IRF IRS21851SPBF

Data Sheet No. PD60255
IRS21851SPbF
SINGLE HIGH SIDE DRIVER IC
Features
• Gate drive supply range from 10 V to 20 V
• Undervoltage lockout for VBS and V CC
• 3.3 V and 5 V input logic compatible
• Tolerant to negative transient voltage
• Matched propagation delays for all channels
• RoHS compliant
Description
The IRS21851 is a high voltage, high speed power
MOSFET and IGBT single high-side driver with propagation delay matched output channels. Proprietary
HVIC and latch immune CMOS technologies enable
ruggedized monolithic construction. The floating logic
input is compatible with standard CMOS or LSTTL
output, down to 3.3 V logic and can be operated up to
600 V above the ground. The output driver features a
high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel
can be used to drive an N-channel power MOSFET
or IGBT in the high- side configuration, which operates up to 600 V.
Product Summary
VOFFSET
600 V max.
IO+/-
4A/ 4A
VOUT
10 V - 20 V
ton/off (typ.)
170 ns & 170 ns
Package
8-Lead SOIC
IRS21851
Typical Connection
up to 600V
VCC
IN
VCC
IN
VB
HO
VS
TO
LOAD
COM
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only.
Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS21851SPbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters
are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board
mounted and still air conditions.
Symbol
Definition
Min.
Max.
20 (Note 1)
VC C
Low-side supply voltage
-0.3
V IN
Logic input voltage (HIN)
COM -0.3
VCC + 0.3
VB
High-side floating well supply voltage
-0.3
620 (Note 1)
VS
High-side floating well supply return voltage
V B - 20
VB + 0.3
Floating gate drive output voltage
VHO
dVs /dt
PD
RthJA
Units
V
VS - 0.3
VB + 0.3
Allowable VS offset supply transient relative to COM
—
50
Package power dissipation @ TA ≤ +25 °C
—
1.25
W
Thermal resistance, junction to ambient
—
100
°C/W
TJ
Junction temperature
-55
150
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V/ns
°C
Note 1: All supplies are fully tested at 25 V. An internal 20 V clamp exists for each supply.
Recommended Operating Conditions
For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute
voltages referenced to COM. The offset rating are tested with supplies of (VCC-COM)=(VB-VS)=15 V.
Symbol
Definition
Min.
Max.
10
20
COM
VC C
V S + 10
VS + 20
Note 2
600
Floating gate drive output voltage
VS
VB
Ambient temperature
-40
125
VC C
Low-side supply voltage
V IN
HIN input voltage
VB
High-side floating well supply voltage
VS
High-side floating well supply offset voltage
VHO
TA
Units
V
°C
Note 2: Logic operational for VS of -5 V to 600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design
Tip DT97-3 for more details).
www.irf.com
2
IRS21851SPbF
Dynamic Electrical Characteristics
(VCC-COM)=(VB-VS)=15 V, TA = 25 oC. CL = 1000 pF unless otherwise specified. All parameters are referenced to COM.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
ton
Turn-on propagation delay
—
160
210
(VS -COM) = 0 V
t off
Turn-off propagation delay
—
160
210
(VS -COM) = 600 V
tr
Turn-on rise time
—
15
40
tf
Turn-off fall time
—
15
40
ns
Static Electrical Characteristics
(VCC-COM)=(VB-V S)=15 V. The VIN, VTH, and IIN parameters are referenced to COM. The VO and IO parameters are
referenced respective VS and are applicale to the respective output leads HO. The VCC parameters are referenced to
COM. The VBSUV parameters are referenced to VS.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VCCUV+
VCC supply undervoltage positive going threshold
8.0
8.9
9.8
VCCUV-
VCC supply undervoltage negative going threshold
7.4
8.2
9.0
VBSUV+
VBS supply undervoltage positive going threshold
8.0
8.9
9.8
VBSUV-
VBS supply undervoltage negative going threshold
7.4
8.2
9.0
High-side floating well offset supply leakage current
—
—
50
IQBS
ILK
Quiescent VBS supply current
—
80
150
IQCC
Quiescent VCC supply current
—
120
240
V IH
Logic “1” input voltage
2.5
—
—
V IL
Logic “0” input voltage
—
—
0.8
VOH, HO
HO high level output voltage, VBIAS - VO
—
20
60
VOL, HO
HO low level output voltage, VO
—
10
30
IIN+
Logic “1” input bias current
—
10
20
IIN-
Logic “0” input bias current
—
0
5
IO+, HO
Output high short circuit pulsed current HO
—
4
V
VB = VS = 600 V
µA
V
mV
µA
www.irf.com
Output low short circuit pulsed current HO
—
4
—
—
IO = 2 mA
VHIN = 5 V
VHIN = 0 V
VO = 0 V, VIN = 0 V
A
IO-, HO
HIN = 0 V or 5 V
PW ≤ 10 µs
VO = 15 V, VIN = 15 V
PW ≤ 10 µs
3
IRS21851SPbF
Functional Block Diagram
VCC
COM
5V
VREG
VCCUV
DETECT
HIGHSIDE CHANNLE1
VB
PULSE
GEN
HIN
FILTER,
LATCH
UV DETECT
LEVEL
SHIFT UP
DRIVER
HO
VS
Lead Definitions
Symbol
VCC
COM
VB
HO
VS
HIN
Description
Low-side supply voltage
Ground
High-side drive floating supply
High-side driver outputs
High voltage floating supply return
Logic inputs for high-side gate driver output (in phase)
Lead Assignments
1
VCC
2
HIN
IRS21851S
3
4
VB
8
HO
7
VS
6
5
COM
8- Lead SOIC
www.irf.com
4
IRS21851PbF
50%
50%
IN
t on
t off
tr
OUT
90%
10%
tf
90%
10%
Figure 1. Switching Time Waveforms
HIN
HO
Figure 2. Input/Output Timing Diagram
www.irf.com
5
300
T ur n- O n Propagation Delay (ns )
T ur n- O n Propagation Delay (ns )
IRS21851SPbF
250
200
150
Max
Typ
100
50
0
-50
-25
0
25
50
75
100
300
250
Max
200
Typ
150
100
50
0
10
125
12
300
250
Max
Typ
100
50
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 4A. Tu rn-Off Propag ation Delay vs .
Temperature
www.irf.com
18
20
Figure 3B. Turn-On Propagation Delay vs.
Supply Voltage
T ur n- O ff Propagation Delay (ns )
Turn- Off Propagation Delay (ns)
Figure 3A. Tu rn-On Propag ation Delay vs .
Temperature
150
16
Supply Voltage (V)
Temperature (°C)
200
14
125
250
Max
200
Typ
150
100
50
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 4B. Turn-Off Propagation Delay vs.
Supply Voltage
6
IRS21851SPbF
40
60
Max
Tur n- O n Ris e Time ( ns )
Tur n- O n Ris e Time ( ns )
45
35
30
25
20
15
Typ
10
5
0
-50
Max
50
40
30
20
Typ
10
0
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Max
Turn- Off Fall Time ( ns)
Turn- Off Fall Time ( ns)
20
60
35
30
25
20
Typ
10
5
0
-50
18
Figure 5B. Turn-On Rise Time vs. Supply
Voltage
45
15
16
Supply Voltage (V)
Figure 5A. Turn-On Rise Time vs.
Temperature
40
14
Max
50
40
30
20
Typ
10
0
-25
0
25
50
75
Temperature (°C)
Figure 6A. Turn-Off Fall Time vs.
Temperature
www.irf.com
100
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 6B. Turn-Off Fall Tim e vs. Supply
Voltage
7
IRS21851SPbF
3
Logic "1" Input Voltage (V)
Logic "1" Input Voltage (V)
3
Max
2.5
2
1.5
1
0.5
0
-50
2.5
Max
2
1.5
1
0.5
0
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Supply Voltage (V)
Figure 7A. L ogic "1" Input Voltage vs.
Temperature
Figure 7B. Logic "1" Input Voltage vs. Supply
Voltage
0.9
0.9
0.8
Min
Logic "0" Input Voltage (V)
Logic "0" Input Voltage (V)
14
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-50
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-25
0
25
50
75
100
Temperature (°C)
Figure 8A. L ogic "0" Input Voltage vs.
Temperature
www.irf.com
Min
0.8
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 8B. Logic "0" Input Voltage vs. Supply
Voltage
8
IRS21851SPbF
70
80
High Lev el O utput (m V)
High Level Output (mV)
90
70
60
50
40
Max
30
20
10
Typ
0
-50
Max
60
50
40
30
Typ
20
10
0
-25
0
25
50
75
100
125
10
12
Temperature (°C)
35
30
Low Level Output (mV)
Low L evel Output (mV)
35
Max
20
15
10
Typ
5
0
-50
18
20
Figure 9B. High Level Outpu t vs. Supply
Voltage (Io =2 mA)
40
25
16
Supply Voltage (V)
Figure 9A. High Level Output vs.
Temperature (Io = 2 mA)
30
14
Max
25
20
15
10
Typ
5
0
-25
0
25
50
75
Temperature (°C)
Figure 10A. Low Level Output vs.
Temperature (Io=2 mA)
www.irf.com
100
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 10B. Low Level Output vs. Supply
Vo ltage (Io=2 mA)
9
300
O ffs e t Supply Leak a ge Cur rent ( µA)
Offset Supply Leakage Current (µA)
IRS21851SPbF
250
200
150
100
50
Max
0
-50
-25
0
25
50
75
100
125
60
50
Max
40
30
20
10
0
10
12
Temperature (°C)
16
18
20
Supply Voltage (V)
Figure 11A. Offset Su pply Leakage Current
vs. Temperature
Figure 11B. Offse t Supply Leak age Current vs.
Supply Voltage
250
180
160
140
V BS Supp ly Current (µA)
V BS Supply Current (µA)
14
Max
120
100
80
Typ
60
40
20
0
-50
150
100
Max
50
Typ
0
-25
0
25
50
75
100
Temperature (°C)
Figure 12A. VBS Supply Current vs.
Temperature
www.irf.com
200
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 12B. V BS Supply Curre nt vs. Supply
Voltage
10
300
350
250
300
V CC Supp ly Current (µA)
V CC Supply Current (µA)
IRS21851SPbF
Max
200
150
Typ
100
50
0
-50
250
200
Max
150
100
Typ
50
0
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Logic "0" Input Bias C ur r ent ( µA)
Logic "0" Input Bias C urrent (µA)
Max
4
3
2
1
0
-25
0
25
50
75
100
Temperature (°C)
Figure 14A. Lo gic "0" Input Bias Current vs .
Temperature
www.irf.com
18
20
Figure 13B. V CC Supply Curre nt vs. Supply
Voltage
6
-50
16
Supply Voltage (V)
Figure 13A. VCC Supply Current vs.
Temperature
5
14
125
6
5
Max
4
3
2
1
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 14B. Log ic "0" Input Bias Current vs.
Supply Voltage
11
6
5
Logic "0" Input Bias Current (µA)
Logic "0" Input Bias Current (µA)
IRS21851SPbF
Max
4
3
2
1
0
-50
-25
0
25
50
75
100
125
6
5
Max
4
3
2
1
0
10
12
Temperature (°C)
20
vs. Voltage
12
VCC UVLO Threshold (-) (V)
12
V CC UVL O Threshold (+) (V)
18
Supply Voltage (V)
vs. Temperature
11
Max
9
Typ
8
Min
7
6
-50
16
Figure 15B. Logic "0" Input Bias Current
Figure 15A. Logic "0" Input Bias Current
10
14
-25
0
25
50
75
100
Temperature (°C)
Figure 16. V CC Undervoltage Threshold (+)
vs. Temperature
www.irf.com
125
11
10
9
Max
8
Typ
7
6
-50
Min
-25
0
25
50
75
100
125
Temperature (°C)
Figure 17. V CC Undervoltage Threshold (-)
vs. Temperature
12
IRS21851SPbF
12
VBS UVLO Threshold (-) (V)
V BS UVL O Threshold (+) (V)
12
11
10
Max
9
Typ
8
Min
7
6
-50
-25
0
25
50
75
100
11
10
9
Max
8
Typ
Min
7
6
-50
125
-25
75
100
125
6
Typ
3.5
3
2.5
2
1.5
1
5
4
3
Typ
2
1
0
-25
0
25
50
75
100
Temperature (°C)
Figure 20A. Output Source Current vs.
Temperature
www.irf.com
50
Figure 19. V BS Undervoltage Threshold (-)
vs. Temperature
O utp ut Sour c e Cur r e nt ( A)
Outp ut Source Current (A)
Figure 18. V BS Undervoltage Threshold (+)
vs. Temperature
0.5
0
-50
25
Temperature (°C)
Temperature (°C)
5
4.5
4
0
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 20B. Outp ut Source Cur rent vs. Supply
Voltage
13
5
4.5
4
6
Typ
5
O utp ut Sink Cur r ent ( A)
Output Sink Current (A)
IRS21851SPbF
3.5
3
2.5
2
1.5
1
0.5
0
-50
4
3
Typ
2
1
0
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
Supply Voltage (V)
Figure 21A. Output Sink Current vs.
Temperature
Figure 21B. Out put Sink Curre nt vs. Supply
Voltage
Case outline
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
A
e
6.46 [.255]
3X 1.27 [.050]
e1
8X b
0.25 [.010]
A
A1
8X 1.78 [.070]
MILLIMETERS
MAX
MIN
.0532
.0688
1.35
1.75
A1 .0040
A
8X 0.72 [.028]
INCHES
MIN
MAX
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BASIC
1.27 BASIC
e1
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
C
y
0.10 [.004]
8X L
8X c
7
C A B
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
www.irf.com
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
14
IRS21851SPbF
Tape & Reel
8-lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN M M
E
G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N
M e tr ic
Im p e r ia l
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8 .1 0
0. 31 1
0 .3 1 8
B
3 .9 0
4 .1 0
0. 15 3
0 .1 6 1
C
1 1 .7 0
1 2 . 30
0 .4 6
0 .4 8 4
D
5 .4 5
5 .5 5
0. 21 4
0 .2 1 8
E
6 .3 0
6 .5 0
0. 24 8
0 .2 5 5
F
5 .1 0
5 .3 0
0. 20 0
0 .2 0 8
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1 .6 0
0. 05 9
0 .0 6 2
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N
M e tr ic
Im p e r ia l
Co d e
M in
M ax
M in
M ax
A
32 9.60
3 3 0 .2 5
1 2 .9 76
1 3 .0 0 1
B
2 0 .9 5
2 1 . 45
0. 82 4
0 .8 4 4
C
1 2 .8 0
1 3 . 20
0. 50 3
0 .5 1 9
D
1 .9 5
2 .4 5
0. 76 7
0 .0 9 6
E
9 8 .0 0
1 0 2 .0 0
3. 85 8
4 .0 1 5
F
n /a
1 8 . 40
n /a
0 .7 2 4
G
1 4 .5 0
1 7 . 10
0. 57 0
0 .6 7 3
H
1 2 .4 0
1 4 . 40
0. 48 8
0 .5 6 6
www.irf.com
15
IRS21851SPbF
LEADFREE PART MARKING INFORMATION
IRxxxxxx
S
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
8-Lead SOIC order IRS21851SPbF
8-Lead SOIC Tape & Reel IRS21851STRPbF
The SOIC-8 is MSL2 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice.
12/4/2006
www.irf.com
16