Download Datasheet

RHR61, RHR64
Rad-hard, low-power, rail-to-rail CMOS operational amplifiers
Datasheet - production data
Ceramic Flat-8
RHR61
1
Features
8
NC
NC
-IN
-
VCC+
+IN
+
OUT
VCC-
NC
4
Single and quad CMOS operational
amplifiers (op amp)
Unity gain stable on 100 pF load
Very low power supply: 1.5 V to 5.5 V
Very low consumption: 60 µA max
Low offset voltage: 1 mV max
Low input bias: 1 pA
Input and output rail-to-rail
100 krad TID (high-dose rate)
SEL immune at 120 MeV.cm²/mg
SET characterized
Description
5
The upper metallic lid is electrically connected to
pin 5 (NC) only.
Ceramic Flat-14
RHR64
The RHR61 and RHR64 devices are pure CMOS
single and quad op amps respectively. The
RHR61 is packaged in a flat hermetic 8-lead and
the RHR64 in a flat hermetic 14-lead. Both
devices are guaranteed in radiation and over the
temperature range -55 °C to 125 °C. They are for
general use in any space application.
Table 1: Device summary
Parameter
RHR61K1
RHR64K1
SMD (1)
—
—
Quality level
14
OUT4
_
13
-IN4
+
12
+IN4
Engineering model
OUT1
1
-IN1
2
_
+IN1
3
+
VCC+
4
11
VCC-
+IN2
5
+
+
10
+IN3
-IN2
6
_
_
9
-IN3
Notes:
OUT2
7
8
OUT3
(1)SMD:
standard microcircuit drawing
(2)EPPL
= ESA preferred part list
Flat-8, 0.50 g
Package, mass
EPPL (2)
Temp. range
Flat-14, 0.70 g
—
—
-55 °C to 125 °C
The upper metallic lid is electrically connected to
pin 11 (VCC-) only.
May 2016
DocID027171 Rev 1
This is information on a product in full production.
1/19
www.st.com
Contents
RHR61, RHR64
Contents
1
Absolute maximum ratings and operating conditions ................. 3
2
Electrical characteristics ................................................................ 4
3
4
Electrical characteristic curves ...................................................... 8
Radiations ...................................................................................... 12
5
Package information ..................................................................... 13
5.1
Ceramic Flat-8 package information ............................................... 14
5.2
Ceramic Flat-14 package information ............................................. 15
6
Ordering information..................................................................... 16
7
Shipping information .................................................................... 17
8
Revision history ............................................................................ 18
2/19
DocID027171 Rev 1
RHR61, RHR64
1
Absolute maximum ratings and operating
conditions
Absolute maximum ratings and operating conditions
Absolute maximum ratings are those values beyond which damage to the device may
occur. Functional operation under these conditions is not implied.
Table 2: Absolute maximum ratings
Symbol
Parameter
VCC
Supply voltage (1)
Vid
Differential input voltage (2)
Vin
Input voltage (3)
Tstg
Storage temperature
Value
6
±VCC
V
(VCC-) - 0.2 to (VCC+) + 0.2
-65 to 150
Tj
Maximum junction temperature
Thermal resistance junction-toambient (4)(5)
Ceramic Flat-8
125
Rthja
Ceramic Flat-14
120
Thermal resistance junction-tocase (4)(5)
Ceramic Flat-8
40
Ceramic Flat-14
20
Rthjc
Unit
HBM: human body model
MM: machine model
°C
150
°C/W
(6)
4
(7)
kV
300
ESD
CDM: charged device model
(8)
RHR61
700
RHR64
1300
Latch-up immunity
V
200
mA
Notes:
(1)All
voltage values, except differential voltage are measured with respect to network ground terminal
(2)Differential
(3)V
CC
- Vin must not exceed 6 V
(4)Short
(5)R
th
voltages are the non-inverting input terminal with respect to the inverting input terminal
circuits can cause excessive heating and destructive dissipation
are typical values
(6)Human
body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ
resistor between two pins of the device. This is done for all couples of connected pin combinations while the other
pins are floating.
(7)Machine
model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two
pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected
pin combinations while the other pins are floating.
(8)Charged
device model: all pins and package are charged together to the specified voltage and then discharged
directly to ground through only one pin. This is done for all pins.
Table 3: Operating conditions
Symbol
Parameter
VCC
Supply voltage
Vicm
Common-mode input voltage
Tamb
Operating free-air temperature range
Value
1.5 to 5.5
DocID027171 Rev 1
(VCC-) - 0.1 to (VCC+) + 0.1
-55 to 125
Unit
V
°C
3/19
Electrical characteristics
2
RHR61, RHR64
Electrical characteristics
Table 4: VCC+ = 1.8 V, VCC- = 0 V, Vicm = 0.9 V, Tamb = 25 °C, and load (RL) connected to
0.9 V (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
DVio
Offset voltage
1
-55 °C < Tamb < 125 °C
3
μV/°C
Input offset voltage drift
4
Iio
Input offset current
(Vout = 0.9 V)
1
70
1
150
Iib
Input bias current
(Vout = 0.9 V)
1
70
1
150
CMR
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
Avd
Large signal voltage gain
VOH
High-level output voltage
VOL
Low-level output voltage
Isink
Iout
Isource
ICC
Supply current (per channel)
-55 °C < Tamb < 125 °C
-55 °C < Tamb < 125 °C
0 V to 0.9 V, Vout = 0.9 V
70
-55 °C < Tamb < 125 °C
67
0 V to 1.8 V, Vout = 0.9 V
56
-55 °C < Tamb < 125 °C
53
RL = 10 kΩ, Vout = 0.5 V to 1.3 V
83
-55 °C < Tamb < 125 °C
78
RL = 10 kΩ
35
-55 °C < Tamb < 125 °C
50
RL = 10 kΩ
mV
pA
74
dB
95
5
4
-55 °C < Tamb < 125 °C
35
mV
50
Vο = 1.8 V
6
-55 °C < Tamb < 125 °C
4
Vο = 0 V
6
-55 °C < Tamb < 125 °C
4
No load, Vout = 0.9 V
12
mA
10
50
-55 °C < Tamb < 125 °C
60
62
µA
AC performance
GBP
Gain bandwidth product
RL = 2 kΩ, CL = 100 pF
600
-55 °C < Tamb < 125 °C
300
740
kHz
ɸm
Phase margin
RL = 2 kΩ, CL = 100 pF
48
Degrees
Gm
Gain margin
RL = 2 kΩ, CL = 100 pF
11
dB
Slew rate
VIN = 0.5 V to VCC -0.5V, 10 % to
90 %, RL = 2 kΩ, CL = 100 pF,
Av = 1
0.2
-55 °C < Tamb < 125 °C
0.15
SR
en
4/19
Equivalent input noise
voltage
0.27
f = 1 kHz
65
f = 10 kHz
50
DocID027171 Rev 1
V/μs
nV/√Hz
RHR61, RHR64
Electrical characteristics
Table 5: VCC+ = 3.3 V, VCC- = 0 V, Vicm = 1.65 V, Tamb = 25 °C, and load (RL) connected to
1.65 V (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
DVio
Iio
Iib
CMR
Avd
VOH
VOL
Offset voltage
-55 °C < Tamb < 125 °C
3
Input offset voltage drift
Input offset current
Input bias current
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Large signal voltage gain
High-level output voltage
Low-level output voltage
Isink
Iout
Isource
ICC
1
Supply current (per channel)
μV/°C
4
-55 °C < Tamb < 125 °C
-55 °C < Tamb < 125 °C
0 V to 1.65 V, Vout = 1.65 V
75
-55 °C < Tamb < 125 °C
72
0 V to 3.3 V, Vout = 1.65 V
60
-55 °C < Tamb < 125 °C
56
RL = 10 kΩ, Vout = 0.5 V to 2.8 V
87
-55 °C < Tamb < 125 °C
82
RL = 10 kΩ
35
-55 °C < Tamb < 125 °C
50
RL = 10 kΩ
mV
1
70
1
150
1
70
1
150
pA
79
dB
98
6
7
-55 °C < Tamb < 125 °C
35
mV
50
Vο = 3.3 V
30
-55 °C < Tamb < 125 °C
25
Vο = 0 V
30
-55 °C < Tamb < 125 °C
25
No load, Vout = 1.75 V
45
mA
45
55
-55 °C < Tamb < 125 °C
64
66
µA
AC performance
GBP
Gain bandwidth product
RL = 2 kΩ, CL = 100 pF
610
-55 °C < Tamb < 125 °C
310
820
kHz
ɸm
Phase margin
RL = 2 kΩ, CL = 100 pF
50
Degrees
Gm
Gain margin
RL = 2 kΩ, CL = 100 pF
11
dB
Slew rate
VIN = 0.5 V to VCC -0.5V, 10 % to
90 %, RL = 2 kΩ, CL = 100 pF,
Av = 1
0.22
-55 °C < Tamb < 125 °C
0.17
SR
en
Equivalent input noise
voltage
0.29
f = 1 kHz
65
f = 10 kHz
50
DocID027171 Rev 1
V/μs
nV/√Hz
5/19
Electrical characteristics
RHR61, RHR64
Table 6: VCC+ = 5 V, VCC- = 0 V, Vicm = 2.5 V, Tamb = 25 °C, and RL connected to
2.5 V (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
DVio
Offset voltage
Input offset current
(Vout = 2.5 V)
Iib
Input bias current
(Vout = 2.5 V)
SVR
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Supply voltage rejection ratio
20 log (ΔVCC/ΔVio)
Avd
Large signal voltage gain
VOH
High-level output voltage
VOL
Low-level output voltage
Isink
Iout
Isource
ICC
-55 °C < Tamb < 125 °C
3
Input offset voltage drift
Iio
CMR
1
Supply current (per channel)
μV/°C
4
-55 °C < Tamb < 125 °C
-55 °C < Tamb < 125 °C
0 V to 2.5 V, Vout = 2.5 V
77
-55 °C < Tamb < 125 °C
74
0 V to 5.0 V, Vout = 2.5 V
63
-55 °C < Tamb < 125 °C
58
VCC = 1.8 to 5 V
75
-55 °C < Tamb < 125 °C
70
RL = 10 kΩ, Vout = 0.5 V to 4.5 V
88
-55 °C < Tamb < 125 °C
83
RL = 10 kΩ
35
-55 °C < Tamb < 125 °C
50
RL = 10 kΩ
mV
1
70
1
150
1
70
1
150
pA
83
dB
102
98
7
6
-55 °C < Tamb < 125 °C
35
mV
50
Vο = 5 V
40
-55 °C < Tamb < 125 °C
35
Vο = 0 V
40
Tmin < Tamb < Tmax
35
No load, Vout = 2.5 V
69
mA
69
59
-55 °C < Tamb < 125 °C
69
72
µA
AC performance
GBP
Gain bandwidth product
RL= 2 kΩ, CL= 100 pF
630
-55 °C < Tamb < 125 °C
330
920
kHz
ɸm
Phase margin
RL = 2 kΩ, CL = 100 pF
50
Degrees
Gm
Gain margin
RL = 2 kΩ, CL = 100 pF
12
dB
Slew rate
VIN = 0.5 V to VCC -0.5V, 10 %
to 90 %, RL = 2 kΩ,
CL = 100 pF, Av = 1
0.25
-55 °C < Tamb < 125 °C
0.20
SR
en
6/19
Equivalent input noise
voltage
0.34
f = 1 kHz
65
f = 10 kHz
50
DocID027171 Rev 1
V/μs
nV/√Hz
RHR61, RHR64
Symbol
THD+en
Electrical characteristics
Parameter
Total harmonic distortion
Conditions
Min.
G = 1, f = 1 kHz, RL = 100 kΩ,
Vout = 2 Vpp
Typ.
Max.
Unit
0.002
%
Table 7: Electrical characteristics after 100 krad, VCC+ = 1.8 V, VCC- = 0 V, Vicm = 0.9 V,
Tamb = 25 °C, and load (RL) connected to VCC/2 (unless otherwise specified). Min. and max.
values obtained on a sample size of 10 parts from 2 different lots (2x5). Non listed parameters
are not impacted by the dose.
Symbol
Parameter
Conditions
Min.
Typ.
Output voltage
Vio
CMR (1)
Common mode rejection ratio 20 log
(ΔVic/ΔVio)
Large signal voltage gain
Avd
Isource
ICC
0 V to 1.8 V, Vout = 0.9 V
51
RL = 10 kΩ, Vout = 0.5 V to 1.3 V
81
VO = 0 V
1.5
Output source current
Supply current (per channel)
Max.
Unit
1.7
mV
dB
—
mA
No load, Vout = 0.9 V
84
µA
Notes:
(1)The
CMR from 0 V to VCC/2 has not been characterized in radiation
Table 8: Electrical characteristics after 100 krad, VCC+ = 5 V, VCC- = 0 V, Vicm = 2.5 V,
Tamb = 25 °C, and load (RL) connected to VCC/2 (unless otherwise specified). Min. and max.
values obtained on a sample size of 10 parts from 2 different lots (2x5). Non listed parameters
are not impacted by the dose.
Symbol
Parameter
Conditions
Min.
Typ.
Output voltage
Vio
CMR (1)
Common mode rejection ratio 20 log
(ΔVic/ΔVio)
0 V to 5 V, Vout = 2.5 V
62
SVR
Supply voltage rejection ratio 20 log
(ΔVCC/ΔVio)
VCC = 1.8 V to 5 V
71
RL = 10 kΩ, Vout = 0.5 V to 4.5 V
87
Large signal voltage gain
Isink
Output sink current
VO = 5 V
35
Output source current
VO = 0 V
32
ICC
Supply current (per channel)
Unit
1.5
mV
dB
—
Avd
Isource
Max.
mA
No load, Vout = 2.5 V
106
µA
Notes:
(1)The
CMR from 0 V to VCC/2 has not been characterized in radiation
DocID027171 Rev 1
7/19
Electrical characteristic curves
3
RHR61, RHR64
Electrical characteristic curves
Figure 2: Input offset voltage vs input common-mode
voltage at VCC = 1.5 V
Figure 1: Supply current vs supply voltage
400
40
Vicm=Vcc/2
T=125°C
30
Input Offset Voltage (µV)
Supp ly Curren t (µA)
35
T=25°C
25
T=-55°C
T=-40°C
20
15
10
0
-200
-400
T=125°C
-800
0
0
1
2
3
4
5
Supply Voltage (V)
Figure 3: Input offset voltage vs input common-mode
voltage at VCC = 5 V
0.0
T=-55°C
0.2 0.4 0.6 0.8 1.0 1.2
Input Common Mode Voltage (V)
1.6
0
Input Offset Voltage (µV)
Vcc=5V
200
T=125°C
0
T=25°C
T=-40°C
T=-55°C
-200
-400
1.4
-25
-50
-75
-100
-125
-150
-175
T=-55°C T=-40°C T=25°C T=125°C
Vcc=1.5V
Rl=2kΩ
-200
-225
0
1
2
3
4
Input Common Mode Voltage (V)
5
-250
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Output Voltage (V)
Figure 5: Input offset voltage vs output voltage at
VCC = 5 V
125
100
75
50
25
0
-25
-50
-75
-100
-125
-150
-175
-200
-225
0.5
Figure 6: VOH vs supply voltage
45
Output swing from Vcc+ (mV)
Input Offset Voltage (µV)
T=-40°C
Figure 4: Input offset voltage vs output voltage at
VCC = 1.5 V
400
8/19
T=25°C
-600
5
Input Offset Voltage (µV)
Vcc=1.5V
200
T=-55°C T=-40°C T=25°C T=125°C
Vcc=5V
Rl=2k Ω
1.0
1.5
2.0
2.5
3.0
Output Voltage (V)
3.5
4.0
40
35
30
25
20
15
T=-55°C
T=-40°C
T=125°C
Rl=2kΩ
5
4.5
T=25°C
10
0
1.5
DocID027171 Rev 1
2.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
RHR61, RHR64
Electrical characteristic curves
Figure 8: Output current vs output voltage at VCC = 5 V
Figure 7: VOL vs supply voltage
100
80
35
Sink
Vid=-1V
60
Output Current (mA)
Output swing from Vcc- (mV)
40
30
25
20
15
10
T=-55°C
T=25°C
T=-40°C
40
0
-40
T=125°C
-60
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
-100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Output Voltage (V)
5.5
Figure 10: Bode diagram at VCC = 5 V
Figure 9: Bode diagram at VCC = 1.5 V
60
60
0
Phase
40
Source
Vid=1V
-80
Rl=2kΩ
2.0
T=125°C T=25°C T=-40°C T=-55°C
-20
5
0
1.5
Vcc=5V
20
T=-55°C
T=-40°C
T=25°C
T=125°C
0
-30
Phase
40
-60
T=-55°C
T=-40°C
T=25°C
T=125°C
-60
0
-180
Vcc=1.5V
Vicm=0.75V
Rl=2kΩ
Cl=100pF
Gain=100
-20
-240
0
-180
Vcc=5V
Vicm=2.5V
Rl=2kΩ
Cl=100pF
Gain=100
-20
-270
-300
10k
-120
Gain
-210
-40
1k
20
100k
-240
-40
-300
1k
1M
10k
100k
1M
Frequency(Hz)
Frequency(Hz)
Figure 11: Slew rate vs supply voltage
Figure 12: Negative slew rate vs supply voltage
0.5
3
0.4
T=-55°C
2
0.3
T=-40°C
T=25°C
T=125°C
0.2
1
0.1
0.0 T=125°C T=25°C T=-40°C T=-55°C
Vicm=Vcc/2
Vload=Vcc/2
Rl=2kΩ
Cl=100pF
-0.1
-0.2
-0.3
Voltage (V)
Slew rate (V/µs)
Phase (°)
-150
Gain (dB)
Gain (dB)
-120
Gain
Phase (°)
-90
20
Vcc=5V
Vicm=Vcc/2
Rl=2kΩ
Cl=100pF
0
-1
-2
-0.4
-0.5
1.5
-3
2.0
2.5
3.0 3.5 4.0
Supply Voltage (V)
4.5
5.0
5.5
DocID027171 Rev 1
0
5
10
15
Time (µs)
9/19
Electrical characteristic curves
RHR61, RHR64
Figure 14: Phase margin vs output current at
VCC = 1.5 V
Figure 13: Positive slew rate vs supply voltage
100
3
90
Output Voltage (V)
2
80
70
1
60
50
0
T=125°C
T=25°C
T=-40°C
T=-55°C
-1
-2
40
30
Vcc=5V
Vicm=Vcc/2
Rl=2kΩ
Cl=100pF
20
10
-3
0
10
20
0
-1.0
30
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
Time (µs)
Figure 16: Noise vs frequency
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
-1.0
Equivalent Input Noise Voltage (nV/VHz)
Figure 15: Phase margin vs output current at VCC = 5 V
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1000
Vicm=2.5V
100
Vicm=4.5V
10
10
1.0
Figure 17: Small step
Vcc=5V
T=25°C
100
1000
Frequency (Hz)
10000
100000
Figure 18: Power supply rejection ratio vs frequency
100
0.20
+
PSRR
PSRR (dB)
Output Voltage (V)
80
0.10
Vcc=5V
Vicm=2.5V
Rl=2k Ω
Cl=100pF
T=25°C
0.00
-0.10
-0.20
-1
10/19
60
40
20
0
1
2
Time (µs)
3
4
5
0
10
DocID027171 Rev 1
-
PSRR
Vcc=5V
Vicm=2.5V
Gain=1
Rl=2kΩ
Cl=100pF
Vosc=100mVPP
T=25°C
100
1k
Frequency (Hz)
10k
100k
RHR61, RHR64
Electrical characteristic curves
Figure 19: Total harmonic distortion and noise vs
frequency and Rload
Figure 20: Total harmonic distortion and noise vs
frequency and input voltage
0.1
1
Vicm=Vcc/2
Gain=1
Vin=1Vpp
BW=80kHz
T=25°C
Vcc=1.5V
Rl=2kΩ
Vin=200mVpp
Vin=50mVpp
Vcc=5.5V
Rl=2kΩ
THD + N (%)
THD + N (%)
1
Vcc=1.5V
Rl=10kΩ
0.01
0.1
Vin=3Vpp
0.01
Vicm=Vcc/2
Gain=1
Vin=1Vpp
BW=80kHz
Rl=2kΩ
T=25°C
Vcc=5.5V
Rl=10kΩ
1E-3
1E-3
100
1000
Frequency (Hz)
100
10000
1
1
0.1
0.1
Vicm=Vcc/2
0.01 Gain=1
f=1kHz
BW=22kHz
Rl=2kΩ
T=25°C
1E-3
0.01
3.3V
5V
5V
0.1
1
Output Voltage (Vpp)
5.5V
10
1.8V
3.3V
0.01
1.8V
10000
Figure 22: Total harmonic distortion and noise vs output
voltage at Rload = 100 kΩ
THD + N (%)
THD + N (%)
Figure 21: Total harmonic distortion and noise vs output
voltage at Rload = 2 kΩ
1000
Frequency (Hz)
1E-3
0.01
DocID027171 Rev 1
Vicm=Vcc/2
Gain=1
f=1kHz
BW=22kHz
Rl=100kΩ
T=25°C
5.5V
0.1
1
Output Voltage (Vpp)
10
11/19
Radiations
4
RHR61, RHR64
Radiations
Total ionizing dose (MIL-STD-883 TM 1019)
The products guaranteed by radiation within the RHA QML-V system, fully comply with the
MIL-STD-883 TM 1019 specification.
The RHR61 and RHR64 are RHA QML-V tested and characterized in full compliance with
the MIL-STD-883 specification, condition B (between 10 and 100 mrad/s).
All parameters provided in Table 4, Table 5, and Table 6 apply to pre-irradiation, Table 7
and Table 8 apply to post-irradiation as follows:
All tests are performed in accordance with MIL-PRF-38535 and the test method 1019
of the MIL-STD-883 for total ionizing dose (TID).
The initial characterization is performed in qualification only on both biased and
unbiased parts.
Each wafer lot is tested in the worst bias case condition, based on the results obtained
during the initial qualification.
Heavy ions
The behavior of the product when submitted to heavy ions is not tested in production.
Heavy ion trials are performed on qualification lots only.
Table 9: Radiations
Type
Characteristics
Value
Unit
TID
Low-dose rate (36 to 360 rad/h) up to:
100
krad
SEL immunity up to:
(with a particle angle of 60 ° at 125 °C)
120
SEL immunity up to:
(with a particle angle of 0 ° at 125 °C)
60
SET immunity (at 25 °C)
Characterized
Heavy ions
12/19
DocID027171 Rev 1
MeV.cm²/mg
RHR61, RHR64
5
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK ®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID027171 Rev 1
13/19
Package information
5.1
RHR61, RHR64
Ceramic Flat-8 package information
Figure 23: Ceramic Flat-8 package outline
Pin n° 1
identification
The upper metallic lid is electrically connected to pin 5 only. No other pin is
electrically connected to the metallic lid nor to the IC die inside the package.
Table 10: Ceramic Flat-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
2.24
2.44
2.64
0.088
0.096
0.104
b
0.38
0.43
0.48
0.015
0.017
0.019
c
0.10
0.13
0.16
0.004
0.005
0.006
D
6.35
6.48
6.61
0.250
0.255
0.260
E
6.35
6.48
6.61
0.250
0.255
0.260
E2
4.32
4.45
4.58
0.170
0.175
0.180
E3
0.88
1.01
1.14
0.035
0.040
0.045
e
1.27
L
6.51
Q
0.66
S1
0.92
N
14/19
Inches
0.050
7.38
0.256
0.79
0.92
0.026
0.031
0.036
1.12
1.32
0.036
0.044
0.052
08
DocID027171 Rev 1
0.291
08
RHR61, RHR64
5.2
Package information
Ceramic Flat-14 package information
Figure 24: Ceramic Flat-14 package outline
b
e
c
L
E3
8
14
E
E2
7
1
E3
L
Q
S1
A
D
The upper metallic lid is electrically connected to pin 11 (VCC-) only.
Table 11: Ceramic Flat-14 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
Inches
Max.
Min.
Typ.
Max.
A
2.31
2.72
0.091
0.107
b
0.38
0.48
0.015
0.019
c
0.10
0.18
0.004
0.007
D
9.27
9.73
0.365
0.383
E
6.19
6.50
0.244
0.256
E2
E3
3.68
0.145
0.76
e
0.030
1.27
0.050
L
6.86
7.62
0.250
0.300
Q
0.66
1.14
0.026
0.045
S1
0.13
0.005
DocID027171 Rev 1
15/19
Ordering information
6
RHR61, RHR64
Ordering information
Table 12: Ordering information
Order code
Description
Temperature range
RHR61K1
Engineering
model
-55 °C to 125 °C
RHR64K1
Package
Marking (1)
Ceramic Flat-8
RHR61K1
Ceramic Flat-14
RHR64K1
Notes:
(1)Specific
marking only. Complete marking includes the following:
- ST logo
- Date code (date the package was sealed) in YYWWA (year, week, and lot index of week)
- Country of origin (FR = France).
16/19
DocID027171 Rev 1
Packing
Strip pack
RHR61, RHR64
7
Shipping information
Shipping information
Date code
The date code is structured as shown below:
EM xyywwz
where:
x (EM only) = 3 and the assembly location is Rennes, France
yy = last two digits of the year
ww = week digits
z = lot index in the week
DocID027171 Rev 1
17/19
Revision history
8
RHR61, RHR64
Revision history
Table 13: Document revision history
18/19
Date
Revision
11-May-2016
1
Changes
Initial release
DocID027171 Rev 1
RHR61, RHR64
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
DocID027171 Rev 1
19/19