INFINEON BCR10PN_07

BCR10PN
NPN/PNP Silicon Digital Transistor Array
• Switching circuit, inverter, interface circuit,
driver circuit
4
5
6
• Two (galvanic) internal isolated NPN/PNP
1
Transistors in one package
2
3
• Built in bias resistor NPN and PNP
(R1=10 kΩ, R2 =10 kΩ)
• Pb-free (RoHS compliant) package 1)
C1
B2
E2
6
5
4
• Qualified according AEC Q101
R2
R1
TR2
TR1
R1
R2
1
2
3
E1
B1
C2
Tape loading orientation
EHA07176
Marking on SOT-363 package
(for example W1s)
corresponds to pin 1 of device
Top View
654
W1s
Position in tape: pin 1
opposite of feed hole side
123
Direction of Unreeling
EHA07193
Type
BCR10PN
Marking
W1s
Pin Configuration
Package
1=E1 2=B1 3=C2 4=E2 5=B2 6=C1 SOT363
Maximum Ratings for NPN and PNP Types
Parameter
Symbol
Collector-emitter voltage
VCEO
50
Collector-base voltage
VCBO
50
Input forward voltage
Vi(fwd)
40
Input reverse voltage
Vi(rev)
10
DC collector current
IC
100
mA
Total power dissipation, TS = 115 °C
Ptot
250
mW
Junction temperature
Tj
150
°C
Storage temperature
Tstg
Value
Unit
V
-65 ... 150
Thermal Resistance
Junction - soldering point 2)
RthJS
≤ 140
K/W
1Pb-containing package may be available upon special request
2For calculation of R
please refer to Application Note Thermal Resistance
thJA
1
2007-07-24
BCR10PN
Electrical Characteristics at TA=25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
V(BR)CEO
50
-
-
V(BR)CBO
50
-
-
ICBO
-
-
100
nA
IEBO
-
-
0.75
mA
hFE
30
-
-
-
-
-
0.3
V
Vi(off)
0.8
-
1.5
Vi(on)
1
-
2.5
Input resistor
R1
7
10
13
kΩ
Resistor ratio
R1/R2
0.9
1
1.1
-
fT
-
130
-
MHz
Ccb
-
3
-
pF
DC Characteristics for NPN and PNP Types
Collector-emitter breakdown voltage
V
IC = 100 µA, IB = 0
Collector-base breakdown voltage
IC = 10 µA, IE = 0
Collector cutoff current
VCB = 40 V, IE = 0
Emitter cutoff current
VEB = 10 V, IC = 0
DC current gain 1)
IC = 5 mA, VCE = 5 V
VCEsat
Collector-emitter saturation voltage1)
IC = 10 mA, IB = 0.5 mA
Input off voltage
IC = 100 µA, V CE = 5 V
Input on Voltage
IC = 2 mA, VCE = 0.3 V
AC Characteristics for NPN and PNP Types
Transition frequency
IC = 10 mA, VCE = 5 V, f = 100 MHz
Collector-base capacitance
VCB = 10 V, f = 1 MHz
1) Pulse test: t < 300µs; D < 2%
2
2007-07-24
BCR10PN
NPN Type
DC Current Gain hFE = f (I C)
Collector-Emitter Saturation Voltage
VCE = 5V (common emitter configuration)
VCEsat = f (IC), hFE = 20
10 3
0.5
V
0.4
VCEsat
hFE
-40 °C
-25 °C
25 °C
85 °C
125 °C
10 2
0.35
0.3
0.25
-40 °C
-25 °C
25 °C
85 °C
125 °C
0.2
10
1
0.15
0.1
0.05
10 0 -4
10
10
-3
10
-2
A
10
0 -3
10
-1
10
-2
A
10
IC
IC
Input on Voltage Vi(on) = f (IC )
Input off voltage Vi(off) = f (IC )
VCE = 0.3V (common emitter configuration)
VCE = 5V (common emitter configuration)
10 1
10 2
-40 °C
-25 °C
25 °C
85 °C
125 °C
V
Vi(off)
Vi(on)
V
10 1
-1
-40 °C
-25 °C
25 °C
85 °C
125 °C
10 0
10 0
10 -1 -5
10
10
-4
10
-3
10
-2
A
10
10
-1
IC
-1
10
-5
10
-4
10
-3
10
-2
A
10
IC
3
2007-07-24
-1
BCR10PN
PNP Type
DC Current Gain hFE = f (I C)
Collector-Emitter Saturation Voltage
VCE = 5V (common emitter configuration)
VCEsat = f (IC), hFE = 20
10 3
1
V
0.8
VCEsat
hFE
-40 °C
-25 °C
25 °C
85 °C
125 °C
10 2
0.7
0.6
-40 °C
-25 °C
25 °C
85 °C
125 °C
0.5
0.4
10
1
0.3
0.2
0.1
10 0 -4
10
10
-3
10
-2
A
10
0 -3
10
-1
10
-2
A
10
IC
IC
Input on Voltage Vi(on) = f (IC )
Input off voltage Vi(off) = f (IC)
VCE = 0.3V (common emitter configuration)
VCE = 5V (common emitter configuration)
10 1
10 2
-40 °C
-25 °C
25 °C
85 °C
125 °C
V
-40 °C
-25 °C
25 °C
85 °C
125 °C
Vi(off)
Vi(on)
V
10 1
-1
10 0
10 0
10 -1 -5
10
10
-4
10
-3
10
-2
A
10
10
-1
IC
-1
10
-5
10
-4
10
-3
10
-2
A
10
IC
4
2007-07-24
-1
BCR10PN
Total power dissipation Ptot = f (TS)
300
mW
250
Ptot
225
200
175
150
125
100
75
50
25
0
0
15
30
45
60
90 105 120 °C
75
150
TS
Permissible Pulse Load RthJS = f (tp)
Permissible Pulse Load
Ptotmax / PtotDC = f (t p)
10 3
10 3
Ptotmax / PtotDC
K/W
RthJS
10 2
-
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 2
10 1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 0
10 -1 -6
10
10
-5
10
-4
10
-3
10
10 1
-2
s
10
10 0 -6
10
0
tp
10
-5
10
-4
10
-3
10
-2
s
10
tp
5
2007-07-24
0
Package SOT363
BCR10PN
Package Outline
2 ±0.2
0.9 ±0.1
+0.1
6x
0.2 -0.05
0.1
0.1 MAX.
M
0.1
Pin 1
marking
1
2
3
A
1.25 ±0.1
4
0.1 MIN.
5
2.1 ±0.1
6
0.15 +0.1
-0.05
0.65 0.65
0.2
M
A
Foot Print
1.6
0.9 0.7
0.3
0.65
0.65
Marking Layout (Example)
Small variations in positioning of
Date code, Type code and Manufacture are possible.
Manufacturer
2005, June
Date code (Year/Month)
Pin 1 marking
Laser marking
BCR108S
Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.
0.2
2.3
8
4
Pin 1
marking
1.1
2.15
6
2007-07-24
BCR10PN
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office ( www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.
7
2007-07-24