IRF IRS2003PBF

Data Sheet No. PD60269
IRS2003(S)PbF
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
• Fully operational to +200 V
• Tolerant to negative transient voltage, dV/dt
immune
• Gate drive supply range from 10 V to 20 V
• Undervoltage lockout
• 3.3 V, 5 V, and 15 V logic compatible
• Cross-conduction prevention logic
• Matched propagation delay for both channels
• Internal set deadtime
• High-side output in phase with HIN input
• Low-side output out of phase with input
• RoHS compliant
Product Summary
VOFFSET
200 V max.
IO+/-
130 mA/270 mA
VOUT
10 V - 20 V
ton/off (typ.)
680 ns/150 ns
Deadtime (typ.)
520 ns
Packages
Description
The IRS2003 is a high voltage, high speed power
MOSFET and IGBT drivers with dependent high- and
low-side referenced output channels. Proprietary HVIC
8-Lead SOIC
8-Lead PDIP
and latch immune CMOS technologies enable ruggeIRS2003S
IRS2003
dized monolithic construction. The logic input is
compatible with standard CMOS or LSTTL output, down
to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver crossconduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side
configuration which operates up to 200 V.
Typical Connection
(Refer to Lead Assignments for correct configuration). This diagram shows electrical connections only. Please refer to
our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS2003(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
VB
High-side floating absolute voltage
-0.3
225
VS
High-side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High-side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low-side and logic fixed supply voltage
-0.3
25
VLO
Low-side output voltage
-0.3
VCC + 0.3
Logic input voltage (HIN & )
-0.3
VCC + 0.3
—
50
VIN
dVs/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25 °C
Thermal resistance, junction to ambient
(8 Lead PDIP)
—
1.0
(8 Lead SOIC)
—
0.625
(8 Lead PDIP)
—
125
(8 Lead SOIC)
—
200
TJ
Junction temperature
—
150
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
Units
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at a 15 V differential.
Symbol
Definition
VB
High-side floating supply absolute voltage
VS
High-side floating supply offset voltage
Min.
Max.
VS + 10
VS + 20
Note 1
200
VHO
High-side floating output voltage
VS
VB
VCC
Low-side and logic fixed supply voltage
10
20
VLO
Low-side output voltage
0
VCC
VIN
Logic input voltage (HIN & )
0
VCC
TA
Ambient temperature
-40
125
Units
V
°C
Note 1: Logic operational for VS of -5 V to +200 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
www.irf.com
2
IRS2003(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
ton
Turn-on propagation delay
—
680
820
VS = 0 V
toff
Turn-off propagation delay
—
150
220
VS = 200 V
tr
Turn-on rise time
—
70
170
tf
Turn-off fall time
—
35
90
400
520
650
—
—
60
DT
Deadtime, LS turn-off to HS turn-on &
HS turn-on to LS turn-off
MT
Delay matching, HS & LS turn-on/off
ns
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” (HIN) & Logic “0” ( ) input voltage
2.5
—
—
VIL
Logic “0” (HIN) & Logic “1” ( ) input voltage
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
0.05
0.2
VOL
Low level output voltage, VO
—
0.02
0.1
VCC = 10 V to 20 V
V
IO = 2 mA
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
—
30
55
VB = VS = 200 V
IQCC
Quiescent VCC supply current
—
150
270
IIN+
Logic “1” input bias current
—
3
10
HIN = 5 V, = 0 V
IIN-
Logic “0” input bias current
—
—
5
HIN = 0 V, = 5 V
VCCUV+
VCC supply undervoltage positive going
threshold
8
8.9
9.8
VCCUV-
VCC supply undervoltage negative going
threshold
7.4
8.2
9
IO+
Output high short circuit pulsed current
130
290
—
µA
V
mA
IO-
www.irf.com
Output low short circuit pulsed current
VIN = 0 V or 5 V
270
600
—
VO = 0 V, VIN = VIH
PW ≤ 10 µs
VO = 15 V, VIN = VIL
PW ≤ 10 µs
3
IRS2003(S)PbF
Functional Block Diagram
VB
HV
LEVEL
SHIFT
Q
HO
R
PULSE
FILTER
S
VS
IHN
PULSE
GEN
UV
DETECT
DEAD TIME &
SHOOT-THROUGH
PREVENTION
VCC
VCC
LO
LIN
COM
Lead Definitions
Symbol Description
HIN
Logic input for high-side gate driver output (HO), in phase
VB
Logic input for low-side gate driver output (LO), out of phase
HO
High-side gate drive output
VS
High-side floating supply return
VCC
Low-side and logic fixed supply
LO
Low-side gate drive output
COM
Low-side return
High-side floating supply
Lead Assignments
1
VCC
VB
8
1
VCC
VB
8
2
HIN
HO
7
2
HIN
HO
7
3
LIN
VS
6
3
LIN
VS
6
COM
LO
5
4
COM
LO
5
4
www.irf.com
8 Lead PDIP
8 Lead SOIC
IRS2003PbF
IRS2003SPbF
4
IRS2003(S)PbF
Figure 1. Input/Output Timing Diagram
Figure 2. Switching Time Waveform Definitions
Figure 3. Deadtime Waveform Definitions
www.irf.com
5
1400
1400
1200
1200
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
IRS2003(S)PbF
1000
M a x.
800
600
Typ .
400
200
800
Typ.
600
400
200
0
0
-50
-25
0
25
50
75
Temperature (oC)
100
10
125
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 4A. Turn-On Time vs. Temperature
Figure 4B. Turn-On Time vs. Supply Voltage
500
Turn-Off Delay Time (ns)
1000
Max.
Turn-On Delay Time (ns)
Max.
1000
800
600
Typ.
400
200
400
300
200
100
M a x.
Typ.
0
0
0
2
4
6
8
10
12
14
16
18
-5 0
20
-2 5
0
25
50
75
100
125
Temperature (oC)
Input Voltage (V)
Figure 4C. Turn-On Time vs. Input Voltage
1000
Turn-Off
Time(ns)
(ns)
Turn-OffDelay
Delay Time
Turn-Off Delay Time (ns)
500
400
300
M a x.
200
100
Figure 5A. Turn-Off Time vs. Temperature
Typ .
0
800
600
Max .
400
200
Typ.
0
10
12
14
16
18
20
0
2
4
6
8
10
12
14
16
18
VBIAS Supply Voltage (V)
Input Voltage (V)
Figure 5B. Turn-Off Time vs. Supply Voltage
www.irf.com
Figure 5C. Turn-Off Time vs. Input Voltage
6
IRS2003(S)PbF
500
500
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
500
400
300
200
Max.
100
Typ.
0
-50
-25
400
400
300
300
M ax.
Max.
200
200
100
100
Typ.
Typ.
00
0
25
50
75
100
125
110
0
112
2
o
Temperature ( C)
116
6
118
8
220
0
VBIAS Supply Voltage (V)
Figure 6A. Turn-On Rise Time
vs. Temperature
Figure 6B. Turn-On Rise Time
vs. Voltage
200
Turn-Off Fall Time (ns)
200
Turn-Off Fall Time (ns)
114
4
150
100
Max.
50
150
Max.
100
50
Typ.
Typ.
0
-50
-25
0
25
50
75
100
0
125
10
12
14
16
18
20
o
Temperature ( C)
Input Voltage (V)
Figure 7B. Turn-Off Fall Time vs. Voltage
1400
1400
1200
1200
1000
800
Deadtime (ns)
Deadtime (ns)
Figure 7A. Turn-Off Fall Time
vs. Temperature
M a x.
600
T yp.
400
200
1000
Max.
800
600
Typ .
400
Min .
M in .
200
0
0
-5 0
-2 5
0
25
50
75
100
Temperature (oC)
Figure 8A. Deadtime vs. Temperature
www.irf.com
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 8B. Deadtime vs. Voltage
7
IRS2003(S)PbF
5
Input
(V)(V)
InputVoltage
Voltage
Input Voltage (V)
5
4
3
Mi n.
2
1
-50
4
3
Mi n.
2
1
-25
0
25
50
75
100
125
10
12
Temperature (oC)
4
4
3.2
3.2
Input Voltage (V)
Input Voltage (V)
18
20
Figure 9B. Logic "1" Input Voltage
vs. Supply Voltage
2.4
1.6
Max.
2.4
1.6
Max.
0.8
0.8
0
-50
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
Figure 10A. Logic "0"(HIN) & Logic "1" (LIN )
Input Voltage vs. Temperature
High Level Output Voltage (V)
0.4
0.3
Max.
0.1
Typ.
0.0
-50
-25
0
25
50
75
100
Temperature ( oC)
Figure 11A. High Level Output Voltage
vs. Temperature
125
14
16
Vcc Supply Voltage (V)
18
20
Figure 10B. Logic "0"(HIN) & Logic "1" ( LIN )
Input Voltage vs. Voltage
0.5
High Level Output Voltage (V)
16
VBIAS Supply Voltage (V)
Figure 9A. Logic "1" Input Voltage
vs. Temperature
0.2
14
0.5
0.4
0.3
Max.
0.2
0.1
Typ.
0.0
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 11B. High Level Output Voltage
vs. Supply Voltage
www.irf.com
PDF created with pdfFactory trial version www.pdffactory.com
8
IRS2003(S)PbF
0.4
0.3
0.2
0.1
0.5
Low Level Output Voltage (V)
Low Level Output Voltage (V)
0.5
Max.
Typ.
0.4
0.3
0.2
Max.
0.1
Typ.
0.0
0
-50
-25
0
25
50
75
100
125
10
12
o
Temperature ( C)
300
200
M a x.
0
0
25
50
75
100
125
Offset Supply Leakge Current (µA)
Offset Supply Leakge Current (µA)
400
-2 5
20
500
400
300
200
Max.
100
0
0
200
Temperature (oC)
400
600
800
VB Boost Voltage (V)
Figure 13A. Offset Supply Current
vs. Temperature
Figure 13B. Offset Supply Current vs. Voltage
150
150
VBS Supply Current (µA)
VBS Supply Current (µA)
18
Figure 12B. Low Level Output Voltage
vs. Supply Voltage
500
-5 0
16
V BIAS Supply Voltage (V)
Figure 12A. Low Level Output Voltage
vs. Temperature
100
14
120
90
60
M ax.
30
120
90
60
Max.
30
Typ.
Ty p.
0
0
-5 0
-2 5
0
25
50
75
Temperature (oC)
Figure 14A. VBS Supply Current
vs. Temperature
www.irf.com
100
125
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 14B. VBS Supply Current vs. Voltage
9
IRS2003(S)PbF
700
VCC Supply Current (µA)
VCC Supply Current (µA)
700
600
500
400
Max.
300
200
100
Typ.
0
-50
600
500
400
200
100
Typ.
0
-25
0
25
50
Temperature (oC)
75
100
125
10
Figure 15A. Vcc Supply Current
vs. Temperature
12
Logic “1” Input Current (µA)
25
20
15
Max.
10
Max
5
Typ.
25
20
15
Max.
10
5
-25
0
25
50
75
100
Typ.
10
125
12
Logic "0" Input Bias Current (µA)
Max
4
3
2
1
0
0
25
50
75
100
Temperatur e ( °C)
FFigure
ig u r e 1
7 A . LLogic
o g ic ""0"
0 " IInput
n p u t Bias
B i a s Current
C urr en t
17A.
vs. Temperature
www.irf.com
16
18
20
Figure 16B. Logic "1" Input Current
vs. Voltage
6
-25
14
Vcc Supply Voltage (V)
Figure 16A. Logic "1" Input Current
vs. Temperature
Logic “0” Input Bias Current (µA)
20
30
Temperature (oC)
-50
18
0
0
-50
5
14
16
Vcc Supply Voltage (V)
Figure 15B. Vcc Supply Current vs. Voltage
30
Logic “1” Input Current (µA)
Max.
300
125
6
5
Max
4
3
2
1
0
10
12
14
16
18
20
Supply V oltage (V )
Figure 17B. Logic "0" Input Bias Current
vs. Voltage
10
IRS2003(S)PbF
11
11
Vcc UVLO Threshold -(V)
Vcc UVLO Threshold +(V)
Max.
10
Typ .
Typ.
9
Min.
8
7
6
-5 0
-2 5
0
25
50
75
100
10
Max.
9
Typ.
Typ.
8
7 Min.
6
-50
125
-25
0
Temperature (oC)
Figure 18A. Vcc Undervoltage Threshold(+)
vs. Temperature
100
125
500
Output Source Current (mA)
Output Source Current (mA)
75
Figure 18B. Vcc UndervoltageThreshold (-)
vs. Temperature
500
400
Typ.
300
200
Min.
100
0
400
300
200
Typ.
100
Min.
0
-50
-25
0
25
50
75
100
125
10
12
o
Temperature ( C)
14
16
18
20
V BIAS Supply Voltage (V)
Figure 19A. Output Source Current
vs. Temperature
Figure 19B. Output Source Current
vs. Supply Voltage
1000
800
Output Sink Current (mA)
1000
Output Sink Current (mA)
25
50
Temperature (oC)
Typ.
600
400
200
Min.
800
600
400
Typ.
200
Min.
0
0
-50
-25
0
25
50
75
100
o
Temperature ( C)
Figure 20A. Output Sink Current
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
S
VBIAS Supply
Voltage (V)( )
Figure 20B. Output Sink Current
vs. Supply Voltage
11
IRS2003(S)PbF
Case Outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
A
e
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
2. CONTROLLING DIMENSION: MILLIMETER
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
www.irf.com
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
12
IRS2003(S)PbF
Tape & Reel
8-lead SOIC
LOADED TAPE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
CA R R I E R T A P E D IM E N S I O N F O R 8 S O I CN
M etr ic
Co d e
A
B
C
D
E
F
G
H
M in
7 .9 0
3 .9 0
11 .7 0
5 .4 5
6 .3 0
5 .1 0
1 .5 0
1 .5 0
M ax
8.1 0
4.1 0
1 2. 30
5.5 5
6.5 0
5.3 0
n/ a
1.6 0
Im p er i al
M in
M ax
0. 31 1
0 .3 18
0. 15 3
0 .1 61
0 .4 6
0 .4 84
0. 21 4
0 .2 18
0. 24 8
0 .2 55
0. 20 0
0 .2 08
0. 05 9
n/ a
0. 05 9
0 .0 62
F
D
C
B
A
E
G
H
RE E L D IM E NS I O N S FO R 8 S O IC N
Co d e
A
B
C
D
E
F
G
H
www.irf.com
M etr ic
M in
M ax
32 9. 60
3 30 .2 5
20 .9 5
2 1. 45
12 .8 0
1 3. 20
1 .9 5
2.4 5
98 .0 0
1 02 .0 0
n /a
1 8. 40
14 .5 0
1 7. 10
12 .4 0
1 4. 40
Im p er i al
M in
M ax
1 2 .9 76
13 .0 0 1
0. 82 4
0 .8 44
0. 50 3
0 .5 19
0. 76 7
0 .0 96
3. 85 8
4 .0 15
n /a
0 .7 24
0. 57 0
0 .6 73
0. 48 8
0 .5 66
13
IRS2003(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
Date code
IRSxxxxx
YWW?
IR logo
?XXXX
Pin 1
Identifier
?
MARKING CODE
P
Lead Free Released
Non-Lead Free
Released
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2003PbF
8-Lead SOIC IRS2003SPbF
8-Lead SOIC Tape & Reel IRS2003STRPbF
The SOIC-8 is MSL2 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 11/27/2006
www.irf.com
14