RSU3
RSU3
SLOT1
SLOT2
SLOT3
SLOT1
SLOT2
SLOT3
SLOT1
SLOT2
SLOT3
SLOT1
SLOT2
SLOT3
DATA[9:0] $000 $000 $000 10-bit data from Manchester decoder
150/277
DocID029257 Rev 1
L9680
SPI interfaces
Cleared by SSM_RESET or SPI read or when channel is commanded OFF
via SPI RSCTRL
updated when a valid PSI5 frame is received
Wheel speed configured channel (RSDR0, RSDR1, RSDR2, RSDR3)
CRC[2:0]
-
-
-
CRC based on bits [16:0]
Updated based on bits [16:0]
STDSTL
0
0
0
Standstill indication (valid only for VDA sensor or PWM 2 edges)
1 Standstill
0 Valid Sensor Signal
FLT
1
1
1
Fault Status - Depending on Fault Status, the DATA bits are defined differently
Cleared when all of the following bits are '0': STG, STB, CURRENT_HI,
OPENDET, RSTEMP, INVALID, PULSE OVERFLOW ERROR, NODATA
Set when any of the following bits are '1': STG, STB, CURRENT_HI,
OPENDET, RSTEMP, INVALID, PULSE OVERFLOW ERROR, NODATA
0 No Fault
1 Fault
Latch_D0
0
0
0
Logical Channel ID
0 no prior bit0 faults
1 prior message(s) contained bit0 fault
LCID[1:0]
Logical Channel ID
00
01
10
11
RSU0
RSU1
RSU2
RSU3
DATA[11:0] $000 $000 $000 12-bit data from wheel speed decoder
VDA Data Format
DATA [7:0] Counter bits
DATA [11:8] Counter bits
PWM Data Format
DATA [8:0] Pulse Data bits
DocID029257 Rev 1
151/277
276
SPI interfaces
7.6.2
L9680
Remote sensor data/fault registers w/o fault (RSDRx @ FLT=1)
PSI5/WSS Remote Sensor 0 Data and Fault Flag Register ch 0, slot 1 / ch 0 (RSDR0)
PSI5/WSS Remote Sensor 1 Data and Fault Flag Register ch 1, slot 1 / ch 1 (RSDR1)
PSI5/WSS Remote Sensor 2 Data and Fault Flag Register ch 2, slot 1 / ch 2 (RSDR2)
PSI5/WSS Remote Sensor 3 Data and Fault Flag Register ch 3, slot 1 / ch 3 (RSDR3)
PSI5 configuration register for channel 0, slot 2 (RSDR4)
PSI5 configuration register for channel 1, slot 2 (RSDR5)
PSI5 configuration register for channel 2, slot 2 (RSDR6)
PSI5 configuration register for channel 3, slot 2 (RSDR7)
PSI5 configuration register for channel 0, slot 2 (RSDR8)
PSI5 configuration register for channel 1, slot 2 (RSDR9)
PSI5 configuration register for channel 2, slot 2 (RSDR10)
PSI5 configuration register for channel 3, slot 2 (RSDR11)
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID
NODATA
X
X
INVALID
NODATA
X
X
MISO_RS
(PSI5)
CRC
X
MISO_RS
(WSS)
CRC
X
ID:
50 (RSDR0)
51 (RSDR1)
52 (RSDR2)
53 (RSDR3)
54 (RSDR4)
55 (RSDR5)
56 (RSDR6)
57 (RSDR7)
58 (RSDR8)
59 (RSDR9)
5A (RSDR10)
5B (RSDR11)
Type:
R
Read:
5000 (RSDR0)
5100 (RSDR1)
5200 (RSDR2)
5300 (RSDR3)
5400 (RSDR4)
5500 (RSDR5)
5600 (RSDR6)
152/277
LCID [3:0]
LCID [1:0]
STG STB
STG STB
DocID029257 Rev 1
SLOT_ERROR SLOT_ERROR
11
On/Off
12
On/Off
13
FLT=1
-
14
RSTEMP
15
FLT=1
MOS_RSI
16
RSTEMP
17
OPENDET
18
CURRENT_HI CURRENT_HI
19
OPENDET
Bit 15 = 1 FAULTED condition
L9680
SPI interfaces
5700 (RSDR7)
5800 (RSDR8)
5900 (RSDR9)
5A00 (RSDR10)
5B00 (RSDR11)
SSM
CRC[2:0]
WSM
POR
Write:
-
-
-
CRC based on bits [16:0]
Updated based on bits [16:0]
FLT
0
0
0
Fault Status
Cleared when all of the following bits are '0': STG, STB, CURRENT_HI,
OPENDET, RSTEMP, NODATA, INVALID, SLOT ERROR, PULSE
OVERFLOW ERROR
Set when any of the following bits are '1': STG, STB, CURRENT_HI,
OPENDET, RSTEMP, NODATA, INVALID, SLOT ERROR, PULSE
OVERFLOW ERROR
0 No fault
1 Fault
On/Off
0
0
0
Channel On/Off Status
Cleared by SSM_RESET or when channel is commanded OFF via SPI
RSCTRL or when the STG bit is set or the RSTEMP bit is set
Set when channel is commanded ON by SPI RSCTRL
0 Off
1 On
LCID[0:3] 0000 0000 0000 Logical Channel ID
Updated based on SPI read request
0000 RSU0 SLOT1
0001 RSU0 SLOT2
0010 RSU0 SLOT3
0100 RSU1 SLOT1
0101 RSU1 SLOT2 1
0110 RSU1 SLOT3
1000 RSU2 SLOT1
1001 RSU2 SLOT2
1010 RSU2 SLOT3
1100 RSU3 SLOT1
1101 RSU3 SLOT2
1110 RSU3 SLOT3
DocID029257 Rev 1
153/277
276
SPI interfaces
STG
L9680
0
0
0
Short to Ground (in current limit condition)
Cleared by SSM_RESET or when channel is commanded OFF via SPI
RSCTRL
0 No fault
1 Fault
STB
0
0
0
Short to Battery
Cleared by SSM_RESET or SPI read or when channel is commanded OFF
via SPI RSCTRL - not cleared by channel OFF caused by STG or RSTEMP
Set when channel voltage exceeds VSUP for a time greater than TSTBTH
0 No fault
1 Fault
CURRENT_HI
0
0
0
Current High
Cleared by SSM_RESET or SPI read or when channel is commanded OFF
via SPI RSCTRL
Set when channel current exceeds ILKGG for a time determined by an
up/down counter
0 No fault
1 Fault
OPENDET
0
0
0
Open Sensor Detected
Cleared by SSM_RESET or SPI read or when channel is commanded OFF
via SPI RSCTRL
Set when channel current exceeds ILKGB for a time determined by an
up/down counter
0 No fault
1 Fault
RSTEMP
0
0
0
Over temperature detected
Cleared by SSM_RESET or when channel is commanded OFF via SPI
RSCTRL
Set when over-temp condition is detected
0 No fault
1 Fault
INVALID
154/277
0
0
0
Invalid Data
DocID029257 Rev 1
L9680
SPI interfaces
Cleared by SSM_RESET or SPI read or when channel is commanded OFF
via SPI RSCTRL or if one of the following is set: STG, STB, CURRENT_HI,
OPEN_DET,
RSTEMP, SLOT ERROR (PSI5), PULSE OVERFLOW ERROR (WSS) or if a
new valid data is received
Set in PSI5 configuration when two valid start bits are received and a
Manchester error (# of bits, bit timing) or parity error is detected
Set in WSS configuration when parity error is detected (when this check is
feasible). Valid only for VDA sensor.
0 No fault
1 Fault
NODATA
1
1
1
No Data in buffer
Cleared when a valid PSI5/WSS frame is received or if one of the following is
set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP, SLOT ERROR,
PULSE OVERFLOW ERROR, INVALID
Set upon SPI read of RSDRx and none of the following bits are set: STG,
STB, CURRENT_HI, OPEN_DET, RSTEMP, SLOT ERROR, PULSE
OVERFLOW ERROR, INVALID
0 No fault
1 Fault
PULSE
OVERFLOW
ERROR
0
0
0
Pulse duration counter overflow (valid only for PWM 2 edges sensors)
Cleared by SSM_RESET or SPI read or when channel is commanded OFF
via SPI RSCTRL
0 No fault
1 Fault
SLOT ERROR
0
0
0
Slot error fault (valid only for PSI5 sensors
Cleared by SSM_RESET or SPI read or when channel is commanded OFF
via SPI RSCTRL or if one of the following is set: STG, STB,
CURRENT_HI, OPEN_DET, RSTEMP or if a new valid data is received
Set in case of slot control enabled and frame not completely inside slot or
more than one frame inside the slot
0 No fault
1 Fault
DocID029257 Rev 1
155/277
276
SPI interfaces
7.6.3
L9680
Remote sensor x current registers y (RSTHRx_y)
Remote sensor 0, base current and delta to calculate 1st top current (RSTHR0_L)
Remote sensor 1, base current and delta to calculate 1st top current (RSTHR1_L
Remote sensor 2, base current and delta to calculate 1st top current (RSTHR2_L
Remote sensor 3, base current and delta to calculate 1st top current (RSTHR3_L
Remote sensor 0 (only for WSS), delta to calculate 2nd top current (RSTHR0_H)
Remote sensor 1 (only for WSS), delta to calculate 2nd top current (RSTHR1_H
Remote sensor 2 (only for WSS), delta to calculate 2nd top current (RSTHR2_H
Remote sensor 3 (only for WSS), delta to calculate 2nd top current (RSTHR3_H
19
18
MOSI
17
-
MISO_RS
MISO_RS
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DELTA 1ST TOP [9:0]
0
0
0
0
0
0
R
Read:
5C00 (RSTHR0_L)
5D00 (RSTHR1_L)
5E00 (RSTHR2_L)
5F00 (RSTHR3_L)
6000 (RSTHR0_H)
6100 (RSTHR1_H)
6200 (RSTHR2_H)
6300 (RSTHR3_H
Write:
-
BASE CURRENT [9:0]
0
0
0
DELTA 2ND TOP [9:0]
SSM
Type:
WSM
5C (RSTHR0_L)
5D (RSTHR1_L)
5E (RSTHR2_L)
5F (RSTHR3_L)
60 (RSTHR0_H)
61 (RSTHR1_H)
62 (RSTHR2_H)
63 (RSTHR3_H
POR
ID:
0
BASE CURRENT [9:0]
$A1 $A1 $A1
PSI5/WSS base current measured by internal converter (93.75 μA ±9% each
LSB).
DELTA 1ST TOP $103 $103 $103 PSI5/WSS delta measured by internal converter respect to base current
[19:10]
(93.75 μA ±9% each LSB) to get top current.
Low threshold = base current+(DELTA_1ST_TOP/2) in case of WSS or PSI5
without current averaged algorithm (bit 4 of RSRCx register equal to 0).
Low threshold = base current+(DELTA_1ST_TOP) in case of PSI5 with
current averaged algorithm (bit 4 of RSRCx register equal to 1).
156/277
DocID029257 Rev 1
L9680
SPI interfaces
DELTA 2ND TOP [9:0]
$7 $103 $103 WSS delta measured by internal converter respect to base current (93.75 μA
±9% each LSB) to get second top current.
High threshold = ((base current+DELTA_1ST_TOP)+(base
current+DELTA_2ND_TOP))/2.
0
0
R
Read:
6A00
Write:
-
ARMINT_x
10
9
8
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
SSM
Type:
11
WSM
6A
12
POR
ID:
0
13
ARMINT_1
0
14
ARMINT_2
-
15
ARMINT_3
MISO
16
ARMINT_4
MOSI
17
ACL_VALID
18
ACL_PIN_STATE
19
PSINH_EXP_TIME
Arming signals register (ARM_STATE)
PSINHINT
7.6.4
-
-
-
State of ARMINT signals
Updated per Safing Engine output logic diagram in case of internal safing
engine otherwise is the echo of ARMx pins
ACL_VALID
0
0
0
Valid ACL detection
0 Cleared when ACL_BAD=2
1 Set when ACL_GOOD=3
ACL_PIN_STATE
-
-
-
Echo of ACL pin
PSINH_EXP_TIME
0
0
0
State of PSINH expiration timer
0 If timer is 0
1 If timer is counting
PSINHINT
-
-
-
State of PSINHINT signal
Updated per PSINH output logic diagram in case of internal engine otherwise
is the echo of PSINH pin inverted
DocID029257 Rev 1
157/277
276
SPI interfaces
R
Read:
$FF01
Write:
$80FE
CC_xx
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
CC_5
CC_4
CC_3
CC_2
CC_1
SSM
Type:
8
WSM
FF
9
POR
ID:
10
CC_6
0
11
CC_7
0
12
CC_8
0
13
CC_9
0
14
CC_10
-
15
CC_11
MISO/
MISO_RS
16
CC_12
MOSI/
MOSI_RS
17
0
0
0
CC_14
18
CC_15
19
CC_13
Safing record compare complete register (SAF_CC)
CC_16
7.6.5
L9680
Indicates compare complete status of each of the 16 safing records, and
defines the end of the sample cycle for safing
Cleared by SSM_RESET or upon SPI read, set by safing engine when
request, response mask and target registers match the incoming SPI frame
0 Compare not completed for record x
1 Compare completed for record x
158/277
DocID029257 Rev 1
L9680
8
Deployment drivers
Deployment drivers
The squib deployment block consists of 12 independent high side drivers and 12
independent low side drivers. Squib deployment logic requires a deploy command received
through SPI communications and either an arming condition processed by safing logic or a
proper ARMx input pin assessment, depending on whether the internal safing engine is
used or not. Both conditions must exist in order for the deployment to occur. Once a
deployment is initiated, it can only be terminated by an SSM_RESET event.
L9680 allows all 12 squib loops to be deployed at the very same time or in other possible
timing sequence. Deployment drivers are capable of granting a successful deployment also
in case of short to ground on low-side circuit (SRx pins). Firing voltage capability across high
side circuit is maximum 25 V. High side and low side drivers account for a maximum series
total resistance of 2 . Each loop is granted for a minimum number of deployments of 50,
under all normal operating conditions and with a deployment repetition time higher than 10s.
Both the High and the Low side FET drivers are equipped with passive gate turn-off
circuitries to guarantee the FETs are kept in off state also when the device is unpowered or
during power-up/down transients.
8.1
Control logic
A block diagram representing the deployment driver logic is shown below. Deployment
driver logic features include:

Deploy command logic

Deployment current selection

Deployment current monitoring and deploy success feedback

Diagnostic control and feedback
Figure 27. Deployment driver control blocks
3URJUDPPDEOH
/RRS
$VVLJQPHQWV
'(3&20
'HSOR\PHQW
&RPPDQG5HJLVWHU
$50
'&5
'HSOR\PHQW&RQILJXUDWLRQ
5HJLVWHU
'HSOR\
5HTXHVW
9DOLGDWLRQ
;
+LJK
6LGH
)(7
6)[
;
65[
'&076[
'HSOR\&XUUHQW
0RQLWRU6WDWXV
'HSOR\PHQW
&RQWURO
7LPLQJ
'&5
'HSOR\PHQW
&RQILJXUDWLRQ
5HJLVWHU
,QW([WVDILQJHQJLQH
LQWFON
,7+'(3/
&XUUHQW
0RQLWRU
'&5
'HSOR\PHQW
&RQILJXUDWLRQ
5HJLVWHU
'HSOR\PHQW6WDWXV
5HJLVWHU
'65[
/RZ
6LGH
)(7
$50
;
;
3URJUDPPDEOH
/RRS
$VVLJQPHQWV
6DILQJ(QJLQH
7ULVWDWHHQDEOHU
,QW([WVDILQJHQJLQH
*$3*36
DocID029257 Rev 1
159/277
276
Deployment drivers
L9680
Figure 28. Deployment driver control logic - Enable signal
$50,1*67$7(
$1$/2*
',$*67$7(
'HSOR\PHQW
/3',$*5(4/($.B&+6(/[
'67(67+6)(7B7(67
%/2&.
36,1+,17
36,1+B/[
$50,17
$50B/[
(1$%/(B+6[
$50,17
$50B/[
$50,17
$50B/[
$50,17
$50B/[
6$)(6(/
(1$%/(B/6[
6$),1*67$7(
',$*67$7(
/3',$*5(4/($.B&+6(/[
'67(67/6)(7B7(67
*$3*36
Figure 29. Deployment driver control logic - Turn-on signals
$50,1*67$7(
([SLUDWLRQ
7LPHU
6$),1*67$7(
'(3B(1$%/('67$7(
6
63,B'(35(4[
5
6605(6(7
'(3B',6$%/('67$7(
8S&WU
(;3B7KUHVK
(1
&/5
6
&+['(3
&+[67$7
5
'(3B7KUHVK
8S &WU
(1$%/(B+6[
(1$%/(B/6[
6
',$*67$7(
'67(6738/6(
5
(1
&/5
/6B29(5B&85[
*1'B/266[
'HSOR\
7LPHU
6605(6(7
6
5
&+['6
+6B21[
'67(67+6)(7B7(67
/3',$*5(4/($.B&+6(/[
/6B21[
'67(67/6)(7B7(67
$1$/2*
'HSOR\PHQW%/2&.
*$3*36
160/277
DocID029257 Rev 1
L9680
Deployment drivers
The high level block diagram for the deployment drivers is shown below:
Figure 30. Deployment driver block
66[\
5
Pȍ
5
3DVVLYH
6ZLWFK RII
$FWLYH
6ZLWFK RII
23ZLWKVZLWFKLQJ
2IIVHWFRPSHQVDWLRQ
(QDEOH B+6[
5
66[\
23SKDVH
23SKDVH
5
[,5()
6)[
2SHQWRVKRUWFRPS
Q)
7R GHSOR\
FXUUHQW !
FRXQWHU
5VTXLE 65[
9FODPS !9
,SXOOGRZQ
+6B21
9,179
Q)
6DPHSRZHU
WUDQVLVWRU
/6B21
,5() P$
(1B,6,1.
9,179
3DVVLYH
6ZLWFK RII
/6B2&B&RPS
,OLPLW P$ W\S
6*[\
/RVVJURXQG
GLRGH
(QDEOH B/6[
$FWLYH
6ZLWFK RII
*1'68%
9,179
/6B/RVV B*QG
*$3*36
8.1.1
Deployment current selection
Deployment current is programmed for all channels using the Deploy Configuration Register
(DCRx) shown in Section 7.3.7.
The deploy time selection allows the device to deploy for a time up to 4.032 ms. Careful
considerations should be done in order to avoid damage on the squib driver section for
excessive thermal heat. In order to prevent device damage, it is suggested to avoid
excessive voltage drop between SSxy and SFxy. In case the 1.75 A deployment current
level is selected, the voltage drop across the pins should be limited to maximum 17 V for
deployment times longer than 0.7 ms and up to 2 ms and 15 V up to 3.2 ms. In case 1.2 A is
selected, the voltage drop should be limited to maximum 22 V for deployment times longer
than 2 ms and up to 3.2 ms.
8.1.2
Deploy command expiration timer
Deploy commands are received for all channels using SPI communications. Once a deploy
command is received, it will remain valid for a specified time period selected in the
Deployment configuration registers (DCR_x). The deploy status and deploy expiration timer
can be read through the Deployment status registers (DSR_x). The deploy expiration timer
is selectable via 2 bits and the maximum programmable time is 500 ms nominal.
DocID029257 Rev 1
161/277
276
Deployment drivers
8.1.3
L9680
Deployment control flow
Deployment control logic requires the following conditions to be true to successfully operate
a deployment:

POR = 0

SSM to be either in Safing State or Arming State

a valid arming condition processed by safing logic or ARMx signals to be set
(depending on selection of internal or external safing engine)

channel-specific deploy command request bits to be set via SPI in the Deploy
command Register (DEPCOM)

a global deployment state has to be active, as described in the following figure.
Figure 31. Global SPI deployment enable state diagram
660B5HVHW
'(3B',6$%/('
63,B63,'(3(1'(3(1B:5
63,B63,'(3(1'(3(1B:5
81/2&.
/2&.
'(3B(1$%/('
'!0'03
In case a multiple deployment request would be needed, i.e. deploying the same channel in
sequence, a toggle on DEP_DISABLED has to be performed and a new DEPCOM
command on the same channel has to be sent.
The SPI DEPCOM command is ignored if the device is in the DEP_DISABLED state and the
deploy command is not set. While in DEP_ENABLED state, the following functionalities that
could be active are forced to their reset state:

All squib and DC sensor diagnostic current or voltage sources

All squib, DC sensor and ADC diagnostic MUX settings, state machine, etc.
The SPI_LOCK and SPI_UNLOCK signals are available in the SPIDEPEN command:
High-side and Low-side enablers (ARMx) are assigned to the desired channels by means of
the programmable loop matrix. Loop matrix registers are 4, one for each ARMx signals. In
each loop matrix register 12 bits are present to associate independently loops with ARMx
signals. In case external safing is selected LOOP_MATRIX_ARM4 register is don't care
because ARM4 pin is used to arm the low side of all loops without association matrix.
Deploy commands in the Deploy Command Register (DEPCOM) are channel specific.
Deployment requires a valid arming condition from safing logic or ARMx signals to be set
any time before, during or after the specific sequence of deploy commands is received. It is
feasible for a deploy command to be received without a valid arming condition from safing
logic or the ARMx being set. In this case, the deploy command will be terminated according
162/277
DocID029257 Rev 1
L9680
Deployment drivers
to the Deploy command expiration timer. Likewise, a valid arming condition signal can be
set without receiving a Deploy Command. In this case, the enabling signals will remain
active according to the Arming Enable Pulse Stretch Timer or the ARMx enabling state. The
Arming Enable Pulse Stretch Timers is available in the AEPSTS register.
8.1.4
Deployment current monitoring
A current comparator is used to indicate when the output current from the HSD, SFx,
exceeds the deployment current threshold, ITHDEPL. The timer signal remains active and
increments while the current meets the programmed deploy current as set in the Deploy
Configuration Register. The deploy current counter value is stored in the Deploy Current
Monitor Timer Register XY (DCMTSxy). There is a unique timer register for each channel.
If the deploy current falls below the specified current threshold momentarily and recovers,
the deploy current counter will pause during the drop-out and continue once the current
exceeds the threshold. The deploy current counter will not be reset by the presence or
absence of current in the deployment channel.
Figure 32. Current monitor counter behavior
1RUPDO
RSHUDWLRQ
,6)[
7LPHUSDXVH
7LPHUFRQWLQXHVIURPW
,7+'(3/
W
W
W
W
'!0'03
The deploy current counter is reset to $0000 as soon as a toggle on DEP_DISABLED is
performed and a new DEPCOM command on the same channel is received.
8.1.5
Deployment success
Deploy success flag is set when the deploy timer elapses. This bit (CHxDS) is contained in
the Deploy Status Register. Within the Global Status Word register (GSW), a single bit
(DEPOK) is also set once any of the 12 deployment channels sets a deploy success flag.
8.2
Energy reserve - deployment voltage
One deployment voltage source pin is used for adjacent channels (e.g. SS23 for channels 2
and 3). These pins are directly connected to the high side drivers for each channel.
8.3
Deployment ground return
L9680 is hosted in a particular frame allowing squib driver ground feedback to be connected
to an internal ground ring. This ring is electrically connected to the package exposed pad
and to the GNDSUB1 and GNDSUB2 pins. Connection to these two pins is made by means
of a strong metal layer, therefore this connection is sufficient for all deployments occurring
DocID029257 Rev 1
163/277
276
Deployment drivers
L9680
simultaneously, even in case of only one out of the three possible connections being
available.
8.4
Deployment driver protections
8.4.1
Delayed low-side deactivation
To control voltage spikes at the squib pins during drivers deactivation at the end of a
deployment, the low side driver is switched off after tdepl_ls-dly delay time with respect to the
high side deactivation.
8.4.2
Low-side voltage clamp
The Low side driver is protected against overvoltage at the SRx pins by means of a
clamping structure as shown in Figure 30. When the Low side driver is turned off, voltage
transients at the SRx pin may be caused by squib inductance. In this case a low side FET
drain to gate clamp will reactivate the low side FET allowing for residual inductance current
recirculation, thus preventing potential low side FET damage by overvoltage.
8.4.3
Short to battery
The Low side driver is equipped with current limitation and overcurrent protection circuitry. In
case of short to battery at the squib pins, the short circuit current is limited by the Low side
driver to ILIMSRx. If this condition lasts for longer than tLIM deglitch filter time then the low and
high-side drivers will be switched off and latched in this state until a new deployment is
commanded after SPI_DEPEN is re-triggered.
8.4.4
Short to ground
The squib driver is designed to stand a short to ground at the squib pins during deployment.
In particular, the current flowing through the short circuit is limited by the high side driver
(deployment current) and the high-side FET is sized to handle the related energy.
In case the short to ground during deployment occurs after an open circuit, a protection
against damage is also available. The high side current regulator would have normally
reacted to the open circuit by increasing the Vgs of the high side FET. Thanks to a dedicated
fast comparator detecting the open condition, the driver is able to discharge the FET gate
quickly in order to reduce current overshoot and prevent potential driver damage when the
short to ground occurs.
8.4.5
Intermittent open squib
A dedicated protection is also available in case of intermittent open load during deployment.
In this case, if load is restored after an open circuit, due to slow reaction of the high-side
current regulation loop, the current through the squib is limited only to ILIMSRx by the low
side driver. If this condition lasts for longer than tLIMOS then the high side is turned off for
tHSOFFOS and then reactivated. By this feature, intermittent open squib and short to battery
faults may be distinguished and handled properly by the drivers.
164/277
DocID029257 Rev 1
L9680
8.5
Deployment drivers
Diagnostics
The L9680 provides the following diagnostic feedback for all deployment channels:

High voltage leakage test for oxide isolation check on SFx and SRx

Leakage to battery and ground on both SFx and SRx pins with or without a squib

Short between loops diagnostics

Squib resistance measurement with leakage cancellation and selectable range (10/50 Ω)

High squib resistance with range from 500 Ω to 2000 Ω

SSxy, SFx and VER voltage status

High and Low side FET diagnostics

High side driver diagnostics

Loss of ground return diagnostics

High Side Safing FET diagnostics
The above diagnostic results are processed through a 10 bit Analog to digital algorithmic
converter. These tests can be addressed in two different ways, with a high level approach or
a low-level one. The main difference between the two approaches is that with the low level
approach the user is allowed to precisely control the diagnostic circuitry, also deciding the
proper timings involved in the different tests. On the other hand, the high level approach is
an automatic way of getting diagnostic results for which an internal state machine is taking
care of instructions and timings.
The following is block diagram of the Squib Diagnostics.
DocID029257 Rev 1
165/277
276
Deployment drivers
L9680
Figure 33. Deployment loop diagnostics
9(5SLQ
IURP(QHUJ\5HVHUYH 6<1&%2267
6DILQJ
WUDQVLVWRU
,65&B&855B6(/
,65&
P$
6$7%8&.
66[\
%\SDVV
Q)
6TXLEUHVLVWDQFHPHDVXUH
V\VWHPHUURU 9JQG RU
9%DW
6)[
5/HDN
9UHI Y
Q)
[1
$WR'
6TXLEORRS
GULYHUDQG
GLDJQRVWLF
EORFNV
5VTXLE ȍWRȍ
(0,ORZSDVV
ILOWHU
9RXW
ELW
7RWHUU “/6%
/6% 9
9RIIVHW
+9DQDORJ08;
*DLQ YVXSSO\
9JQG RU
9%DW
65[
,SXOOGRZQ
, P$
6TXLEUHVLVWRU+,*+
5/HDN
6KRUWWR*1'
5OHDN !.ȍQRGHWHFWLRQ
5OHDN .ȍGHWHFWLRQ
Q)
6TXLEUHVLVWRU/2:
6*[
9UHI Y
,6,1.
*1'$
,OLPLW P$
6KRUWWR%$7
5OHDN !.ȍQRGHWHFWLRQ
5OHDN .ȍGHWHFWLRQ
*$3*36
95&0YROWDJHUHJXODWRUFXUUHQWPRQLWRU
The leakage diagnostic includes short to battery, short to ground and shorts between loops.
The test is applied to each SFx and SRx pin so shorts can be detected regardless of the
resistance between the squib pins.
8.5.1
Low level diagnostic approach
In this approach, each of the test steps described in the sections below requires user
intervention by issuing the proper SPI command.
High voltage leakage test for oxide isolation check
This test is mandatory to address possible leakages that could not be experienced at low
voltages on SFx or SRx pins. The Isource current generator (ISRC) is enabled on the chosen
SFx pin. To confirm that the SFx pin has then reached a suitable voltage level, a dedicated
ADC measurement on the SFx pin can be requested. Once this test is performed, a leakage
test on SFx and SRx pins can be issued to double check possible leakages.
Leakage to battery/ground diagnostics
Prior to the real test, the Voltage Regulator Current Monitor block (VRCM) has to be tested
and validated. The validation of VRCM goes into verifying both the short to battery and short
to ground flags.
The Isource current generator (ISRC) is first connected to SFx pin to raise its voltage to
SYNCBOOST. Then, the Voltage Regulator Current Monitor block (VRCM) is enabled and
166/277
DocID029257 Rev 1
L9680
Deployment drivers
connected to the selected SFx pin. The Isink current limited switch (ISNK) is turned off, as
well as the pull-down current generator. If the VRCM block works properly, the short to
battery flag would be asserted.
Then, the Isink current limited switch (ISNK) is connected to SRx pin, the Voltage Regulator
Current Monitor block (VRCM) is enabled and connected to the selected SRx pin. The
Isource current generator (ISRC) is turned off, as well as the pull-down current generator. If
the VRCM block works properly, the short to ground flag would be asserted.
Figure 34. SRx pull-down enable logic
/3',$*5(43'B&855
+6B21[
(1B3'B&855[
/6B21[
/3',$*5(4 ,65&
RU
/3',$*5(4 5(6B0($6B&+6(/[ /3',$*5(4,61.
/3',$*5(4 95&0
RU
/3',$*5(4 /($.B&+6(/[ /3',$*5(4 ',$*B/(9(/ /3',$*5(4 /223B',$*B&+6(/[ DQG *$3*36
/3',$*5(4+,*+B/(9(/ B',$*B6(/
Once the VRCM block is validated, the real leakage tests can be performed. ISRC and
ISNK currents have to be kept switched off. The VRCM shall be connected to the desired
pin (either SFx or SRx pins); by doing this, also the pull-down current on the selected SRx
pin is automatically deactivated). During the test, if no leakage is present the voltage on the
selected SFx or SRx pin will be forced by the VRCM to the VREF level and no current is
detected or sourced by the VRCM. If there is leakage to ground or battery, the VRCM will
sink or source current trying to maintain VREF. Two current comparators, ISTB and ISTG,
will detect the abnormal current flow and the relative flags will be given in the LPDIAGSTAT.
These flags are not latched and report the real time status of the relevant comparators in
case of low-level leakage diagnostic test. Voltage conversion is not required to have these
flags updated. In LPDIAGSTAT register are also reported the channel and the pin (SFx or
SRx) under test, respectively with LEAK_CHSEL and SQP bit fields.
The pull-down currents on the other SRx pins are still active. Therefore, the leakage test
that would show a leakage to ground may be depending on a real leakage on the pin under
test or on a short between loops.
DocID029257 Rev 1
167/277
276
Deployment drivers
L9680
Short between loops diagnostics
In case the previous test has reported a leakage to ground fault, the short between loops
diagnostics shall be run. The same procedure is followed as described for normal leakage
tests except the fact that in this case all the pull-down current generators have to be
deactivated (not only the one for the pin under test), by means of the PD_CURR bit in the
Diagnostic Request Register (LPDIAGREQ). If a leakage or ground fault is not present, then
the channel under test has a short to another squib loop.
Table 10. Short between loops diagnostics decoding
Channel leakage diagnostics with
PD_CURR on (for other channels
than the one under test
Channel leakage diagnostics
with PD_CURR off
(for all channels)
No fault
No fault
Short to battery
STB fault
STB fault
Short to ground
STG fault
STG fault
Short between loops
STG fault
No fault
Fault condition on
squib channel
No shorts
The condition of two open channels, i.e. without squib resistance connecting SFx to SRx,
that have a short between loops on SFx cannot be detected. If only one of the two shorted
SFx pins is open, the fault will be indicated on the open channel.
Squib resistance measurement
During a resistance measurement, a two-step process is performed. At the first step, both
ISRC current generator and ISNK current limited switch are enabled and connected to the
selected SFx and SRx channel, through ISRC, ISRC_CURR_SEL, ISNK and
RES_MEAS_CHSEL bit fields in the Loop Diagnostic Request Register (LPDIAGREQ). The
ISRC current can be configured to either 40 mA or 8 mA nominal value through the
ISRC_CURR_SEL bit in the LPDIAGREQ register providing the user with two different
measurement range options. A differential voltage is created between the SFx and SRx pin
based on the ISRC current and squib resistance between the pins. The SPI interface will
provide the first resistance measurement voltage (Vdiff1) based on the amplifying factor of
the differential amplifier and a 10 bit internal ADC conversion. The second measurement
step (bypass measurement) is performed redirecting ISRC to the selected SRx pin, while
keeping ISNK on; this way, the differential amplifier and following ADC will output the offset
measurement through SPI (Vdiff2). Microcontroller is then allowed to calculate the
mathematical difference between first and second measurements to obtain the real squib
resistance value.
R SQ
 R LKG_SF  R SQ
- + -------------------------------------------  V LKG_SF – V SRx_RM  +
V diff 1 = G RSQ  I SRC_*   ------------------------------------------ R LKG_SF + R SQ R LKG_SF + R SQ
+ G RSQ  V off _RSQ
G RSQ  R SQ
-   V LKG_SF – V SRx_RM  + G RSQ  V off _RSQ
V diff 2 = ------------------------------------------R LKG_SF + R SQ
V diff 1 – V diff 2
R SQ = ---------------------------------------- (assuming RLKG_SF >> RSQ)
G RSQ  I SRC_*
168/277
DocID029257 Rev 1
L9680
Deployment drivers
The simplification in the calculation method reported above can result in some amount of
error that is already incorporated in the overall tolerance of the squib resistance
measurement reported in the electrical parameters table.
Values of each measurement step can be required addressing the proper ADCREQx code
in Section 7.3.33: ADC request and data registers (DIAGCTRL_x).
This calculation is tolerant to leakages and, thanks to a dedicated EMI low-pass filter, also to
high frequency noises on squib lines. Moreover, L9680 features a slew rate control on the
ISRC current generator to mitigate emissions.
High squib resistance diagnostics
With this test, the device is able to understand if the squib resistance value is below 200 Ω,
between 500 Ω and 2000 Ω or beyond 5000 Ω. During a high squib resistance diagnostics,
VRCM and ISNK are enabled and connected respectively to SFx and SRx on the selected
channel. VREF voltage level will be output on SFx. Current flowing on SFx will be measured
and compared to ISRlow and ISRhigh thresholds to identify if the resistance is above or below
RSRlow or RSRhigh levels. The results are reported in the LPDIAGSTAT register. The
relative flags (HSR_HI and HSR_LO) are not latched and reflect the current status of the
comparators.
High and low side FET diagnostics
This couple of tests can only be run during the diagnostic mode of the power-up sequence
Figure 10. Tests are performed individually for HS driver or LS driver, with two dedicated
commands. Prior to either the HS or LS FET diagnostics being run, the VRCM has to be first
enabled. Within the command to enable the VRCM, also the channel onto which the FET
test will be run has to be selected with the LEAK_CHSEL bit field. Running the leakage
diagnostics with the appropriate delay time prior to either the HS or LS FET diagnostics will
precondition the squib pin to the appropriate voltage level. When the FET diagnostic
command is issued with the Diagnostic Register SPI command (SYSDIAGREQ), the VRCM
flags will be cleared, the VRCM deglitch filter time is switched from the leakage diagnostic
deglitch filter time (TFLT_LKG) to the FET test deglitch filter time (TFLT_LKGB_FT) for both
HS and LS and the output of the VRCM deglitch filter is now allowed to disable the
appropriate HS or LS squib driver during FET test.
The device monitors the current through the VRCM. If the FET is working properly, this
current will exceed IHS_FET_TH or ILS_FET_TH current threshold, respectively for HS or LS
FET test for the deglitch filter time of TFLT_LKGB_FT, and the driver under test is turned off
immediately and automatically.
If there is a substantial leakage fault to Vbat or GND present during the FET test, leading
this leakage current to exceed the IHS_FET_TH or ILS_FET_TH current threshold, for the
deglitch filter time of TFLT_LKGB_FT, then the driver under test is turned off immediately
and automatically, and the corresponding VRCM flag, STG or STB, is set.
If the current does not exceed the current threshold, the test will be terminated and the
driver is anyway turned off within TFETTIMEOUT.
DocID029257 Rev 1
169/277
276
Deployment drivers
L9680
Table 11. HS FET TEST
VRCM Flags
Result
STG
STB
0
0
FET test fail
0
1
FET test pass
OR
Leakage to Vbat
1
0
FET test disabled
due to Leakage to Gd
1
1
State not possible
Table 12. LS FET TEST
VRCM Flags
Result
STG
STB
0
0
FET test fail
0
1
FET test disabled
due to Leakage to Vbat
1
0
FET test pass
OR
Leakage to GND
1
1
State not possible
During TFETTIMEOUT period, the bit stating that the FET is enabled will be set (FETON=1)
and will be cleared as soon as the FET is switched back off.
For all conditions the current on SFx/SRx pins will not exceed the VRCM current limitation
value (ILIM_VRCM_SINK or ILIM_VRCM_SRC). There may be higher currents on the squib lines
due to the presence of filter capacitors. During these FET tests, energy available to the
squib is limited to less than EFET_TEST. For high side FET diagnostics, if no faults were
indicated in the preceding leakage diagnostics then a normal result would be [STB=1,
STG=0]. If the returned result for the high side FET test is not as the previous then either the
FET is not functional, a short to ground occurred during the test, or there is a missing SSxy
connection for that channel.
For low side FET diagnostics if no faults were indicated in the preceding leakage
diagnostics then a normal result would be [STB=0, STG=1]. If the returned result for the low
side FET test is not as the previous then either the FET is not functional or a short to battery
occurred during the test. In case of ground loss the low-side FET diagnostic would not
indicate a FET fault.
The VRCM flags will be given in the LPDIAGSTAT register. The status of the VRCM flags
after FET test is latched and can be cleared upon either LPDIAGREQ or SYSDIAGREQ SPI
commands.
Finally, after FET test is completed, the VRCM deglitch filter time is switched from the FET
test deglitch filter time (TFLT_LKGB_FT) to the leakage diagnostic test deglitch filter time
170/277
DocID029257 Rev 1
L9680
Deployment drivers
(TFLT_LKG) for both HS and LS and the output of the VRCM deglitch filter is now not
allowed to disable the appropriate HS or LS squib driver anymore.
High side driver diagnostics
This test is intended to verify the proper functionality of the HS FET driver, but also the
external squib connection and other internal circuitries.
First, the ISNK current has to be activated via the LPDIAGREQ register; the channel onto
which the ISNK current is activated has to be selected with the RES_MEAS_CHSEL bit
field. Then, the HS FET related to the loop channel as indicated in the RES_MEAS_CHSEL
bit field is activated with the dedicated DSTEST code for the HS squib driver test in the
Diagnostic Register SPI command (SYSDIAGREQ). In such condition, the HS driver will
control the FET current to a level ILIM_HS_FET much lower than the usual deployment
current. The HS_DRV_OK flag will be set accordingly to the test result in the LPDIAGSTAT
register, as soon as the deployment current monitoring comparator will detect that the
current through the HS FET exceeds the diagnostic current threshold, 90%*ILIM_HS_FET.
Loss of ground return diagnostics
This diagnostics is available during a squib measurement or a high side driver diagnostics.
This test is based on the voltage drop across the ground return, if the voltage drop exceeds
SGxy_OPEN, ground connection is considered as lost. Should the ground connection on the
squib driver circuit be missing, the bit related to the channel under test by the two above
diagnostics will be activated in the LP_GNDLOSS register. The flag is latched after a proper
filter time TFLT_SGOPEN and cleared upon read.
High side safing FET diagnostics
This test has to be issued during the Diag state of the power-up sequence (Figure 10).
Safing FET has to be switched on with the proper code in DSTEST bit field of the
SYSDIAGREQ. Therefore, when the command is received, the device will activate VSF
regulator to supply the external safing FET controller. The user can measure the voltage
levels of both the VSF regulator and the SSxy nodes. If the safing FET is properly switched
on, the voltage on SSxy will be regulated.
The measurement request is done via Diagnostic Control command (DIAGCTRLx), while
results will be reported through ADCRESx bit fields.
Deployment Timer diagnostic
This test allows verifying the correct functionality and duration of the timers used to control
the deployment times. This test can be executed only when the IC is in the Diag state by
setting the appropriate code in the DSTEST field of the SYSDIAGREQ register. When the
test is launched, the IC sequentially triggers the activation of the deployment timers of the
various channels (each of them separated by 8ms idle time) and outputs the relevant
waveform to the ARM1 output discrete pin. See the sequence detail in Figure 35. The μC
can therefore test the deployment times by measuring the duration of the high pulses sent
by the IC on the ARM1 pin. The deployment time configuration used during this test is the
latest one programmed in the DCRx registers. In case the test is run on a channel with no
DCRx deployment time previously configured, a default 8 μs high pulse is output on ARM for
the relevant channel.
DocID029257 Rev 1
171/277
276
Deployment drivers
L9680
Figure 35. Deployment timer diagnostic sequence
660B5(6(7
38/6(B7(67[ 37B705 7SXOVHBSHULRG
38/6(B7(67DOOBFK[ 37B2))
37B705 7SXOVHBSHULRG
37B705 38/6(B7(67RWKHU 38/6(B7(67 IRU7SXOVHBKLJK
37
37B705 7SXOVHBSHULRG
37B705 38/6(B7(67RWKHU 38/6(B7(67 IRU7SXOVHBKLJK
37B:$,7
)URPDQ\VWDWH
',$*VWDWH63,B6<65(4'67(67 38/6(
38/6(B7(67[ 37
37B705 7SXOVHBSHULRG
37B705 38/6(B7(67RWKHU 38/6(B7(67 IRU7SXOVHBKLJK
37
37
37
37
37B705 7SXOVHBSHULRG
37
37B705 38/6(B7(67RWKHU 37
38/6(B7(67Q IRU7SXOVHBKLJK
37
37
37
37
37B705 7SXOVHBSHULRG
37B705 38/6(B7(67RWKHU 38/6(B7(67 IRU7SXOVHBKLJK
37B705 7SXOVHBSHULRG
37B705 38/6(B7(67RWKHU 38/6(B7(67 IRU7SXOVHBKLJK
37B705 7SXOVHBSHULRG
37B705 38/6(B7(67RWKHU 38/6(B7(67 IRU7SXOVHBKLJK
*$3*36
Squib diagnostics with common SRx connected loops
In case of two SRx pins are intentionally connected together, the PD_CURR_CSR bit of the
Deployment Configuration register (DCR_x, where x = 0, 2, 4, 6, 8, A) must be used to
indicate which loop pairs have the common SRx connection. The purpose of this additional
bit is to control the pull-down current on each channel to be consistent with or without the
Common SRx connected loops. When the DCR_x(PD_CURR_CSR) bit is set for one loop
pair and the Deployment diagnostic is run on that loop pair, the pull-down current is disabled
on both channels of the loop pair selected.
For the squib channel pair with common SRx connection, to understand if the two SFx pins
are shorted together, the squib resistance measurement must be required with the following
setting: LPDIAGREQ[12:11]=11. In this way the ISRC current generator is enabled on the
channel selected by RES_MEAS_CHSEL[3:0] bits while the Differential Operational
Amplifier is connected on the other channel of the squib channel pair. If the short between
the two SFx pin is not present then the Squib resistance measurement results will be close
to 0, otherwise it will be half the real squib resistance.
Loop diagnostics control and results registers
Diagnostic tests and channels for each test are controlled through the Loop Diagnostic
Request Register (LPDIAGREQ), diagnostic results are stored in the Loop Diagnostic
Status Register (LPDIAGSTAT).
172/277
DocID029257 Rev 1
L9680
Deployment drivers
8.5.2
High level diagnostic approach
In this approach, the test steps described in the sections below are coded into a dedicated
state machine that helps reducing the user intervention to a minimum.
The high-level diagnostic commands are contained in the LPDIAGREQ, LOOP_DIAG_SEL,
and LOOP_DIAG_CHSEL registers. The high-level diagnostic response is available in the
LPDIAGSTAT register.
The concept is depicted in the following figures.
Figure 36. High level loop diagnostic flow1
,OWLEVELDIAGNOSTICISSELECTEDBIT
OF,0$)!'2%1ISLOW/2ANINVALID
HIGHLEVELDIAGNOSTICISSELECTED/2WE
AREIN$%0?%.!",%$STATE
4)0
,EAKAGETESTTIMEELAPSED
3",FLAGISASSERTEDIF34'
ISNOMOREPRESENT
,EAKAGEISDETECTEDDUETO
THEFACTTHAT&%4SWORK
PROPERLY/2&%4TEST
TIMEOUTELAPSED
$)!'?/&&
.EWHIGHLEVELDIAGNOSTICREQUEST
BITOF,0$)!'2%1ISHIGH
62#-CHECKTIMEELAPSED
!.$62#-#(%#+TEST
ISSELECTED/262#-FAILS
4)0
7AITENAUGHTIMETO
BESURETHATALL
CURRENTSANDVOLTAGES
SUPPLIESSTARTIN/&&STATE
7!)4?/&&
/FFTIME—S
,ATCH34"34'FLAGS
&0IF,%!+!'%OR
&%44TESTSARESELECTED
/FFTIMEELAPSED!.$NEW
DIAGNOSTICREQUESTIS
62#-?#(%#+/2
,%!+!'%/23",/2
&%4TESTS
62#-?#(%#+
&%44%34
4)0
&%4TESTTIMEOUT—S
%NABLE62#$ISABLE)32#AND)3).+
%NABLE(3OR,3&%4IFALSO
$34%34OR
,EAKAGETESTTIMEELAPSED
!.$&%4TESTISSELECTED
!.$./LEAKAGEISPRESENT
,EAKAGETESTTIMEELAPSED
!.$,%!+!'%TEST/2
3",ANDNOLEAKAGEIS
PRESENT/2&%4TESTAND
LEAKAGEISPRESENT
,ATCH34"34'FLAGS
&0IF&%4TESTISSELECTED
4)0
,%!+!'%?4%34?
%NABLE62#$ISABLE)32#AND ,EAKAGETESTTIME—S
)3).+
$ISABLE!,,PULL
DOWNCURRENTS
62#-CHECKTIME—S—S
4)0
%NABLE62#$ISABLE)32#AND)3).+
,EAKAGETESTTIMEELAPSED
!.$3",ISSELECTED
!.$LEAKAGEISPRESENT
,%!+!'%?4%34?
,EAKAGETESTTIME—S
4)0
%NABLE62#$ISABLE)32#AND)3).+
'!0'03
DocID029257 Rev 1
173/277
276
Deployment drivers
L9680
Figure 37. High level loop diagnostic flow2
,OWLEVELDIAGNOSTICISSELECTEDBIT
OF,0$)!'2%1ISLOW/2ANINVALID
HIGHLEVELDIAGNOSTICISSELECTED/2WE
AREIN$%0?%.!",%$STATE
%NDOFCONVERSION
3TORERESULTIN!$#2%3"
$)!'?/&&
4)0
2ESISTANCERANGETESTTIMEELAPSED
,ATCH(32?()(32?,/FLAGS
315)"2%32!.'%
4%34
.EWHIGHLEVELDIAGNOSTICREQUEST
BITOF,0$)!'2%1ISHIGH
/FFTIMEELAPSED!.$NEW
DIAGNOSTICREQUESTIS315)"
2%3)34!.#%2!.'%TEST
4)0
7AITENOUGHTIMETO
BESURETHATALL
CURRENTSANDVOLTAGES
SUPPLIESSTARTIN/&&STATE
7!)4?/&&
2ESISTANCERANGETEST
SETTINGTIME—S—S
4)0
%NABLE62#%NABLE)3).+
/FFTIME—S
/FFTIMEELAPSED!.$NEW
DIAGNOSTICREQUESTIS
315)"2%3)34!.#%MEASURETEST
%NDOFSETTINGTIME
315)"2%3-%!3
#/.6
315)"2%3-%!3
#/.6
%NDOFCONVERSION
3TORERESULTIN!$#2%3!
%NDOFSETTINGTIME
315)"2%3-%!3
3%44,%
4)0
%NABLE)32#ON3&X
%NABLE)3).+
2ESISTANCETEST
SETTINGTIME—S—S
315)"2%3-%!3
3%44,%
4)0
2ESISTANCETEST
%NABLE)3).+
SETTINGTIME—S—S
%NABLE)32#
"90!33)32#ON32X
'!0'03
174/277
DocID029257 Rev 1
L9680
9
Remote sensor interface
Remote sensor interface
The L9680 contains 4 remote sensor interfaces, capable of supporting PSI-5 protocol
(synchronous mode, increased voltage, extended range) and active wheel speed sensors.
A simplified block diagram of the interface is shown below. The interface supply is given on
the SATBUCK pin (refer to Figure 3: Power supply block diagram). The circuitry consists of
a power interface that mirrors current flowing in the external sensor and transmits this
current information to the decoder, which produces a digital value for each remote sensor
channel. The voltage at the RSUx pins can be limited by the power interface in case of
SATBUCK supply overvoltage to protect the external sensors. Decoded data are then
output through the Remote Sensor Data Registers (RSDRx). Received signals can be
processed to the corresponding discrete logic output pin WS0-WS3. The power interface
also contains error detection circuitry. When a fault is detected, the error code is stored in a
global SPI data buffer in the Remote Sensor Data Registers (RSDRx).
Figure 38. Remote sensor interface logic blocks
5HPRWH6HQVRU&RQILJXUDWLRQ5HJ56&5[
5HPRWH6HQVRU&RQWURO5HJ56&75/
5HPRWH6HQVRU'DWDDQG)DXOW5HJ;56'5[
0DQFKHVWHU
'HFRGHU
)DXOW
'HWHFWLRQ
3RZHU
,QSXW
3URWHFWLRQ
;
568[
*$3*36
Remote sensor configuration can be addressed via the Remote Sensor Configuration
Registers (RSCRx). Some of the bit fields in the RSCRx registers are available depending
on the chosen configuration, remote sensor rather than wheel speed sensors. In particular,
TSxDIS bit allows overriding the time slot control for PSI5 I/F and BLKTxSEL allows
selection between 5ms and 10ms for the blanking time applied to the current limitation fault
detection each time a channel is activated.
The Remote Sensor Control Register (RSCTRL) allow for interface channels to be switched
on and Off and for Sync Pulse control via SPI.
The remote sensor interface reports both data information and fault information in the
Remote Sensor Data Register (RSDRx). The device accommodates for a total of 12 data
registers. Independent data registers are defined for each remote sensor interface and are
formatted differently based on whether the interfaces are programmed for PSI-5 remote
sensor functions or active wheel speeds.
In the VDA sensor communication, data bit D0 in the RSDRx register might be used by the
sensor as a fault bit. Therefore, this bit is latched as D0_L in order to detect whether a fault
has occurred: the eight data bits are updated every speed pulse so intermittent fault
conditions could be lost. This bit is cleared-upon-read.
If the device detects an error on the sensor interface, the MSB in RSDRx (FLTBIT) will be
set to '1' and the following bits will be used to report the detected errors. Otherwise, the
register will contain only data information. Detailed information on data and fault reporting
are explained in the following sections.
DocID029257 Rev 1
175/277
276
Remote sensor interface
L9680
When a fault condition is detected, the RSFLT bit of the global status word (GSW) is set to
1. Faults other than Short to Ground and Over-temperature will only clear after read, not by
the disabling of channel.
Data are cleared upon reading the RSDRx register.
9.1
PSI5 mode
All channels are compliant to the PSI-5 v1.3 specification as described below:

Two-wire current interface

Manchester coded digital data transmission

High data transmission speeds of 125 kbps and 189 kbps

Variable data word length (8 & 10 bit only)

1-bit parity

Synchronous operating mode with 3 time slots
An example of the data format for one possible PSI-5 protocol configuration is shown below.
Data size and the error checking may vary, but the presence of 2 sync start bits (referenced
below as sync bits) and 2 TGap time is consistent regardless.
Figure 39. PSI-5 remote sensor protocol (10-bit, 1-bit parity
$ATA4RANSMISSION
4'!0
FRAMEDURATION
3 3 $ $ $ $ $ $ $ $ $ $ 0
-ANCHESTER#ODE
4RANSMISSIONOFX%
X%B
4")4
9.1.1
'!0'03
Functional description
The Remote Sensor Interface block provides a hardware connection between the
microcontroller and up to twelve remote sensors (maximum three per channel). Each
channel is independent on the others, and is not influenced by possible fault conditions
occurring on other channels, such as short circuits to ground or to vehicle battery. Each
channel is supplied by a current limited DC voltage derived from SATBUCK, and monitors
the current sunk from its supply in order to extract encoded data. The remote sensor
modulates the current draw to transmit Manchester-encoded data back to the receiver. The
current level detection threshold for all channels is internally computed by the IC in order to
adapt the signal level to the sensors quiescent current.
All channels can be enabled or disabled independently via SPI commands. The operational
status of all channels can also be read via SPI command. All channels support individual
selective sync-pulse control to allow communication back to the remote sensor via syncpulse voltage modulation as described in the PSI5 v1.3 specification.
176/277
DocID029257 Rev 1
L9680
Remote sensor interface
The message bits are encoded using a Manchester format, in which logic values are
determined by a current transition in the middle of the bit time. When configured for PIS5
sensors each interface supports Manchester 2 encoding as shown in Figure 40. When
configured for VDA sensors the protocol supported is Manchester 1.
Figure 40. Manchester bit encoding
%LWWLPH
3TARTBITS
,OGICgg
&XUUHQW
µ¶
,OGICgg
µ¶
µ¶
µ¶
µ¶
-ANCHESTER
03)
'!0'03
The sensor input filter time, deglitch filter, (delay until a threshold crossing is detected) can
be configured in 15 steps. Filters can be selected individually for each channel, through the
Remote Sensor Configuration Register, WSFILT bits
The received message data are stored in input data registers that are read out by the
microcontroller via the SPI interface. For PSI5, three data registers per channel are used to
store remote sensor messages received during timeslots 1, 2, and 3 respectively. Each
register is updated after a certain delay (TWRITE_EN_DELAY ) from the end of relative
sensor message. All the bits inside the registers itself are simultaneously updated upon
reception of the remote sensor message to prevent partial frame data from being sampled
via the SPI interface. After the data for a given channel is read via the SPI interface,
subsequent requests for data from this channel will result in an error response.
To allow for sampling synchronization of remote sensor data with the software in the
microcontroller, the Remote sensor Interface block includes sync-pulse circuitry to signal
initiation of sampling in the remote sensor. The sync-pulse is output to the remote sensors in
the form of an increased voltage level on the RSUx pins when sampling is to be conducted.
The higher voltage level required for the sync-pulse is sourced from the SYNCBOOST
boost regulator. Pulse shaping is used to limit the slew rate of the pulses to reduce EMI.
Feedback protection is provided to prevent fault conditions on one channel from affecting
the others during sync-pulse generation. The microcontroller schedules the activation of the
sync pulses to the four channels by providing a periodic signal to the SATSYNC pin. When a
rising edge is detected on SATSYNC pin, the Remote sensor Interface block outputs sync
pulses on channels RSU0-RSU3 in sequence to reduce the average current inrush to the
remote sensors as shown in Figure 41. The voltage source in the Remote Sensor Interface
block can source and sink current and is used to discharge the bus capacitance at the end
of the sync pulse. The pull down device used to sink current is current limited.
DocID029257 Rev 1
177/277
276
Remote sensor interface
L9680
Figure 41. Remote sensor synchronization pulses
6$76<1&
6$7)'
6$7)'
6$7)'
6$7)'
*$3*36
L9680 supports three time slots in a sync period with associated RSDRx registers. The
messages received within one sync period are routed to the corresponding RSDRx register
associated to each time slot. A time slot control is performed to check if the incoming
messages fall within the valid time slots reported in Table 62 and sketched in Figure 42 If
the end of the received message occurs after the end of the checked outside a valid time
slot, a SLOT_ERROR fault will be detected and stored in the related RSDRx register. If two
messages end within the same slot, the second message will be assigned to that slot,
regardless its validity. The time slot control can be disabled by setting the TSxDIS bit in the
RSCRx register.
Figure 42. PSI5 slot timing control
6$76<1&3,1
6<1&38/6((1$%/(
W
7B(6B 7B/6B
36,IUDPHV
)URP6DWHOOLWH
7B((B
7B/(B7B(6B 7B/6B
6ORW
7B((B 7B/(B 7B(6B
7B/6B
6ORW
7B((B
7B/(B
6WRSELWQRW
LQFOXGHG
6ORW
7BVBHQGBFORVXUHPLQ
7BVBHQGBFORVXUHPD[
7BVBHQGBFORVXUHPLQ
7BVBHQGBFORVXUHPD[
7BVBHQGBFORVXUHPLQ
7BVBHQGBFORVXUHPD[
)UDPHHQG
'HWHFWZLQGRZV
7BVBHQGBRSHQPLQ
7BVBHQGBRSHQPD[
5HFHLYHU
5HVSRQVH
(UURU6ORW
7BVBHQGBRSHQPLQ
7BVBHQGBRSHQPD[
9DOLG
6ORW
(UURU6ORW
7BVBHQGBRSHQPLQ
7BVBHQGBRSHQPD[
9DOLG
6ORW
(UURU
6ORW
9DOLG
6ORW
(UURU6ORW
*$3*36
178/277
DocID029257 Rev 1
L9680
Remote sensor interface
The remote sensor interface is also able to detect faults occurring on the sensor interface.
The Remote Sensor Data Register (RSDRx) will report multiple fault flags.
When the number of bits decoded is incorrect (either too many or too few), a bit error is
indicated. When any bit error is detected (bit time, too many bits, too few bits), the decoder
will revert to the minimum bit time of the selected range and the message is discarded.
Error bit INVALID is an OR-ed combination of the following errors:

Start bit error outside of selected operating range

Data length error or stop bit error

Parity Error of received Remote sensor Message

Bit time error (a data bit edge is not received inside the expected time window)
9.1.2
Sensor data integrity: LCID and CRC
Each RSDRx data register contains a Logical Channel ID which is a 4/2-bit field for remote
sensors used to link the received data to the corresponding logical channel number. Each
RSDRx register contains also a CRC bit field computed on the data packet for data integrity
check. To satisfy functional safety requirements LCID, DATA and CRC bit fields propagate
through the same data path as a single item to the SPI output.
The polynomial calculation implemented for PSI5 data is described as in PSI5 specification
g(x)=1+x+x^3 with initialization value equal to ‘111’.
Below are the equations to calculate the CRC in combinatorial way.
CRC[2] = CRCext[0]+D[0]+D[1]+D[3]+D[6]+D[7]+D[8]+D[10]+D[13]+D[14]+D[15]
CRC[1] = CRCext[2]+D[0]+D[1]+D[2]+D[4]+D[7]+D[8]+D[9]+D[11]+D[14]+D[15]+D[16]
CRC[0] = CRCext[1]+CRCext[0]+D[0]+D[2]+D[5]+D[6]+D[7]+D[9]+D[12]+D[13]+D[14]+D[16]
Where D[16:0]= RSDR[16:0] and CRCext[n] are the starting seed values (all '1').
9.1.3
Detailed description
Manchester decoding
The Manchester decoder will support remote sensor communication as per PSI
specification rev 1.3 for the modes configurable via the STS bits in the RSCRx registers.
The Manchester Decoder checks the duty-cycle and period of the start bits to determine
their validity, depending on the configuration of the PERIOD_MEAS_DISABLE bit in the
RSCRx registers. The expected time windows for the mid bit transitions of each subsequent
bit within the received frame are determined by means of the internal oscillator time base.
Glitches shorter than 25% of the minimum bit time duration are rejected.
DocID029257 Rev 1
179/277
276
Remote sensor interface
L9680
Figure 43. Manchester decoder state diagram
5(6(7B'(&2'(5Æ
6WUREH 5(6(7B&17
,'/(
7
3(5,2'BB
6WUREH5(&B(1'
6WUREH 5(6(7B&17
FKHFN3$5,7<B(55
7
7
5,6,1*B('*(Æ
3(5,2'BB
6WUREH 5(6(7B&17
7
6WUREH5(6(7B&17
$1<DQG3(5,2'BB
6WUREH 5(6(7B&17
7D
7
$1<DQG
3(5,2'BBRUQRW ),567
%
6WUREH 0$1<%,76
6WUREH 5(6(7B&17
:$,7
7*$3
3HULRGBBDQG$1<B('*(Æ
6WUREH5(6(7B&17
$
$
7E
3HULRGBBDQGQRW$1<B('*(
(5525
%
%
67$57%,7
'(7
(
&
7
'
ILUVWSXOVHGXW\F\FOHFKHFN
)$//,1*B('*(EHIRUHSHULRGBB Æ
6WUREH5(6(7B&17
7
7D
5,6,1*B('*(3HULRGBBÆ
6WUREH5(6(7B&17
3(5,2'BB DQG$1<
VWUREH&+(&.B7,0(
7E
6WUREH5(6(7B&17
3(5,2'BB DQGQRW$1<
VWUREH &+(&.B7,0(
7
$1<DQG
QRW 3(5,2'BB DQG
QRW ),567B('*(
6WUREH 5(6(7B&17
6WUREH &+(&.B7,0(
$
%
(
'$7$5(&
7
'
7
$1<DQG
3(5,2'BBDQG 67$7( &B1%
6WUREH 5(6(7B&17
6WUREH 1(;7%,7
5,6,1*DQG3(5,2'BB
6WUREH5(6(7B&17
&
7
$1<DQG QRW3(5,2'BB DQG
3(5,2'BBDQGQRW 67$7( &B1%
6WUREH 5(6(7B&17
6WUREH1(;7%,7
'DWD)LOW
5,6,1*B('*(
)$//,1*B('*(
$1<
&B1%
67$7(
%LW&RXQWHU
3HULRGBB
3HULRGBB
3HULRGBB
),567B('*(
180/277
)LOWHUHG5DZ'DWD 5;6$7IURP&XUUHQW'HPRGXODWRU DIWHUGHJOLWFKHU 'DWD)LOWQQ ³´
'DWD)LOWQQ ³´
5,6,1*B('*(RU)$//,1*B('*(
ELWIUDPHFRQILJXUDWHG "
^#,'/(#67$7%,7'(7#767$7(#7[( #:$,7[)#(5525`
5(6(7B&17"%LW&RXQWHU
%LW&RXQWHU! %LW3HULRG
%LW&RXQWHU! %LW3HULRG
*$3*36
%LW&RXQWHU! %LW3HULRG
3HULRGBB"$1<" ),567B('*(DIWHUDGHOD\RI7FN 5HPDUNQRWDFRPELQDWRULDOVLJQDO DocID029257 Rev 1
L9680
Remote sensor interface
A Manchester Decoder Error occurs if one or more of the following are true:

Two valid start bits are detected, and at least one of the expected 13 mid-bit transitions
are not detected

Two valid start bits are detected, and more than 13 mid-bit transitions are detected

When the number of bits decoded is incorrect (either too many or too few), a bit error is
indicated. When any bit error is detected (bit time, too many bits, too few bits), the
decoder will revert to the minimum bit time of the selected range and the message is
discarded.
The Manchester decoder re-initializes at the start of each timeslot, such that remote sensor
frames violating timeslot boundaries will result in the setting of a Manchester Error. All errors
are readable through the Sensor Fault Status Register and the RSFLT bit in the Global
Status Word Register.
When a valid message is correctly decoded, the 10/8 data bits are stored into the
appropriate RSDRx register together with the related LCID. The RSDRx register contains
the 10/8 bits data as they are received from the sensor (no data range check/mask is done
at this stage). The 8-bit data word is right-justified inside the 10-bit data field in the RSDRx
registers.
Current sensor w/ auto-adjust trip current
The current sensor is responsible for translating the current drawn by the sensor into a
digital state. Each remote sensor channel has a dedicated current sensor.
The current flowing through the RSU power stage is internally downscaled by a factor 100,
sent to a 10 bits A/D converter and digitally processed to extract both the sensor quiescent
and delta currents.
The delta current threshold for signal detection can either be fixed or auto-adjusted to the
actual calculated sensor delta current, depending on the FIX_THRESH bit setting in the
RSCRx registers.
The current trip point is dynamically determined by adding the delta current threshold
(fixed/auto-adjusted) to the quiescent current (auto-adjusted). The RSU current is compared
against the current trip point to determine the current demodulator digital output. A logic '1'
represents the sensor current above the current trip point. The current demodulator output
is fed into the Manchester decoder and optionally to the WSx discrete output pins,
depending on the configuration of the RSPTEN bit in the RSCRx registers.
Thanks to the quiescent and delta current tracking features the receiver is capable to
automatically adapt to different nominal sensor currents and/or to be tolerant to sensor
current drifts over lifetime.
Both the sensor quiescent and delta current tracking algorithms can be configured by
setting appropriately the REDUCED_RANGE, BLOCK_CURR_IN_MSG and AVG/SSDIS
bits in the RSCRx registers.
DocID029257 Rev 1
181/277
276
Remote sensor interface
9.2
L9680
Active wheel speed sensor
The remote sensor interface circuit conditions and decodes active wheel speed sensor
signals with various pulse widths and output currents. The following sensor types are
supported and selected through the Remote Sensor Configuration Register (RSCR)

Standard active 2-level wheel speed sensors (7/14 mA)

Three level (7/14/28 mA) VDA compliant sensor with direction and air gap information
(‘Requirement Specification for Standardized Interface for Wheel Speed Sensor with
Additional Information’, Version 2.0)

PWM encoded 2-level sensors with 2 edges per tooth (see data sheet Infineon® IC
TLE4942/BOSCH DF11)

PWM encoded 2-level sensors with 1 edge per tooth (see data sheet Allegro®
ATS651LSH/BOSCH DF11)
Received wheel speed frames from all the above sensors are decoded into signals suitable
for the microcontroller through the four WSx output pins (WS0-WS3). Specific information is
shown in Figure 44.
For all sensors, other than the standard active 2- level sensor, additional sensor data
(diagnostics, etc…) are decoded and available within the Remote Sensor Data Registers
(RSDR0, RSDR1, RSDR3, RSDR4). If standard active 2- level sensor is selected the
content of the Remote Sensor Data Registers will be NO DATA fault.
Only for 2-level sensors (STD or PWM encoded) the user may choose to have all sensor
data processed through the microcontroller by selecting pass through mode, WSPTEN,
within the Remote Sensor Configuration Register (RSCR). In pass through mode, the
remote sensor interface simply transforms the incoming sensor current pulses to digital
voltage pulses on the WSx pins, no decoding is performed.
The sensor input filter time, deglitch filter (delay until a threshold crossing is detected) can
be configured in 15 steps. Filters can be selected individually for each channel, through the
Remote Sensor Configuration Register, WSFILT bits.
For PWM encoded sensors with 2 edges per tooth not in pass through mode, the standstill
signal can be processed directly to the WSx output pins. This is done in the Remote Sensor
Configuration Register, SSEN bit.
Since the decoder has to measure the pulses in order to determine, whether they are standstill pulses or not, the first standstill pulse will always be seen on the WSx output pins and
the first not stand-still pulse after a stand-still period will be suppressed.
For 3-levels VDA sensors the device performs parity check on the received data frame. In
case a parity error is detected, the INVALID fault bit of the RSDRx register will be set.
Data from the sensor are not latched: last incoming frame overwrites the previous one once
validated. Faults coming from diagnostic (i.e. over current, short to ground or battery) are
latched until the microcontroller reads them.
Sensor signal decoding is done according to two possible algorithms:

Auto-adjusting current trip points.
With this option, the IC is able to find sensor DC current value (named IB0) in the range
from 2.5 mA to 21 mA (default is 7 mA).
The IC is also able to detect the current value of the data pulse and compute the first
threshold (named Ith1): Ith1 = IB0 + Ith1/2 where Ith1 is in the range from 5 mA to
9.3 mA (default is 7 mA).
182/277
DocID029257 Rev 1
L9680
Remote sensor interface

Besides, in case of VDA selected, the ASIC is also able to recognize the current value
of the speed pulse by computing a second threshold (named Ith2): Ith2 = IB0 + Ith1 +
Ith2/2 where Ith2 in the range from 10 mA to 18.6 mA (default is 14 mA)
Fixed current trip points where the thresholds are set via SPI. The default value for first
threshold is 9.8 mA and for second threshold is 19.6 mA
Figure 44. Wheel speed sensor protocols
P$
7KUHHOHYHOFXUUHQW
9'$FRPSOLDQWVHQVRU
ZLWK0DQFKHVWHUHQFRGHG
LQIRUPDWLRQ
, 7+
P$
KLJK KLJK ORZ KLJK ORZ KLJK KLJK KLJK KLJK
, 7+
P$
GE GE GE GE GE GE GE GE
S
, 7+RSHQ
:6[SLQ
'DWDDQGGLDJQRVWLFE\63,7KUHHOHYHOVHQVRUVKDYHHLJKWGDWDELWVDQGDSDULW\ELWZKLFKDUHZULWWHQLQWRWKHUHJLVWHUXSRQ
UHFHLYLQJ$WKLJKHUVSHHGQRWDOOELWVFDQEHWUDQVPLWWHG7KHGDWDUHJLVWHUIRUHDFKZKHHOFRQWDLQVWKHQXPEHURIGDWDELWV
UHFHLYHGEHWZHHQWZRVSHHGSXOVHV
P$
7ZROHYHOFXUUHQW
6WDQGDUGFRPSOLDQWVHQVRU
ZLWKRQO\VSHHGLQIRUPDWLRQ
,
7+
P$
:6[SLQ
'DWDE\:6[SLQ3DVVWKURXJKPRGH
P$
7ZROHYHOFXUUHQW3:0
2QHSXOVHSHUWRRWKZLWKGDWD
HQFRGHGLQSXOVHZLGWK
,
—VULJKWURWDWLRQ
P$
7+
—VOHIWURWDWLRQ
—V
—V
—V
—V
3DVVWKURXJKPRGH
:6[SLQ
'DWDE\:6[SLQDQGGXW\F\FOHE\63,
QRUPDOPRGH
P$
7ZROHYHOFXUUHQW3:0
7ZRSXOVHVSHUWRRWKZLWK
GDWDDQGGLDJQRVWLFHQFRGHG
LQSXOVHZLGWK
, 7+
P$
—V Q[—V
3DVVWKURXJKPRGH
:6[SLQ
'DWDE\:6[SLQDQGGXW\F\FOHE\63,
QRUPDOPRGH
*$3*36
DocID029257 Rev 1
183/277
276
Remote sensor interface
9.2.1
L9680
Wheel speed data register formats
When programmed as a wheel speed sensor interface, only four data registers are used
(Remote Sensor Data Register RSDR0-RSDR3).
Independent data registers are defined for each wheel speed channel and their contents are
determined by sensor type. Three level VDA sensors have eight data bits and. At fast wheel
speed not all bits may be transmitted by the sensor: the IC is able both to process normal or
either truncated frames by providing together with data, a 4 bit counter to inform the
microcontroller about the number of received valid bits.
For PWM encoded sensors, each pulse length is written to the sensor data register with a
typical resolution of 5 μs per bit. In case of pulse width duration equal or higher than
TSTANDSTILL_TH_L and less or equal than TSTANDSTILL_TH_H2, the standstill condition will be
recognized and bit 15 in the corresponding register will be set.
The register is updated when a PWM falling edge is detected; in case of stuck-at 1 of the
PWM signal the register is updated when the counter reaches the overflow value (0x1FF): in
this case the standstill bit not set and the counter in overflow will signal a fault to the
microcontroller.
9.2.2
Test mode
In order test the input structures of the connected microcontroller, the L9680 features a
wheel speed test mode that allows test patterns to be applied on the four wheel speed
outputs WS0-WS3. The test mode can be entered via SPI and the test patterns can also be
controlled via SPI commands. Test patterns can be composed only of static high or low
signals, which can be selected via SPI. For failsafe reasons only one channel at a time can
be switched into test mode.
9.3
Remote sensor interface fault protection
9.3.1
Short to ground, current limit
Each output is short circuit protected by an independent current limit. Should the output
current level reach or exceed the ILIMTH for a time period greater than TILIMTH or the
remote sensor interface the output stage is disabled. An internal up-down counter will count
in 25 μs increment up to TILIMTH. The filter time is chosen in order to avoid false current
limit detection for in-rush current that may happen at interface switch-on. When the output is
turned off due to current limit, the appropriate fault code STG is set in the Remote Sensor
Data Register (RSDR). The fault timer latch is cleared when the sensor channel is first
disabled and then re-enabled through the Remote Sensor Control Register (RSCTRL). This
fault condition does not interfere neither with the normal operation of the IC, nor with the
operation of the other channels. When a sensor fault is detected, the RSFLT bit of the GSW
is set indicating a fault occurred and can be decoded by addressing the RSDR register.
In order to fulfill the blanking time requirement at channel activation as per PSI-5
specification, a dedicated masking time is applied to the current limitation fault detection
each time a channel is activated.
184/277
DocID029257 Rev 1
L9680
9.3.2
Remote sensor interface
Short to battery
All outputs are independently protected against a short to battery condition. Short to battery
protection disconnects the channel from its supply rail to guarantee that no adverse
condition occurs within the IC. The short-to-battery detection circuit has input offset voltage
(10mV, minimum) to prevent disconnecting of the output under an open circuit condition. A
short to battery is detected when the output RSUx pin voltage increases above SATBUCK
or SYNCBOOST (depending on operation) supply pin voltage for a TSTBTH time. An internal
up-counter will count in 1.5 μs increment up to TSTBTH. The counter will be cleared if the
short condition is not present for at least 1.5 μs. The channel in short to battery is not shut
down by this condition. Other channels are not affected in case of short of one output pin.
As in the case previously described, the STB fault code can be read from RSDR bits and
any fault will set the RSFLT bit of the global status word register (GSW). The STB bit is
cleared upon read or upon channel disabled via SPI RSCTRL register.
9.3.3
Cross link
The device provides also the capability of a cross link check between outputs, in order to
reveal conditions where two output channels are in short. This functionality is allowed by
enabling one output channel, while asking for voltage measurement on any of the other
ones.
9.3.4
Leakage to battery, sensor open
The sensor interface offers also open sensor detection. The auto-adjusting counter for
remote sensor current sensing will drop to 0 in case the current flowing through RSUx pin is
lower than 2.5 mA typ. The OPENDET fault flag is asserted when the fault condition lasts for
longer than TRSUOP_FILT deglitch filter time. This fault flag can be read from RSDR bits
and any fault will set the RSFLT bit of the global status word register (GSW). The channel in
this condition is not shutdown. This fault bit is cleared upon read or upon channel disabled
via SPI RSCTRL register.
9.3.5
Leakage to ground
The sensor interface offers as well the detection of a leakage to ground condition, that will
possibly raise the sensor current higher than 42 mA/12 mA typ in PSI5/WSS modes
respectively. The CURRENT_HI fault flag is asserted when the fault condition lasts for
longer than TRSUCH_FILT deglitch filter time. This fault flag can be read from RSDR bits and
any fault will set the RSFLT bit of the global status word register (GSW). The channel in this
condition is not shutdown. This fault bit is cleared upon read or upon channel disabled via
SPI RSCTRL register.
9.3.6
Thermal shutdown
Each output is protected by an independent over-temperature detection circuit should the
remote sensor interface thermal protection be triggered the output stage is disabled and a
corresponding thermal fault is latched and reported through the RSTEMP flag in the Remote
Sensor Data Register (RSDRx). The thermal fault flag is cleared when the sensor channel is
first disabled and then re-enabled through the Remote Sensor Configuration Register
(RSCRx).
DocID029257 Rev 1
185/277
276
Watchdog timers
10
L9680
Watchdog timers
This device offers a 2-level watchdog control approach. The first control level is given by
means of a temporal watchdog (WD1). The WD1 window times are SPI programmable and
a couple of specific codes have to be written within this window in order to serve the WD1
control. The second control level is featured by an algorithmic seed/key watchdog (WD2).
Unlike the temporal watchdog, the algorithmic watchdog service must be maintained before
a timeout occurs, i.e. there is no restriction on refreshing the watchdog too early. Both WD1
and WD2 watchdog functionalities can be tested trough the WD_TEST SPI command.
10.1
Temporal watchdog (WD1)
The temporal watchdog ensures the system software is operating correctly by requiring
periodic service from the microcontroller at a programmable rate. This service (watchdog
refresh) must occur within a time window, and if serviced too early or too late will enter an
error state reported via the FLTSR register (WD1_WDR bit).
The overall WD1 functionality is described in the state diagram reported in Figure 45.
Figure 45. WD1 Temporal watchdog state diagram
:60B5HVHW
)URPDQ\VWDWH
:'B/2&.287 :'B:'5 :'B(55B&17 :'B(55B7+B:( :'B660567250&8B660567
IURPDQ\VWDWH
:'770!9:'B29(55,'($1'
63,:'B7(67
:'B/2&.287 PV
:'B:'5 PV$1'
:'B7295 :'B/2&.287 :'B(55B&17
:'5(6(7
:'B(5525
:'B/2&.287 :'B(55B&17
:'
29(55,'(
:',1,7,$/
:'581
:'UHIUHVK2.
:'UHIUHVK2.
:'B:'5 :'B(55B7+B:( ,I:'B(55B&17”:'B5(75<B7+
:'B/2&.287 63,:'B7(67
:'7(67
:'B(5525
*$3*36
Following the description of the WD1 states and signals (most of them reported in related
SPI registers)
186/277
DocID029257 Rev 1
L9680
Watchdog timers
Table 13. Watchdog timer status description
State/Signal
WD1 INITIAL
Description
Default state entered from startup. While in this state, no watchdog service is
required, and the IC may stay in this state indefinitely. For system safety, all
arming signals are disabled during this state to prevent deployment.
WD1 RUN
Normal run time state where WD1 service is required.
WD1 TEST
A special state used to test the watchdog function. Normally, this state will only
be checked once per power cycle by the software, but there is no inherent
restriction in the watchdog logic preventing periodic testing. This state allows
testing of the watchdog without setting WD1_LOCKOUT=1, which can only be
cleared via WSM reset. Deployment is inhibited when the WD state machine is in
this state.
WD1 RESET
State entered when a WD1_ERROR occurs. This is a timed-duration state that is
automatically exited after 1ms.
A special state used to disable watchdog functionality for development purposes.
WD1 OVERRIDE Other logic within the IC can use this state to emulate the WD1 RUN state
without the need to service WD1.
WSM_RESET
Signal used to reset the WD1 state machine to the WD1 INITIAL state and all
signals to their inactive values
WD1_refresh OK
Signal that is asserted only if the watchdog is refreshed ('A' - 'B' or 'B' - 'A' seq.)
within the WD1 time window
WD1_ERROR
Signal that is asserted if the watchdog refresh fails to occur during the WD1 time
window.
WD1_WDR
Watchdog Reset – latched signal that is activated whenever a watchdog error is
qualified. For WD1, this occurs when WD1 service is required, but not received.
This signal is SPI-readable.
WD1_TM
Test Mode – a signal that indicates that WD1 is being tested. This signal is SPIreadable.
A latched signal activated if an unexpected WD1 error occurs. This signal is
WD1_LOCKOUT permanently latched when set (until WSM_RESET). When set, all arming signals
are disabled, preventing deployment. This signal is SPI-readable.
SPI command used to enter WD1 TEST state from WD1 RUN state, or to enter
SPI_WD1_TEST WD1 OVERRIDE state from INITIAL state if WDT/TM pin voltage is greater than
the threshold. This command has no effect in other states.
10.1.1
Watchdog timer configuration
The watchdog timer can be configured on two different frequency modes:

Fast watchdog with maximum range of 2ms and a resolution of 8 μs;

Slow watchdog with maximum range of 16.3ms and a resolution of 64 μs.
The watchdog window times are SPI programmable. The configuration of watchdog timer
frequency and window times can be done by setting the Watchdog Timer Configuration
Register (WDTCR) with the appropriate values. However, this configuration is accepted only
when the device is in the Init operating state, as shown in Figure 10. As soon as the device
enters in Diag state, the watchdog control is enabled and the watchdog configuration is fixed
and cannot be changed anymore.
DocID029257 Rev 1
187/277
276
Watchdog timers
10.1.2
L9680
Watchdog timer operation
While in the WD1_INITIAL state, watchdog service must begin or a SPI command with
WD1_TO_DIS=1 must be received within the first 500 ms. If the WD1 Timeout Disable bit is
set, the device can stay in the WD1_INITIAL state indefinitely without watchdog service.
To refresh WD1, the logic must receive a Watchdog Timer Register (WD1T) SPI command
containing the expected key value within the WD1 time window (WDTMIN+WDTDELTA). If
it is received too early, too late the WD1_ERROR signal will be asserted. The WD1_ERROR
will not be asserted in case a SPI command containing the Watchdog Timer Register
(WD1T) with an incorrect key value is received at any time relative to the window. This
allows the system software to repeatedly transmit the key value until it needs to change to
the correct key value. Upon reception of the correct key within the window, the logic will
reset the watchdog timer to create a new window.
The timer is cleared upon writing code 'A' and code 'B' (either in 'A' - 'B' or 'B' - 'A'
sequences) to the WD1CTL [1:0] bits, in the WD1T register. The watchdog timer value can
be read via the WD1T register.
Figure 46. Watchdog timer refresh diagram
660B5(6(7
:',1,7
63,B:'B%
63,B:'B$
:'$
:'%
63,B:'B%
705 6WUREH:'UHIUHVK2.
:'%
705!0,1
63,B:'B$
705 6WUREH:'UHIUHVK2.
63,B:'B$
705 6WUREH:'UHIUHVK2.
:'$
705!0,1
63,B:'B%
705 6WUREH:'UHIUHVK2.
705!0$;25
>7050,163,B:'B$@
705!0$;25
>7050,163,B:'B%@
:'B(5525
'!0'03
188/277
DocID029257 Rev 1
L9680
10.2
Watchdog timers
Algorithmic watchdog (WD2)
The algorithmic watchdog (WD2) is intended to protect higher software layers, and as such
requires servicing at a much slower rate and allows for software jitter as compared with
WD1. Additionally, WD2 is not implemented as a window watchdog, but is a maximum-time
watchdog, where refresh is accepted at any time before the timer expires.
The overall WD2 functionality is described in the following state diagram:
Figure 47. Algorithmic watchdog timer flow diagram
:60B5(6(7)URPDQ\VWDWH
:'B/2&.287 :'B:'5 :'B5HWU\ :'B(55FQW :'B70 6((' )
35(9B.(< '
:'B(55B7+B:( :'B5(75<B7+B:( 0&8B66056725:'B5(6(7$1'127:'67233,1*25:'6723
:'B70 6((' )
35(9B.(< '
63,:'B7(67
:'B/2&.287 :'
29(55,'(
:',1,7
63,B:'B.(< WDUJNH\
705 6((' 6(('&75
WDUJNH\
IQ6(('35(9B.(<
705!0$;
63,B:'B.(< WDUJNH\ ,1,76(('
705 6((' 6(('&75
WDUJNH\ IQ6(('35(9B.(<
:'B:'5 :'B/2&.287 :'BUHWU\ :'B(55B7+B:( :'B5(75<B7+B:( 63,:'B7(67
:'B70 63,B:'B.(< WDUJNH\
705 6((' 6(('&75
WDUJNH\
IQ6(('35(9B.(<
705!0$;
705 :'B5HWU\
:'7(67
705!0$;
705 :'B5HWU\
:'581
63,B:'B.(< WDUJNH\
705 6((' 6(('&75
WDUJNH\ IQ6(('35(9B.(<
7:'7B567
:'B:'5 :'B70 :'48$/
63,B:'B.(< WDUJNH\
705 6((' 6(('&75
WDUJNH\ IQ6(('35(9B.(<
:'B5HWU\!:'B5(75<B7+
:'B(55FQW
:'B/2&.287 63,B:'B5(&29(5
:'BUHWU\ :'B/2&.287 :'
67233,1*
:'/2&.
:'B(55FQW!:'B(55B7+
:'B:'5 63,B:'B.(< WDUJNH\
7:'7B567
705 6((' 6(('&75
WDUJNH\ IQ6(('35(9B.(<
705!0$;
:'6723
:'5(6(7
705!0$;
*$3*36
DocID029257 Rev 1
189/277
276
Watchdog timers
L9680
Following the description of the WD2 states and signals (most of them available through SPI
registers)
Table 14. WD2 states and signals
State / Signal
Description
WD2 INIT
Default state entered from startup or after a SSM reset (if not in WD2 STOP
state).
WD2 OVERRIDE
WD2 INITSEED
Special state used to disable WD2 watchdog functionality.
State entered when the correct default key is received in INIT state. Here
the timer starts to count waiting for the real first key.
WD2 RUN
Normal run-time state where WD2 service is required.
WD2 TEST
A special state used to test the watchdog function. Normally, this state will
only be checked once per power cycle by the software, but there is no
inherent restriction in the watchdog logic preventing periodic testing. This
state allows testing of the watchdog without affecting WD2 error (no reset is
generated, WD2_LOCKOUT stay low). Only WD2_WDR latch could be set
to 1, in this way μC is able to verify the functionality of the watchdog.
WD2 QUAL
A state used to qualify a number of WD2_ERROR occurrences before
action is taken. The intent is to use this state to permit a retry strategy to
account for software jitter.
WD2 LOCK
A state entered after the allowed retries have been exhausted. This is
where action is taken due to WD2 service failure.
WD2 STOPPING
This is a timed-duration state that is automatically exited after 1ms
WD2 STOP
A state used to prevent continual recovery of WD2 errors using the
WD2_KEY key mechanism to restart watchdog service.
WD2 RESET
State entered when a WD2_ERROR occurs after having been qualified in
the WD2_QUAL state (when all retries are exhausted), or when testing the
WD2. This is a timed-duration state that is automatically exited after 1ms.
WSM_RESET
Watchdog State Machine reset – used to force a transition to the WD2 INIT
state and reset all signals to their inactive states
WD2_RETRY
Counter that tracks the number of retry attempts. It is incremented each
time the logic detects a WD2 error while qualifying the error.
WD2_WDR
Watchdog Reset – latched signal that is activated whenever a watchdog
error is qualified. For WD2, this occurs when WD2 service not received
after all retry attempts have previously failed. This signal is SPI-readable.
WD2_TM
Test Mode – a signal that indicates that WD2 is being tested. This signal is
SPI-readable.
WD2_LOCKOUT
A latched signal that is activated on startup, or whenever a WD2 error is
fully qualified (all retry attempts have failed). Recovery is still possible after
this is set going into WD2 RUN state. This signal drives the
WD2_LOCKOUT output pin. This signal is SPI-readable.
SPI_WD2_TEST
SPI command used to enter WD2_TEST state or to enter WD2 OVERRIDE
state from INIT.
TMR2
Timer to count the maximum time limit to receive the correct key
SPI_WD2_RECOVER SPI command used to clear retry counter
WD2_ERR_CNT
190/277
Counter that tracks the number of WD2 error occurred
DocID029257 Rev 1
L9680
Watchdog timers
To refresh WD2, the logic must receive a WD2_KEY command containing the expected key
value before the WD2 timer expires. If it is received too late the refresh criteria have not
been met. The WD2 error is asserted if the refresh does not occur before the end of the
timeout. The WD2 error is not asserted if it receives continuously a WD2_KEY command
with the correct key. This allows the system software to repeatedly transmit the correct key
value at any rate faster than the required timeout.
Upon reception of the correct key, the logic will generate a new seed value, then calculate a
new key using the new seed and reset the watchdog timer to create a new timeout.
When in WD2 INITSEED state, the three steps above are executed anyway. The seed is
latched from a free-running counter that starts when WSM is released. The WD2_KEY
command is used for transmission of the watchdog key, while WD2_SEED command is
used to read the new seed and the previous key.
The SEED is generated by latching the value from a free-running counter. The free-running
seed counter runs at a rate of fWD2_SEED as specified in Table 29. The key value and seed
value are 8-bits in length. The key shall be calculated as follows: (KEY = SEED ‡ PrevKEY
+ $01) where ‡ denotes a bit-wise XOR operation
10.3
Watchdog reset assertion timer
Upon either a WD1 or a WD2 watchdog reset, the watchdog logic will momentarily assert
the RESET pin for time duration TWDT1_RST / TWDT2_RST. When the RESET pin has been
asserted through the watchdog reset assertion timer, stored faults are maintained and can
be read by the microcontroller via SPI following the RESET period.
10.4
Watchdog timer disable input (WDT/TM)
This input pin has a passive and active pull-down and is used to disable the watchdog timer.
The state of this pin can be read by SPI through the WDT/TM_S bit in the GSW register.
When WDT/TM pin is asserted, the watchdog timer is disabled, the timer is reset to its
starting value and no faults are generated.
The WDT/TM input pin must not be biased HIGH (WDT/TM > VWDTDIS_TH) prior to POR in
order to have a proper start-up.
DocID029257 Rev 1
191/277
276
DC sensor interface
11
L9680
DC sensor interface
L9680 implements a circuitry able to interface with a variety of positioning sensors. The
sensors that can be connected to the device are Hall-effect, resistive or simple switches.
Range of measurements is:

Resistive sensor: 65 Ωto 3 kΩ

Hall-effect sensor: 1 mA to 2 0 mA.
Within the above ranges, accuracy of ±15% is granted. A reduced accuracy is given in the
range 1 mA to 2 mA. Hall sensor and switch interface block diagram is shown below.
Figure 48. DC sensor interface block diagram
6<1&%2267
%ORFNVVKDUHGPXOWLSOH[HG
DPRQJWKHWKHGLIIHUHQWFKDQQHOV
9%*
,'&6
$[5
5
,OLP
5
9,179
5
,'&6
5
08;
$'&0$,1
92))B'&6
'&6[
5
9LQ
ELWV
9UHI
9UHI Y
Q)·Q)
,5()B'&6
,3'B'&6
9*1' “9
9LQ
ELWV
9UHI
$'&,'&6
*$3*36
The global SPI contains several bits to control and configure the interface. The SWOEN bit
is used to enable the output voltage on DCSx pins. The channel to be activated can be
chosen by accordingly setting CHID bits. The interface activation is started and switched off
upon user SPI command. Alternatively it could be configured via the
SYS_CFG(EN_AUTO_SWITCH_OFF) bit to automatically switch off as soon as the
measurement is complete, in case of current or resistance measurements; this would help
preventing thermal conditions. The interface would not auto-switched off in case of voltage
measurement, instead.
192/277
DocID029257 Rev 1
L9680
DC sensor interface
The voltage and current for the selected channel are made available to the main ADC by
selecting the proper channel and enabling the measurement process by dedicated
DIAGCTRLx commands.
The device offers the capability to actively keep all the DCSx lines discharged by means of a
weak pull down. The pull down is active by default on all channels and it is deactivated in
either of the following cases:
1. when the voltage source is active on the relevant channel
2. when a voltage measurement is requested on the relevant channel
3. if SPI bit SWCTRL(DCS_PD_CURR) is set (global pull-down disable for all channels)
In case of Hall-effect sensors, a single current measurement is processed. The current load
needed for regulating the pin is internally reflected to a reference resistance, whose voltage
drop is then measured through the internal ADC converter.
When resistive or switch sensors are used, a more complex measurement is performed. In
a first step the current information as above described is provided. Then, also the
information on the voltage level achieved on the output pin is provided via ADC. By
processing these two values, the micro-controller can understand the resistive value. The
DCSx voltage is internally rescaled by a voltage divider into the ADC converter voltage
range as shown in Figure 48. Additionally a positive voltage offset is internally applied to the
scaled voltage in order to allow voltage measurement capability for DCSx down to -1V.
In order to get accurate resistive information even in case of an external ground voltage shift
on the sensor of up to +/-1V, the voltage measurement step actually needs two DCSx
voltage measurements. A first voltage measurement has to be done with selection of 6.25V
on the output channel and a second one with the regulator switched off. The difference
between the two measurements will cancel out the offsets (both external ground shift and
internal offset).
The DCSx current and voltage can be retrieved from ADC readings according to the
following formulas and related parameters specified in the Electrical Characteristics section.
I REF_DCS
I DCSx = 100  ------------------------- DIAGCTRLn  ADCRESn  @DIAGCTRL(ADCREQn = $04
ADC RES
2
 ADC REF_hi

V DCSx = RATIO VDCSx   ------------------------------ DIAGCTRLn  ADCRESn  – V OFF_DCSx –
 ADC RES

2
– VOFF_DCSx · (RATIOVDCSx –1) @DIAGCTRLn(ADCREQn) = $03
The DCSx sensor resistance can be calculated according to the following formula:
V DCSx
V DCSx @(SWCTRL(SWOEN)=1 – V DCSx @(SWCTRL(SWOEN)=0
R sensor = --------------------- = --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------x
I DCSx
I DCSx
@SWCTRL(CHID) = x
The device provides also the capability of a cross link check between outputs, in order to
reveal conditions where two output channels are in short. This functionality is allowed by
enabling one output channel, while asking for voltage measurement on any of the other
ones.
DocID029257 Rev 1
193/277
276
DC sensor interface
L9680
Each output is protected against

Overload conditions by current limit

Ground offset between the ECU and the loads of up to ±1 V.

Loss of ECU battery

Loss of ground

Unpowered shorts to battery

Shorts to ground
11.1
Passenger inhibit interface
L9680 provides a feature to deactivate passenger restraint devices based on a
preprogrammed mask. It generates a signal (PSINHINT) based on microcontroller-initiated
measurements performed on DC Sensor channel 0. The PSINHINT signal is bitwise ANDed with the LOOP_MATRIX_PSINH mask register, allowing selective deactivation of squib
loops independent of microcontroller control. This signal is also inverted and output on the
PSINHB pin of the IC to activate externally controlled squib loops.
Figure 49. Passenger inhibit logic diagram
6:&75/&+,' µ¶
6<6B&)*'&6B3$'B9
$'&5(4B\>@ '&6[B,
$'&5(4B\>@ '&6[B9
6$),1*VWDWH
'&621
1(:'$7$B\
$'&5(6B\>@
,QZLQGRZ
3$'7+5(6+B/2
'RZQ&75
B
6(7
WRV
B
3$'7+5(6+B+,
6605(6(7
36,1+B32/
2XWVLGHZLQGRZLQK
,QVLGHZLQGRZLQK
'(3B',6$%/('VWDWH
&/5
(1
+]
36,1+,17
',$*VWDWH
'67(6736,1+
36,1+%
36,1+6(/
*$3*36
An upper and lower threshold is preprogrammed via SPI by writing the desired 10-bits
values into the PADTHRESH_HI and PADTHRESH_LO registers during the Diag state.
These thresholds define the measurement window where the passenger restraints are
active. Any measurement outside this window will result in the assertion of the PSINHINT
signal (as described below), thereby deactivating the squib loops identified in the PSINH
mask. The PSINH mask is also preprogrammed during the Diag state.
194/277
DocID029257 Rev 1
L9680
DC sensor interface
Another control (DCS_PAD_V bit in SYS_CFG register) is preprogrammed to select either a
voltage measurement or a current measurement on DCS0 for this purpose.
The automated control of the PSINHINT signal occurs when the microcontroller runs
diagnostic testing of the DCS0 interface. A 1 second timer is included to ensure the
diagnostic test is run periodically. When the timer expires (down-counts to 0), the PSINHINT
signal is asserted. When the measurement of the DCS0 voltage or DCS current (as selected
by the DCS_PAD_V bit) is taken, and the value falls within the preprogrammed window, the
timer will be reloaded. If the measurement is outside the window, the timer will not be
reloaded, and it will continue to count down until it expires, resulting in activation of
PSINHINT. For testing purposes, the PSINHINT can be controlled directly via SPI while in
DIAG state using the Diag State Test Selection (DSTEST) register.
DocID029257 Rev 1
195/277
276
Safing logic
L9680
12
Safing logic
12.1
Safing logic overview
The integrated safing logic uses data from on-board and remote locations by decoding the
various SPI communications between the interfaces and the main microcontroller. The
safing logic has several programmable features enabling its ability to decode SPI
transmissions and can process data from up to 16 sensors. The operating mode involves
simple symmetrical data threshold comparisons, with the use of symmetrical or
asymmetrical counters. A high level diagram is shown in the figure below. Please note that
this top-level diagram is simplified, and references more detailed flowcharts to show a)
message decoding, b) valid data limits, c) effects of the 'combine' function, d) comparison to
thresholds and arming, and e) the setting of the 'compare complete bit. Four independent
arming outputs, ARM1INT, ARM2INT, ARM3INT and ARM4INT, are also mapped internally
to any of the integrated squib drivers.
Figure 50. Top level safing engine flow chart
'&8,&6DILQJ/RJLF
7RS/HYHO
67$57
1
63,B06*
5HFHLYHG"
<
&6B*
63,B6$)B&&
5HDG"
<
1
&KHFNVZKHWKHUUHTXHVWDQGUHVSRQVH
DUHJRRGIRUHDFKELWVDILQJUHFRUG
WDNLQJLQWRDFFRXQW,)ELW'HWHUPLQHV
'$7$WDNLQJLQWRDFFRXQW63,)/'6(/
ELW
&KHFNVZKHWKHUUHTXHVWDQGUHVSRQVH
DUHJRRGIRUHDFKELWVDILQJUHFRUG
WDNLQJLQWRDFFRXQW,)ELW
8SGDWHVHYHQWFRXQWHUV
LIQRGDWDUHFHLYHG
FOHDUV&&ELWV
$
*
06*'(&
&&B5($'
%
+
%
VHW$50,17DQG
$50,17PDQDJHGZHOO
WLPHUV
$50,1*
06*'(&
&
&KHFNVZKHWKHUGDWDLVZLWKLQUDQJHLI
FRQILJXUHG
&
9$/'$7
'
&RQYHUWVGDWDWREHFRPSDUHGLQWR
FRPELQHGGDWDVXPDQGGLIIHUHQFHLI
FRQILJXUHG
'
&20%,1(
(
(
&RPSDUH'$7$WRWKUHVKROGV XSGDWH
HYHQWFRXQWHUV
&203$5(
)
*$3*36
196/277
DocID029257 Rev 1
L9680
12.2
Safing logic
SPI sensor data decoding
Sensor data is regularly communicated with the main microcontroller through multiple SPI
messages. The L9680 monitors SPI traffic on MISO_RS bus. Since not all communications
between sensors and the microcontroller contain data, it is important for the decoder to
properly sort the communications and extract only the targeted data. The solution involves
defining specific masking functions, contained within independent safing records,
programmed by the user. The following figures detail the SPI message decoding methodology
and the ensuing comparisons of valid sensor data to the programmed thresholds.
Figure 51. Safing engine – 32-bit message decoding flow chart
L 6DILQJ5HFRUGLQGH[
65
65
65
65
$
06*'(&
L (1B6$)L
"
1
<
1
&&>L@ "
<
&6>L@ FVBDFWLYH"
1
<
,)>L@ "
1
UHTBRN>L@
"
<
1
<
63,)/'6(/>L@"
QG
63,)/'6(/>L@"
VW
VW
1
QG
5(637$5*>L@
VW>0,62@
5(630$6.>L@
5(637$5*>L@
QG>0,62@
5(630$6.>L@
<
PDWFK>L@ UHTBRN>L@ <
GDWDUHVXOW>L@ VW>0,62@
'$7$0$6. >L@
1
1
5(637$5*>L@
QG>0,62@
5(630$6.>L@
<
<
GDWDUHVXOW>L@ VW>0,62@
'$7$0$6. >L@
GDWDUHVXOW>L@ QG>0,62@
'$7$0$6. >L@
PDWFK>L@ 5(637$5*>L@
VW>0,62@
5(630$6.>L@
1
PDWFK>L@ UHTBRN>L@ GDWDUHVXOW>L@ QG>0,62@
'$7$0$6. >L@
PDWFK>L@ 5(47$5*>L@
06>026,@
5(40$6.>L@"
PDWFK>L@ PDWFK&&>L@ UHTBRN>L@ 1
<
PDWFK>L@ PDWFK&&>L@ 5(47$5*>L@
06>026,@
5(40$6.>L@"
PDWFK>L@ 1
<
L
1
L 1"
UHTBRN>L@ 1 /
1 /
1 /
%
<
DocID029257 Rev 1
UHTBRN>L@ 2XWSXWVWR9$/'$7IXQFWLRQ GDWDUHVXOW>L@
UHTBRN>L@
PDWFK>L@
*$3*36
197/277
276
Safing logic
L9680
Figure 52. Safing engine – 16-bit Message decoding flow chart
%
L "
/VNLSVELW
UHFRUGV
<
1
L 6DILQJ5HFRUGLQGH[
65
65
65
65
L 06*'(&
L 1"
1 /
1 //
<
1
(1B6$)L
"
&
1
<
1
&&>L@ "
<
&6>L@ FVBDFWLYH"
1
<
,)>L@ "
1
1
<
UHTBRN>L@
"
<
UHTBRN>L@ 5(637$5*>L@
0,62
5(630$6.>L@
5(637$5*>L@
0,62
5(630$6.>L@
1
<
<
GDWDUHVXOW>L@ 0,62
'$7$0$6. >L@
0DWFK>L@ GDWDUHVXOW>L@ 0,62
'$7$0$6. >L@
5(47$5*>L@
026,
5(40$6.>L@"
5(47$5*>L@
026,
5(40$6.>L@"
1
<
PDWFK>L@ 1
PDWFK>L@ 1
<
PDWFK>L@ PDWFK>L@ UHTBRN>L@ UHTBRN>L@ 2XWSXWVWR9$/'$7IXQFWLRQ GDWDUHVXOW>L@
PDWFK>L@
L
*$3*36
198/277
DocID029257 Rev 1
L9680
Safing logic
Figure 53. Safing engine - Validate data flow chart
L 6DILQJ5HFRUGLQGH[
65
65
65
65
9$/'$7
&
L 0DWFK>L@ &20%>L@ <
1
1
&KHFNVIRUFRPELQDEOH
UHFRUGV
= /
= /
= /
L=
&20%>L@ <
&KHFNVIRURGGLQGLFHV
1
0RGL
<
1
0DWFK>L@ 0DWFK&&>L@ <
1
0DWFK>L@ 0DWFK&&>L@ <
&&>L@ 1
&&>L@ "
<
<
/,0(1>L@ "
1
/,06(/>L@ "
<
1
$EV
GDWDUHVXOW>L@
G"
$EV
GDWDUHVXOW>L@
G"
1
1
<
<
YDOGDW>L@ YDO&&>L@ YDOGDW>L@ YDO&&>L@ YDOGDW>L@ YDO&&>L@ YDOGDW>L@ YDO&&>L@ YDOGDW>L@ YDO&&>L@ L L
<
L /"
1
L 1
L 1"
1 /
1 /
1 /
<
'
2XWSXWVWR&20%,1(
IXQFWLRQ
&&>L@
YDOGDW>L@
YDO&&>L@
*$3*36
DocID029257 Rev 1
199/277
276
Safing logic
L9680
Figure 54. Safing engine - Combine function flow chart
L 6DILQJ5HFRUGLQGH[
65
65
65
65
'
&20%,1(
L 9DO&&>L@
YDO&&>L@
"
1
<
&20%>L@ "
1
<
WHPS GDWDUHVXOW>L@
GDWDUHVXOW>L@ WHPSGDWDUHVXOW>L@
1
&20%>L@ "
<
WHPS GDWDUHVXOW>L@
GDWDUHVXOW>L@ WHPSGDWDUHVXOW>L@
L L
1
1 /
1 /
1 /
L 1"
<
(
2XWSXWVWR&203$5(IXQFWLRQ
GDWDUHVXOW>L@
&&>L@
FRPS>L@
*$3*36
200/277
DocID029257 Rev 1
L9680
Safing logic
Figure 55. Safing engine threshold comparison
(
&203$5(
L 1
9DOGDW>L@
"
<
GDWDUHVXOW>[email protected]
6$)B7+5(6+>L@
GDWDUHVXOW>[email protected]
6$)B7+5(6+>L@
1
326B&2817>L@
326B&2817>L@
68%B9$/
326B&2817>L@
326B&2817>L@
$''B9$/
326B&2817>L@
"
1(*B&2817>L@
1(*B&2817>L@
$''B9$/
1
1(*B&2817>L@
1(*B&2817>L@
68%B9$/
1(*B&2817>L@
"
<
<
1
12B'$7$
"
<
<
<
1
326B&2817>L@
326B&2817>L@
68%B9$/
1(*B&2817>L@
1(*B&2817>L@
68%B9$/
1(*B&2817>L@ 326B&2817>L@ 1(*B&2817>L@
"
326B&2817>L@!
$503B7+"
1
1(*B&2817>L@!
$501B7+"
1
1
1(*B&2817>L@ $501B7+
326B&2817>L@
"
1
<
1(*B&2817>L@ <
<
326B&2817>L@ $503B7+
1(*B&2817>L@ 326B&2817>L@ <
326B&2817>L@ 0DWFK>L@ YDOGDW>L@ L L
<
L 1
L /"
<
1
1 /
1 /
1 /
L 1"
<
)
*$3*36
DocID029257 Rev 1
201/277
276
Safing logic
L9680
Figure 56. Safing engine - Compare complete
*
&&B5($'
L <
&&>L@ "
1
1
12B'$7$>L@
"
<
326B&2817>L@
326B&2817>L@
68%B9$/
1(*B&2817>L@
1(*B&2817>L@
68%B9$/
1(*B&2817>L@
"
1
1(*B&2817>L@ 326B&2817>L@
"
1
<
1(*B&2817>L@ <
326B&2817>L@ 326B&2817>L@ &&>L@ YDO&&>L@ PDWFK&&>L@ L
<
L /"
2XWSXWV
&&>L@
PDWFK>L@
PDWFK&&>L@
326B&2817>L@
1(*B&2817>L@
1
L 1
L 1"
1 /
1 /
1 /
<
+
*$3*36
202/277
DocID029257 Rev 1
L9680
Safing logic
Each safing record has SPI accessible registers defined in the SPI command tables and
summarized below:

Request Mask and Request Target - to understand what sensor the microcontroller is
addressing

Response Mask and Response Target - to identify the sensor response

Data Mask - to extract relevant sensor data from the response.
–
Sensor data is extracted as a bit-wise AND result of the SAF_DATA_MASKx and
monitored RS_MISO data. The configuration of the set bits of the DATAMASK
must be contiguous for both 16-bit and 32-bit records. The 32-bit records are
comprised of Part1 as MSW and Part2 as LSW.
–
The extracted data is then right justified into a 16/32 bit register for 16/32 bit safing
records, respectively, prior to further processing steps which assume data is
signed should be "using two's complement representation".

Safing Threshold - specific value that sets the comparator limit for successful arming

Control:
–
IF, In Frame - to indicate serial data response is ‘in frame’. There are two types of
potential serial data responses, ‘in frame’ and ‘out of frame’.
–
CS - to align safing record with a specific SPI CS. The device contains 5 SPI CS
inputs for the safing function (CS_RS, SAF_CSx)
–
ARM - there are four internal arming signals, each active record is assigned or
mapped to any arming signal. Several safing records can be mapped to a single
arming output. ARMx outputs can be enabled also simultaneously.
–
Dwell - Once an arming condition is detected, the safing record remains armed for
the specified dwell time.
–
Comb (Combined Data) - specific solution for dual axis high-g sensors specifically
oriented off-axis.
–
LimEn (Limit Enable) - to enable PSI5 out-of-range control.
–
LimSel (Limit Select) - to select PSI5 out-of-range thresholds between 8-bit and
10-bit protocol.
–
SPIFLDSEL (SPI Field Select) - to determine which 16-bit field in long SPI
messages (>31 bit) to use for response on MISO of SPI monitor. Don't care for
messages less than 32 bits.
If input packet matches multiple safing records, the safing engine should process all of them
and treat them independently.
Safing record can only be evaluated on the first matching input packet. Any further data
packet matches are ignored (i.e. once CC is set, record can't be processed until CC is
cleared)
The En (Record Enable) bit for any record is programmable as on or off at any time and will
enable/disable the record itself upon the following SATSYNC.
All CC bits are available in one register (SAF_CC) for access in one single SPI read. After
ARMing is achieved and CC is set, no further messages are considered until CC is cleared
via read.
Safing Engine must not process sensor data in any state but Safing state (refer to
Figure 10).
All safing records are cleared on SSM RESET.
DocID029257 Rev 1
203/277
276
Safing logic
L9680
Comb (Combined Data) bit allows combining X and Y for off-axis oriented sensors. In this
case, it is typical for such orientations to add or subtract the sensor response to translate the
sensor signal to an on-axis response. Only couples of 16-bit long records have this feature
(i.e. 1&2, 3&4, 5&6, 7&8, 9&10, 11&12).
Records are added and subtracted and results compare against two thresholds. Safing
engine will process data as follows:

Use record(n) and record(n+1), where n = 1, 3, 5, 7, 9, 11.

The matching inputs used for math combinations are processed only after both are
captured.

The sum of the two matching inputs will be compared to the threshold of record(n).

The difference of the two records will be compared to the threshold of record(n+1).

If the Comb feature was enabled on only one of the two records in a couple, math
would be performed only on it as shown in Figure 55
Example of Combine Function operation:
Table 15. Example of combine function operation
Record #
Combine
Bit
Data
Resulting value
Record
Threshold
ARMSELx
Configuration
ARMINTx
Result
Record 1
0
12
12
48
ARMP
0
Record 2
0
50
50
48
ARMP
1
Record 3
0
12
12
48
ARMP
0
Record 4
1
50
50 – 12 = 38
48
ARMP
0
Record 5
1
12
12 + 50 = 62
48
ARMP
1
Record 6
0
50
50
48
ARMP
1
Record 7
1
12
12 + 50 = 62
48
ARMP
1
Record 8
1
50
50 – 12 = 38
48
ARMP
0
Record 9
1
50
50 + 12 = 62
-24
ARMN
0
Record 10
1
12
12 – 50 = -38
-24
ARMN
1
All items in the safing records, except En(Record Enable) bit, can be configured only in Diag
state (refer to Figure 10). Additionally, the global bit to select internal or external safing
engine is set in Init state.
12.3
In-frame and out-of-frame responses
Some sensors will communicate data within the current communication frame while others
will send data on the next communication frame. Sometimes this is sensor specific and
sometimes this is due to the amount of data to be transmitted. A simplified diagram shows
the basic communication differences of in and out of frame responses.
In-frame example:
204/277
DocID029257 Rev 1
L9680
Safing logic
Figure 57. In-frame example
-/3)
2EQUESTN
-)3/
3TATUS
5NUSED
2ESPONSEN
'!0'03
At least one bit needed to allow for synchronization between clock domains (SPI clock and
system clock).
Out-of-frame example:
Figure 58. Out-of-frame example
-/3)
2EQUESTN
2EQUESTN
-)3/
2EQUESTN
2ESPONSEN
'!0'03
Synchronization between clock domains relies upon inter-frame gap.
12.4
Safing state machine operation
State machine operation is disabled when the safing state machine reset signal is active as
described in the power supply diagnostics and controls section of this document. The
outputs of the state machine are ARMxREQ. As previously stated, there is a maximum of 16
safing records available to the state machine. Inputs to the safety state machine are
programmed safing records and sensor data. The configuration of the state machine is
common to all sensors.
12.4.1
Simple threshold comparison operation
In this mode, sensor data received through the sensor SPI interface and validated by the
safing record is passed to the safing algorithm. The simple threshold comparison algorithm
compares the received data to two thresholds, SAF_TH (positive threshold) and (-SAF_TH)
(negative threshold). If the sensor data is greater than SAF_TH or is less than (-SAF_TH)
then and event is flagged and the event counter is incremented based on the programmed
value of ADD_VAL. If sensor data does not trigger the SAF_TH comparators, the counter is
decremented by SUB_VAL. SUB_VAL is programmed by the user and can be same or
different than ADD_VAL. This feature allows for an asymmetrical counter function making
the system either more or less sensitive to sensor data. Since sensor data can indicate a
positive or negative event, the algorithm maintains separate event counters, POS_COUNT
and NEG_COUNT. ADD_VAL and SUB_VAL programmed values are the same for both
event counters.
On each sensor sample, the event counters, POS_COUNT and NEG_COUNT, are updated
based on the SAF_TH comparators. Likewise, each event counter is compared with a
corresponding arming threshold. In this case, POS_COUNT value is compared to
ARMP_TH and NEG_COUNT to ARMN_TH. ARMP_TH and ARMN_TH are programmable
thresholds set by the user. The compared result will set ARMP and ARMN to either ‘1’ or ‘0’
depending on the comparison status. If ARMP_TH or ARMN_TH are set to 0, the arming will
be activated immediately entering in safing state.
DocID029257 Rev 1
205/277
276
Safing logic
L9680
POS_COUNT and NEG_COUNT are not updated if microcontroller stops reading SAF_CC
bits (this must be avoided otherwise ARMING set and reset will not be possible).
By way of the assignment of the ADD_VAL, SUB_VAL, ARMP_TH and ARMN_TH settings,
the safing engine can be configured to assert arming for either a simple accumulation of
COUNTs in a non-consecutive manner, or it could be set to require some number of
consecutive samples.
12.5
Safing engine output logic (ARMxINT)
SPI messages are monitored and mapped to specific safing records. Each safing record is
configured with its own threshold, dwell time and the appropriate ARMxINT signal to
activate if safing criteria are met.
Any enabled safing record can be programmed to an arming signal. All safing records
arming status is logically ‘OR'd’ to its programmed arming signal. For example, if safing
records 1, 2, 4 are programmed to ARMINT1 and the records are enabled, any of the
records can set the ARMINT1 signal. Configuration of safing record mapping to ARMxINT
signals is specified in the in the SAF_CONTROL_x register (refer to Table 67).
While in Diag state, L9680 allows diagnostics of the squib driver HS and LS FETs, ARM
pins, VSF output and firing timers. The ARM and VSF output tests are mutually exclusive.
For safety purposes, the safing logic circuitry is physically separated from the circuitry that
contains the deployment logic.
206/277
DocID029257 Rev 1
L9680
Safing logic
Figure 59. Safing engine arming flow diagram
67$57
L 326B&2817>L@
! $503B7+"
1
1(*B&2817>L@
! $501B7+"
<
1
$503 <
$503 $501 $506(/>L@
RU"
$506(/>L@
RU"
<
$501 1
<
1
7,0(5B&17[LVDELW
GRZQFRXQWHUDOZD\V
UXQQLQJDWPV
1
$50>L@ 7,0(5B&17
':(//>L@
$50>L@ 7,0(5B&17
':(//>L@
<
1
7,0(5B&17[FRQWURO
H[WHQGVWRIRUKLJKPLG
<
7,0(5B&17
':(//>L@
7,0(5B&17
':(//>L@
L
7,0(5B&17
!"
1
L 1"
1
7,0(5B&17
!"
<
1
$50[,17FRQWUROH[WHQGV
WRIRUKLJKPLG
<
$50,17 $50,17 $50,17 $50,17 <
1 /
1 /
1 /
*$3*36
DocID029257 Rev 1
207/277
276
Safing logic
L9680
Figure 60. Safing engine diagnostic logic
6&/.B56
026,B56
0,62B56
&6B56
6$)B&6
6$)B&6
6$)B&6
6$)B&6
63,'HFRGH
7KUHVKROG
&RPSDUH
3XOVH
6WUHWFK
'6B7(6796)
',$*67$7(
$505(4
'67(67$50
'67(6738/6(
38/6(B7(67
38/6(B7(67
$505(4
'67(67$50
$505(4
'67(67$50
$505(4
'67(67$50
$50,1*67$7(
*$3*36
A configurable mask for each internal ARMxINT signal is available for all of the integrated
deployment loops. The un-masked ARMxINT signal for each loop will enable the respective
loop drivers.
Activation of VSF (regulation rail for High Side Safing FET) occurs upon ARMxINT. Actual
High Side Safing FET activation still requires microcontroller signal.
L9680 is able to provide arming signals to external deployment loops by means of four
discrete output ARMx pins.
208/277
DocID029257 Rev 1
L9680
Safing logic
Figure 61. ARMx input/output control logic
660B5(6(7
:'B/2&.287
:'B581
:'B/2&.287
:'B29(55,'(
3XOVHWHVW37B[VWDWH [ :$,7RU
$50,17
$505(4
$50
$50,17
$505(4
6DILQJ
(QJLQH
$50
$50,17
$505(4
$50
$50,17
$505(4
$50
6$)(6(/
*$3*36
12.5.1
Arming pulse stretch
Upon a valid command processed by the safing logic, the Dwell bit to stretch the arming
time assertion (dwell time) applies to each safing record and is used to help safe the
deployment sequence to avoid undesired behaviour.
Once dwell time has started, it will continue, regardless of the En (Record Enable) bit. Dwell
will be truncated in case of SSM reset. Dwell values in the safing records are transferred to
the ARMx signals. A dedicated counter is designed for each ARMx output pin. If different
dwell values are assigned to the same ARMx, the longer value is used. Dwell times can only
be extended, not reduced. If the remaining dwell time is less than the new dwell extension
setting, the new setting will be loaded into the dwell counter.
Dwell times are user programmable.
The behaviour of the pulse stretch timer is shown below.
DocID029257 Rev 1
209/277
276
Safing logic
L9680
Figure 62. Pulse stretch timer example
$UPLQJ6DILQJ/RJLF
3URFHVVHGUHVXOW
$UPLQJ(QDEOH
3XOVH6WUHWFK
3XOVH6WUHWFK7LPH
/HVV7KDQ3XOVH
6WUHWFK7LPH
3XOVH6WUHWFK
7LPH
'!0'03
The Arming Enable Pulse Stretch Timer status is available in the AEPSTS register.
12.6
Additional communication line
The ACL pin is the Additional Communication Line input that provides a means of safely
activating the arming outputs (ARMx and VSF) for disposal of restraints devices at the end
of vehicle life.
The handshake sequence for activating the Arming outputs is illustrated in Figure 63. The
strategy involves generation of a seed value from within the L9680 device using a freerunning 8-bit counter running at fSCRAP_SEED rate, where it can be read by the
microcontroller. The microcontroller uses it to generate an 8-bit key value. When the seed
value is read (SPI SCRAP_SEED command), L9680 also freezes the seed value and
computes its own key, which is used for comparison to the key subsequently submitted by
the microcontroller. The key value is submitted by the microcontroller using the
SCRAP_KEY command, and successful reception of this command with a key value
matching the internally calculated key allows the successful completion of the first
handshake. After that, in case a second handshake (seed-key) completes successfully and
if a valid ACL is detected (as described below) the L9680 transitions from Scrap state to
Arming state. To remain in Arming state the microcontroller must periodically refresh L9680
with the SCRAP_KEY command containing the correct key value in the data field of the
command, and L9680 must also receive the correct ACL signal. This must occur before the
scrap timeout timer expires (TSCRAP_TIMEOUT). The scrap key is derived from the seed
value using a simple logical inversion on the even-numbered bits (0, 2, 4, 6). From a logical
standpoint, this is equivalent to a bit-wise XOR of the seed value with 0x55.
While the SSM is in Arming state, the arming outputs are asserted (ARMx=1, VSF on). If the
periodic scrap key is incorrect, or not received before the timeout expires, or the ACL is not
correctly received, the SSM reverts back to the Scrap state, and the arming outputs are
deactivated.
210/277
DocID029257 Rev 1
L9680
Safing logic
Figure 63. Scrap SEED-KEY state diagram
660B5(6(725
1276&5$3VWDWH25$50,1*VWDWH
6&5$3,1,7
YDOLGBVFUDS 63,B6&5$3B6(('
6((' 6(('&75
7DUJNH\ IQ6(('
ZURQJ63,B6&5$3B.(<
6&5$3705!76FUDSBWLPHRXW
25ZURQJ63,B6&5$3B.(<
),5676(('
YDOLGBVFUDS 63,B6&5$3B6(('
6((' 6(('&75
7DUJNH\ IQ6(('
63,B6&5$3B.(< WDUJNH\
6&5$3705 ),567.(<
YDOLGBVFUDS 63,B6&5$3B.(< WDUJNH\
63,B6&5$3B6(('
6((' 6(('&75
7DUJNH\ IQ6(('
6(&21'6(('
YDOLGBVFUDS 63,B6&5$3B.(< WDUJNH\
6&5$3705 63,B6&5$3B6(('
6((' 6(('&75
7DUJNH\ IQ6(('
63,B6&5$3B.(< WDUJNH\
.(<
YDOLGBVFUDS 63,B6&5$3B6(('
6((' 6(('&75
7DUJNH\ IQ6(('
63,B6&5$3B.(< WDUJNH\
6&5$3705 6(('
YDOLGBVFUDS 63,B6&5$3B6(('
6((' 6(('&75
7DUJNH\ IQ6(('
*$3*36
Figure 64. Scrap ACL state diagram
660B5(6(725
1276&5$3VWDWH$1'127$50,1*VWDWH
$&/*22' $&/%$' $&/705 5LVLQJHGJH
$&/705 $&/*22' $&/%$'
$&/705!7DFOBOR
ULVLQJHGJH
$&/*22'
$&/%$' $&/705 $&/+,*+
)DOOLQJHGJH
$&/705!7RQBDFOBOR
$&/705!7RQBDFOBKL25
)DOOLQJHGJH$&/7,0(5
7RQBDFOBOR
5LVLQJHGJH25
$&/705!7DFOBKL
$&/705 $&/*22' $&/%$'
$&//2:
$&/705!7DFOBKL
$&/*22' $&/%$'
$&/705 $&/(5525
*$3*36
DocID029257 Rev 1
211/277
276
Safing logic
L9680
A specific waveform needs to be present on ACL input in order to instruct L9680 to arm all
deployment loops. L9680 is designed to support the Additional Communication Line (ACL)
aspect of the ISO-26021 standard, which requires an independent hardwired signal (ACL) to
implement the scrapping feature. The disposal signal may come from either the vehicle's
service connector, or the systems main microcontroller, depending on the end customer's
requirements.
The arming function monitors the disposal PWM input (ACL pin) for a command to arm all
loops for vehicle end-of-life airbag disposal. The disposal signal characteristic is shown in
Figure 65. To remain in Arming state, at least three cycles of the ACL signal must be
qualified (in addition to the periodic KEY value being received from the microcontroller). For
the device to qualify the periodic ACL signal, the period and duty cycle are checked. Two
consecutive cycles of invalid disposal signal are to be received to disqualify the ACL signal.
If the logic detects that the signal is incorrect or missing while in Scrap state, the device will
stay in Scrap state; would it happen in Arming state, it will transition to Scrap state
immediately.
Figure 65. Disposal PWM signal
&\FOHWLPH
2QWLPH
'!0'03
The disposal PWM signal cycle time and on time parameters can be found in the electrical
parameters tables.
212/277
DocID029257 Rev 1
L9680
13
General purpose output (GPO) drivers
General purpose output (GPO) drivers
The L9680 contains three General Purpose Output (GPO) drivers configurable either as
high-side or low-side modes. The drivers can be independently controlled in ON-OFF mode
or in PWM mode setting the desired duty cycle value through the GPO Control Register
(GPOCTRLx).
For low side driver configuration, the GPODx pin is the drain connection of an internal
MOSFET and is the current sink for the output driver. The GPOSx pin is the source
connection of the internal MOSFET and is externally connected to ground. For high side
driver configuration, the GPODx pin will be connected to battery and GPOSx pin will be
connected to load's high side.
Figure 66. GPO driver and diagnostic block diagram
*32)/765*32[',6$%/(
*32&5*32[/6
660B5(6(7
5
*32)/765*32[6+257
*32)/765*32[7(03
3:0&7/
*32&5*32[/6
(1
21
(5%2267B2.
9287B*32[B2/
3:0B&/.
N+]—V
,2))
*32&75/[>@
6
,2))!,65&B7+
6
,2)),6,1.B7+B[
63,:,' µ*32&5¶
&7/
*32)/765*32[2))231
5
*32'[
,'6
287
,'6!,2&B*32
,'6,2/B*32
*326[
6
*32)/765*32[21231
5
6
*32)/765*32[2&
63,5,' µ*32)/765¶
5
660B5(6(7
*$3*36
The drivers are configured in one of the two modes through the GPO Configuration Register
(GPOCR) register. This hardware configuration is only allowed during the Init and Diag
states.
When configured as high-side, the drivers need ER Boost voltage to be above the
VERBST_OK threshold to be enabled.
The default state of all drivers is off. The drivers can be independently activated via SPI
control bits on GPO Control Register (GPOCTRLx). In addition, a set point on the
GPOCTRLx will control the output drivers in PWM with a 125Hz frequency. If PWM control is
desired, user should set the needed set point in the GPOxPWM bits of the GPOCTRLx
while activating the interface. When all bits are set to '0', the GPOx output will be disabled.
DocID029257 Rev 1
213/277
276
General purpose output (GPO) drivers
L9680
PWM control is based on a 125Hz frequency. 6 bits of GPOCTRLx are reserved to this
mode, in order to control the drivers with 64 total levels from a 0% to a full 100% duty cycle.
When both GPO channels are used in PWM Mode at the same frequency they are
synchronized to provide parallel configuration capability.
PWM control is implemented through a careful slew rate control to mitigate EMC emissions
while operating the interface. The driver output structure is designed to stand -1V on its
terminals and a +1V reverse voltage across source and drain.
The GPO driver is protected against short circuits and thermal overload conditions. The
output driver contains diagnostics available in the GPO Fault Status Register (GPOFLTSR).
All faults except for thermal overload will be latched until the GPOFLTSR register is read.
Thermal overload faults will remain active after reading the GPOFLTSR register should the
temperature remain above the thermal fault condition. For current limit faults, the output
driver will operate in a linear mode (ILIM) until a thermal fault condition is detected.
Figure 67. GPO Over temperature logic
2YHUWHPS'HWHFW
6
6
5
*32)/765*32[7(03
5
63,*32&75/[>@ 660B5(6(7
63,5,' µ*32)/765¶
660B5(6(7
*$3*36
The device offers also an open load diagnostics while in ON state. The diagnostics is run
comparing the current through the output stage with a reference threshold IOpenLoad: should
the output current be lower than the threshold, the open detection flag is asserted.
The device is also able to detect a fault condition during the OFF state by means of the
Voltage Regulator Current Monitor (VRCM) block. During the OFF state the VRCM block
tries to force a voltage VOUT_GPOx_OL (2.5 V) on GPOD pin if LS mode is selected (with a
current limitation of ILIM_GPOD_SRC/SINK) or on GPOS pin if the HS mode is selected (with a
current limitation of ILIM_GPOS_SRC/SINK) and, at the same, it compares the current sourced
or sunk in order to detect if a fault on GPO pins is present. The diagnostic in OFF state is
able to detect the open load in both HS and LS modes, the short to ground fault in LS mode
and the short to battery fault in HS mode:
Table 16. Short to ground fault in LS mode
LS MODE
GPOxSHORT GPOxOFFOPN
214/277
Interpretation
IOFF > ISRC_TH
1
0
Short to ground
- ISINK_TH_LS < IOFF < ISRC_TH
0
1
Open
IOFF < - ISINK_TH_LS
0
0
Normal
DocID029257 Rev 1
L9680
General purpose output (GPO) drivers
Table 17. Short to battery fault in HS mode
HS MODE
GPOxSHORT GPOxOFFOPN
Interpretation
IOFF > ISRC_TH
0
0
Normal
- ISINK_TH_HS < IOFF < ISRC_TH
0
1
Open
IOFF < - ISINK_TH_HS
1
0
Short to battery
DocID029257 Rev 1
215/277
276
System voltage diagnostics
14
L9680
System voltage diagnostics
L9680 has an integrated dedicated circuitry to provide diagnostic feedback and processing
of several inputs. These inputs are addressed with an internal analog multiplexer and made
available through the SPI digital interface with the Diagnostic Data commands. In order to
avoid saturation of high voltage internal signals, an internal voltage divider is used.
Figure 68. ADC MUX
*$3*36
The diagnostics circuitry is activated by four SPI Diagnostics Control commands
(DIAGCTRLx); each of them can address all the available nodes to be monitored, except for
what mentioned in Table 18.
DIAGCTRLx SPI command bit fields are structured in the following way:
DIAGCTRL_A (ADDRESS HEX 3A)
19
18 17 16 15 14 13 12 11 10 9 8 7
MOSI
MISO NEWDATA_A
216/277
x
0
0
x
x
x
x
x
x
ADCREQ_A[6:0]
DocID029257 Rev 1
x
x
6
5
4
3
2
ADCREQ_A[6:0]
ADCRES_A[9:0]
1
0
L9680
System voltage diagnostics
DIAGCTRL_B (ADDRESS HEX 3B)
19
18 17 16 15 14 13 12 11 10 9 8 7
MOSI
MISO
x
NEWDATA_B
0
0
x
x
x
x
x
x
x
6
5
x
4
3
2
1
0
1
0
1
0
ADCREQ_B [6:0]
ADCREQ_B [6:0]
ADCRES_B [9:0]
DIAGCTRL_C (ADDRESS HEX 3C)
19
18 17 16 15 14 13 12 11 10 9 8 7
MOSI
x
MISO NEWDATA_C
0
0
x
x
x
x
x
x
x
6
5
x
4
3
2
ADCREQ_C [6:0]
ADCREQ_C [6:0]
ADCRES_C [9:0]
DIAGCTRL_D (ADDRESS HEX 3D)
19
18 17 16 15 14 13 12 11 10 9 8 7
MOSI
x
MISO NEWDATA_D
0
0
x
x
x
x
x
x
ADCREQ_D [6:0]
x
x
6
5
4
3
2
ADCREQ_D [6:0]
ADCRES_D [9:0]
ADCREQ[A-D] bit fields, used to address the different measurements offered, are listed in
Table 18 for reference.
L9680 diagnostics is structured to take four automatic conversions at a time. In order to get
four measurements, four different SPI commands have to be sent (DIAGCTRL_A,
DIAGCTRL_B, DIAGCTRL_C and DIAGCTRL_D), in no particular order.
In case the voltage to be measured is not immediately available, the desired inputs for
conversion have to be programmed by SPI in advance, to allow them to attain a stable
voltage value. This case applies to the squib resistance measurement and diagnostics (refer
to Loop diagnostics control and results registers) and to the DC sensor measurement (refer
to Section 11).
CONVRDY_0 bit in GSW is equal to (NEWDATA_A or NEWDATA_B), while CONVRDY_1
bit in GSW corresponds to (NEWDATA_C or NEWDATA_D).
Each NEWDATAx flag is asserted when conversion is finished and cleared when result is
read out. However result is cleared only when new result for that register is available.
When a new request is received it is queued if other conversions are ongoing. The
conversions are executed in the same order as their request arrived. The queue is 4
measures long so it's possible to send all 4 requests at the same time and then wait for the
results. If a DIAGCTLRx command is received twice, the second conversion request will
overwrite the previous one.
Requests are sent to the L9680 IC via the ADC measurement Registers (ADCREQx) as
shown in Table 18. All diagnostics results are available on the ADCRESx registers, when
addressed by the related ADCREQx register (e.g. data requested by ADCREQA would be
written to ADCRESA).
DocID029257 Rev 1
217/277
276
System voltage diagnostics
L9680
Table 18. Diagnostics control register (DIAGCTRLx)
ADC Request (ADCREQx)
ADC Results (ADCRESx)
Voltage Measurement Selection
Bit[6:0]
Hex
Bit[9:0]
0 0
0
0
0
0
0
$00
Unused
0 0
0
0
0
0
1
$01
ADC ground reference
VADC_GROUND
0 0
0
0
0
1
0
$02
ADC Test Pattern 2
VADC_FULLSCALE
0 0
0
0
0
1
1
$03
DC Sensor ch. selected, Voltage
DCSV_selected
0 0
0
0
1
0
0
$04
DC Sensor ch. selected, Current
DCSI_selected
(1)
0 0
0
0
1
0
1
$05
DC Sensor ch. selected, Resistance
DCSV and DCSI selected
0 0
0
0
1
1
0
$06
Squib measurement loop selected
Voutx
0 0
0
0
1
1
1
$07
Internal reference Voltage
VBGR
0 0
0
1
0
0
0
$08
Internal reference monitor Voltage
VBGM
0 0
0
1
0
0
1
$09
VCOREMON voltage
VCOREMON
0 0
0
1
0
1
0
$0A
Temperature Measurement
TEMP
0 0
0
1
0
1
1
$0B
DC Sensor ch 0, Voltage
DCSV_0
0 0
0
1
1
0
0
$0C
DC Sensor ch 1, Voltage
DCSV_1
0 0
0
1
1
0
1
$0D
DC Sensor ch 2, Voltage
DCSV_2
0 0
0
1
1
1
0
$0E
DC Sensor ch 3, Voltage
DCSV_3
0 0
0
1
1
1
1
$0F
DC Sensor ch 4, Voltage
DCSV_4
0 0
1
0
0
0
0
$10
DC Sensor ch 5, Voltage
DCSV_5
0 0
1
0
0
0
1
$11
DC Sensor ch 6, Voltage
DCSV_6
0 0
1
0
0
1
0
$12
DC Sensor ch 7, Voltage
DCSV_7
0 0
1
0
0
1
1
$13
DC Sensor ch 8, Voltage
DCSV_8
0 0
1
0
1
0
0
$14
VB voltage of ER ESR
measure(2)
VB
(2)
VA
VC
0 0
1
0
1
0
1
$15
VA voltage of ER ESR measure
0 0
1
0
1
1
0
$16
VC voltage of ER ESR measure(2)
0 0
1
0
1
1
1
$17
Unused
0 0
1
1
0
0
0
$18
Unused
0 0
1
1
0
0
1
$19
Unused
0 0
1
1
0
1
0
$1A
Unused
0 0
1
1
0
1
1
$1B
Unused
0 0
1
1
1
0
0
$1C
Unused
0 0
1
1
1
0
1
$1D
Unused
0 0
1
1
1
1
0
$1E
Unused
0 0
1
1
1
1
1
$1F
Unused
0 1
0
0
0
0
0
$20
VBATMON pin voltage
218/277
DocID029257 Rev 1
VBATMON
L9680
System voltage diagnostics
Table 18. Diagnostics control register (DIAGCTRLx) (continued)
ADC Request (ADCREQx)
ADC Results (ADCRESx)
Voltage Measurement Selection
Bit[6:0]
Hex
Bit[9:0]
0 1
0
0
0
0
1
$21
VIN pin voltage
VIN
0 1
0
0
0
1
0
$22
Internal analog supply voltage (VINT3V3)
VINT3V3
0 1
0
0
0
1
1
$23
Internal digital supply voltage (CVDD)
CVDD
0 1
0
0
1
0
0
$24
ERBOOST pin voltage
ERBOOST
0 1
0
0
1
0
1
$25
SYNCBOOST pin voltage
SYNCBOOST
0 1
0
0
1
1
0
$26
VER pin voltage
VER
0 1
0
0
1
1
1
$27
SATBUCK voltage
SATBUCK
0 1
0
1
0
0
0
$28
VCC voltage
VCC
0 1
0
1
0
0
1
$29
WAKEUP pin voltage
WAKEUP
0 1
0
1
0
1
0
$2A
VSF pin voltage
VSF
0 1
0
1
0
1
1
$2B
WDTDIS pin voltage
WDTDIS
0 1
0
1
1
0
0
$2C
GPOD0 pin voltage
GPOD0
0 1
0
1
1
0
1
$2D
GPOS0 pin voltage
GPOS0
0 1
0
1
1
1
0
$2E
GPOD1 pin voltage
GPOD1
0 1
0
1
1
1
1
$2F
GPOS1 pin voltage
GPOS1
0 1
1
0
0
0
0
$30
GPOD2 pin voltage
GPOD2
0 1
1
0
0
0
1
$31
GPOS2 pin voltage
GPOS2
0 1
1
0
0
1
0
$32
RSU0 pin Voltage
RSU0
0 1
1
0
0
1
1
$33
RSU1 pin Voltage
RSU1
0 1
1
0
1
0
0
$34
RSU2 pin Voltage
RSU2
0 1
1
0
1
0
1
$35
RSU3 pin Voltage
RSU3
0 1
1
0
1
1
0
$36
SS0 pin voltage
SS0
0 1
1
0
1
1
1
$37
SS1 pin voltage
SS1
0 1
1
1
0
0
0
$38
SS2 pin voltage
SS2
0 1
1
1
0
0
1
$39
SS3 pin voltage
SS3
0 1
1
1
0
1
0
$3A
SS4 pin voltage
SS4
0 1
1
1
0
1
1
$3B
SS5 pin voltage
SS5
0 1
1
1
1
0
0
$3C
SS6 pin voltage
SS6
0 1
1
1
1
0
1
$3D
SS7 pin voltage
SS7
0 1
1
1
1
1
0
$3E
SS8 pin voltage
SS8
0 1
1
1
1
1
1
$3F
SS9 pin voltage
SS9
1 0
0
0
0
0
0
$40
SSA pin voltage
SSA
1 0
0
0
0
0
1
$41
SSB pin voltage
SSB
DocID029257 Rev 1
219/277
276
System voltage diagnostics
L9680
Table 18. Diagnostics control register (DIAGCTRLx) (continued)
ADC Request (ADCREQx)
ADC Results (ADCRESx)
Voltage Measurement Selection
Bit[6:0]
Hex
Bit[9:0]
1 0
0
0
0
1
0
$42
Unused
-
1 0
0
0
0
1
1
$43
Unused
-
1 0
0
0
1
0
0
$44
Unused
-
1 0
0
0
1
0
1
$45
Unused
-
1 0
0
0
1
1
0
$46
SF0 pin voltage
SF0
1 0
0
0
1
1
1
$47
SF1 pin voltage
SF1
1 0
0
1
0
0
0
$48
SF2 pin voltage
SF2
1 0
0
1
0
0
1
$49
SF3 pin voltage
SF3
1 0
0
1
0
1
0
$4A
SF4 pin voltage
SF4
1 0
0
1
0
1
1
$4B
SF5 pin voltage
SF5
1 0
0
1
1
0
0
$4C
SF6 pin voltage
SF6
1 0
0
1
1
0
1
$4D
SF7 pin voltage
SF7
1 0
0
1
1
1
0
$4E
SF8 pin voltage
SF8
1 0
0
1
1
1
1
$4F
SF9 pin voltage
SF9
1 0
1
0
0
0
0
$50
SFA pin voltage
SFA
1 0
1
0
0
0
1
$51
SFB pin voltage
SFB
1. The DC sensor resistance measurement can only be addressed through DIAGCRTL_A command. Results are available
through DIAGCTRL_A and DIAGCTRL_B, where ADCRES_A will contain DCSI and ADCRES_B will contain DCSV.
2. Valid only for ADCREQ_x field of MISO response when ESR measure results are available.
Proper scaling is necessary for various measurements. The divider ratios vary by
measurement and are summarized by function in the table below.
Table 19. Diagnostics divider ratios
Divider Ratio
Measurements
15:1
220/277
VER
X
ERBOOST
X
VSF
X
SSxy
X
SFx
X
10:1
GPODx
X
GPOSx
X
SYNCBOOST
X
VIN
X
DocID029257 Rev 1
7:1
4:1
1:1
L9680
System voltage diagnostics
Table 19. Diagnostics divider ratios (continued)
Divider Ratio
Measurements
15:1
10:1
VBATMON
X
WAKEUP
X
7:1
SATBUCK
X
WDT/TM
X
RSUx
X
4:1
VCC
X
CVDD
X
VINT
X
1:1
VCOREMON
X
Bandgap (BGR/BGM)
X
For measurements other than voltage (current, resistance, temperature etc.) the ranges are
specified in the electrical parameters section of the relevant block.
14.1
Analog to digital algorithmic converter
The device hosts an integrated 10 bit Analog to Digital converter, running at a clock
frequency of 16 MHz. The ADC output is processed by a D to D converter with the following
functions:

Use of trimming bits to recover additional gain error due to resistor dividers mismatch;

Digital low-pass filtering;

Conversion from 12 to 10 bits.
10 bits data are filtered inside the digital section. The number of samples that are filtered
vary depending on the chosen conversion. As per Section 7.3.2, the number of used
samples in converting DC sensor, squib or temperature measurements defaults to 8. The
number of samples for all other measurements defaults to 4. The sample number can be
configured by accessing the SYS_CFG register. After low pass filter, the residual total error
is ±4 LSB. This error figure applies to the case of a ideal reference voltage: the spread of
reference voltage causes a proportional error in the conversion output. The reference
voltage of the ADC is set to 2.5 V.
The conversion time is comprised of several factors: the number of measurements loaded
into the queue, the number of samples taken for any one measurement, and the various
settling times. An example of conversion time calculation for a full ADC request queue is
reported in Figure 69. The timings reported in Figure 69 are nominal ones, min/max values
can be obtained by considering the internal oscillator frequency variation reported in the DC
characteristics section.
DocID029257 Rev 1
221/277
276
System voltage diagnostics
L9680
Figure 69. ADC conversion time
',$*&75/B$
3UH
$'&
67
B 6 &
',$*&75/B%
,4
67
B 6 &
',$*&75/B&
,4
67
B 6 &
',$*&75/B'
,4
67
B 6 &
3RVW
$'&
3UH$
'& ,QLWLDO$'&6HWWOLQJ7LPH X V
6 R I6DPSOHVGHIDXOW IRUYROWDJHRQO\PHDVXUHPHQWV
7B
6 & 6 LQJOH6DPSOH&RQYHUVLRQ7LPH X V
,4 ,QWUD4
XHXH6HWWOLQJ7LPH X V
3RVW$
'& ) LQDO$'&6HWWOLQJ7LPH X V
'!0'03
222/277
DocID029257 Rev 1
L9680
15
Temperature sensor
Temperature sensor
The L9680 provides an internal analog temperature sensor. The sensor is aimed to have a
reference for the average junction temperature on silicon surface. The sensor is placed far
away from power dissipating stages and squib deployment drivers. The output of the
temperature sensor is available via SPI through ADC conversion, as shown in Table 18. The
formula to calculate temperature from ADC reading is the following one:
 ADC REF

 220

-  DIAGCTRLn  ADCRESn  – 0.739 
T  C  = 180 –   ---------------   ---------------------- 1.652  ADC RES



2
@ DIAGCTRLn(ADCREQn) = 0Ahex
All parametric requirements for this block can be found in specification tables.
DocID029257 Rev 1
223/277
276
Electrical characteristics
16
L9680
Electrical characteristics
Every parameter in this chapter is fulfilled down to VINGOOD(max).
No device damage is granted to occur down to VINBAD(min).
GNDA pin is used as ground reference for the voltage measurements performed within the
device, unless otherwise stated.
All table or parameter declared ‘Design Info’ are not tested during production testing
16.1
Configuration and control
All electrical characteristics are valid for the following conditions unless otherwise noted.
-40 °C  Ta  +95 °C.
Table 20. Configuration and control DC specifications
No
Symbol
Min
Typ
1
VNOV
Normal Operating
Voltage
Design Info
Depending on power supply
configuration
6
13
18
V
2
VJSV
Jump Start Voltage
Design Info
40°C ≤ Ta ≤ 50°C
18
-
26
V
3
VLDV
Load Dump Voltage
Transient
Design Info
26.5
-
40
V
4
WU_mon
WAKEUP Monitor
threshold
GNDSUBx as ground reference
-
-
1.5
V
5
WU_off
WAKEUP Off threshold
GNDSUBx as ground reference
Vin = 5.5 V and 35 V
2
2.5
3
V
6
WU_on
WAKEUP On threshold
GNDSUBx as ground reference
Vin = 5.5 V and 35 V
4
4.5
5
V
7
WURPD
WAKEUP Pull-down
Resistor
GNDSUBx as ground reference
120
300
480
kΩ
8
VBGOOD0
SYS_CTL(VBATMON_TH_SEL)=00
or 11
5.5
5.75
6
V
9
VBBAD0
SYS_CTL(VBATMON_TH_SEL)=00
or 11
5
5.25
5.5
V
10
VBGOOD1
VBATMON Thresholds SYS_CTL(VBATMON_TH_SEL)=01 6.45
6.7
6.95
V
11
VBBAD1
SYS_CTL(VBATMON_TH_SEL)=01 5.95
6.2
6.45
V
12
VBGOOD2
SYS_CTL(VBATMON_TH_SEL)=10
7.5
7.75
8
V
13
VBBAD2
SYS_CTL(VBATMON_TH_SEL)=10
7
7.25
7.6
V
224/277
Parameter
Conditions
DocID029257 Rev 1
Max Unit
L9680
Electrical characteristics
Table 20. Configuration and control DC specifications (continued)
No
Symbol
13b ΔVBGOOD2_VBBAD2
Parameter
Conditions
VBATMON delta
thresholds
Min
Typ
300
-
600
mV
Device OFF
-5
-
5
μA
Device ON
Design Info
20
24
30
μA
VBGOOD2_VBBAD2
Max Unit
14
ILKG_VBATMON_OFF
15
ILKG_VBATMON_ON
16
RPD_VBATMON
VBATMON pull-down
resistance
Device ON
VBATMON < 10V
Design Info
125
250
375
kΩ
17
ILKG_VBATMON_TOT
VBATMON total input
leakage
ILKG_VBATMON_ON + RPD_VBATMO
VBATMON = 18V
35
-
180
μA
18
VINGOOD0
SYS_CTL(VIN_TH_SEL)=0
5
5.25
5.5
V
19
VINBAD0
20
VINGOOD1
21
VINBAD1
22
VINFASTSLOPE_H
23
VINFASTSLOPE_L
24
VINFASTSLOPE_HYS
25
VINSYNC_DIS_L
26
27
28
VBATMON input
leakage
VIN Good and VIN Bad SYS_CTL(VIN_TH_SEL)=0
Thresholds
SYS_CTL(VIN_TH_SEL)=1
4.5
4.75
5
V
6.05
6.3
6.55
V
SYS_CTL(VIN_TH_SEL)=1
5.55
5.8
6.05
V
-
9.3
9.8
10.3
V
-
9
9.5
10
V
-
0.2
0.3
0.4
V
SYS_CTL(SYBST_V) =0
12.2
-
13.6
V
15
-
16.2
V
5
-
300
mV
Device OFF
VIN = 40V
-10
-
10
μA
Device ON
VIN = 12V
-
-
40
mA
External VIN capacitor Design Info
1
-
13(1)
μF
VIN Thresholds used
to change Boost
regulator transition
time
VIN SyncBoost Disable SYS_CTL(SYBST_V) = 1
Thresholds
SYS_CTL(SYBST_V) = 0 / 1
VIN SYNC_DIS_LYS
Guaranteed by design
VIN SYNC_DIS_HYS
VINSYNC_DIS_H
ILKG_VIN_OFF
VIN input current
29
ILKG_VIN_ON
30
CVIN
DocID029257 Rev 1
225/277
276
Electrical characteristics
L9680
Table 20. Configuration and control DC specifications (continued)
No
Symbol
31
ILKG_VER_OFF
32
ILKG_VER_ON_L
Parameter
Conditions
VER Input Leakage
Min
Typ
Max Unit
Device OFF
VER = 40V
-5
-
50
μA
Device ON
ERBOOST > VER
ER Charge OFF
50
-
200
μA
Device ON
ERBOOST < VER
ER Charge OFF
100
-
500
μA
33
ILKG_VER_ON_H
34
VWDTDIS_TH
WDT/TM threshold
Test go no go
10
12
14
V
35
VWDTDIS_HYST
WDT/TM hysteresis
Design Info
0.2
0.4
0.5
V
36
IPD_WDTDIS
WDT/TM Pull Down
Resistance
VWDTDIS ≤ 5V
20
45
70
μA
37
VTH1_H_VCCSEL_
38
VTH1_L_VCCSEL
-
1.30 1.55 1.80
V
-
1.05 1.25 1.45
V
VCCSEL Input Voltage
Thresholds 1
39
VHYS1_VCCSEL
-
0.2
-
-
V
40
VTH2_H_VCCSEL_
-
5.9
6.4
6.9
V
41
VTH2_L_VCCSEL
-
5.6
6.1
6.6
V
-
0.2
-
-
V
VCCSEL= SATBUCK
20
45
70
μA
VCCSEL Input Voltage
Thresholds 2
42
VHYS2_VCCSEL
43
IPD_VCCSEL
226/277
VCCSEL Pull Down
Current
DocID029257 Rev 1
L9680
Electrical characteristics
Table 20. Configuration and control DC specifications (continued)
No
44
Symbol
ITOTLKG_BAT
Parameter
Conditions
Room Temp
WAKEUP = 0
All following pins at 13V:
Battery Line Total Input VBATMON, VIN, ERBSTSW,
Leakage
ERBOOST, SYNCBSTSW,
SYNCBOOST
Min
Typ
Max Unit
-
-
35
μA
-
-
150
ºC
Min
Typ
Guaranteed by design
45
TJ
Junction Temperature
Design Info
1. Bigger capacitor can be used in case an external switch is used in parallel to the ER-Switch.
Table 21. Configuration and control AC specifications
No
Symbol
Parameter
1
TFLT_VBATMONTH
VBATMON thresholds
deglitch filter time
-
26
30
34
μs
2
TFLT_VINGOOD_UP
VIN Good thresholds
deglitch filter time
rising edge
-
3
3.5
4
μs
3
TFLT_VINGOOD_DO
VIN Good thresholds
deglitch filter time
falling edge
SYS_CFG(VINGOOD_FILT_SEL) = 0
-
1
-
μs
4
TFLT_VINGOOD_DO
VIN Good thresholds
deglitch filter time
falling edge
SYS_CFG(VINGOOD_FILT_SEL) = 1
3
3.5
4
μs
VIN Bad thresholds
TFLT_VINBAD_DOWN deglitch filter time
falling edge
-
3
3.5
4
μs
VIN Bad thresholds
deglitch filter time
rising edge
-
26
30
34
μs
VIN Good Thresholds
blanking time
-
26
30
34
μs
VIN SyncBoost
TFLT_VINSYNCDIS_D Disable
deglitch filter time
OWN
falling edge
-
3.3
-
4.2
μs
VIN SyncBoost
Disable
deglitch filter time
rising edge
-
9.5
-
11
μs
6
WN_L
WN_H
7
TFLT_VINBAD_UP
8
TVINGOOD_BLK
9
10
TFLT_ VINSYNCDIS
_UP
Conditions
DocID029257 Rev 1
Max Unit
227/277
276
Electrical characteristics
L9680
Table 21. Configuration and control AC specifications (continued)
No
Symbol
11
TFLT_WAKEUP
12
TLATCH_WAKEUP
13
228/277
TPWRUP
Parameter
Conditions
Min
Typ
Max Unit
Wakeup deglitch filter
time
-
0.95 1.05 1.15
ms
Wakeup latch time
-
9.7
ms
Power-up Delay Time
–
Wake-up to RESET
released
-
-
DocID029257 Rev 1
10.8 11.9
-
10
ms
L9680
Electrical characteristics
Table 22. Open ground detection DC specifications
No
Symbol
Parameter
Conditions / Comments
Min
Typ
Max
Unit
1
GNDAOPEN
GNDA open threshold
GNDSUBx=0
100
200
300
mV
2
GNDDOPEN
GNDD open threshold
GNDSUBx=0
100
200
300
mV
3
BSTGNDOPEN
BSTGND open threshold
GNDSUBx=0
100
200
300
mV
4
IPU_BSTGND
BSTGND pull-up current
ER BOOST OFF and SYNC
BOOST OFF
130
-
270
μA
5
SATGNDOPEN
SATGND open threshold
GNDSUBx=0
100
200
300
mV
6
IPU_SATGND
SATGND pull-up current
SATBUCK OFF
80
120
160
μA
7
VCCGNDOPEN
VCCGND open threshold
GNDSUBx=0
100
200
300
mV
8
IPU_VCCGND
VCCGND pull-up current
VCC BUCK OFF
80
120
160
μA
Table 23. GND_OPEN_AC - Open ground detection DC specifications
No
Symbol
1
TFLT_GNDREFOPEN
GNDA and GNDD Open
Deglitch Filter Time
2
BSTGND, SATGND,
TFLT_GNDREGOPEN VCCGND Open Deglitch
Filter Time
16.2
Parameter
Condition
Min
Typ
Max
Unit
-
7
11
16
μs
-
1.9
2.3
2.7
μs
Internal analog reference
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C ≤ Ta ≤ +95 °C
VINBAD0(min) ≤ VIN ≤ 35 V
Table 24. Internal analog reference
N°
Symbol
1
VBG1
2
VBG2
3
VADC_GROUND
4
Parameter
Condition
Min
Typ
Max
Unit
Bandgap reference
Vin = 5.5 V and 35 V
-1%
1.2
+1%
V
Bandgap monitor
Vin = 5.5 V and 35 V
-1%
1.2
+1%
V
ADC Ground reference
ADC total error included
90
104
120
mV
-1.5%
2.5
+1.5%
V
VADC_FULLSCALE ADC Full scale reference -
DocID029257 Rev 1
229/277
276
Electrical characteristics
16.3
L9680
Internal regulators
All electrical characteristics are valid for the following conditions unless otherwise noted.
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V
Table 25. Internal regulator DC specifications
No
Symbol
Parameter
1
VOUT_VINT3V3
VINT3V3 output voltage
2
VOV_VINT3V3
3
Condition
Min
Typ
Max Unit
Vin = 5.5 V, 12 V and 35 V
3.14
3.3
3.46
V
VINT3V3 over voltage
-
3.47
-
3.7
V
VUV_VINT3V3
VINT3V3 under voltage
-
2.97
-
3.13
V
4
VOUT_CVDD
CVDD output voltage
-
3.14
3.3
3.46
V
5
IOUT_CVDD
CVDD current capability
External load is not allowed
-
-
50
mA
6
ILIM_CVDD
CVDD current limit
-
80
-
-
mA
7
VOV_CVDD
CVDD over voltage
-
3.47
-
3.7
V
8
VUV_CVDD
CVDD under voltage
-
2.7
-
2.9
V
9
CCVDD
CVDD output capacitance
Design info
60
100
140
nF
Min
Typ
Max
Unit
Table 26. Internal regulators AC specifications
No
Symbol
1
TFLT_ VINT_CVDD_OV
Internal regulator over
voltage deglitch filter time
-
7
11
16
μs
2
TFLT_VINT_CVDD_UV
Internal regulator under
voltage deglitch filter time
-
7
11
16
μs
230/277
Parameter
Comment
DocID029257 Rev 1
L9680
16.4
Electrical characteristics
Watchdog
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V
Table 27. Temporal watchdog timer AC specifications (WD1)
No
Symbol
Parameter
1
TWDT1_TIMEOUT
2
TWDT1_RST
Condition
Temporal watchdog timeout
Min
Typ
Max
Unit
-
-
2.00
ms
-
-
16.3
ms
0.9
1.0
1.1
ms
-
Temporal watchdog reset time -
Table 28. Algorithmic watchdog timer DC specifications (WD2)
No
Symbol
Parameter
1
VOH_WD2LCKOUT
2
VOL_WD2LCKOUT
Condition
WD2LockOut output voltage
Min
Typ Max Unit
ILOAD = -0.5 mA
VCC-0.6
-
VCC
V
ILOAD = 2.0 mA
0
-
0.4
V
Min
Typ
Max
Unit
Table 29. Algorithmic watchdog timer AC specifications (WD2)
No
Symbol
Parameter
Condition
1
TWDT2_TIMEOUT
Algorithmic watchdog timeout
-
45
50
55
ms
2
TWDT2_RST
Algorithmic watchdog reset
time
-
0.9
1.0
1.1
ms
3
TRISE_ WD2LCKOUT WD2LockOut rise time
50 pF load, 20%-80%
-
-
1.0
μs
4
TFALL_ WD2LCKOUT WD2LockOut fall time
50 pF load, 20%-80%
-
-
1.0
μs
-
-
f osc
--------512
-
MHz
5
fWD2_SEED
WD2 Seed Counter Rate
DocID029257 Rev 1
231/277
276
Electrical characteristics
16.5
L9680
Oscillators
All electrical characteristics are valid for the following conditions unless otherwise noted:
--40 °C  Ta  +95 °C, 3.14  CVDD  3.46.
Table 30. Oscillators specifications
N
#
1
2
3
4
5
6
Symbol
Min
Typ
Max
Unit
15.2
16
16.8
MHz
fMOD_OSC
Main
SPI_CLK_CNF(MAIN_SS_DIS=0)
oscillator
modulation Design Info
frequency
-
f osc
---------128
-
MHz
IMOD_OSC
Main
oscillator
SPI_CLK_CNF(MAIN_SS_DIS=0)
modulation
index
2
4
6
%
7.125
7.5
7.875
MHz
fMOD_AUX
Aux
SPI_CLK_CNF(AUX_SS_DIS=0)
oscillator
modulation Design Info
frequency
-
f osc_AUX
-----------------------128
-
MHz
IMOD_AUX
Aux
oscillator
SPI_CLK_CNF(AUX_SS_DIS=0)
modulation
index
2
4
6
%
fOSC
fAUX
Parameter
Main
oscillator
average
frequency
Aux
oscillator
average
frequency
Condition
-
-
Main
oscillator
fOSC_LOW_ low
7
frequency
TH
detection
threshold
-
128
----------  f AUX_MIN
68
-
128
----------  f AUX_MAX MHz
68
Main
oscillator
fOSC_HIGH_ high
8
frequency
TH
detection
threshold
-
79
------  f AUX_MIN
32
-
79
------  f AUX_MAX MHz
32
232/277
DocID029257 Rev 1
L9680
16.6
Electrical characteristics
Reset
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V, VCCx(min)  VCCx  VCCx(max),
VCC = 3.3 V or 5 V
Table 31. Reset DC specifications
No
Symbol
1
VOH_RESET
2
VOL_RESET
3
RPD_RESET
4
Parameter
Comment
Min
Typ
Max
Unit
ILOAD = -1. mA
VCC-0.4
-
VCC
V
ILOAD = 2.0 mA
0
-
0.4
V
RESET pull down resistance
-
65
100
135
kΩ
VCOREUV
VCOREMON under voltage
threshold
-
1.08
1.11
1.14
V
5
VCOREOV
VCOREMON over voltage
threshold
-
1.26
1.29
1.32
V
6
RPD_VCORE
VCOREMON pull down
resistance
-
65
100
135
kΩ
7
VIH_ MCUFLT
MCUFAULTB high level input
voltage
-
2
-
-
V
8
VIL_ MCUFLT
MCUFAULTB Low level Input
Voltage
-
-
-
0.8
V
9
IPD_MCUFLT
MCUFAULTB Pull Down
Current
MCUFAULTB= VCC
20
45
70
μA
RESET output voltage
Table 32. Reset AC specifications
No
Symbol
Parameter
Comment
Min
Typ
1
TRISE_RESET
Rise time
-
-
1.00
μs
2
TFALL_RESET
Fall time
-
-
1.00
μs
3
THOLD_RESET
Reset hold time
-
0.45
0.5
0.55
ms
4
TFLT_VCOREOV
VCOREMON over voltage
deglitch filter time
-
27
30
33
μs
5
TFLT_VCOREUV
VCOREMON under voltage
deglitch filter time
27
30
33
μs
6
TFLT_MCUFAULTB
MCUFAULTB Deglitch filter
time
9
10
11
μs
50 pF load, 20%-80%
-
DocID029257 Rev 1
Max Unit
233/277
276
Electrical characteristics
16.7
L9680
SPI interface
All electrical characteristics are valid for both Global and Remote Sensor SPI and for the
following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V, VCCx(min)  VCCx  VCCx(max),
VCC = 3.3 V or 5 V
Table 33. Global and remote sensor SPI DC specifications
No
Symbol
Min
Typ
Max
Unit
1
VIH_CS_G
VIH_CS_RS
CS_x High level Input
Voltage
-
2
-
-
V
2
VIL_CS_G
VIL_CS_RS
CS_x Low level Input
Voltage
-
-
-
0.8
V
3
IPU_CS_G
IPU_CS_RS
CS_x Pull Up Current
CS_x = 0V
-70
-45
-20
μA
4
VIH_MOSI_G
VIH_MOSI_RS
MOSI_x High level Input
Voltage
-
2
-
-
V
5
VIL_MOSI_G
VIL_MOSI_RS
MOSI_x Low level Input
Voltage
-
-
-
0.8
V
6
IPD_MOSI_G
IPD_MOSI_RS
MOSI_x Pull Down Current
MOSI_x = VCC
20
45
70
μA
8
VIH_SCLK_G
VIH_SCLK_RS
SCLK_x High level Input
Voltage
-
2
-
-
V
9
VIL_SCLK_G
VIL_SCLK_RS
SCLK_x Low level Input
Voltage
-
-
-
0.8
V
10
IPD_SCLK_G
IPD_SCLK_RS
SCLK_x Pull Down Current
SCLK_x = VCC
20
45
70
μA
12
VOH_MISO_G
VOH_MISO_RS
MISO_x High level Output
Voltage
ILOAD = -800 μA
VCC
-0.5
-
VCC
V
13
VOL_MISO_G
VOL_MISO_RS
MISO_x Low level Output
Voltage
ILOAD = 2.0 mA
-
-
0.4
V
14
ILKG_MISO_G
ILKG_MISO_RS
MISO_x Output Leakage
Tri-state leakage
-10
-
10
μA
15
VIH_MISO_RS
MISO_RS High level Input
Voltage
-
2
-
-
V
16
VIL_MISO_RS
MISO_RS Low level Input
Voltage
-
-
-
0.8
V
234/277
Parameter
Comment
DocID029257 Rev 1
L9680
Electrical characteristics
Table 34. SPI AC specifications
No
Symbol
Parameter
Comments / Conditions
Min
Typ
1
FSCLK
SPI transfer frequency
2
TSCLK
3
-
-
8
SCLK_x period
-
123.8
-
-
ns
TLEAD
Enable lead time
-
250
-
-
ns
4
TLAG
Enable lag time
-
50
-
-
ns
5
THIGH_SCLK
SCLK_x high time
-
40
-
-
ns
6
TLOW_SCLK
SCLK_x low time
-
40
-
-
ns
7
TSETUP_MOSI
MOSI_x input setup time
-
20
-
-
ns
8
THOLD_MOSI
MOSI_x input hold time
-
20
-
-
ns
9
TACC_MISO
MISO_x access time
-
-
60
ns
10
TDIS_MISO
MISO_x disable time
-
-
100
ns
11
TVALID_MISO
MISO_x output valid time
-
-
30
ns
12
THOLD_MISO
MISO_x Output Hold Time
80 pF load; Design Info
0
-
-
ns
13
TNODATA
SCLK_x hold time
-
20
-
-
ns
14
TFLT_CS
CS_x noise glitch rejection time -
50
-
300
ns
15
TNODATA
SPI interframe time
-
400
-
-
ns
80 pF load
Max
Unit
8.08 MHz
16
TSETUP_MISO_RS MISO_RS Input Setup Time
-
20
-
-
ns
17
THOLD_MISO_RS MISO_RS Input Hold Time
-
20
-
-
ns
Note:
All timing is shown with respect to 10% and 90% of the actual delivered VCC voltage.
Figure 70. SPI timing diagram
&6B[
6&/.B[
026,B[
0,62B[
/6%,1
'$7$
06%,1
06%287
'$7$
/6%287
'21¶7
&$5(
*$3*36
DocID029257 Rev 1
235/277
276
Electrical characteristics
16.8
L9680
ERBoost regulator
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V.
Table 35. ERBoost regulator DC specifications
No
Symbol
Parameter
1
VO_ERBST
Boost output voltage
2
3
IO_ERBST
Conditions
Min
Typ
Max
Unit
Across all line and IO_BST
load (steady state)
SYS_CTL(ER_BST_V)=0
22.6
23.8
25
V
Across all line and IO_BST
load (steady state)
1SYS_CTL(ER_BST_V)=1
31.65
33
35
V
Boost output current
-
0.1
-
70
mA
-8%
-
8%
%
-8%
-
8%
%
4
dVSR_ac
Line transient response
All line, load; dt=100us;
BST33V = 0/1
Design Info
5
dVLR_ac
Load transient response
All line, load; dt=100us;
BST33V = 0/1
Design Info
6
RDSON_ERBST
Power switch resistance
-
-
-
1
Ω
7
IOC_ERBST
-
650
-
1350
mA
8
IOC_ERBST_ERON
ER Switch activated AND
SW_REGS_CONF(LOW_E
RBST_ILIM_ERON) = 1
125
-
600
mA
9
ILKG_ERBST_OFF
-5
-
+5
μA
60
-
200
μA
1.5
-
2.4
mA
10
Over current detection
ERBOOST=40V
Power-off or Sleep Mode
ILKG_ERBST_ON
ERBOOST input current
Active or Passive Mode
ERBoost reg. enabled
ERBSTSW > ERBoost >
VER
ER Charge OFF
VSF regulator OFF
Any GPO channel not
enabled
Guarantee by design
11
ILKG_ERBST_ON_wGPO
236/277
Active or Passive Mode
ERBoost reg. enabled
ERBSTSW > ERBoost >
VER
ER Charge OFF
VSF regulator OFF
All GPO channel activated
DocID029257 Rev 1
L9680
Electrical characteristics
Table 35. ERBoost regulator DC specifications (continued)
No
Min
Typ
Max
Unit
BST33V = 0
18
20
22
V
BST33V = 1
26
28
30
V
SYS_CTL(ER_BST_V) = 0
22.6
-
25
V
SYS_CTL(ER_BST_V) = 1
31.65
-
35
V
1.6
2.2
2.5
V
Voltage difference
between ERBSTSW and
VERBSTSW – VERBOOST
17 VERBST_CLAMP_EN_TH
ERBOOST to activate the
ER Boost CLAMP
2.7
3.3
3.7
V
18
TJSD_ERBST
-
150
175
190
°C
19
THYS_TSDERBST
-
5
10
15
°C
Min
Typ
Max
Unit
-
1.8
1.882
2.0
MHz
10% to 90% voltage on
ERBSTSW
VIN ≥ VINFASTSLOPE_H =
10.3 V
Iload = 6 0mA
SYS_CTL(ER_BST_V) = 1
Guaranteed by Design
15
-
35
ns
TRISE_ERBSTSW_FAST
TFALL_ERBSTSW_FAST
10% to 90% voltage on
ERBSTSW
VIN = VINFASTSLOPE_L =9 V
5
-
15
ns
TON_ERBST
CERBOOST = 2.2 μF
Vin =12V, IO_ERBST= 5mA
SYS_CTL(ER_BST_V) = 1
Measured from CS_G
edge to VO_ERBST(min)
50
-
500
μs
-
27
30
33
μs
12
13
14
15
16
Symbol
VERBST_OK
Parameter
ERBOOST voltage
threshold
VERBST_OV
ERBOOST Over Voltage
threshold
VERBST_DIS_TH
Voltage difference
between VIN and
ERBOOST to deactivate
the ER Boost regulator
Thermal shutdown
Conditions
VIN – ERBOOST
Table 36. ERBoost regulator AC specifications
No
Symbol
1
FSW_ERBST
2
3
4
5
TRISE_ERBSTSW_SLOW
TFALL_ERBSTSW_SLOW
Parameter
ERBOOST switching
frequency
ERBSTSW transition
time
ERBOOST charge-up
time
Deglitch filter on
TFLT_VIN_ERBST_COMP VIN_ERBoost
comparator
Conditions
DocID029257 Rev 1
237/277
276
Electrical characteristics
L9680
Table 36. ERBoost regulator AC specifications (continued)
No
Symbol
6
TFLT_TSD_ERBST
7
Parameter
TSOFTST_ERBST
Conditions
Min
Typ
Max
Unit
Thermal shutdown filter
time
-
-
-
10
μs
ERBOOST Soft-start
Time
Design Info.
Time from activation of
ERBOOST when
overcurrent is 40% of
IOC_ERBST
(IOC_ERBST_ERON) to
instant when overcurrent
is 100% of IOC_ERBST
(IOC_ERBST_ERON)
-
-
1075
μs
Min
Typ
Max
Unit
Table 37. ERBOOST Converter external components design info
No
Symbol
1
LERBST
2
ESLERBST
3
CBLK_ERBST
4
Component
Conditions
Inductance
-
8
10
12
μH
Inductance resistance
-
-
-
0.1
Ω
1
2.2
-
μF
-
50
mΩ
Output bulk capacitance to Min cap value including
ensure regulator stability
derating factors
ESRCBLK_ERBST Bulk capacitor ESR
-
5
VFSTR_ERBST
Steering diode forward
voltage
IF=100 mA
-
-
0.85
V
6
ILKGSTR_ERBST
Steering diode reverse
leakage
Ta = 95 °C
-
-
3
mA
238/277
DocID029257 Rev 1
L9680
16.9
Electrical characteristics
ER CAP current generators and diagnostic
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V, 8 V ≤ ERBOOST.
Table 38. ER CAP current generators and diagnostic DC specifications
No
Symbol
Min
Typ
Max
Unit
1
IER_CHARGE
60
65
70
mA
2
IER_DISCHARGE_LOW
ER discharge low level
current
VER  6V
60
65
70
mA
3
IER_DISCHARGE_HIGH
ER discharge high level
current
VER  8V
589
640
691
mA
4
RDSON_ERCHARGE
ER charge power
resistance
(VERBOOST - VVER)/IVER
IVER = 10mA
-
-
20
Ω
5
VERRANGE
VER voltage measurement
range
20
-
35
V
6
VERACC
VER voltage measurement
VERRANGE
accuracy
-8
-
+8
%
7
ERCAPRANGE
Energy reserve capacitor
measurement range
Design Info
-
-
10
mF
8
ERCAPACC
Energy reserve capacitor
measurement accuracy
VERMIN = 2 V
-7
-
+7
%
9
ERCAP_ESRRANGE
Energy reserve capacitor
ESR measurement range
-
200
-
600
mΩ
10
ERCAP_ESRACC
Energy reserve capacitor
ESR measurement
accuracy
All errors included
except the offset one
(OFFER_ESR)
-20
+20
%
11
GER_ESR
12
OFFER_ESR
13
TJSD_ERBST
14
THYS_TSDERBST
15
VVER_VBATMON_TH
Parameter
ER charge current
Conditions
ERBOOST  8 V
ERBOOST – VER  2 V
Energy Reserve Capacitor
ESR Measurement Gain
-13%
3
+13%
V/V
70
-
160
mΩ
-
150
175
190
°C
-
5
10
15
°C
1.6
2.2
2.5
V
Energy Reserve Capacitor
Design Info
ESR Measurement Offset
ER charge thermal
shutdown
Voltage difference
between VER and
VBATMON to activate the
ER Discharge in passive
mode
VER - VBATMON
DocID029257 Rev 1
239/277
276
Electrical characteristics
L9680
Table 39. ER CAP current generators and diagnostic AC specifications
No
Symbol
1
TON_ERCAP
Energy reserve capacitor CVER  10mF nominal,
charge-up time
BST33V = 0, Design Info
2
TESR_DIAG
Total duration time from SPI
ER CAP ESR diagnostic
command to ADC results
duration
availability
3
TFLT_TSD_ERCHARGE
16.10
Parameter
Conditions
Thermal shutdown filter
time
-
Min
Typ
Max
Unit
-
-
4
s
-5%
225
+5%
μs
-
-
10
μs
ER switch
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V.
Table 40. ER Switch DC specifications
No
Symbol
1
RDSON_ERSW
2
ILIM_ERSW
3
VER_SW_OV_TH
4
TJSD_ERSW
5
THYS_TSDERSW
Parameter
Conditions
Min
Typ
Max
Unit
Power switch resistance
-
0.5
-
3
Ω
ER switch current limit
-
608
810
980
mA
ER switch Over Voltage
threshold
ER switch turned off when
VIN > VER + VER_SW_OV_TH
10
-
200
mV
-
150
175
190
°C
-
5
10
15
°C
Max
Unit
Thermal shutdown
Table 41. ER Switch AC specifications
No
Symbol
1
TON_ERSW
2
Parameter
Conditions
ER turn-on time (time to
reach either RDSON_ERSW or CVIN = 10 μF
ILIM_ERSW)
TFLT_TSD_ERSW Thermal shutdown filter time -
3
240/277
TBLK_ERSW
ER switch activation
blanking time after thermal
shutdown
-
DocID029257 Rev 1
Min
-
-
5
μs
-
-
10
μs
-
1
-
ms
L9680
Electrical characteristics
16.11
COVRACT
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V; VINGOOD(max)  VIN  35 V;
VCCx(min)  VCCx  VCCx(max); VCC = 3.3 V or 5 V
Table 42. COVRACT DC specifications
No
Symbol
1
VOH_COVRACT
2
VOL_COVRACT
3
IREV_COVRACT
Parameter
Conditions
COVRACT output voltage
Reverse current short high
voltage
Min
Typ
Max
Unit
ILOAD = -0.5 mA
VCC
-0.6
-
VCC
V
ILOAD = 2.0 mA
0
-
0.4
V
COVRACT = 40 V
VCC = 3.3 V
-
-
1
mA
Min
Typ
Max
Unit
Table 43. COVRACT AC specifications
No
Symbol
Parameter
Conditions
1
TRISE_COVRACT Rise time
50 pF load, 20%-80%
-
-
1.00
μs
2
TFALL_COVRACT Fall time
50 pF load, 20%-80%
-
-
1.00
μs
16.12
SYNCBOOST converter
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  VINSYNC_DIS_X(min)
Table 44. SYNCBOOST converter DC specifications
No
Symbol
Parameter
1
VO_SYNCBST
SYNCBOOST output
voltage
2
3
IO_SYNCBST_VL_IH
4
IO_SYNCBST_VL_IL
5
IO_SYNCBST_VH_IH
SYNCBOOST output
current
Conditions
Min
Typ
Max
Unit
Across all line and load,
steady state
SYS_CTL(SYBST) = 0
11.40
12
-
V
Across all line and load
(steady state)
SYS_CTL(SYBST) = 1
14.00 14.75
-
V
SYS_CTL(SYBST_V) = 0
SYS_CFG(LOW_POWER_M
ODE) = 0
20
-
360
mA
SYS_CTL(SYBST_V) = 0
SYS_CFG(LOW_POWER_M
ODE) = 1
20
-
240
mA
SYS_CTL(SYBST_V) = 1
SYS_CFG(LOW_POWER_M
ODE) = 0
20
-
290
mA
DocID029257 Rev 1
241/277
276
Electrical characteristics
L9680
Table 44. SYNCBOOST converter DC specifications (continued)
No
Symbol
6
IO_SYNCBST_VH_IL
7
dVSR_ac
8
dVLR_ac
9
RDSON_SYNCBST
10
IOC_SYNCBST_HIGH
11
IOC_SYNCBST_LOW
12
ILKG_SYNCBOOST
SYNCBOOST leakage
13
ILKG_SYNCBSTSW
14
15
16
Parameter
Conditions
Min
Typ
Max
Unit
SYS_CTL(SYBST_V) = 0
SYS_CFG(LOW_POWER_M
ODE) = 1
20
-
190
mA
-8%
-
8%
%
-8%
-
8%
%
-
-
0.5
Ω
SYS_CFG(LOW_POWER_
MODE) = 0
1.6
-
3.2
A
SYS_CFG(LOW_POWER_
MODE) = 1
1.5
-
2.6
A
SYNCBOOST=40V Device off
-
-
10
μA
SYNCBSTSW leakage
SYNCBSTSW=40V Device off
-
-
20
μA
VSYNCBST_OK
SYNCBOOST voltage
threshold
-
9
10
11
V
VSYNCBST_OV
SYNCBOOST Over
Voltage threshold
-
22
23
24
V
VSYNCBST_DIS_TH
Voltage difference
between VIN and
SYNCBOOST to
deactivate the SYNC
Boost regulator
VIN – SYNCBOOST
1.6
2.2
2.5
V
2.7
3.3
3.7
V
SYS_CTL(RESTART_SYBST
_SEL) = 0
Voltage threshold on VIN pin
9
-
10.3
V
SYS_CTL(RESTART_SYBST
_SEL) = 1
Voltage threshold on
SYNCBOOST pin
19
20
21
V
SYNCBOOST output
current
All line, load; dt = 100 μs;
Line transient response SYS_CTL(SYBST) = 0/1
Design Info
Power switch
resistance
-
Over current detection
of integrated MOS
Voltage difference
between SYNCBSTSW
VSYNCBSTSW –VSYNCBOOST
17 VSYNCBST_CLAMP_EN_TH and SYNCBOOST to
activate the SYNC
Boost CLAMP
18 VVIN_SYNCBST_RESTART_TH
Voltage threshold to
restart Syncboost
regulator during ER
State
19
VSYNCBST_RESTART_TH
20
TJSDERSYNCBST
Thermal shutdown
-
150
175
190
C
21
THYS_TSDSYNCBST
Thermal shutdown
hysteresis
-
5
10
15
°C
242/277
DocID029257 Rev 1
L9680
Electrical characteristics
Table 45. SYNCBOOST converter AC specifications
No
Symbol
Parameter
1
FSW_SYNCBST
2
TRISE_SYNCBSTSW_SLOW
TFALL_SYNCBSTSW_SLOW
Min
Typ
Max
Unit
1.8
1.882
2.0
MHz
10% to 90% voltage on
SYNCBSTSW
VIN = VINFASTSLOPE_H
Design Info
15
-
30
ns
10% to 90% voltage on
SYNCBSTSW
VIN = VINFASTSLOPE_L
Design Info
5
-
20
ns
-
-
1075
μs
SYNCBST
switching frequency
SYNCBSTSW
transition time
3
Conditions
TRISE_SYNCBSTSW_FAST
TFALL_SYNCBSTSW_FAST
4
TSOFTST_SYNCBST
SYNCBST Softstart Time
Design Info.
Time from activation of
SYNCBOOST when
overcurrent is 40 % of
IOC_SYNCBST_HIGH
(IOC_SYNCBST_LOW) to
instant when overcurrent is
100% of IOC_SYNCBST_HIGH
(IOC_SYNCBST_LOW)
5
TFLT_TSD_SYNCBST
Thermal shutdown
filter time
-
-
-
10
μs
TBLK_SYNCSW
Sync boost
activation blanking
time after thermal
shutdown
-
-
1
-
ms
6
Table 46. SYNCBOOST converter external components design info
No
Symbol
1
LSYNCBST
2
ESLSYNCBST
3
CBLK_SYNCBST
4
Component
Conditions
Min
Typ
Max
Unit
Inductance
Min 4.7 μH nominal
3.76
-
-
μH
Inductance resistance
-
-
-
0.1
Ω
Output bulk capacitance
Min 2.2 μF nominal
1.76
-
-
μF
-
-
-
50
mΩ
ESRCBLK_SYNCBST Bulk capacitor ESR
5
VFSTR
Steering diode forward
voltage
IF = 1 A
-
-
0.5
V
6
ILKGSTR
Steering diode reverse
leakage
Ta = 95 °C
-
-
3
mA
DocID029257 Rev 1
243/277
276
Electrical characteristics
16.13
L9680
SATBUCK converter
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35V, VSYNCBST_OK  SYNCBOOST
Table 47. SATBUCK converter DC specifications
No
Symbol
1
VO_SATBCK
2
Parameter
SATBUCK output
voltage
Conditions
Min
Typ
Max
Unit
Across all line and load,
steady state SAT_V = 0
6.92
7.2
7.48
V
Across all line and load,
steady state SAT_V = 1
8.64
9
9.36
V
3
IO_SATBCK_VH_IH
SAT_V =0
LOW_POWER_MODE = 0
20
-
450
mA
4
IO_ SATBCK _VH_IL
SAT_V =0
LOW_POWER_MODE = 1
20
-
300
mA
5
IO_ SATBCK _VL_IH
SAT_V =1
LOW_POWER_MODE = 0
20
-
390
mA
6
IO_ SATBCK _VL_IL
SAT_V =1
LOW_POWER_MODE = 1
20
-
240
mA
7
dVSR_ac
Line transient
response
All line, load; dt=100 μs;
SAT_V = 0/1
Design Info
-4%
-
4%
%
8
dVLR_ac
Load transient
response
All line, load; dt=100 μs;
SAT_V = 0/1
Design Info
-4%
-
4%
%
9
RDSON_SATBCK_HS
High side power
switch resistance
-
-
-
0.6
Ω
10
RDSON_SATBCK_LS
Low side power
switch resistance
-
-
0.6
Ω
11
IOC_HS_SATBCK_HI
12
IOC_HS_SATBCK_LO
13
14
IOCP_LS_SATBCK_LO Low side positive
over current
detection
I
15
IOCN_LS_SATBCK_HI
16
IOCN_LS_SATBCK_LO
17
VSATBCK_OK_LOW
18
VSATBCK_OK_HIGH
SATBUCK output
current
High side over
current detection
OCP_LS_SATBCK_HI
244/277
Low side negative
over current
detection
SATBUCK voltage
threshold
LOW_POWER_MODE = 0
0.83
1.1
1.37
A
LOW_POWER_MODE = 1
0.53
0.7
0.9
A
1
-
100
mA
VSATBCKSW ≥ 0
FAST SLOPE
100
240
350
mA
VSATBCKSW = 0
LOW_POWER_MODE = 0
0.94
1.25
1.56
A
VSATBCKSW = 0
LOW_POWER_MODE = 1
0.64
0.85
1.06
A
SYS_CTL(SAT_V) = 0
6.2
6.5
6.8
V
SYS_CTL(SAT_V) = 1
7.7
8.1
8.5
V
VSATBCKSW ≥ 0
VSYNCBST < VSYNCBST_RESTART_TH
DocID029257 Rev 1
L9680
Electrical characteristics
Table 48. SATBUCK converter AC specifications
No
Symbol
Parameter
1
FSW_SATBCK
Conditions
SATBUCK switching
frequency
TRISE_SATBCKSW
2
_SLOW
TFALL_SATBCKSW
_SLOW
SATBCKSW transition time
TRISE_SATBCKSW
3
_FAST
TFALL_SATBCKSW
_FAST
4
TSOFTST_SATBCK SATBUCK soft start time
Min
Typ
-
1.8
1.882
2.0
MHz
10% to 90% voltage on
SATBCKSW
VSYNCBST <
VSYNCBST_RESTART_TH
Design Info
10
-
25
ns
10% to 90% voltage on
SATBCKSW
VSYNCBST >
VSYNCBST_RESTART_TH
Design Info
5
-
15
0.50
-
2
ms
From 10% to 90%
Max Units
Table 49. SATBUCK converter external components design info
No
Symbol
1
LSATBCK
2
3
4
Component
Conditions
Min
Typ
Max
Unit
3.76
-
-
μH
Inductance
Min 4.7 μH nominal
ESRLSATBCK
Inductance Resistance
-
-
-
0.25
Ω
CBLK_SATBCK
Output Bulk Capacitance
Min 4.7 μH nominal
3
-
30
μF
-
-
-
50
mΩ
ESRCBLK_SATBCK Bulk Capacitor ESR
16.14
VCC regulator
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V, VSATBCK_OK  SATBUCK
VUV_VCOREMON  VCOREMON  VOV_VCOREMON
Table 50. VCC converter DC specifications
No
Symbol
Parameter
1
VO_VCC
2
VCCBUCK Output
Voltage
Conditions
Min
Typ
Max
Units
Across all line and load,
steady state
VCCSEL < VTH1_L_VCCSEL
3.20
3.3
3.40
V
Across all line and load,
steady state
VCCSEL = > VTH1_H_VCCSEL
4.85
5
5.15
V
DocID029257 Rev 1
245/277
276
Electrical characteristics
L9680
Table 50. VCC converter DC specifications (continued)
No
Symbol
Min
Typ
Max
Units
3
IO_VCC3V_HI
VCCSEL < VTH1_L_VCCSEL
LOW_POWER_MODE = 0
20
-
420
mA
4
IO_VCC3V_LO
VCCSEL < VTH1_L_VCCSEL
LOW_POWER_MODE = 1
20
-
230
mA
5
IO_VCC5V_HI
VCCSEL > VTH1_H_VCCSEL
LOW_POWER_MODE = 0
20
-
270
mA
6
dVSR_ac
Line transient response
All line, load; dt=100 μs;
Design Info
-4%
-
4%
%
7
dVLR_ac
Load transient response
All line, load; dt=100 μs;
Design Info
-4%
-
4%
%
8
RDSON_VCCBCK_HS
High side power switch
resistance
-
-
-
0.6

9
RDSON_VCCBCK_LS
Low side power switch
resistance
-
-
-
0.6

10
IOC_HS_VCCBCK_HI
SYS_CFG(LOW_POWER_
MODE) = 0
0.59
0.75
0.9
A
11
IOC_HS_VCCBCK_LO
SYS_CFG(LOW_POWER_
MODE) = 1
0.4
0.56
0.7
A
12
IOCP_LS_VCCBCK
VVCCBCKSW > 0
SYS_CFG(LOW_POWER_
MODE) = 0 / 1
1
-
100
mA
VVCCBCKSW = 0
LOW_POWER_MODE = 0
0.67
0.9
1.13
A
VVCCBCKSW = 0
LOW_POWER_MODE = 1
0.49
0.65
0.82
A
-
100
150
200
μA
VCCSEL < VTH2_L_VCCSEL
3.43
-
3.6
V
VCCSEL > VTH2_H_VCCSEL
5.25
-
5.50
V
VCCSEL < VTH2_L_VCCSEL
3.0
-
3.17
V
VCCSEL > VTH2_H_VCCSEL
4.5
-
4.75
V
-
1.8
2
2.2
V
13 IOCN_LS_VCCBCK_HI
14 IOCN_LS_VCCBCK_LO
15
IOF_VCC
16
VCCOV3V
17
VCCOV5V
18
VCCUV3V
19
VCCUV5V
20
VCCUVL
246/277
Parameter
Conditions
VCCBUCK output current
High side over current
detection
Low side positive over
current detection
Low side negative over
current detection
Open feedback current
on VCC
VCC over voltage
detection
VCC under voltage
detection high
VCC under voltage
detection low
DocID029257 Rev 1
L9680
Electrical characteristics
Table 51. VCC converter AC specifications
No
Symbol
1
FSW_VCCBCK
Parameter
Conditions
VCCBUCK switching
frequency
-
Min
Typ
Max Units
1.8
1.882
2.0
MHz
8
-
20
ns
2
TRISE_VCCBCKSW
VCCBCKSW transition time
TFALL_VCCBCKSW
10% to 90% voltage on
VCCBCKSW
Design Info
3
TSOFTST_VCCBCK VCCBUCK soft start time
From 10% to 90%
0.5
-
2
ms
-
27
30
33
μs
VCC reg in VCC_RAMPUP
state
1.5
2
2.5
μs
4
5
VCC over voltage
detection deglitch filter time
TFLT_VCCOV
VCC Over voltage
TFLT_VCCOV_RAMPUP detection deglitch filter time
during VCC_RAMPUP state
6
TFLT_VCCUV
VCC under voltage
detection deglitch filter time
-
27
30
33
μs
7
TFLT_VCCUVL
VCC under voltage low
detection deglitch filter time
-
1.5
2
2.5
μs
Min
Typ
Max
Unit
3.76
-
-
μH
Table 52. VCC converter external components design info
No
Symbol
1
LVCCBCK
2
3
4
Component
Conditions
Inductance
Min 4.7 μH nominal
ESRLVCCBCK
Inductance resistance
-
-
-
0.25
Ω
CBLK_VCCBCK
Output bulk capacitance
Min 4.7 μF nominal
3
-
30
μF
-
-
-
50
mΩ
ESRCBLK_VCCBCK Bulk capacitor ESR
16.15
VSF regulator
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35V, VSF + 2V  ERBOOST
Table 53. VSF regulator DC specifications
No
Symbol
Parameter
1
VSF
Output voltage
2
Conditions
Min
Typ
Max
Unit
All line, load, IO_VSF up to 6mA
SYS_CGF(VSF_V)= 0
18
20
22
V
All line, load, IO_VSF up to 6mA
Only in case
SYS_CTL(ER_BST_V)=1
SYS_CGF(VSF_V) = 1
23
25
27
V
3
ILIM_VSF
Output load current limit
VSF = 0
7
10
13
mA
4
VDO_VSF
Drop-out voltage
V(ERBOOST-VSF)
-
-
2
V
5
CVSF
Output capacitance
Design Info
2.9
-
14
nF
DocID029257 Rev 1
247/277
276
Electrical characteristics
L9680
Table 53. VSF regulator DC specifications (continued)
No
6
Symbol
Parameter
Conditions
ILKG_VSF_OFF VSF input leakage
Min
Typ
Max
Unit
Device OFF
-5
-
5
μA
7
RPD_VSF
VSF pull-down resistance
Device ON
VSF regulator OFF; VSF = 25V
60
125
220
kΩ
8
IPD_VSF
VSF pull-down current
Device ON
VSF regulator ON; Design Info
34
40
46
μA
Device ON
VSF regulator ON
VSF = 25V
SYS_CGF(VSF_V)= 1
147
230
462
μA
Min
Typ
Max
Unit
-
-
100
μs
9
IPD_VSF_TOT VSF total pull-down current
Table 54. VSF regulator AC specifications
No
Symbol
1
TON_VSF
16.16
Parameter
Conditions
CVSF = 14 nF
Measured from VSF_EN=1 to
VSF inside regulation limits
VSF turn on time
Deployment drivers
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35V, 6V  SSxy  35V, SSxy - SFx  25V.
Table 55. Deployment drivers – DC specifications
No
1
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
R = 2 ohms
Considering 9mA as not detected
leakage with a 1kOhm equivalent
resistance from SFx to GND
1.33
1.4
1.6
A
R = 2 ohms, 9V ≤ SSxy
Considering 13.5mA as not
detected leakage with a 1kOhm
equivalent resistance from SFx to
GND,
1.94
1.99
2.3
A
Deployment Current Counter
Threshold
-
IDEPL
x*
90%
-
-
A
IDEPL_LO
Deployment Current
2
IDEPL_HI
3
ITH_DEPL
4
IOC_SR
Low side Over Current
Detection
-
2.2
3.1
4.0
A
5
ILIM_SR
Low side
Current Limitation
-
2.2
3.1
4.0
A
248/277
DocID029257 Rev 1
L9680
Electrical characteristics
Table 55. Deployment drivers – DC specifications (continued)
No
Symbol
Parameter
6
ΔILIM_OC_SR
Difference between Current
Limitation and OC Threshold
7
Combined High side MOS +
RDSON_HSLS Low side MOS On
Resistances
8
IREV_SF
9
ILKG_SS_OFF
10
11
Reverse Current on SFx
ILKG_SS_ON_
1CH
ILKG_SS_ON
SSxy leakage current
12
13
ILKG_SS_CH_
ARMED
ILKG_SS_2CH
_ARMED
Conditions
Min
Typ
Max
Unit
0.1
-
-
mA
Ta = 95°C
-
-
2
Ω
Without device malfunction(1)
Not to be tested in series
production
-
-
-100
mA
Device OFF
SSxy ≤ 35 V
SFx=SFy=0
-10
-
10
μA
Device ON
SSxy ≤ 35 V
SFx = 0
SSxy Leakage current of each
channel
Not Tested
70
100
130
μA
Device ON
SSxy ≤ 35 V
SFx = SFy = 0
Total SSxy leakage current with
both x and y channels NOT
armed (= 2 * 100μA)
140
200
260
μA
Device ON
SSxy ≤ 35 V
SFx = 0
Total SSxy leakage current with
only one channel armed (=520 +
100 μA)
450
620
850
μA
Device ON
SSxy ≤ 35 V
SFx = SFy = 0
Total SSxy leakage current with
both x and y channels armed (=
2* 520 μA)
Not Tested
884
1040
1196
μA
ILIM_SR - IOC_SR
DocID029257 Rev 1
249/277
276
Electrical characteristics
L9680
Table 55. Deployment drivers – DC specifications (continued)
No
Symbol
14
ILKG_SF_ON_
15
ILKG_SF_ON_
16
17
18
Parameter
Min
Typ
Max
Unit
Device ON,
SYNCBOOST = SSxy = 35V,
SFx = 0V
-5
-
5
μA
Device ON,
SYNCBOOST = SSxy = 35V,
SFx = 35V
-5
-
50
μA
Device OFF
SYNCBOOST = open,
SSxy = open but all SSxy pins
connected,
SFx = 0V
-5
-
5
μA
Device OFF
SYNCBOOST = open,
SSxy = open but all SSxy pins
connected,
SFx = 35V
-5
-
50
μA
Device ON,
SYNCBOOST = SSxy = 35V,
SRx = 0V-35
-
-
50
μA
DEVICE OFF,
SYNCBOOST = open,
SSxy = open but all SSxy pins
connected,
SRx pull down current OFF
SRx=0V-20V
-
-
50
μA
DEVICE OFF,
SYNCBOOST = open,
SSxy = open but all SSxy pins
connected,
SRx pull down current OFF
SRx=35V
-
-
30
μA
-
35
-
40
V
Load Inductance
Maximum load inductance
Design Info(2)
0
-
56
μH
13
-
455
nF
Load Capacitance
Maximum capacitance to GND
Design Info
13
-
455
nF
0V
35V
ILKG_SF_OFF SF Leakage Current
_0V
ILKG_SF_OFF
_35V
ILKG_SR_ON
19
SR Leakage Current
ILKG_SR_OFF
20
21
VSR_CLAMP SR voltage clamp
22
LDEPL
23
CSFx
24
250/277
Conditions
CSRx
DocID029257 Rev 1
L9680
Electrical characteristics
Table 55. Deployment drivers – DC specifications (continued)
No
Symbol
25
CSSxy
SSxy Capacitance
26
RSFLx
27
Parameter
Conditions
Min
Typ
Max
Unit
Maximum capacitance to GND
connected directly to SSxy pin
Design Information
-
-
10
nF
Load Impedance
Design Info
-
-
6.5
Ω
Wire Length
Squib Loops containing a clock
spring shall be limited to a
maximum length of 3m
1
-
10
m
28
RWirex
Wire Resistance
Design Info
16.8
-
63.4
mΩ/
m
29
LWirex
Wire Inductance
Design Info
0.6
-
1.8
μH/
m
30
RCSx
Clock Spring Resistance
Maximum number of clock
springs is 3 for any IC
Design Info
0
-
0.7
Ω
31
LCSx
Clock Spring Inductance
Design Info
0
-
42.9
μH
32
kL_CS1 –
Clock Spring Coupling
Design Info
0.739
-
0.903
-
33
LEMI
Squib EMI protection
Design Info
0
-
7.7
μH
1.
L_CS2
In case of an unsupplied device and shorted deployment pins (e.g. to battery voltage), the dynamic reverse current through
the high side power stage depends on CSSxy.
2. LDEPL could be calculated in the following way:
Non-Clock Spring Loops: LDEPL(max) = LWire(10m*2) + LEMI = (3.6uH/m * 10m) + 7.7uH =43.7uH
Clock Spring Loops: LWire(3m*2) + 2*LCSx + LEMI - (2*kL_CX*SQRT(L_CS1*L_CS2)) = = (3.6uH/m * 3m) + 2 * 42.9uH + 7.7uH (2 * 0.739 * 42.9uH) = 40.9uHClock Spring Loops with short to ground
LDEPL(max) = LWire(3m) + LCSx + LEMI = (1.8uH/m * 3m) + 42.9uH + 7.7uH = 56uH.
DocID029257 Rev 1
251/277
276
Electrical characteristics
L9680
Figure 71. Deployment drivers diagram
%3$%-)0ROTECTION
3YSTEM7IRING)MPEDANCE
3QUIB%-)
0ROTECTION
#LOCK3PRING
)MPEDANCE
2?#3
3QUIB,OAD
,?#3
3&X
#?3&X
2?7IRE
,?%-)
,?7IRE
2?3QUIB
K,?#3,?#3
7IRE,ENGHTM
32X
2?7IRE
,?7IRE
#?32X
2?#3
,?#3
'!0'03
Table 56. Deployment drivers – AC specifications
No
Symbol
Parameter
Conditions
1
2
TDEPL
DCR_x(Dep_Current) =
IDEPL_LO ≥1.209A rising to
1.209A falling;
TDEPL =
DCR_x(Deploy_Time)*
TDEP_TIME_RES - TDEL_IDEP
Deployment time
3
Min
Typ
DCR_
x(Depl
oy_Ti
me)*
TDEP
_TIM
E_RE
S - 65
-
-
Max
DCR
_x(D
eploy
_Tim
e)*
TDEP
Unit
ms
_TIME
_RES -
4
TDEP_TIME_RES
DCR_x Deploy_Time
resolution
-
-
1024
------------f osc
-
μs
5
TDEP_CC_RES
Deployment current counter
resolution
-
256
---------f osc
-
μs
6
TRISE_IDEPL
Rise time
10% - 90% of IDEPL
-
-
32
μs
7
TDEL_IDEP
-
-
65
μs
8
TFALL_IDEPL
Fall time
90% - 10% IDEPL
-
-
32
μs
TDEL_SD_LS
Low side shutdown delay
time
(with respect to high-side
deactivation)
50
-
-
μs
9
252/277
SSxy = 25 V,
RSQ = 2.2 ohm,
C = 22 nF L = 44 μH
Delay time
SPI_CS to 90% IDEPL
-
DocID029257 Rev 1
L9680
Electrical characteristics
Table 56. Deployment drivers – AC specifications
No
Symbol
Parameter
Min
Typ
Max
Unit
TFLT_ILIM_LS
Low side overcurrent to low
side deactivation deglitch
time in short to battery
condition
80
100
120
μs
TFLT_OS_LS
Low side overcurrent to high
side deactivation deglitch
time in case of intermittent
open to squib condition
11
-
-
20
μs
12
TOFF_OS_HS
High side OFF time in case
of intermittent open to squib condition
4
-
12
μs
10
Conditions
-
16.17
Deployment driver diagnostic
16.17.1
Squib resistance measurement
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0(max)  VIN  35 V, 6 V  SSxy  35 V, 7 V  SYNCBOOST
 35 V.
Table 57. Deployment drivers diagnostics - Squib resistance measurement
No
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
RSQ_RANGE_1 Squib resistance range 1
LPDIAGREQ(ISRC_CURR_
SEL) = 0
0
-
10.0
Ω
2
RSQ_RANGE 2
Squib resistance range 2
LPDIAGREQ(ISRC_CURR_
SEL) = 1
0
-
50.0
Ω
3
GRSQ
Squib resistance
measurement
Differential amplifier gain
VOUT_RSQ = GRSQ x [(VSF VSR)] + Voff_RSQ
-2%
5.2
+2%
V/V
4
Voff_RSQ
Squib resistance
measurement
Differential amplifier offset
VOUT_RSQ = GRSQ x [(VSF –
VSR)] + Voff_RSQ
200
-
400
mV
5
ISRC_HI_SF
ISRC_HI_SR
Squib resistance
measurement
High current source
LPDIAGREQ(ISRC_CURR_
SEL) = 0
LPDIAGREQ(ISRC) = ‘01’ or
‘10’
-5%
40
+5%
mA
6
ISRC_LO_SF
ISRC_LO_SR
Squib resistance
measurement
Low current source
LPDIAGREQ(ISRC_CURR_
SEL) = 1
LPDIAGREQ(ISRC) =’01’ or
‘10’
-10%
8
+10%
mA
7
ISRC_DELTA
Squib Resistance
Measurement
Delta Current Source
ISRC_HI_x - ISRC_LO_x
-5%
32
+5%
mA
DocID029257 Rev 1
253/277
276
Electrical characteristics
L9680
Table 57. Deployment drivers diagnostics - Squib resistance measurement (continued)
No
Symbol
Parameter
Min
Typ
Max
Unit
8
SRISRC
Squib resistance
measurement
current source slew-rate
-
3
7.5
12
mA/μs
9
VSRx_RM
SRx voltage during
resistance measurement
LPDIAGREQ(ISRC)=”01” or
“10”
LPDIAGREQ(ISINK)=1
0.4
0.7
1.2
V
10
ISINK_HI_SR
SRx current sink limit high
LPDIAGREQ(ISRC_CURR_
SEL) = 0
LPDIAGREQ(ISINK) = 1
50
75
100
mA
11
ISINK_LO_SR
SRx current sink limit low
LPDIAGREQ(ISRC_CURR_
SEL) = 1
LPDIAGREQ(ISINK) = 1
10
17.5
25
mA
12
IPD_SR_L
SYS_CTL(PD&VRCM_SEL) = 0
0.7
1
1.3
mA
13
IPD_SR_H
SYS_CTL(PD&VRCM_SEL) = 1
4.5
6
7.5
mA
14
RLKG_SF
SFx leakage resistance
Design info
1
-
-
kΩ
15
VLKG_SF
SFx leakage voltage source Design info
-1
-
18
V
-8%
-
+8
%
50
-
100
kHz
SRx current pull down
Conditions
16
RSQ_ACC
Squib resistance
measurement accuracy
After software calculation
All errors included
RSQ between 1.0 Ω and 10.0 Ω
With High Current Source
(40 mA)
17
-
EMI input low-pass filter
Design Info
254/277
DocID029257 Rev 1
L9680
Electrical characteristics
16.17.2
Squib leakage test (VRCM)
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V, 3.14 ≤ CVDD ≤ 3.46
Table 58. Squib Leakage Test (VRCM)
No
Symbol
1
2
3
VOUT_VRCM
Parameter
Conditions
Output Voltage on SF or
SR pins during Leakage
test
Detection threshold,
leakage to GND
ILKG_GSQ_TH_L
4b
5
ILKG_GSQ_TH_H
6
TFLT_LKG
7
Leakage to GND deglitch
filter time
RLKG_BSQ_TH
Detection threshold,
leakage to battery
8a
ILKG_BSQ_TH
8b
9
TFLT_LKG
10
ILIM_VRCM_SRC
11
ILIM_VRCM_SINK
12
VSHIFT
Typ
Max
Unit
-10%
2.5
+10%
V
1.9
-
2.5
V
1
-
10
kΩ
Equivalent to resistance range
SYS_CTL(PD&VRCM_SEL) = 0
-15.5
-25 °C ≤ Tj ≤ +150 °C
%
guaranteed by
design/characterization
450
+15.5
%
μA
Equivalent to resistance range
SYS_CTL(PD&VRCM_SEL) = 0 -17%
-40 °C ≤ Tj ≤ +150 °C
450
+15.5
%
μA
SYS_CTL(PD&VRCM_SEL) = 1 -15%
2
15%
mA
-
17
20
23
μs
Leakage detected if RLKG_GSG
≤ 1 kΩ and not detected if
RLKG_GSG ≥ 10 kΩ
Design Info
1
-
10
kΩ
Equivalent to resistance range
-25 °C ≤ Tj ≤ +150 °C
guaranteed by
design/characterization
-12%
1.8
+15%
mA
-40 °C ≤ Tj ≤ +150 °C
-17%
1.8
+15%
mA
-
17
20
23
μs
-
-20
-
-10
mA
-
10
-
20
mA
Design Info
-1
-
+1
V
IOUT = 0 mA
IOUT = 6.6 mA
Leakage detected if RLKG_GSG
≤ 1 kΩ and not detected if
RLKG_GSG ≥ 10 kΩ
Design Info
RLKG_GSG_TH
4a
Min
Leakage to BAT deglitch
filter time
VRCM current limitation
External ground or battery
shift
DocID029257 Rev 1
255/277
276
Electrical characteristics
L9680
Table 58. Squib Leakage Test (VRCM)
No
Symbol
13
RSQ_LOW_TH
14a
IRSQ_LOW_TH
Parameter
Conditions
TFLT_RLOW
16
RSQ_HIGH
17
IRSQ_HIGH
18
TFLT_RHIGH
19
Typ
Max
Unit
200
-
500

Equivalent to resistance range
-25 °C ≤ Tj ≤ +150 °C
guaranteed by
design/characterization
-12%
6
+12%
mA
-40 °C ≤ Tj ≤ +150 °C
-17%
6
+12%
mA
-
12
15
18
μs
Design Info
2
-
5
kΩ
-17%
700
+17%
μA
12
15
18
μs
-
-
2
μs
Design Info
Detection threshold for
“resistance too low”
14b
15
Min
“Resistance too low”
deglitch filter time
Detection Threshold for
“resistance too high”
Equivalent to resistance range
“Resistance too high”
deglitch filter time
-
Time needed to change
Tdelay_STG_sele the VRCM STG thresholds
guaranteed by design
(450 μA-to-2 mA or 2 mAction
to-450 μA)
16.17.3
High/low side FET test
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0(max)  VIN  35 V, 6 V  SSxy  35 V, 7 V  SYNCBOOST 
35 V.
Table 59. High/low side FET test
No
Symbol
1
IHS_FET_TH
2
ILS_FET_TH
3
Parameter
Detection threshold
high side FET test
Detection threshold
ILS_FET_TH_HIGH low side FET test
4
EFET_TEST
5
TDRIVER_DIS
6
TTOT_FETTEST_A
7
TFETTIMEOUT
CTIVE
256/277
Conditions
-
Min
Typ
Max
Unit
-12%
1.8
+12%
mA
450
+15.5%
μA
-15%
2
+15%
mA
SYS_CTL(PD&VRCM_SEL) = 0 -15.5%
SYS_CTL(PD&VRCM_SEL) = 1
Energy transferred to
squib during HS/LS
FET tests
Design Info
-
-
170
μJ
Driver Disable time
Guarantee by design
-
-
1.5
μs
Total FET test
activation time in case
of no fault condition
Guarantee by design
-
-
4
μs
HS/LS FET test
timeout
-
190
200
210
μs
DocID029257 Rev 1
L9680
Electrical characteristics
Table 59. High/low side FET test (continued)
No
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Deglitch filter time
during FET test on
IHS_FET_TH /
ILS_FET_TH current
thresholds
-
0.8
1
1.2
μs
8
TFLT_LKGB_FT
9
ILIM_HS_FET
HS FET current in HS
driver diagnostics
Not tested, see item # 1 in errata
sheet section
40
50
60
mA
10
SGxyOPEN
Squib open ground
detection
GNDSUBx as ground reference
300
450
600
mV
11
TFLT_SGOPEN
Squib open ground
detection filter time
-
46
50
54
μs
16.17.4
Deployment timer test
All electrical characteristics are valid for the following conditions unless otherwise noted:
-40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V.
Table 60. Deployment timer test - AC specifications
No
Symbol
1
tPULSE_PERIOD
2
IPULSE_HIGH
Parameter
Conditions
Deployment timer pulse
test period time
Deployment timer pulse
test high time
Min
Typ
7
8
SYSDIAGREQ(DSTEST)=PULSE
-
Max Unit
DCR_x(
Deploy_
Time)*
TDEP_TIM
9
ms
-
μs
E_RES
16.18
Remote sensor interface
All electrical characteristics are valid for the following conditions unless otherwise noted:
40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V, VSATBUCK(min)  VSATBUCK,
VSYNCBOOST(min)  VSYNCBOOST
16.18.1
PSI-5 interface
Table 61. PSI-5 satellite transceiver - DC specifications
No
Symbol
Parameter
1
IRSU
2
VRSU_MAX
Max. output voltage
excluding sync. pulse
3
VRSU_SYNC_MAX
Max. output voltage
including sync. pulse
Conditions
Min
Typ
Max
Unit
-35
-
-4
mA
(internal regulation,
VSATBUCK = VSYNCBOOST)
-
-
11
V
(internal regulation,
VSYNCBOOST = VIN)
-
-
16.5
V
Interface quiescent current -
DocID029257 Rev 1
257/277
276
Electrical characteristics
L9680
Table 61. PSI-5 satellite transceiver - DC specifications (continued)
No
Symbol
4
RRSU
Parameter
Conditions
Min
Typ
Max
Unit
RSU output resistance
From IRSU = -4 mA to -65 mA
3
-
9.5

Static reverse current into
SATBUCK or
SYNCBOOST pin
(VSUPPLY)
VRSUx > VSUPPLY + VRSU_STB
0.0
-
10
mA
5
ISTB_TH
6
VRSU_STB
Output short to battery
threshold
-
10.0
-
100
mV
7
IOCTH_PSI5
Over current detection
threshold
Interface disabled after
TFLT_OCTH_PSI5
-120
-
-66
mA
8
ILIM_PSI5
Output current limit
IRSUx
-130
-
-80
mA
9
ILIM_OC_PSI5
10
-
-
mA
10
IBO
11
ILKGG
12
ILKGB
13
IOL
14
DACRES
15
Difference between current
ABS(ILIM_RSU) - ABS(IOCTH_RSU)
limitation and OC threshold
Base current
Default value
-15%
-15
+15%
mA
Trigger point for fault
current detection
To ground; detected by IB
-50.4
-42
-35
mA
To battery; detected by IB
-3.5
-
-1
ILKGB
-
ILKGB
Output open load detection
VRSUx = open
threshold
(min)
(max)
mA
DAC resolution
-
-
10
-
Bit
ILSB
LSB current
Design Info
-
93.75
-
μA
16
Vt2
Sync pulse amplitude
IRSU = 4 - 35 mA
Referred to VRSUx voltage
before sync pulse
3.8
-
-
V
17
VSYNCDROP
Sync drop-out voltage
VSYNCBOOST - VRSUx
1
-
-
V
18
ILIM_SYNC_LS
Sync pulse current limit
(LS driver)
-
50
-
80
mA
19
ILIM_SYNC
Static current limitation for
each transceiver output
RSUx
During sync
pulse generator VRSUx=GND
-240
-
-120
mA
20
C1
Capacitor on RSUx
Regulator
22 nF nominal
Design Info
13
-
-
nF
21
RE2
RSU damping resistance
Design info
-
2.5
-
Ω
22
C2
ECU pin capacitance
5 nF nominal
Design Information, not tested
4
-
6
nF
23
-
Total number of sensors
connected to bus
Design info
1
-
3
-
258/277
DocID029257 Rev 1
L9680
Electrical characteristics
Table 62. PSI-5 satellite transceiver - AC specifications
No
Symbol
1
TBit_125k
2
TBit_189k
3
TFLT_OCTH_PSI5
Over Current
Detection deglitch Normal operation
filter time
TBLK_OCTH_PSI5
Over Current
Detection
Blanking Time
4
5
Parameter
Conditions
Min
Typ
Max
Unit
Bit time (125kbps
At the sensor connector
mode)
7.6
8
8.4
μs
Bit time (189kbps
At the sensor connector
mode)
5
5.3
5.6
μs
500
-
600
μs
At interface power on (BLKTxSEL = 0)
4.6
-
5.4
ms
At interface power on (BLKTxSEL = 1)
9.4
-
10.8
ms
12
-
16
μs
6
TSTBTH
Reverse Battery
Blocking Enable
Time
-
7
t0
Reference time
@0.5 V on top of V(RSUx)
-
0
-
-
8
t1
Start delay time
From t0 to SATSYNC
-3
-
-
μs
9
t2
Sync signal
sustain start
@ VRSU+3.8 V relative to t0
-
-
7
μs
10
SRRISE_RSU
Sync slope rising
slew rate
0.43
-
1.5
V/μs
11
SRFALL_RSU
Sync slope falling
slew rate
-1.5
-
-
V/μs
12
t3
Sync signal
sustain time
Design Info
16
-
-
μs
13
t4
Discharge time
limit
Design Info
-
-
35
μs
14
TBLANK
Decoder blanking
time (decoding
Design Info
disabled)
-
-
42
μs
15
TSYNC
Time between
two
sync pulses
Design Info
400
500
-
μs
16
TFLT_PSI5_HF
PSI5 Deglitch
filter time
F = 189 kbaud
Configurable by SPI (4bits)
1
-
2
μs
17
TFLT_PSI5_LF
PSI5 Deglitch
filter time
F = 125 kbaud
Configurable by SPI (4bits)
1.5
-
2.5
μs
18
Related to t0, Sensor Side, P8P-500-3L
44
-
58.6
μs
19
Related to t0, Sensor Side, P8P-500-3H
44
-
58.6
μs
Related to t0, Sensor Side, P8P-500-4H
44
-
58.6
μs
Related to t0, Sensor Side, P10P-500-3L
44
-
58.6
μs
22
Related to t0, Sensor Side, P10P-500-3H
44
-
58.6
μs
23
Related to t0, Sensor Side, P10P-500-4H
44
-
58.6
μs
20
21
T_ES_1, T_LS_1
Message start
time, Slot 1
DocID029257 Rev 1
259/277
276
Electrical characteristics
L9680
Table 62. PSI-5 satellite transceiver - AC specifications (continued)
No
Conditions
Min
Typ
Max
Unit
24
Related to t0, Sensor Side, P8P-500-3L
181.3
-
210.4
μs
25
Related to t0, Sensor Side, P8P-500-3H
181.3
-
210.4
μs
Related to t0, Sensor Side, P8P-500-4H
139.5
-
164.2
μs
Related to t0, Sensor Side, P10P-500-3L 181.3
-
210.4
μs
28
Related to t0, Sensor Side, P10P-500-3H 181.3
-
210.4
μs
29
Related to t0, Sensor Side, P10P-500-4H 139.5
-
164.2
μs
30
Related to t0, Sensor Side, P8P-500-3L
328.9
-
373.5
μs
31
Related to t0, Sensor Side, P8P-500-3H
328.9
-
373.5
μs
Related to t0, Sensor Side, P8P-500-4H
245.5
-
281.3
μs
Related to t0, Sensor Side, P10P-500-3L 328.9
-
373.5
μs
34
Related to t0, Sensor Side, P10P-500-3H 328.9
-
373.5
μs
35
Related to t0, Sensor Side, P10P-500-4H 245.5
-
281.3
μs
36
Related to t0, Sensor Side, P8P-500-3L
107.2
-
127.6
μs
37
Related to t0, Sensor Side, P8P-500-3H
82
-
99.4
μs
Related to t0, Sensor Side, P8P-500-4H
82
-
99.4
μs
Related to t0, Sensor Side, P10P-500-3L
121
-
142.8
μs
40
Related to t0, Sensor Side, P10P-500-3H
91
-
109.4
μs
41
Related to t0, Sensor Side, P10P-500-4H
91
-
109.4
μs
42
Related to t0, Sensor Side, P8P-500-3L
151
-
174.6
μs
43
Related to t0, Sensor Side, P8P-500-3H
119.8
-
139.9
μs
Related to t0, Sensor Side, P8P-500-4H
119.8
-
139.9
μs
Related to t0, Sensor Side, P10P-500-3L 167.8
-
193
μs
46
Related to t0, Sensor Side, P10P-500-3H
131
-
152.5
μs
47
Related to t0, Sensor Side, P10P-500-4H
131
-
152.5
μs
48
Related to t0, Sensor Side, P8P-500-3L
231.6
-
264.9
μs
49
Related to t0, Sensor Side, P8P-500-3H
206
-
236.7
μs
Related to t0, Sensor Side, P8P-500-4H
168
-
194.9
μs
Related to t0, Sensor Side, P10P-500-3L 245.4
-
280.1
μs
52
Related to t0, Sensor Side, P10P-500-3H 215.5
-
246.7
μs
53
Related to t0, Sensor Side, P10P-500-4H 177.5
-
205
μs
26
27
32
33
Symbol
T_ES_2, T_LS_2
T_ES_3, T_LS_3
38
T_s1_end_open
39
44
45
T_s1_end_closure
50
51
260/277
T_s2_end_open
Parameter
Message start
time, Slot 2
Message start
time, Slot 3
Slot 1 End valid
window,
opening time
Slot 1 End valid
window,
closure time
Slot 2 End valid
window,
opening time
DocID029257 Rev 1
L9680
Electrical characteristics
Table 62. PSI-5 satellite transceiver - AC specifications (continued)
No
Conditions
Min
Typ
Max
Unit
54
Related to t0, Sensor Side, P8P-500-3L
302.8
-
342.1
μs
55
Related to t0, Sensor Side, P8P-500-3H
271.6
-
308
μs
Related to t0, Sensor Side, P8P-500-4H
225.4
-
256.5
μs
Related to t0, Sensor Side, P10P-500-3L 319.6
-
360.5
μs
58
Related to t0, Sensor Side, P10P-500-3H 282.7
-
320
μs
59
Related to t0, Sensor Side, P10P-500-4H 236.5
-
269
μs
60
Related to t0, Sensor Side, P8P-500-3L
365.1
-
412.5
μs
61
Related to t0, Sensor Side, P8P-500-3H
339.4
-
384.3
μs
Related to t0, Sensor Side, P8P-500-4H
263.9
-
300.9
μs
Related to t0, Sensor Side, P10P-500-3L 378.9
-
427.7
μs
64
Related to t0, Sensor Side, P10P-500-3H 348.5
-
394.3
μs
65
Related to t0, Sensor Side, P10P-500-4H
273
-
311
μs
66
Related to t0, Sensor Side, P8P-500-3L
465.9
-
522.7
μs
67
Related to t0, Sensor Side, P8P-500-3H
434.7
-
488
μs
Related to t0, Sensor Side, P8P-500-4H
342.5
-
386.1
μs
Related to t0, Sensor Side, P10P-500-3L 482.7
-
541.1
μs
70
Related to t0, Sensor Side, P10P-500-3H 445.9
-
500
μs
71
Related to t0, Sensor Side, P10P-500-4H 353.7
-
398.2
μs
56
57
62
63
68
69
72
Symbol
T_s2_end_closure
T_s3_end_open
T_s3_end_closure
Parameter
Slot 2 End valid
window,
closure time
Slot 3 End valid
window,
opening time
Slot 3 End valid
window,
closure time
SYS_CFG(RSU_SYNCPULSE_SHIFT
_CONF)=0 Related to Start of Sync
Pulse on ch. N-1
-
160
---------f osc
-
μs
SYS_CFG(RSU_SYNCPULSE_SHIFT
_CONF)=1 Related to Start of Sync
Pulse on ch. N-1
-
288
---------f osc
-
μs
-
10
-
15
μs
Leakage Deglitch
Filter Time
10
-
15
μs
Design Info
F = 125 kbaud
Calculated from transition of last
sensor bit to when data is available in
SPI register
-
-
19
μs
Design Info
F = 189 kbaud
Calculated from transition of last
sensor bit to when data is available in
SPI register
-
-
14
μs
TSYNC_DLY_SHORT
Sync Pulse Start
Delay
73
TSYNC_DLY_LONG
74
TFLT_OPEN_RSU
75
TFLT_LKG_RSU
Open Detection
Deglitch Filter
Time
76 TWRITE_EN_DELAY_LF
Data register
write delay
77 TWRITE_EN_DELAY_HF
DocID029257 Rev 1
261/277
276
Electrical characteristics
16.18.2
L9680
WSS interface
Table 63. WSS sensor - DC specifications
No
Symbol
1
C1
2
VRSU_MAX
3
RRSU
4
IBO
Parameter
Conditions
ITH2
Unit
6
-
-
nF
RSUx Max output voltage
(internal regulation,
VSATBUCK=VSYNCBOOST)
-
-
11
V
Output resistance
From IRSU=-4mA to -35mA
4
-
12
Ω
Base Current
Auto Adaptive option
(default value)
+15%
-7
-15%
mA
Fixed threshold option
-25 °C ≤ Tj ≤ +150 °C
guaranteed by
design/characterization
+15%
-9.8
-15%
mA
Fixed threshold option
-40 °C ≤ Tj ≤ +150 °C
+20%
-9.8
-20%
mA
14mA / 28mA detection
Fixed threshold option
+15%
-19.6
-15%
mA
-4.5
-
-0.2
mA
Open sensor detection
RSUx OPEN
-25 °C ≤ Tj ≤ +150 °C
guaranteed by
design/characterization
RSUx OPEN
-40 °C ≤ Tj ≤ +150 °C
-5.5
-
0
mA
Leakage to GND threshold VRSUx= GND
13.2
15
17.1
mA
7mA / 14mA detection
7a
ITHOPEN
Max
10nF nominal, Design Info
5b
6
Typ
RSU load capacitance
5a
ITH1
Min
7b
8
ITHGND
9
IOCTH_WSS
Over Current Detection
Threshold
output disabled after
TFLT_OCTH_WSS
-65
-
-38
mA
10
ILIMTH_WSS
Output Current Limit
-
-65
-
-40
mA
1
-
-
mA
10
-
100
mV
0.0
-
10
mA
ILOAD = -1mA
VCC0.5
-
VCC
V
ILOAD = 1mA
-
-
0.4
V
-10
-
10
μA
11
Difference between
ΔILIM_OC_WSS Current Limitation and OC ILIM_RSU - IOC_RSU
Threshold
12
VRSU_STB
13
ISTBTH
14
VOH_WS
15
VOL_WS
16
ILKG_WS
262/277
Output Short to Battery
Threshold
Static reverse current into
SATBUCK or
SYNCBOOST pin
(V_supply)
WSx Output Voltage
WSx Output Leakage
VRSUx > V_supply + VRSUxSTB
Tri-state leakage
DocID029257 Rev 1
L9680
Electrical characteristics
Table 64. WSS sensor - AC specifications
No
Symbol
1
TFLT_WS
2
3
-
-
Parameter
Conditions
Min
Typ
Max
Unit
WS Deglitch filter time
Configurable by SPI (4bits)
8
-
15.6
μs
Latency time
between receiving sensor data @
RSUx pin and reaching threshold
high level of WSx pin (trigger point
80% of RSUx modulated current)
-
-
2+
TFLT_
μs
Design Info
-
-
125
ns
Jitter on Latency time
WS
4
TFLT_OCTH_WS Over Current Detection
Deglitch filter time
S
-
500
-
600
μs
5
TFLT_OPEN_RS Open Detection Deglitch
Filter Time
U
-
10
-
15
μs
6
TFLT_LKG_RSU
-
10
-
15
μs
7
TSTANDSTILL_T
-
1.13
-
-
ms
-
2.55
ms
8
H_L
TSTANDSTILL_T
H_H
Leakage Deglitch Filter
Time
Pulse duration to assert
standstill bit thresholds
-
DocID029257 Rev 1
263/277
276
Electrical characteristics
16.19
L9680
DC sensor interface
All electrical characteristics are valid for the following conditions unless otherwise noted:
40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V, 8.5 V  SYNCBOOST  35 V.
Table 65. DC Sensor interface specifications
No
Symbol
1
VOUT_DCSREG
2
ILIM_DCSREG
3
Parameter
VDCS_ACC1
5
VDCS_RANGE2
6
VDCS_ACC2
7
IDCS_RANGE1
8
IDCS_ACC1
9
IDCS_RANGE2
10
IDCS_ACC2
11
IDCS_RANGE3
12
IDCS_ACC3
13
RDCS_RANGE
Min
Typ
Max
Unit
DCS output voltage
regulation mode
DCS regulator enabled
-10%
6.25
+10%
V
DCS current limitation
regulation mode
DCS regulator enabled
24
27
30
mA
First voltage measurement
(VDCS_MEAS1) to compensate
external ground shift and internal
offset
-1
-
1.4
V
VDCS = VDCS_RANGE1
DCS voltage
measurement accuracy 1 Included ADC error
-15
-
15
%
DCS voltage
measurement range 2
1.5
-
10
V
VDCS = VDCS_RANGE2
DCS voltage
measurement accuracy 2 Included ADC error
-8
-
+8
%
DCS Current
measurement range 1
1
-
2
mA
-30
-
+30
%
2
-
22
mA
-12
-
+12
%
ILIM_D
-
mA
DCS voltage
VDCS_RANGE1
measurement range1
4
Conditions
-
-
IDCS = IDCS_RANGE1
DCS current
measurement accuracy 1 Included ADC error
DCS current
measurement range 2
-
IDCS = IDCS_RANGE2
DCS current
measurement accuracy 2 Included ADC error
DCS current
measurement range 3
Regulator in current limitation
-
CSREG
VDCS = 0V
DCS Current
measurement accuracy 3 Included ADC error
-12
-
+12
%
DCS resistance
measurement range
Design info
65
-
3000
Ω
Performing voltage
measurements 1 and 2
After software calculation
all errors included
-15
-
15
%
14
RDCS_ACC
Accuracy of digital
resistance measurement
15
IPD_DCS
DCSx current pull down
VDCS = 1.5 V
130
200
260
μA
16
RPD_DCS
DCSx resistance
pull down
Device active,
DCSx current pull down disabled
90
150
210
kΩ
264/277
DocID029257 Rev 1
L9680
Electrical characteristics
Table 65. DC Sensor interface specifications
No
Symbol
Min
Typ
Max
Unit
17
IPD_DCS_TOT
DCSx total current
pull down
IPD_DCS_TOT = IPD_DCS + RPD_DCS
VDCS = 6.5 V
160
240
330
μA
18
CDCS
Output capacitance
Design Info
10
-
-
nF
19
IREF_DCS
Internal Current
Reference for DCS
Current Measurement
-
-5%
300
+5%
μA
20
Ratio_VDCS
Divider ratio for DCSx
voltage measurement
-
-3%
7.125
+3%
V/V
21
VOFF_DCS
DCSx internal offset
during voltage
measurement
-
0.35
0.375
0.39
V
16.20
Parameter
Conditions
Safing engine
All electrical characteristics are valid for the following conditions unless otherwise noted:
40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V, VCCx(min)  VCCx  VCCx(max),
VCC = 3.3 V or 5 V.
Table 66. Arming Interface – DC specifications
No
Symbol
1
VTH_H_ACL
2
VTH_L_ACL
3
Parameter
Conditions
Min
Typ
Max
Unit
ACL input voltage
thresholds
-
2.33
-
2.5
V
-
1.58
-
1.71
V
VHYS_ACl
ACL hysteresis
-
0.6
0.75
0.9
V
4
RPD_ACL
ACL pull down resistance
VACL = 3.3V
150
210
270
kΩ
5
VOH_ARM
ARMx output high voltage
ILOAD = -0.5 mA
internal safing selected
VCC-0.60
-
VCC
V
6
VOL_ARM
ARMx output low voltage
ILOAD = 2.0 mA
internal safing selected
0
-
0.4
V
7
RPD_ARM
ARMx pull down
resistance
-
65
100
135
kΩ
8
VIH_ARM
ARMx high level input
voltage
-
2
-
-
V
9
VIL_ARM
ARMx low level input
voltage
-
-
-
0.8
V
10
RPD_ARMx, x=1,2,3
ARM1,2,3 pull down
resistor
External safing selected
60
100
140
kΩ
11
IPU_ARM4
ARM4 pull up current
ARM4 = 0V
external safing selected
-100
-75
-50
μA
12
VOH_PSINHB
PSINHB output high
voltage
ILOAD = -0.5 mA
Internal safing selected
VCC-0.60
-
VCC
V
DocID029257 Rev 1
265/277
276
Electrical characteristics
L9680
Table 66. Arming Interface – DC specifications (continued)
No
Symbol
Parameter
13
VOL_PSINHB
PSINHB output low
voltage
14
RPD_PSINHB
15
Conditions
Min
Typ
Max
Unit
ILOAD = 2.0 mA
Internal safing selected
0
-
0.4
V
PSINHB pull down
resistance
-
65
100
135
kΩ
VIH_PSINHB
PSINHB high level input
voltage
-
2
-
-
V
16
VIL_PSINHB
PSINHB low level input
voltage
-
-
-
0.8
V
17
VIH_SAF_CSx
SAF_CSx high level input
voltage
-
2
-
-
V
18
VIL_SAF_CSx
SAF_CSx low level input
voltage
-
-
-
0.8
19
IPU_SAF_CSx
SAF_CSx pull up current
SAF_CSx = 0 V to
VIH_SAF_CSx(min)
-70
-45
-20
μA
Min
Typ
Max
Unit
-
475
500
525
μs
-
213
-
237
ms
-
168
-
187
ms
-
154
-
171
ms
-
114
-
126
ms
Scrap validation
TACL and TON_ACL valid
-
3
-
-
cycles
Scrap invalid
TACL invalid
-
2
-
-
cycles
TSCRAP_TIMEOUT Scrap timeout timer
-
520
550
580
μs
Scrap seed counter
frequency
-
-
ƒ osc
---------16
-
MHz
-
-
-
0
ms
Table 67. Arming interface – AC specifications
No
Symbol
1
TARM
2
TACL_HI
3
TACL_LO
4
TON_ACL_HI
5
TON_ACL_LO
6
TVALID_ACL
7
TINVALID_ACL
8
9
fSCRAP_SEED
Parameter
Sensor sampling period
ACL period time thresholds
ACL on-time thresholds
10
11
12
TPULSE_STRECH
Arming enable pulse stretch time
-
30
32
34
ms
242
-
270
ms
-
1934
-
2162
ms
-
-
1.00
μs
-
-
1.00
μs
-
-
1.00
μs
-
-
1.00
μs
13
14
TRISE_ARM
ARMx rise time
15
TFALL_ARM
ARMx fall time
16
TRISE_PSINHB
PSINHB rise time
17
TFALL_PSINHB
PSINHB fall time
266/277
Conditions
50 pF load, 20% to 80%
internal safing selected
DocID029257 Rev 1
L9680
Electrical characteristics
16.21
General purpose output drivers
All electrical characteristics are valid for the following conditions unless otherwise noted:
40 °C  Ta  +95 °C, VINGOOD0  VIN  35V, VGPODx + 5V  VERBOOST.
Table 68. GPO interface DC specifications
No
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
VSAT_GPO_L
Output saturation voltage
VGPOD – VGPOS
ILOAD = 50 mA
-
-
0.5
V
2
VSAT_GPO_H
Output saturation voltage
VGPOD – VGPOS
ILOAD = 70 mA
-
-
0.7
V
3
ILIM_GPO
Driver current limit
VGPOD – VGPOS = 1.5 V
73
110
160
mA
4
IOC_GPO
Over current detection
-
73
110
160
mA
5
GPO diag OFF output
voltage on GPOD in low
VOUT_GPOD_OL
side mode in open load
condition
GPOxLS = 1
IOUT = 0 mA
-10%
2.5
+10%
V
6
GPO diag OFF output
voltage on GPOS in high
VOUT_GPOS_OL
side mode in open load
condition
GPOxLS = 0
IOUT = 0 mA
-10%
2.5
+10%
V
GPO diag OFF state short
to ground detection
GPOxLS = 0 / 1
threshold
15
27
40
μA
7
ISRC_TH
8
ISINK_TH_LS
GPO Diag OFF state short GPOxLS = 1
to battery detection
GPOS = 0
threshold low side mode
15
27
46
μA
9
ISINK_TH_HS
GPO Diag OFF state short
to battery detection
GPOxLS = 0
threshold high side mode
170
220
270
μA
-90
-70
-50
μA
50
70
90
μA
-90
-70
-50
μA
320
400
480
μA
0.5
1
3
mA
10
11
12
13
14
GPOxLS = 1,
GPO Driver OFF,
GPOD = 0 V, GPOS = 0 V
ILIM_GPOD_SRC
GPO Diag OFF state
low side mode
current limitation on GPOD GPOxLS = 1,
ILIM_GPOD_SINK
GPO Driver OFF,
GPOD = 18 V, GPOS = 0 V
GPOxLS = 0,
GPO Driver OFF,
GPOD = 18 V, GPOS = 0 V
ILIM_GPOS_SRC
GPO Diag OFF state
high side mode
current limitation on GPOS GPOxLS = 0,
ILIM_GPOS_SINK
GPO driver OFF,
GPOD = 18 V,GPOS = 18 V
IOL_GPO
Open load current
threshold
GPO driver ON
DocID029257 Rev 1
267/277
276
Electrical characteristics
L9680
Table 68. GPO interface DC specifications (continued)
No
Symbol
15
16
IDIAG_GPO
Parameter
Conditions
Min
Typ
Max
Unit
-
-
130
μA
VGPOD = 18 V
VGPOS = 0V
Power-off or Sleep Mode
-5
-
+5
μA
-5
-
+5
μA
Voltage measurement in
progress through Analog MUX
Diagnostic current on load
Increased leakage for a short
specified time (32μs)
ILKG_GPOD_OFF
GPOD output leakage
current
17
ILKG_GPOD_ON
VGPOD = 18 V
VGPOS = 0 V
GPO Driver OFF
Active or Passive Mode with
GPO un-configured
18
ILKG_GPOS_OFF
VGPOD = 18 V
VGPOS = 0 V
Power-off or Sleep Mode
-5
-
+5
μA
VGPOD = 18 V
VGPOS = 0 V
GPO Driver OFF
Active or Passive Mode with
GPO un-configured
-5
-
+5
μA
VGPOS = VGPOD + 1 V
GPO Driver OFF
-
-
1
mA
-
150
175
190
°C
-
5
10
15
°C
Design Info
6
-
-
nF
GPOS output leakage
current
19
ILKG_GPOS_ON
20
IREV_GPO
21
TJSD_GPO
22
THYS_TSD_GPO
23
CGPO
Reverse current
Thermal shutdown
Load capacitor
Table 69. GPO driver interface – AC specifications
No
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
SRGPOx
GPOx output voltage
slew rate
30% - 70%;
RLOAD = 273 Ω, CLOAD = 100 nF
0.1
0.25
0.4
V/μs
2
TFLT_OC
Over current
detection filter time
GPO Driver ON
10
12
14
μs
3
TFLT_UC
Open load detection
filter time
GPO Driver ON
8
10
12
μs
TFLT_STB
Short to battery
detection in OFF
state deglitch filter
time
GPO Driver OFF
8
10
15
μs
TFLT_STG
Short to GND
detection in OFF
state deglitch filter
time
GPO Driver OFF
8
10
15
μs
4
5
268/277
DocID029257 Rev 1
L9680
Electrical characteristics
Table 69. GPO driver interface – AC specifications (continued)
No
Symbol
6
TMASK_STUP_ON
7
Diagnostic mask
TMASK_STUP_OFF delay after switch
OFF
8
TFLT_TSD
9
FPWM
10
DCPWM
16.22
Parameter
Conditions
Min
Typ
Max
Unit
136
-
200
μs
520
-
584
μs
-
-
10
μs
GPO PWM frequency Design Info
-
125
GPO PWM duty cycle Increment step = 1.6%
0
-
Diagnostic mask
CGPOX = 100 nF typ
delay after switch ON
Thermal shutdown
filter time
CGPOX = 100 nF typ
-
Hz
100
%
Analog to digital converter
All electrical characteristics are valid for the following conditions unless otherwise noted:
40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V.
Table 70. Analog to digital converter
No
1
2
3
Symbol
Parameter
VADC_RANGE ADC input voltage range
VADC_REF
ADC_RES
ADC reference voltage
ADC resolution
(1)
Conditions
Min
Typ
Max
Unit
-
0.1
-
2.5
V
-
-1.5%
2.5
+1.5%
V
Design Info
-
10
-
bit
Separation between adjacent
levels, measured bit to bit of
actual and an ideal output step.
No missing codes
-1
-
+1
LSB
-3
-
+3
LSB
DNL
Differential non linearity
error (DNL)
5
INL
Maximum difference between the
Integral non linearity error actual analog value at the
(INL)
transition between 2 adjacent
steps and its ideal value
6
EQUANT
7
TotErr
8
9
4
Quantization error
Design Info
-0.5
-
0.5
LSB
Total error
Includes INL, DNL, ADC
Reference voltage tolerance and
quantization error
-15
-
+15
LSB
TotErr_0v1
ADC total error for 0.1 V
input voltage
-
-5
-
+5
LSB
TotErr_2v4
ADC total error for 2.4 V
input voltage
-
-15
-
+15
LSB
DocID029257 Rev 1
269/277
276
Electrical characteristics
L9680
Table 70. Analog to digital converter (continued)
No
Symbol
10
RLSB_1
Parameter
Reproducibility:
conversion result
variation for constant
input signal
Conditions
Min
Typ
Max
Unit
1x sampling measurements.
Guaranteed by design
-6
-
6
LSB
4x sampling measurements.
Guaranteed by design
-3
-
3
LSB
8x sampling measurements.
Guaranteed by design
-2.5
-
2.5
LSB
11
RLSB_4
12
RLSB_8
13
Pre-ADC
Pre-ADC settling time
-
-
4.81
-
μs
14
T_TSC
Single conversion time
-
-
2.25
-
μs
15
IQ
Intra-queue settling time
-
-
3.5
-
μs
16
Post-ADC
Post- ADC settling time
-
-
3.44
-
μs
17
-
ADC conversion time voltage
4x sampling for each of the 4
conversions in the queue
Design Info
-
54.75
-
μs
ADC conversion time –
current and voltage
8x sampling for DCS,
temperature and squib loop
resistance measurements + 4x
sampling for remaining 2
conversions in the queue
Design Info
-
51.25
-
μs
18
-
1. LSB = (2.5V / 1024) = 2.44mV
16.23
Voltage diagnostics (Analog MUX)
All electrical characteristics are valid for the following conditions unless otherwise noted:
40 °C  Ta  +95 °C, VINGOOD0  VIN  35V.
Table 71. Voltage diagnostics (Analog MUX
No
Symbol
1
Ratio_1
2
Ratio_4
3
Ratio_7
4
Min
Typ
Max
Units
VIN_RANGE_1 = 0.1 V to 2.5 V
-
1
-
V/V
VINPUT_RANGE_4 = 1 V to 10 V
-3%
4
+3%
V/V
VINPUT_RANGE_7 = 1.5V to
17.5V
-3%
7
+3%
V/V
Ratio_10
VINPUT_RANGE_10 = 2 V to 25 V
-3%
10
+3%
V/V
5
Ratio_15
VINPUT_RANGE_15 = 3 V to 35 V
-3%
15
+3%
V/V
6
Offset
High impedance
-10
-
10
mV
270/277
Parameter
Divider ratios
Divider Offset
Conditions
DocID029257 Rev 1
L9680
Electrical characteristics
Table 71. Voltage diagnostics (Analog MUX (continued)
No
Symbol
7
RRATIO_4
8
RRATIO_7
9
RRATIO_10
10
RRATIO_15
11
ILEAK_MUX_ON
16.24
Parameter
Conditions
Multiplexer input
resistance
Additional multiplexer
on-state input leakage
current
Min
Typ
Max
Units
Multiplexer input to GNDA
80
-
-
kΩ
Multiplexer input to GNDA
120
-
-
kΩ
Multiplexer input to GNDA
160
-
-
kΩ
Multiplexer input to GNDA
200
-
-
kΩ
For all divider ratio expect
ratio_1
-
-
60
μA
Temperature sensor
All electrical characteristics are valid for the following conditions unless otherwise noted:
40 °C  Ta  +95 °C, VINGOOD0  VIN  35 V.
Table 72. Temperature sensor specifications
No
Symbol
Parameter
1
TMON_RANGE
Monitoring temperature
range
2
TMON_ACC
Monitoring temperature
accuracy
Conditions
Min
Typ
Max
Unit
-
-40
-
150
°C
-
-15
-
15
°C
DocID029257 Rev 1
271/277
276
Quality information
L9680
17
Quality information
17.1
OTP memory
The device contains a 128-bits One-Time Programmable memory. This OTP memory is
used for the following purposes:
1. 86 bits data + 3 bits CRC for critical parameters trimming: bandgaps, oscillators,
reference currents, firing currents, DC sensor and RSU interface parameters.
2. 18 bits data for other blocks trimming: ADC, ER Cap Measurement
3. 20 bits data for die and wafer traceability
4. 1 bit for debug purpose
User read/write access to the OTP memory via SPI is only possible during production
testing and require activation of a special test mode.
During mission mode, the trimming bits are automatically read from OTP and transferred to
the related circuits at each POR cycle. During this operation, actual CRC of the protected
trimming data is calculated and checked against the expected CRC stored in the OTP. In
case of CRC check failure the OTPCRC_ERR flag is set in the FLTSR register.
272/277
DocID029257 Rev 1
L9680
18
Errata sheet
Errata sheet
Table 73. Errata sheet
#
Component
Revision
Category /
Function
1
L9680CC
The high side driver diagnostic, described in section on page
Deployment
171, doesn’t work. As consequence, the ILIM_HS_FET parameter
Diagnostic
is not tested in production.
2
L9680CC
WSS Over
current
detection
Issue Description
The over current threshold doesn’t work. The user can use the
leakage to ground flag to understand if a fault condition is
present. The interface is anyway protected by means of thermal
protection.
DocID029257 Rev 1
273/277
276
Package information
19
L9680
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
19.1
TQFP100 (14x14x1.4 mm exp. pad down) package information
Figure 72. TQFP100 (14x14x1.4 mm exp. pad down) package outline
6($7,1*
3/$1(
'
&
'
$
$
'
'
$
FFF
&
(
(
$
/
N
PP
*$*(3/$1(
*$3*36
B(B<(
274/277
F
H
/
3,1
,'(17,),&$7,21
(
(
E
DocID029257 Rev 1
L9680
Package information
Table 74. TQFP100 (14x14x1.4 mm exp. pad down) package mechanical data
Dimensions
Ref
Inches(1)
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.20
-
-
0.0472
A1
0.05
-
0.15
0.0020
-
0.0059
A2
0.95
1.00
1.05
0.0374
0.0394
0.0413
b
0.17
0.22
0.27
0.0067
0.0087
0.0106
c
0.09
-
0.20
0.0035
-
0.0079
D
15.80
16.00
16.20
0.6220
0.6299
0.6378
D1
13.80
14.00
14.20
0.5433
0.5512
0.5591
5.40
-
8.50
0.2126
-
0.3346
D3
-
12.00
-
-
0.4724
-
E
15.80
16.00
16.20
0.622
0.6299
0.6378
E1
13.80
14.00
14.20
0.5433
0.5512
0.5591
5.40
-
8.50
0.2126
-
0.3346
E3
-
12.00
-
-
0.4724
-
e
-
0.50
-
-
0.0197
-
L
0.45
0.60
0.75
0.0177
0.0236
0.0295
L1
-
1.00
-
-
0.0394
-
k
-
3.50
7.00
-
0.1378
0.2756
ccc
-
-
0.08
-
-
0.0031
(2)
D2
(2))
E2
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. The size of exposed pad is variable depending of lead frame design pad size. End user should verify “D2”
and “E2” dimensions for each device application.
DocID029257 Rev 1
275/277
276
Revision history
20
L9680
Revision history
Table 75. Document revision history
276/277
Date
Revision
03-May-2016
1
Changes
Initial release.
DocID029257 Rev 1
L9680
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
DocID029257 Rev 1
277/277
277
Similar pages