SEE_Test_Report_RH1016.pdf

Heavy-Ion Test Results of the Voltage Comparator RH1016MW
29 May 2013
Sana Rezgui1, Rocky Koga2, Steve Lalumondiere2, Jeffrey George2, Stephen Moss2, Brian
Hamilton1, Robert Dobkin1, and Rafi Albarian1
1
Linear Technology, 2The Aerospace Corporation
Acknowledgements
The authors would like to thank the Application Signal Conditioning Group Tim Regan, Jim
Mahoney, and Antonina Karpova, from Linear Technology for their help with the board design
and assembly as well as Steve Bielat and Jeffrey George from The Aerospace Corporation for
their assistance with the beam experiments. Special Thanks to the Aerospace Corporation team,
mainly David Meshel, and Rocky Koga, for their expediting these experiments.
1
Executive Summary
This report details the heavy-ion test experiments performed on the RH1016M at the Lawrence Berkeley
National Labs (LBNL). The RH1016 is an UltraFastTM 10ns comparator that interfaces directly to
TTL/CMOS logic while operating from either +/-5V or single 5V supplies [1-2, 4-5]. Heavy-ions induced
SEE (Single Event Effect) experiments included Single Event Transient (SET), Single Event Upset (SEU)
and Single Event Latchup (SEL) tests up to an LET of 91 MeV.cm2/mg at elevated temperatures (to case
temperatures of 100°C). Under heavy-ion irradiations, with various inverting input bias conditions
(proportional to differential input voltage as the non-inverting input voltage is fixed), the RH1016M
showed sensitivities only to SETs. Beam tests confirmed the SEL and SEU immunity of this part in all
test conditions. The measured SET sensitive cross-section is about 5x10-4cm2/circuit and represents about
2.5% of the total die’s area. In addition, 99% of the SETs are smaller in amplitude than +/-3V and smaller
in widths than 100ns. If such SETs can be tolerated in a design then this comparator can be used as is.
The remaining 1% of SETs may attain +/-6V in amplitudes and represent only 5x10-6 cm2/comparator.
Note that positive SETs wide upto 18us and of amplitudes less than 2V have been observed on the
positive output voltage but those won’t cause errors at the comparator output. However, the designer
needs to account for maximum tolerated voltages. The beam data showed also clear dependence of the
SET cross-sections on the comparator differential input voltage. When the comparator inverting-input
voltage was very close to the hysteresis boundary voltages, the SET pulse-width (PW) was the widest,
and the measured SET cross-sections were the highest. At higher LET near the limiting cross-section, the
dependence on differential input bias became less significant, as most SETs became wide.
The SET cross-sections dependence on these biases could be simply due to the peripheral capacitances
charge/discharge times, so what might seem as bias dependence is truly related to parasitic time constants.
We believe that the initial SET-PW will depend on the circuit response and the flux but its propagation on
its parasitic and the ion’s diffusion. Careful selection of the circuit parasitic is crucial when operating the
circuit in radiation beams, as they can change the time constants for signal propagation and widen the
radiation-induced transients. This circuit can be used as is, as the widest measured SET-PW is less than
200ns at the comparator output at an LET of 58.78MeV.cm2/mg. However, for accurate selection of the
SET filter or for the circuit peripheral parasitic, we would recommend that the designer simulates his
design by injecting SETs at the circuit inputs/outputs, as wide as the DUT maximum response time, as
well as varying the bias during these injections. This could be accomplished by the LTSpice tool offered
by Linear Technology, as most of the Linear LT parts spice models are offered [3]. That should provide
guidance to the designer but the result should be correlated with laser and beam tests as most of the RH
and LT parts differ in their process and sometimes in their design as well. The wrong selection of these
parasitic can make things worse and widen the SET from nanoseconds to microseconds, making it harder
on the following circuit to not propagate them.
2
1. Overview
This report details the heavy-ion test experiments performed on the RH1016MW at the Lawrence
Berkeley National Labs (LBNL). The RH1016 is an UltraFastTM 10ns comparator that interfaces directly
to TTL/CMOS logic while operating from either +/-5V or single 5V supplies. Tight offset voltage
specifications and high gain allow the RH1016 to be used in precision applications. Matched
complementary outputs further extend the versatility of this comparator. A unique output stage provides
active drive in both directions for maximum speed into TTL/CMOS logic or passive loads, yet does not
exhibit the large current spikes found in conventional output stages. This allows the RH1016 to remain
stable with the outputs in the active region which greatly reduces the problem of output “glitching” when
the input signal is slow moving or is low level. The RH1016 has a LATCH pin which will retain input
data at the outputs, when held high. Quiescent negative power supply current is only 3mA. This allows
the negative supply pin to be driven from virtually any supply voltage with a simple resistive divider.
Device performance is not affected by variations in negative supply voltage. The RH1016M voltage
offset (VOS) does not exceed ±4mV across the full range of the spec’d die junction temperature (-55°C to
125°C).
The wafer lots are processed to Linear Technology’s in house Class S flow to yield circuits usable in
stringent military applications. The device is qualified and available in hermetically sealed package (10Lead flatpack (W10)). More details are given about this voltage comparator in [1-2, 4-5]. This is a 7um
technology using exclusively bipolar transistors. The part’s block diagram is shown in Fig. 1. The W
package designation is given in Fig. 2.
Absolute Maximum Ratings
(Note 1)
Positive Supply Voltage (Note 2)
Negative Supply Voltage
Differential Input Voltage (Note 3)
+IN, –IN and LATCH ENABLE Current (Note 3)
Output Current (Continuous) (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
7V
–7V
+/-5V
+/-10mA
+/-20mA
–55°C to 125°C
–65°C to 150°C
300°C
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Electrical specifications apply only up to 5.4V.
Note 3: This parameter is guaranteed to meet specified performance through design and characterization. It has not been tested
3
Fig. 1: Block Diagram of the RH1016M DIE
Fig. 2: RH1016M in W Package
Table 1 summarizes the parts’ features and the electrical test equipment.
4
Table 1: Test and Part’s Information
Generic Part Number
RH1016M
Package Marking
Manufacturer
RH1016
Date Code
Linear Technology
Fabrication Lot/Lot Date Code (LDC)
xx
Quantity tested
2
Dice Dimension
56x54mils2≈1.95 mm2 ≈ 1/51 cm2
Part Function
Voltage Comparator
Part Technology
BIPH400
Package Style
Hermetically sealed W-Package 10-Lead CERPAC
Test Equipment
Power supply, digital oscilloscope, multimeter, and
computer
Temperature and Tests
SET, SEU and SEL @ Room Temp. and 100°C
Test Date, Test Site
Dec. 2012, LBNL
5
2. Test Setup
Custom SEE boards were built for heavy-ion tests by the Linear Technology team, along with the Boeing,
The Aerospace Corporation, Ball Aerospace, SEAKR, ITT Exelis, and LMCO engineers. The
RH1016MW parts were tested at LBNL on Dec. 2012 at two different temperatures (at room temperature
as well as at 100°C). During the beam runs, we were monitoring the temperature of the adjacent sense
transistor (2N3904) to the DUT but not the die temperature (junction temperature). Hence the test
engineer needs to account for additional temperature difference between the dice and the sense transistor,
which was not measured in vacuum. In-air, both of the case and the sense transistor temperatures were
measured to be the same. The temperature difference between the junction of the die and the case is a
function of the DUT power dissipation multiplied by the thermal resistance Rtheta-JC(ƟJC). With no heating,
the temperature of the adjacent temperature sense transistor (2N3904) to the DUT (or the DUT case) was
measured on average at about 35°C. The junction temperature was not measured in vacuum; its
calculation is provided in Eq.1. This value was correlated in-air with a thermocouple.
TJ= TC+ PD* ƟJC
(1)
Where: TJ is the junction temperature, TC the case temperature, PD the power dissipated in the die and ƟJC
the thermal resistance between the die and the case. Note: A relatively small amount of power is
dissipated in other components on the board. The sense transistor temperature (very similar to the case
one) during each run is shown in Tables 2 and 3. That is not considered in this calculation.
The calculation of the dissipated power in the die is provided in Eq. 2:
PD = Pin- Pout= |V+ * I+| + |V- * I-| - Pout
(2)
Where:
1. V+ is the positive voltage supply
2. V- is the negative voltage supply
3. I+ is the positive current supply
4. I- is the negative current supply
5. Pin: Input Power Dissipation
6. Pout: Output Power Dissipation
Assuming that Pout =0 and in the case where:
Tc = 25°C; V+= 5V; V-= -5V; I+ = 28mA; I- = 3.1mA; and ƟJC= 40°C/W [4],
PD= 43.5mW and TJ≈27°C
6
The SEE test board contains:
-
The DUT with open-top
The filtering caps for the voltage supplies (V- (-5V), V+ (+5V), VRef (+5V), VD (+5V))
A filtering capacitance for the output (0.1uF used only for the filtering case)
The hysteresis circuit (R6, and R12 resistors)
The 2N3904 (Q1) bipolar transistor to sense the board temperature
Q1 and Q2 to heat the board during the SEL tests. They are placed as close as possible to the
DUT.
Fig. 3 shows the SEE test board schematics and Fig. 4, its picture.
Fig. 3: Block Diagram of the RH1016MW SEE Board
To minimize the distortion of the measured SET-PW, the test setup was placed as close as possible to the
vacuum chamber. It is connected with two 3 feet long BNC cables to two Agilent power supplies (PS)
(N6705B) and to a LeCroy Oscilloscope (Wavepro 7300, 3 GHz) with extended monitor/cables to view
the output signal (Vout). The first PS supplies the input voltages to the SEE test board and allows the
automated logging and storage every 1 ms of the current input supplies (Iin), as well as the automation of
power-cycles after the detection of a current spike on the input current that exceeds the current limit set
by the user. The second PS is used for sensing the voltages of the input power supplies. This was done to
7
avoid any interference from the power supplies that might cause widening of the transients upon the
occurrence of an SET. The output pin (Vout) was connected to the scope with 3 feet BNC cable (vacuum
chamber feed-through) and a scope probe of 11pF. For better accuracy, the equivalent capacitive load of
the BNC cable and the scope probe should be calculated and accounted for, as it might affect the SET
pulse width and shape. In this case, the cables’ capacitive load was about 120 pF.
Fig. 4: Photograph of the SEE Test Board
8
3. Heavy-Ion Beam Test Conditions
The RH1016M part was tested under various input bias conditions ranging from 50 to 1000mV. The
selected beam energy is 10MeV/nucleon, which correlates with beam ions delivered at a rate of 7.7 MHz
(eq. to a period of 130 ns). During these 130 ns, the ions are generated only within very short pulses that
last for 10 ns, as shown in Fig. 5. At every pulse of 10 ns, N number of particles per square centimeter,
depending on the flux, will be irradiating the DUT. The calculation of N is provided in Eq. 3:
N= Flux *130ns
(3)
Fig. 5: Particle Emission during a Beam Run at Beam Energy of 10 MeV/nucleon; Emission Frequency = 7.7MHz
For instance, if the flux equals 104 particles/cm2/second, the probability (N) of having a particle emitted
and striking within a defined square centimeter within a random 10ns active period and even during the
entire period of 130 ns is 1.30x10-3. Multiply that value by the die area to determine the probability of a
particle striking the die; 1.30x10-3 particles/cm2 * 1.95x10-2 cm2 = 2.53x10-5. We don’t know exactly at
what pulse this particle will be irradiating the DUT. The random nature of that emission will change the
elapsed time between any two consecutive particles. The higher the beam’s frequency or the flux; the
higher is the likelihood to have more than one particle hitting the DUT in a very short time (within
hundreds of nanoseconds). Indeed, the minimum time that is guaranteed by the facility to separate the
occurrences of two particles can be as low as 130 ns but the probability of that happening is very low. To
avoid overlapping of events, it is important then that the error-events last less than 130 ns or that the flux
is much reduced.
Most importantly, in the case of these analog devices (power, signal conditioning, etc.), some of the
DUT’s transistors when hit by heavy-ions will cause wide SETs that might last for microseconds. To
make sure that the error-rate calculation is accurate, the flux needs to be reduced until there is a
consistency in the number of detected errors with the flux for a given ions’ fluence. If that’s not the case,
the part is subject to multiple hits or SET widening from the peripheral parasitic. In these types of circuits,
it is most likely to be the latter. The test engineer needs to account for the SET widening that the
peripheral RC filters are causing. In other terms, if the original SET is widened at the DUT output, by the
peripheral RC circuits or even the ones used to mitigate it, then the resulting event will dictate the
maximum flux to be applied on the DUT. The run average and maximum fluxes during the heavy-ions
tests are reported in Table 2.
9
4. Radiation Test Results
Heavy-ions SEE experiments included SET, SEU and SEL tests up to an LET of 91 MeV.cm2/mg at
elevated temperatures (to case temperatures of 100°C). The RH1016M parts were irradiated under various
bias conditions in 67 runs. Because of the cabling between the SEE test board and the scope, that adds a
minimum capacitive load on the output signal of about 120pF, the input capacitances, the serial
resistances on the comparator inputs and the feedback path (resistances and capacitances), the final
measured SET-PW on the scope can be wider than the initial SET-PW originating from the DUT output.
Ideally, the SET-PW on the DUT output should be about the comparator response time, which is less than
100ns at a 0.8V maximum step-size [2]. Once the hit input transistor has trigged to the ion’s deposited
charge, the part will need approximately the sum of the circuit response time (about 200ns) to rising and
falling edges (Figs. 6 and 7). The circuit response to an SET will depend on the source resistance (10K in
this case) and the output loading capacitance.
Fig. 6: DUT Responses Times to Rising and Falling Input Steps vs. Source Resistance
Fig. 7: DUT Responses Times to Rising and Falling Input Steps vs. Output Loading Capacitance
10
1) SET Detection Setup
For SET detection, the beam tests consisted of varying the input voltage from 50 to 1000 mV and
triggering the scope on positive and negative SETs occurring on the comparator output signal. For SET
detection, the scope was set to trigger on switching positive and negative SET pulse amplitude of +/200mV on both outputs (OutA and OutB). LeCroy scope allowed the implementation of such
combination of four simultaneous logic test conditions (two on OutA and two on OutB). The raw heavyion test results are summarized in Table 2, showing SET sensitivities on both of the inverting and noninverting comparator outputs. The data showed a few SET-types; some of them are displayed in Figs. 8 to
14. Most of the SET-types are of small widths, about 100ns, as shown in Figs. 8 to 13. In addition, as
shown in Figs. 9 to 12, positive SETs as wide as 18us were also observed on the comparator’s output
signals set initially high (A or B). These types of SET won’t cause error but the designer needs to account
for them in his design’s maximum allowed voltages.
4.5
4
OutA, OutB Amplitudes (V)
3.5
OutA
3
OutB
2.5
2
1.5
1
0.5
0
-1.0E-06
-5.0E-07
0.0E+00
5.0E-07
1.0E-06
Time (sec)
Fig. 8: Short Single SET on the DUT Output OutB; Vin=0.6V; Run#174, Waveform#4
11
6
OutA
OutB
OutA, OutB Amplitudes (V)
5
4
3
2
1
0
-1.0E-06 1.0E-06 3.0E-06 5.0E-06 7.0E-06 9.0E-06 1.1E-05 1.3E-05 1.5E-05 1.7E-05
Time (sec)
Fig. 9: Single SET on the DUT Output OutA; Vin=0.4V; Run#170, Waveform#7
6
OutA
OutA, OutB Amplitudes (V)
5
OutB
4
3
2
1
0
-1
-2.E-06
3.E-06
8.E-06
1.E-05
2.E-05
Time (Sec)
Fig. 10: Dual SETs on the DUT Outputs OutB and OutA; Vin=0.4V; Run#170, Waveform#1
12
6
OutA, OutB Amplitudes (V)
5
4
OutA
3
OutB
2
1
0
-1.0E-06 1.0E-06 3.0E-06 5.0E-06 7.0E-06 9.0E-06 1.1E-05 1.3E-05 1.5E-05 1.7E-05
Time (sec)
Fig. 11: Positive SET on DUT Output OutA; Vin=0.4V; Run#170, Waveform#4
6
OutA, OutB Amplitudes (V)
5
4
OutA
OutB
3
2
1
0
-1
-1.0E-06 1.0E-06 3.0E-06 5.0E-06 7.0E-06 9.0E-06 1.1E-05 1.3E-05 1.5E-05 1.7E-05
Time (sec)
Fig. 12: Dual SET on DUT Outputs OutB and OutA; Vin=0.4V; Run#170, Waveform#5
13
6
OutA, OutB Amplitudes (V)
5
4
OutA
3
OutB
2
1
0
-1
-1.0E-06
-5.0E-07
0.0E+00
5.0E-07
1.0E-06
Time (sec)
Fig.13: Single SET on DUT Output OutB; Vin=0.6V- Run#174, Waveform#10
7
6
OutA, OutB Amplitudes (V)
5
OutA
4
OutB
3
2
1
0
-1
-1.0E-06
1.0E-06
3.0E-06
5.0E-06
7.0E-06
9.0E-06
Time (sec)
Fig. 14: Dual SET on the DUT Output OutA and OutB; Vin=0.4V; Run#170, Waveform#6
Since this part is only SET sensitive outside of the hysteresis area, only SET-data will be discussed in the
remainder of this report.
14
2) SET Pulse Widths and Amplitudes
a) When OutA is initially High and OutB is initially Low with V input= (0.05V to 0.4V)
The SET pulse widths and amplitudes varied with the inverting-input-voltage (Vin). For Vin ranging
between 0.05V and 0.4V, setting the non-inverting output OutA initially high and the inverting output
OutB initially low, the data obtained under Xenon Ions (LET=58.78 MeV.cm2/mg) show that:
1. 90% of the negative SET pulse amplitudes on OutA initially high are smaller than +/-2V (Fig. 15)
2. 90% of the positive SET pulse amplitudes on OutB initially Low are smaller than +/-3V (Fig. 15)
3. Although the SET pulse widths on OutA can go upto 18 us (Fig. 16), only the negative SETs,
which are smaller than 200ns (Fig. 17), may cause errors.
4. 99% of the negative SET-PWs on OutA are smaller than 100ns. Those are the only SETs that
may induce errors on the comparator non-inverting output (Fig. 17).
5. 99% of the positive SET-PWs on OutB are smaller than 200ns. Those are the only SETs that may
induce errors on the comparator inverting-output (Fig. 17), if OutB is used.
Fig. 18 shows the overall distribution of SET pulse amplitudes vs. SET pulse widths. Based on the given
data (Fig. 15, and Fig17), this comparator can be used as is if SET-PWs of 100ns can be tolerated at the
comparator output OutA and of 200ns at the output OutB.
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
Fig. 15: % Cumulative Distribution vs. SET Positive and Negative Amplitudes at both comparator outputs (noninverting (OutA) and inverting (OutB)). V supply=+/-5V; V input= (0.05V to 0.4V); OutA Initially High, OutB
Initially Low, Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 163-170)
15
% Cumulative Distribution
100%
10%
Q
1%
0%
1.0E-10
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
Fig. 16: % Cumulative Distribution vs. SET Pulse Widths at both comparator outputs (non-inverting (OutA) and
inverting (OutB)). V supply=+/-5V; V input= (0.05V to 0.4V); OutA Initially High, OutB Initially Low, Xenon
Ions; LET=58.78 MeV.cm2/mg (Runs 163-170)
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
1%
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
Fig. 17: % Cumulative Distribution vs. SET Positive and Negative Pulse Widths at both comparator outputs (noninverting (OutA) and inverting (OutB)). V supply=+/-5V; V input= (0.05V to 0.4V); OutA Initially High, OutB
Initially Low, Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 163-170)
16
SET Pulse Amplitude Relative to Nominal Output (V)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
8
6
4
2
0
-2
-4
-6
-8
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
Fig. 18: Distributions of Negative and Positive SET Amplitudes vs. Positive and Negative SET Pulse Widths at both
comparator outputs (non-inverting (OutA) and inverting (OutB)). V supply=+/-5V; V input= (0.05V to 0.4V); OutA
Initially High, OutB initially Low, Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 163-170). Only negative SETs on
OutA (Q) and positive SETs on OutB (/Q) may cause errors; they are smaller than 300ns.
17
b) When OutA is initially Low and OutB is initially High, with V input=(0.7 to 1V)
The SET pulse widths and amplitudes varied with the inverting-input-voltage (Vin). For Vin ranging
between 0.7V and 1V, setting the non-inverting output OutA initially low and the inverting output OutB
initially high, the data obtained under Xenon Ions (LET=58.78 MeV.cm2/mg) show that:
1. 90% of the positive SET pulse amplitudes on OutA initially low are smaller than +/-3V (Fig. 19)
2. 90% of the negative SET pulse amplitudes on OutB initially high are smaller than +/-2V (Fig. 19)
3. Although the SET pulse widths on OutB can go upto 18 us (Fig. 20), only the positive SETs on
this output, which are smaller than 200ns (Fig. 21), may cause errors.
4. 99% of the positive SET-PWs on OutA are smaller than 100ns. Those are the only SETs that may
induce errors on the comparator non-inverting output (Fig. 21).
5. 99% of the negative SET-PWs on OutB are smaller than 40ns. Those are the only SETs that may
induce errors on the comparator inverting-output (Fig. 21), if OutB is used.
Fig. 22 shows the overall distribution of SET pulse amplitudes vs. SET pulse widths. Based on the given
data (Fig. 19, and Fig. 21), this comparator can be used as is if SET-PWs of 100ns can be tolerated at the
comparator output OutA and of 200ns at the output OutB.
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
Fig. 20: % Cumulative Distribution vs. SET Positive and Negative Amplitudes at both comparator outputs (noninverting (OutA) and inverting (OutB)). V supply=+/-5V; V input= (0.7 to 1V); OutA Initially Low, OutB initially
High, Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 176-182)
18
% Cumulative Distribution
100%
10%
1%
0%
1.0E-10
Q
1.0E-09
/Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
Fig. 21: % Cumulative Distribution vs. SET Pulse Widths at both comparator outputs (non-inverting (OutA) and
inverting (OutB)). V supply=+/-5V; V input= (0.7 to 1V); OutA Initially Low, OutB initially High, Xenon Ions;
LET=58.78 MeV.cm2/mg (Runs 176-182)
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
1%
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
Fig. 22: % Cumulative Distribution vs. SET Positive and Negative Pulse Widths at both comparator outputs (noninverting (OutA) and inverting (OutB)). V supply=+/-5V; V input= (0.7 to 1V); OutA Initially Low, OutB initially
High, Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 176-182)
19
Max. SET Pulse Amplitude Relative to Nominal Output (V)
6
4
2
0
-2
-4
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
-6
-8
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
Fig. 23: Distributions of Negative and Positive SET Amplitudes vs. Positive and Negative SET Pulse Widths at both
comparator outputs (non-inverting (OutA) and inverting (OutB)). V supply=+/-5V; V input= (0.7 to 1V); OutA
Initially Low, OutB initially High, Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 176-182). Only positive SETs on
OutA (Q) and negative SETs on OutB (/Q) may cause errors; they are smaller than 200ns.
20
3) SET Cross-Sections
Under heavy-ions irradiations, with various differential input bias conditions, the RH1016MW showed
small sensitivities to SETs. Figs. 24 to 26 summarize the SET cross-sections at various biases. The
measured SET sensitive cross-section is about 5x10-4cm2/circuit and represents about 2.5% of the total
die’s area (1.95mm2). When the comparator inverting input bias is close to the hysteresis boundary
voltages, the SET pulse-width (PW) is the widest, and the measured SET cross-sections are the highest.
The inverting input bias (at test point E6, Fig. 5) is proportional to the differential input bias as the noninverting input bias is fixed. Hence, the lower the comparator input differential bias is, the higher the SET
pulse amplitude and width as well as the cross-section are. Generally, the smaller is the comparator
differential input bias, or the closer we are to the hysteresis region, the higher are the part’s susceptibility
to trigger and the higher are the resulting SET cross-sections. At higher LET near the limiting crosssection, the dependence on differential input bias becomes less significant, as most SETs become wide.
Furthermore, the SET cross-section is at its highest at the hysteresis area and SETs in these regions may
induce SEUs, if the inverting input voltage is set between (0.45V-0.55V). It is important not to run the
comparator in the hysteresis area to avoid SEUs, as it is the case for all comparators. Also, to avoid high
SET cross-sections at LETs that are lower or equal than 30.86 MeV.cm2/mg, it is recommended to not
operate the inverting input bias from (0.45V-0.65V), as if the hysteresis area was widened from (0.45V0.55V) to (0.45V-0.65V) as clearly shown in Figs. 24 to 26. Outside of this hysteresis area and with these
low SET cross-sections (3x10-5cm2/circuit) at 30MeV.cm2/mg, this part can be used as is in most space
applications.
1.E-03
Xe 58.78
Xe 58.78
Ag 48.15
Kr 30.86
SET Cross-Section (MeV.cm2/mg)
Low Flux
High Flux
1.E-04
1.E-05
0.00
0.20
0.40
0.60
0.80
1.00
1.20
Vin (V)
Fig. 24: Measured SET Cross-Sections vs. Inverting Input Bias (at test point E6, Fig. 3) and LET
High Flux: 3.31E3-5.5E3 p/cm2/sec; Low Flux: 5.23E2 to 5.7E2 p/cm2/sec
21
SET Cross-Section (MeV.cm2/mg)
1.E-03
Vin
0.05V
0.2V
Output
High
0.4V
0.45V
0.5V
Hysteresis
Region
0.6V
1.E-04
0.65V
0.7V
0.75V
0.8V
Output
Low
0.85V
1V
1.E-05
0
10
20
30
40
50
60
70
LET (MeV.cm2/mg)
Fig. 25: Measured SET Cross-Sections vs. LET and Inverting Input Bias. This graph shows clearly the
SET cross-sections dependence on the inverting input bias. In this case, the inverting input bias (at test
point E6, Fig. 3) is proportional to the differential input bias as the non-inverting input bias is fixed.
Hence, the lower the comparator input differential bias is, the higher the SET cross-section is.
SET Cross-Section (MeV.cm2/mg)
1.E-03
Vin
0.05V
Output
High
0.2V
0.4V
0.7V
1.E-04
0.75V
0.8V
Output
Low
0.85V
1V
1.E-05
0
10
20
30
40
50
60
70
LET (MeV.cm2/mg)
Fig. 26: Simplified figure of Fig. 25, avoiding the hysteresis area
22
4) SEL Immunity With/Without Filtering (w/o capacitance at the Output Signal)
With 0.1uF at the comparator’s output and at high temperature (100°C) at the DUT case, the test results
(green circles in Fig. 27) showed immunity to SELs up to an LET of 91 MeV.cm2/mg.
SET Cross-Section (MeV.cm2/mg)
1.E-06
Vin = 0.5V
+/-5.5V
40
60
1.E-07
1.E-08
0
20
80
100
LET (MeV.cm2/mg)
Fig. 27: Measured SEL Cross-Sections vs. LET, showing the comparator immunity to SELs
Arrows pointing down are indication of no observed SETs up to that fluence at tested LET
23
Table 2: Raw Data for the Heavy-Ion Beam Runs
Run
#
DUT
Tb
(Vacuum)
PS
Vin
Vin
(E3)
Vout
(Q)
Vout
(/Q)
Ion
Eff.
Fluence
Average
Flux
Maximum
Flux
LET
Tilt Angle
Eff. LET
TID
(Run)
TID
(Cum.)
p/cm2
p/sec/cm2
p/sec/cm2
MeV.cm2/mg
degrees
MeV.cm2/mg
rads(Si)
rads(Si)
SET
SEU
SEL
SETXS
cm2/circuit
C
V
V
V
V
V
+/-5
0.55
0.05
3.7
0
Xe
4.81E+05
5.48E+03
5.84E+03
58.78
0
58.78
4.52E+02
4.52E+02
140
0
0
2.91E-04
163
1
Room
164
//
//
//
1.05
0.10
3.7
0
Xe
3.00E+05
4.05E+03
5.76E+03
58.78
0
58.78
2.82E+02
7.35E+02
104
0
0
3.47E-04
165
//
//
//
1.55
0.15
3.7
0
Xe
4.33E+05
3.41E+03
3.66E+03
58.78
0
58.78
4.07E+02
1.14E+03
129
0
0
2.98E-04
166
//
//
//
2.05
0.20
3.7
0
Xe
4.30E+05
3.36E+03
3.69E+03
58.78
0
58.78
4.04E+02
1.55E+03
136
0
0
3.16E-04
167
//
//
//
2.55
0.25
3.7
0
Xe
4.76E+05
3.44E+03
3.79E+03
58.78
0
58.78
4.48E+02
1.99E+03
124
0
0
2.61E-04
168
//
//
//
3.05
0.30
3.7
0
Xe
3.94E+05
3.44E+03
3.74E+03
58.78
0
58.78
3.71E+02
2.36E+03
118
0
0
2.99E-04
169
//
//
//
3.55
0.35
3.7
0
Xe
4.80E+05
3.46E+03
3.77E+03
58.78
0
58.78
4.51E+02
2.82E+03
157
0
0
3.27E-04
170
//
//
//
4.05
0.40
3.7
0
Xe
5.46E+05
3.45E+03
3.77E+03
58.78
0
58.78
5.14E+02
3.33E+03
186
0
0
3.41E-04
171
//
//
//
4.55
0.45
3.7
0
Xe
3.03E+05
3.31E+03
3.66E+03
58.78
0
58.78
2.85E+02
3.61E+03
118
0
0
3.89E-04
172
//
//
//
4.55
0.45
3.7
0
Xe
3.31E+05
3.35E+03
3.59E+03
58.78
0
58.78
3.11E+02
3.93E+03
127
0
0
3.84E-04
173
//
//
//
5.05
0.50
3.7
0
Xe
4.65E+05
3.41E+03
3.74E+03
58.78
0
58.78
4.37E+02
4.36E+03
193
y
0
4.15E-04
184
//
//
//
5.35
0.53
3.7
0
Xe
6.16E+05
3.38E+03
3.67E+03
58.78
0
58.78
5.79E+02
4.94E+03
122
y
0
1.98E-04
183
//
//
//
5.55
0.55
3.7
0
Xe
4.07E+05
3.55E+03
3.87E+03
58.78
0
58.78
3.83E+02
5.32E+03
125
y
0
3.07E-04
174
//
//
//
6.05
0.60
0
3.7
Xe
5.17E+05
3.61E+03
3.94E+03
58.78
0
58.78
4.86E+02
5.81E+03
208
0
0
4.02E-04
175
//
//
//
6.55
0.65
0
3.7
Xe
5.02E+05
3.60E+03
3.89E+03
58.78
0
58.78
4.72E+02
6.28E+03
107
0
0
2.13E-04
176
//
//
//
7.05
0.70
0
3.7
Xe
5.37E+05
3.58E+03
4.03E+03
58.78
0
58.78
5.05E+02
6.79E+03
118
0
0
2.20E-04
177
//
//
//
7.55
0.75
0
3.7
Xe
7.97E+05
4.37E+03
5.21E+03
58.78
0
58.78
7.50E+02
7.54E+03
112
0
0
1.41E-04
178
//
//
//
8.05
0.80
0
3.7
Xe
6.25E+05
4.69E+03
5.36E+03
58.78
0
58.78
5.88E+02
8.13E+03
109
0
0
1.74E-04
179
//
//
//
8.55
0.85
0
3.7
Xe
5.31E+05
4.28E+03
4.88E+03
58.78
0
58.78
4.99E+02
8.63E+03
168
0
0
3.16E-04
180
//
//
//
9.05
0.90
0
3.7
Xe
5.12E+05
4.04E+03
4.41E+03
58.78
0
58.78
4.82E+02
9.11E+03
107
0
0
2.09E-04
181
//
//
//
9.55
0.95
0
3.7
Xe
3.60E+05
4.14E+03
4.64E+03
58.78
0
58.78
3.39E+02
9.45E+03
115
0
0
3.19E-04
182
//
//
//
10.05
1.00
0
3.7
Xe
2.62E+05
4.20E+03
4.60E+03
58.78
0
58.78
2.46E+02
9.69E+03
108
0
0
4.12E-04
185
//
//
//
0.55
0.05
3.7
0
Kr
6.19E+06
1.47E+04
1.70E+04
30.86
0
30.86
3.06E+03
1.27E+04
144
0
0
2.33E-05
186
//
//
//
1.05
0.10
3.7
0
Kr
4.79E+06
1.63E+04
1.76E+04
30.86
0
30.86
2.37E+03
1.51E+04
135
0
0
2.82E-05
187
//
//
//
1.55
0.15
3.7
0
Kr
5.60E+06
1.67E+04
1.76E+04
30.86
0
30.86
2.77E+03
1.79E+04
147
0
0
2.63E-05
188
//
//
//
2.05
0.20
3.7
0
Kr
6.00E+06
1.67E+04
1.78E+04
30.86
0
30.86
2.96E+03
2.08E+04
137
0
0
2.28E-05
24
189
//
//
//
2.55
0.25
3.7
0
Kr
4.25E+06
1.66E+04
1.76E+04
30.86
0
30.86
2.10E+03
2.29E+04
107
0
0
2.52E-05
190
//
//
//
3.05
0.30
3.7
0
Kr
4.53E+06
1.62E+04
1.72E+04
30.86
0
30.86
2.24E+03
2.52E+04
113
0
0
2.49E-05
191
//
//
//
3.55
0.35
3.7
0
Kr
4.84E+06
1.65E+04
1.73E+04
30.86
0
30.86
2.39E+03
2.76E+04
150
0
0
3.10E-05
192
//
//
//
4.05
0.40
3.7
0
Kr
5.16E+06
1.68E+04
1.76E+04
30.86
0
30.86
2.55E+03
3.01E+04
116
0
0
2.25E-05
193
//
//
//
4.55
0.45
3.7
0
Kr
2.91E+06
1.66E+04
1.75E+04
30.86
0
30.86
1.44E+03
3.16E+04
210
0
0
7.22E-05
194
//
//
//
5.05
0.50
3.7
0
Kr
1.45E+06
5.61E+03
1.75E+04
30.86
0
30.86
7.16E+02
3.23E+04
109
y
0
7.52E-05
195
//
//
//
5.35
0.53
3.7
0
Kr
4.75E+05
3.17E+03
5.20E+03
30.86
0
30.86
2.35E+02
4.98E+04
103
y
0
2.17E-04
196
//
//
//
5.55
0.55
0
3.7
Kr
1.44E+06
3.80E+03
5.38E+03
30.86
0
30.86
7.11E+02
3.32E+04
144
y
0
1.00E-04
197
//
//
//
6.05
0.60
0
3.7
Kr
1.17E+06
4.96E+03
5.41E+03
30.86
0
30.86
5.78E+02
3.38E+04
105
0
0
8.97E-05
198
//
//
//
6.55
0.65
0
3.7
Kr
1.39E+06
4.91E+03
5.31E+03
30.86
0
30.86
6.86E+02
3.45E+04
110
0
0
7.91E-05
199
//
//
//
7.05
0.70
0
3.7
Kr
3.20E+06
8.36E+03
1.63E+04
30.86
0
30.86
1.58E+03
3.61E+04
112
0
0
3.50E-05
200
//
//
//
7.55
0.75
0
3.7
Kr
3.41E+06
8.57E+03
9.12E+03
30.86
0
30.86
1.68E+03
3.77E+04
102
0
0
2.99E-05
201
//
//
//
8.05
0.80
0
3.7
Kr
5.50E+06
1.33E+04
1.62E+04
30.86
0
30.86
2.72E+03
4.05E+04
147
0
0
2.67E-05
202
//
//
//
8.55
0.85
0
3.7
Kr
3.97E+06
1.50E+04
1.60E+04
30.86
0
30.86
1.96E+03
4.24E+04
102
0
0
2.57E-05
203
//
//
//
9.05
0.90
0
3.7
Kr
3.70E+06
1.50E+04
1.60E+04
30.86
0
30.86
1.83E+03
4.42E+04
108
0
0
2.92E-05
204
//
//
//
9.55
0.95
0
3.7
Kr
7.27E+06
1.51E+04
1.63E+04
30.86
0
30.86
3.59E+03
4.78E+04
182
0
0
2.50E-05
205
//
//
//
10.05
1.00
0
3.7
Kr
3.96E+06
1.54E+04
1.62E+04
30.86
0
30.86
1.96E+03
4.98E+04
107
0
0
2.70E-05
206
//
//
//
0.55
0.05
3.7
0
Ag
2.81E+05
2.06E+03
7.41E+03
48.15
0
48.15
2.16E+02
5.00E+04
100
0
0
3.56E-04
207
//
//
//
1.05
0.10
3.7
0
Ag
5.30E+05
1.36E+03
1.58E+03
48.15
0
48.15
4.08E+02
5.04E+04
191
0
0
3.60E-04
208
//
//
//
1.55
0.15
3.7
0
Ag
3.88E+05
2.10E+03
2.60E+03
48.15
0
48.15
2.99E+02
5.07E+04
125
0
0
3.22E-04
209
//
//
//
2.05
0.20
3.7
0
Ag
5.69E+05
2.38E+03
2.64E+03
48.15
0
48.15
4.38E+02
5.11E+04
229
0
0
4.02E-04
210
//
//
//
4.05
0.40
3.7
0
Ag
3.74E+05
1.56E+03
2.58E+03
48.15
0
48.15
2.88E+02
5.14E+04
151
0
0
4.04E-04
211
//
//
//
4.55
0.45
3.7
0
Ag
1.96E+05
5.87E+02
1.57E+03
48.15
0
48.15
1.51E+02
5.16E+04
103
0
0
5.26E-04
212
//
//
//
5.05
0.50
3.7
0
Ag
4.31E+05
5.48E+02
6.99E+02
48.15
0
48.15
3.32E+02
5.19E+04
213
y
0
4.94E-04
213
//
//
//
6.05
0.60
0
3.7
Ag
5.77E+05
1.03E+03
1.35E+03
48.15
0
48.15
4.45E+02
5.50E+04
114
0
0
1.98E-04
214
//
//
//
6.55
0.65
0
3.7
Ag
5.73E+05
1.24E+03
1.44E+03
48.15
0
48.15
4.41E+02
5.28E+04
111
0
0
1.94E-04
215
//
//
//
7.05
0.70
0
3.7
Ag
7.57E+05
1.92E+03
2.62E+03
48.15
0
48.15
5.83E+02
5.34E+04
100
0
0
1.32E-04
216
//
//
//
7.55
0.75
0
3.7
Ag
5.78E+05
2.47E+03
2.69E+03
48.15
0
48.15
4.45E+02
5.38E+04
66
0
0
1.14E-04
217
//
//
//
8.05
0.80
0
3.7
Ag
4.91E+05
2.54E+03
2.84E+03
48.15
0
48.15
3.78E+02
5.42E+04
74
0
0
1.51E-04
218
//
//
//
8.55
0.85
0
3.7
Ag
5.44E+05
2.57E+03
2.85E+03
48.15
0
48.15
4.19E+02
5.46E+04
67
0
0
1.23E-04
25
219
//
//
//
10.05
1.00
0
3.7
Ag
4.25E+05
2.58E+03
2.92E+03
48.15
0
48.15
3.27E+02
5.50E+04
53
0
0
1.25E-04
221
//
//
//
0.55
0.05
3.7
0
Xe
1.31E+05
5.23E+02
6.82E+02
58.78
0
58.78
1.23E+02
5.51E+04
50
0
0
3.82E-04
220
//
//
//
2.55
0.25
3.7
0
Xe
1.09E+05
5.61E+02
6.66E+02
58.78
0
58.78
1.03E+02
5.53E+04
54
0
0
4.95E-04
222
//
//
//
4.05
0.40
3.7
0
Xe
1.05E+05
5.59E+02
6.84E+02
58.78
0
58.78
9.88E+01
5.53E+04
53
0
0
5.05E-04
223
//
//
//
4.55
0.45
3.7
0
Xe
7.38E+04
5.64E+02
7.09E+02
58.78
0
58.78
6.94E+01
5.54E+04
46
0
0
6.23E-04
224
//
//
5.05
0.50
3.7
0
Xe
7.14E+04
5.70E+02
7.13E+02
58.78
0
58.78
6.72E+01
5.54E+04
40
y
0
5.60E-04
225
2
100
//
+/5.5
5.05
0.50
3.7
0
Xe
1.87E+03
6.06E+02
6.43E+02
58.78
0
58.78
1.76E+00
5.54E+04
226
//
//
//
5.05
0.50
3.7
0
Xe
2.99E+03
5.77E+02
6.59E+02
58.78
0
58.78
2.81E+00
5.54E+04
975
y
0
3.26E-01
227
//
//
//
5.05
0.50
3.7
0
Xe
1.01E+07
1.60E+05
1.65E+05
58.78
50
91.45
1.48E+04
7.02E+04
1369
y
0
1.36E-04
229
//
//
//
5.05
0.50
3.7
0
Xe
1.01E+07
1.60E+05
1.65E+05
58.78
50
91.45
1.48E+04
8.50E+04
1333
y
0
1.32E-04
invalid
*Tb is the temperature sensed by the transistor on the board (as shown in Fig. 5)
3ft BNC cable (120pF)
Energy Cocktail
10MeV/nucleon
26
References:
[1] RH1016M Product Webpage: http://www.linear.com/product/RH1016M
[2] LT1016 Datasheet: http://www.linear.com/product/LT1016
[3] LTSpice: http://www.linear.com/designtools/software/#LTspice
[4] RH1016M Spec.: http://cds.linear.com/docs/en/spec-notice/RH1016M__05-08-5222_SPEC_REV.0.pdf
[5] RH1016M Spec.: http://cds.linear.com/docs/en/spec-notice/RH1016M%20%20DIE%20CAN%20SAM%200508-5242%20DICE%20SPEC%20REV%20%20A.pdf
27
Appendix A.: SET Distributions in Pulse Widths and Amplitudes per
Bias Conditions vs. LET
Max. Output (OutA) SET Pulse Amplitude (V)
8
Vin
1.00
0.95
0.90
0.85
0.80
0.75
2
0.70
0.60
0
0.50
0.45
-2
0.40
0.35
0.30
0.25
0.2V
0.15V
0.1V
0.05V
6
Positive SET on Output (OutA) Low
4
Hysteresis Region
-4
-6
Negative SET on Output (OutA) High
-8
0
10
20
30
40
50
60
LET (MeV.cm2/mg)
Fig. A-1: Measured Max. SET Pulse Amplitudes at Output (OutA) vs LET and Voltage of the inverting
input (Vin). These types of SET may induce errors at the output of the comparator. They are however the
smallest in width among all other SETs and represent less than 1% of the total number of SETs.
28
Vin
Max. Output (OutA) SET Pulse Amplitude (V)
8
0.05V
0.1V
6
0.15V
0.2V
4
0.25
0.30
2
0.35
0.40
0.45
0.50
0.60
0.70
0.75
0.80
0.85
0.90
0.95
1.00
Positive SET on Output (OutA) High
0
Hysteresis
Region
-2
-4
-6
Negative SET on Output (OutA) Low
-8
0
10
20
30
40
50
60
LET (MeV.cm2/mg)
Fig. A-2: Measured Max. SET Pulse Amplitudes at Output (OutA) vs LET and Input Voltage of the
Inverting-Input (Vin). These types of SET won’t induce errors at the output of the comparator but the
designer needs to take in account their amplitudes in his design.
29
Vin
Max. Outpout (OutB) SET Pulse Amplitude (V)
8
0.05V
0.1V
6
0.15V
0.2V
4
0.25
0.30
2
0.35
0.40
0.45
0.50
0.60
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0
Positive SET on Output (OutB) Low
Hysteresis Region
-2
-4
Negative SET on Output (OutB) High
-6
-8
0
10
20
30
40
50
60
LET (MeV.cm2/mg)
Fig. A-3: Measured Max. SET Pulse Amplitudes at Output (OutB) vs LET and Input Voltage of the
Inverting-Input (Vin). These types of SET may induce errors at the output of the comparator, if the
designer is using OutB. They are however the smallest in width among all other SETs and represent less
than 1% of the total number of SETs.
30
Max. Output (OutB) SET Pulse Amplitude (V)
8
Vin
Postive SET when Output (OutB) High
1.00
0.95
0.90
0.85
0.80
0.75
2
0.70
0.60
0
0.50
0.45
-2
0.40
0.35
0.30
0.25
0.2V
0.15V
0.1V
0.05V
6
4
-4
Hysteresis Region
-6
Negative SET when Output (OutB) Low
-8
0
10
20
30
40
50
60
LET (MeV.cm2/mg)
Fig. A-4: Measured Max. SET Pulse Amplitudes at Output (OutB) vs LET and Input Voltage of the
Inverting-Input (Vin). These types of SET won’t induce errors at the output of the comparator but the
designer needs to take in account their amplitudes in his design, if using OutB.
31
Max. Output (OutA) Positive SET Pulse Width (s)
Vin
1.E-05
1.E-06
1.E-07
0.05V
0.1V
0.15V
0.2V
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.75
0.80
0.85
0.90
0.95
1.00
Output (OutA)
initially High
Only Those may
cause errors
Hysteresis
Region
Output (OutA)
Initially Low
1.E-08
0
10
20
30
40
50
60
LET (MeV.cm2/mg)
Fig. A-5: Measured Max. Positive SET Pulse Widths at Output (OutA) vs LET and Input Voltage of the
Inverting-Input (Vin). Only SETs when Output is Low will cause errors and they are smaller than 200ns
at LET=58.78MeV.cm2/mg. If such SET-PW can be accepted, then the part can be used as is.
32
Max. Output (OutA) Negative SET Pulse Width (s)
Vin
1.E-05
0.05V
0.1V
0.15V
0.2V
0.25
0.30
0.35
0.40
Output (OutA)
Initially High
SEUs
1.E-06
1.E-07
0.45
0.50
0.60
0.70
0.75
0.80
0.85
0.90
0.95
1.00
Hysteresis
Region
Only those may
cause errors
Output (OutA)
Initially Low
1.E-08
0
10
20
30
40
50
60
LET (MeV.cm2/mg)
Fig. A-6: Measured Max. Negative SET Pulse Amplitudes at Output (OutA) vs LET and Input Voltage of
the Inverting-Input (Vin). Only SETs when Output is High initially will cause errors and they are smaller
than 300ns at LET=58.78MeV.cm2/mg. If such SET-PW can be accepted, then the part can be used as
is.
33
Max. Output (OutB) Positive SET Pulse Width (s)
Vin
1.E-05
0.05V
0.1V
0.15V
0.2V
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.75
0.80
0.85
0.90
0.95
1.00
Output (OutB)
initially High
1.E-06
1.E-07
Hysteresis
Region
Output (OutB)
initially Low
1.E-08
0
10
20
30
40
50
60
LET (MeV.cm2/mg)
Fig. A-7: Measured Max. Negative SET Pulse Amplitudes at Output (OutA) vs LET and Input Voltage of
the Inverting-Input (Vin). Only SETs when OutputB is Low initially will cause errors. If OutB is not used
then these type of SETs are of no concern.
34
Max. Output (OutB) Negative SET Pulse Width (s)
Vin
1.E-05
1.E-06
0.05V
0.1V
0.15V
0.2V
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
Output (OutB)
High Initially
Hysteresis
Region
SEUs
0.75
0.80
0.85
0.90
0.95
1.00
Only Those may
cause errors
Output (OutB)
Low Initially
1.E-07
0
10
20
30
40
50
60
LET (MeV.cm2/mg)
Fig. A-8: Measured Max. Negative SET Pulse Amplitudes at Output (OutA) vs LET and Input Voltage of
the Inverting-Input (Vin). Only SETs when Output is High initially will cause errors. If OutB is not used
then these type of SETs are of no concern.
35
Appendix B: SET Distributions in Pulse Widths and Amplitudes per
Bias Conditions
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
V supply=+/-5V; V input= (0.05V to 0.4V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 163-170)
V supply=+/-5V; V input=(0.45 to 0.5V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 171-173)
V supply=+/-5V; V input=(0.6 to 0.65V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 174-175)
V supply=+/-5V; V input=(0.7 to 1V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 176-182)
V supply=+/-5V; V input=(0.05V to 0.4V); Krypton Ions; LET=30.86 MeV.cm2/mg (Runs 185-192)
V supply=+/-5V; V input=(0.45V to 0.55V); Krypton Ions; LET=30.86 MeV.cm2/mg (Runs 193-196)
V supply=+/-5V; V input=(0.6 to 0.65V); Krypton Ions; LET=30.86 MeV.cm2/mg (Runs 197-198)
V supply=+/-5V; V input=(0.7 to 1V); Krypton Ions; LET=48.15 MeV.cm2/mg (Runs 199-205)
V supply=+/-5V; V input=(0.05 to 0.4V); Silver Ions; LET=48.15 MeV.cm2/mg (Runs 206-210)
V supply=+/-5V; V input=(0.45 to 0.5V); Silver Ions; LET=48.15 MeV.cm2/mg (Runs 211-212)
V supply=+/-5V; V input=(0.6 to 0.65V); Silver Ions; LET=48.15 MeV.cm2/mg (Runs 213-214)
V supply=+/-5V; V input=(0.7 to 1V); Silver Ions; LET=48.15 MeV.cm2/mg (Runs 215-219)
V supply=+/-5V; V input=(0.05 to 0.4V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 220-222)
36
V supply=+/-5V; V input= (0.05V to 0.4V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 163-170)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
100%
% Cumulative Distribution
1.
10%
Q
1%
0%
1.0E-10
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
37
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
1%
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
8
6
4
2
0
-2
-4
-6
-8
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
38
V supply=+/-5V; V input=(0.45 to 0.5V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 171-173)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
100%
% Cumulative Distribution
2.
10%
Q
1%
0%
1.0E-10
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
39
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
1%
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
8
6
4
2
0
-2
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
40
V supply=+/-5V; V input=(0.6 to 0.65V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 174-175)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
100%
% Cumulative Distribution
3.
10%
1%
0%
1.0E-10
Q
1.0E-09
/Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
41
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
1%
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
Max. SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
6
4
2
0
-2
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
42
V supply=+/-5V; V input=(0.7 to 1V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 176-182)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
100%
% Cumulative Distribution
4.
10%
1%
0%
1.0E-10
Q
1.0E-09
/Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
43
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
1%
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
Max. SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
6
4
2
0
-2
-4
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
-6
-8
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
44
V supply=+/-5V; V input=(0.05V to 0.4V); Krypton Ions; LET=30.86 MeV.cm2/mg (Runs 185-192)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
100%
% Cumulative Distribution
5.
10%
Q
1%
0%
1.0E-10
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
45
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
1%
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
8
6
4
2
0
-2
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
46
V supply=+/-5V; V input=(0.45V to 0.55V); Krypton Ions; LET=30.86 MeV.cm2/mg (Runs 193-196)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
100%
% Cumulative Distribution
6.
10%
Q
1%
0%
1.0E-10
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
47
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
1%
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
8
6
4
2
0
-2
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
48
V supply=+/-5V; V input=(0.6 to 0.65V); Krypton Ions; LET=30.86 MeV.cm2/mg (Runs 197-198)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (\Q)
Max Neg. SET (\Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
100%
% Cumulative Distribution
7.
10%
1%
0%
1.0E-10
Q
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
49
% Cumulative Distribution
100%
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (\Q)
Max Neg. SET (\Q)
10%
1%
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
Max. SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
6
4
2
0
-2
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
50
V supply=+/-5V; V input=(0.7 to 1V); Krypton Ions; LET=48.15 MeV.cm2/mg (Runs 199-205)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (\Q)
Max Neg. SET (\Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
100%
% Cumulative Distribution
8.
10%
1%
0%
1.0E-10
Q
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
51
% Cumulative Distribution
100%
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (\Q)
Max Neg. SET (\Q)
10%
1%
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
Max. SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
6
4
2
0
-2
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
52
V supply=+/-5V; V input=(0.05 to 0.4V); Silver Ions; LET=48.15 MeV.cm2/mg (Runs 206-210)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
100%
% Cumulative Distribution
9.
10%
Q
1%
0%
1.0E-10
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
53
% Cumulative Distribution
100%
10%
1%
0%
1.0E-10
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
8
6
4
2
0
-2
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
54
10. V supply=+/-5V; V input=(0.45 to 0.5V); Silver Ions; LET=48.15 MeV.cm2/mg (Runs 211-212) 211
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
% Cumulative Distribution
100%
10%
Q
1%
0%
1.0E-10
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
55
% Cumulative Distribution
100%
10%
1%
0%
1.0E-10
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
8
6
4
2
0
-2
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
56
11. V supply=+/-5V; V input=(0.6 to 0.65V); Silver Ions; LET=48.15 MeV.cm2/mg (Runs 213-214)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
% Cumulative Distribution
100%
10%
1%
0%
1.0E-10
Q
1.0E-09
/Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
57
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
1%
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
Max. SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
6
4
2
0
-2
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
58
12. V supply=+/-5V; V input=(0.7 to 1V); Silver Ions; LET=48.15 MeV.cm2/mg (Runs 215-219)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
% Cumulative Distribution
100%
10%
1%
0%
1.0E-10
Q
1.0E-09
/Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
59
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
1%
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
Max. SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
6
4
2
0
-2
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
60
13. V supply=+/-5V; V input=(0.05 to 0.4V); Xenon Ions; LET=58.78 MeV.cm2/mg (Runs 220-222)
Max Pos. SET (Q)
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
% Cumulative Distribution
100%
10%
1%
0%
-10
-5
0
5
10
SET Amplitude Relative to Op-Amp Output (V)
% Cumulative Distribution
100%
10%
Q
1%
0%
1.0E-10
1.0E-09
\Q
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width (s)
61
% Cumulative Distribution
100%
10%
Max Pos. SET (Q)
1%
Max Neg. SET (Q)
Max Pos. SET (/Q)
Max Neg. SET (/Q)
0%
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Amplitude Relative to Nominal Output (V)
SET Pulse Width (s)
Max Pos. SET (Q)
8
Max Neg. SET (Q)
Max Pos. SET (/Q)
6
Max Neg. SET (/Q)
4
2
0
-2
-4
-6
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
SET Pulse Width(s)
62