FUJITSU MB40168

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-28501-2E
ASSP
Single Chip 8-Bit A/D and 9-Bit
D/A Converter
MB40168/MB40178
■ DESCRIPTION
The Fujitsu MB40168 and MB40178 are high speed, low power single chip A/D and D/A converters designed
for video processing applications. The A/D converter has a resolution of 8 bits while the D/A converter has 9bit resolution. They are fabricated in Fujitsu’s advanced bipolar technology, and housed in a 48-pin plastic shrink
DIP or 44-pin plastic QFP package.
■ FEATURES
• Resolution
•
•
•
•
•
A/D: 8 bits
D/A: 9 bits
Conversion Rate
A/D: Max. 20 MSPS
D/A: Max. 40 MSPS
Linearity Error
A/D: Max. + 0.3%
D/A: Max. + 0.2%
On-chip reference voltage generator (resistor divided method) and clamp circuit
Analog Input Voltage
3 to 5 V without clamp circuit
0 to 3 V in 1.95 VP-P clamp circuit
Analog Output Voltage
3 to 5 V
(Continued)
■ PACKAGES
48 pin, Plastic SH-DIP
(DIP-48P-M01)
44 pin, Plastic QFP
(FPT-44P-M11)
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that
normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.
MB40168/MB40178
(Continued)
• Digital Input/Output Interface
• Power Supply Voltage
• Power Dissipation
• Package Options
TTL Levels
+ 5.0 V single power supply
Typ. 350 mW
48-pin Plastic Shrink DIP/
44-pin Plastic QFP Package
■ PIN ASSIGNMENTS
• MB40168
(TOP VIEW)
D.GND
1
48
A.GND
DACLK
2
47
V CCD
(LSB) D D9
3
46
V CCA
D D8
4
45
A.OUT
D D7
5
44
COMP
D D6
6
43
V RIN
COMP
A.OUT
VCCA
V CCD
A.GND
D.GND
D.GND
DACLK
D D9 (LSB)
D D8
D D7
(TOP VIEW)
3
31
V RB
D D3
9
40
NC
D D3
4
30
D.GND
D D2
10
39
D.GND
D D2
5
29
A.GND
(MSB) D D1
11
38
A.GND
(MSB) D D1
6
28
V CCD
NC
12
37
V CCD
(LSB) D A8
7
27
V CCA
NC
13
36
V CCD
D A7
8
26
V RM
NC
14
35
V CCA
D A6
9
25
V INA
(LSB) D A8
15
34
V CCA
D A5
10
24
V CLMP
D A7
16
33
V RM
D A4
11
23
12 13 14 15 16 17 18 19 20 21 22
V OUTC
D A6
17
32
V INA
D A5
18
31
V CLMP
D A4
19
30
V OUTC
D A3
20
29
V INC
D A2
21
28
V RT
(MSB) D A1
22
27
V CCA
ADCLK
23
26
V CCD
D.GND
24
25
A.GND
(FPT-44P-M11)
V INC
D D4
V RT
V RB
V CCA
41
V CCD
8
A.GND
D D4
A.GND
V REF
D.GND
32
ADCLK
2
(MSB) D A1
D D5
D A3
1
D A2
D D6
44 43 42 41 40 39 38 37 36 35 34
33
V RIN
D D5
7
42
V REF
(DIP-48P-M01)
2
MB40168/MB40178
• MB40178
(TOP VIEW)
D.GND
1
48
A.GND
DACLK
2
47
V CCD
(MSB) D D1
3
46
V CCA
D D2
4
45
A.OUT
D D3
5
44
COMP
D D4
6
43
V RIN
COMP
A.OUT
VCCA
V CCD
A.GND
D.GND
D.GND
DACLK
D D1 (MSB)
D D2
D D3
(TOP VIEW)
3
31
V RB
D D7
9
40
NC
D D7
4
30
D.GND
D D8
10
39
D.GND
D D8
5
29
A.GND
(LSB) D D9
11
38
A.GND
(LSB) D D9
6
28
V CCD
NC
12
37
V CCD
(LSB) D A8
7
27
V CCA
NC
13
36
V CCD
D A7
8
26
V RM
NC
14
35
V CCA
D A6
9
25
V INA
(LSB) D A8
15
34
V CCA
D A5
10
24
V CLMP
D A7
16
33
V RM
D A4
11
23
12 13 14 15 16 17 18 19 20 21 22
V OUTC
D A6
17
32
V INA
D A5
18
31
V CLMP
D A4
19
30
V OUTC
D A3
20
29
V INC
D A2
21
28
V RT
(MSB) D A1
22
27
V CCA
ADCLK
23
26
V CCD
D.GND
24
25
A.GND
(FPT-44P-M11)
V INC
D D6
V RT
V RB
V CCA
41
V CCD
8
A.GND
D D6
A.GND
V REF
D.GND
32
ADCLK
2
(MSB) D A1
D D5
D A3
1
D A2
D D4
44 43 42 41 40 39 38 37 36 35 34
33
V RIN
D D5
7
42
V REF
(DIP-48P-M01)
3
MB40168/MB40178
■ PIN DESCRIPTION
Symbol
Pin No.
I/O
Name & Function
QFP-44
SH-DIP-48
VCCD
19, 28, 37
26, 36, 37, 47
—
Digital Power Supply pins (+ 5 V).
VCCA
20, 27, 36
27, 34, 35, 46
—
Analog Power Supply pins (+ 5 V).
DGND
16, 30,
39, 40
1, 24, 39
—
Digital Ground (0 V). These pins should be connected to the
analog ground on the application system.
AGND
17, 18,
29, 38
25, 38, 48
—
Analog Ground (0 V). These pins should be connected to the
analog ground on the application system.
DA8 - DA1
7 - 14
15 - 22
O
ADC Digital Output pins. TTL level.
ADCLK
15
23
I
ADC Clock Input pin. TTL level.
VRT
21
28
I
ADC Reference Voltage Input pin. (5 V Input)
VINC
22
29
I
Sync Tip Clamp Circuit Analog Input pin. (0 - 3 V, 1.95 VP-P).
When a clamp circuit is not used, this pin is connected to
ground.
VOUTC
23
30
O
Clamp Circuit Analog Output pin. It is used by adding a
capacitor (1 µF or more) between VCLMP and VOVTC pins.
When a clamp circuit is not used, this pin is left open.
VCLMP
24
31
O
Clamp Voltage Output pin (3.05V Output). When a clamp
circuit is not used, this pin is left open.
VINA
25
32
I
ADC Analog Signal Input pin. (3 - 5 V)
VRM
26
33
—
VRB
31
41
I
ADC Reference Voltage Input pin. (3 V)
VREF
32
42
O
Reference Voltage Output pin. (Resistor Divider, 3 V)
By connecting this pin to VRB pin, 3V Voltages are generated.
When a reference voltage is not used, this pin is left open.
VRIN
33
43
I
DAC Reference Voltage Input pin (3 V)
COMP
34
44
—
Phase Compensation Capacitor pin. (Capacitor greater than
0.1 µF should be connected between this pin and Analog
Ground.)
AOUT
35
45
O
Analog Signal Output pin
DACLK
41
2
I
DAC Clock Input pin. TTL level.
3 - 11*2
I
DAC Digital Data Input pins. TTL level.
DD9 - DD1
1 - 6 *1
42 - 44
ADC Middle Reference Voltage Monitor pin. (Mid of VRT - VRB
is set to this pin). Normally this pin is left open.
*1: MB40168 (MSB: 6 pin, LSB: 42 pin), MB40178 (MSB: 42 pin, LSB: 6 pin)
*2: MB40168 (MSB: 11 pin, LSB: 3 pin), MB40178 (MSB: 3 pin, LSB: 11 pin)
4
MB40168/MB40178
■ BLOCKDIAGRAM
VCCD
VCCA
VINA
ADCLK
VRT
R1
1
DA1 (MSB)
R
2
DA2
R
DA3
127
Latch
&
Buffer
255 to 8
Encoder
R/2
VRM
DA4
DA5
R/2
128
DA6
DA7
R
254
DA8 (LSB)
R
255
R2
VRB
VINC
VOUTC
≈ 0.6VCCA + 50mV
Reference
voltage
generator
Clamp
VCLMP
0.6VCCA
VREF
COMP
VRIN
Reference
resistor
DACLK
Amp
DD9 (LSB)
9
DD1 (MSB)
Input
buffer
9
Master
Slave
register
9
DGND
Buffer
9
Current
switch
9
R-2R Ladder
resistor
network
AOUT
AGND
5
MB40168/MB40178
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Rating
Unit
Power supply voltage
VCCA, VCCD
–0.5 to 7.0
V
Analog input voltage
VINA
–0.5 to VCC + 0.5
V
VRT, VRB, VRIN
–0.5 to VCC + 0.5
V
Clamp circuit input voltage
VINC
–0.5 to VCC + 0.5
V
Digital input voltage
VIND
–0.5 to 7.0
V
Storage temperature
TSTG
–55 to +125
°C
Reference voltage
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional
operation should be restricted to the conditions as detailed in the operational sections of this data sheet.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
6
MB40168/MB40178
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Value
Unit
Min.
Typ.
Max.
VCCA, VCCD
4.75
5.00
5.25
V
Clamp circuit input voltage *2
VINC
0
—
3
V
Analog input voltage
VINA
VRB
—
VRT
V
Top
VRT
VCCA – 0.1
VCCA
VCCA + 0.1
V
Bottom
VRB
2.75
3.0
3.25
V
VCCA - VRIN
0.7
2.0
2.2
V
VRIN
2.65
3.0
4.3
V
Digital input high voltage
VIHD
2.0
—
—
V
Digital input low voltage
VILD
—
—
0.8
V
Digital output high current
IOH
–400
—
—
µA
Digital output low current
IOL
—
—
1.6
mA
A/D
fCLKAD
—
—
20
MHz
D/A
fCLKDA
—
—
40
MHz
Minimum high clock pulse
width
A/D
tWHAD
22.5
—
—
ns
D/A
tWHDA
10.5
—
—
ns
Minimum Low clock pulse
width
A/D
tWLAD
22.5
—
—
ns
D/A
tWLAD
10.5
—
—
ns
Set up time
tSU
10
—
—
ns
Hold time
tH
4
—
—
ns
Clamp capacitance
CCLMP
1
—
—
µF
Phase compensation capacitance
CCOMP
0.1
—
—
µF
Ta
–20
—
+70
Power supply voltage *1
ADC reference voltage *3
DAC reference voltage
Clock frequency
Ambient operating temperature
o
C
*1: VCCA and VCCD must be used in the same voltage level.
*2: VINC must have an amplitude of VRT - VCLMP.
*3: VRT - VRB must have 2.0V±0.1V.
7
MB40168/MB40178
■ ELECTRICAL CHARACTERISTICS
1. DC Characteristics
• Analog Block
(VCCA = VCCD = 4.75 V to 5.25 V, Ta = –20 oC to +70 oC)
Parameter
8
Symbol
Condition
ADC resolution
—
DAC resolution
—
Value
Unit
Min.
Typ.
Max.
—
—
8
—
bits
—
—
9
—
bits
—
± 0.15
± 0.3
%
—
± 0.1
± 0.2
%
0.3
1.3
—
MΩ
ADC linearity error
LEAD
DAC linearity error
LEDA
DC accuracy
VCCA = VCCD =
5.0 V
Analog input equivalent
impedance
RINA
RINA =
Analog input capacitance
CINA
fINA = 1 MHz
—
40
—
pF
Analog input high current
IIHA
VINA = VRT
—
—
45
µA
Analog input low current
IILA
VINA = VRB
—
—
40
µA
Reference output voltage
VREF
0.6VCCA –
0.1
0.6VCCA
0.6VCCA+
0.1
V
Clamp voltage
VCLMP
—
—
VREF + 50
mV
—
V
ADC reference current
IRB
—
–8.5
–5.5
–3.0
mA
DAC reference current
IRIN
VRIN = 3.000 V
—
—
10
µA
Clamp circuit input
current
IINC
VINC = 0 V
–600
–200
—
µA
VCCA–20mV
VCCA
—
V
2.934
3.004
3.072
V
192
240
288
Ω
—
70
125
mA
Full scale output voltage
VOFS
Zero scale output voltage
VOZS
Output impedance
RO
Supply current
ICC
VRT –VRB
IIHA – IILA
VREF, VRB, VRIN
shorted
together
—
VCCA = 5.00 V
VCCD = 5.00 V
VRIN = 3.000 V
Ta = +25 oC
—
MB40168/MB40178
• Digital Block
(VCCA = VCCD = 4.75 V to 5.25 V, Ta = –20 oC to +70 oC)
Parameter
Symbol
Value
Condition
Min.
Typ.
Max.
Unit
Digital output high
voltage
VOHD
IOH = –400 µA
2.7
—
—
V
Digital output low voltage
VOLD
IOL = 1.6 mA
—
—
0.4
V
Digital input high voltage
VIHD
—
2.0
—
—
V
Digital input low voltage
VILD
—
—
—
0.8
V
Digital input high current
IIHD
VIHD = 2.7 V
—
—
20
µA
Digital input low curent
IILD
VILD = 0.4 V
–100
—
—
µA
2. AC CHARACTERISTICS
(VCCA = VCCD = 4.75 V to 5.25 V, Ta = –20 oC to +70 oC)
Parameter
Symbol
Condition
A/D
fSAD
D/A
Value
Unit
Min.
Typ.
Max.
—
20
—
—
MSPS
fSDA
—
40
—
—
MSPS
Digital output delay time
tpd AD
—
8
15
30
ns
Analog output delay time
tpd DA
—
10
—
ns
—
5
—
ns
—
5
—
ns
—
16
—
ns
Maximum conversion rate
Analog output rise time
tr
Analog output fall time
tf
Settling time
tset LH,
tset HL
CL = 15 pF
Terminating
resistor
AOUT = 240 Ω
9
MB40168/MB40178
■ LINEARITY ERROR OF A/D CONVERSION
• Ideal Characteristic
Step
Output Code
255
11111111
254
11111110
253
•
•
•
129
11111101
•
•
•
10000001
128
10000000
127
•
•
•
2
01111111
•
•
•
00000010
1
00000001
0
00000000
VZT ≅ 3.006V
VFT ≅ 4.996V
VINA
Note: The values for VZT and VFT are typical values under conditions that VCCA = VCCD = VRT = 5.000V and VRB = 3.000V.
• Actual Characteristic
Step
Output Code
255
11111111
254
11111110
253
•
•
•
129
11111101
•
•
•
10000001
128
10000000
127
•
•
•
2
01111111
•
•
•
00000010
1
00000001
0
00000000
LE253
LE129
LE128
LE127
LE2
LE1
VZT
10
VINA
VFT
MB40168/MB40178
■ OUTPUT VOLTAGE CHARACTERISTIC OF D/A CONVERTER BLOCK
Input
Output
DD1 ~ DD9
A.OUT
511
(VCCA)
VOFS
5.000V
5.000V
0
VOZS
(VRIN)
3.004V
3.000V
1 LSB = 4mV
■ CALCULATION OF DAC OUTPUT VOLTAGE WHEN THE IDEAL CONVERSION IS PERFORMED
AOUTN = VCCA –
511-N
512 x (VCCA – VRIN)
(N: Digital code (0 ~ 511)
VOFS = VCCA
511
VOZS = VCCA – 512 x (VCCA – VRIN)
11
MB40168/MB40178
■ EQUIVALENT CIRCUITS OF ADC BLOCK
• Analog Input Equivalent Circuit
VCCA
VCCA
VINA
VINA
VD
CINA
RINA
IBIAS
A.GND
A.GND
A.GND
VRB
x 255 circuits
CINA: Junction Capacitance of non-linear emitter follower
RINA: Linear resistance model of input current by the comparator switching
VINA < VRB: ∞
CLK = “H”: ∞
VRB: This is the voltage on VRB Pin, not VRB Pin itself.
IBIAS: Constant input bias current
VD: Base-Collector junction diode of emitter follower transistor
• Clamp Input Equivalent Circuit
VCCA
2.0mA
0.6 x VCC + 50mV +VBE
850kΩ
VINC
A.GND
VCLMP
VOUTC
- +
CCLMP
12
MB40168/MB40178
• Digital Input Equivalent Circuit
VCCD
6.5kΩ
50kΩ
3.2kΩ
50kΩ
3.2kΩ
Clock Input
ADCLK
VTH = 1.4V
D.GND
• Digital Output Load Circuit
To pin tested
Test point
CL = 15pF
D.GND
NOTE:
CL includes the floating capacitance of probe and jig.
13
MB40168/MB40178
■ EQUIVALENT CIRCUITS OF DAC BLOCK
• Digital Input Equivalent Circuit
VCCD
50kΩ
50kΩ
Digital Input
D01 - D09
DACLK
VTH = 1.4V
D.GND
• Analog Output Equivalent Circuit
VCCA
RO = 240Ω
A.OUT
IO
A.GND
• Reference Voltage Generator Equivalent Circuit
VCCA
≅ 20kΩ
Buffer
VREF
≅ 30kΩ
A.GND
14
IRB
MB40168/MB40178
■ TYPICAL CONNECTION CIRCUITS
Example 1: Video Signal Input to VINC Pin
+5V
+5V
VCCA
Video Signal Input
VCCD
VINC
VOUTC
1 µF
MB40168/MB40178
+
VCLMP
VINA
AGND
DGND
Example 2: Video Signal Input to VCLMP and VINA Pins
+5V
+5V
VCCA
VCCD
VINC
+9V
VOUTC
MB40168/MB40178
External Circuit
VCLMP
2.2 kΩ
1 µF
+
-
VINA
Video Signal
Input
2SA933
AGND
DGND
AGND
15
MB40168/MB40178
■ CLAMP CIRCUIT OPERATION
Clamp Circuit
Clamp Voltage is set at 0.6 x VCC + 50 mV (typ.)
VCCA
VCCA
I ≈ 2 mA
Bias Circuit
VINC
AGND
≈ 3.05 V
VOUTC
CCLMP
+
VCLMP
VINA
A/D Converter
Signal Level at VINA pin
VCCA = 5.0 V
Signal Level at VINC pin
AGND
VCLMP ≈ 3.05 V
VREF ≈ 3.0 V
Note: When Clamp Circuit is not applied the signals should be connected as follows:
VINC:
Connect to GND.
VOUTC:
Leave open.
VCLMP:
Leave open.
16
MB40168/MB40178
■ TYPICAL CONNECTION CIRCUIT(Example)
System
Analog
Ground
DAC
Clock
Input
Digiral
Input
(DAC)
1
DGND
AGND 48
2
DACLK
VCCD 47
3
(LSB) DD9
VCCA 46
4
DD8
AOUT 45
5
DD7
COMP 44
6
DD6
VRIN 43
7
DD5
VREF 42
8
DD4
VRB 41
9
DD3
NC 40
10 DD2
DGND 39
11 (MSB) DD1
Digiral
Output
(DAC)
ADC
Clock
Input
Analog
O/P
(DAC)
0.1 µF
0.1 µF
MB40168
AGND 38
Open
12 NC
VCCD 37
Open
13 NC
VCCD 36
Open
14 NC
VCCA 35
15 (LSB) DA8
VCCA 34
16 DA7
0.1 µF
System
Analog
Power
Supply
2 µF
VRM 33
17 DA6
VINA 32
18 DA5
VCLMP 31
19 DA4
VOUTC 30
20 DA3
VINC 29
21 DA2
VRT 28
22 (MSB) DA1
VCCA 27
23 ADCLK
VCCD 26
Open
1 µF
Analog
Input
(ADC)
1 µF
24 DGND
AGND 25
17
MB40168/MB40178
■ NOTES ON PCB LAYOUT
Power Supply Lines
The device’s power supply lines (VCCA, VCCD, AGND and DGND) should be laid out as analog lines and should
be separated in so far as possible from other digital lines in order to reduce noise. Also the track widths of these
lines should be as wide as possible to reduce parasitic impedance.
Coupling Capacitors
The device’s power supply lines VCCA and VCCD and the reference voltage pins VRIN, VREF, VRB, and VRT should
be decoupled to analog ground by means of approx. 1 µF capacitors which should be placed as close as possible
to these pins.
Digital Output Load
The load at the digital outputs should be kept as low as possible to prevent noise in the power supply lines
caused by digital output switching. If, due to long wiring, the load becomes large then a buffer with small input
capacitance should be inserted to reduce load capacitance.
■ OTHER NOTES ON OPERATION
When using the D/A converter with its VRIN pin connected to the VREF pin, the A/D converter’s VRB pin must also
be connected to the VREF because otherwise the internal reference voltage generation circuitry cannot output 3 V.
When using the D/A converter with 8 bit resolution the DD9 (LSB) pin should be grounded.
18
MB40168/MB40178
■ PACKAGE DIMENSIONS
48 pin, Plastic SH-DIP
(DIP-48P-M01)
+0.20
43.69 –0.30
+.008
1.720 –.012
INDEX-1
13.80±0.25
(.543±.010)
INDEX-2
0.51(.020)MIN
5.25(.207)
MAX
0.25±0.05
(.010±.002)
3.00(.118)
MIN
+0.50
1.00 –0
+.020
.039 –0
1.778±0.18
(.070±.007)
1.778(.070)
MAX
C
1994 FUJITSU LIMITED D48002S-3C-3
0.45±0.10
(.018±.004)
15.24(.600)
TYP
15°MAX
40.894(1.610)REF
Dimensions in mm (inches).
(Continued)
19
MB40168/MB40178
44 pin, Plastic QFP
(FPT-44P-M11)
14.40±0.40 SQ
(.567±.016)
10.00±0.20 SQ
(.394±.008)
33
2.35(.093)MAX
0.05(.002)MIN
(STAND OFF)
23
Details of "A" part
34
22
0.15(.006)
8.00
(.315)
REF
INDEX
0.20(.008)
11.60±0.30
(.457±.012)
0.18(.007)MAX
0.53(.021)MAX
"A"
44
12
Details of "B" part
LEAD No.
1
0.80(.0315)TYP
11
0.30±0.10
(.012±.004)
0.16(.006)
M
0.15±0.05
(.006±.002)
0~10°
"B"
1.40±0.30
(.055±.012)
0.10(.004)
C
20
1994 FUJITSU LIMITED F44018S-1C-1
Dimensions in mm (inch).
MB40168/MB40178
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281 0770
Fax: (65) 281 0220
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document presented
as examples of semiconductor device applications, and are not
intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the
use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and measurement
equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have inherently a certain rate of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required
for export of those products from Japan.
F9703
 FUJITSU LIMITED
24
Printed in Japan