FUJITSU MB15U10

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-21339-2E
ASSP
Dual Serial Input
PLL Frequency Synthesizer
On-Chip 1.1 GHz Prescaler
MB15U10
■ DESCRIPTION
The Fujitsu MB15U10 is a dual serial input phase-locked loop (PLL) frequency synthesizer and is ideally suitable for mobile
communications such as cellular phones.
The MB15U10 has two PLL frequency synthesizer circuits on a single chip: one for transmission and the other for reception (PLL1
and PLL2).
It can operate from a +2.6V to 5.5V supply. Fujitsu’s advanced technology achieves an Icc of 7 mA (typical) as well as 10 µA
(max.) at power saving mode.
■ FEATURES
•
•
•
•
•
•
•
•
•
Two PLLs’ for transmission/reception
Low current consumption : ICC = 7 mA typ. at 3 V
Power saving function
: IPS = 10 µA max.
Divide ratio setting with serial data input :
Binary 12-bit reference counter:6 to 4,095
Binary 17-bit main counter: 1,024 to 131,071
*Main counters can be programmed individually each other.
On-chip constant current source charge pumps
Adjustable charge pump output current with an external resistor
Lock detection function
Phase matching circuit helps fast intermittent operation
Plastic 20-pin SSOP (shrink small outline) package
■ PACKAGE
20-pin, Plastic SSOP
(FPT-20P-M03)
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions
be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.
1
MB15U10
■ PIN ASSIGNMENT
(Top View)
P1/fp1
1
20
ISET
P2/fp2
2
19
P0/LD
Do1
3
18
VP
VDD1
4
17
Do2
PS
5
16
AGND
fin1
6
15
fin2
DGND
7
14
VDD2
OSCin
8
13
LE
P3/fr2
9
12
Data
OSCout
10
11
Clock
(FPT-20P-M03)
2
MB15U10
■ PIN DESCRIPTION
Pin No.
Pin name
Descriptions
1
P1/fp1
Data output / fp1 monitoring output (Open drain output)
2
P2/fp2
Data output / fp2 monitoring output (Open drain output)
3
Do1
Charge pump output (PLL1)
4
VDD1
Power supply for digital blocks (PLL1)
5
PS
Power saving mode control (input ”L” : power saving mode)
6
fin1
RF input (PLL1)
7
DGND
Ground for digital blocks
8
OSCin
Crystal oscillator or TCXO input
9
P3/fr2
Data output / fr2 monitoring output (Open drain output)
10
OSCout
11
Clock
Clock input
12
Data
Data input
13
LE
14
VDD2
Power supply for digital blocks (PLL2)
15
fin2
RF input (PLL2)
16
AGND
17
Do2
Charge pump output (PLL2)
18
VP
Power supply for charge pump
19
P0/LD
20
ISET
Crystal oscillator output (CMOS output)
Load enable of serial input data (input ”H” : Data is shifted into a latch.)
Ground for the charge pumps
Data output / lock detector output (Open drain output)
Output is selected by ”OLA” and ”OLB” bits in a serial data
Charge pump output current adjustment (A resistor is connected.)
3
MB15U10
■ BLOCK DIAGRAM
VDD1
4
18
Power saving circuit
Charge
pump
Phase
comparator
17-bit latch (comparisonal division)
3
VP
Do1
PS1
ISET
fin1
fp1
Main counter
(binary 17-bit)
6
CR1
LD1
PS 5
PLL1
OSCin 8
fr1
Crystal
oscillator
OSCout
Reference counter
fr2
+1/+2
10
TS
SR
Selector
P0
LD2
OLA, B
14-bit latch (referencial division)
fr2
9
Selector
fp1
Power saving circuit
19 P0/LD
17-bit latch (comparisonal division)
P3/fr2
1 P1/fp1
2 P2/fp2
fp2
PS2
Main counter
(binary 17-bit)
fin2 15
PLL2
Phase
comparator
fp2
CR2
OLA, B
10-bit latch
CR1, 2
Latch selector
Data 12
Shift register (21-bit)
Clock 11
4
17 Do2
P0
P1, 2, 3
LE 13
Charge
pump
14
7
16
VDD2
DGND
AGND
20 ISET
MB15U10
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Rating
Unit
VDD1, 2
–0.3 to +6.0
V
VP
VDD to 6.0
V
Output voltage
VO
–0.3 to VDD +0.3
V
Output current
IO
±10
mA
Open drain withstand voltage
VOOP
–0.5 to 7.0
V
Storage temperature
Tstg
–55 to +125
°C
Power supply voltage
Remark
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation
should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Value
Unit
Min
Typ
Max
VDD1, VDD2
2.6
–
5.5
V
VP
VDD
–
6.0
V
Input voltage
VI
GND
–
VDD
V
Operating temperature
Ta
–30
–
+85
°C
Power supply voltage
Remark
Notes: To protect against damage by electrostatic discharge, note the following handling precautions:
– Store and transport devices in conductive containers.
– Use properly grounded workstations, tools, and equipment.
– Turn off power before inserting or removing this device into or from a socket.
– Protect leads with conductive sheet, when transporting a board mounted device.
5
MB15U10
■ ELECTRICAL CHARACTERISTICS
Ta = 25°C
Parameter
Symbol
Power supply current
(IDD1 + IDD2)
Stand by current
IDD
VDD1, 2
IPS
Value
Condition
Typ
Max
–
7.0
9.0
mA
*1
–
11.0
13.5
mA
*2
–
–
10
µA
fin1, 2
fin*
90
–
1100
MHz
OSCin
fOSC
3
12.8
35
MHz
fin1, 2
Vfin
–13
–
+1
dBm
50Ω, Vcc = 2.6 to 3.5V
fin1, 2
Vfin
–7
–
+1
dBm
50Ω, Vcc = 3.5 to 5.5V
OSCin
VOSC
0.5
–
–
Vp-p
Data,
Clock,
LE, PS
VIH
VDD × 0.7
–
–
V
VIL
–
–
VDD × 0.3
V
IIH
–
–
1.0
µA
Low-level input current
Data,
Clock,
LE, PS
IIL
–1.0
–
–
µA
Input current
OSCin
IOSC
–100
–
100
µA
Low-level output voltage
P0 to P3
VOL
–
–
0.4
V
Open drain output
Set output voltage
ISET
VSET
–
1.2
–
V
RSET = 5kΩ to 60kΩ
High-impedance
cut off current
DO, P0 to
P3
IOFF
–
–
1.1
µA
IDOH1*4
1.4
1.9
2.4
mA
IDOL1*4
1.4
1.9
2.4
mA
IDOH0
0.7
0.96
1.2
mA
IDOL0
0.7
0.96
1.2
mA
RSET = 7kΩ connected.
CR1, 2 bits = ”0”
VDD = 3.0V, VP = 5.0V
IOL
1.0
–
–
mA
Open drain
Operating frequency
Input sensitivity
High-level input voltage
Low-level input voltage
High-level input current
DO1, 2
Output current
DO1, 2
P0 to P3
3
Note: *1 ; fIN = 1.1 GHz, OSCIN = 12.8 MHz, VDD = 3.0 V. In locked state.
*2 ; fIN = 1.1 GHz, OSCIN = 12.8 MHz, VDD = 5.0 V. In locked state.
*3 ; AC coupling with a 1000 pF capacitor connected.
*4 ; The symbol “–” (minus) means direction of current flow.
6
Unit
Min
RSET = 7kΩ connected.
CR1, 2 bits = ”1”
VDD = 3.0V, VP = 5.0V
MB15U10
■ FUNCTIONAL DESCRIPTIONS
Serial Data Input
Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference divider, programmable divider (PLL1) and programmable divider (PLL2) separately by means of address setting.
Binary serial data is entered via the Data pin.
One bit of data is shifted into the internal shift register on the rising edge of the clock. When the load enable pin is high, stored
data is latched.
a) Serial data input format
Direction of data input
(MSB)
(LSB)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
X
X
X
P
0
O
L
A
O
L
B
C
R
1
C
R
2
X
X
P
S
1
P
S
2
P
3
P
2
P
1
X
X
0
0
0
1
M
A
16
M
A
15
M
A
14
M
A
13
M
A
12
M
A
11
M
A
10
M
A
9
M
A
8
M
A
7
M
A
6
M
A
5
M
A
4
M
A
3
M
A
2
M
A
1
M
A
0
0
1
0
0
0
0
0
T
S
S
R
R
11
R
10
R
9
R
8
R
7
R
6
R
5
R
4
R
3
R
2
R
1
R
0
0
1
0
1
M
B
16
M
B
15
M
B
14
M
B
13
M
B
12
M
B
11
M
B
10
M
B
9
M
B
8
M
B
7
M
B
6
M
B
5
M
B
4
M
B
3
M
B
2
M
B
1
M
B
0
0
1
1
0
0
0
0
0
Auxiliary bit for test (no need at ordinary use)
Data setting
MA0 to 16
MB0 to 16
R0 to 11
SR
P0 to 3
OLA, B
CR1, 2
PS1, 2
TS
X
0
:
:
:
:
:
:
:
:
:
:
:
Divide ratio setting bits of the main counter (PLL1)
Divide ratio setting bits of the main counter (PLL2)
Divide ratio setting bits of the reference counter
Divide ratio select bit of reference frequency (PLL1 and PLL2)
Setting bits of P0 to P3 output pins
Select bits of P0/LD pin output
Select bits of charge pump output current
Power saving mode control bits
Test bits (Set ”0” at ordinary use.)
Dummy bits (Set ”0” or ”1”.)
Set ”0”
Address
[ See Table 1 ]
[ See Table 2 ]
[ See Table 3 ]
[ See Table 4 ]
[ See Table 5 ]
[ See Table 6 ]
[ See Table 7 ]
[ See Table 8 ]
[ See Table 9 ]
Note: Start data input with MSB first.
7
MB15U10
b) Data setting description
• Table 1 : MA0 to MA16 : Divide ratio of the binary 17-bit main counter (PLL1)
Divide Ratio
(MA)
M
A
16
M
A
15
M
A
14
M
A
13
M
A
12
M
A
11
M
A
10
M
A
9
M
A
8
M
A
7
M
A
6
M
A
5
M
A
4
M
A
3
M
A
2
M
A
1
M
A
0
1024
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1025
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Note: • Divide ratios less than 1,024 are prohibited. (Divide ratio = 1,024 to 131,071)
• Table 2 : MB0 to MB16 : Divide ratio of the binary 17-bit main counter (PLL2)
Divide Ratio
(MB)
M
B
16
M
B
15
M
B
14
M
B
13
M
B
12
M
B
11
M
B
10
M
B
9
M
B
8
M
B
7
M
B
6
M
B
5
M
B
4
M
B
3
M
B
2
M
B
1
M
B
0
1024
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1025
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Note: • Divide ratios less than 1,024 are prohibited. (Divide ratio = 1,024 to 131,071)
• Table 3 : R0 to R11 : Divide ratio of the binary 12-bit reference counter
Divide Ratio
(R)
R
11
R
10
R
9
R
8
R
7
R
6
R
5
R
4
R
3
R
2
R
1
R
0
6
0
0
0
0
0
0
0
0
0
1
1
0
7
0
0
0
0
0
0
0
0
0
1
1
1
•
•
•
•
•
•
•
•
•
•
•
•
•
Note: • Divide ratios less than 6 are prohibited. (Divide ratio = 6 to 4,095)
• Table 4 : Divide ratio select bit of reference frequency (PLL1 and PLL2)
SR
Divide ratio of reference
frequency (PLL1)
Divide ratio of reference
frequency (PLL2)
0
R
R
1
R
2R
Note: R = Programmed value with R0 to R11 bits
8
MB15U10
• Table 5 : P0 to P3 ; P0 to P3 outputs control
PX bit
PX output (19, 1, 2, 9 pins)
0
ON (”L”)
1
OFF (”Z”)
Notes: X = 0 to 3
• Table 6 : OLA, OLB ; 19-pin output selection
OLA
OLB
19-pin output
0
0
P0 signal
0
1
Lock detect signal (PLL2)
1
0
Lock detect signal (PLL1)
1
1
Lock detect signal (PLL1 and PLL2)
• Table 7 : CR1, CR2 ; Charge pump output current selection
CR1, 2
Charge pump output current
0
IDO
1
2IDO
Notes: PLL1 and PL2 can be controlled individually.
• Table 8 : PS ; Power saving control
PS1, 2
Operating mode
0
Power saving mode
1
Operation
Notes: PLL1 and PL2 can be controlled individually.
• Table 9 : TS ; Test bit (Set to "0" at ordinary use.)
TS
1-pin
2-pin
9-pin
0
Output P1 signal
Output P2 signal
Output P3 signal
1
Outputs fp1
Outputs fp2
Outputs fp3
Notes: Reference frequency and comparison frequency can be monitored via P1 to P3 pins.
9
MB15U10
Serial Data Input Timing
• t1 (≥ 20 ns),
t2 (≥ 20 ns),
Data
t3 (≥ 50 ns),
t4 (≥ 50 ns),
t5 (≥ 20 ns),
t6 (≥ 1000 ns)
LSB
MSB
Clock
LE
t1
t2
t5
t3
t4
Note: One bit of data is shifted into the shift register on the rising edge of the clock.
10
t6
MB15U10
■ TEST CIRCUIT (for Measuring fin Input Sensitivity)
VDD2
7kΩ
0.1µF
Controller
1000pF
S.G
50Ω
50Ω
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
12
11
9
10
X’tal
S.G
VDD1
1000pF
Oscilloscope
0.1µF
Oscilloscope
2kΩ 2kΩ
VDD
0.1µF
11
MB15U10
■ TYPICAL CHARACTERISTICS
Do Output Current
Conditions : Ta = +25°C
VDD = 3 V
Vp = 5 V
ISETR = 5 k, 7 k, 15 k, 60 k
7
k
Ω
CR = “L”
5
k
Ω
60 60 15
k k k
Ω Ω Ω
5.0
5.0
4.0
4.0
3.0
3.0
VOL (V)
VOH (V)
60 60 15 7 5 15
k k k k k k
Ω Ω Ω Ω Ω Ω
CR = “H”
2.0
1.0
7 5 15
k k k
Ω ΩΩ
7
k
Ω
5
k
Ω
2.0
1.0
0
0
0
–1.0
–2.0
–3.0
–4.0
0
1.0
2.0
IOH (mA)
3.0
4.0
IOL (mA)
fin Input Sensitivity
[Ta = +25°C]
+10
×
×
×
Vfin (dBm)
0
SPEC
–10
×
×
×
–20
×
–30
×
0
×
×
×
×
×
×
×
×
×
× :VDD = 2.6 V
• :VDD = 3.0 V
:VDD = 3.6 V
×
×
500
1000
fin (MHz)
1500
2000
[Ta = +25°C]
+10
Vfin (dBm)
0
SPEC
–10
–20
:VDD = 4.5 V
:VDD = 5.0 V
:VDD = 5.5 V
–30
–40
0
500
1000
fin (MHz)
1500
2000
(Continued)
12
MB15U10
(Continued)
OSCin Input Sensitivity
[Ta = +25°C]
+10
SPEC
VOSC(dBm)
0
–10
–20
× :VDD = 2.6 V
• :VDD = 3.0 V
:VDD = 3.6 V
–30
:VDD = 4.5 V
:VDD = 5.0 V
:VDD = 5.5 V
–40
0
50
100
fOSC (MHz)
150
200
13
MB15U10
■ APPLICATION EXAMPLE
Output
LPF
VCO
VDD2
Controller
VP
0.1µF
1000pF
0.1µF
R1
Lock Det
ISET
20
P0/LD
19
VP
18
Do2
17
16
VDD2
fin2
AGND
15
LE
Data
Clock
14
13
12
11
7
8
9
10
MB15U10
1
P1/fp1
2
3
P2/fp2
4
Do1
VDD1
5
VDD1
6
PS
DGNG
fin1
OSCIN
P3/fr2
OSCOUT
X’tal
1000pF
0.1µF
C1
C2
Controller
Output
LPF
R1
C1, C2
Clock, Data, LE
PS
14
VCO
: Values(5 to 60 kΩ) are used to determine the output current for charge pump.
: Determined by the crystal oscillator
: Insert pull down/pull up resistors to prevent oscillation when the terminals are left open.
: When not in use, insert a pull up resistor with respect to the power supply.
MB15U10
■ REFERENCE INFORMATION
Typical plots measured with
the test circuit are shown
below.
Each plots shows lock up time,
phase noise, and reference
leakage.
• fVCO
• KV
• fr
• fOSC
• LPF
Test Circuit
S.G.
OSCin
LPF
Do
= 836.490 MHz
= 12 MHz/V
= 30 kHz
= 15.36 MHz
9.1 kΩ
fin
5.1 kΩ
0.033 µF
Spectrum
Analyzer
∆ Mkr
VCO
PLL Lock Up Time = 11.0 ms
PLL Lock Up Time = 10.6 ms
(824.01 MHz → 848.97 MHz, within ±800 Hz)
(848.97 MHz → 824.01 MHz, within ±800 Hz)
x:
y:
10.99990891 ms
24.961502 MHz
A evts N/A
∆ Mkr
x:
y:
30.00150
MHz
30.00150
MHz
500.0
Hz/div
500.0
Hz/div
29.99900
MHz
29.99900
MHz
100.2131 µs
∆ Mkr
0.01 µF
0.33 µF
x:
y:
10.99990891 ms
24.961502 MHz
100.1353 µs
59.9002131 ms
A evts N/A
∆ Mkr
x:
y:
50.00000
MHz
60.00000
MHz
10.00000
MHz/div
10.00000
MHz/div
0
Hz
10.59999719 ms
–24.960989 MHz
10.59999719 ms
–24.960989 MHz
A evts N/A
59.9003853 ms
A evts N/A
10.00000
MHz
100.2131 µs
59.9002131 ms
100.1353 µs
59.9003853 ms
(Continued)
15
MB15U10
(Continued)
PLL Phase Noise (TX mode)
PLL Reference Leakage (TX mode)
@±1 kHz offset at 836.49 MHz = 75 dBc/Hz
REF 0.0 dBm
ATT 10 dB
@±30 kHz offset at 836.49 MHz = 82 dBc
REF 0.0 dBm
MKR
10 dB/
10 dB/
RBW
100 Hz
RBW
1kHz
VBW
100 Hz
VBW
1kHz
SWP 3 s
SPAN 5.00 kHz
CENTER 836.49000 MHz
SWP 800 ms
ATT 10 dB
MKR
SPAN 150 kHz
CENTER 836.490 MHz
fin Input Impedance
1:
20.93 Ω
–130.75 Ω
500 MHz
2: 11.281 Ω
–71.824 Ω
800 MHz
3: 11.871 Ω
–51.166 Ω
1 GHz
4: 11.627 Ω
–42.119 Ω
3.4352 pF
1.1 GHz
4
1
3
2
OSCin Input Impedance
1: 1.5699 kΩ
–2.6509 kΩ
10 MHz
2: 889.63 Ω
–2.0951 kΩ
15 MHz
4
12
3
16
3: 537.31 Ω
–1.6434 kΩ
20 MHz
4: 342.19 Ω
–1.3733 kΩ
4.6357 pF
25 MHz
MB15U10
■ ORDERING INFORMATION
Part number
Package
MB15U10PFV
20pin, Plastic SSOP
(FPT-20P-M03)
Remarks
17
MB15U10
■ PACKAGE DIMENSION
*: These dimensions do not include resin protrusion.
20 pin, Plastic SSOP
(FPT-20P-M03)
+0.20
* 6.50±0.10(.256±.004)
1.25 –0.10
+.008
.049 –.004
(Mounting height)
0.10(.004)
INDEX
*4.40±0.10 6.40±0.20
(.173±.004) (.252±.008)
0.65±0.12
(.0256±.0047)
5.85(.230)REF
C
18
1994 FUJITSU LIMITED F20012S-2C-4
+0.10
0.22 –0.05
+.004
.009 –.002
"A"
5.40(.213)
NOM
+0.05
0.15 –0.02
+.002
.006 –.001
Details of "A" part
0.10±0.10(.004±.004)
(STAND OFF)
0
10°
0.50±0.20
(.020±.008)
Dimensions in mm (inches).
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document presented
as examples of semiconductor device applications, and are not
intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the
use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and measurement
equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have inherently a certain rate of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required
for export of those products from Japan.
F9703
 FUJITSU LIMITED Printed in Japan
24