MICROCHIP PIC32MX4XXF128HT

PIC32MX3XX/4XX
Data Sheet
High-Performance, General Purpose and USB
32-bit Flash Microcontrollers
© 2010 Microchip Technology Inc.
DS61143G
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-60932-131-4
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS61143G-page 2
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
High-Performance, General Purpose and USB 32-bit
Flash Microcontrollers
High-Performance 32-bit RISC CPU:
• MIPS32® M4K® 32-bit core with 5-stage pipeline
• 80 MHz maximum frequency
• 1.56 DMIPS/MHz (Dhrystone 2.1) performance at
0 wait state Flash access
• Single-cycle multiply and high-performance divide
unit
• MIPS16e® mode for up to 40% smaller code size
• Two sets of 32 core register files (32-bit) to reduce
interrupt latency
• Prefetch Cache module to speed execution from
Flash
Microcontroller Features:
• Operating voltage range of 2.3V to 3.6V
• 32K to 512K Flash memory (plus an additional
12 KB of boot Flash)
• 8K to 32K SRAM memory
• Pin-compatible with most PIC24/dsPIC® DSC
devices
• Multiple power management modes
• Multiple interrupt vectors with individually
programmable priority
• Fail-Safe Clock Monitor Mode
• Configurable Watchdog Timer with on-chip
Low-Power RC Oscillator for reliable operation
Peripheral Features:
• Atomic SET, CLEAR and INVERT operation on
select peripheral registers
• Up to 4-channel hardware DMA with automatic
data size detection
• USB 2.0-compliant full-speed device and
On-The-Go (OTG) controller
• USB has a dedicated DMA channel
• 3 MHz to 25 MHz crystal oscillator
• Internal 8 MHz and 32 kHz oscillators
© 2010 Microchip Technology Inc.
• Separate PLLs for CPU and USB clocks
• Two I2C™ modules
• Two UART modules with:
- RS-232, RS-485 and LIN 1.2 support
- IrDA® with on-chip hardware encoder and
decoder
• Parallel Master and Slave Port (PMP/PSP) with
8-bit and 16-bit data and up to 16 address lines
• Hardware Real-Time Clock and Calendar (RTCC)
• Five 16-bit Timers/Counters (two 16-bit pairs
combine to create two 32-bit timers)
• Five capture inputs
• Five compare/PWM outputs
• Five external interrupt pins
• High-Speed I/O pins capable of toggling at up to
80 MHz
• High-current sink/source (18 mA/18 mA) on all I/O
pins
• Configurable open-drain output on digital I/O pins
Debug Features:
• Two programming and debugging Interfaces:
- 2-wire interface with unintrusive access and
real-time data exchange with application
- 4-wire MIPS® standard enhanced JTAG
interface
• Unintrusive hardware-based instruction trace
• IEEE Standard 1149.2-compatible (JTAG)
boundary scan
Analog Features:
• Up to 16-channel 10-bit Analog-to-Digital
Converter:
- 1000 ksps conversion rate
- Conversion available during Sleep, Idle
• Two Analog Comparators
• 5V tolerant input pins (digital pins only)
DS61143G-page 3
PIC32MX3XX/4XX
TABLE 1:
PIC32MX GENERAL PURPOSE – FEATURES
(1)
EUART/SPI/I2C™
10-bit A/D (ch)
Comparators
PMP/PSP
JTAG
8
5/5/5
0
Yes No
2/2/2
16
2
Yes
Yes
Trace
32 + 12(1)
VREG
40
Programmable DMA
Channels
PT, MR
Timers/Capture/Compare
Program Memory (KB)
64
Data Memory (KB)
MHz
PIC32MX320F032H
Packages(2)
Device
Pins
GENERAL PURPOSE
PIC32MX320F064H
64
PT, MR
80
64 + 12
16
5/5/5
0
Yes No
2/2/2
16
2
Yes
Yes
PIC32MX320F128H
64
PT, MR
80
128 + 12(1)
16
5/5/5
0
Yes No
2/2/2
16
2
Yes
Yes
PIC32MX340F128H
64
PT, MR
80
128 + 12(1)
32
5/5/5
4
Yes No
2/2/2
16
2
Yes
Yes
PIC32MX340F256H
64
PT, MR
80
256 + 12(1)
32
5/5/5
4
Yes No
2/2/2
16
2
Yes
Yes
80
512 + 12
(1)
32
5/5/5
4
Yes No
2/2/2
16
2
Yes
Yes
80
128 + 12(1)
16
5/5/5
0
Yes No
2/2/2
16
2
Yes
Yes
80
128 + 12(1)
32
5/5/5
4
Yes No
2/2/2
16
2
Yes
Yes
80
256 + 12(1)
32
5/5/5
4
Yes Yes
2/2/2
16
2
Yes
Yes
80
512 + 12(1)
32
5/5/5
4
Yes Yes
2/2/2
16
2
Yes
Yes
PIC32MX340F512H
PIC32MX320F128L
PIC32MX340F128L
PIC32MX360F256L
PIC32MX360F512L
64
PT, MR
100
PT
121
BG
100
PT
121
BG
100
PT
121
BG
100
PT
121
BG
Legend:
PT = TQFP
Note 1:
2:
This device features 12 KB Boot Flash memory.
See Legend for an explanation of the acronyms. See Section 30.0 “Packaging Information” for details.
DS61143G-page 4
MR = QFN
BG = XBGA
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 2:
PIC32MX USB – FEATURES
Timers/Capture/Compare
Programmable DMA
Channels
Dedicated USB DMA
Channels
VREG
Trace
EUART/SPI/I2C™
10-bit A/D (ch)
Comparators
PMP/PSP
JTAG
0
2
Yes
No
2/1/2
16
2
Yes
Yes
80
128 + 12
32
5/5/5
4
2
Yes
No
2/1/2
16
2
Yes
Yes
80
256 + 12(1)
32
5/5/5
4
2
Yes
No
2/1/2
16
2
Yes
Yes
80
512 +
12(1)
32
5/5/5
4
2
Yes
No
2/1/2
16
2
Yes
Yes
80
128 + 12(1)
32
5/5/5
4
2
Yes
No
2/2/2
16
2
Yes
Yes
80
256 + 12(1)
32
5/5/5
4
2
Yes Yes
2/2/2
16
2
Yes
Yes
80
512 + 12(1)
32
5/5/5
4
2
Yes Yes
2/2/2
16
2
Yes
Yes
64
PT, MR
40
32 + 12(1)
PIC32MX440F128H
64
PT, MR
PIC32MX440F256H
64
PT, MR
Device
PIC32MX420F032H
PIC32MX440F512H
PIC32MX440F128L
PIC32MX460F256L
PIC32MX460F512L
Pins
Program Memory (KB)
5/5/5
MHz
8
(1)
Packages(2)
Data Memory (KB)
USB
64
PT, MR
100
PT
121
BG
100
PT
121
BG
100
PT
121
BG
Legend:
PT = TQFP
MR = QFN
Note 1:
2:
This device features 12 KB Boot Flash memory.
See Legend for an explanation of the acronyms. See Section 30.0 “Packaging Information” for details.
© 2010 Microchip Technology Inc.
BG = XBGA
DS61143G-page 5
PIC32MX3XX/4XX
Pin Diagrams
= Pins are up to 5V tolerant
PMD4/RE4
PMD3/RE3
PMD2/RE2
PMD1/RE1
PMD0/RE0
RF1
RF0
ENVREG
VCAP/VDDCORE
CN16/RD7
CN15/RD6
PMRD/CN14/RD5
OC5/IC5/PMWR/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin QFN (General Purpose)
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
PMD5/RE5
PMD6/RE6
PMD7/RE7
SCK2/PMA5/CN8/RG6
SDI2/PMA4/CN9/RG7
SDO2/PMA3/CN10/RG8
MCLR
SS2/PMA2/CN11/RG9
VSS
VDD
AN5/C1IN+/CN7/RB5
AN4/C1IN-/CN6/RB4
AN3/C2IN+/CN5/RB3
AN2/C2IN-/SS1/CN4/RB2
PGEC1/AN1/VREF-/CVREF-/CN3/RB1
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
PIC32MX320F032H
PIC32MX320F064H
PIC32MX320F128H
PIC32MX340F128H
PIC32MX340F256H
PIC32MX340F512H
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
SOSCO/T1CK/CN0/RC14
SOSCI/CN1/RC13
OC1/RD0
IC4/PMCS1/PMA14/INT4/RD11
IC3/PMCS2/PMA15/INT3/RD10
U1CTS/IC2/INT2/RD9
RTCC/IC1/INT1/RD8
Vss
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
AVDD
AVSS
AN8/U2CTS/C1OUT/RB8
AN9/C2OUT/PMA7/RB9
TMS/AN10/CVREFOUT/PMA13/RB10
TDO/AN11/PMA12/RB11
VSS
VDD
TCK/AN12/PMA11/RB12
TDI/AN13/PMA10/RB13
AN14/U2RTS/PMALH/PMA1/RB14
AN15/OCFB/PMALL/PMA0/CN12/RB15
SDA2/U2RX/PMA9/CN17/RF4
SCL2/U2TX/PMA8/CN18/RF5
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Note:
The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to
VSS externally.
DS61143G-page 6
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
Pin Diagrams (Continued)
64-Pin TQFP (General Purpose)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PMD4/RE4
PMD3/RE3
PMD2/RE2
PMD1/RE1
PMD0/RE0
RF1
RF0
ENVREG
VCAP/VDDCORE
CN16/RD7
CN15/RD6
PMRD/CN14/RD5
OC5/IC5/PMWR/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
= Pins are up to 5V tolerant
PMD5/RE5
PMD6/RE6
PMD7/RE7
SCK2/PMA5/CN8/RG6
SDI2/PMA4/CN9/RG7
SDO2/PMA3/CN10/RG8
MCLR
SS2/PMA2/CN11/RG9
VSS
VDD
AN5/C1IN+/CN7/RB5
AN4/C1IN-/CN6/RB4
AN3/C2IN+/CN5/RB3
AN2/C2IN-/SS1/CN4/RB2
PIC32MX320F032H
PIC32MX320F064H
PIC32MX320F128H
PIC32MX340F128H
PIC32MX340F256H
PIC32MX340F512H
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
SOSCO/T1CK/CN0/RC14
SOSCI/CN1/RC13
OC1/RD0
IC4/PMCS1/PMA14/INT4/RD11
IC3/PMCS2/PMA15/INT3/RD10
U1CTS/IC2/INT2/RD9
RTCC/IC1/INT1/RD8
Vss
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
AVDD
AVSS
AN8/U2CTS/C1OUT/RB8
AN9/C2OUT/PMA7/RB9
TMS/AN10/CVREFOUT/PMA13/RB10
TDO/AN11/PMA12/RB11
VSS
VDD
TCK/AN12/PMA11/RB12
TDI/AN13/PMA10/RB13
AN14/U2RTS/PMALH/PMA1/RB14
AN15/OCFB/PMALL/PMA0/CN12/RB15
SDA2/U2RX/PMA9/CN17/RF4
SCL2/U2TX/PMA8/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PGEC1/AN1/VREF-/CVREF-/CN3/RB1
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
© 2010 Microchip Technology Inc.
DS61143G-page 7
PIC32MX3XX/4XX
Pin Diagrams (Continued)
100-Pin TQFP (General Purpose)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PMD4/RE4
PMD3/RE3
PMD2/RE2
TRD0/RG13
TRD1/RG12
TRD2/RG14
PMD1/RE1
PMD0/RE0
TRD3/RA7
TRCLK/RA6
PMD8/RG0
PMD9/RG1
PMD10/RF1
PMD11/RF0
ENVREG
VCAP/VDDCORE
PMD15/CN16/RD7
PMD14/CN15/RD6
PMRD/CN14/RD5
OC5/PMWR/CN13/RD4
PMD13/CN19/RD13
IC5/PMD12/RD12
OC4/RD3
OC3/RD2
OC2/RD1
= Pins are up to 5V tolerant
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
PIC32MX320F128L
PIC32MX340F128L
PIC32MX360F256L
PIC32MX360F512L
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VSS
SOSCO/T1CK/CN0/RC14
SOSCI/CN1/RC13
OC1/RD0
IC4/PMCS1/PMA14/RD11
IC3/PMCS2/PMA15/RD10
IC2/RD9
RTCC/IC1/RD8
INT4/RA15
INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
SCL1/RG2
SDA1/RG3
SCK1/INT0/RF6
SDI1/RF7
SDO1/RF8
U1RX/RF2
U1TX/RF3
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
VREF-/CVREF-/PMA7/RA9
VREF+/CVREF+/PMA6/RA10
AVDD
AVSS
AN8/C1OUT/RB8
AN9/C2OUT/RB9
AN10/CVREFOUT/PMA13/RB10
AN11/PMA12/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/PMA11/RB12
AN13/PMA10/RB13
AN14/PMALH/PMA1/RB14
AN15/OCFB/PMALL/PMA0/CN12/RB15
VSS
VDD
U1CTS/CN20/RD14
U1RTS/CN21/RD15
U2RX/PMA9/CN17/RF4
U2TX/PMA8/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
RG15
VDD
PMD5/RE5
PMD6/RE6
PMD7/RE7
T2CK/RC1
T3CK/RC2
T4CK/RC3
T5CK/RC4
SCK2/PMA5/CN8/RG6
SDI2/PMA4/CN9/RG7
SDO2/PMA3/CN10/RG8
MCLR
PMA2/SS2/CN11/RG9
VSS
VDD
TMS/RA0
INT1/RE8
INT2/RE9
AN5/C1IN+/CN7/RB5
AN4/C1IN-/CN6/RB4
AN3/C2IN+/CN5/RB3
AN2/C2IN-/SS1/CN4/RB2
PGEC1/AN1/CN3/RB1
PGED1/AN0/CN2/RB0
DS61143G-page 8
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
Pin Diagrams (Continued)
121-Pin XBGA(1)
= Pins are up to 5V tolerant
PIC32MX320F128L
PIC32MX340F128L
PIC32MX360F256L
PIC32MX360F512L
A
B
C
D
E
F
G
H
J
K
L
1
2
3
4
5
6
7
8
9
10
11
RE4
RE3
RG13
RE0
RG0
RF1
ENVREG
VSS
RD12
RD2
RD1
NC
RG15
RE2
RE1
RA7
RF0
VCAP/
VDDCORE
RD5
RD3
VSS
RC14
RE6
VDD
RG12
RG14
RA6
NC
RD7
RD4
VDD
RC13
RD11
RC1
RE7
RE5
VSS
VSS
NC
RD6
RD13
RD0
NC
RD10
RC4
RC3
RG6
RC2
VDD
RG1
VSS
RA15
RD8
RD9
RA14
MCLR
RG8
RG9
RG7
VSS
NC
NC
VDD
RC12
VSS
RC15
RE8
RE9
RA0
NC
VDD
VSS
VSS
NC
RA5
RA3
RA4
RB5
RB4
VSS
VDD
NC
VDD
NC
RF7
RF6
RG2
RA2
RB3
RB2
RB7
AVDD
RB11
RA1
RB12
NC
NC
RF8
RG3
RB1
RB0
RA10
RB8
NC
RF12
RB14
VDD
RD15
RF3
RF2
RB6
RA9
AVSS
RB9
RB10
RF13
RB13
RB15
RD14
RF4
RF5
Note 1: Refer to Table 3 for full pin names.
© 2010 Microchip Technology Inc.
DS61143G-page 9
PIC32MX3XX/4XX
TABLE 3:
PIN NAMES: PIC32MX320F128L, PIC32MX340F128L, AND PIC32MX360F128L, AND
PIC32MX360F512L DEVICES
Pin
Number
Full Pin Name
Pin
Number
Full Pin Name
A1
PMD4/RE4
E8
INT4/RA15
A2
PMD3/RE3
E9
RTCC/IC1/RD8
A3
TRD0/RG13
E10
IC2/RD9
A4
PMD0/RE0
E11
INT3/RA14
A5
PMD8/RG0
F1
MCLR
A6
PMD10/RF1
F2
SDO2/PMA3/CN10/RG8
A7
ENVREG
F3
SS2/PMA2/CN11/RG9
A8
VSS
F4
SDI2/PMA4/CN9/RG7
A9
IC5/PMD12/RD12
F5
VSS
A10
OC3/RD2
F6
No Connect (NC)
A11
OC2/RD1
F7
No Connect (NC)
B1
No Connect (NC)
F8
VDD
B2
RG15
F9
OSC1/CLKI/RC12
B3
PMD2/RE2
F10
VSS
B4
PMD1/RE1
F11
OSC2/CLKO/RC15
B5
TRD3/RA7
G1
INT1/RE8
B6
PMD11/RF0
G2
INT2/RE9
B7
VCAP/VDDCORE
G3
TMS/RA0
B8
PMRD/CN14/RD5
G4
No Connect (NC)
B9
OC4/RD3
G5
VDD
B10
VSS
G6
VSS
B11
SOSCO/T1CK/CN0/RC14
G7
VSS
C1
PMD6/RE6
G8
No Connect (NC)
C2
VDD
G9
TDO/RA5
C3
TRD1/RG12
G10
SDA2/RA3
C4
TRD2/RG14
G11
TDI/RA4
C5
TRCLK/RA6
H1
AN5/C1IN+/CN7/RB5
C6
No Connect (NC)
H2
AN4/C1IN-/CN6/RB4
C7
PMD15/CN16/RD7
H3
VSS
C8
OC5/PMWR/CN13/RD4
H4
VDD
C9
VDD
H5
No Connect (NC)
C10
SOSCI/CN1/RC13
H6
VDD
C11
IC4/PMCS1/PMA14/RD11
H7
No Connect (NC)
D1
T2CK/RC1
H8
SDI1/RF7
D2
PMD7/RE7
H9
SCK1/INT0/RF6
D3
PMD5/RE5
H10
SCL1/RG2
D4
VSS
H11
SCL2/RA2
D5
VSS
J1
AN3/C2IN+/CN5/RB3
D6
No Connect (NC)
J2
AN2/C2IN-/SS1/CN4/RB2
D7
PMD14/CN15/RD6
J3
PGED2/AN7/RB7
D8
PMD13/CN19/RD13
J4
AVDD
D9
OC1/RD0
J5
AN11/PMA12/RB11
D10
No Connect (NC)
J6
TCK/RA1
D11
IC3/PMCS2/PMA15/RD10
J7
AN12/PMA11/RB12
E1
T5CK/RC4
J8
No Connect (NC)
E2
T4CK/RC3
J9
No Connect (NC)
E3
SCK2/PMA5/CN8/RG6
J10
SDO1/RF8
E4
T3CK/RC2
J11
SDA1/RG3
E5
VDD
K1
PGEC1/AN1/CN3/RB1
E6
PMD9/RG1
K2
PGED1/AN0/CN2/RB0
DS61143G-page 10
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 3:
PIN NAMES: PIC32MX320F128L, PIC32MX340F128L, AND PIC32MX360F128L, AND
PIC32MX360F512L DEVICES (CONTINUED)
Pin
Number
Full Pin Name
Pin
Number
Full Pin Name
E7
VSS
K3
VREF+/CVREF+/PMA6/RA10
K4
AN8/C1OUT/RB8
L3
AVSS
K5
No Connect (NC)
L4
AN9/C2OUT/RB9
K6
U2CTS/RF12
L5
AN10/CVREFOUT/PMA13/RB10
K7
AN14/PMALH/PMA1/RB14
L6
U2RTS/RF13
K8
VDD
L7
AN13/PMA10/RB13
K9
U1RTS/CN21/RD15
L8
AN15/OCFB/PMALL/PMA0/CN12/RB15
K10
U1TX/RF3
L9
CN20/U1CTS/RD14
K11
U1RX/RF2
L10
U2RX/PMA9/CN17/RF4
L1
PGEC2/AN6/OCFA/RB6
L11
U2TX/PMA8/CN18/RF5
L2
VREF-/CVREF-/PMA7/RA9
© 2010 Microchip Technology Inc.
DS61143G-page 11
PIC32MX3XX/4XX
Pin Diagrams (Continued)
64-Pin QFN (USB)
PMD4/RE4
PMD3/RE3
PMD2/RE2
PMD1/RE1
PMD0/RE0
RF1
RF0
ENVREG
VCAP/VDDCORE
CN16/RD7
CN15/RD6
PMRD/CN14/RD5
OC5/IC5/PMWR/CN13/RD4
U1TX/OC4/RD3
U1RX/OC3/RD2
U1RTS/OC2/RD1
= Pins are up to 5V tolerant
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
PMD5/RE5
PMD6/RE6
PMD7/RE7
SCK2/PMA5/CN8/RG6
SDI2/PMA4/CN9/RG7
SDO2/PMA3/CN10/RG8
MCLR
SS2/PMA2/CN11/RG9
VSS
VDD
AN5/C1IN+/VBUSON/CN7/RB5
AN4/C1IN-/CN6/RB4
AN3/C2IN+/CN5/RB3
AN2/C2IN-/CN4/RB2
PGEC1/AN1/VREF-/CVREF-/CN3/RB1
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PIC32MX420F032H
PIC32MX440F128H
PIC32MX440F256H
PIC32MX440F512H
SOSCO/T1CK/CN0/RC14
SOSCI/CN1/RC13
OC1/INT0/RD0
IC4/PMCS1/PMA14/INT4/RD11
SCL1/IC3/PMCS2/PMA15/INT3/RD10
U1CTS/SDA1/IC2/INT2/RD9
RTCC/IC1/INT1/RD8
Vss
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
D+/RG2
D-/RG3
VUSB
VBUS
USBID/RF3
Note:
SCL2/U2TX/PMA8/CN18/RF5
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
AVDD
AVSS
AN8/U2CTS/C1OUT/RB8
AN9/C2OUT/PMA7/RB9
TMS/AN10/CVREFOUT/PMA13/RB10
TDO/AN11/PMA12//RB11
VSS
VDD
TCK/AN12/PMA11/RB12
TDI/AN13/PMA10/RB13
AN14/U2RTS/PMALH/PMA1/RB14
AN15/OCFB/PMALL/PMA0/CN12/RB15
SDA2/U2RX/PMA9/CN17/RF4
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to
VSS externally.
DS61143G-page 12
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
Pin Diagrams (Continued)
= Pins are up to 5V tolerant
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PMD4/RE4
PMD3/RE3
PMD2/RE2
PMD1/RE1
PMD0/RE0
RF1
RF0
ENVREG
VCAP/VDDCORE
CN16/RD7
CN15/RD6
PMRD/CN14/RD5
OC5/IC5/PMWR/CN13/RD4
U1TX/OC4/RD3
U1RX/OC3/RD2
U1RTS/OC2/RD1
64-Pin TQFP (USB)
PMD5/RE5
PMD6/RE6
PMD7/RE7
SCK2/PMA5/CN8/RG6
SDI2/PMA4/CN9/RG7
SDO2/PMA3/CN10/RG8
MCLR
SS2/PMA2/CN11/RG9
VSS
VDD
AN5/C1IN+/VBUSON/CN7/RB5
AN4/C1IN-/CN6/RB4
AN3/C2IN+/CN5/RB3
AN2/C2IN-/CN4/RB2
PGEC1/AN1/VREF-/CVREF-/CN3/RB1
PIC32MX420F032H
PIC32MX440F128H
PIC32MX440F256H
PIC32MX440F512H
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
SOSCO/T1CK/CN0/RC14
SOSCI/CN1/RC13
OC1/INT0/RD0
IC4/PMCS1/PMA14/INT4/RD11
SCL1/IC3/PMCS2/PMA15/INT3/RD10
U1CTS/SDA1/IC2/INT2/RD9
RTCC/IC1/INT1/RD8
Vss
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
D+/RG2
D-/RG3
VUSB
VBUS
USBID/RF3
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
AVDD
AVSS
AN8/U2CTS/C1OUT/RB8
AN9/C2OUT/PMA7/RB9
TMS/AN10/CVREFOUT/PMA13/RB10
TDO/AN11/PMA12//RB11
VSS
VDD
TCK/AN12/PMA11/RB12
TDI/AN13/PMA10/RB13
AN14/U2RTS/PMALH/PMA1/RB14
AN15/OCFB/PMALL/PMA0/CN12/RB15
SDA2/U2RX/PMA9/CN17/RF4
SCL2/U2TX/PMA8/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
© 2010 Microchip Technology Inc.
DS61143G-page 13
PIC32MX3XX/4XX
Pin Diagrams (Continued)
= Pins are up to 5V tolerant
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
PIC32MX440F128L
PIC32MX460F256L
PIC32MX460F512L
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VSS
SOSCO/T1CK/CN0/RC14
SOSCI/CN1/RC13
SDO1/OC1/INT0/RD0
IC4/PMCS1/PMA14/RD11
SCK1/IC3/PMCS2/PMA15/RD10
SS1/IC2/RD9
RTCC/IC1/RD8
SDA1/INT4/RA15
SCL1/INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
D+/RG2
D-/RG3
VUSB
VBUS
U1TX/RF8
U1RX/RF2
USBID/RF3
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
VREF-/CVREF-/PMA7/RA9
VREF+/CVREF+/PMA6/RA10
AVDD
AVSS
AN8/C1OUT/RB8
AN9/C2OUT/RB9
AN10/CVREFOUT/PMA13/RB10
AN11/PMA12/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/PMA11/RB12
AN13/PMA10/RB13
AN14/PMALH/PMA1/RB14
AN15/OCFB/PMALL/PMA0/CN12/RB15
VSS
VDD
U1CTS/CN20/RD14
U1RTS/CN21/RD15
U2RX/PMA9/CN17/RF4
U2TX/PMA8/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
RG15
VDD
PMD5/RE5
PMD6/RE6
PMD7/RE7
T2CK/RC1
T3CK/RC2
T4CK/RC3
T5CK/SDI1/RC4
SCK2/PMA5/CN8/RG6
SDI2/PMA4/CN9/RG7
SDO2/PMA3/CN10/RG8
MCLR
SS2/PMA2/CN11/RG9
VSS
VDD
TMS/RA0
INT1/RE8
INT2/RE9
AN5/C1IN+/VBUSON/CN7/RB5
AN4/C1IN-/CN6/RB4
AN3/C2IN+/CN5/RB3
AN2/C2IN-/CN4/RB2
PGEC1/AN1/CN3/RB1
PGED1/AN0/CN2/RB0
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PMD4/RE4
PMD3/RE3
PMD2/RE2
TRD0/RG13
TRD1/RG12
TRD2/RG14
PMD1/RE1
PMD0/RE0
TRD3/RA7
TRCLK/RA6
PMD8/RG0
PMD9/RG1
PMD10/RF1
PMD11/RF0
ENVREG
VCAP/VDDCORE
PMD15/CN16/RD7
PMD14/CN15/RD6
PMRD/CN14/RD5
OC5/PMWR/CN13/RD4
PMD13/CN19/RD13
IC5/PMD12/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP (USB)
DS61143G-page 14
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
Pin Diagrams (Continued)
121-Pin XBGA(1)
= Pins are up to 5V tolerant
PIC32MX440F128L
PIC32MX460F256L
PIC32MX460F512L
A
B
C
D
E
F
G
H
J
K
L
1
2
3
4
5
6
7
8
9
10
11
RE4
RE3
RG13
RE0
RG0
RF1
ENVREG
VSS
RD12
RD2
RD1
NC
RG15
RE2
RE1
RA7
RF0
VCAP/
VDDCORE
RD5
RD3
VSS
RC14
RE6
VDD
RG12
RG14
RA6
NC
RD7
RD4
VDD
RC13
RD11
RC1
RE7
RE5
VSS
VSS
NC
RD6
RD13
RD0
NC
RD10
RC4
RC3
RG6
RC2
VDD
RG1
VSS
RA15
RD8
RD9
RA14
MCLR
RG8
RG9
RG7
VSS
NC
NC
VDD
RC12
VSS
RC15
RE8
RE9
RA0
NC
VDD
VSS
VSS
NC
RA5
RA3
RA4
RB5
RB4
VSS
VDD
NC
VDD
NC
VBUS
VUSB
RG2
RA2
RB3
RB2
RB7
AVDD
RB11
RA1
RB12
NC
NC
RF8
RG3
RB1
RB0
RA10
RB8
NC
RF12
RB14
VDD
RD15
RF3
RF2
RB6
RA9
AVSS
RB9
RB10
RF13
RB13
RB15
RD14
RF4
RF5
Note 1: Refer to Table 4 for full pin names.
© 2010 Microchip Technology Inc.
DS61143G-page 15
PIC32MX3XX/4XX
TABLE 4:
PIN NAMES: PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L
DEVICES
Pin
Number
Full Pin Name
Pin
Number
Full Pin Name
A1
PMD4/RE4
E8
SDA1/INT4/RA15
A2
PMD3/RE3
E9
RTCC/IC1/RD8
A3
TRD0/RG13
E10
SS1/IC2/RD9
A4
PMD0/RE0
E11
SCL1/INT3/RA14
A5
PMD8/RG0
F1
MCLR
A6
PMD10/RF1
F2
SDO2/PMA3/CN10/RG8
A7
ENVREG
F3
SS2/PMA2/CN11/RG9
A8
VSS
F4
SDI2/PMA4/CN9/RG7
A9
IC5/PMD12/RD12
F5
VSS
A10
OC3/RD2
F6
No Connect (NC)
A11
OC2/RD1
F7
No Connect (NC)
B1
No Connect (NC)
F8
Vdd
B2
RG15
F9
OSC1/CLKI/RC12
B3
PMD2/RE2
F10
VSS
B4
PMD1/RE1
F11
OSC2/CLKO/RC15
B5
TRD3/RA7
G1
INT1/RE8
B6
PMD11/RF0
G2
INT2/RE9
B7
VCAP/VDDCORE
G3
TMS/RA0
B8
PMRD/CN14/RD5
G4
No Connect (NC)
B9
OC4/RD3
G5
VDD
B10
VSS
G6
VSS
B11
SOSCO/T1CK/CN0/RC14
G7
VSS
C1
PMD6/RE6
G8
No Connect (NC)
C2
VDD
G9
TDO/RA5
C3
TRD1/RG12
G10
SDA2/RA3
C4
TRD2/RG14
G11
TDI/RA4
AN5/C1IN+/VBUSON/CN7/RB5
C5
TRCLK/RA6
H1
C6
No Connect (NC)
H2
AN4/C1IN-/CN6/RB4
C7
PMD15/CN16/RD7
H3
VSS
C8
OC5/PMWR/CN13/RD4
H4
VDD
C9
VDD
H5
No Connect (NC)
C10
SOSCI/CN1/RC13
H6
VDD
C11
IC4/PMCS1/PMA14/RD11
H7
No Connect (NC)
D1
T2CK/RC1
H8
VBUS
D2
PMD7/RE7
H9
VUSB
D3
PMD5/RE5
H10
D+/RG2
D4
VSS
H11
SCL2/RA2
D5
VSS
J1
AN3/C2IN+/CN5/RB3
D6
No Connect (NC)
J2
AN2/C2IN-/CN4/RB2
D7
PMD14/CN15/RD6
J3
PGED2/AN7/RB7
D8
CN19/PMD13/RD13
J4
AVDD
D9
SDO1/OC1/INT0/RD0
J5
AN11/PMA12/RB11
D10
No Connect (NC)
J6
TCK/RA1
D11
SCK1/IC3/PMCS2/PMA15/RD10
J7
AN12/PMA11/RB12
E1
T5CK/SDI1/RC4
J8
No Connect (NC)
E2
T4CK/RC3
J9
No Connect (NC)
E3
SCK2/PMA5/CN8/RG6
J10
U1TX/RF8
E4
T3CK/RC2
J11
D-/RG3
E5
VDD
K1
PGEC1/AN1/CN3/RB1
E6
PMD9/RG1
K2
PGED1/AN0/CN2/RB0
DS61143G-page 16
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 4:
PIN NAMES: PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L
DEVICES (CONTINUED)
Pin
Number
Full Pin Name
Pin
Number
Full Pin Name
E7
VSS
K3
VREF+/CVREF+/PMA6/RA10
K4
AN8/C1OUT/RB8
L3
AVSS
K5
No Connect (NC)
L4
AN9/C2OUT/RB9
K6
U2CTS/RF12
L5
AN10/CVREFOUT/PMA13/RB10
K7
AN14/PMALH/PMA1/RB14
L6
U2RTS/RF13
K8
VDD
L7
AN13/PMA10/RB13
K9
U1RTS/CN21/RD15
L8
AN15/OCFB/PMALL/PMA0/CN12/RB15
K10
USBID/RF3
L9
U1CTS/CN20/RD14
K11
U1RX/RF2
L10
U2RX/PMA9/CN17/RF4
L1
PGEC2/AN6/OCFA/RB6
L11
U2TX/PMA8/CN18/RF5
L2
VREF-/CVREF-/PMA7/RA9
© 2010 Microchip Technology Inc.
DS61143G-page 17
PIC32MX3XX/4XX
Table of Contents
1.0 Device Overview ........................................................................................................................................................................ 21
2.0 Guidelines for Getting Started with 32-bit Microcontrollers ........................................................................................................ 31
3.0 PIC32MX MCU ........................................................................................................................................................................... 35
4.0 Memory Organization ................................................................................................................................................................. 41
5.0 Flash Program Memory .............................................................................................................................................................. 85
6.0 Resets ........................................................................................................................................................................................ 87
7.0 Interrupt Controller ..................................................................................................................................................................... 89
8.0 Oscillator Configuration .............................................................................................................................................................. 93
9.0 Prefetch Cache........................................................................................................................................................................... 95
10.0 Direct Memory Access (DMA) Controller .................................................................................................................................. 97
11.0 USB On-The-Go (OTG).............................................................................................................................................................. 99
12.0 I/O Ports ................................................................................................................................................................................... 101
13.0 Timer1 ...................................................................................................................................................................................... 103
14.0 Timers 2, 3, 4, 5 ...................................................................................................................................................................... 105
15.0 Input Capture............................................................................................................................................................................ 107
16.0 Output Compare....................................................................................................................................................................... 109
17.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 111
18.0 Inter-Integrated Circuit (I2C™) ................................................................................................................................................. 113
19.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 115
20.0 Parallel Master Port (PMP) ...................................................................................................................................................... 119
21.0 Real-Time Clock and Calendar (RTCC) ................................................................................................................................... 121
22.0 10-bit Analog-to-Digital Converter (ADC) ................................................................................................................................. 123
23.0 Comparator .............................................................................................................................................................................. 125
24.0 Comparator Voltage Reference (CVREF).................................................................................................................................. 127
25.0 Power-Saving Features ........................................................................................................................................................... 129
26.0 Special Features ...................................................................................................................................................................... 131
27.0 Instruction Set .......................................................................................................................................................................... 143
28.0 Development Support............................................................................................................................................................... 149
29.0 Electrical Characteristics .......................................................................................................................................................... 153
30.0 Packaging Information.............................................................................................................................................................. 191
Index ................................................................................................................................................................................................. 205
DS61143G-page 18
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at [email protected] or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We
welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.
Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
© 2010 Microchip Technology Inc.
DS61143G-page 19
PIC32MX3XX/4XX
NOTES:
DS61143G-page 20
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
1.0
DEVICE OVERVIEW
This document contains device-specific information for
the PIC32MX3XX/4XX devices.
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “PIC32MX Family
Reference Manual”, which is available
from
the
Microchip
web
site
(www.microchip.com/PIC32).
Figure 1-1 illustrates a general block diagram of the core
and peripheral modules in the PIC32MX3XX/4XX families of devices.
Table 1-1 lists the functions of the various pins shown
in the pinout diagrams.
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
BLOCK DIAGRAM(1,2)
FIGURE 1-1:
VDDCORE/VCAP
OSC2/CLKO
OSC1/CLKI
OSC/SOSC
Oscillators
Power-up
Timer
FRC/LPRC
Oscillators
ENVREG
Oscillator
Start-up Timer
Voltage
Regulator
PLL
PLL-USB
Watchdog
Timer
USBCLK
SYSCLK
Timing
Generation
MCLR
Power-on
Reset
Precision
Band Gap
Reference
DIVIDERS
VDD, VSS
Brown-out
Reset
PBCLK
CN1-22
Peripheral Bus Clocked by SYSCLK
Timer1-5
PORTA
Priority
Interrupt
Controller
PWM
OC1-5
USB
EJTAG
PORTC
MIPS32®
PORTD
DMAC
M4K®
32
32
CPU Core
IS
DS
32
PORTE
ICD
INT
32
32
32
32
Bus Matrix
PORTF
32
PORTG
Prefetch
Module
32
32
Peripheral Bus Clocked by PBCLK
JTAG
BSCAN
PORTB
IC1-5
SPI1,2
I2C1,2
32
PMP
10-bit ADC
Data RAM
Peripheral Bridge
UART1,2
128
128-bit wide
Program Flash Memory
Note
1:
2:
RTCC
Flash
Controller
Comparators
Some features are not available on all device variants.
BOR functionality is provided when the on-board voltage regulator is enabled.
© 2010 Microchip Technology Inc.
DS61143G-page 21
PIC32MX3XX/4XX
TABLE 1-1:
PINOUT I/O DESCRIPTIONS
Pin Number(1)
Pin Name
64-pin
100-pin
QFN/TQFP TQFP
121-pin
XBGA
Pin
Type
Buffer
Type
AN0
16
25
K2
I
Analog
AN1
15
24
K1
I
Analog
AN2
14
23
J2
I
Analog
AN3
13
22
J1
I
Analog
AN4
12
21
H2
I
Analog
AN5
11
20
H1
I
Analog
AN6
17
26
L1
I
Analog
AN7
18
27
J3
I
Analog
AN8
21
32
K4
I
Analog
AN9
22
33
L4
I
Analog
AN10
23
34
L5
I
Analog
AN11
24
35
J5
I
Analog
AN12
27
41
J7
I
Analog
AN13
28
42
L7
I
Analog
AN14
29
43
K7
I
Analog
AN15
30
44
L8
I
Analog
CLKI
39
63
F9
I
CLKO
40
64
F11
O
OSC1
39
63
F9
I
OSC2
40
64
F11
I/O
SOSCI
47
73
C10
I
SOSCO
48
74
B11
O
Description
Analog input channels.
ST/CMOS External clock source input. Always associated with
OSC1 pin function.
—
Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode. Optionally
functions as CLKO in RC and EC modes. Always
associated with OSC2 pin function.
ST/CMOS Oscillator crystal input. ST buffer when configured in
RC mode; CMOS otherwise.
—
Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode. Optionally
functions as CLKO in RC and EC modes.
ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS
otherwise.
—
32.768 kHz low-power oscillator crystal output.
Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
TTL = TTL input buffer
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.
DS61143G-page 22
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number(1)
Pin Name
64-pin
100-pin
QFN/TQFP TQFP
121-pin
XBGA
Pin
Type
Buffer
Type
CN0
48
74
B11
I
ST
CN1
47
73
C10
I
ST
CN2
16
25
K2
I
ST
CN3
15
24
K1
I
ST
CN4
14
23
J2
I
ST
CN5
13
22
J1
I
ST
CN6
12
21
H2
I
ST
CN7
11
20
H1
I
ST
CN8
4
10
E3
I
ST
CN9
5
11
F4
I
ST
CN10
6
12
F2
I
ST
CN11
8
14
F3
I
ST
CN12
30
44
L8
I
ST
CN13
52
81
C8
I
ST
CN14
53
82
B8
I
ST
CN15
54
83
D7
I
ST
CN16
55
84
C7
I
ST
CN17
31
49
L10
I
ST
CN18
32
50
L11
I
ST
CN19
—
80
D8
I
ST
CN20
—
47
L9
I
ST
Description
Change notification inputs.
Can be software programmed for internal weak
pull-ups on all inputs.
CN21
—
48
K9
I
ST
IC1
42
68
E9
I
ST
IC2
43
69
E10
I
ST
IC3
44
70
D11
I
ST
IC4
45
71
C11
I
ST
IC5
52
79
A9
I
ST
OCFA
17
26
L1
I
ST
Output Compare Fault A Input.
OC1
46
72
D9
O
—
Output Compare output 1.
OC2
49
76
A11
O
—
Output Compare output 2
OC3
50
77
A10
O
—
Output Compare output 3.
OC4
51
78
B9
O
—
Output Compare output 4.
OC5
52
81
C8
O
—
Output Compare output 5.
OCFB
30
44
L8
I
ST
Output Compare Fault B Input.
INT0
35,46
55,72
H9,D9
I
ST
External interrupt 0.
INT1
42
18
61
I
ST
External interrupt 1.
INT2
43
19
62
I
ST
External interrupt 2.
Capture inputs 1-5.
Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
TTL = TTL input buffer
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.
© 2010 Microchip Technology Inc.
DS61143G-page 23
PIC32MX3XX/4XX
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number(1)
Pin Name
64-pin
100-pin
QFN/TQFP TQFP
121-pin
XBGA
Pin
Type
Buffer
Type
Description
INT3
44
66
E11
I
ST
External interrupt 3.
INT4
45
67
E8
I
ST
External interrupt 4.
RA0
—
17
G3
I/O
ST
PORTA is a bidirectional I/O port.
RA1
—
38
J6
I/O
ST
RA2
—
58
H11
I/O
ST
RA3
—
59
G10
I/O
ST
RA4
—
60
G11
I/O
ST
RA5
—
61
G9
I/O
ST
RA6
—
91
C5
I/O
ST
RA7
—
92
B5
I/O
ST
RA9
—
28
L2
I/O
ST
RA10
—
29
K3
I/O
ST
RA14
—
66
E11
I/O
ST
RA15
—
67
E8
I/O
ST
RB0
16
25
K2
I/O
ST
RB1
15
24
K1
I/O
ST
RB2
14
23
J2
I/O
ST
RB3
13
22
J1
I/O
ST
RB4
12
21
H2
I/O
ST
RB5
11
20
H1
I/O
ST
RB6
17
26
L1
I/O
ST
RB7
18
27
J3
I/O
ST
RB8
21
32
K4
I/O
ST
RB9
22
33
L4
I/O
ST
RB10
23
34
L5
I/O
ST
RB11
24
35
J5
I/O
ST
RB12
27
41
J7
I/O
ST
RB13
28
42
L7
I/O
ST
RB14
29
43
K7
I/O
ST
RB15
30
44
L8
I/O
ST
RC1
—
6
D1
I/O
ST
RC2
—
7
E4
I/O
ST
RC3
—
8
E2
I/O
ST
RC4
—
9
E1
I/O
ST
RC12
39
63
F9
I/O
ST
RC13
47
73
C10
I/O
ST
RC14
48
74
B11
I/O
ST
RC15
40
64
F11
I/O
ST
PORTB is a bidirectional I/O port.
PORTC is a bidirectional I/O port.
Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
TTL = TTL input buffer
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.
DS61143G-page 24
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number(1)
Pin Name
64-pin
100-pin
QFN/TQFP TQFP
121-pin
XBGA
Pin
Type
Buffer
Type
RD0
46
72
D9
I/O
ST
RD1
49
76
A11
I/O
ST
RD2
50
77
A10
I/O
ST
RD3
51
78
B9
I/O
ST
RD4
52
81
C8
I/O
ST
RD5
53
82
B8
I/O
ST
RD6
54
83
D7
I/O
ST
RD7
55
84
C7
I/O
ST
RD8
42
68
E9
I/O
ST
RD9
43
69
E10
I/O
ST
RD10
44
70
D11
I/O
ST
RD11
45
71
C11
I/O
ST
RD12
—
79
A9
I/O
ST
RD13
—
80
D8
I/O
ST
RD14
—
47
L9
I/O
ST
RD15
—
48
K9
I/O
ST
RE0
60
93
A4
I/O
ST
RE1
61
94
B4
I/O
ST
RE2
62
98
B3
I/O
ST
RE3
63
99
A2
I/O
ST
RE4
64
100
A1
I/O
ST
RE5
1
3
D3
I/O
ST
RE6
2
4
C1
I/O
ST
RE7
3
5
D2
I/O
ST
RE8
—
18
G1
I/O
ST
RE9
—
19
G2
I/O
ST
RF0
58
87
B6
I/O
ST
RF1
59
88
A6
I/O
ST
RF2
34
52
K11
I/O
ST
RF3
33
51
K10
I/O
ST
RF4
31
49
L10
I/O
ST
RF5
32
50
L11
I/O
ST
RF6
35
55
H9
I/O
ST
RF7
—
54
H8
I/O
ST
RF8
—
53
J10
I/O
ST
RF12
—
40
K6
I/O
ST
RF13
—
39
L6
I/O
ST
Description
PORTD is a bidirectional I/O port.
PORTE is a bidirectional I/O port.
PORTF is a bidirectional I/O port.
Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
TTL = TTL input buffer
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.
© 2010 Microchip Technology Inc.
DS61143G-page 25
PIC32MX3XX/4XX
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number(1)
Pin Name
64-pin
100-pin
QFN/TQFP TQFP
121-pin
XBGA
Pin
Type
Buffer
Type
RG0
—
90
A5
I/O
ST
RG1
—
89
E6
I/O
ST
RG6
4
10
E3
I/O
ST
RG7
5
11
F4
I/O
ST
RG8
6
12
F2
I/O
ST
Description
PORTG is a bidirectional I/O port.
RG9
8
14
F3
I/O
ST
RG12
—
96
C3
I/O
ST
RG13
—
97
A3
I/O
ST
RG14
—
95
C4
I/O
ST
RG15
—
1
B2
I/O
ST
RG2
37
57
H10
I
ST
RG3
36
56
J11
I
ST
T1CK
48
74
B11
I
ST
T2CK
—
6
D1
I
ST
Timer2 external clock input.
T3CK
—
7
E4
I
ST
Timer3 external clock input.
T4CK
—
8
E2
I
ST
Timer4 external clock input.
PORTG input pins.
Timer1 external clock input.
T5CK
—
9
E1
I
ST
Timer5 external clock input.
U1CTS
43
47
L9
I
ST
UART1 clear to send.
U1RTS
35, 49
48
K9
O
—
UART1 ready to send.
U1RX
34, 50
52
K11
I
ST
UART1 receive.
U1TX
33, 51
51, 53
J10, K10
O
—
UART1 transmit.
U2CTS
21
40
K6
I
ST
UART2 clear to send.
U2RTS
29
39
L6
O
—
UART2 ready to send.
U2RX
31
49
L10
I
ST
UART2 receive.
U2TX
32
50
L11
O
—
UART2 transmit.
SCK1
35
55, 70
D11, H9
I/O
ST
Synchronous serial clock input/output for SPI1.
SDI1
34
9, 54
E1, H8
I
ST
SPI1 data in.
SDO1
33
53, 72
D9, J10
O
—
SPI1 data out.
SS1
14
23, 69
E10, J2
I/O
ST
SPI1 slave synchronization or frame pulse I/O.
SCK2
4
10
E3
I/O
ST
Synchronous serial clock input/output for SPI2.
SDI2
5
11
F4
I
ST
SPI2 data in.
SDO2
6
12
F2
O
—
SPI2 data out.
SS2
8
14
F3
I/O
ST
SPI2 slave synchronization or frame pulse I/O.
SCL1
37, 44
57, 66
E11, H10
I/O
ST
Synchronous serial clock input/output for I2C1.
SDA1
36, 43
56, 67
E8, J11
I/O
ST
Synchronous serial data input/output for I2C1.
SCL2
32
58
H11
I/O
ST
Synchronous serial clock input/output for I2C2.
SDA2
31
59
G10
I/O
ST
Synchronous serial data input/output for I2C2.
Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
TTL = TTL input buffer
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.
DS61143G-page 26
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number(1)
Pin Name
64-pin
100-pin
QFN/TQFP TQFP
121-pin
XBGA
Pin
Type
Buffer
Type
Description
TMS
23
17
G3
I
ST
JTAG Test mode select pin.
TCK
27
38
J6
I
ST
JTAG test clock input pin.
TDI
28
60
G11
I
ST
JTAG test data input pin.
TDO
24
61
G9
O
—
JTAG test data output pin.
RTCC
42
68
E9
O
—
Real-Time Clock Alarm Output.
CVREF-
15
28
L2
I
Analog
Comparator Voltage Reference (low).
CVREF+
16
29
K3
I
Analog
Comparator Voltage Reference (high).
CVREFOUT
23
34
L5
O
Analog
Comparator Voltage Reference Output.
C1IN-
12
21
H2
I
Analog
Comparator 1 Negative Input.
C1IN+
11
20
H1
I
Analog
Comparator 1 Positive Input.
C1OUT
21
32
K4
O
—
C2IN-
14
23
J2
I
Analog
Comparator 2 Negative Input.
C2IN+
13
22
J1
I
Analog
Comparator 2 Positive Input.
Comparator 1 Output.
C2OUT
22
33
L4
O
—
PMA0
30
44
L8
I/O
TTL/ST
Parallel Master Port Address Bit 0 Input (Buffered
Slave modes) and Output (Master modes).
Comparator 2 Output.
PMA1
29
43
K7
I/O
TTL/ST
Parallel Master Port Address Bit 1 Input (Buffered
Slave modes) and Output (Master modes).
PMA2
8
14
F3
O
—
PMA3
6
12
F2
O
—
PMA4
5
11
F4
O
—
PMA5
4
10
E3
O
—
PMA6
16
29
K3
O
—
PMA7
22
28
L2
O
—
PMA8
32
50
L11
O
—
PMA9
31
49
L10
O
—
PMA10
28
42
L7
O
—
PMA11
27
41
J7
O
—
PMA12
24
35
J5
O
—
PMA13
23
34
L5
O
—
PMA14
45
71
C11
O
—
PMA15
44
70
D11
O
—
PMCS1
45
71
C11
O
—
Parallel Master Port Chip Select 1 Strobe.
PMCS2
44
70
D11
O
—
Parallel Master Port Chip Select 2 Strobe.
Parallel Master Port Address (De-multiplexed Master
Modes).
Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
TTL = TTL input buffer
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.
© 2010 Microchip Technology Inc.
DS61143G-page 27
PIC32MX3XX/4XX
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number(1)
Pin Name
64-pin
100-pin
QFN/TQFP TQFP
121-pin
XBGA
Pin
Type
Buffer
Type
PMD0
60
93
A4
I/O
TTL/ST
PMD1
61
94
B4
I/O
TTL/ST
PMD2
62
98
B3
I/O
TTL/ST
PMD3
63
99
A2
I/O
TTL/ST
PMD4
64
100
A1
I/O
TTL/ST
PMD5
1
3
D3
I/O
TTL/ST
PMD6
2
4
C1
I/O
TTL/ST
PMD7
3
5
D2
I/O
TTL/ST
PMD8
—
90
A5
I/O
TTL/ST
PMD9
—
89
E6
I/O
TTL/ST
Description
Parallel Master Port Data (De-multiplexed Master
mode) or Address/Data (Multiplexed Master modes).
PMD10
—
88
A6
I/O
TTL/ST
PMD11
—
87
B6
I/O
TTL/ST
PMD12
—
79
A9
I/O
TTL/ST
PMD13
—
80
D8
I/O
TTL/ST
PMD14
—
83
D7
I/O
TTL/ST
PMD15
—
84
C7
I/O
TTL/ST
PMRD
53
82
B8
O
—
Parallel Master Port Read Strobe.
PMWR
52
81
C8
O
—
Parallel Master Port Write Strobe.
PMALL
30
44
L8
O
—
Parallel Master Port Address Latch Enable low-byte
(Multiplexed Master modes).
PMALH
29
43
K7
O
—
Parallel Master Port Address Latch Enable high-byte
(Multiplexed Master modes).
VBUS
34
54
H8
I
Analog
VUSB
35
55
H9
P
—
USB Internal Transceiver Supply.
VBUSON
11
20
H1
O
—
USB Host and OTG Bus Power Control Output.
D+
37
57
H10
I/O
Analog
USB D+.
D-
36
56
J11
I/O
Analog
USB D-.
USB Bus Power Monitor.
USBID
33
51
K10
I
ST
USB OTG ID Detect.
ENVREG
57
86
A7
I
ST
Enable for On-Chip Voltage Regulator.
TRCLK
—
91
C5
O
—
Trace Clock.
Trace Data Bits 0-3.
TRD0
—
97
A3
O
—
TRD1
—
96
C3
O
—
TRD2
—
95
C4
O
—
TRD3
—
92
B5
O
—
PGED1
16
25
K2
I/O
ST
Data I/O pin for programming/debugging
communication channel 1.
PGEC1
15
24
K1
I
ST
Clock input pin for programming/debugging
communication channel 1.
Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
TTL = TTL input buffer
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.
DS61143G-page 28
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number(1)
Pin Name
64-pin
100-pin
QFN/TQFP TQFP
121-pin
XBGA
Pin
Type
Buffer
Type
Description
PGED2
18
27
J3
I/O
ST
Data I/O pin for programming/debugging
communication channel 2.
PGEC2
17
26
L1
I
ST
Clock input pin for programming/debugging
communication channel 2.
MCLR
7
13
F1
I/P
ST
Master Clear (Reset) input. This pin is an active-low
Reset to the device.
AVDD
19
30
J4
P
P
Positive supply for analog modules. This pin must be
connected at all times.
AVSS
20
31
L3
P
P
Ground reference for analog modules.
C2, C9,
E5, F8,
G5, H4,
H6, K8
P
—
Positive supply for peripheral logic and I/O pins.
VDD
VCAP/
VDDCORE
10, 26, 38 2, 16, 37,
46, 62
56
85
B7
P
—
CPU logic filter capacitor connection.
9, 25, 41
15, 36,
45, 65,
75
A8, B10,
D4, D5,
E7, F10,
F5, G6,
G7, H3
P
—
Ground reference for logic and I/O pins.
VREF+
16
29
K3
I
Analog
Analog voltage reference (high) input.
VREF-
15
28
L2
I
Analog
Analog voltage reference (low) input.
Vss
Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
TTL = TTL input buffer
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.
© 2010 Microchip Technology Inc.
DS61143G-page 29
PIC32MX3XX/4XX
NOTES:
DS61143G-page 30
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
2.0
GUIDELINES FOR GETTING
STARTED WITH 32-BIT
MICROCONTROLLERS
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “PIC32MX Family
Reference Manual”, which is available
from
the
Microchip
web
site
(www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
2.1
Basic Connection Requirements
Getting started with the PIC32MX3XX/4XX family of
32-bit Microcontrollers (MCUs) requires attention to a
minimal set of device pin connections before
proceeding with development. The following is a list of
pin names, which must always be connected:
• All VDD and VSS pins
(see Section 2.2 “Decoupling Capacitors”)
• All AVDD and AVSS pins (regardless if ADC module
is not used)
(see Section 2.2 “Decoupling Capacitors”)
• VCAP/VDDCORE
(see Section 2.3 “Capacitor on Internal Voltage
Regulator (VCAP/VDDCORE)”)
• MCLR pin
(see Section 2.4 “Master Clear (MCLR) Pin”)
• PGECx/PGEDx pins used for In-Circuit Serial
Programming™ (ICSP™) and debugging purposes
(see Section 2.5 “ICSP Pins”)
• OSC1 and OSC2 pins when external oscillator
source is used
(see Section 2.8 “External Oscillator Pins”)
2.2
Decoupling Capacitors
The use of decoupling capacitors on every pair of
power supply pins, such as VDD, VSS, AVDD and
AVSS is required. See Figure 2-1.
Consider the following criteria when using decoupling
capacitors:
• Value and type of capacitor: Recommendation
of 0.1 µF (100 nF), 10-20V. This capacitor should
be a low-ESR and have resonance frequency in
the range of 20 MHz and higher. It is
recommended that ceramic capacitors be used.
• Placement on the printed circuit board: The
decoupling capacitors should be placed as close
to the pins as possible. It is recommended to
place the capacitors on the same side of the
board as the device. If space is constricted, the
capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace
length from the pin to the capacitor is within
one-quarter inch (6 mm) in length.
• Handling high frequency noise: If the board is
experiencing high frequency noise, upward of
tens of MHz, add a second ceramic-type capacitor
in parallel to the above described decoupling
capacitor. The value of the second capacitor can
be in the range of 0.01 µF to 0.001 µF. Place this
second capacitor next to the primary decoupling
capacitor. In high-speed circuit designs, consider
implementing a decade pair of capacitances as
close to the power and ground pins as possible.
For example, 0.1 µF in parallel with 0.001 µF.
• Maximizing performance: On the board layout
from the power supply circuit, run the power and
return traces to the decoupling capacitors first,
and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain.
Equally important is to keep the trace length
between the capacitor and the power pins to a
minimum thereby reducing PCB track inductance.
Additionally, the following pins may be required:
• VREF+/VREF- pins used when external voltage
reference for ADC module is implemented
Note:
The AVDD and AVSS pins must be
connected independent of ADC use and
ADC voltage reference source.
© 2010 Microchip Technology Inc.
DS61143G-page 31
PIC32MX3XX/4XX
FIGURE 2-1:
RECOMMENDED
MINIMUM CONNECTION
VDD
0.1 µF
Ceramic
CBP
R
R1
MCLR
C
VSS
VCAP/VDDCORE
VDD
CEFC
PIC32MX
VSS
10 Ω
2.2.1
VDD
0.1 µF
Ceramic
CBP
VSS
VDD
AVSS
VDD
AVDD
0.1 µF
Ceramic
CBP
VSS
0.1 µF
Ceramic
CBP
0.1 µF
Ceramic
CBP
BULK CAPACITORS
The use of a bulk capacitor is recommended to improve
power supply stability. Typical values range from 4.7 µF
to 47 µF. This capacitor should be located as close to
the device as possible.
2.3
2.3.1
Master Clear (MCLR) Pin
The MCLR pin provides for two specific device
functions:
• Device Reset
• Device Programming and Debugging
Pulling The MCLR pin low generates a device reset.
Figure 2-2 illustrates a typical MCLR circuit. During
device programming and debugging, the resistance
and capacitance that can be added to the pin must
be considered. Device programmers and debuggers
drive the MCLR pin. Consequently, specific voltage
levels (VIH and VIL) and fast signal transitions must
not be adversely affected. Therefore, specific values
of R and C will need to be adjusted based on the
application and PCB requirements.
For example, as illustrated in Figure 2-2, it is
recommended that the capacitor C, be isolated from
the MCLR pin during programming and debugging
operations.
Place the components shown in Figure 2-2 within
one-quarter inch (6 mm) from the MCLR pin.
FIGURE 2-2:
EXAMPLE OF MCLR PIN
CONNECTIONS
VDD
Capacitor on Internal Voltage
Regulator (VCAP/VDDCORE)
R
R1
INTERNAL REGULATOR MODE
A low-ESR (< 1 Ohm) capacitor is required on the
VCAP/VDDCORE pin, which is used to stabilize the
internal voltage regulator output. The VCAP/VDDCORE
pin must not be connected to VDD, and must have a
CEFC capacitor, with at least a 6V rating, connected to
ground. The type can be ceramic or tantalum. Refer to
Section 29.0 “Electrical Characteristics” for
additional information on CEFC specifications. This
mode is enabled by connecting the ENVREG pin to
VDD.
2.3.2
2.4
JP
PIC32MX
C
Note 1:
R ≤ 10 kΩ is recommended. A suggested
starting value is 10 kΩ. Ensure that the MCLR
pin VIH and VIL specifications are met.
2:
R1 ≤ 470Ω will limit any current flowing into
MCLR from the external capacitor C, in the
event of MCLR pin breakdown, due to
Electrostatic Discharge (ESD) or Electrical
Overstress (EOS). Ensure that the MCLR pin
VIH and VIL specifications are met.
3:
The capacitor can be sized to prevent unintentional resets from brief glitches or to extend the
device reset period during POR.
EXTERNAL REGULATOR MODE
In this mode the core voltage is supplied externally
through the VDDCORE pin. A low-ESR capacitor of
10 µF is recommended on the VDDCORE pin. This mode
is enabled by grounding the ENVREG pin.
MCLR
The placement of this capacitor should be close to the
VCAP/VDDCORE. It is recommended that the trace
length not exceed one-quarter inch (6 mm). Refer to
Section 26.3 “On-Chip Voltage Regulator” for
details.
DS61143G-page 32
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
2.5
ICSP Pins
The PGECx and PGEDx pins are used for In-Circuit
Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length
between the ICSP connector and the ICSP pins on the
device as short as possible. If the ICSP connector is
expected to experience an ESD event, a series resistor
is recommended, with the value in the range of a few
tens of Ohms, not to exceed 100 Ohms.
Pull-up resistors, series diodes and capacitors on the
PGECx and PGEDx pins are not recommended as they
will interfere with the programmer/debugger communications to the device. If such discrete components are
an application requirement, they should be removed
from the circuit during programming and debugging.
Alternately, refer to the AC/DC characteristics and timing requirements information in the respective device
Flash programming specification for information on
capacitive loading limits and pin input voltage high (VIH)
and input low (VIL) requirements.
Ensure that the “Communication Channel Select” (i.e.,
PGECx/PGEDx pins) programmed into the device
matches the physical connections for the ICSP to
MPLAB® ICD 2, MPLAB ICD 3 or MPLAB REAL ICE™.
For more information on ICD 2, ICD 3 and REAL ICE
connection requirements, refer to the following
documents that are available on the Microchip website.
• “MPLAB® ICD 2 In-Circuit Debugger User’s
Guide” DS51331
• “Using MPLAB® ICD 2” (poster) DS51265
• “MPLAB® ICD 2 Design Advisory” DS51566
• “Using MPLAB® ICD 3” (poster) DS51765
• “MPLAB® ICD 3 Design Advisory” DS51764
• “MPLAB® REAL ICE™ In-Circuit Debugger
User’s Guide” DS51616
• “Using MPLAB® REAL ICE™” (poster) DS51749
2.6
JTAG
The TMS, TDO, TDI and TCK pins are used for testing
and debugging according to the Joint Test Action
Group (JTAG) standard. It is recommended to keep the
trace length between the JTAG connector and the
JTAG pins on the device as short as possible. If the
JTAG connector is expected to experience an ESD
event, a series resistor is recommended, with the value
in the range of a few tens of Ohms, not to exceed 100
Ohms.
Pull-up resistors, series diodes and capacitors on the
TMS, TDO, TDI and TCK pins are not recommended
as they will interfere with the programmer/debugger
communications to the device. If such discrete components are an application requirement, they should be
removed from the circuit during programming and
debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for
information on capacitive loading limits and pin input
voltage high (VIH) and input low (VIL) requirements.
2.7
Trace
The trace pins can be connected to a hardware-traceenabled programmer to provide a compress real time
instruction trace. When used for trace the TRD3,
TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22
Ohm series resistor between the trace pins and the
trace connector.
2.8
External Oscillator Pins
Many MCUs have options for at least two oscillators: a
high-frequency primary oscillator and a low-frequency
secondary oscillator (refer to Section 8.0 “Oscillator
Configuration” for details).
The oscillator circuit should be placed on the same
side of the board as the device. Also, place the
oscillator circuit close to the respective oscillator pins,
not exceeding one-half inch (12 mm) distance
between them. The load capacitors should be placed
next to the oscillator itself, on the same side of the
board. Use a grounded copper pour around the
oscillator circuit to isolate them from surrounding
circuits. The grounded copper pour should be routed
directly to the MCU ground. Do not run any signal
traces or power traces inside the ground pour. Also, if
using a two-sided board, avoid any traces on the
other side of the board where the crystal is placed. A
suggested layout is illustrated in Figure 2-3.
FIGURE 2-3:
SUGGESTED PLACEMENT
OF THE OSCILLATOR
CIRCUIT
Oscillator
Secondary
Guard Trace
Guard Ring
Main Oscillator
© 2010 Microchip Technology Inc.
DS61143G-page 33
PIC32MX3XX/4XX
2.9
Configuration of Analog and
Digital Pins During ICSP
Operations
If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a
debugger, it automatically initializes all of the A/D input
pins (ANx) as “digital” pins by setting all bits in the
ADPCFG register.
2.10
Unused I/Os
Unused I/O pins should not be allowed to float as
inputs. They can be configured as outputs and driven
to a logic-low state.
Alternately, inputs can be reserved by connecting the
pin to VSS through a 1k to 10k resistor and configuring
the pin as an input.
The bits in this register that correspond to the A/D pins
that are initialized by MPLAB ICD 2, ICD 3 or REAL
ICE, must not be cleared by the user application
firmware; otherwise, communication errors will result
between the debugger and the device.
If your application needs to use certain A/D pins as
analog input pins during the debug session, the user
application must clear the corresponding bits in the
ADPCFG register during initialization of the ADC
module.
When MPLAB ICD 2, ICD 3 or REAL ICE is used as a
programmer, the user application firmware must
correctly configure the ADPCFG register. Automatic
initialization of this register is only done during
debugger operation. Failure to correctly configure the
register(s) will result in all A/D pins being recognized as
analog input pins, resulting in the port value being read
as a logic ‘0’, which may affect user application
functionality.
DS61143G-page 34
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
PIC32MX MCU
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 2. “MCU” (DS61113) of
the “PIC32MX Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com/PIC32).
Resources for the MIPS32® M4K®
Processor Core are available at:
www.mips.com/products/cores/
32-bit-cores/mips32-m4k/#.
•
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
•
The MCU module is the heart of the PIC32MX3XX/4XX
Family processor. The MCU fetches instructions,
decodes each instruction, fetches source operands,
executes each instruction and writes the results of
instruction execution to the proper destinations.
•
3.1
•
Features
• 5-stage pipeline
• 32-bit Address and Data Paths
• MIPS32 Enhanced Architecture (Release 2)
- Multiply-Accumulate and Multiply-Subtract
Instructions
- Targeted Multiply Instruction
- Zero/One Detect Instructions
- WAIT Instruction
- Conditional Move Instructions (MOVN, MOVZ)
- Vectored interrupts
- Programmable exception vector base
FIGURE 3-1:
•
•
- Atomic interrupt enable/disable
- GPR shadow registers to minimize latency
for interrupt handlers
- Bit field manipulation instructions
MIPS16e® Code Compression
- 16-bit encoding of 32-bit instructions to
improve code density
- Special PC-relative instructions for efficient
loading of addresses and constants
- SAVE & RESTORE macro instructions for
setting up and tearing down stack frames
within subroutines
- Improved support for handling 8 and 16-bit
data types
Simple Fixed Mapping Translation (FMT)
mechanism
Simple Dual Bus Interface
- Independent 32-bit address and data busses
- Transactions can be aborted to improve
interrupt latency
Autonomous Multiply/Divide Unit
- Maximum issue rate of one 32x16 multiply
per clock
- Maximum issue rate of one 32x32 multiply
every other clock
- Early-in iterative divide. Minimum 11 and
maximum 34 clock latency (dividend (rs) sign
extension-dependent)
Power Control
- Minimum frequency: 0 MHz
- Low-Power mode (triggered by WAIT
instruction)
- Extensive use of local gated clocks
EJTAG Debug and Instruction Trace
- Support for single stepping
- Virtual instruction and data address/value
- breakpoints
- PC tracing with trace compression
MCU BLOCK DIAGRAM
MCU
EJTAG
MDU
Execution
Core
(RF/ALU/Shift)
System
Coprocessor
© 2010 Microchip Technology Inc.
Trace
TAP
FMT
Bus Interface
Trace I/F
Off-Chip
Debug I/F
Dual Bus I/F
Bus Matrix
3.0
Power
Mgmt.
DS61143G-page 35
PIC32MX3XX/4XX
3.2
Architecture Overview
The PIC32MX3XX/4XX Family core contains several
logic blocks working together in parallel, providing an
efficient high performance computing engine. The
following blocks are included with the core:
• Execution Unit
• Multiply/Divide Unit (MDU)
• System Control Coprocessor (CP0)
• Fixed Mapping Translation (FMT)
• Dual Internal Bus interfaces
• Power Management
• MIPS16e Support
• Enhanced JTAG (EJTAG) Controller
3.2.1
EXECUTION UNIT
The PIC32MX3XX/4XX Family core execution unit
implements a load/store architecture with single-cycle
ALU operations (logical, shift, add, subtract) and an
autonomous multiply/divide unit. The core contains
thirty-two 32-bit general purpose registers used for
integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead
during interrupt/exception processing. The register file
consists of two read ports and one write port and is fully
bypassed to minimize operation latency in the pipeline.
The execution unit includes:
• 32-bit adder used for calculating the data address
• Address unit for calculating the next instruction
address
• Logic for branch determination and branch target
address calculation
• Load aligner
• Bypass multiplexers used to avoid stalls when
executing instructions streams where data
producing instructions are followed closely by
consumers of their results
• Leading Zero/One detect unit for implementing the
CLZ and CLO instructions
3.2.2
MULTIPLY/DIVIDE UNIT (MDU)
The PIC32MX3XX/4XX Family core includes a multiply/divide unit (MDU) that contains a separate pipeline
for multiply and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and
does not stall when the IU pipeline stalls. This allows
MDU operations to be partially masked by system stalls
and/or other integer unit instructions.
The high-performance MDU consists of a 32x16 booth
recoded multiplier, result/accumulation registers (HI
and LO), a divide state machine, and the necessary
multiplexers and control logic. The first number shown
(‘32’ of 32x16) represents the rs operand. The second
number (‘16’ of 32x16) represents the rt operand. The
PIC32MX core only checks the value of the latter (rt)
operand to determine how many times the operation
must pass through the multiplier. The 16x16 and 32x16
operations pass through the multiplier once. A 32x32
operation passes through the multiplier twice.
The MDU supports execution of one 16x16 or 32x16
multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle.
Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations.
The multiply operand size is automatically determined
by logic built into the MDU.
Divide operations are implemented with a simple 1 bit
per clock iterative algorithm. An early-in detection
checks the sign extension of the dividend (rs) operand.
If rs is 8 bits wide, 23 iterations are skipped. For a 16bit-wide rs, 15 iterations are skipped, and for a 24-bitwide rs, 7 iterations are skipped. Any attempt to issue
a subsequent MDU instruction while a divide is still
active causes an IU pipeline stall until the divide
operation is completed.
Table 3-1 lists the repeat rate (peak issue rate of cycles
until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32MX
core multiply and divide instructions. The approximate
latency and repeat rates are listed in terms of pipeline
clocks.
• Arithmetic Logic Unit (ALU) for performing bitwise
logical operations
• Shifter and Store Aligner
DS61143G-page 36
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 3-1:
PIC32MX3XX/4XX FAMILY CORE HIGH-PERFORMANCE INTEGER
MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES
Opcode
Operand Size (mul rt) (div rs)
Latency
Repeat Rate
MULT/MULTU, MADD/MADDU,
MSUB/MSUBU
16 bits
1
1
32 bits
2
2
MUL
16 bits
2
1
32 bits
3
2
DIV/DIVU
8 bits
12
11
16 bits
19
18
24 bits
26
25
33
32
32 bits
The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and MoveFrom-LO (MFLO) instructions, these values can be
transferred to the general purpose register file.
In addition to the HI/LO targeted operations, the
MIPS32 architecture also defines a multiply instruction,
MUL, which places the least significant results in the
primary register file instead of the HI/LO register pair.
By avoiding the explicit MFLO instruction, required
when using the LO register, and by supporting multiple
destination
registers,
the
throughput
of
multiply-intensive operations is increased.
Two other instructions, multiply-add (MADD) and multiply-subtract (MSUB), are used to perform the multiplyaccumulate and multiply-subtract operations. The
MADD instruction multiplies two numbers and then adds
TABLE 3-2:
the product to the current contents of the HI and LO
registers. Similarly, the MSUB instruction multiplies two
operands and then subtracts the product from the HI
and LO registers. The MADD and MSUB operations
are commonly used in DSP algorithms.
3.2.3
SYSTEM CONTROL
COPROCESSOR (CP0)
In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor’s diagnostics capability, the
operating modes (kernel, user and debug), and
whether interrupts are enabled or disabled. Configuration information, such as presence of options like
MIPS16e, is also available by accessing the CP0
registers, listed in Table 3-2.
COPROCESSOR 0 REGISTERS
Register Register
Number Name
Function
0-6
Reserved
Reserved in the PIC32MX3XX/4XX Family core
7
HWREna
Enables access via the RDHWR instruction to selected hardware registers
8
BadVAddr(1)
Reports the address for the most recent address-related exception
Processor cycle count
9
Count(1)
10
Reserved
Reserved in the PIC32MX3XX/4XX Family core
11
Compare(1)
Timer interrupt control
12
Status(1)
Processor status and control
12
IntCtl(1)
Interrupt system status and control
12
SRSCtl(1)
Shadow register set status and control
12
SRSMap(1)
Provides mapping from vectored interrupt to a shadow set
13
Cause(1)
Cause of last general exception
14
EPC(1)
Program counter at last exception
15
PRId
Processor identification and revision
15
EBASE
Exception vector base register
16
Config
Configuration register
16
Config1
Configuration register 1
16
Config2
Configuration register 2
16
Config3
Configuration register 3
© 2010 Microchip Technology Inc.
DS61143G-page 37
PIC32MX3XX/4XX
TABLE 3-2:
COPROCESSOR 0 REGISTERS (CONTINUED)
Register Register
Number Name
Function
17-22
Reserved
Reserved in the PIC32MX3XX/4XX Family core
23
Debug(2)
Debug control and exception status
24
DEPC(2)
Program counter at last debug exception
25-29
Reserved
Reserved in the PIC32MX3XX/4XX Family core
30
ErrorEPC(1)
Program counter at last error
31
DESAVE(2)
Debug handler scratchpad register
Note 1:
2:
Registers used in exception processing.
Registers used during debug.
Coprocessor 0 also contains the logic for identifying
and managing exceptions. Exceptions can be caused
by a variety of sources, including alignment errors in
data, external events or program errors. Table 3-3
shows the exception types in order of priority.
TABLE 3-3:
PIC32MX3XX/4XX FAMILY CORE EXCEPTION TYPES
Exception
Description
Reset
Assertion MCLR or a Power-on Reset (POR)
DSS
EJTAG Debug Single Step
DINT
EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by setting the
EjtagBrk bit in the ECR register
NMI
Interrupt
DIB
AdEL
IBE
Assertion of NMI signal
Assertion of unmasked hardware or software interrupt signal
EJTAG debug hardware instruction break matched
Fetch address alignment error
Fetch reference to protected address
Instruction fetch bus error
DBp
EJTAG Breakpoint (execution of SDBBP instruction)
Sys
Execution of SYSCALL instruction
Bp
Execution of BREAK instruction
RI
Execution of a Reserved Instruction
CpU
Execution of a coprocessor instruction for a coprocessor that is not enabled
CEU
Execution of a CorExtend instruction when CorExtend is not enabled
Ov
Execution of an arithmetic instruction that overflowed
Tr
Execution of a trap (when trap condition is true)
DDBL/DDBS
EJTAG Data Address Break (address only) or EJTAG Data Value Break on Store (address + value)
AdEL
Load address alignment error
Load reference to protected address
AdES
Store address alignment error
Store to protected address
DBE
Load or store bus error
DDBL
DS61143G-page 38
EJTAG data hardware breakpoint matched in load data compare
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
3.3
Power Management
The PIC32MX3XX/4XX Family core offers a number of
power management features, including low-power
design, active power management and power-down
modes of operation. The core is a static design that
supports slowing or halting the clocks, which reduces
system power consumption during idle periods.
3.3.1
INSTRUCTION-CONTROLLED
POWER MANAGEMENT
The mechanism for invoking power-down mode is
through execution of the WAIT instruction. For more
information on power management, see Section 25.0
“Power-Saving Features”.
3.3.2
LOCAL CLOCK GATING
The majority of the power consumed by the
PIC32MX3XX/4XX Family core is in the clock tree and
clocking registers. The PIC32MX family uses extensive
use of local gated-clocks to reduce this dynamic power
consumption.
© 2010 Microchip Technology Inc.
3.4
EJTAG Debug Support
The PIC32MX3XX/4XX Family core provides for an
Enhanced JTAG (EJTAG) interface for use in the
software debug of application and kernel code. In
addition to standard user mode and kernel modes of
operation, the PIC32MX3XX/4XX Family core provides
a Debug mode that is entered after a debug exception
(derived from a hardware breakpoint, single-step
exception, etc.) is taken and continues until a debug
exception return (DERET) instruction is executed.
During this time, the processor executes the debug
exception handler routine.
The EJTAG interface operates through the Test Access
Port (TAP), a serial communication port used for
transferring test data in and out of the
PIC32MX3XX/4XX Family core. In addition to the
standard JTAG instructions, special instructions
defined in the EJTAG specification define what
registers are selected and how they are used.
DS61143G-page 39
PIC32MX3XX/4XX
NOTES:
DS61143G-page 40
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
4.0
MEMORY ORGANIZATION
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 3. “Memory
Organization”
(DS61115)
of
the
“PIC32MX Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com/PIC32).
PIC32MX3XX/4XX microcontrollers provide 4 GB of
unified virtual memory address space. All memory
regions including program, data memory, SFRs and
Configuration registers reside in this address space at
their respective unique addresses. The program and
data memories can be optionally partitioned into user
and kernel memories. In addition, the data memory can
be made executable, allowing PIC32MX3XX/4XX to
execute from data memory.
© 2010 Microchip Technology Inc.
4.1
•
•
•
•
•
•
•
•
Key Features
32-bit native data width
Separate User and Kernel mode address space
Flexible program Flash memory partitioning
Flexible data RAM partitioning for data and
program space
Separate boot Flash memory for protected code
Robust bus exception handling to intercept
runaway code
Simple memory mapping with Fixed Mapping
Translation (FMT) unit
Cacheable and non-cacheable address regions
4.2
PIC32MX3XX/4XX Memory Layout
PIC32MX3XX/4XX microcontrollers implement two
address spaces: Virtual and Physical. All hardware
resources such as program memory, data memory and
peripherals are located at their respective physical
addresses. Virtual addresses are exclusively used by
the CPU to fetch and execute instructions as well as
access peripherals. Physical addresses are used by
peripherals such as DMA and Flash controller that
access memory independently of CPU.
DS61143G-page 41
PIC32MX3XX/4XX
FIGURE 4-1:
MEMORY MAP ON RESET FOR PIC32MX320F032H AND PIC32MX420F032H
DEVICES(1)
Virtual
Memory Map
0xFFFFFFFF
0xBFC03000
0xBFC02FFF
0xBFC02FF0
Physical
Memory Map
0xFFFFFFFF
Reserved
Device
Configuration
Registers
0xBFC02FEF
Boot Flash
0xBFC00000
0xBF900000
Reserved
SFRs
0xBF800000
0xBD008000
Reserved
KSEG1
0xBF8FFFFF
Reserved
0xBD007FFF
Program Flash(2)
0xBD000000
0xA0002000
Reserved
0xA0001FFF
RAM(2)
0xA0000000
0x9FC03000
0x9FC02FFF
0x9FC02FEF
0x1FC03000
Device
Configuration
Registers
Reserved
Device
Configuration
Registers
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x9FC02FEF
0x1FC00000
Boot Flash
Reserved
0x9FC00000
0x1F900000
0x9D008000
0x9D007FFF
Program Flash(2)
KSEG0
0x1F8FFFFF
Reserved
SFRs
0x1F800000
Reserved
0x9D000000
0x80002000
0x1D008000
Reserved
0x1D007FFF
Program Flash(2)
0x1D000000
0x80001FFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
DS61143G-page 42
Reserved
Reserved
RAM(2)
0x00002000
0x00001FFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 4-2:
MEMORY MAP ON RESET FOR PIC32MX320F064H DEVICE(1)
Virtual
Memory Map
0xFFFFFFFF
Physical
Memory Map
0xFFFFFFFF
Reserved
0xBFC03000
0xBFC02FFF
Device
Configuration
Registers
0xBFC02FF0
0xBFC02FEF
Boot Flash
0xBFC00000
Reserved
0xBF900000
SFRs
0xBF800000
Reserved
0xBD010000
KSEG1
0xBF8FFFFF
Reserved
0xBD00FFFF
Program Flash(2)
0xBD000000
Reserved
0xA0004000
0xA0003FFF
RAM(2)
0xA0000000
0x1FC03000
Device
Configuration
Registers
Reserved
0x9FC03000
0x9FC02FFF
Device
Configuration
Registers
0x9FC02FEF
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x9FC02FEF
0x1FC00000
Boot Flash
Reserved
0x9FC00000
0x1F900000
0x9D010000
0x9D00FFFF
Program Flash(2)
KSEG0
0x1F8FFFFF
Reserved
SFRs
0x1F800000
Reserved
0x9D000000
0x80004000
0x1D010000
Reserved
0x1D00FFFF
Program Flash(2)
0x1D000000
0x80003FFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
Reserved
Reserved
RAM
(2)
0x00004000
0x00003FFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
© 2010 Microchip Technology Inc.
DS61143G-page 43
PIC32MX3XX/4XX
FIGURE 4-3:
MEMORY MAP ON RESET FOR PIC32MX320F128H AND PIC32MX320F128L
DEVICES(1)
Virtual
Memory Map
0xFFFFFFFF
0xBFC03000
0xBFC02FFF
0xBFC02FF0
Physical
Memory Map
0xFFFFFFFF
Reserved
Device
Configuration
Registers
0xBFC02FEF
Boot Flash
0xBFC00000
0xBF900000
Reserved
SFRs
0xBF800000
0xBD020000
Reserved
KSEG1
0xBF8FFFFF
Reserved
0xBD01FFFF
Program Flash(2)
0xBD000000
0xA0004000
Reserved
0xA0003FFF
RAM(2)
0xA0000000
0x9FC03000
0x9FC02FFF
0x9FC02FEF
0x1FC03000
Device
Configuration
Registers
Reserved
Device
Configuration
Registers
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x9FC02FEF
0x1FC00000
Boot Flash
Reserved
0x9FC00000
0x1F900000
0x9D020000
0x9D01FFFF
Program Flash(2)
KSEG0
0x1F8FFFFF
Reserved
SFRs
0x1F800000
Reserved
0x9D000000
0x80004000
0x1D020000
Reserved
0x1D01FFFF
Program Flash(2)
0x1D000000
0x80003FFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
DS61143G-page 44
Reserved
Reserved
RAM(2)
0x00004000
0x00003FFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 4-4:
MEMORY MAP ON RESET FOR PIC32MX340F128H, PIC32MX340F128L,
PIC32MX440F128H AND PIC32MX440F128L DEVICES(1)
Virtual
Memory Map
0xFFFFFFFF
Physical
Memory Map
0xFFFFFFFF
Reserved
0xBFC03000
0xBFC02FFF
Device
Configuration
Registers
0xBFC02FF0
0xBFC02FEF
Boot Flash
0xBFC00000
Reserved
0xBF900000
SFRs
0xBF800000
Reserved
0xBD020000
KSEG1
0xBF8FFFFF
Reserved
0xBD01FFFF
Program Flash(2)
0xBD000000
Reserved
0xA0008000
0xA0007FFF
RAM(2)
0xA0000000
0x1FC03000
Device
Configuration
Registers
Reserved
0x9FC03000
0x9FC02FFF
Device
Configuration
Registers
0x9FC02FEF
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x9FC02FEF
0x1FC00000
Boot Flash
Reserved
0x9FC00000
0x1F900000
0x9D020000
0x9D01FFFF
Program Flash(2)
KSEG0
0x1F8FFFFF
Reserved
SFRs
0x1F800000
Reserved
0x9D000000
0x80008000
0x1D020000
Reserved
0x1D01FFFF
Program Flash(2)
0x1D000000
0x80007FFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
Reserved
Reserved
RAM(2)
0x00008000
0x00007FFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
© 2010 Microchip Technology Inc.
DS61143G-page 45
PIC32MX3XX/4XX
FIGURE 4-5:
MEMORY MAP ON RESET FOR PIC32MX340F256H, PIC32MX360F256L,
PIC32MX440F256H AND PIC32MX460F256L DEVICES(1)
Virtual
Memory Map
0xFFFFFFFF
0xBFC03000
0xBFC02FFF
0xBFC02FF0
Physical
Memory Map
0xFFFFFFFF
Reserved
Device
Configuration
Registers
0xBFC02FEF
Boot Flash
0xBFC00000
0xBF900000
Reserved
SFRs
0xBF800000
0xBD040000
Reserved
KSEG1
0xBF8FFFFF
Reserved
0xBD03FFFF
Program Flash(2)
0xBD000000
0xA0008000
Reserved
0xA0007FFF
RAM(2)
0xA0000000
0x9FC03000
0x9FC02FFF
0x9FC02FEF
0x1FC03000
Device
Configuration
Registers
Reserved
Device
Configuration
Registers
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x9FC02FEF
0x1FC00000
Boot Flash
Reserved
0x9FC00000
0x1F900000
0x9D040000
0x9D03FFFF
Program Flash(2)
KSEG0
0x1F8FFFFF
Reserved
SFRs
0x1F800000
Reserved
0x9D000000
0x80008000
0x1D040000
Reserved
0x1D03FFFF
Program Flash(2)
0x1D000000
0x80007FFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
DS61143G-page 46
Reserved
Reserved
RAM(2)
0x00008000
0x00007FFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 4-6:
MEMORY MAP ON RESET FOR PIC32MX340F512H, PIC32MX360F512L,
PIC32MX440F512H AND PIC32MX460F512L DEVICES(1)
Virtual
Memory Map
0xFFFFFFFF
Physical
Memory Map
0xFFFFFFFF
Reserved
0xBFC03000
0xBFC02FFF
Device
Configuration
Registers
0xBFC02FF0
0xBFC02FEF
Boot Flash
0xBFC00000
Reserved
0xBF900000
SFRs
0xBF800000
Reserved
0xBD080000
KSEG1
0xBF8FFFFF
Reserved
0xBD07FFFF
Program Flash(2)
0xBD000000
Reserved
0xA0008000
0xA0007FFF
RAM(2)
0xA0000000
0x1FC03000
Device
Configuration
Registers
Reserved
0x9FC03000
0x9FC02FFF
Device
Configuration
Registers
0x9FC02FEF
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x9FC02FEF
0x1FC00000
Boot Flash
Reserved
0x9FC00000
0x1F900000
0x9D080000
0x9D07FFFF
Program Flash(2)
KSEG0
0x1F8FFFFF
Reserved
SFRs
0x1F800000
Reserved
0x9D000000
0x80008000
0x1D080000
Reserved
0x1D07FFFF
Program Flash(2)
0x1D000000
0x80007FFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
Reserved
Reserved
RAM(2)
0x00008000
0x00007FFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
© 2010 Microchip Technology Inc.
DS61143G-page 47
BUS MATRIX REGISTERS MAP
Register
Name
Bit Range
2000
BMX
CON(1)
31:16
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
—
—
—
—
—
BMXCHEDMA
—
—
15:0
—
—
—
—
—
—
—
—
31:16
BMX
DKPBA(1) 15:0
—
—
—
—
—
—
—
—
31:16
BMX
2020
DUDBA(1) 15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
2010
2030
BMX
DUPBA(1) 15:0
2040
31:16
BMX
DRMSZ 15:0
2050
2060
31:16
BMX
PUPBA(1) 15:0
BMX
PFMSZ
31:16
15:0
31:16
20/4
19/3
18/2
17/1
16/0
All
Resets
Virtual Address
(BF88_#)
Bits
22/6
21/5
—
—
—
—
BMXWSDRM
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
BMXERRIXI BMXERRICD BMXERRDMA BMXERRDS BMXERRIS 001F
BMXARB<2:0>
0042
BMXDKPBA<15:0>
—
0000
BMXDUDBA<15:0>
—
0000
BMXDUPBA<15:0>
0000
0000
xxxx
BMXDRMSZ<31:0>
xxxx
—
—
—
—
—
—
—
—
—
BMXPUPBA<15:0>
BMXPFMSZ<31:0>
—
—
—
BMXPUPBA<19:16>
0000
0000
xxxx
xxxx
0000
BMX
BMXBOOTSZ<31:0>
BOOTSZ 15:0
3000
Legend:
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
This register has corresponding CLR, SET,and INV Registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
2070
PIC32MX3XX/4XX
DS61143G-page 48
TABLE 4-1:
© 2010 Microchip Technology Inc.
INTCON
1010
INTSTAT
1020
IPTMR
1030
IFS0
1040
IFS1
1060
IEC0
1070
IEC1
1090
IPC0
10A0
10B0
10C0
10E0
10F0
1100
1110
DS61143G-page 49
1120
1140
Legend:
Note 1:
IPC2
IPC3
IPC4
IPC5
IPC6
IPC7
IPC8
IPC9
IPC11
30/14
29/13
28/12
27/11
26/10
—
31:16
—
—
—
—
—
15:0
—
FRZ
—
MVEC
—
31:16
—
—
—
—
—
15:0
—
—
—
—
—
25/9
24/8
23/7
22/6
21/5
—
—
—
—
—
—
—
—
—
SS0
0000
—
—
—
INT4EP
INT3EP
INT2EP
INT1EP
INT0EP
0000
—
—
—
—
—
—
—
—
—
—
TPC<2:0>
—
—
—
RIPL<2:0>
31:16
20/4
19/3
18/2
17/1
16/0
VEC<5:0>
0000
IPTMR<31:0>
15:0
31:16
I2C1MIF
I2C1SIF
I2C1BIF
U1TXIF
U1RXIF
U1EIF
SPI1RXIF
0000
0000
0000
SPI1TXIF
SPI1EIF
OC5IF
IC5IF
T5IF
INT4IF
OC4IF
IC4IF
T4IF
0000
0000
15:0
INT3IF
OC3IF
IC3IF
T3IF
INT2IF
OC2IF
IC2IF
T2IF
INT1IF
OC1IF
IC1IF
T1IF
INT0IF
CS1IF
CS0IF
CTIF
31:16
—
—
—
—
—
—
USBIF
FCEIF
—
—
—
—
DMA3IF
DMA2IF
DMA1IF
DMA0IF
0000
15:0
RTCCIF
FSCMIF
I2C2MIF
I2C2SIF
I2C2BIF
U2TXIF
U2RXIF
U2EIF
SPI2RXIF
SPI2TXIF
SPI2EIF
CMP2IF
CMP1IF
PMPIF
AD1IF
CNIF
0000
31:16
I2C1MIE
I2C1SIE
I2C1BIE
U1TXIE
U1RXIE
U1EIE
SPI1EIE
OC5IE
IC5IE
T5IE
INT4IE
OC4IE
IC4IE
T4IE
0000
15:0
INT3IE
OC3IE
IC3IE
T3IE
INT2IE
OC2IE
IC2IE
T2IE
INT1IE
OC1IE
IC1IE
T1IE
INT0IE
CS1IE
CS0IE
CTIE
0000
31:16
—
—
—
—
—
—
USBIE
FCEIE
—
—
—
—
DMA3IE
DMA2IE
DMA1IE
DMA0IE
0000
15:0
RTCCIE
FSCMIE
I2C2MIE
I2C2SIE
I2C2BIE
U2TXIE
U2RXIE
U2EIE
SPI2RXIE
SPI2TXIE
SPI2EIE
CMP2IE
CMP1IE
PMPIE
AD1IE
CNIE
0000
31:16
—
—
—
INT0IP<2:0>
INT0IS<1:0>
—
—
—
CS1IP<2:0>
CS1IS<1:0>
0000
15:0
—
—
—
CS0IP<2:0>
CS0IS<1:0>
—
—
—
CTIP<2:0>
CTIS<1:0>
0000
31:16
—
—
—
INT1IP<2:0>
INT1IS<1:0>
—
—
—
OC1IP<2:0>
OC1IS<1:0>
0000
15:0
—
—
—
IC1IP<2:0>
IC1IS<1:0>
—
—
—
T1IP<2:0>
T1IS<1:0>
0000
31:16
—
—
—
INT2IP<2:0>
INT2IS<1:0>
—
—
—
OC2IP<2:0>
OC2IS<1:0>
0000
15:0
—
—
—
IC2IP<2:0>
IC2IS<1:0>
—
—
—
T2IP<2:0>
T2IS<1:0>
0000
31:16
—
—
—
INT3IP<2:0>
INT3IS<1:0>
—
—
—
OC3IP<2:0>
OC3IS<1:0>
0000
15:0
—
—
—
IC3IP<2:0>
IC3IS<1:0>
—
—
—
T3IP<2:0>
T3IS<1:0>
0000
31:16
—
—
—
INT4IP<2:0>
INT4IS<1:0>
—
—
—
OC4IP<2:0>
OC4IS<1:0>
0000
15:0
—
—
—
IC4IP<2:0>
IC4IS<1:0>
—
—
—
T4IP<2:0>
T4IS<1:0>
0000
31:16
—
—
—
SPI1IP<2:0>
SPI1IS<1:0>
—
—
—
OC5IP<2:0>
OC5IS<1:0>
0000
15:0
—
—
—
IC5IP<2:0>
IC5IS<1:0>
—
—
—
T5IP<2:0>
T5IS<1:0>
0000
31:16
—
—
—
AD1IP<2:0>
AD1IS<1:0>
—
—
—
CNIP<2:0>
CNIS<1:0>
0000
15:0
—
—
—
I2C1IP<2:0>
I2C1IS<1:0>
—
—
—
U1IP<2:0>
U1IS<1:0>
0000
31:16
—
—
—
SPI2IP<2:0>
SPI2IS<1:0>
—
—
—
CMP2IP<2:0>
CMP2IS<1:0>
0000
15:0
—
—
—
CMP1IP<2:0>
CMP1IS<1:0>
—
—
—
PMPIP<2:0>
PMPIS<1:0>
0000
31:16
—
—
—
RTCCIP<2:0>
RTCCIS<1:0>
—
—
—
FSCMIP<2:0>
FSCMIS<1:0>
0000
15:0
—
—
—
I2C2IP<2:0>
I2C2IS<1:0>
—
—
—
U2IP<2:0>
U2IS<1:0>
0000
31:16
—
—
—
DMA3IP<2:0>
DMA3IS<1:0>
—
—
—
DMA2IP<2:0>
DMA2IS<1:0>
0000
15:0
—
—
—
DMA1IP<2:0>
DMA1IS<1:0>
—
—
—
DMA0IP<2:0>
DMA0IS<1:0>
0000
31:16
—
—
—
—
—
—
—
—
0000
—
—
—
SPI1RXIE SPI1TXIE
—
—
—
—
—
15:0
—
—
—
USBIP<2:0>
USBIS<1:0>
—
—
—
FCEIP<2:0>
FCEIS<1:0>
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
10D0
IPC1
31/15
All Resets
1000
Bit Range
Register
Name
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
INTERRUPT REGISTERS MAP FOR PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY(1)
TABLE 4-2:
INTERRUPT REGISTERS MAP FOR PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX340F128L,
PIC32MX340F256L AND PIC32MX340F512L DEVICES ONLY(1)
INTCON
1010
INTSTAT
1020
IPTMR
1030
IFS0
1040
IFS1
1060
IEC0
1070
IEC1
1090
IPC0
10A0
IPC1
10B0
IPC2
10C0
IPC3
10D0
IPC4
10E0
IPC5
10F0
IPC6
1100
IPC7
1110
IPC8
1120
IPC9
1140
IPC11
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
—
31:16
—
—
—
—
—
15:0
—
FRZ
—
MVEC
—
31:16
—
—
—
—
—
15:0
—
—
—
—
—
25/9
24/8
23/7
22/6
21/5
—
—
—
—
—
—
—
—
—
SS0
0000
—
—
—
INT4EP
INT3EP
INT2EP
INT1EP
INT0EP
0000
—
—
—
—
—
—
—
—
—
—
TPC<2:0>
—
—
—
RIPL<2:0>
31:16
20/4
19/3
18/2
17/1
16/0
All Resets
1000
Bit Range
Register
Name
© 2010 Microchip Technology Inc.
Virtual Address
(BF88_#)
Bits
VEC<5:0>
0000
IPTMR<31:0>
15:0
31:16
I2C1MIF
I2C1SIF
I2C1BIF
U1TXIF
U1RXIF
U1EIF
SPI1RXIF
0000
0000
0000
SPI1TXIF
SPI1EIF
OC5IF
IC5IF
T5IF
INT4IF
OC4IF
IC4IF
T4IF
0000
0000
15:0
INT3IF
OC3IF
IC3IF
T3IF
INT2IF
OC2IF
IC2IF
T2IF
INT1IF
OC1IF
IC1IF
T1IF
INT0IF
CS1IF
CS0IF
CTIF
31:16
—
—
—
—
—
—
—
FCEIF
—
—
—
—
DMA3IF
DMA2IF
DMA1IF
DMA0IF
0000
15:0
RTCCIF
FSCMIF
I2C2MIF
I2C2SIF
I2C2BIF
U2TXIF
U2RXIF
U2EIF
SPI2RXIF
SPI2TXIF
SPI2EIF
CMP2IF
CMP1IF
PMPIF
AD1IF
CNIF
0000
31:16
I2C1MIE
I2C1SIE
I2C1BIE
U1TXIE
U1RXIE
U1EIE
SPI1EIE
OC5IE
IC5IE
T5IE
INT4IE
OC4IE
IC4IE
T4IE
0000
15:0
INT3IE
OC3IE
IC3IE
T3IE
INT2IE
OC2IE
IC2IE
T2IE
INT1IE
OC1IE
IC1IE
T1IE
INT0IE
CS1IE
CS0IE
CTIE
0000
31:16
—
—
—
—
—
—
—
FCEIE
—
—
—
—
DMA3IE
DMA2IE
DMA1IE
DMA0IE
0000
15:0
RTCCIE
FSCMIE
I2C2MIE
—
—
—
—
—
SPI2RXIE
SPI2TXIE
SPI2EIE
CMP2IE
CMP1IE
PMPIE
AD1IE
CNIE
0000
31:16
—
—
—
INT0IP<2:0>
INT0IS<1:0>
—
—
—
CS1IP<2:0>
CS1IS<1:0>
0000
15:0
—
—
—
CS0IP<2:0>
CS0IS<1:0>
—
—
—
CTIP<2:0>
CTIS<1:0>
0000
31:16
—
—
—
INT1IP<2:0>
INT1IS<1:0>
—
—
—
OC1IP<2:0>
OC1IS<1:0>
0000
15:0
—
—
—
IC1IP<2:0>
IC1IS<1:0>
—
—
—
T1IP<2:0>
T1IS<1:0>
0000
31:16
—
—
—
INT2IP<2:0>
INT2IS<1:0>
—
—
—
OC2IP<2:0>
OC2IS<1:0>
0000
15:0
—
—
—
IC2IP<2:0>
IC2IS<1:0>
—
—
—
T2IP<2:0>
T2IS<1:0>
0000
31:16
—
—
—
INT3IP<2:0>
INT3IS<1:0>
—
—
—
OC3IP<2:0>
OC3IS<1:0>
0000
15:0
—
—
—
IC3IP<2:0>
IC3IS<1:0>
—
—
—
T3IP<2:0>
T3IS<1:0>
0000
31:16
—
—
—
INT4IP<2:0>
INT4IS<1:0>
—
—
—
OC4IP<2:0>
OC4IS<1:0>
0000
15:0
—
—
—
IC4IP<2:0>
IC4IS<1:0>
—
—
—
T4IP<2:0>
T4IS<1:0>
0000
31:16
—
—
—
SPI1IP<2:0>
SPI1IS<1:0>
—
—
—
OC5IP<2:0>
OC5IS<1:0>
0000
15:0
—
—
—
IC5IP<2:0>
IC5IS<1:0>
—
—
—
T5IP<2:0>
T5IS<1:0>
0000
31:16
—
—
—
AD1IP<2:0>
AD1IS<1:0>
—
—
—
CNIP<2:0>
CNIS<1:0>
0000
15:0
—
—
—
I2C1IP<2:0>
I2C1IS<1:0>
—
—
—
U1IP<2:0>
U1IS<1:0>
0000
31:16
—
—
—
SPI2IP<2:0>
SPI2IS<1:0>
—
—
—
CMP2IP<2:0>
CMP2IS<1:0>
0000
15:0
—
—
—
CMP1IP<2:0>
CMP1IS<1:0>
—
—
—
PMPIP<2:0>
PMPIS<1:0>
0000
31:16
—
—
—
RTCCIP<2:0>
RTCCIS<1:0>
—
—
—
FSCMIP<2:0>
FSCMIS<1:0>
0000
15:0
—
—
—
I2C2IP<2:0>
I2C2IS<1:0>
—
—
—
U2IP<2:0>
U2IS<1:0>
0000
31:16
—
—
—
DMA3IP<2:0>
DMA3IS<1:0>
—
—
—
DMA2IP<2:0>
DMA2IS<1:0>
0000
15:0
—
—
—
DMA1IP<2:0>
DMA1IS<1:0>
—
—
—
DMA0IP<2:0>
DMA0IS<1:0>
0000
31:16
—
—
—
—
—
—
—
—
0000
—
—
—
SPI1RXIE SPI1TXIE
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
FCEIP<2:0>
FCEIS<1:0>
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
DS61143G-page 50
TABLE 4-3:
INTERRUPT REGISTERS MAP FOR PIC32MX320F032H, PIC32MXF064H, PIC32MX320F128H AND PIC32MX320F128L
DEVICES ONLY(1)
INTCON
1010
INTSTAT
1020
IPTMR
1030
IFS0
1040
IFS1
1060
IEC0
1070
1090
10A0
10B0
10D0
10E0
10F0
1100
1110
DS61143G-page 51
1140
Legend:
Note 1:
IPC0
IPC1
IPC2
IPC3
IPC4
IPC5
IPC6
IPC7
IPC8
IPC11
30/14
29/13
28/12
27/11
26/10
—
31:16
—
—
—
—
—
15:0
—
FRZ
—
MVEC
—
31:16
—
—
—
—
—
15:0
—
—
—
—
—
25/9
24/8
23/7
22/6
21/5
—
—
—
—
—
—
—
—
—
SS0
0000
—
—
—
INT4EP
INT3EP
INT2EP
INT1EP
INT0EP
0000
—
—
—
—
—
—
—
—
—
—
TPC<2:0>
—
—
—
RIPL<2:0>
31:16
20/4
19/3
18/2
17/1
16/0
VEC<5:0>
0000
IPTMR<31:0>
15:0
31:16
I2C1MIF
I2C1SIF
I2C1BIF
U1TXIF
U1RXIF
U1EIF
SPI1RXIF
0000
0000
0000
SPI1TXIF
SPI1EIF
OC5IF
IC5IF
T5IF
INT4IF
OC4IF
IC4IF
T4IF
0000
0000
15:0
INT3IF
OC3IF
IC3IF
T3IF
INT2IF
OC2IF
IC2IF
T2IF
INT1IF
OC1IF
IC1IF
T1IF
INT0IF
CS1IF
CS0IF
CTIF
31:16
—
—
—
—
—
—
—
FCEIF
—
—
—
—
—
—
—
—
0000
15:0
RTCCIF
FSCMIF
I2C2MIF
I2C2SIF
I2C2BIF
U2TXIF
U2RXIF
U2EIF
SPI2RXIF
SPI2TXIF
SPI2EIF
CMP2IF
CMP1IF
PMPIF
AD1IF
CNIF
0000
31:16
I2C1MIE
I2C1SIE
I2C1BIE
U1TXIE
U1RXIE
U1EIE
SPI1EIE
OC5IE
IC5IE
T5IE
INT4IE
OC4IE
IC4IE
T4IE
0000
15:0
INT3IE
OC3IE
IC3IE
T3IE
INT2IE
OC2IE
IC2IE
T2IE
INT1IE
OC1IE
IC1IE
T1IE
INT0IE
CS1IE
CS0IE
CTIE
0000
31:16
—
—
—
—
—
—
—
FCEIE
—
—
—
—
—
—
—
—
0000
15:0
RTCCIE
FSCMIE
I2C2MIE
—
—
—
—
—
SPI2RXIE
SPI2TXIE
SPI2EIE
CMP2IE
CMP1IE
PMPIE
AD1IE
CNIE
31:16
—
—
—
INT0IS<1:0>
—
—
—
INT0IP<2:0>
SPI1RXIE SPI1TXIE
CS1IP<2:0>
0000
CS1IS<1:0>
0000
15:0
—
—
—
CS0IP<2:0>
CS0IS<1:0>
—
—
—
CTIP<2:0>
CTIS<1:0>
0000
31:16
—
—
—
INT1IP<2:0>
INT1IS<1:0>
—
—
—
OC1IP<2:0>
OC1IS<1:0>
0000
15:0
—
—
—
IC1IP<2:0>
IC1IS<1:0>
—
—
—
T1IP<2:0>
T1IS<1:0>
0000
31:16
—
—
—
INT2IP<2:0>
INT2IS<1:0>
—
—
—
OC2IP<2:0>
OC2IS<1:0>
0000
15:0
—
—
—
IC2IP<2:0>
IC2IS<1:0>
—
—
—
T2IP<2:0>
T2IS<1:0>
0000
31:16
—
—
—
INT3IP<2:0>
INT3IS<1:0>
—
—
—
OC3IP<2:0>
OC3IS<1:0>
0000
15:0
—
—
—
IC3IP<2:0>
IC3IS<1:0>
—
—
—
T3IP<2:0>
T3IS<1:0>
0000
31:16
—
—
—
INT4IP<2:0>
INT4IS<1:0>
—
—
—
OC4IP<2:0>
OC4IS<1:0>
0000
15:0
—
—
—
IC4IP<2:0>
IC4IS<1:0>
—
—
—
T4IP<2:0>
T4IS<1:0>
0000
31:16
—
—
—
SPI1IP<2:0>
SPI1IS<1:0>
—
—
—
OC5IP<2:0>
OC5IS<1:0>
0000
15:0
—
—
—
IC5IP<2:0>
IC5IS<1:0>
—
—
—
T5IP<2:0>
T5IS<1:0>
0000
31:16
—
—
—
AD1IP<2:0>
AD1IS<1:0>
—
—
—
CNIP<2:0>
CNIS<1:0>
0000
15:0
—
—
—
I2C1IP<2:0>
I2C1IS<1:0>
—
—
—
U1IP<2:0>
U1IS<1:0>
0000
31:16
—
—
—
SPI2IP<2:0>
SPI2IS<1:0>
—
—
—
CMP2IP<2:0>
CMP2IS<1:0>
0000
15:0
—
—
—
CMP1IP<2:0>
CMP1IS<1:0>
—
—
—
PMPIP<2:0>
PMPIS<1:0>
0000
31:16
—
—
—
RTCCIP<2:0>
RTCCIS<1:0>
—
—
—
FSCMIP<2:0>
FSCMIS<1:0>
0000
15:0
—
—
—
I2C2IP<2:0>
I2C2IS<1:0>
—
—
—
U2IP<2:0>
U2IS<1:0>
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
—
—
—
—
—
—
—
FCEIP<2:0>
FCEIS<1:0>
0000
15:0
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
10C0
IEC1
31/15
All Resets
1000
Bit Range
Register
Name
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
TABLE 4-4:
INTCON
1010
INTSTAT
1020
IPTMR
1030
IFS0
1040
IFS1
1060
IEC0
1070
IEC1
1090
IPC0
10A0
IPC1
10B0
IPC2
10C0
IPC3
10D0
IPC4
10E0
IPC5
10F0
IPC6
1100
IPC7
1110
IPC8
1120
IPC9
1140
IPC11
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
—
31:16
—
—
—
—
—
15:0
—
FRZ
—
MVEC
—
31:16
—
—
—
—
—
15:0
—
—
—
—
—
25/9
24/8
23/7
22/6
21/5
—
—
—
—
—
—
—
—
—
SS0
0000
—
—
—
INT4EP
INT3EP
INT2EP
INT1EP
INT0EP
0000
—
—
—
—
—
—
—
—
—
—
TPC<2:0>
—
—
—
RIPL<2:0>
31:16
20/4
19/3
18/2
17/1
16/0
All Resets
1000
Bit Range
Register
Name
© 2010 Microchip Technology Inc.
Virtual Address
(BF88_#)
Bits
VEC<5:0>
0000
IPTMR<31:0>
15:0
0000
0000
0000
31:16
I2C1MIF
I2C1SIF
I2C1BIF
U1TXIF
U1RXIF
U1EIF
—
—
—
OC5IF
IC5IF
T5IF
INT4IF
OC4IF
IC4IF
T4IF
0000
15:0
INT3IF
OC3IF
IC3IF
T3IF
INT2IF
OC2IF
IC2IF
T2IF
INT1IF
OC1IF
IC1IF
T1IF
INT0IF
CS1IF
CS0IF
CTIF
0000
31:16
—
—
—
—
—
—
USBIF
FCEIF
—
—
—
—
DMA3IF
DMA2IF
DMA1IF
DMA0IF
0000
15:0
RTCCIF
FSCMIF
I2C2MIF
I2C2SIF
I2C2BIF
U2TXIF
U2RXIF
U2EIF
SPI2RXIF
SPI2TXIF
SPI2EIF
CMP2IF
CMP1IF
PMPIF
AD1IF
CNIF
0000
31:16
I2C1MIE
I2C1SIE
I2C1BIE
U1TXIE
U1RXIE
U1EIE
—
—
—
OC5IE
IC5IE
T5IE
INT4IE
OC4IE
IC4IE
T4IE
0000
15:0
INT3IE
OC3IE
IC3IE
T3IE
INT2IE
OC2IE
IC2IE
T2IE
INT1IE
OC1IE
IC1IE
T1IE
INT0IE
CS1IE
CS0IE
CTIE
0000
31:16
—
—
—
—
—
—
USBIE
FCEIE
—
—
—
—
DMA3IE
DMA2IE
DMA1IE
DMA0IE
0000
15:0
RTCCIE
FSCMIE
I2C2MIE
I2C2SIE
I2C2BIE
U2TXIE
U2RXIE
U2EIE
SPI2RXIE
SPI2TXIE
SPI2EIE
CMP2IE
CMP1IE
PMPIE
AD1IE
CNIE
0000
31:16
—
—
—
INT0IP<2:0>
INT0IS<1:0>
—
—
—
CS1IP<2:0>
CS1IS<1:0>
0000
15:0
—
—
—
CS0IP<2:0>
CS0IS<1:0>
—
—
—
CTIP<2:0>
CTIS<1:0>
0000
31:16
—
—
—
INT1IP<2:0>
INT1IS<1:0>
—
—
—
OC1IP<2:0>
OC1IS<1:0>
0000
15:0
—
—
—
IC1IP<2:0>
IC1IS<1:0>
—
—
—
T1IP<2:0>
T1IS<1:0>
0000
31:16
—
—
—
INT2IP<2:0>
INT2IS<1:0>
—
—
—
OC2IP<2:0>
OC2IS<1:0>
0000
15:0
—
—
—
IC2IP<2:0>
IC2IS<1:0>
—
—
—
T2IP<2:0>
T2IS<1:0>
0000
31:16
—
—
—
INT3IP<2:0>
INT3IS<1:0>
—
—
—
OC3IP<2:0>
OC3IS<1:0>
0000
15:0
—
—
—
IC3IP<2:0>
IC3IS<1:0>
—
—
—
T3IP<2:0>
T3IS<1:0>
0000
31:16
—
—
—
INT4IP<2:0>
INT4IS<1:0>
—
—
—
OC4IP<2:0>
OC4IS<1:0>
0000
15:0
—
—
—
IC4IP<2:0>
IC4IS<1:0>
—
—
—
T4IP<2:0>
T4IS<1:0>
0000
31:16
—
—
—
—
—
—
OC5IP<2:0>
OC5IS<1:0>
0000
15:0
—
—
—
IC5IP<2:0>
IC5IS<1:0>
—
—
—
T5IP<2:0>
T5IS<1:0>
0000
31:16
—
—
—
AD1IP<2:0>
AD1IS<1:0>
—
—
—
CNIP<2:0>
CNIS<1:0>
0000
15:0
—
—
—
I2C1IP<2:0>
I2C1IS<1:0>
—
—
—
U1IP<2:0>
U1IS<1:0>
0000
31:16
—
—
—
SPI2IP<2:0>
SPI2IS<1:0>
—
—
—
CMP2IP<2:0>
CMP2IS<1:0>
0000
15:0
—
—
—
CMP1IP<2:0>
CMP1IS<1:0>
—
—
—
PMPIP<2:0>
PMPIS<1:0>
0000
31:16
—
—
—
RTCCIP<2:0>
RTCCIS<1:0>
—
—
—
FSCMIP<2:0>
FSCMIS<1:0>
0000
15:0
—
—
—
I2C2IP<2:0>
I2C2IS<1:0>
—
—
—
U2IP<2:0>
U2IS<1:0>
0000
31:16
—
—
—
DMA3IP<2:0>
DMA3IS<1:0>
—
—
—
DMA2IP<2:0>
DMA2IS<1:0>
0000
15:0
—
—
—
DMA1IP<2:0>
DMA1IS<1:0>
—
—
—
DMA0IP<2:0>
DMA0IS<1:0>
0000
31:16
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
USBIP<2:0>
USBIS<1:0>
—
—
—
FCEIP<2:0>
FCEIS<1:0>
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
DS61143G-page 52
INTERRUPT REGISTERS MAP FOR PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H DEVICES ONLY(1)
TABLE 4-5:
INTCON
1010
INTSTAT
1020
IPTMR
1030
IFS0
1040
IFS1
1060
IEC0
1070
1090
10A0
10B0
10C0
10E0
10F0
1100
1110
DS61143G-page 53
1140
Legend:
Note 1:
IPC0
IPC1
IPC2
IPC3
IPC4
IPC5
IPC6
IPC7
IPC8
IPC11
30/14
29/13
28/12
27/11
26/10
—
31:16
—
—
—
—
—
15:0
—
FRZ
—
MVEC
—
31:16
—
—
—
—
—
15:0
—
—
—
—
—
25/9
24/8
23/7
22/6
21/5
—
—
—
—
—
—
—
—
—
SS0
0000
—
—
—
INT4EP
INT3EP
INT2EP
INT1EP
INT0EP
0000
—
—
—
—
—
—
—
—
—
—
TPC<2:0>
—
—
—
RIPL<2:0>
31:16
20/4
19/3
18/2
17/1
16/0
VEC<5:0>
0000
IPTMR<31:0>
15:0
0000
0000
0000
31:16
I2C1MIF
I2C1SIF
I2C1BIF
U1TXIF
U1RXIF
U1EIF
—
—
—
OC5IF
IC5IF
T5IF
INT4IF
OC4IF
IC4IF
T4IF
0000
15:0
INT3IF
OC3IF
IC3IF
T3IF
INT2IF
OC2IF
IC2IF
T2IF
INT1IF
OC1IF
IC1IF
T1IF
INT0IF
CS1IF
CS0IF
CTIF
0000
31:16
—
—
—
—
—
—
USBIF
FCEIF
—
—
—
—
—
—
—
—
0000
15:0
RTCCIF
FSCMIF
I2C2MIF
I2C2SIF
I2C2BIF
U2TXIF
U2RXIF
U2EIF
SPI2RXIF
SPI2TXIF
SPI2EIF
CMP2IF
CMP1IF
PMPIF
AD1IF
CNIF
0000
31:16
I2C1MIE
I2C1SIE
I2C1BIE
U1TXIE
U1RXIE
U1EIE
—
—
—
OC5IE
IC5IE
T5IE
INT4IE
OC4IE
IC4IE
T4IE
0000
15:0
INT3IE
OC3IE
IC3IE
T3IE
INT2IE
OC2IE
IC2IE
T2IE
INT1IE
OC1IE
IC1IE
T1IE
INT0IE
CS1IE
CS0IE
CTIE
0000
31:16
—
—
—
—
—
—
USBIE
FCEIE
—
—
—
—
—
—
—
—
0000
15:0
RTCCIE
FSCMIE
I2C2MIE
I2C2SIE
I2C2BIE
U2TXIE
U2RXIE
U2EIE
SPI2RXIE
SPI2TXIE
SPI2EIE
CMP2IE
CMP1IE
PMPIE
AD1IE
CNIE
31:16
—
—
—
INT0IS<1:0>
—
—
—
INT0IP<2:0>
CS1IP<2:0>
0000
CS1IS<1:0>
0000
15:0
—
—
—
CS0IP<2:0>
CS0IS<1:0>
—
—
—
CTIP<2:0>
CTIS<1:0>
0000
31:16
—
—
—
INT1IP<2:0>
INT1IS<1:0>
—
—
—
OC1IP<2:0>
OC1IS<1:0>
0000
15:0
—
—
—
IC1IP<2:0>
IC1IS<1:0>
—
—
—
T1IP<2:0>
T1IS<1:0>
0000
31:16
—
—
—
INT2IP<2:0>
INT2IS<1:0>
—
—
—
OC2IP<2:0>
OC2IS<1:0>
0000
15:0
—
—
—
IC2IP<2:0>
IC2IS<1:0>
—
—
—
T2IP<2:0>
T2IS<1:0>
0000
31:16
—
—
—
INT3IP<2:0>
INT3IS<1:0>
—
—
—
OC3IP<2:0>
OC3IS<1:0>
0000
15:0
—
—
—
IC3IP<2:0>
IC3IS<1:0>
—
—
—
T3IP<2:0>
T3IS<1:0>
0000
31:16
—
—
—
INT4IP<2:0>
INT4IS<1:0>
—
—
—
OC4IP<2:0>
OC4IS<1:0>
0000
15:0
—
—
—
IC4IP<2:0>
IC4IS<1:0>
—
—
—
T4IP<2:0>
T4IS<1:0>
0000
31:16
—
—
—
—
—
—
OC5IP<2:0>
OC5IS<1:0>
0000
15:0
—
—
—
IC5IP<2:0>
IC5IS<1:0>
—
—
—
T5IP<2:0>
T5IS<1:0>
0000
31:16
—
—
—
AD1IP<2:0>
AD1IS<1:0>
—
—
—
CNIP<2:0>
CNIS<1:0>
0000
15:0
—
—
—
I2C1IP<2:0>
I2C1IS<1:0>
—
—
—
U1IP<2:0>
U1IS<1:0>
0000
31:16
—
—
—
SPI2IP<2:0>
SPI2IS<1:0>
—
—
—
CMP2IP<2:0>
CMP2IS<1:0>
0000
15:0
—
—
—
CMP1IP<2:0>
CMP1IS<1:0>
—
—
—
PMPIP<2:0>
PMPIS<1:0>
0000
31:16
—
—
—
RTCCIP<2:0>
RTCCIS<1:0>
—
—
—
FSCMIP<2:0>
FSCMIS<1:0>
0000
15:0
—
—
—
I2C2IP<2:0>
I2C2IS<1:0>
—
—
—
U2IP<2:0>
U2IS<1:0>
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
USBIP<2:0>
USBIS<1:0>
—
—
—
FCEIP<2:0>
FCEIS<1:0>
0000
15:0
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
10D0
IEC1
31/15
All Resets
1000
Bit Range
Register
Name
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
INTERRUPT REGISTERS MAP FOR THE PIC32MX420F032H DEVICE ONLY(1)
TABLE 4-6:
T1CON
0610
TMR1
0620
0800
PR1
T2CON
0810
TMR2
0820
0A00
PR2
T3CON
0A10
TMR3
0A20
0C00
PR3
T4CON
0C10
TMR4
0C20
© 2010 Microchip Technology Inc.
0E00
PR4
T5CON
0E10
0E20
Legend:
Note 1:
TMR5
PR5
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Register
Name
0600
Bit Range
Virtual Address
(BF80_#)
Bits
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
ON
FRZ
SIDL
TWDIS
TWIP
—
—
—
TGATE
—
TCKPS<1:0>
—
TSYNC
TCS
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
31:16
TMR1<15:0>
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
TGATE
31:16
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
TGATE
31:16
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
T32
—
TCS
—
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
TGATE
31:16
—
—
—
—
—
—
—
—
—
15:0
TCKPS<2:0>
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
TCS
—
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
TGATE
31:16
—
—
—
—
—
—
—
—
—
15:0
TCKPS<2:0>
—
—
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
T32
—
TCS
—
0000
—
—
—
—
0000
FFFF
TCKPS<2:0>
—
—
—
0000
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
TCS
—
0000
—
—
—
—
0000
FFFF
TCKPS<2:0>
—
—
—
TMR5<15:0>
—
0000
FFFF
PR4<15:0>
31:16
0000
0000
TMR4<15:0>
15:0
0000
FFFF
PR3<15:0>
31:16
31:16
—
TMR3<15:0>
15:0
31:16
—
PR2<15:0>
31:16
31:16
—
TMR2<15:0>
15:0
0000
0000
PR1<15:0>
31:16
31:16
—
0000
0000
—
—
—
—
—
—
—
0000
15:0
PR5<15:0>
FFFF
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
DS61143G-page 54
TIMER1-5 REGISTERS MAP(1)
TABLE 4-7:
2010
IC1BUF
IC2CON(1)
2210
2400
IC2BUF
IC3CON(1)
2410
2600
IC3BUF
IC4CON(1)
2610
2800
IC4BUF
IC5CON(1)
2810
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
—
—
31:16
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
FEDGE
C32
ICTMR
31:16
ICI<1:0>
20/4
19/3
18/2
—
—
—
ICOV
ICBNE
17/1
16/0
—
—
ICM<2:0>
xxxx
IC1BUF<31:0>
15:0
0000
0000
xxxx
31:16
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
FEDGE
C32
ICTMR
31:16
—
—
ICI<1:0>
—
—
ICOV
ICBNE
—
—
—
ICM<2:0>
xxxx
IC2BUF<31:0>
15:0
0000
0000
xxxx
31:16
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
FEDGE
C32
ICTMR
31:16
—
—
ICI<1:0>
—
—
ICOV
ICBNE
—
—
—
ICM<2:0>
xxxx
IC3BUF<31:0>
15:0
0000
0000
xxxx
31:16
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
FEDGE
C32
ICTMR
31:16
—
—
ICI<1:0>
—
—
ICOV
ICBNE
—
—
—
ICM<2:0>
xxxx
IC4BUF<31:0>
15:0
0000
0000
xxxx
31:16
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
FEDGE
C32
ICTMR
—
—
ICI<1:0>
—
—
ICOV
ICBNE
—
—
ICM<2:0>
—
0000
0000
31:16
xxxx
IC5BUF<31:0>
15:0
xxxx
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This register has corresponding CLR, SET and INV Registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
IC5BUF
DS61143G-page 55
PIC32MX3XX/4XX
Legend:
Note 1:
31/15
All Resets
IC1CON(1)
Bit Range
Register
Name
2000
2200
INPUT CAPTURE1-5 REGISTERS MAP
Bits
Virtual Address
(BF80_#)
© 2010 Microchip Technology Inc.
TABLE 4-8:
3000 OC1CON
3010
3020
OC1R
OC1RS
3200 OC2CON
3210
3220
OC2R
OC2RS
3400 OC3CON
3410
3420
OC3R
OC3RS
3600 OC4CON
3610
3620
OC4R
OC4RS
© 2010 Microchip Technology Inc.
3800 OC5CON
3810
3820
OC5R
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
—
—
OC32
OCFLT
OCTSEL
31:16
—
0000
0000
xxxx
xxxx
OC1RS<31:0>
15:0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
—
—
OC32
OCFLT
OCTSEL
31:16
—
—
—
OCM<2:0>
0000
0000
xxxx
OC2R<31:0>
15:0
xxxx
31:16
15:0
xxxx
OC2RS<31:0>
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
—
—
OC32
OCFLT
OCTSEL
31:16
—
—
—
OCM<2:0>
0000
0000
xxxx
OC3R<31:0>
15:0
xxxx
31:16
15:0
xxxx
OC3RS<31:0>
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
—
—
OC32
OCFLT
OCTSEL
31:16
—
—
—
OCM<2:0>
0000
0000
xxxx
OC4R<31:0>
15:0
xxxx
31:16
15:0
xxxx
OC4RS<31:0>
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
—
—
OC32
OCFLT
OCTSEL
31:16
—
OCM<2:0>
xxxx
31:16
15:0
16/0
OC1R<31:0>
15:0
31:16
17/1
OC5R<31:0>
—
—
OCM<2:0>
—
0000
0000
xxxx
xxxx
xxxx
OC5RS<31:0>
15:0
xxxx
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
OC5RS
Legend:
Note 1:
31/15
All Resets
Bit Range
Register
Name
Virtual Address
(BF80_#)
Bits
PIC32MX3XX/4XX
DS61143G-page 56
OUTPUT COMPARE1-5 REGISTERS MAP(1)
TABLE 4-9:
I2C1CON
5010
5020
5030
5040
5050
5260
5200
5210
5230
5240
5250
5260
I2C1ADD
I2C1MSK
I2C1BRG
I2C1TRN
I2C1RCV
I2C2CON
I2C2STAT
I2C2ADD
I2C2MSK
I2C2BRG
I2C2TRN
I2C2RCV
DS61143G-page 57
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
SCLREL
STRICT
A10M
DISSLW
SMEN
GCEN
STREN
ACKDT
ACKEN
RCEN
PEN
RSEN
SEN
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
ACKSTAT
TRSTAT
—
—
—
BCL
GCSTAT
ADD10
IWCOL
I2COV
D/A
P
S
R/W
RBF
TBF
0000
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
0000
0000
0000
ADD<9:0>
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
0000
—
—
—
—
—
0000
—
—
—
—
—
MSK<9:0>
15:0
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
0000
I2C1BRG<11:0>
—
—
0000
I2CT1DATA<7:0>
—
—
—
—
—
0000
0000
—
—
—
I2CR1DATA<7:0>
0000
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
SCLREL
STRICT
A10M
DISSLW
SMEN
GCEN
STREN
ACKDT
ACKEN
RCEN
PEN
RSEN
SEN
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
ACKSTAT
TRSTAT
—
—
—
BCL
GCSTAT
ADD10
IWCOL
I2COV
D/A
P
S
R/W
RBF
TBF
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
0000
—
—
—
—
—
ADD<9:0>
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
0000
MSK<9:0>
15:0
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
0000
I2C2BRG<11:0>
—
—
0000
I2CT2DATA<7:0>
—
—
—
—
—
0000
0000
—
—
—
15:0
—
—
—
—
—
—
—
—
I2CR2DATA<7:0>
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table except I2CxRCV have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV
Registers” for more information.
0000
0000
PIC32MX3XX/4XX
5220
I2C1STAT
31/15
All Resets
5000
Bit Range
Register
Name
Bits
Virtual Address
(BF80_#)
© 2010 Microchip Technology Inc.
I2C1-2 REGISTERS MAP(1)
TABLE 4-10:
6020
U1STA(1)
U1TXREG
6030
U1RXREG
6040
(1)
U1BRG
6200 U2MODE(1)
6210
6220
6230
6240
U2STA(1)
U2TXREG
U2RXREG
U2BRG(1)
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
—
—
31:16
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
IREN
RTSMD
—
31:16
—
—
—
—
—
—
—
ADM_EN
15:0
UTXISEL<1:0>
UTXINV
URXEN
UTXBRK
UTXEN
UTXBF
TRMT
31:16
—
—
—
—
—
—
—
—
UEN<1:0>
15:0
—
—
—
—
—
—
—
TX8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
RX8
31:16
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
23/7
22/6
21/5
20/4
19/3
18/2
17/1
—
—
—
—
—
—
—
WAKE
LPBACK
ABAUD
RXINV
BRGH
PDSEL<1:0>
16/0
—
0000
STSEL
0000
ADDR<7:0>
URXISEL<1:0>
0000
ADDEN
RIDLE
PERR
FERR
OERR
URXDA
0110
—
—
—
—
—
0000
—
—
—
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
0000
WAKE
LPBACK
ABAUD
RXINV
BRGH
STSEL
0000
Transmit Register
—
—
0000
Receive Register
0000
BRG<15:0>
15:0
ON
FRZ
SIDL
IREN
RTSMD
—
31:16
—
—
—
—
—
—
—
UEN<1:0>
ADM_EN
15:0
UTXISEL<1:0>
UTXINV
URXEN
UTXBRK
UTXEN
UTXBF
TRMT
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
TX8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
RX8
31:16
—
—
—
—
—
—
—
—
All Resets
Bit Range
Register
Name
Virtual Address
(BF80_#)
Bits
6000 U1MODE(1)
6010
UART1-2 REGISTERS MAP
0000
PDSEL<1:0>
ADDR<7:0>
URXISEL<1:0>
0000
ADDEN
RIDLE
PERR
FERR
OERR
URXDA
0110
—
—
—
—
—
0000
—
—
—
0000
—
—
—
0000
—
—
—
—
—
—
—
—
—
Transmit Register
—
—
0000
Receive Register
—
—
0000
15:0
BRG<15:0>
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This register has corresponding CLR, SET and INV Registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
PIC32MX3XX/4XX
DS61143G-page 58
TABLE 4-11:
© 2010 Microchip Technology Inc.
SPI1CON
5810 SPI1STAT
5820
5830
SPI1BUF
SPI1BRG
5A00 SPI2CON
5A10 SPI2STAT
5A20
SPI2BUF
5A30 SPI2BRG
Legend:
Note 1:
2:
31/15
30/14
29/13
FRMSYNC FRMPOL
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
5800
Bit Range
Register
Name
Bits
Virtual Address
(BF80_#)
© 2010 Microchip Technology Inc.
SPI1-2 REGISTERS MAP(1,2)
TABLE 4-12:
31:16
FRMEN
—
—
—
—
—
—
—
—
—
—
—
SPIFE
—
0000
15:0
ON
FRZ
SIDL
DISSDO
MODE32
MODE16
SMP
CKE
SSEN
CKP
MSTEN
—
—
—
—
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
SPIBUSY
—
—
—
—
SPIROV
—
—
SPITBE
—
—
SPIRBF
31:16
DATA<31:0>
15:0
31:16
0000
0000
0000
—
15:0
—
31:16
FRMEN
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
FRMSYNC FRMPOL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
SPIFE
—
0000
BRG<8:0>
0000
15:0
ON
FRZ
SIDL
DISSDO
MODE32
MODE16
SMP
CKE
SSEN
CKP
MSTEN
—
—
—
—
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
SPIBUSY
—
—
—
—
SPIROV
—
—
SPITBE
—
—
SPIRBF
31:16
DATA<31:0>
15:0
31:16
0000
0000
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
BRG<8:0>
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table except SPIxBUF have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV
Registers” for more information.
SPI2 Module is not present on PIC32MX420FXXXX/440FXXXX devices.
0000
0000
PIC32MX3XX/4XX
DS61143G-page 59
9010 AD1CON2(1)
9020 AD1CON3(1)
9040 AD1CHS(1)
9060 AD1PCFG(1)
9050 AD1CSSL(1)
9070 ADC1BUF0
9080 ADC1BUF1
9090 ADC1BUF2
90A0 ADC1BUF3
90B0 ADC1BUF4
90C0 ADC1BUF5
© 2010 Microchip Technology Inc.
90D0 ADC1BUF6
90E0 ADC1BUF7
90F0 ADC1BUF8
31/15
30/14
29/13
28/12
27/11
26/10
—
31:16
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
25/9
24/8
23/7
—
—
—
FORM<2:0>
22/6
21/5
—
—
SSRC<2:0>
31:16
—
—
—
—
—
—
—
—
—
—
15:0
VCFG2
VCFG1
VCFG0
OFFCAL
—
CSCNA
—
—
BUFS
—
31:16
—
—
—
—
—
—
—
—
—
—
15:0
ADRC
—
—
31:16
CH0NB
—
—
—
15:0
—
—
—
—
—
18/2
—
17/1
16/0
—
—
—
—
—
0000
CLRASAM
—
ASAM
SAMP
DONE
0000
—
—
—
—
—
—
—
—
0000
BUFM
ALTS
0000
—
—
0000
ADCS<7:0>
CH0SB<3:0>
—
19/3
SMPI<3:0>
SAMC<4:0>
—
20/4
—
—
All Resets
Bit Range
Register
Name
Virtual Address
(BF80_#)
Bits
9000 AD1CON1(1)
CH0NA
—
—
—
—
—
—
—
0000
CH0SA<3:0>
—
—
—
0000
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
PCFG15
PCFG14
PCFG13
PCFG12
PCFG11
PCFG10
PCFG9
PCFG8
PCFG7
PCFG6
PCFG5
PCFG4
PCFG3
PCFG2
PCFG1
PCFG0
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
CSSL15
CSSL14
CSSL13
CSSL12
CSSL11
CSSL10
CSSL9
CSSL8
CSSL7
CSSL6
CSSL5
CSSL4
CSSL3
CSSL2
CSSL1
CSSL0
0000
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
ADC Result Word 0 (ADC1BUF0<31:0>)
0000
0000
ADC Result Word 1 (ADC1BUF1<31:0>)
0000
0000
ADC Result Word 2 (ADC1BUF2<31:0>)
0000
0000
ADC Result Word 3 (ADC1BUF3<31:0>)
0000
0000
ADC Result Word 4 (ADC1BUF4<31:0>)
0000
0000
ADC Result Word 5 (ADC1BUF5<31:0>)
0000
0000
ADC Result Word 6 (ADC1BUF6<31:0>)
0000
0000
ADC Result Word 7 (ADC1BUF7<31:0>)
0000
0000
ADC Result Word 8 (ADC1BUF8<31:0>)
0000
0000
0000
ADC Result Word 9 (ADC1BUF9<31:0>)
15:0
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This register has corresponding CLR, SET and INV Registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
9100 ADC1BUF9
Legend:
Note 1:
ADC REGISTERS MAP
PIC32MX3XX/4XX
DS61143G-page 60
TABLE 4-13:
9110 ADC1BUFA
9120 ADC1BUFB
9130 ADC1BUFC
9140 ADC1BUFD
9150 ADC1BUFE
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
ADC Result Word A (ADC1BUFA<31:0>)
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Bit Range
31:16
31/15
0000
0000
ADC Result Word B (ADC1BUFB<31:0>)
0000
0000
ADC Result Word C (ADC1BUFC<31:0>)
0000
0000
ADC Result Word D (ADC1BUFD<31:0>)
0000
0000
ADC Result Word E (ADC1BUFE<31:0>)
0000
0000
31:16
0000
ADC Result Word F (ADC1BUFF<31:0>)
15:0
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This register has corresponding CLR, SET and INV Registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
9160 ADC1BUFF
Legend:
Note 1:
ADC REGISTERS MAP (CONTINUED)
Bits
Register
Name
Virtual Address
(BF80_#)
© 2010 Microchip Technology Inc.
TABLE 4-13:
PIC32MX3XX/4XX
DS61143G-page 61
DMASTAT
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
29/13
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
ON
FRZ
SIDL
SUSPEND
—
—
—
—
—
—
—
—
—
—
—
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
—
—
—
—
RDWR
—
DMACH<1:0>
0000
31:16
DMA CRC REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DEVICES ONLY(1)
3030 DCRCCON
3040 DCRCDATA
3050 DCRCXOR
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
PLEN<3:0>
15:0
31:16
—
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
CRCEN
CRCAPP
—
—
—
—
CRCCH<1:0>
0000
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
DCRCDATA<15:0>
—
All Resets
Bit Range
Bits
Register
Name
Virtual Address
(BF88_#)
30/14
31:16
TABLE 4-15:
Legend:
Note 1:
31/15
0000
DMAADDR<31:0>
15:0
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This register has corresponding CLR, SET and INV Registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
3020 DMAADDR
Legend:
Note 1:
Bit Range
Register
Name
Virtual Address
(BF88_#)
Bits
3000 DMACON(1)
3010
DMA GLOBAL REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DEVICES ONLY
—
0000
0000
0000
15:0
DCRCXOR<15:0>
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
DS61143G-page 62
TABLE 4-14:
© 2010 Microchip Technology Inc.
3070 DCH0ECON
3090
DCH0INT
DCH0SSA
30A0 DCH0DSA
30B0 DCH0SSIZ
30C0 DCH0DSIZ
30D0 DCH0SPTR
30E0 DCH0DPTR
3100 DCH0CPTR
3110
DCH0DAT
3120 DCH1CON
3130 DCH1ECON
DS61143G-page 63
3140
3150
DCH1INT
29/13
28/12
27/11
26/10
25/9
31:16
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
CHCHNS
CHEN
CHAED
31:16
—
—
—
—
—
—
—
—
CFORCE
CABORT
PATEN
SIRQEN
AIRQEN
—
—
—
15:0
24/8
CHSIRQ<7:0>
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
CHCHN
CHAEN
—
—
—
—
—
CHEDET
CHPRI<1:0>
CHAIRQ<7:0>
All Resets
30/14
0000
0000
00FF
FF00
31:16
—
—
—
—
—
—
—
—
CHSDIE
CHSHIE
CHDDIE
CHDHIE
CHBCIE
CHCCIE
CHTAIE
CHERIE
0000
15:0
—
—
—
—
—
—
—
—
CHSDIF
CHSHIF
CHDDIF
CHDHIF
CHBCIF
CHCCIF
CHTAIF
CHERIF
0000
31:16
0000
CHSSA<31:0>
15:0
0000
31:16
0000
CHDSA<31:0>
15:0
0000
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CHSSIZ<7:0>
—
—
—
—
—
—
—
—
0000
—
—
—
0000
—
—
—
CHDSIZ<7:0>
—
—
—
—
—
—
—
—
—
0000
CHSTR<7:0>
—
0000
CHDPTR<7:0>
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
0000
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
CHCHNS
CHEN
CHAED
CHCHN
CHAEN
—
CHEDET
31:16
—
—
—
—
—
—
—
—
CFORCE
CABORT
PATEN
SIRQEN
AIRQEN
—
—
—
CHSIRQ<7:0>
15:0
CHCPTR<7:0>
—
—
0000
0000
CHCSIZ<7:0>
—
0000
0000
0000
CHPDAT<7:0>
0000
0000
—
—
CHPRI<1:0>
CHAIRQ<7:0>
0000
0000
00FF
FF00
31:16
—
—
—
—
—
—
—
—
CHSDIE
CHSHIE
CHDDIE
CHDHIE
CHBCIE
CHCCIE
CHTAIE
CHERIE
0000
15:0
—
—
—
—
—
—
—
—
CHSDIF
CHSHIF
CHDDIF
CHDHIF
CHBCIF
CHCCIF
CHTAIF
CHERIF
0000
31:16
0000
CHSSA<31:0>
15:0
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers except DCHxSPTR, DCHxDPTR and DCHxCPTR have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR,
SET and INV Registers” for more information.
DCH1SSA
Legend:
Note 1:
31/15
PIC32MX3XX/4XX
30F0 DCH0CSIZ
Bit Range
Register
Name
3060 DCH0CON
3080
DMA CHANNELS 0-3 REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX
DEVICES ONLY(1)
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
TABLE 4-16:
3170 DCH1SSIZ
3180 DCH1DSIZ
3190 DCH1SPTR
31A0 DCH1DPTR
31B0 DCH1CSIZ
31C0 DCH1CPTR
31D0 DCH1DAT
31E0 DCH2CON
31F0 DCH2ECON
3210
© 2010 Microchip Technology Inc.
3220
DCH2INT
DCH2SSA
DCH2DSA
3230 DCH2SSIZ
3240 DCH2DSIZ
3250 DCH2SPTR
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
31:16
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
0000
CHDSA<31:0>
15:0
All Resets
Register
Name
DCH1DSA
Bit Range
Virtual Address
(BF88_#)
Bits
3160
3200
DMA CHANNELS 0-3 REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX
DEVICES ONLY(1) (CONTINUED)
0000
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CHSSIZ<7:0>
—
—
—
—
—
—
—
—
0000
—
—
—
0000
—
—
—
CHDSIZ<7:0>
—
—
—
—
—
—
—
—
0000
CHSPTR<7:0>
—
—
0000
CHDPTR<7:0>
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
0000
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
CHCHNS
CHEN
CHAED
CHCHN
CHAEN
—
CHEDET
31:16
—
—
—
—
—
—
—
—
CFORCE
CABORT
PATEN
SIRQEN
AIRQEN
—
—
—
15:0
CHSIRQ<7:0>
CHCPTR<7:0>
—
—
0000
0000
CHCSIZ<7:0>
—
0000
0000
0000
CHPDAT<7:0>
0000
0000
—
—
CHPRI<1:0>
CHAIRQ<7:0>
0000
0000
00FF
FF00
31:16
—
—
—
—
—
—
—
—
CHSDIE
CHSHIE
CHDDIE
CHDHIE
CHBCIE
CHCCIE
CHTAIE
CHERIE
0000
15:0
—
—
—
—
—
—
—
—
CHSDIF
CHSHIF
CHDDIF
CHDHIF
CHBCIF
CHCCIF
CHTAIF
CHERIF
0000
31:16
0000
CHSSA<31:0>
15:0
0000
31:16
0000
CHDSA<31:0>
15:0
0000
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CHSSIZ<7:0>
—
—
—
—
—
—
—
—
0000
—
—
—
0000
CHDSIZ<7:0>
—
—
—
—
—
0000
0000
0000
—
—
—
—
—
—
—
—
CHSPTR<7:0>
0000
15:0
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers except DCHxSPTR, DCHxDPTR and DCHxCPTR have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR,
SET and INV Registers” for more information.
PIC32MX3XX/4XX
DS61143G-page 64
TABLE 4-16:
3270 DCH2CSIZ
3280 DCH2CPTR
DCH2DAT
32A0 DCH3CON
32B0 DCH3ECON
32C0
DCH3INT
32D0 DCH3SSA
32E0 DCH3DSA
3300 DCH3DSIZ
3310 DCH3SPTR
3320 DCH3DPTR
3330 DCH3CSIZ
DS61143G-page 65
3340 DCH3CPTR
3350
DCH3DAT
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
31:16
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
CHDPTR<7:0>
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
0000
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
CHCHNS
CHEN
CHAED
CHCHN
CHAEN
—
CHEDET
31:16
—
—
—
—
—
—
—
—
CFORCE
CABORT
PATEN
SIRQEN
AIRQEN
—
—
—
15:0
CHSIRQ<7:0>
CHCPTR<7:0>
—
—
0000
0000
CHCSIZ<7:0>
—
All Resets
31/15
0000
CHPDAT<7:0>
0000
0000
—
—
CHPRI<1:0>
CHAIRQ<7:0>
0000
0000
00FF
FF00
31:16
—
—
—
—
—
—
—
—
CHSDIE
CHSHIE
CHDDIE
CHDHIE
CHBCIE
CHCCIE
CHTAIE
CHERIE
0000
15:0
—
—
—
—
—
—
—
—
CHSDIF
CHSHIF
CHDDIF
CHDHIF
CHBCIF
CHCCIF
CHTAIF
CHERIF
0000
31:16
0000
CHSSA<31:0>
15:0
0000
31:16
0000
CHDSA<31:0>
15:0
0000
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
0000
—
—
—
CHSSIZ<7:0>
—
0000
CHDSIZ<7:0>
—
—
—
—
—
—
—
—
—
0000
CHSTR<7:0>
—
0000
CHDPTR<7:0>
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
0000
—
—
—
0000
CHCPTR<7:0>
—
—
0000
0000
CHCSIZ<7:0>
—
0000
0000
0000
15:0
—
—
—
—
—
—
—
—
CHPDAT<7:0>
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers except DCHxSPTR, DCHxDPTR and DCHxCPTR have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR,
SET and INV Registers” for more information.
PIC32MX3XX/4XX
32F0 DCH3SSIZ
Bit Range
Register
Name
3260 DCH2DPTR
3290
DMA CHANNELS 0-3 REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX
DEVICES ONLY(1) (CONTINUED)
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
TABLE 4-16:
CM1CON
A060
CM2CON
CMSTAT
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
—
31:16
—
—
—
—
—
—
—
—
15:0
ON
COE
CPOL
—
—
—
—
COUT
31:16
—
—
—
—
—
—
—
—
15:0
ON
COE
CPOL
—
—
—
—
COUT
31:16
—
—
—
—
—
—
—
—
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
EVPOL<1:0>
—
CREF
—
—
—
—
—
—
—
—
EVPOL<1:0>
—
CREF
—
—
—
—
—
—
—
—
CCH<1:0>
—
—
CCH<1:0>
—
—
0000
0000
0000
0000
0000
15:0
—
FRZ
SIDL
—
—
—
—
—
—
—
—
—
—
—
C2OUT
C1OUT 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
COMPARATOR VOLTAGE REFERENCE REGISTERS MAP(1)
TABLE 4-18:
Register
Name
9800
CVRCON
Legend:
Note 1:
Bit Range
Virtual Address
(BF80_#)
Bits
31:16
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
All Resets
A010
31/15
All Resets
Register
Name
A000
Bit Range
Virtual Address
(BF80_#)
Bits
0000
15:0
ON
—
—
—
—
—
—
—
—
CVROE
CVRR
CVRSS
CVR<3:0>
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
DS61143G-page 66
COMPARATOR REGISTERS MAP(1)
TABLE 4-17:
© 2010 Microchip Technology Inc.
NVMKEY
F420 NVMADDR(1)
F430
NVMDATA
F440
NVMSRC
ADDR
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
WR
WREN
WRERR
LVDERR
LVDSTAT
—
—
—
—
—
—
—
31:16
15:0
31:16
15:0
31:16
15:0
NVMKEY<31:0>
NVMOP<3:0>
All Resets
Bit Range
Register
Name
F400 NVMCON(1)
F410
FLASH CONTROLLER REGISTERS MAP
Bits
Virtual Address
(BF80_#)
© 2010 Microchip Technology Inc.
TABLE 4-19:
0000
0000
0000
0000
NVMADDR<31:0>
0000
0000
NVMDATA<31:0>
0000
0000
31:16
0000
NVMSRCADDR<31:0>
15:0
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This register has corresponding CLR, SET and INV Registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
PIC32MX3XX/4XX
DS61143G-page 67
F000 OSCCON
F010 OSCTUN
0000 WDTCON
F600
RCON
F610 RSWRST
Legend:
Note 1:
2:
31/15
30/14
29/13
28/12
27/11
26/10
31:16
—
—
15:0
—
31:16
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
PLLODIV<2:0>
COSC<2:0>
—
25/9
24/8
21/5
20/4
19/3
18/2
23/7
22/6
RCDIV<2:0>
—
SOSCRDY
—
NOSC<2:0>
CLKLOCK
ULOCK
LOCK
SLPEN
CF
UFRCEN
SOSCEN
OSWEN
0000
—
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
—
—
0000
PBDIV<1:0>
17/1
16/0
All Resets
Bit Range
Register
Name
Virtual Address
(BF80_#)
Bits
PLLMULT<2:0>
0000
TUN<5:0>
—
—
—
0000
15:0
ON
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
CMR
VREGS
EXTR
SWR
—
WDTO
SLEEP
IDLE
BOR
POR
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
SWDTPS<4:0>
—
WDTCLR 0000
0000
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
SWRST 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.
PIC32MX3XX/4XX
DS61143G-page 68
SYSTEM CONTROL REGISTERS MAP(1,2)
TABLE 4-20:
© 2010 Microchip Technology Inc.
PORTA
6020
LATA
6030
ODCA
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
TRISA15
TRISA14
—
—
—
TRISA10
TRISA9
—
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
TRISA2
TRISA1
TRISA0
C6FF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
RA15
RA14
—
—
—
RA10
RA9
—
RA7
RA6
RA5
RA4
RA3
RA2
RA1
RA0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
LATA15
LATA14
—
—
—
LATA10
LATA9
—
LATA7
LATA6
LATA5
LATA4
LATA3
LATA2
LATA1
LATA0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 ODCA15 ODCA14
—
—
—
ODCA10
ODCA9
—
ODCA7
ODCA6
ODCA5
ODCA4
ODCA3
ODCA2
ODCA1
ODCA0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
TABLE 4-22:
PORT B REGISTERS MAP(1)
PORTB
6060
6070
Legend:
Note 1:
LATB
ODCB
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Bit Range
Register
Name
TRISB
31/15
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
TRISB15
TRISB14
TRISB13
TRISB12
TRISB11
TRISB10
TRISB9
TRISB8
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
FFFF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
RB15
RB14
RB13
RB12
RB11
RB10
RB9
RB8
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
LATB15
LATB14
LATB13
LATB12
LATB11
LATB10
LATB9
LATB8
LATB7
LATB6
LATB5
LATB4
LATB3
LATB2
LATB1
LATB0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 ODCB15 ODCB14 ODCB13 ODCB12 ODCB11 ODCB10
ODCB9
ODCB8
ODCB7
ODCB6
ODCB5
ODCB4
ODCB3
ODCB2
ODCB1
ODCB0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
DS61143G-page 69
PIC32MX3XX/4XX
Virtual Address
(BF88_#)
Bits
6040
6050
31/15
All Resets
TRISA
Bit Range
Register
Name
6000
6010
PORT A REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L,
PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY(1)
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
TABLE 4-21:
PORTC
60A0
LATC
60B0
ODCC
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
TRISC15
TRISC14
TRISC13
TRISC12
—
—
—
—
—
—
—
TRISC4
TRISC3
TRISC2
TRISC1
—
F01E
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
RC15
RC14
RC13
RC12
—
—
—
—
—
—
—
RC4
RC3
RC2
RC1
—
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
LATC15
LATC14
LATC13
LATC12
—
—
—
—
—
—
—
LATC4
LATC3
LATC2
LATC1
—
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 ODCC15 ODCC14 ODCC13 ODCC12
—
—
—
—
—
—
—
ODCC4
ODCC3
ODCC2
ODCC1
—
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
TABLE 4-24:
PORT C REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H,
PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND
PIC32MX440F512H DEVICES ONLY(1)
PORTC
© 2010 Microchip Technology Inc.
60A0
60B0
Legend:
Note 1:
LATC
ODCC
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Register
Name
TRISC
Bit Range
Virtual Address
(BF88_#)
Bits
6080
6090
31/15
All Resets
Register
Name
TRISC
Bit Range
Virtual Address
(BF88_#)
Bits
6080
6090
PORT C REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L,
PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY(1)
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
TRISC15
TRISC14
TRISC13
TRISC12
—
—
—
—
—
—
—
—
—
—
—
—
F000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
RC15
RC14
RC13
RC12
—
—
—
—
—
—
—
—
—
—
—
—
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
LATC15
LATC14
LATC13
LATC12
—
—
—
—
—
—
—
—
—
—
—
—
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 ODCC15 ODCC14 ODCC13 ODCC12
—
—
—
—
—
—
—
—
—
—
—
—
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
DS61143G-page 70
TABLE 4-23:
PORTD
60E0
LATD
60F0
ODCD
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
TRISD15
TRISD14
TRISD13
TRISD12
TRISD11
TRISD10
TRISD9
TRISD8
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
TRISD1
TRISD0
FFFF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
RD15
RD14
RD13
RD12
RD11
RD10
RD9
RD8
RD7
RD6
RD5
RD4
RD3
RD2
RD1
RD0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
LATD15
LATD14
LATD13
LATD12
LATD11
LATD10
LATD9
LATD8
LATD7
LATD6
LATD5
LATD4
LATD3
LATD2
LATD1
LATD0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10
ODCD9
ODCD8
ODCD7
ODCD6
ODCD5
ODCD4
ODCD3
ODCD2
ODCD1
ODCD0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
TABLE 4-26:
PORT D REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H,
PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H
DEVICES ONLY(1)
PORTD
60E0
60F0
DS61143G-page 71
Legend:
Note 1:
LATD
ODCD
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Bit Range
Register
Name
TRISD
31/15
30/14
29/13
28/12
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
TRISD11
TRISD10
TRISD9
TRISD8
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
TRISD1
TRISD0
0FFF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
RD11
RD10
RD9
RD8
RD7
RD6
RD5
RD4
RD3
RD2
RD1
RD0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
LATD11
LATD10
LATD9
LATD8
LATD7
LATD6
LATD5
LATD4
LATD3
LATD2
LATD1
LATD0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
ODCD11 ODCD10
ODCD9
ODCD8
ODCD7
ODCD6
ODCD5
ODCD4
ODCD3
ODCD2
ODCD1
ODCD0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
Virtual Address
(BF88_#)
Bits
60C0
60D0
31/15
All Resets
TRISD
Bit Range
Register
Name
60C0
60D0
PORT D REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L,
PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY(1)
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
TABLE 4-25:
PORTE
6120
LATE
6130
ODCE
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
TRISE9
TRISE8
TRISE7
TRISE6
TRISE5
TRISE4
TRISE3
TRISE2
TRISE1
TRISE0
03FF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
0000
15:0
—
—
—
—
—
—
RE9
RE8
RE7
RE6
RE5
RE4
RE3
RE2
RE1
RE0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
LATE9
LATE8
LATE7
LATE6
LATE5
LATE4
LATE3
LATE2
LATE1
LATE0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
ODCE9
ODCE8
ODCE7
ODCE6
ODCE5
ODCE4
ODCE3
ODCE2
ODCE1
ODCE0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
TABLE 4-28:
PORT E REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H,
PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H
DEVICES ONLY(1)
PORTE
© 2010 Microchip Technology Inc.
6120
6130
Legend:
Note 1:
LATE
ODCE
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Register
Name
TRISE
Bit Range
Virtual Address
(BF88_#)
Bits
6100
6110
25/9
All Resets
Register
Name
TRISE
Bit Range
Virtual Address
(BF88_#)
Bits
6100
6110
PORT E REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L,
PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY(1)
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
TRISE7
TRISE6
TRISE5
TRISE4
TRISE3
TRISE2
TRISE1
TRISE0
00FF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
—
—
—
—
—
—
—
—
RE7
RE6
RE5
RE4
RE3
RE2
RE1
RE0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
LATE7
LATE6
LATE5
LATE4
LATE3
LATE2
LATE1
LATE0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
ODCE7
ODCE6
ODCE5
ODCE4
ODCE3
ODCE2
ODCE1
ODCE0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
DS61143G-page 72
TABLE 4-27:
PORTF
6160
LATF
6170
ODCF
31/15
30/14
28/12
27/11
26/10
25/9
31:16
—
—
15:0
—
—
31:16
—
—
15:0
—
—
31:16
—
—
15:0
—
—
31:16
—
—
—
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
TRISF13
TRISF12
—
—
—
TRISF8
TRISF7
TRISF6
TRISF5
TRISF4
TRISF3
TRISF2
TRISF1
TRISF0
31FF
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
RF13
RF12
—
—
—
RF8
RF7
RF6
RF5
RF4
RF3
RF2
RF1
RF0
xxxx
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
LATF13
LATF12
—
—
—
LATF8
LATF7
LATF6
LATF5
LATF4
LATF3
LATF2
LATF1
LATF0
xxxx
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
ODCF13 ODCF12
—
—
—
ODCF8
ODCF7
ODCF6
ODCF5
ODCF4
ODCF3
ODCF2
ODCF1
ODCF0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
Legend:
Note 1:
TABLE 4-30:
PORT F REGISTERS MAP FOR PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY(1)
PORTF
6160
6170
Legend:
Note 1:
LATF
ODCF
30/14
31:16
—
—
15:0
—
—
31:16
—
—
29/13
28/12
27/11
26/10
25/9
—
—
—
—
TRISF13
TRISF12
—
—
—
—
—
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Bit Range
Register
Name
TRISF
31/15
24/8
23/7
22/6
—
—
—
—
—
—
—
—
—
—
—
TRISF8
—
—
TRISF5
TRISF4
TRISF3
TRISF2
TRISF1
TRISF0
313F
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
—
—
RF13
RF12
—
—
—
RF8
—
—
RF5
RF4
RF3
RF2
RF1
RF0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
LATF13
LATF12
—
—
—
LATF8
—
—
LATF5
LATF4
LATF3
LATF2
LATF1
LATF0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
ODCF13 ODCF12
—
—
—
ODCF8
—
—
ODCF5
ODCF4
ODCF3
ODCF2
ODCF1
ODCF0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
DS61143G-page 73
PIC32MX3XX/4XX
Virtual Address
(BF88_#)
Bits
6140
6150
29/13
All Resets
TRISF
Bit Range
Register
Name
6140
6150
PORT F REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L AND PIC32MX360F512L DEVICES
ONLY(1)
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
TABLE 4-29:
PORTF
6160
LATF
6170
ODCF
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
21/5
20/4
19/3
18/2
17/1
16/0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
—
TRISF6
TRISF5
TRISF4
TRISF3
TRISF2
TRISF1
TRISF0
07FF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
—
RF6
RF5
RF4
RF3
RF2
RF1
RF0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
—
LATF6
LATF5
LATF4
LATF3
LATF2
LATF1
LATF0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
—
ODCF6
ODCF5
ODCF4
ODCF3
ODCF2
ODCF1
ODCF0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
Legend:
Note 1:
TABLE 4-32:
PORT F REGISTERS MAP FOR PIC32MX420F032H, PIC32MX440F128H AND PIC2MX440F256H DEVICES ONLY(1)
PORTF
6160
© 2010 Microchip Technology Inc.
6170
Legend:
Note 1:
LATF
ODCF
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Register
Name
TRISF
Bit Range
Virtual Address
(BF88_#)
Bits
6140
6150
22/6
All Resets
Register
Name
TRISF
Bit Range
Virtual Address
(BF88_#)
Bits
6140
6150
PORT F REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H,
PIC32MX340F256H AND PIC32MX340F512H DEVICES ONLY(1)
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
TRISF5
TRISF4
TRISF3
TRISF2
TRISF1
TRISF0
03FF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
—
—
—
—
—
—
—
—
—
—
RF5
RF4
RF3
RF2
RF1
RF0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
—
—
LATF5
LATF4
LATF3
LATF2
LATF1
LATF0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
—
—
ODCF5
ODCF4
ODCF3
ODCF2
ODCF1
ODCF0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
DS61143G-page 74
TABLE 4-31:
PORTG
61A0
LATG
61B0
ODCG
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
TRISG15
TRISG14
TRISG13
TRISG12
—
—
TRISG9
TRISG8
TRISG7
TRISG6
—
—
TRISG3
TRISG2
TRISG1
TRISG0
F3CF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
RG15
RG14
RG13
RG12
—
—
RG9
RG8
RG7
RG6
—
—
RG3
RG2
RG1
RG0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
LATG15
LATG14
LATG13
LATG12
—
—
LATG9
LATG8
LATG7
LATG6
—
—
LATG3
LATG2
LATG1
LATG0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 ODCG15 ODCG14 ODCG13 ODCG12
—
—
ODCG9
ODCG8
ODCG7
ODCG6
—
—
ODCG3
ODCG2
ODCG1
ODCG0 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
TABLE 4-34:
PORT G REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H,
PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H
DEVICES ONLY(1)
PORTG
61A0
61B0
DS61143G-page 75
Legend:
Note 1:
LATG
ODCG
30/14
29/13
28/12
27/11
26/10
25/9
24/8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
TRISG9
TRISG8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
RG9
31:16
—
—
—
—
—
—
15:0
—
—
—
—
—
31:16
—
—
—
—
—
23/7
22/6
21/5
20/4
—
—
—
—
TRISG7
TRISG6
—
—
—
—
—
—
RG8
RG7
RG6
—
—
—
—
—
—
LATG9
LATG8
LATG7
—
—
—
—
19/3
All Resets
Bit Range
Register
Name
TRISG
31/15
18/2
17/1
16/0
—
—
—
—
0000
TRISG3
TRISG2
—
—
03cc
—
—
—
—
0000
—
RG3
RG2
—
—
xxxx
—
—
—
—
—
—
0000
LATG6
—
—
LATG3
LATG2
—
—
xxxx
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
ODCG9
ODCG8
ODCG7
ODCG6
—
—
ODCG3
ODCG2
—
—
0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
Virtual Address
(BF88_#)
Bits
6180
6190
31/15
All Resets
TRISG
Bit Range
Register
Name
6180
6190
PORT G REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L,
PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY(1)
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
TABLE 4-33:
61D0
CNEN
CNPUE
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
ON
FRZ
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
CNEN21
CNEN20
CNEN19
CNEN18
CNEN17
CNEN16
0000
15:0
CNEN15
CNEN14
CNEN13
CNEN12
CNEN11
CNEN10
CNEN9
CNEN8
CNEN7
CNEN6
CNEN5
CNEN4
CNEN3
CNEN2
CNEN1
CNEN0
0000
31:16
—
—
—
—
—
—
—
—
—
—
CNPUE21
CNPUE20
CNPUE19 CNPUE18 CNPUE17 CNPUE16 0000
15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 CNPUE2 CNPUE1 CNPUE1 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
Legend:
Note 1:
TABLE 4-36:
CHANGE NOTICE AND PULL-UP REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H,
PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H
AND PIC32MX440F512H DEVICES ONLY(1)
61D0
CNEN
CNPUE
© 2010 Microchip Technology Inc.
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Register
Name
CNCON
Bit Range
Virtual Address
(BF88_#)
Bits
61C0
61E0
31/15
All Resets
Register
Name
CNCON
Bit Range
Virtual Address
(BF88_#)
Bits
61C0
61E0
CHANGE NOTICE AND PULL-UP REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L,
PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY(1)
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
ON
FRZ
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
CNEN18
CNEN17
CNEN16
0000
15:0
CNEN15
CNEN14
CNEN13
CNEN12
CNEN11
CNEN10
CNEN9
CNEN8
CNEN7
CNEN6
CNEN5
CNEN4
CNEN3
CNEN2
CNEN1
CNEN0
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPUE18 CNPUE17 CNPUE16 0000
15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 CNPUE2 CNPUE1 CNPUE1 0000
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PIC32MX3XX/4XX
DS61143G-page 76
TABLE 4-35:
PMCON
7010 PMMODE
7020 PMADDR
7030 PMDOUT
7040
7060
PMAEN
PMSTAT
Legend:
Note 1:
29/13
31:16
—
—
—
15:0
ON
FRZ
SIDL
31:16
—
—
—
15:0
BUSY
31:16
—
IRQM<1:0>
—
28/12
27/11
—
—
ADRMUX<1:0>
—
—
INCM<1:0>
—
—
26/10
24/8
23/7
22/6
—
—
—
—
—
PMPTTL
PTWREN
PTRDEN
—
—
—
MODE16
—
25/9
—
CSF<1:0>
—
MODE<1:0>
—
—
21/5
—
—
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
ALP
CS2P
CS1P
—
WRSP
RDSP
0000
—
—
—
—
—
—
0000
—
—
—
—
WAITB<1:0>
—
15:0 CS2EN/A15 CS1EN/A14
WAITM<3:0>
—
WAITE<1:0>
—
ADDR<13:0>
31:16
0000
0000
0000
0000
0000
DATAOUT<31:0>
15:0
0000
31:16
0000
DATAIN<31:0>
15:0
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
PTEN<15:0>
31:16
—
0000
0000
0000
15:0
IBF
IBOV
—
—
IB3F
IB2F
IB1F
IB0F
OBE
OBUF
—
—
OB3E
OB2E
OB1E
OB0E
0080
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
PROGRAMMING AND DIAGNOSTICS REGISTERS MAP
Register
Name
F200
DDPCON
Bit Range
Virtual Address
(BF80_#)
Bits
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
—
—
—
—
31:16
19/3
18/2
17/1
16/0
—
—
—
—
0000
JTAGEN
TROEN
—
—
0008
DS61143G-page 77
PIC32MX3XX/4XX
TABLE 4-38:
Legend:
30/14
All Resets
7050
PMDIN
31/15
All Resets
7000
Bit Range
Register
Name
Bits
Virtual Address
(BF80_#)
© 2010 Microchip Technology Inc.
PARALLEL MASTER PORT REGISTERS MAP(1)
TABLE 4-37:
31/15
30/14
29/13
28/12
27/11
26/10
—
—
—
—
—
—
—
—
—
—
—
—
31:16 CHEWEN
—
—
—
—
(1)
—
31:16 LTAGBOOT
—
—
—
—
—
—
—
—
(1)
31:16
—
—
—
—
—
LMASK<15:5>
4010 CHEACC(1)
4020 CHETAG
4030 CHEMSK
4040
CHEW1
4060
CHEW2
4070
CHEW3
CHELRU
4090
40A0
CHEHIT
CHEMIS
15:0
23/7
22/6
—
—
DCSZ<1:0>
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
31:16
31:16
31:16
31:16
15:0
31:16
—
—
PREFEN<1:0>
—
—
—
—
—
—
—
—
CHEIDX<3:0>
—
—
—
—
—
—
—
—
—
17/1
16/0
—
CHECOH 0000
PFMWS<2:0>
0000
—
0000
00xx
LTAG<23:16>
—
—
—
—
—
—
CHEHIT<31:0>
CHEMIS<31:0>
LLOCK
LTYPE
—
—
—
—
—
—
—
0000
—
—
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
CHELRU<24:16>
CHELRU<15:0>
LVALID
xxx0
0000
xxxx
CHEW3<31:0>
15:0
31:16
18/2
CHEW2<31:0>
15:0
15:0
19/3
CHEW1<31:0>
15:0
31:16
20/4
CHEW0<31:0>
15:0
15:0
21/5
LTAG<15:4>
—
15:0
31:16
24/8
0000
0000
xxxx
xxxx
xxxx
xxxx
xxxx
CHEPFABT<31:0>
15:0
xxxx
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This register has corresponding CLR, SET and INV Registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
40C0 CHEPFABT
Legend:
Note 1:
15:0
15:0
CHEW0
4050
31:16
25/9
All Resets
Bit Range
Register
Name
Virtual Address
(BF88_#)
Bits
4000 CHECON(1)
4080
PREFETCH REGISTERS MAP
PIC32MX3XX/4XX
DS61143G-page 78
TABLE 4-39:
© 2010 Microchip Technology Inc.
RTCCON
0220
0230
RTCALRM
RTCTIME
RTCDATE
0240 ALRMTIME
0250 ALRMDATE
Legend:
Note 1:
29/13
28/12
27/11
26/10
25/9
24/8
31:16
—
—
—
—
—
—
15:0
ON
FRZ
SIDL
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
15:0
ALRMEN
CHIME
PIV
ALRMSYNC
HR01<3:0>
15:0
SEC10<3:0>
SEC01<3:0>
31:16
YEAR10<3:0>
YEAR01<3:0>
15:0
DAY10<3:0>
DAY01<3:0>
31:16
MIN10<3:0>
MIN01<3:0>
15:0
SEC10<3:0>
SEC01<3:0>
—
—
—
—
22/6
21/5
20/4
RTSECSEL RTCCLKON
—
19/3
18/2
17/1
16/0
—
—
—
0000
—
—
—
—
AMASK<3:0>
HR10<3:0>
31:16
23/7
CAL<11:0>
31:16
RTCWREN RTCSYNC HALFSEC
—
—
RTCOE
0000
—
0000
—
ARPT<7:0>
MIN10<3:0>
—
—
—
—
—
MONTH10<3:0>
—
—
—
—
—
—
MIN10<3:0>
—
—
0000
MIN01<3:0>
—
xxxx
—
—
MONTH01<3:0>
xxxx
WDAY01<3:0>
xx0x
MIN01<3:0>
—
—
—
MONTH10<3:0>
xx00
—
xxxx
—
—
MONTH01<3:0>
xx00
00xx
15:0
DAY10<3:0>
DAY01<3:0>
—
—
—
—
WDAY01<3:0>
xx0x
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
TABLE 4-41:
DEVCFG: DEVICE CONFIGURATION WORD SUMMARY
2FF4
DEVCFG2
DEVCFG1
2FFC DEVCFG0
DS61143G-page 79
Legend:
Note 1:
Bit Range
Register
Name
DEVCFG3
31:16
31/15
30/14
29/13
28/12
27/11
26/10
25/9
—
—
—
—
—
—
—
15:0 USERID15 USERID14 USERID13 USERID12 USERID11 USERID10 USERID9
31:16
—
—
—
—
15:0 FUPLLEN(1)
—
—
—
—
—
31:16
—
—
—
—
—
—
15:0
FCKSM<1:0>
FPBDIV<1:0>
—
OSCIOFNC
31:16
—
—
—
—
—
CP
—
24/8
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
USERID7
USERID6
USERID5
USERID4
USERID3
USERID2
USERID1
—
—
—
—
—
—
FPLLODIV<2:0>
xxxx
—
FPLLIDIV<2:0>
xxxx
—
—
—
POSCMOD<1:0>
—
22/6
USERID8
FUPLLIDIV<2:0>(1)
—
23/7
BWP
15:0
PWP15
PWP14
PWP13
PWP12
—
—
—
—
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
These bits are only available on PIC32MX4XX devices.
FPLLMULT<2:0>
FWDTEN
—
—
IESO
—
FSOSCEN
—
—
—
—
—
PWP19
PWP18
—
—
—
—
ICESEL
—
—
WDTPS<4:0>
—
xxxx
USERID0 xxxx
xxxx
FNOSC<2:0>
PWP17
xxxx
PWP16
DEBUG<1:0>
xxxx
xxxx
PIC32MX3XX/4XX
Virtual Address
(BFC0_#)
Bits
2FF0
2FF8
30/14
All Resets
0210
31/15
All Resets
0200
Bit Range
Register
Name
Bits
Virtual Address
(BF80_#)
© 2010 Microchip Technology Inc.
RTCC REGISTERS MAP(1)
TABLE 4-40:
31:16
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
VER<3:0>
15:0
DEVID<15:0>
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
22/6
21/5
DEVID<27:16>
20/4
19/3
18/2
17/1
16/0
All Resets
Register
Name
DEVID
Bit Range
Virtual Address
(BF80_#)
Bits
F220
Legend:
DEVICE AND REVISION ID SUMMARY
xxxx
xxxx
PIC32MX3XX/4XX
DS61143G-page 80
TABLE 4-42:
© 2010 Microchip Technology Inc.
5050
U1OTGIE
5060
U1OTG
STAT
5070 U1OTGCON
5080
U1PWRC
5200
U1IR
5210
U1IE
5220
U1EIR
U1EIE
5240
U1STAT
5250
U1CON
5260
U1ADDR
DS61143G-page 81
U1BDTP1
5280
5290
Legend:
U1FRML
U1FRMH
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
—
—
20/4
31:16
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
IDIF
18/2
17/1
—
—
—
31:16
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
IDIE
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
ID
—
LSTATE
—
SESVD
SESEND
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
UACTPND
—
—
USLPGRD
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
T1MSECIF LSTATEIF
—
19/3
ACTVIF
—
SESVDIF SESENDIF
—
T1MSECIE LSTATEIE
—
ACTVIE
—
SESVDIE SESENDIE
—
DPPULUP DMPULUP DPPULDWN DMPULDWN VBUSON
15:0
—
—
—
—
—
—
—
—
STALLIF
31:16
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
STALLIE
31:16
—
—
—
—
—
—
—
—
—
ATTACHIF RESUMEIF
—
—
ATTACHIE RESUMEIE
—
—
OTGEN
—
—
—
—
—
—
SOFIF
UERRIF
—
—
—
—
SOFIE
—
—
—
15:0
—
—
—
—
—
—
—
—
BTSEF
BMXEF
DMAEF
BTOEF
DFN8EF
CRC16EF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
VBUSVDIE 0000
—
0000
VBUSVD 0000
—
0000
—
0000
USUSPEND USBPWR 0000
TRNIF
TRNIE
—
VBUSVDIF 0000
VBUSCHG VBUSDIS 0000
IDLEIF
IDLEIE
16/0
UERRIE
—
CRC5EF
EOFEF
—
CRC5EE
—
0000
URSTIF
0000
DETACHIF 0000
—
0000
URSTIE
0000
DETACHIE 0000
—
PIDEF
0000
0000
0000
—
15:0
—
—
—
—
—
—
—
—
BTSEE
BMXEE
DMAEE
BTOEE
DFN8EE
CRC16EE
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
DIR
PPBI
—
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
0000
USBEN
0000
ENDPT<3:0>
—
—
—
PKTDIS
15:0
—
—
—
—
—
—
—
—
JSTATE
SE0
31:16
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
LSPDEN
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TOKBUSY
—
—
EOFEE
PIDEE
0000
0000
0000
USBRST
HOSTEN
RESUME
PPBRST
SOFEN
0000
—
—
—
—
—
0000
—
—
—
—
0000
—
0000
—
—
—
—
0000
—
—
—
0000
DEVADDR<6:0>
—
0000
BDTPTRL<7:1>
—
FRML<7:0>
0000
—
—
—
—
—
—
—
—
—
—
FRMH<10:8>
0000
PIC32MX3XX/4XX
5230
31/15
All Resets
U1OTGIR
Bit Range
Register
Name
5040
5270
USB REGISTERS MAP
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
TABLE 4-43:
52B0
52D0
52E0
U1SOF
U1BDTP2
U1BDTP3
U1CNFG1
© 2010 Microchip Technology Inc.
5300
U1EP0
5310
U1EP1
5320
U1EP2
5330
U1EP3
5340
U1EP4
5350
U1EP5
5360
U1EP6
5370
U1EP7
5380
U1EP8
5390
U1EP9
53A0
U1EP10
53B0
U1EP11
Legend:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
31:16
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
All Resets
Register
Name
U1TOK
Bit Range
Virtual Address
(BF88_#)
Bits
52A0
52C0
USB REGISTERS MAP (CONTINUED)
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
0000
PID<3:0>
EP<3:0>
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
—
0000
—
—
—
—
0000
—
—
—
0000
CNT<7:0>
0000
BDTPTRH<7:0>
—
—
0000
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
BDTPTRU<7:0>
0000
15:0
—
—
—
—
—
—
—
—
UTEYE
UOEMON
USBFRZ
USBSIDL
—
—
—
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
—
—
—
—
—
LSPD
RETRYDIS
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
15:0
—
—
—
—
—
—
—
—
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
PIC32MX3XX/4XX
DS61143G-page 82
TABLE 4-43:
53D0
U1EP13
53E0
U1EP14
53F0
U1EP15
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
15:0
—
—
—
—
—
—
—
—
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
20/4
19/3
18/2
17/1
16/0
—
All Resets
U1EP12
Bit Range
Register
Name
53C0
Legend:
USB REGISTERS MAP (CONTINUED)
Bits
Virtual Address
(BF88_#)
© 2010 Microchip Technology Inc.
TABLE 4-43:
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
—
0000
EPHSHK 0000
PIC32MX3XX/4XX
DS61143G-page 83
PIC32MX3XX/4XX
NOTES:
DS61143G-page 84
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
5.0
FLASH PROGRAM MEMORY
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 5. “Flash Program
Memory” (DS61121) of the “PIC32MX
Family Reference Manual”, which is available from the Microchip web site
(www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX devices contain an internal
program Flash memory for executing user code. There
are three methods by which the user can program this
memory:
• Run-Time Self Programming (RTSP)
• In-Circuit Serial Programming™ (ICSP™)
• EJTAG Programming
RTSP is performed by software executing from either
Flash or RAM memory. EJTAG is performed using the
EJTAG port of the device and a EJTAG capable programmer. ICSP is performed using a serial data connection to the device and allows much faster
programming times than RTSP. RTSP techniques are
described in this chapter. The ICSP and EJTAG methods are described in the “PIC32MX3XX/4XX Programming Specification” (DS61145), which may be
downloaded from the Microchip web site.
DS61143G-page 85
PIC32MX3XX/4XX
NOTES:
DS61143G-page 86
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
6.0
RESETS
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 7. “Resets” (DS61118)
of the “PIC32MX Family Reference Manual”, which is available from the Microchip
web site (www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
FIGURE 6-1:
The Reset module combines all Reset sources and
controls the device Master Reset signal, SYSRST. The
following is a list of device Reset sources:
•
•
•
•
•
•
POR: Power-on Reset
MCLR: Master Clear Reset Pin
SWR: Software Reset
WDTR: Watchdog Timer Reset
BOR: Brown-out Reset
CMR: Configuration Mismatch Reset
A simplified block diagram of the Reset module is
illustrated in Figure 6-1.
SYSTEM RESET BLOCK DIAGRAM
MCLR
Glitch Filter
Sleep or Idle
MCLR
WDTR
WDT
Time-out
Voltage
Regulator
Enabled
Power-up
Timer
POR
SYSRST
VDD
VDD Rise
Detect
Configuration
Mismatch
Reset
Software Reset
© 2010 Microchip Technology Inc.
Brown-out
Reset
BOR
CMR
SWR
DS61143G-page 87
PIC32MX3XX/4XX
NOTES:
DS61143G-page 88
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
7.0
INTERRUPT CONTROLLER
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 8. “Interrupt
Controller” (DS61108) of the “PIC32MX
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
PIC32MX3XX/4XX devices generate interrupt requests
in response to interrupt events from peripheral modules. The Interrupt Control module exists externally to
the CPU logic and prioritizes the interrupt events before
presenting them to the CPU.
The PIC32MX3XX/4XX interrupts module includes the
following features:
•
•
•
•
•
•
•
•
•
•
•
•
Interrupt Requests
FIGURE 7-1:
Up to 96 interrupt sources
Up to 64 interrupt vectors
Single and Multi-Vector mode operations
Five external interrupts with edge polarity control
Interrupt proximity timer
Module Freeze in Debug mode
Seven user-selectable priority levels for each
vector
Four user-selectable subpriority levels within each
priority
Dedicated shadow set for highest priority level
Software can generate any interrupt
User-configurable interrupt vector table location
User-configurable interrupt vector spacing
INTERRUPT CONTROLLER MODULE
Vector Number
Interrupt Controller
Priority Level
CPU Core
Shadow Set Number
Note:
Several of the registers cited in this section are not in the interrupt controller module. These registers (and
bits) are associated with the CPU. Details about them are available in Section 3.0 “PIC32MX MCU”.
To avoid confusion, a typographic distinction is made for registers in the CPU. The register names in this
section, and all other sections of this manual, are signified by uppercase letters only. The CPU register
names are signified by upper and lowercase letters. For example, INTSTAT is an Interrupts register;
whereas, IntCtl is a CPU register.
© 2010 Microchip Technology Inc.
DS61143G-page 89
PIC32MX3XX/4XX
TABLE 7-1:
INTERRUPT IRQ AND VECTOR LOCATION
Interrupt Source(1)
IRQ
Vector
Number
Highest Natural Order Priority
Interrupt Bit Location
Flag
Enable
Priority
Subpriority
CT – Core Timer Interrupt
0
0
IFS0<0>
IEC0<0>
IPC0<4:2>
IPC0<1:0>
CS0 – Core Software Interrupt 0
1
1
IFS0<1>
IEC0<1>
IPC0<12:10>
IPC0<9:8>
CS1 – Core Software Interrupt 1
2
2
IFS0<2>
IEC0<2>
IPC0<20:18>
IPC0<17:16>
INT0 – External Interrupt 0
3
3
IFS0<3>
IEC0<3>
IPC0<28:26>
IPC0<25:24>
T1 – Timer1
4
4
IFS0<4>
IEC0<4>
IPC1<4:2>
IPC1<1:0>
IC1 – Input Capture 1
5
5
IFS0<5>
IEC0<5>
IPC1<12:10>
IPC1<9:8>
OC1 – Output Compare 1
6
6
IFS0<6>
IEC0<6>
IPC1<20:18>
IPC1<17:16>
INT1 – External Interrupt 1
7
7
IFS0<7>
IEC0<7>
IPC1<28:26>
IPC1<25:24>
T2 – Timer2
8
8
IFS0<8>
IEC0<8>
IPC2<4:2>
IPC2<1:0>
IC2 – Input Capture 2
9
9
IFS0<9>
IEC0<9>
IPC2<12:10>
IPC2<9:8>
OC2 – Output Compare 2
10
10
IFS0<10>
IEC0<10>
IPC2<20:18>
IPC2<17:16>
INT2 – External Interrupt 2
11
11
IFS0<11>
IEC0<11>
IPC2<28:26>
IPC2<25:24>
T3 – Timer3
12
12
IFS0<12>
IEC0<12>
IPC3<4:2>
IPC3<1:0>
IC3 – Input Capture 3
13
13
IFS0<13>
IEC0<13>
IPC3<12:10>
IPC3<9:8>
OC3 – Output Compare 3
14
14
IFS0<14>
IEC0<14>
IPC3<20:18>
IPC3<17:16>
INT3 – External Interrupt 3
15
15
IFS0<15>
IEC0<15>
IPC3<28:26>
IPC3<25:24>
T4 – Timer4
16
16
IFS0<16>
IEC0<16>
IPC4<4:2>
IPC4<1:0>
IC4 – Input Capture 4
17
17
IFS0<17>
IEC0<17>
IPC4<12:10>
IPC4<9:8>
OC4 – Output Compare 4
18
18
IFS0<18>
IEC0<18>
IPC4<20:18>
IPC4<17:16>
INT4 – External Interrupt 4
19
19
IFS0<19>
IEC0<19>
IPC4<28:26>
IPC4<25:24>
T5 – Timer5
20
20
IFS0<20>
IEC0<20>
IPC5<4:2>
IPC5<1:0>
IC5 – Input Capture 5
21
21
IFS0<21>
IEC0<21>
IPC5<12:10>
IPC5<9:8>
OC5 – Output Compare 5
22
22
IFS0<22>
IEC0<22>
IPC5<20:18>
IPC5<17:16>
SPI1E – SPI1 Fault
23
23
IFS0<23>
IEC0<23>
IPC5<28:26>
IPC5<25:24>
SPI1TX – SPI1 Transfer Done
24
23
IFS0<24>
IEC0<24>
IPC5<28:26>
IPC5<25:24>
SPI1RX – SPI1 Receive Done
25
23
IFS0<25>
IEC0<25>
IPC5<28:26>
IPC5<25:24>
U1E – UART1 Error
26
24
IFS0<26>
IEC0<26>
IPC6<4:2>
IPC6<1:0>
U1RX – UART1 Receiver
27
24
IFS0<27>
IEC0<27>
IPC6<4:2>
IPC6<1:0>
U1TX – UART1 Transmitter
28
24
IFS0<28>
IEC0<28>
IPC6<4:2>
IPC6<1:0>
I2C1B – I2C1 Bus Collision Event
29
25
IFS0<29>
IEC0<29>
IPC6<12:10>
IPC6<9:8>
I2C1S – I2C1 Slave Event
30
25
IFS0<30>
IEC0<30>
IPC6<12:10>
IPC6<9:8>
I2C1M – I2C1 Master Event
31
25
IFS0<31>
IEC0<31>
IPC6<12:10>
IPC6<9:8>
CN – Input Change Interrupt
32
26
IFS1<0>
IEC1<0>
IPC6<20:18>
IPC6<17:16>
AD1 – ADC1 Convert Done
33
27
IFS1<1>
IEC1<1>
IPC6<28:26>
IPC6<25:24>
PMP – Parallel Master Port
34
28
IFS1<2>
IEC1<2>
IPC7<4:2>
IPC7<1:0>
CMP1 – Comparator Interrupt
35
29
IFS1<3>
IEC1<3>
IPC7<12:10>
IPC7<9:8>
CMP2 – Comparator Interrupt
36
30
IFS1<4>
IEC1<4>
IPC7<20:18>
IPC7<17:16>
Note 1:
Not all interrupt sources are available on all devices. See TABLE 1: “PIC32MX General Purpose –
Features” and TABLE 2: “PIC32MX USB – Features” for available peripherals.
DS61143G-page 90
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 7-1:
INTERRUPT IRQ AND VECTOR LOCATION (CONTINUED)
Interrupt Source(1)
IRQ
Vector
Number
Highest Natural Order Priority
SPI2E – SPI2 Fault
37
31
Interrupt Bit Location
Flag
Enable
Priority
Subpriority
IFS1<5>
IEC1<5>
IPC7<28:26>
IPC7<25:24>
SPI2TX – SPI2 Transfer Done
38
31
IFS1<6>
IEC1<6>
IPC7<28:26>
IPC7<25:24>
SPI2RX – SPI2 Receive Done
39
31
IFS1<7>
IEC1<7>
IPC7<28:26>
IPC7<25:24>
U2E – UART2 Error
40
32
IFS1<8>
IEC1<8>
IPC8<4:2>
IPC8<1:0>
U2RX – UART2 Receiver
41
32
IFS1<9>
IEC1<9>
IPC8<4:2>
IPC8<1:0>
U2TX – UART2 Transmitter
42
32
IFS1<10>
IEC1<10>
IPC8<4:2>
IPC8<1:0>
I2C2B – I2C2 Bus Collision Event
43
33
IFS1<11>
IEC1<11>
IPC8<12:10>
IPC8<9:8>
I2C2S – I2C2 Slave Event
44
33
IFS1<12>
IEC1<12>
IPC8<12:10>
IPC8<9:8>
I2C2M – I2C2 Master Event
45
33
IFS1<13>
IEC1<13>
IPC8<12:10>
IPC8<9:8>
FSCM – Fail-Safe Clock Monitor
46
34
IFS1<14>
IEC1<14>
IPC8<20:18>
IPC8<17:16>
RTCC – Real-Time Clock and
Calendar
47
35
IFS1<15>
IEC1<15>
IPC8<28:26>
IPC8<25:24>
DMA0 – DMA Channel 0
48
36
IFS1<16>
IEC1<16>
IPC9<4:2>
IPC9<1:0>
DMA1 – DMA Channel 1
49
37
IFS1<17>
IEC1<17>
IPC9<12:10>
IPC9<9:8>
DMA2 – DMA Channel 2
50
38
IFS1<18>
IEC1<18>
IPC9<20:18>
IPC9<17:16>
DMA3 – DMA Channel 3
51
39
IFS1<19>
IEC1<19>
IPC9<28:26>
IPC9<25:24>
FCE – Flash Control Event
56
44
IFS1<24>
IEC1<24>
IPC11<4:2>
IPC11<1:0>
USB
57
45
IFS1<25>
IEC1<25>
IPC11<12:10>
IPC11<9:8>
Lowest Natural Order Priority
Note 1:
Not all interrupt sources are available on all devices. See TABLE 1: “PIC32MX General Purpose –
Features” and TABLE 2: “PIC32MX USB – Features” for available peripherals.
© 2010 Microchip Technology Inc.
DS61143G-page 91
PIC32MX3XX/4XX
NOTES:
DS61143G-page 92
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
8.0
OSCILLATOR
CONFIGURATION
The PIC32MX oscillator system has the following
modules and features:
• A total of four external and internal oscillator
options as clock sources
• On-chip PLL (phase-locked loop) with userselectable input divider, multiplier and output
divider to boost operating frequency on select
internal and external oscillator sources
• On-chip user-selectable divisor postscaler on
select oscillator sources
• Software-controllable switching between various
clock sources
• A Fail-Safe Clock Monitor (FSCM) that detects
clock failure and permits safe application recovery
or shut down
• Dedicated on-chip PLL for USB peripheral
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “PIC32MX Family
Reference
Manual”
Section
6.
“Oscillator Configuration” (DS61112),
which is available from the Microchip web
site (www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
FIGURE 8-1:
PIC32MX3XX/4XX FAMILY CLOCK DIAGRAM
USB PLL
UFIN
div x
div 2
UFRCEN
FUPLLEN
UFIN = 4 MHz
FUPLLDIV<2:0>
Primary Oscillator (POSC)
OSC1
C1(3)
XT, HS, EC
RF(2)
XTAL
C2(3)
USB Clock (48 MHz)
PLL x24
To Internal
Logic
4 MHz ≤ FIN ≤ 5 MHz
XTPLL, HSPLL,
FIN
ECPLL, FRCPLL
div x
div
y
PLL
Enable
RS(1)
PLL Input Divider
FPLLIDIV<2:0>
OSC2(4)
FRC
Oscillator
8 MHz typical
COSC<2:0>
PLL Output Divider
PLLODIV<2:0>
PLL Multiplier
PLLMULT<2:0>
div 16
TUN<5:0>
Postscaler
Postscaler Peripherals
div x
PBCLK
PBDIV<2:0>
FRC
FRC/16
FRCDIV
CPU and Select Peripherals
FRCDIV<2:0>
LPRC
Oscillator
LPRC
31.25 kHz typical
Secondary Oscillator (SOSC)
SOSCO
32.768 kHz
SOSCEN and FSOSCEN
1.
2.
3.
4.
Clock Control Logic
Fail-Safe
Clock
Monitor
SOSCI
Notes:
SOSC
A series resistor, RS, may be required for AT strip-cut crystals.
The internal feedback resistor, RF, is typically in the range of 2 to
10 MΩ.
Refer to the “PIC32MX Family Reference Manual” Section 6.
“Oscillator Configuration” (DS61112) for help determining the best
oscillator components.
PBCLK out is available on the OSC2 pin in certain clock modes.
© 2010 Microchip Technology Inc.
FSCM INT
FSCM Event
NOSC<2:0>
COSC<2:0>
FSCMEN<1:0>
OSWEN
WDT, PWRT
Timer1, RTCC
DS61143G-page 93
PIC32MX3XX/4XX
NOTES:
DS61143G-page 94
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
9.0
PREFETCH CACHE
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 4. “Prefetch
Cache” (DS61119) of the “PIC32MX
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
FIGURE 9-1:
9.1
•
•
•
•
•
•
•
•
Features
16 Fully Associative Lockable Cache Lines
16-byte Cache Lines
Up to four Cache Lines Allocated to Data
Two Cache Lines with Address Mask to hold
repeated instructions
Pseudo LRU replacement policy
All Cache Lines are software writable
16-byte parallel memory fetch
Predictive Instruction Prefetch
PREFETCH MODULE BLOCK DIAGRAM
CTRL
FSM
Cache Line
Tag Logic
CTRL
BMX/CPU
BMX/CPU
Prefetch cache increases performance for applications
executing out of the cacheable program Flash memory
regions by implementing instruction caching, constant
data caching and instruction prefetching.
Bus Control
Cache Control
Prefetch Control
Cache
Line
Address
Encode
Hit LRU
Miss LRU
RDATA
Hit Logic
Prefetch
Prefetch
CTRL
RDATA
PFM
© 2010 Microchip Technology Inc.
DS61143G-page 95
PIC32MX3XX/4XX
NOTES:
DS61143G-page 96
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
10.0
DIRECT MEMORY ACCESS
(DMA) CONTROLLER
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 31. “Direct Memory
Access (DMA) Controller” (DS61117) of
the “PIC32MX Family Reference Manual”, which is available from the Microchip
web site (www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
The PIC32MX Direct Memory Access (DMA) controller
is a bus master module useful for data transfers
between different devices without CPU intervention.
The source and destination of a DMA transfer can be
any of the memory mapped modules existent in the
PIC32MX (such as Peripheral Bus (PBUS) devices:
SPI, UART, I2C™, etc.) or memory itself.
Following are some of the key features of the DMA
controller module:
• Four Identical Channels, each featuring:
- Auto-Increment Source and Destination
Address Registers
- Source and Destination Pointers
- Memory to Memory and Memory to
Peripheral Transfers
FIGURE 10-1:
DMA BLOCK DIAGRAM
INT Controller
Peripheral Bus
• Automatic Word-Size Detection:
- Transfer Granularity, down to byte level
- Bytes need not be word-aligned at source
and destination
• Fixed Priority Channel Arbitration
• Flexible DMA Channel Operating Modes:
- Manual (software) or automatic (interrupt)
DMA requests
- One-Shot or Auto-Repeat Block Transfer
modes
- Channel-to-channel chaining
• Flexible DMA Requests:
- A DMA request can be selected from any of
the peripheral interrupt sources
- Each channel can select any (appropriate)
observable interrupt as its DMA request
source
- A DMA transfer abort can be selected from
any of the peripheral interrupt sources
- Pattern (data) match transfer termination
• Multiple DMA Channel Status Interrupts:
- DMA channel block transfer complete
- Source empty or half empty
- Destination full or half-full
- DMA transfer aborted due to an external
event
- Invalid DMA address generated
• DMA Debug Support Features:
- Most recent address accessed by a DMA
channel
- Most recent DMA channel to transfer data
• CRC Generation Module:
- CRC module can be assigned to any of the
available channels
- CRC module is highly configurable
System IRQ
Address
Decoder
SE
Channel 0
Control
I0
Channel 1
Control
I1
L
Y
Bus
Interface
Device Bus + Bus Arbitration
I2
Global Control
(DMACON)
Channel n
Control
In
SE
L
Channel Priority
Arbitration
© 2010 Microchip Technology Inc.
DS61143G-page 97
PIC32MX3XX/4XX
NOTES:
DS61143G-page 98
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
11.0
USB ON-THE-GO (OTG)
The PIC32MX USB module includes the following
features:
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 27. “USB On-The-Go
(OTG)” (DS61126) of the “PIC32MX
Family Reference Manual”, which is available from the Microchip web site
(www.microchip.com/PIC32).
•
•
•
•
•
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
•
•
The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 fullspeed and low-speed embedded host, full-speed
device, or OTG implementation with a minimum of
external components. This module in Host mode is
intended for use as an embedded host and therefore
does not implement a UHCI or OHCI controller.
•
•
USB Full-Speed Support for Host and Device
Low-Speed Host Support
USB OTG Support
Integrated Signaling Resistors
Integrated Analog Comparators for VBUS
Monitoring
Integrated USB Transceiver
Transaction Handshaking Performed by
Hardware
Endpoint Buffering Anywhere in System RAM
Integrated DMA to Access System RAM and
Flash
Note:
The implementation and use of the USB
specifications, as well as other third-party
specifications or technologies, may
require licensing; including, but not limited
to, USB Implementers Forum, Inc. (also
referred to as USB-IF). The user is fully
responsible for investigating and satisfying any applicable licensing obligations.
The USB module consists of the clock generator, the
USB voltage comparators, the transceiver, the Serial
Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register
interface. A block diagram of the PIC32MX USB OTG
module is presented in Figure 11-1.
The clock generator provides the 48 MHz clock
required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on
the VBUS pin to determine the state of the bus. The
transceiver provides the analog translation between
the USB bus and the digital logic. The SIE is a state
machine that transfers data to and from the endpoint
buffers, and generates the hardware protocol for data
transfers. The USB DMA controller transfers data
between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the
need for external signaling components. The register
interface allows the CPU to configure and
communicate with the module.
© 2010 Microchip Technology Inc.
DS61143G-page 99
PIC32MX3XX/4XX
FIGURE 11-1:
PIC32MX3XX/4XX FAMILY USB INTERFACE DIAGRAM
USBEN
FRC
Oscillator
8 MHz Typical
USB Suspend
CPU Clock Not POSC
Sleep
TUN<5:0>(4)
Primary Oscillator
(POSC)
Div x
OSC1
UFIN(5)
PLL
Div 2
FUPLLEN(6)
FUPLLIDIV(6)
To Clock Generator for Core and Peripherals
USB Suspend
OSC2
(PB out)(1)
UFRCEN(3)
Sleep or Idle
USB Module
SRP Charge
VBUS
SRP Discharge
USB
Voltage
Comparators
48 MHz USB Clock(7)
Full Speed Pull-up
D+(2)
Registers
and
Control
Interface
Host Pull-down
Low Speed Pull-up
SIE
Transceiver
D-(2)
DMA
System
RAM
Host Pull-down
ID Pull-up
ID(8)
VBUSON(8)
Transceiver Power 3.3V
VUSB
Note
1:
2:
3:
4:
5:
6:
7:
8:
PB clock is only available on this pin for select EC modes.
Pins can be used as digital inputs when USB is not enabled.
This bit field is contained in the OSCCON register.
This bit field is contained in the OSCTRM register.
USB PLL UFIN requirements: 4 MHz.
This bit field is contained in the DEVCFG2 register.
A 48 MHz clock is required for proper USB operation.
Pins can be used as GPIO when the USB module is disabled.
DS61143G-page 100
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
12.0
I/O PORTS
General purpose I/O pins are the simplest of peripherals. They allow the PIC® MCU to monitor and control
other devices. To add flexibility and functionality, some
pins are multiplexed with alternate function(s). These
functions depend on which peripheral features are on
the device. In general, when a peripheral is functioning,
that pin may not be used as a general purpose I/O pin.
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 12. “I/O Ports”
(DS61120) of the “PIC32MX Family
Reference Manual”, which is available
from
the
Microchip
web
site
(www.microchip.com/PIC32).
Following are some of the key features of this module:
• Individual Output Pin Open-drain Enable/Disable
• Individual Input Pin Weak Pull-up Enable/Disable
• Monitor Selective Inputs and Generate Interrupt
when Change in Pin State is Detected
• Operation during CPU Sleep and Idle modes
• Fast Bit Manipulation using CLR, SET and INV
Registers
Figure 12-1 illustrates a block diagram of a typical
multiplexed I/O port.
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
FIGURE 12-1:
BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE
Peripheral Module
Peripheral Module Enable
Peripheral Output Enable
Peripheral Output Data
PIO Module
RD ODC
Data Bus
SYSCLK
D
Q
ODC
CK
EN Q
WR ODC
1
RD TRIS
0
I/O Cell
0
1
D
Q
1
TRIS
CK
EN Q
WR TRIS
Output Multiplexers
D
WR LAT
WR PORT
0
Q
I/O Pin
LAT
CK
EN Q
RD LAT
1
RD PORT
0
Sleep
Q
Q
D
CK
Q
Q
D
CK
SYSCLK
Synchronization
Peripheral Input
Legend:
Note:
R
Peripheral Input Buffer
R = Peripheral input buffer types may vary. Refer to Table 1-1 “Pinout I/O Descriptions” for peripheral details.
This block diagram is a general representation of a shared port/peripheral structure for illustration purposes only. The actual structure
for any specific port/peripheral combination may be different than it is shown here.
© 2010 Microchip Technology Inc.
DS61143G - page 101
PIC32MX3XX/4XX
12.1
Parallel I/O (PIO) Ports
All port pins have three registers (TRIS, LAT and
PORT) that are directly associated with their operation.
TRIS is a data direction or tri-state control register that
determines whether a digital pin is an input or an output. Setting a TRISx register bit = 1 configures the corresponding I/O pin as an input; setting a TRISx register
bit = 0 configures the corresponding I/O pin as an output. All port I/O pins are defined as inputs after a device
Reset. Certain I/O pins are shared with analog
peripherals and default to analog inputs after a device
Reset.
PORT is a register used to read the current state of the
signal applied to the port I/O pins. Writing to a PORTx
register performs a write to the port’s latch, LATx
register, latching the data to the port’s I/O pins.
LAT is a register used to write data to the port I/O pins.
The LATx latch register holds the data written to either
the LATx or PORTx registers. Reading the LATx latch
register reads the last value written to the
corresponding port or latch register.
Not all port I/O pins are implemented on some devices,
therefore, the corresponding PORTx, LATx and TRISx
register bits will read as zeros.
12.1.1
CLR, SET AND INV REGISTERS
Every I/O module register has a corresponding CLR
(clear), SET (set) and INV (invert) register designed to
provide fast atomic bit manipulations. As the name of
the register implies, a value written to a SET, CLR or
INV register effectively performs the implied operation,
but only on the corresponding base register and only
bits specified as ‘1’ are modified. Bits specified as ‘0’
are not modified.
Reading SET, CLR and INV registers returns undefined
values. To see the affects of a write operation to a SET,
CLR or INV register, the base register must be read.
The maximum input voltage allowed on the input pins
is the same as the maximum VIH specification. Refer to
Section 29.0 “Electrical Characteristics” for VIH
specification details.
Note:
12.1.3
12.1.2
Using a PORTxINV register to toggle a bit
is recommended because the operation is
performed in hardware atomically, using
fewer instructions as compared to the traditional read-modify-write method shown
below:
PORTC ^= 0x0001;
DIGITAL INPUTS
Pins are configured as digital inputs by setting the corresponding TRIS register bits = 1. When configured as
inputs, they are either TTL buffers or Schmitt Triggers.
Several digital pins share functionality with analog
inputs and default to the analog inputs at POR. Setting
the corresponding bit in the AD1PCFG register = 1
enables the pin as a digital pin.
DS61143G - page 102
ANALOG INPUTS
Certain pins can be configured as analog inputs used
by the ADC and Comparator modules. Setting the corresponding bits in the AD1PCFG register = 0 enables
the pin as an analog input pin and must have the corresponding TRIS bit set = 1 (input). If the TRIS bit is
cleared = 0 (output), the digital output level (VOH or
VOL) will be converted. Any time a port I/O pin is configured as analog, its digital input is disabled and the corresponding PORTx register bit will read ‘0’. The
AD1PCFG Register has a default value of 0x0000;
therefore, all pins that share ANx functions are analog
(not digital) by default.
12.1.4
DIGITAL OUTPUTS
Pins are configured as digital outputs by setting the corresponding TRIS register bits = 0. When configured as
digital outputs, these pins are CMOS drivers or can be
configured as open drain outputs by setting the corresponding bits in the ODCx Open-Drain Configuration
register.
The open-drain feature allows the generation of
outputs higher than VDD (e.g., 5V) on any desired 5V
tolerant pins by using external pull-up resistors. The
maximum open-drain voltage allowed is the same as
the maximum VIH specification.
See the “Pin Diagrams” section for the available pins
and their functionality.
12.1.5
Note:
Analog levels on any pin that is defined as
a digital input (including the ANx pins) may
cause the input buffer to consume current
that exceeds the device specifications.
ANALOG OUTPUTS
Certain pins can be configured as analog outputs, such
as the CVREF output voltage used by the comparator
module. Configuring the Comparator Reference module to provide this output will present the analog output
voltage on the pin, independent of the TRIS register
setting for the corresponding pin.
12.1.6
INPUT CHANGE NOTIFICATION
The input change notification function of the I/O ports
(CNx) allows devices to generate interrupt requests in
response to change of state on selected pin.
Each CNx pin also has a weak pull-up, which acts as a
current source connected to the pin. The pull-ups are
enabled by setting corresponding bit in CNPUE register.
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
13.0
TIMER1
This family of PIC32MX devices features one
synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing
applications and counting external events. This timer
can also be used with the Secondary Oscillator (SOSC)
for real-time clock applications. The following modes
are supported:
Note 1: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices.
It is not intended to be a comprehensive
reference source. To complement the
information in this data sheet, refer to
Section 14. “Timers” (DS61105) of the
“PIC32MX Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com/PIC32).
•
•
•
•
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
FIGURE 13-1:
Synchronous Internal Timer
Synchronous Internal Gated Timer
Synchronous External Timer
Asynchronous External Timer
13.1
Additional Supported Features
• Selectable clock prescaler
• Timer operation during CPU Idle and Sleep mode
• Fast bit manipulation using CLR, SET and INV
registers
• Asynchronous mode can be used with the SOSC
to function as a Real-Time Clock (RTC)
TIMER1 BLOCK DIAGRAM(1)
PR1
Equal
16-bit Comparator
TSYNC (T1CON<2>)
1
Reset
T1IF
Event Flag
Sync
TMR1
0
0
Q
1
TGATE (T1CON<7>)
TGATE (T1CON<7>)
D
Q
TCS (T1CON<1>)
ON (T1CON<15>)
SOSCO/T1CK
x1
SOSCEN
SOSCI
Gate
Sync
PBCLK
10
00
Prescaler
1, 8, 64, 256
2
TCKPS<1:0>
(T1CON<5:4>)
Note 1: The default state of the SOSCEN (OSCCON<1>) during a device Reset is controlled by the FSOSCEN bit in
Configuration Word DEVCFG1.
© 2010 Microchip Technology Inc.
DS61143G-page 103
PIC32MX3XX/4XX
NOTES:
DS61143G-page 104
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
14.0
TIMERS 2, 3, 4, 5
Two 32-bit synchronous timers are available by
combining Timer2 with Timer3 and Timer4 with Timer5.
The 32-bit timers can operate in three modes:
Note 1: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices.
It is not intended to be a comprehensive
reference source. To complement the
information in this data sheet, refer to
Section 14. “Timers” (DS61105) of the
“PIC32MX Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com/PIC32).
• Synchronous Internal 32-bit Timer
• Synchronous Internal 32-bit Gated Timer
• Synchronous External 32-bit Timer
Note:
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
14.1
Throughout this chapter, references to
registers TxCON, TMRx and PRx use ‘x’
to represent Timer2 through 5 in 16-bit
modes. In 32-bit modes, ‘x’ represents
Timer2 or 4; ‘y’ represents Timer3 or 5.
Additional Supported Features
• Selectable clock prescaler
• Timers operational during CPU Idle
• Time base for input capture and output compare
modules (Timer2 and Timer3 only)
• ADC event trigger (Timer3 only)
• Fast bit manipulation using CLR, SET and INV
registers
This family of PIC32MX devices features four
synchronous 16-bit timers (default) that can operate as
a free-running interval timer for various timing applications and counting external events. The following
modes are supported:
• Synchronous Internal 16-bit Timer
• Synchronous Internal 16-bit Gated Timer
• Synchronous External 16-bit Timer
FIGURE 14-1:
TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)
Sync
TMRx
ADC Event
Trigger(1)
Equal
Comparator x 16
PRx
Reset
TxIF
Event Flag
0
1
TGATE (TxCON<7>)
Q
TGATE (TxCON<7>)
D
Q
TCS (TxCON<1>)
ON (TxCON<15>)
TxCK(2)
x1
Gate
Sync
PBCLK
Note 1: ADC event trigger is available on Timer3 only.
10
00
Prescaler
1, 2, 4, 8, 16,
32, 64, 256
3
TCKPS (TxCON<6:4>)
2: TxCK pins not available on 64-pin devices.
© 2010 Microchip Technology Inc.
DS61143G-page 105
PIC32MX3XX/4XX
FIGURE 14-2:
TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)
Reset
TMRy
MSHalfWord
ADC Event
Trigger(3)
Equal
Sync
LSHalfWord
32-bit Comparator
PRy
TyIF Event
Flag
TMRx
PRx
0
1
TGATE (TxCON<7>)
Q
D
TGATE (TxCON<7>)
Q
TCS (TxCON<1>)
ON (TxCON<15>)
TxCK(2)
x1
Gate
Sync
PBCLK
10
00
Prescaler
1, 2, 4, 8, 16,
32, 64, 256
3
TCKPS (TxCON<6:4>)
Note 1: In this diagram, the use of ‘x’ in registers TxCON, TMRx, PRx and TxCK refers to either
Timer2 or Timer4; the use of ‘y’ in registers TyCON, TMRy, PRy and TyIF refers to either Timer3 or Timer5.
2: TxCK pins are not available on 64-pin devices.
3: ADC event trigger is available only on Timer2/3 pair.
DS61143G-page 106
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
15.0
INPUT CAPTURE
2.
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 15. “Input
Capture” (DS61122) of the “PIC32MX
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
The Input Capture module is useful in applications
requiring frequency (period) and pulse measurement.
The PIC32MX3XX/4XX devices support up to five input
capture channels.
The Input Capture module captures the 16-bit or 32-bit
value of the selected Time Base registers when an
event occurs at the ICx pin. The events that cause a
capture event are listed below in three categories:
1.
Capture timer value on every edge (rising and
falling)
3. Capture timer value on every edge (rising and
falling), specified edge first.
4. Prescaler Capture Event modes
- Capture timer value on every 4th rising edge
of input at ICx pin
- Capture timer value on every 16th rising
edge of input at ICx pin
Each input capture channel can select between one of
two 16-bit timers (Timer2 or Timer3) for the time base,
or two 16-bit timers (Timer2 and Timer3) together to
form a 32-bit timer. The selected timer can use either
an internal or external clock.
Other operational features include:
• Device wake-up from capture pin during CPU
Sleep and Idle modes
• Interrupt on input capture event
• 4-word FIFO buffer for capture values
- Interrupt optionally generated after 1, 2, 3 or
4 buffer locations are filled
• Input capture can also be used to provide
additional sources of external interrupts
Simple Capture Event modes
- Capture timer value on every falling edge of
input at ICx pin
- Capture timer value on every rising edge of
input at ICx pin
FIGURE 15-1:
INPUT CAPTURE BLOCK DIAGRAM
ICx Input
Timer3
Timer2
ICTMR
0
1
C32
FIFO Control
ICxBUF<31:16>
Prescaler
1, 4, 16
ICM<2:0>
ICxBUF<15:0>
Edge Detect
ICM<2:0>
FEDGE
ICxCON
ICBNE
ICOV
ICI<1:0>
Interrupt
Event
Generation
Data Space Interface
Interrupt
© 2010 Microchip Technology Inc.
Peripheral Data Bus
DS61143G-page 107
PIC32MX3XX/4XX
NOTES:
DS61143G-page 108
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
16.0
OUTPUT COMPARE
The Output Compare module (OCMP) is used to generate a single pulse or a train of pulses in response to
selected time base events. For all modes of operation,
the OCMP module compares the values stored in the
OCxR and/or the OCxRS registers to the value in the
selected timer. When a match occurs, the OCMP module generates an event based on the selected mode of
operation.
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 16. “Output
Capture” (DS61111) of the “PIC32MX
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com/PIC32).
The following are some of the key features:
• Multiple output compare modules in a device
• Programmable interrupt generation on compare
event
• Single and Dual Compare modes
• Single and continuous output pulse generation
• Pulse-Width Modulation (PWM) mode
• Hardware-based PWM Fault detection and
automatic output disable
• Programmable selection of 16-bit or 32-bit time
bases.
• Can operate from either of two available 16-bit
time bases or a single 32-bit time base
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
FIGURE 16-1:
OUTPUT COMPARE MODULE BLOCK DIAGRAM
Set Flag bit
OCxIF(1)
OCxRS(1)
Output
Logic
OCxR(1)
3
OCM<2:0>
Mode Select
Comparator
0
16
OCTSEL
1
0
S
R
Q
OCx(1)
Output Enable
OCFA or OCFB
(see Note 2)
1
16
TMR register inputs
from time bases
(see Note 3)
Period match signals
from time bases
(see Note 3)
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare
channels 1 through 5.
2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel.
3: Each output compare channel can use one of two selectable 16-bit time bases or a single 32-bit timer base.
© 2010 Microchip Technology Inc.
DS61143G-page 109
PIC32MX3XX/4XX
NOTES:
DS61143G-page 110
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
17.0
SERIAL PERIPHERAL
INTERFACE (SPI)
The SPI module is a synchronous serial interface useful for communicating with external peripherals and
other microcontroller devices. These peripheral
devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The PIC32MX SPI
module is compatible with Motorola® SPI and SIOP
interfaces.
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 23. “Serial Peripheral
Interface (SPI)”
(DS61106) of the
“PIC32MX Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com/PIC32).
Following are some of the key features of this module:
•
•
•
•
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
FIGURE 17-1:
Master and Slave Modes Support
Four Different Clock Formats
Framed SPI Protocol Support
User Configurable 8-bit, 16-bit and 32-bit Data
Width
Separate SPI Data Registers for Receive and
Transmit
Programmable Interrupt Event on every 8-bit,
16-bit and 32-bit Data Transfer
Operation during CPU Sleep and Idle Mode
Fast Bit Manipulation using CLR, SET and INV
Registers
•
•
•
•
SPI MODULE BLOCK DIAGRAM
Internal
Data Bus
SPIxBUF
Read
Write
SPIxRXB
Registers share address SPIxBUF
SPIxTXB
Transmit
Receive
SPIxSR
SDIx
bit 0
SDOx
SSx/FSYNC
Shift
Control
Slave Select
and Frame
Sync Control
Clock
Control
Edge
Select
Baud Rate
Generator
PBCLK
SCKx
Enable Master Clock
Note: Access SPIxTXB and SPIxRXB registers via SPIxBUF register.
© 2010 Microchip Technology Inc.
DS61143G-page 111
PIC32MX3XX/4XX
NOTES:
DS61143G-page 112
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
18.0
INTER-INTEGRATED CIRCUIT
(I2C™)
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 24. “Inter-Integrated
Circuit (I2C™)” (DS61116) of the
“PIC32MX Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
The PIC32MX3XX/4XX devices have up to two I2C
interface modules, denoted as I2C1 and I2C2. Each
I2C module has a 2-pin interface: the SCLx pin is clock
and the SDAx pin is data.
Each I2C module, ‘I2Cx’ (x = 1 or 2), offers the following
key features:
• I2C Interface Supporting both Master and Slave
Operation.
• I2C Slave Mode Supports 7 and 10-bit Address.
• I2C Master Mode Supports 7 and 10-bit Address.
• I2C Port allows Bidirectional Transfers between
Master and Slaves.
• Serial Clock Synchronization for I2C Port can be
used as a Handshake Mechanism to Suspend
and Resume Serial Transfer (SCLREL control).
• I2C Supports Multi-master Operation; Detects Bus
Collision and Arbitrates Accordingly.
• Provides Support for Address Bit Masking.
The I2C module provides complete hardware support
for both Slave and Multi-Master modes of the I2C serial
communication standard. Figure 18-1 illustrates the I2C
module block diagram.
© 2010 Microchip Technology Inc.
DS61143G-page 113
PIC32MX3XX/4XX
FIGURE 18-1:
I2C™ BLOCK DIAGRAM (X = 1 OR 2)
Internal
Data Bus
I2CxRCV
SCLx
Read
Shift
Clock
I2CxRSR
LSB
SDAx
Address Match
Match Detect
Write
I2CxMSK
Write
Read
I2CxADD
Read
Start and Stop
Bit Detect
Write
Start and Stop
Bit Generation
Control Logic
I2CxSTAT
Collision
Detect
Read
Write
I2CxCON
Acknowledge
Generation
Read
Clock
Stretching
Write
I2CxTRN
LSB
Read
Shift Clock
Reload
Control
BRG Down Counter
Write
I2CxBRG
Read
PBCLK
DS61143G-page 114
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
19.0
Note
UNIVERSAL ASYNCHRONOUS
RECEIVER TRANSMITTER
(UART)
1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 21. “Universal
Asynchronous Receiver Transmitter
(UART)”
(DS61107) of the “PIC32MX
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
The UART module is one of the serial I/O modules
available in PIC32MX3XX/4XX family devices. The
UART is a full-duplex, asynchronous communication
channel that communicates with peripheral devices
and personal computers through protocols such as RS232, RS-485, LIN 1.2 and IrDA®. The module also supports the hardware flow control option, with UxCTS and
UxRTS pins, and also includes an IrDA encoder and
decoder.
FIGURE 19-1:
The primary features of the UART module are:
•
•
•
•
•
•
•
•
•
•
•
•
•
Full-duplex, 8-bit or 9-bit data transmission
Even, odd or no parity options (for 8-bit data)
One or two Stop bits
Hardware auto-baud feature
Hardware flow control option
Fully integrated Baud Rate Generator (BRG) with
16-bit prescaler
Baud rates ranging from 76 bps to 20 Mbps at 80
MHz
4-level-deep First-In-First-Out (FIFO) Transmit
Data Buffer
4-level-deep FIFO Receive Data Buffer
Parity, framing and buffer overrun error detection
Support for interrupt only on address detect (9th
bit = 1)
Separate transmit and receive interrupts
Loopback mode for diagnostic support
• LIN 1.2 protocol support
• IrDA encoder and decoder with 16x baud clock
output for external IrDA encoder/decoder support
Figure 19-1 illustrates a simplified block diagram of the
UART.
UART SIMPLIFIED BLOCK DIAGRAM
Baud Rate Generator
IrDA®
Hardware Flow Control
© 2010 Microchip Technology Inc.
BCLKx
UxRTS
UxCTS
UARTx Receiver
UxRX
UARTx Transmitter
UxTX
DS61143G-page 115
PIC32MX3XX/4XX
FIGURE 19-2:
Write to UxTXREG
BCLK/16
(Shift Clock)
UxTX
TRANSMISSION (8-BIT OR 9-BIT DATA)
Character 1
Start bit
bit 0
bit 1
Character 1
bit 7/8
Stop bit
UxTXIF Cleared by User
UxTXIF
Character 1 to
Transmit Shift Register
TRMT bit
FIGURE 19-3:
Write to UxTXREG
BCLK/16
(Shift Clock)
UxTX
UxTXIF
(UTXISEL0 = 0)
UxTXIF
(UTXISEL0 = 1)
TRMT bit
DS61143G-page 116
TWO CONSECUTIVE TRANSMISSIONS
Character 1 Character 2
Start bit
bit 0
bit 1
Character 1
bit 7/8
Stop bit
Start bit
bit 0
Character 2
UxTXIF Cleared by User in Software
Character 1 to
Transmit Shift Register
Character 2 to
Transmit Shift Register
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 19-4:
UART RECEPTION
UxRX
Start
bit bit 0
bit1
bit 7 Stop
bit
Start
bit bit 0
bit 7 Stop
bit
UxRXIF
(RXISEL = 0x)
Character 2
to UxRXREG
Character 1
to UxRXREG
RIDLE bit
Note:
This timing diagram shows 2 characters received on the UxRX input.
FIGURE 19-5:
UART RECEPTION WITH RECEIVE OVERRUN
Character 1
UxRX
Start
bit bit 0 bit 1
Characters 2, 3, 4, 5
bit 7/8 Stop
bit
Start
bit bit 0
Character 1, 2, 3, 4
Stored in Receive
FIFO
bit 7/8 Stop
bit
Character 6
Start
bit
bit 7/8 Stop
bit
Character 5
Held in UxRSR
OERR Cleared by User
OERR bit
RIDLE bit
Note:
This diagram shows 6 characters received without the user reading the input buffer. The 5th character
received is held in the Receive Shift register. An overrun error occurs at the start of the 6th character.
© 2010 Microchip Technology Inc.
DS61143G-page 117
PIC32MX3XX/4XX
NOTES:
DS61143G-page 118
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
20.0
PARALLEL MASTER PORT
(PMP)
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 13. “Parallel Master
Port (PMP)” (DS61128) of the “PIC32MX
Family Reference Manual”, which is available from the Microchip web site
(www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
The PMP is a parallel 8-bit/16-bit input/output module
specifically designed to communicate with a wide
variety of parallel devices, such as communications
peripherals, LCDs, external memory devices and
microcontrollers. Because the interface to parallel
peripherals varies significantly, the PMP module is
highly configurable.
FIGURE 20-1:
Key features of the PMP module include:
•
•
•
•
•
•
•
•
•
•
•
•
8-bit,16-bit interface
Up to 16 programmable address lines
Up to two Chip Select lines
Programmable strobe options
- Individual read and write strobes, or
- Read/write strobe with enable strobe
Address auto-increment/auto-decrement
Programmable address/data multiplexing
Programmable polarity on control signals
Parallel Slave Port support
- Legacy addressable
- Address support
- 4-byte deep auto-incrementing buffer
Programmable Wait states
Operate during CPU Sleep and Idle modes
Fast bit manipulation using CLR, SET and INV
registers
Freeze option for in-circuit debugging
Note:
On 64-pin devices, data pins PMD<15:8>
are not available.
PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES
Address Bus
Data Bus
PIC32MX3XX/4XX
Parallel
Master Port
Control Lines
PMA<0>
PMALL
PMA<1>
PMALH
FLASH
EEPROM
SRAM
Up to 16-bit Address
PMA<13:2>
PMA<14>
PMCS1
PMA<15>
PMCS2
PMRD
PMRD/PMWR
PMWR
PMENB
PMD<7:0>
PMD<15:8>(1)
Note 1:
Microcontroller
LCD
FIFO
buffer
16/8-bit Data (with or without multiplexed addressing)
On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.
© 2010 Microchip Technology Inc.
DS61143G-page 119
PIC32MX3XX/4XX
NOTES:
DS61143G-page 120
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
21.0
REAL-TIME CLOCK AND
CALENDAR (RTCC)
The following are some of the key features of this
module:
•
•
•
•
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 29. “Real-Time Clock
and Calendar (RTCC)” (DS61125) of
the “PIC32MX Family Reference Manual”, which is available from the Microchip
web site (www.microchip.com/PIC32).
•
•
•
•
•
•
•
•
•
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
The PIC32MX RTCC module is intended for applications in which accurate time must be maintained for
extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended
battery lifetime while keeping track of time.
FIGURE 21-1:
•
•
•
•
Time: Hours, Minutes and Seconds
24-Hour Format (Military Time)
Visibility of One-Half-Second Period
Provides Calendar: Weekday, Date, Month and
Year
Alarm Intervals are configurable for Half of a
Second, One Second, 10 Seconds, One Minute,
10 Minutes, One Hour, One Day, One Week, One
Month and One Year
Alarm Repeat with Decrementing Counter
Alarm with Indefinite Repeat: Chime
Year Range: 2000 to 2099
Leap Year Correction
BCD Format for Smaller Firmware Overhead
Optimized for Long-Term Battery Operation
Fractional Second Synchronization
User Calibration of the Clock Crystal Frequency
with Auto-Adjust
Calibration Range: ±0.66 Seconds Error per
Month
Calibrates up to 260 ppm of Crystal Error
Requirements: External 32.768 kHz Clock Crystal
Alarm Pulse or Seconds Clock Output on RTCC
pin
RTCC BLOCK DIAGRAM
32.768 kHz Input
from Secondary
Oscillator (SOSC)
RTCC Prescalers
0.5s
YEAR, MTH, DAY
RTCVAL
RTCC Timer
Alarm
Event
WKDAY
HR, MIN, SEC
Comparator
MTH, DAY
Compare Registers
with Masks
ALRMVAL
WKDAY
HR, MIN, SEC
Repeat Counter
RTCC Interrupt
RTCC Interrupt Logic
Alarm Pulse
Seconds Pulse
RTCC Pin
RTCOE
© 2010 Microchip Technology Inc.
DS61143G-page 121
PIC32MX3XX/4XX
NOTES:
DS61143G-page 122
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
22.0
10-BIT ANALOG-TO-DIGITAL
CONVERTER (ADC)
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. Refer to Section 17. “10-bit Analog-to-Digital
Converter (ADC)” (DS61104) of the
“PIC32MX Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
The PIC32MX3XX/4XX 10-bit Analog-to-Digital
Converter (ADC) includes the following features:
• Successive Approximation Register (SAR)
conversion
• Up to 1000 kilo samples per second (ksps)
conversion speed
• Up to 16 analog input pins
• External voltage reference input pins
• One unipolar, differential Sample-and-Hold
Amplifier (SHA)
FIGURE 22-1:
•
•
•
•
•
•
Automatic Channel Scan mode
Selectable conversion trigger source
16-word conversion result buffer
Selectable Buffer Fill modes
Eight conversion result format options
Operation during CPU Sleep and Idle modes
A block diagram of the 10-bit ADC is illustrated in
Figure 22-1. The 10-bit ADC has 16 analog input pins,
designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared
with other analog input pins and may be common to
other analog module references.
The analog inputs are connected through two multiplexers (MUXs) to one SHA. The analog input MUXs
can be switched between two sets of analog inputs
between conversions. Unipolar differential conversions
are possible on all channels, other than the pin used as
the reference, using a reference input pin (see
Figure 22-1).
The Analog Input Scan mode sequentially converts
user-specified channels. A control register specifies
which analog input channels will be included in the
scanning sequence.
The 10-bit ADC is connected to a 16-word result buffer.
Each 10-bit result is converted to one of eight, 32-bit
output formats when it is read from the result buffer.
ADC1 MODULE BLOCK DIAGRAM
VREF+(1) AVDD
VCFG<2:0>
AN0
ADC1BUF0
ADC1BUF1
AN15
CHANNEL
SCAN
S/H
+
CH0SB<4:0>
CH0SA<4:0>
VREF-(1) AVSS
-
ADC1BUF2
VREFH
VREFL
SAR ADC
CSCNA
AN1
ADC1BUFE
VREFL
ADC1BUFF
CH0NA CH0NB
Alternate
Input Selection
Note
1:
VREF+, VREF- inputs can be multiplexed with other analog inputs.
© 2010 Microchip Technology Inc.
DS61143G-page 121
PIC32MX3XX/4XX
FIGURE 22-2:
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM
ADRC
ADC Internal
RC Clock(1)
0
TAD
ADCS<7:0>
1
8
ADC Conversion
Clock Multiplier
TPB
2,4,..., 512
Note
1:
See the ADC electrical characteristics for the exact RC clock value.
DS61143G-page 122
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
23.0
COMPARATOR
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. Refer to Section 19. “Comparator”
(DS61110) of
the “PIC32MX Family Reference Manual”, which is available from the Microchip
web site (www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
FIGURE 23-1:
The PIC32MX3XX/4XX Analog Comparator module
contains one or more comparator(s) that can be
configured in a variety of ways.
Following are some of the key features of this module:
• Selectable inputs available include:
- Analog inputs multiplexed with I/O pins
- On-chip internal absolute voltage reference
(IVREF)
- Comparator voltage reference (CVREF)
• Outputs can be inverted
• Selectable interrupt generation
A block diagram of the comparator module is illustrated
in Figure 23-1.
COMPARATOR BLOCK DIAGRAM
Comparator 1
CREF
ON
C1IN+(1)
CPOL
COUT (CM1CON)
C1OUT (CMSTAT)
CVREF(2)
C1OUT
CCH<1:0>
C1
C1IN-
COE
C1IN+
C2IN+
IVREF(2)
Comparator 2
CREF
ON
C2IN+
CPOL
COUT (CM2CON)
C2OUT (CMSTAT)
CVREF(2)
C2OUT
CCH<1:0>
C2IN-
C2
COE
C2IN+
C1IN+
IVREF(2)
Note 1:
2:
On USB variants, when USB is enabled, this pin is controlled by the USB module and therefore
is not available as a comparator input.
Internally connected.
© 2010 Microchip Technology Inc.
DS61143G-page 125
PIC32MX3XX/4XX
NOTES:
DS61143G-page 126
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
24.0
COMPARATOR VOLTAGE
REFERENCE (CVREF)
The CVREF is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog
comparators, it also may be used independently of
them.
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. Refer to Section
20.
“Comparator
Voltage
Reference (CVREF)” (DS61109) of the
“PIC32MX Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com/PIC32).
A block diagram of the module is illustrated in
Figure 24-1. The resistor ladder is segmented to
provide two ranges of voltage reference values and has
a power-down function to conserve power when the
reference is not being used. The module’s supply reference can be provided from either device VDD/VSS or an
external voltage reference. The CVREF output is available for the comparators and typically available for pin
output.
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
FIGURE 24-1:
VREF+
AVDD
The comparator voltage reference has the following
features:
• High and low range selection
• Sixteen output levels available for each range
• Internally connected to comparators to conserve
device pins
• Output can be connected to a pin
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM
CVRSS = 1
8R
CVRSS = 0
CVR3:CVR0
R
CVREN
CVREF
R
R
16-to-1 MUX
R
16 Steps
R
CVREFOUT
CVRCON<CVROE>
R
R
CVRR
VREFAVSS
© 2010 Microchip Technology Inc.
8R
CVRSS = 1
CVRSS = 0
DS61143G-page 127
PIC32MX3XX/4XX
NOTES:
DS61143G-page 128
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
25.0
POWER-SAVING FEATURES
Note 1: This data sheet summarizes the features
of the PIC32MX3XX/4XX family of
devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet,
refer to Section 10. “Power-Saving Features” (DS61130) of the “PIC32MX Family Reference Manual”, which is available
from
the
Microchip
web
site
(www.microchip.com/PIC32).
2: Some registers and associated bits
described in this section may not be available on all devices. Refer to Section 4.0
“Memory Organization” in this data
sheet for device-specific register and bit
information.
This section describes power-saving for the
PIC32MX3XX/4XX. The PIC32MX devices offer a total
of nine methods and modes that are organized into two
categories that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving
is controlled by software.
25.1
Power-Saving with CPU Running
When the CPU is running, power consumption can be
controlled by reducing the CPU clock frequency, lowering the PBCLK, and by individually disabling modules.
These methods are grouped into the following modes:
• FRC Run mode: the CPU is clocked from the FRC
clock source with or without postscalers.
• LPRC Run mode: the CPU is clocked from the
LPRC clock source.
• SOSC Run mode: the CPU is clocked from the
SOSC clock source.
• Peripheral Bus Scaling mode: peripherals are
clocked at programmable fraction of the CPU
clock (SYSCLK).
25.2
CPU Halted Methods
The device supports two power-saving modes, Sleep
and Idle, both of which halt the clock to the CPU. These
modes operate with all clock sources, as listed below:
• POSC Idle Mode: the system clock is derived from
the POSC. The system clock source continues to
operate.
Peripherals continue to operate, but can
optionally be individually disabled.
• FRC Idle Mode: the system clock is derived from
the FRC with or without postscalers. Peripherals
continue to operate, but can optionally be
individually disabled.
• SOSC Idle Mode: the system clock is derived from
the SOSC. Peripherals continue to operate, but
can optionally be individually disabled.
© 2010 Microchip Technology Inc.
• LPRC Idle Mode: the system clock is derived from
the LPRC.
Peripherals continue to operate, but can optionally be individually disabled. This is the lowest
power mode for the device with a clock running.
• Sleep Mode: the CPU, the system clock source,
and any peripherals that operate from the system
clock source, are halted.
Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode
for the device.
25.3
Power-Saving Operation
The purpose of all power-saving is to reduce power
consumption by reducing the device clock frequency.
To achieve this, low-frequency clock sources can be
selected. In addition, the peripherals and CPU can be
halted or disabled to further reduce power
consumption.
25.3.1
SLEEP MODE
Sleep mode has the lowest power consumption of the
device Power-Saving operating modes. The CPU and
most peripherals are halted. Select peripherals can
continue to operate in Sleep mode and can be used to
wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in
Sleep mode.
Sleep mode includes the following characteristics:
• The CPU is halted.
• The system clock source is typically shut down.
See Section 25.3.2 “Idle Mode” for specific
information.
• There can be a wake-up delay based on the
oscillator selection.
• The Fail-Safe Clock Monitor (FSCM) does not
operate during Sleep mode.
• The BOR circuit, if enabled, remains operative
during Sleep mode.
• The WDT, if enabled, is not automatically cleared
prior to entering Sleep mode.
• Some peripherals can continue to operate in
Sleep mode. These peripherals include I/O pins
that detect a change in the input signal, WDT,
ADC, UART and peripherals that use an external
clock input or the internal LPRC oscillator, e.g.,
RTCC and Timer 1.
• I/O pins continue to sink or source current in the
same manner as they do when the device is not in
Sleep.
• The USB module can override the disabling of the
POSC or FRC. Refer to Section 11.0 “USB OnThe-Go (OTG)” for specific details.
• Some modules can be individually disabled by
software prior to entering Sleep in order to further
reduce consumption.
DS61143G-page 129
PIC32MX3XX/4XX
The processor will exit, or ‘wake-up’, from Sleep on one
of the following events:
The processor will wake or exit from Idle mode on the
following events:
• On any interrupt from an enabled source that is
operating in Sleep. The interrupt priority must be
greater than the current CPU priority.
• On any form of device Reset.
• On a WDT time-out. See Section 26.2 “Watchdog Timer (WDT)”.
• On any interrupt event for which the interrupt
source is enabled. The priority of the interrupt
event must be greater than the current priority of
CPU. If the priority of the interrupt event is lower
than or equal to current priority of CPU, the CPU
will remain halted and the device will remain in
Idle mode.
• On any source of device Reset.
• On a WDT time-out interrupt. See Section 26.2
“Watchdog Timer (WDT)”.
If the interrupt priority is lower than or equal to current
priority, the CPU will remain halted, but the PBCLK will
start running and the device will enter into Idle mode.
Note:
25.3.2
There is no FRZ mode for this module.
IDLE MODE
In the Idle mode, the CPU is halted but the System
clock (SYSCLK) source is still enabled. This allows
peripherals to continue operation when the CPU is
halted. Peripherals can be individually configured to
halt when entering Idle by setting their respective SIDL
bit. Latency when exiting Idle mode is very low due to
the CPU oscillator source remaining active.
Note:
Changing the PBCLK divider ratio requires
recalculation of peripheral timing. For
example, assume the UART is configured
for 9600 baud with a PB clock ratio of 1:1
and a POSC of 8 MHz. When the PB clock
divisor of 1:2 is used, the input frequency
to the baud clock is cut in half; therefore,
the baud rate is reduced to 1/2 its former
value. Due to numeric truncation in calculations (such as the baud rate divisor), the
actual baud rate may be a tiny percentage
different than expected. For this reason,
any timing calculation required for a
peripheral should be performed with the
new PB clock frequency instead of scaling
the previous value based on a change in
PB divisor ratio.
Oscillator start-up and PLL lock delays are
applied when switching to a clock source
that was disabled and that uses a crystal
and/or the PLL. For example, assume the
clock source is switched from POSC to
LPRC just prior to entering Sleep in order to
save power. No oscillator start-up delay
would be applied when exiting Idle. However, when switching back to POSC, the
appropriate
PLL
and/or
oscillator
startup/lock delays would be applied.
25.3.3
PERIPHERAL BUS SCALING
METHOD
Most of the peripherals on the device are clocked using
the PBCLK. The peripheral bus can be scaled relative
to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing
SYSCLK-to-PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All
peripherals using PBCLK are affected when the divisor
is changed. Peripherals such as USB, Interrupt Controller, DMA, Bus Matrix and Prefetch Cache are
clocked directly from SYSCLK, as a result, they are not
affected by PBCLK divisor changes
Changing the PBCLK divisor affects:
• The CPU to peripheral access latency. The CPU
has to wait for next PBCLK edge for a read to
complete. In 1:8 mode this results in a latency of
one to seven SYSCLKs.
• The power consumption of the peripherals. Power
consumption is directly proportional to the frequency at which the peripherals are clocked. The
greater the divisor, the lower the power consumed
by the peripherals.
To minimize dynamic power the PB divisor should be
chosen to run the peripherals at the lowest frequency
that provides acceptable system performance. When
selecting a PBCLK divider, peripheral clock requirements such as baud rate accuracy should be taken into
account. For example, the UART peripheral may not be
able to achieve all baud rate values at some PBCLK
divider depending on the SYSCLK value.
The device enters Idle mode when the SLPEN
(OSCCON<4>) bit is clear and a WAIT instruction is
executed.
DS61143G-page 130
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
26.0
SPECIAL FEATURES
Note:
This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. To complement the information in this data sheet, refer to the related
section in the “PIC32MX Family Reference
Manual” (DS61132), which is available from
the
Microchip
web
site
(www.microchip.com/PIC32).
PIC32MX3XX/4XX devices include several features
intended to maximize application flexibility and reliability and minimize cost through elimination of external
components. These are:
•
•
•
•
Flexible Device Configuration
Watchdog Timer
JTAG Interface
In-Circuit Serial Programming™ (ICSP™)
26.1
Configuration Bits
The Configuration bits can be programmed to select
various device configurations.
REGISTER 26-1:
DEVCFG0: DEVICE CONFIGURATION WORD 0
r-0
r-1
r-1
R/P
r-1
r-1
r-1
R/P
—
—
—
CP
—
—
—
BWP
bit 31
bit 24
r-1
r-1
r-1
r-1
—
—
—
—
R/P
R/P
R/P
R/P
PWP<7:4>
bit 23
bit 16
R/P
R/P
R/P
R/P
PWP<3:0>
r-1
r-1
r-1
r-1
—
—
—
—
bit 15
bit 8
r-1
r-1
r-1
r-1
R/P
r-1
—
—
—
—
ICESEL
—
R/P
R/P
DEBUG<1:0>
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
P = Programmable bit
r = Reserved bit
bit 31
Reserved: Write ‘0’
bit 30-29
Reserved: Write ‘1’
bit 28
CP: Code-Protect bit
Prevents boot and program Flash memory from being read or modified by an external
programming device.
1 = Protection disabled
0 = Protection enabled
bit 27-25
Reserved: Write ‘1’
bit 24
BWP: Boot Flash Write-Protect bit
Prevents boot Flash memory from being modified during code execution.
1 = Boot Flash is writable
0 = Boot Flash is not writable
bit 23-20
Reserved: Write ‘1’
© 2010 Microchip Technology Inc.
DS61143G-page 131
PIC32MX3XX/4XX
REGISTER 26-1:
DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)
bit 19-12
PWP<7:0>: Program Flash Write-Protect bits
Prevents selected program Flash memory pages from being modified during code execution.
The PWP bits represent the one’s compliment of the number of write protected program Flash memory
pages.
11111111 = Disabled
11111110 = 0xBD00_0FFF
11111101 = 0xBD00_1FFF
11111100 = 0xBD00_2FFF
11111011 = 0xBD00_3FFF
11111010 = 0xBD00_4FFF
11111001 = 0xBD00_5FFF
11111000 = 0xBD00_6FFF
11110111 = 0xBD00_7FFF
11110110 = 0xBD00_8FFF
11110101 = 0xBD00_9FFF
11110100 = 0xBD00_AFFF
11110011 = 0xBD00_BFFF
11110010 = 0xBD00_CFFF
11110001 = 0xBD00_DFFF
11110000 = 0xBD00_EFFF
11101111 = 0xBD00_FFFF
.
.
.
01111111 = 0xBD07_FFFF
bit 11-4
Reserved: Write ‘1’
bit 3
ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit
1 = PGEC2/PGED2 pair is used
0 = PGEC1/PGED1 pair is used
bit 2
Reserved: Write ‘1’
bit 1-0
DEBUG<1:0>: Background Debugger Enable bits (forced to ‘11’ if code-protect is enabled)
11 = Debugger disabled
10 = Debugger enabled
01 = Reserved (same as ‘11’ setting)
00 = Reserved (same as ‘11’ setting)
DS61143G-page 132
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
REGISTER 26-2:
DEVCFG1: DEVICE CONFIGURATION WORD 1
r-1
r-1
r-1
r-1
r-1
r-1
r-1
r-1
—
—
—
—
—
—
—
—
bit 31
bit 24
R/P
r-1
r-1
FWDTEN
—
—
R/P
R/P
R/P
R/P
R/P
WDTPS<4:0>
bit 23
bit 16
R/P
R/P
R/P
FCKSM<1:0>
R/P
FPBDIV<1:0>
r-1
R/P
—
OSCIOFNC
R/P
R/P
POSCMOD<1:0>
bit 15
bit 8
R/P
r-1
R/P
r-1
r-1
IESO
—
FSOSCEN
—
—
R/P
R/P
R/P
FNOSC<2:0>
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
P = Programmable bit
U = Unimplemented bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-24
Reserved: Write ‘1’
bit 23
FWDTEN: Watchdog Timer Enable bit
1 = The WDT is enabled and cannot be disabled by software
0 = The WDT is not enabled; it can be enabled in software
bit 22-21
Reserved: Write ‘1’
bit 20-16
WDTPS<4:0>: Watchdog Timer Postscale Select bits
10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1:4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = ‘10100’
© 2010 Microchip Technology Inc.
r = Reserved bit
DS61143G-page 133
PIC32MX3XX/4XX
REGISTER 26-2:
DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)
bit 15-14
FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits
1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 13-12
FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
11 = PBCLK is SYSCLK divided by 8
10 = PBCLK is SYSCLK divided by 4
01 = PBCLK is SYSCLK divided by 2
00 = PBCLK is SYSCLK divided by 1
bit 11
Reserved: Write ‘1’
bit 10
OSCIOFNC: CLKO Enable Configuration bit
1 = CLKO output signal active on the OSCO pin; primary oscillator must be disabled or configured for
the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 OR 00)
0 = CLKO output disabled
bit 9-8
POSCMOD<1:0>: Primary Oscillator Configuration bits
11 = Primary oscillator disabled
10 = HS oscillator mode selected
01 = XT oscillator mode selected
00 = External clock mode selected
bit 7
IESO: Internal External Switchover bit
1 = Internal External Switchover mode enabled (Two-Speed Start-up enabled)
0 = Internal External Switchover mode disabled (Two-Speed Start-up disabled)
bit 6
Reserved: Write ‘1’
bit 5
FSOSCEN: Secondary Oscillator Enable bit
1 = Enable Secondary Oscillator
0 = Disable Secondary Oscillator
bit 4-3
Reserved: Write ‘1’
bit 2-0
FNOSC<2:0>: Oscillator Selection bits
111 = Fast RC Oscillator with divide-by-N (FRCDIV)
110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
101 = Low-Power RC Oscillator (LPRC)
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator with PLL module (XT+PLL, HS+PLL, EC+PLL)
010 = Primary Oscillator (XT, HS, EC)(1)
001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
000 = Fast RC Oscillator (FRC)
Note 1: Do not disable POSC (POSCMOD = 00) when using this oscillator source.
DS61143G-page 134
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
REGISTER 26-3:
DEVCFG2: DEVICE CONFIGURATION WORD 2
r-1
r-1
r-1
r-1
r-1
r-1
r-1
r-1
—
—
—
—
—
—
—
—
bit 31
bit 24
r-1
r-1
r-1
r-1
r-1
—
—
—
—
—
R/P
R/P
R/P
FPLLODIV<2:0>
bit 23
bit 16
R/P
r-1
r-1
r-1
r-1
FUPLLEN
—
—
—
—
R/P
R/P
R/P
FUPLLIDIV<2:0>
bit 15
bit 8
r-1
R/P
—
R/P
R/P
r-1
FPLLMULT<2:0>
R/P
—
R/P
R/P
FPLLIDIV<2:0>
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
P = Programmable bit
U = Unimplemented bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-19
Reserved: Write ‘1’
bit 18-16
FPLLODIV<2:0>: Default Postscaler for PLL bits
111 = PLL output divided by 256
110 = PLL output divided by 64
101 = PLL output divided by 32
100 = PLL output divided by 16
011 = PLL output divided by 8
010 = PLL output divided by 4
001 = PLL output divided by 2
000 = PLL output divided by 1
bit 15
FUPLLEN: USB PLL Enable bit
1 = Enable USB PLL
0 = Disable and bypass USB PLL
bit 14-11
Reserved: Write ‘1’
bit 10-8
FUPLLIDIV<2:0>: PLL Input Divider bits
111 = 12x divider
110 = 10x divider
101 = 6x divider
100 = 5x divider
011 = 4x divider
010 = 3x divider
010 = 3x divider
001 = 2x divider
000 = 1x divider
bit 7
Reserved: Write ‘1’
© 2010 Microchip Technology Inc.
r = Reserved bit
DS61143G-page 135
PIC32MX3XX/4XX
REGISTER 26-3:
DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)
bit 6-4
FPLLMULT<2:0>: PLL Multiplier bits
111 = 24x multiplier
110 = 21x multiplier
101 = 20x multiplier
100 = 19x multiplier
011 = 18x multiplier
010 = 17x multiplier
001 = 16x multiplier
000 = 15x multiplier
bit 3
Reserved: Write ‘1’
bit 2-0
FPLLIDIV<2:0>: PLL Input Divider bits
111 = 12x divider
110 = 10x divider
101 = 6x divider
100 = 5x divider
011 = 4x divider
010 = 3x divider
001 = 2x divider
000 = 1x divider
REGISTER 26-4:
DEVCFG3: DEVICE CONFIGURATION WORD 3
r-1
r-1
r-1
r-1
r-1
r-1
r-1
r-1
—
—
—
—
—
—
—
—
bit 31
bit 24
r-1
r-1
r-1
r-1
r-1
r-1
r-1
r-1
—
—
—
—
—
—
—
—
bit 23
bit 16
R/P
R/P
R/P
R/P
R/P
R/P
R/P
R/P
USERID<15:8>
bit 15
bit 8
R/P
R/P
R/P
R/P
R/P
R/P
R/P
R/P
USERID<7:0>
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
P = Programmable bit
U = Unimplemented bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
r = Reserved bit
bit 31-16
Reserved: Write ‘1’
bit 15-0
USERID<15:0>: This is a 16-bit value that is user defined and is readable via ICSP™ and JTAG
DS61143G-page 136
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
REGISTER 26-5:
R
DEVID: DEVICE AND REVISION ID REGISTER
R
R
R
R
VER<3:0>(1)
R
R
R
(1)
DEVID<27:24>
bit 31
bit 24
R
R
R
R
R
DEVID<23:16>
R
R
R
(1)
bit 23
bit 16
R
R
R
R
R
R
R
R
DEVID<15:8>(1)
bit 15
bit 8
R
R
R
R
R
DEVID<7:0>
R
R
R
(1)
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-28
VER<3:0>: Revision Identifier bits(1)
bit 27-0
DEVID<27:0>: Device ID(1)
Note 1:
P = Programmable bit
r = Reserved bit
See the “PIC32MX Flash Programming Specification” (DS61145) for a list of Revision and Device ID values.
© 2010 Microchip Technology Inc.
DS61143G-page 137
PIC32MX3XX/4XX
26.2
Watchdog Timer (WDT)
This section describes the operation of the WDT and
Power-Up Timer of the PIC32MX3XX/4XX.
The WDT, when enabled, operates from the internal
Low-Power Oscillator (LPRC) clock source and can be
used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in
software. Various WDT time-out periods can be
selected using the WDT postscaler. The WDT can also
be used to wake the device from Sleep or Idle mode.
The following are some of the key features of the WDT
module:
• Configuration or software controlled
• User-configurable time-out period
• Can wake the device from Sleep or Idle
FIGURE 26-1:
WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM
PWRT Enable
WDT Enable
LPRC
Control
PWRT Enable
1:64 Output
LPRC
Oscillator
PWRT
1
Clock
25-bit Counter
WDTCLR = 1
WDT Enable
Wake
WDT Enable
Reset Event
25
0
1
WDT Counter Reset
Device Reset
NMI (Wake-up)
Power Save
Decoder
FWDTPS<4:0>(DEVCFG1<20:16>)
DS61143G-page 138
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
26.3
On-Chip Voltage Regulator
26.3.1
ON-CHIP REGULATOR AND POR
All PIC32MX3XX/4XX device’s core and digital logic
are designed to operate at a nominal 1.8V. To simplify
system
designs,
most
devices
in
the
PIC32MX3XX/4XX incorporate an on-chip regulator
providing the required core logic voltage from VDD.
When the voltage regulator is enabled, it takes fixed
delay for it to generate output. During this time, designated as TPU, code execution is disabled. TPU is applied
every time the device resumes operation after any
power-down, including Sleep mode.
The internal 1.8V regulator is controlled by the
ENVREG pin. Tying this pin to VDD enables the regulator, which in turn provides power to the core. A low
ESR capacitor (such as tantalum) must be connected
to the VDDCORE/VCAP pin (Figure 26-2). This helps to
maintain the stability of the regulator. The recommended value for the filer capacitor is provided in
Section 29.1 “DC Characteristics”.
If the regulator is disabled, a separate Power-up Timer
(PWRT) is automatically enabled. The PWRT adds a
fixed delay of TPWRT at device start-up. See
Section 29.0 “Electrical Characteristics” for more
information on TPU AND TPWRT.
Note:
It is important that the low ESR capacitor
is placed as close as possible to the
VDDCORE/VCAP pin.
Tying the ENVREG pin to VSS disables the regulator. In
this case, separate power for the core logic at a nominal 1.8V must be supplied to the device on the
VDDCORE/VCAP pin.
Alternatively, the VDDCORE/VCAP and VDD pins can be
tied together to operate at a lower nominal voltage.
Refer to Figure 26-2 for possible configurations.
FIGURE 26-2:
ON-CHIP REGULATOR AND BOR
When
the
on-chip
regulator
is
enabled,
PIC32MX3XX/4XX devices also have a simple brownout capability. If the voltage supplied to the regulator is
inadequate to maintain a regulated level, the regulator
Reset circuitry will generate a Brown-out Reset. This
event is captured by the BOR flag bit (RCON<1>). The
brown-out voltage levels are specific in Section 29.1
“DC Characteristics”.
26.3.3
POWER-UP REQUIREMENTS
The on-chip regulator is designed to meet the power-up
requirements for the device. If the application does not
use the regulator, then strict power-up conditions must
be adhered to. While powering up, VDDCORE must
never exceed VDD by 0.3 volts.
CONNECTIONS FOR THE ON-CHIP REGULATOR
Regulator Enabled (ENVREG tied to VDD):
3.3V
PIC32MX
VDD
ENVREG
VDDCORE/VCAP
CEFC
(10 μF typ)
Note 1:
26.3.2
VSS
Regulator Disabled (ENVREG tied to ground):
1.8V(1)
3.3V(1)
PIC32MX
VDD
ENVREG
VDDCORE/VCAP
VSS
These are typical operating voltages. Refer to Section 31.1 “DC Characteristics” for the full operating ranges of VDD
and VDDCORE.
© 2010 Microchip Technology Inc.
DS61143G-page 139
PIC32MX3XX/4XX
26.4
Programming and Diagnostics
PIC32MX3XX/4XX devices provide a complete range
of programming and diagnostic features that can
increase the flexibility of any application using them.
These features allow system designers to include:
• Simplified field programmability using two-wire InCircuit Serial Programming™ (ICSP™) interfaces
• Debugging using ICSP
• Programming and debugging capabilities using
the EJTAG extension of JTAG
• JTAG boundary scan testing for device and board
diagnostics
PIC32MX devices incorporate two programming and
diagnostic modules, and a trace controller, that provide
a range of functions to the application developer.
FIGURE 26-3:
BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS
PGEC1
PGED1
ICSP™
Controller
PGEC2
PGED2
ICESEL
TDI
TDO
JTAG
Controller
TCK
Core
TMS
JTAGEN
DEBUG<1:0>
TRCLK
TRD0
TRD1
Instruction Trace
Controller
TRD2
TRD3
DEBUG<1:0>
DS61143G-page 140
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
REGISTER 26-6:
DDPCON: DEBUG DATA PORT CONTROL REGISTER
r-x
r-x
r-x
r-x
r-x
r-x
r-x
r-x
—
—
—
—
—
—
—
—
bit 31
bit 24
r-x
r-x
r-x
r-x
r-x
r-x
r-x
r-x
—
—
—
—
—
—
—
—
bit 23
bit 16
r-x
r-x
r-x
r-x
r-x
r-x
r-x
r-x
—
—
—
—
—
—
—
—
bit 15
bit 8
R/W-0
R/W-0
R/W-0
R/W-0
R/W-1
R/W-0
r-x
r-x
DDPUSB
DDPU1
DDPU2
DDPSPI1
JTAGEN
TROEN
—
—
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
P = Programmable bit
bit 31-8
Reserved: Write ‘0’; ignore read
bit 7
DDPUSB: Debug Data Port Enable for USB bit
1 = USB peripheral ignores USBFRZ (U1CNFG1<5>) setting
0 = USB peripheral follows USBFRZ setting
bit 6
DDPU1: Debug Data Port Enable for UART1 bit
1 = UART1 peripheral ignores FRZ (U1MODE<14>) setting
0 = UART1 peripheral follows FRZ setting
bit 5
DDPU2: Debug Data Port Enable for UART2 bit
1 = UART2 peripheral ignores FRZ (U2MODE<14>) setting
0 = UART2 peripheral follows FRZ setting
bit 4
DDPSPI1: Debug Data Port Enable for SPI1 bit
1 = SPI1 peripheral ignores FRZ (SPI1CON<14>) setting
0 = SPI1 peripheral follows FRZ setting
bit 3
JTAGEN: JTAG Port Enable bit
1 = Enable JTAG Port
0 = Disable JTAG Port
bit 2
TROEN: Trace Output Enable bit
1 = Enable Trace Port
0 = Disable Trace Port
bit 1-0
Reserved: Write ‘1’; ignore read
© 2010 Microchip Technology Inc.
r = Reserved bit
DS61143G-page 141
PIC32MX3XX/4XX
NOTES:
DS61143G-page 142
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
27.0
INSTRUCTION SET
The PIC32MX3XX/4XX family instruction set complies
with the MIPS32 Release 2 instruction set architecture.
PIC32MX does not support the following features:
Table 27-1 provides a summary of the instructions that
are implemented by the PIC32MX3XX/4XX family
core.
Note:
• CoreExtend instructions
• Coprocessor 1 instructions
• Coprocessor 2 instructions
TABLE 27-1:
MIPS32® INSTRUCTION SET
Instruction
Description
Refer to “MIPS32® Architecture for Programmers Volume II: The MIPS32®
Instruction Set” at www.mips.com for more
information.
Function
ADD
Integer Add
Rd = Rs + Rt
ADDI
Integer Add Immediate
Rt = Rs + Immed
ADDIU
Unsigned Integer Add Immediate
Rt = Rs +U Immed
ADDU
Unsigned Integer Add
AND
Logical AND
Rd = Rs +U Rt
Rd = Rs & Rt
ANDI
Logical AND Immediate
Rt = Rs & (016 || Immed)
B
Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)
PC += (int)offset
BAL
Branch and Link
(Assembler idiom for: BGEZAL r0, offset)
GPR[31] = PC + 8
PC += (int)offset
BEQ
Branch on Equal
if Rs == Rt
PC += (int)offset
BEQL
Branch on Equal Likely(1)
if Rs == Rt
PC += (int)offset
else
Ignore Next Instruction
BGEZ
Branch on Greater Than or Equal to Zero
if !Rs[31]
PC += (int)offset
BGEZAL
Branch on Greater Than or Equal to Zero and Link
GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset
BGEZALL
Branch on Greater Than or Equal to Zero and Link
Likely(1)
GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BGEZL
Branch on Greater Than or Equal to Zero Likely(1)
if !Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BGTZ
Branch on Greater Than Zero
if !Rs[31] && Rs != 0
PC += (int)offset
BGTZL
Branch on Greater Than Zero Likely(1)
if !Rs[31] && Rs != 0
PC += (int)offset
else
Ignore Next Instruction
BLEZ
Branch on Less Than or Equal to Zero
if Rs[31] || Rs == 0
PC += (int)offset
Note 1:
This instruction is deprecated and should not be used.
© 2010 Microchip Technology Inc.
DS61143G-page 143
PIC32MX3XX/4XX
TABLE 27-1:
MIPS32® INSTRUCTION SET (CONTINUED)
Instruction
Description
Function
(1)
BLEZL
Branch on Less Than or Equal to Zero Likely
BLTZ
Branch on Less Than Zero
if Rs[31]
PC += (int)offset
BLTZAL
Branch on Less Than Zero and Link
GPR[31] = PC + 8
if Rs[31]
PC += (int)offset
BLTZALL
Branch on Less Than Zero and Link Likely(1)
GPR[31] = PC + 8
if Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BLTZL
Branch on Less Than Zero Likely(1)
if Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BNE
Branch on Not Equal
if Rs != Rt
PC += (int)offset
BNEL
Branch on Not Equal Likely(1)
if Rs != Rt
PC += (int)offset
else
Ignore Next Instruction
BREAK
Breakpoint
Break Exception
CLO
Count Leading Ones
Rd = NumLeadingOnes(Rs)
CLZ
Count Leading Zeroes
Rd = NumLeadingZeroes(Rs)
DERET
Return from Debug Exception
PC = DEPC
Exit Debug Mode
if Rs[31] || Rs == 0
PC += (int)offset
else
Ignore Next Instruction
DI
Atomically Disable Interrupts
Rt = Status; StatusIE = 0
DIV
Divide
LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt
DIVU
Unsigned Divide
LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt
EHB
Execution Hazard Barrier
Stop instruction execution
until execution hazards are
cleared
EI
Atomically Enable Interrupts
ERET
Return from Exception
Rt = Status; StatusIE = 1
if StatusERL
PC = ErrorEPC
else
PC = EPC
StatusEXL = 0
StatusERL = 0
LL = 0
EXT
Extract Bit Field
Rt = ExtractField(Rs, pos,
size)
INS
Insert Bit Field
Rt = InsertField(Rs, Rt, pos,
size)
J
Unconditional Jump
PC = PC[31:28] || offset<<2
Note 1:
This instruction is deprecated and should not be used.
DS61143G-page 144
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 27-1:
MIPS32® INSTRUCTION SET (CONTINUED)
Instruction
Description
Function
JAL
Jump and Link
GPR[31] = PC + 8
PC = PC[31:28] || offset<<2
JALR
Jump and Link Register
Rd = PC + 8
PC = Rs
JALR.HB
Jump and Link Register with Hazard Barrier
Like JALR, but also clears execution and
instruction hazards
JR
Jump Register
PC = Rs
JR.HB
Jump Register with Hazard Barrier
Like JR, but also clears execution and
instruction hazards
LB
Load Byte
Rt = (byte)Mem[Rs+offset]
LBU
Unsigned Load Byte
Rt = (ubyte))Mem[Rs+offset]
LH
Load Halfword
Rt = (half)Mem[Rs+offset]
LHU
Unsigned Load Halfword
Rt = (uhalf)Mem[Rs+offset]
LL
Load Linked Word
Rt = Mem[Rs+offset>
LLbit = 1
LLAdr = Rs + offset
LUI
Load Upper Immediate
Rt = immediate << 16
LW
Load Word
Rt = Mem[Rs+offset]
LWPC
Load Word, PC relative
Rt = Mem[PC+offset]
LWL
Load Word Left
Re = Re MERGE Mem[Rs+offset]
LWR
Load Word Right
Re = Re MERGE Mem[Rs+offset]
MADD
Multiply-Add
HI | LO += (int)Rs * (int)Rt
MADDU
Multiply-Add Unsigned
HI | LO += (uns)Rs * (uns)Rt
MFC0
Move from Coprocessor 0
Rt = CPR[0, Rd, sel]
MFHI
Move from HI
Rd = HI
MFLO
Move from LO
Rd = LO
MOVN
Move Conditional on Not Zero
if Rt ¼ 0 then
Rd = Rs
MOVZ
Move Conditional on Zero
if Rt = 0 then
Rd = Rs
MSUB
Multiply-Subtract
HI | LO -= (int)Rs * (int)Rt
MSUBU
Multiply-Subtract Unsigned
HI | LO -= (uns)Rs * (uns)Rt
MTC0
Move to Coprocessor 0
CPR[0, n, Sel] = Rt
MTHI
Move to HI
HI = Rs
MTLO
Move to LO
LO = Rs
MUL
Multiply with register write
HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)31..0
MULT
Integer Multiply
HI | LO = (int)Rs * (int)Rd
MULTU
Unsigned Multiply
HI | LO = (uns)Rs * (uns)Rd
NOP
No Operation
(Assembler idiom for: SLL r0, r0, r0)
NOR
Logical NOR
Rd = ~(Rs | Rt)
OR
Logical OR
Rd = Rs | Rt
ORI
Logical OR Immediate
Rt = Rs | Immed
RDHWR
Read Hardware Register (if enabled by HWREna
Register)
Re = HWR[Rd]
Note 1:
This instruction is deprecated and should not be used.
© 2010 Microchip Technology Inc.
DS61143G-page 145
PIC32MX3XX/4XX
TABLE 27-1:
MIPS32® INSTRUCTION SET (CONTINUED)
Instruction
Description
Function
RDPGPR
Read GPR from Previous Shadow Set
Rt = SGPR[SRSCtlPSS, Rd]
ROTR
Rotate Word Right
ROTRV
Rotate Word Right Variable
SB
Store Byte
Rd = Rtsa-1..0 || Rt31..sa
Rd = RtRs-1..0 || Rt31..Rs
(byte)Mem[Rs+offset] = Rt
SC
Store Conditional Word
if LLbit = 1
mem[Rs+offset> = Rt
Rt = LLbit
SDBBP
Software Debug Break Point
Trap to SW Debug Handler
SEB
Sign-Extend Byte
Rd = SignExtend (Rs-7...0)
SEH
Sign-Extend Half
Rd = SignExtend (Rs-15...0)
SH
Store Half
(half)Mem[Rs+offset> = Rt
SLL
Shift Left Logical
Rd = Rt << sa
SLLV
Shift Left Logical Variable
Rd = Rt << Rs[4:0]
SLT
Set on Less Than
if (int)Rs < (int)Rt
Rd = 1
else
Rd = 0
SLTI
Set on Less Than Immediate
if (int)Rs < (int)Immed
Rt = 1
else
Rt = 0
SLTIU
Set on Less Than Immediate Unsigned
if (uns)Rs < (uns)Immed
Rt = 1
else
Rt = 0
SLTU
Set on Less Than Unsigned
if (uns)Rs < (uns)Immed
Rd = 1
else
Rd = 0
SRA
Shift Right Arithmetic
Rd = (int)Rt >> sa
SRAV
Shift Right Arithmetic Variable
Rd = (int)Rt >> Rs[4:0]
SRL
Shift Right Logical
Rd = (uns)Rt >> sa
SRLV
Shift Right Logical Variable
Rd = (uns)Rt >> Rs[4:0]
SSNOP
Superscalar Inhibit No Operation
NOP
SUB
Integer Subtract
Rt = (int)Rs - (int)Rd
SUBU
Unsigned Subtract
Rt = (uns)Rs - (uns)Rd
SW
Store Word
Mem[Rs+offset] = Rt
SWL
Store Word Left
Mem[Rs+offset] = Rt
SWR
Store Word Right
Mem[Rs+offset] = Rt
SYNC
Synchronize
Orders the cached coherent and
uncached loads and stores for access to
the shared memory
SYSCALL
System Call
SystemCallException
TEQ
Trap if Equal
if Rs == Rt
TrapException
TEQI
Trap if Equal Immediate
if Rs == (int)Immed
TrapException
Note 1:
This instruction is deprecated and should not be used.
DS61143G-page 146
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 27-1:
MIPS32® INSTRUCTION SET (CONTINUED)
Instruction
Description
Function
TGE
Trap if Greater Than or Equal
if (int)Rs >= (int)Rt
TrapException
TGEI
Trap if Greater Than or Equal Immediate
if (int)Rs >= (int)Immed
TrapException
TGEIU
Trap if Greater Than or Equal Immediate Unsigned
if (uns)Rs >= (uns)Immed
TrapException
TGEU
Trap if Greater Than or Equal Unsigned
if (uns)Rs >= (uns)Rt
TrapException
TLT
Trap if Less Than
if (int)Rs < (int)Rt
TrapException
TLTI
Trap if Less Than Immediate
if (int)Rs < (int)Immed
TrapException
TLTIU
Trap if Less Than Immediate Unsigned
if (uns)Rs < (uns)Immed
TrapException
TLTU
Trap if Less Than Unsigned
if (uns)Rs < (uns)Rt
TrapException
TNE
Trap if Not Equal
if Rs != Rt
TrapException
TNEI
Trap if Not Equal Immediate
if Rs != (int)Immed
TrapException
WAIT
Wait for Interrupt
Go to a low power mode and stall until
interrupt occurs
WRPGPR
Write to GPR in Previous Shadow Set
SGPR[SRSCtlPSS, Rd> = Rt
WSBH
Word Swap Bytes Within Halfwords
XOR
Exclusive OR
Rd = Rt23..16 || Rt31..24 || Rt7..0
|| Rt15..8
Rd = Rs ^ Rt
XORI
Exclusive OR Immediate
Rt = Rs ^ (uns)Immed
Note 1:
This instruction is deprecated and should not be used.
© 2010 Microchip Technology Inc.
DS61143G-page 147
PIC32MX3XX/4XX
NOTES:
DS61143G-page 148
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
28.0
DEVELOPMENT SUPPORT
The PIC® microcontrollers and dsPIC® digital signal
controllers are supported with a full range of software
and hardware development tools:
• Integrated Development Environment
- MPLAB® IDE Software
• Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device
Families
- HI-TECH C for Various Device Families
- MPASMTM Assembler
- MPLINKTM Object Linker/
MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for
Various Device Families
• Simulators
- MPLAB SIM Software Simulator
• Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
• In-Circuit Debuggers
- MPLAB ICD 3
- PICkit™ 3 Debug Express
• Device Programmers
- PICkit™ 2 Programmer
- MPLAB PM3 Device Programmer
• Low-Cost Demonstration/Development Boards,
Evaluation Kits and Starter Kits
28.1
MPLAB Integrated Development
Environment Software
The MPLAB IDE software brings an ease of software
development previously unseen in the 8/16/32-bit
microcontroller market. The MPLAB IDE is a Windows®
operating system-based application that contains:
• A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)
• A full-featured editor with color-coded context
• A multiple project manager
• Customizable data windows with direct edit of
contents
• High-level source code debugging
• Mouse over variable inspection
• Drag and drop variables from source to watch
windows
• Extensive on-line help
• Integration of select third party tools, such as
IAR C Compilers
The MPLAB IDE allows you to:
• Edit your source files (either C or assembly)
• One-touch compile or assemble, and download to
emulator and simulator tools (automatically
updates all project information)
• Debug using:
- Source files (C or assembly)
- Mixed C and assembly
- Machine code
MPLAB IDE supports multiple debugging tools in a
single development paradigm, from the cost-effective
simulators, through low-cost in-circuit debuggers, to
full-featured emulators. This eliminates the learning
curve when upgrading to tools with increased flexibility
and power.
© 2010 Microchip Technology Inc.
DS61143G-page 149
PIC32MX3XX/4XX
28.2
MPLAB C Compilers for Various
Device Families
The MPLAB C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC18,
PIC24 and PIC32 families of microcontrollers and the
dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration
capabilities, superior code optimization and ease of
use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
28.3
HI-TECH C for Various Device
Families
The HI-TECH C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC
family of microcontrollers and the dsPIC family of digital
signal controllers. These compilers provide powerful
integration capabilities, omniscient code generation
and ease of use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple
platforms.
28.4
MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.
The MPASM Assembler features include:
28.5
MPLINK Object Linker/
MPLIB Object Librarian
The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
• Efficient linking of single libraries instead of many
smaller files
• Enhanced code maintainability by grouping
related modules together
• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction
28.6
MPLAB Assembler, Linker and
Librarian for Various Device
Families
MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB C Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:
•
•
•
•
•
•
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command line interface
Rich directive set
Flexible macro language
MPLAB IDE compatibility
• Integration into MPLAB IDE projects
• User-defined macros to streamline
assembly code
• Conditional assembly for multi-purpose
source files
• Directives that allow complete control over the
assembly process
DS61143G-page 150
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
28.7
MPLAB SIM Software Simulator
The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.
The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C Compilers,
and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and
debug code outside of the hardware laboratory environment, making it an excellent, economical software
development tool.
28.8
MPLAB REAL ICE In-Circuit
Emulator System
MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs PIC® Flash MCUs and dsPIC® Flash DSCs
with the easy-to-use, powerful graphical user interface of
the MPLAB Integrated Development Environment (IDE),
included with each kit.
The emulator is connected to the design engineer’s PC
using a high-speed USB 2.0 interface and is connected
to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal
(LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware
downloads in MPLAB IDE. In upcoming releases of
MPLAB IDE, new devices will be supported, and new
features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including
low-cost, full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.
© 2010 Microchip Technology Inc.
28.9
MPLAB ICD 3 In-Circuit Debugger
System
MPLAB ICD 3 In-Circuit Debugger System is Microchip’s most cost effective high-speed hardware
debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and Microcontroller (MCU)
devices. It debugs and programs PIC® Flash microcontrollers and dsPIC® DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated
Development Environment (IDE).
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer’s PC using a high-speed
USB 2.0 interface and is connected to the target with a
connector compatible with the MPLAB ICD 2 or MPLAB
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all
MPLAB ICD 2 headers.
28.10 PICkit 3 In-Circuit Debugger/
Programmer and
PICkit 3 Debug Express
The MPLAB PICkit 3 allows debugging and programming of PIC® and dsPIC® Flash microcontrollers at a
most affordable price point using the powerful graphical
user interface of the MPLAB Integrated Development
Environment (IDE). The MPLAB PICkit 3 is connected to
the design engineer’s PC using a full speed USB interface and can be connected to the target via an Microchip
debug (RJ-11) connector (compatible with MPLAB ICD
3 and MPLAB REAL ICE). The connector uses two
device I/O pins and the reset line to implement In-Circuit
Debugging and In-Circuit Serial Programming™.
The PICkit 3 Debug Express include the PICkit 3, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.
DS61143G-page 151
PIC32MX3XX/4XX
28.11 PICkit 2 Development
Programmer/Debugger and
PICkit 2 Debug Express
28.13 Demonstration/Development
Boards, Evaluation Kits and
Starter Kits
The PICkit™ 2 Development Programmer/Debugger is
a low-cost development tool with an easy to use interface for programming and debugging Microchip’s Flash
families of microcontrollers. The full featured Windows®
programming interface supports baseline (PIC10F,
PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx,
PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and
PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products.
With Microchip’s powerful MPLAB Integrated Development Environment (IDE) the PICkit™ 2 enables in-circuit
debugging on most PIC® microcontrollers. In-CircuitDebugging runs, halts and single steps the program
while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers
can be examined and modified.
A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for
adding custom circuitry and provide application firmware
and source code for examination and modification.
The PICkit 2 Debug Express include the PICkit 2, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.
28.12 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages and a modular, detachable socket assembly to support various
package types. The ICSP™ cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices and incorporates an MMC card for file
storage and data applications.
DS61143G-page 152
The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip
has a line of evaluation kits and demonstration software
for analog filter design, KEELOQ® security ICs, CAN,
IrDA®, PowerSmart battery management, SEEVAL®
evaluation system, Sigma-Delta ADC, flow rate
sensing, plus many more.
Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.
Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
29.0
ELECTRICAL CHARACTERISTICS
This section provides an overview of PIC32MX3XX/4XX electrical characteristics. Additional information will be provided
in future revisions of this document as it becomes available.
Absolute maximum ratings for the PIC32MX3XX/4XX are listed below. Exposure to these maximum rating conditions
for extended periods may affect device reliability. Functional operation of the device at these or any other conditions
above the parameters indicated in the operation listings of this specification is not implied.
Absolute Maximum Ratings (Note 1)
Ambient temperature under bias.............................................................................................................. .-40°C to +85°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to VSS (Note 3)......................................... -0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to VSS WHEN VDD ≥ 2.3V (Note 3)........................................ -0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to VSS WHEN VDD < 2.3V (Note 3) ............................ -0.3V to (VDD + 0.3V)
Voltage on VDDCORE with respect to VSS ................................................................................................... -0.3V to 2.0V
Maximum current out of VSS pin(s) .......................................................................................................................300 mA
Maximum current into VDD pin(s) (Note 2)............................................................................................................300 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................25 mA
Maximum current sunk by all ports .......................................................................................................................200 mA
Maximum current sourced by all ports (Note 2)....................................................................................................200 mA
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operation listings of this specification is not implied. Exposure to maximum
rating conditions for extended periods may affect device reliability.
2: Maximum allowable current is a function of device maximum power dissipation (see Table 29-2).
3: See the “Pin Diagrams” section for the 5V tolerant pins.
© 2010 Microchip Technology Inc.
DS61143G-page 153
PIC32MX3XX/4XX
29.1
DC Characteristics
TABLE 29-1:
OPERATING MIPS VS. VOLTAGE
Characteristic
DC5
Note 1:
Max. Frequency
VDD Range
(in Volts)
Temp. Range
(in °C)
PIC32MX3XX/4XX
2.3-3.6V
-40°C to +85°C
80 MHz (Note 1)
40 MHz maximum for PIC32MX320F032H and PIC32MX420F032H devices.
TABLE 29-2:
THERMAL OPERATING CONDITIONS
Rating
Symbol
Min.
Typical
Max.
Unit
Operating Junction Temperature Range
TJ
-40
—
+125
°C
Operating Ambient Temperature Range
TA
-40
—
+85
°C
PIC32MX3XX/4XX
Power Dissipation:
Internal Chip Power Dissipation:
PINT = VDD x (IDD – S IOH)
PD
PINT + PI/O
W
PDMAX
(TJ – TA)/θJA
W
I/O Pin Power Dissipation:
I/O = S ({VDD – VOH} x IOH) + S (VOL x IOL))
Maximum Allowed Power Dissipation
TABLE 29-3:
THERMAL PACKAGING CHARACTERISTICS
Characteristics
Symbol Typical
θJA
θJA
θJA
θJA
Package Thermal Resistance, 121-Pin XBGA (10x10x1.1 mm)
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)
Note 1:
Max.
Unit
Notes
40
—
°C/W
1
43
—
°C/W
1
47
—
°C/W
1
28
—
°C/W
1
Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.
TABLE 29-4:
DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
DC CHARACTERISTICS
Param.
Symbol
No.
Characteristics
Min.
Typical
Max.
Units
Conditions
2.3
—
3.6
V
—
Operating Voltage
DC10
Supply Voltage
VDD
DC12
VDR
RAM Data Retention Voltage
(Note 1)
1.75
—
—
V
—
DC16
VPOR
VDD Start Voltage
to Ensure Internal
Power-on Reset Signal
1.75
—
1.95
V
—
DC17
SVDD
VDD Rise Rate
to Ensure Internal
Power-on Reset Signal
0.05
—
—
V/ms
—
Note 1:
This is the limit to which VDD can be lowered without losing RAM data.
DS61143G-page 154
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-5:
DC CHARACTERISTICS: OPERATING CURRENT (IDD)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
DC CHARACTERISTICS
Parameter
No.
Typical(3)
Max.
Units
Conditions
Operating Current (IDD)(1,2)
DC20
8.5
13
mA
Code executing from Flash
—
DC20c
4.0
—
mA
Code executing from SRAM
—
DC21
23.5
32
mA
Code executing from Flash
—
DC21c
16.4
—
mA
Code executing from SRAM
—
DC22
48
61
mA
Code executing from Flash
—
DC22c
45
—
mA
Code executing from SRAM
—
DC23
55
75
mA
Code executing from Flash
2.3V
DC23c
55
—
mA
Code executing from SRAM
—
DC24
—
100
µA
-40°C
DC24a
—
130
µA
+25°C
DC24b
—
670
µA
+85°C
DC25
94
—
µA
-40°C
DC25a
125
—
µA
+25°C
DC25b
302
—
µA
+85°C
DC25c
71
—
µA
DC26
—
110
µA
-40°C
DC26a
—
180
µA
+25°C
DC26b
—
700
µA
+85°C
Note 1:
2:
3:
4:
4 MHz
20 MHz
(Note 4)
60 MHz
(Note 4)
80 MHz
2.3V
3.3V
LPRC (31 kHz)
(Note 4)
Code executing from SRAM
3.6V
A device’s IDD supply current is mainly a function of the operating voltage and frequency. Other factors,
such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code
execution pattern, execution from program Flash memory vs. SRAM, I/O pin loading and switching rate,
oscillator type as well as temperature can have an impact on the current consumption.
The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by
external square wave from rail to rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data
memory are operational, Program Flash memory Wait states = 7, program cache and prefetch are disabled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and
FSCM are disabled. All I/O pins are configured as inputs and pulled to VSS. MCLR = VDD.
Data in “Typical” column is at 3.3V, 25°C at specified operating frequency unless otherwise stated.
Parameters are for design guidance only and are not tested.
This parameter is characterized, but not tested in manufacturing.
© 2010 Microchip Technology Inc.
DS61143G-page 155
PIC32MX3XX/4XX
TABLE 29-6:
DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
DC CHARACTERISTICS
Parameter
No.
Typical(2)
Max.
Units
Conditions
Idle Current (IIDLE): Core OFF, Clock ON Base Current (Note 1)
DC30
—
5
mA
—
2.3V
DC30a
1.4
—
mA
—
—
DC30b
—
5
mA
—
3.6V
DC31
—
15
mA
—
2.3V
DC31a
13
—
mA
—
—
DC31b
—
17
mA
—
3.6V
DC32
—
22
mA
—
2.3V
DC32a
20
—
mA
—
—
DC32b
—
25
mA
—
3.6V
DC33
—
29
mA
—
2.3V
DC33a
24
—
mA
—
—
DC33b
—
32
mA
—
3.6V
DC34
—
36
µA
-40°C
DC34a
—
62
µA
+25°C
DC34b
—
392
µA
+85°C
DC35
35
—
µA
-40°C
DC35a
65
—
µA
+25°C
DC35b
242
—
µA
+85°C
DC36
—
43
µA
-40°C
DC36a
—
106
µA
+25°C
—
414
µA
+85°C
DC36b
Note 1:
2:
3:
4 MHz
20 MHz
(Note 3)
60 MHz
(Note 3)
80 MHz
2.3V
3.3V
LPRC (31 kHz)
(Note 3)
3.6V
The test conditions for base IDLE current measurements are as follows: System clock is enabled and
PBCLK divisor = 1:8. CPU in Idle mode (CPU core halted). Only digital peripheral modules are enabled
(ON bit = 1) and being clocked. WDT and FSCM are disabled. All I/O pins are configured as inputs and
pulled to VSS. MCLR = VDD.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
This parameter is characterized, but not tested in manufacturing.
DS61143G-page 156
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-7:
DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
DC CHARACTERISTICS
Parameter
No.
Typical(2)
Max.
Units
Conditions
Power-Down Current (IPD) (Note 1)
DC40
7
30
μA
-40°C
DC40a
24
30
μA
+25°C
DC40b
205
300
μA
+85°C
DC40c
25
—
μA
+25°C
DC40d
9
70
μA
-40°C
DC40e
25
70
μA
+25°C
DC40g
115
200
(Note 5)
μA
+70°C
DC40f
200
400
μA
+85°C
10
μA
-40°C
2.3V
Base Power-Down Current (Note 6)
3.3V
Base Power-Down Current
3.6V
Base Power-Down Current
2.3V
Watchdog Timer Current: ΔIWDT (Notes 3,6)
3.3V
Watchdog Timer Current: ΔIWDT (Note 3)
3.6V
Watchdog Timer Current: ΔIWDT (Note 3)
2.3V
RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC
(Notes 3,6)
Module Differential Current
DC41
—
DC41a
—
10
μA
+25°C
DC41b
—
10
μA
+85°C
DC41c
5
—
μA
+25°C
DC41d
—
10
μA
-40°C
DC41e
—
10
μA
+25°C
DC41f
—
12
μA
+85°C
DC42
—
10
μA
-40°C
DC42a
—
17
μA
+25°C
DC42b
—
37
μA
+85°C
DC42c
23
—
μA
+25°C
DC42e
—
10
μA
-40°C
DC42f
—
30
μA
+25°C
DC42g
—
44
μA
+85°C
DC42
—
1100
μA
-40°C
DC42a
—
1100
μA
+25°C
DC42b
—
1000
μA
+85°C
DC42c
880
—
μA
—
DC42e
—
1100
μA
-40°C
DC42f
—
1100
μA
+25°C
DC42g
—
1000
μA
+85°C
Note 1:
2:
3:
4:
5:
6:
3.3V
RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC
(Note 3)
3.6V
RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC
(Note 3)
2.5V
ADC: ΔIADC (Notes 3,4,6)
—
ADC: ΔIADC (Notes 3,4)
3.6V
ADC: ΔIADC (Notes 3,4)
Base IPD is measured with all digital peripheral modules disabled. All I/Os are configured as inputs and
pulled low. WDT and FSCM are disabled.
Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
The Δ current is the additional current consumed when the module is enabled. This current should be
added to the base IPD current.
Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
Data is characterized at +70°C and not tested. Parameter is for design guidance only.
This parameter is characterized, but not tested in manufacturing.
© 2010 Microchip Technology Inc.
DS61143G-page 157
PIC32MX3XX/4XX
TABLE 29-8:
DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
DC CHARACTERISTICS
Param.
Symbol
No.
VIL
DI10
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise
stated)
Operating temperature
-40°C ≤ TA ≤ +85°C for Industrial
Min.
Typical(1)
Max.
Units
with TTL Buffer
VSS
—
0.15 VDD
V
(Note 4)
with Schmitt Trigger Buffer
VSS
—
0.2 VDD
V
(Note 4)
Characteristics
Conditions
Input Low Voltage
I/O pins:
DI15
MCLR
VSS
—
0.2 VDD
V
(Note 4)
DI16
OSC1 (XT mode)
VSS
—
0.2 VDD
V
(Note 4)
DI17
OSC1 (HS mode)
VSS
—
0.2 VDD
V
(Note 4)
DI18
SDAx, SCLx
VSS
—
0.3 VDD
V
SMBus disabled
(Note 4)
DI19
SDAx, SCLx
VSS
—
0.8
V
SMBus enabled
(Note 4)
I/O pins:
with Analog Functions
0.8 VDD
—
VDD
V
(Note 4)
Digital Only
0.8 VDD
—
V
(Note 4)
0.25VDD + 0.8V
—
5.5
V
(Note 4)
0.8 VDD
—
5.5
V
(Note 4)
VIH
DI20
Input High Voltage
with TTL Buffer
with Schmitt Trigger Buffer
DI25
MCLR
0.8 VDD
—
VDD
V
(Note 4)
DI26
OSC1 (XT mode)
0.7 VDD
—
VDD
V
(Note 4)
DI27
OSC1 (HS mode)
0.7 VDD
—
VDD
V
(Note 4)
DI28
SDAx, SCLx
0.7 VDD
—
5.5
V
SMBus disabled
(Note 4)
DI29
SDAx, SCLx
2.1
—
5.5
V
SMBus enabled,
2.3V ≤ VPIN ≤ 5.5
(Note 4)
ICNPU
CNxx Pull up Current
50
250
400
μA
VDD = 3.3V, VPIN = VSS
IIL
Input Leakage Current
(Note 3)
DI30
DI50
I/O Ports
—
—
+1
μA
VSS ≤ VPIN ≤ VDD,
Pin at high-impedance
DI51
Analog Input Pins
—
—
+1
μA
VSS ≤ VPIN ≤ VDD,
Pin at high-impedance
DI55
MCLR
—
—
+1
μA
VSS ≤ VPIN ≤ VDD
DI56
OSC1
—
—
+1
μA
VSS ≤ VPIN ≤ VDD,
XT and HS modes
Note 1:
2:
3:
4:
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input
voltages.
Negative current is defined as current sourced by the pin.
This parameter is characterized, but not tested in manufacturing.
DS61143G-page 158
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-9:
DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise
stated)
Operating temperature
-40°C ≤ TA ≤ +85°C for Industrial
DC CHARACTERISTICS
Param.
Symbol
No.
VOL
DO10
Characteristics
OSC2/CLKO
VOH
Typical
Max.
Units
Conditions
—
—
0.4
V
IOL = 7 mA, VDD = 3.6V
—
—
0.4
V
IOL = 6 mA, VDD = 2.3V
—
—
0.4
V
IOL = 3.5 mA, VDD = 3.6V
—
—
0.4
V
IOL = 2.5 mA, VDD = 2.3V
2.4
—
—
V
IOH = -12 mA, VDD = 3.6V
1.4
—
—
V
IOH = -12 mA, VDD = 2.3V
2.4
—
—
V
IOH = -12 mA, VDD = 3.6V
1.4
—
—
V
IOH = -12 mA, VDD = 2.3V
Output Low Voltage
I/O Ports
DO16
Min.
Output High Voltage
DO20
I/O Ports
DO26
OSC2/CLKO
TABLE 29-10: DC CHARACTERISTICS: PROGRAM MEMORY(3)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
Programming temperature 0°C ≤ TA ≤ +70°C (25°C recommended)
DC CHARACTERISTICS
Param.
No.
Symbol
Characteristics
Min.
Typical(1) Max. Units
Conditions
Program Flash Memory
D130
EP
Cell Endurance
1000
—
—
E/W
D131
VPR
VDD for Read
VMIN
—
3.6
V
VMIN = Minimum operating
voltage
D132
VPEW
VDD for Erase or Write
3.0
—
3.6
V
0°C to +40°C
D134
TRETD
Characteristic Retention
20
—
—
Year Provided no other specifications
are violated
D135
IDDP
Supply Current during
Programming
—
10
—
mA
0°C to +40°C
TWW
Word Write Cycle Time
20
—
40
μs
0°C to +40°C
D136
TRW
Row Write Cycle Time
(Note 2)
(128 words per row)
3
4.5
—
ms
0°C to +40°C
D137
TPE
Page Erase Cycle Time
20
—
—
ms
0°C to +40°C
TCE
Chip Erase Cycle Time
80
—
—
ms
0°C to +40°C
D138
LVDstartup Flash LVD Delay
—
—
6
μs
Flash LVD comparator delay from
enable to output valid.
Note 1:
2:
3:
-40°C to +85°C
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.
The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities
during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus
loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The
default Arbitration mode is mode 1 (CPU has lowest priority).
Refer to “PIC32MX Flash Programming Specification” (DS61145) for operating conditions during
programming and erase cycles.
© 2010 Microchip Technology Inc.
DS61143G-page 159
PIC32MX3XX/4XX
TABLE 29-11: PROGRAM FLASH MEMORY WAIT STATE CHARACTERISTICS
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
Required Flash wait states
SYSCLK
Units
0 Wait State
0 to 30
MHz
1 Wait State
31 to 60
2 Wait States
61 to 80
Note 1:
Comments
—
40 MHz maximum for PIC32MX320F032H and PIC32MX420F032H devices.
TABLE 29-12: COMPARATOR SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature-40°C ≤ TA ≤ +85°C for Industrial
DC CHARACTERISTICS
Param.
Symbol
No.
Characteristics
Min.
Typical
Max.
Units
Comments
D300
VIOFF
Input Offset Voltage
—
±7.5
±25
mV
AVDD = VDD,
AVSS = VSS
D301
VICM
Input Common Mode Voltage
0
—
VDD
V
AVDD = VDD,
AVSS = VSS
(Note 2)
D302
CMRR
Common Mode Rejection Ratio
55
—
—
dB
Max VICM = (VDD - 1)V
(Note 2)
D303
TRESP
Response Time
—
150
400
nsec
AVDD = VDD,
AVSS = VSS
(Notes 1,2)
D304
ON2OV
Comparator Enabled to Output
Valid
—
—
10
μs
Comparator module is
configured before setting
the comparator ON bit.
(Note 2)
D305
IVREF
Internal Voltage Reference
1.14
1.2
1.26
V
—
Note 1:
2:
Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions
from VSS to VDD.
These parameters are characterized but not tested.
TABLE 29-13: VOLTAGE REFERENCE SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature-40°C ≤ TA ≤ +85°C for Industrial
DC CHARACTERISTICS
Param.
No.
Symbol
Characteristics
D310
VRES
Resolution
D311
VRAA
Absolute Accuracy
D312
Note 1:
TSET
Settling
Time(1)
Min.
Typical
Max.
Units
Comments
VDD/24
—
—
—
VDD/32
LSb
—
1/2
LSb
—
—
—
10
μs
—
Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from ‘0000’ to ‘1111’. This
parameter is characterized, but not tested in manufacturing.
DS61143G-page 160
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-14: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature-40°C ≤ TA ≤ +85°C for Industrial
DC CHARACTERISTICS
Param.
No.
Symbol
Characteristics
Min.
Typical
Max.
Units
Comments
1.62
1.80
1.98
V
—
D320
VDDCORE Regulator Output Voltage
D321
CEFC
External Filter Capacitor Value
8
10
—
μF
Capacitor must be low series
resistance (< 1 Ohm)
D322
TPWRT
Power-up Timer Period
—
64
—
ms
ENVREG = 0
© 2010 Microchip Technology Inc.
DS61143G-page 161
PIC32MX3XX/4XX
29.2
AC Characteristics and Timing
Parameters
The information contained in this section defines
PIC32MX3XX/4XX AC characteristics and timing
parameters.
TABLE 29-15: AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
Operating voltage VDD range.
AC CHARACTERISTICS
FIGURE 29-1:
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load Condition 1 – for all pins except OSC2
Load Condition 2 – for OSC2
VDD/2
CL
Pin
RL
VSS
CL
Pin
RL = 464Ω
CL = 50 pF for all pins
50 pF for OSC2 pin (EC mode)
VSS
TABLE 29-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
Param.
Symbol
No.
Min.
Typical(1)
Characteristics
Max.
Units
Conditions
DO56
CIO
All I/O pins and OSC2
—
—
50
pF
EC mode
DO58
CB
SCLx, SDAx
—
—
400
pF
In I2C™ mode
Note 1:
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
FIGURE 29-2:
EXTERNAL CLOCK TIMING
OS20
OS30
OS31
OSC1
OS30
DS61143G-page 162
OS31
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-17: EXTERNAL CLOCK TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
Min.
Typical(1)
Max.
Units
Conditions
External CLKI Frequency
(External clocks allowed only
in EC and ECPLL modes)
DC
4
—
—
50 (Note 3)
50 (Note 5)
MHz
MHz
EC (Note 5)
ECPLL (Note 4)
Oscillator Crystal Frequency
3
—
10
MHz
XT (Note 5)
OS12
4
—
10
MHz
XTPLL
(Notes 4,5)
OS10
FOSC
OS11
Characteristics
OS13
10
—
25
MHz
HS (Note 5)
OS14
10
—
25
MHz
HSPLL
(Notes 4,5)
OS15
32
32.768
100
kHz
SOSC (Note 5)
—
—
—
—
See parameter
OS10 for FOSC
value
OS20
TOSC
TOSC = 1/FOSC = TCY (Note 2)
OS30
TOSL,
TOSH
External Clock In (OSC1)
High or Low Time
0.45 x TOSC
—
—
nsec
EC (Note 5)
OS31
TOSR,
TOSF
External Clock In (OSC1)
Rise or Fall Time
—
—
0.05 x TOSC
nsec
EC (Note 5)
OS40
TOST
Oscillator Start-up Timer Period
(Only applies to HS, HSPLL,
XT, XTPLL and SOSC Clock
Oscillator modes)
—
1024
—
TOSC
(Note 5)
OS41
TFSCM
Primary Clock Fail Safe
Time-out Period
—
2
—
ms
(Note 5)
OS42
GM
External Oscillator
Transconductance
—
12
—
Note 1:
2:
3:
4:
5:
mA/V VDD = 3.3V
TA = +25°C
(Note 5)
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are
not tested.
Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device
executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or
higher than expected current consumption. All devices are tested to operate at “min.” values with an
external clock applied to the OSC1/CLKI pin.
40 MHz maximum for PIC32MX320F032H and PIC32MX420F032H devices.
PLL input requirements: 4 MHZ ≤ FPLLIN ≤ 5 MHZ (use PLL prescaler to reduce FOSC). This parameter is
characterized, but tested at 10 MHz only at manufacturing.
This parameter is characterized, but not tested in manufacturing.
© 2010 Microchip Technology Inc.
DS61143G-page 163
PIC32MX3XX/4XX
TABLE 29-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
OS50
FPLLI
PLL Voltage Controlled
Oscillator (VCO) Input
Frequency Range
4
—
5
MHz
OS51
FSYS
On-Chip VCO System
Frequency
60
—
120
MHz
—
OS52
TLOCK
PLL Start-up Time (Lock Time)
—
—
2
ms
—
OS53
DCLK
CLKO Stability
(Period Jitter or Cumulative)
-0.25
—
+0.25
%
Note 1:
2:
ECPLL, HSPLL, XTPLL,
FRCPLL modes
Measured over 100 ms
period
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
TABLE 29-19:
INTERNAL FRC ACCURACY
AC CHARACTERISTICS
Param.
No.
Characteristics
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature
-40°C ≤ TA ≤ +85°C for industrial
Min.
Typical
Max.
Units
Conditions
+2
%
—
Internal FRC Accuracy @ 8.00 MHz (Note 1)
F20
Note 1:
FRC
-2
—
Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.
TABLE 29-20: INTERNAL RC ACCURACY
AC CHARACTERISTICS
Param.
No.
Characteristics
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
Min.
Typical
Max.
Units
Conditions
-15
—
+15
%
—
LPRC @ 31.25 kHz (Note 1)
F21
Note 1:
LPRC
Change of LPRC frequency as VDD changes.
DS61143G-page 164
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 29-3:
I/O TIMING CHARACTERISTICS
I/O Pin
(Input)
DI35
DI40
I/O Pin
(Output)
Note: Refer to Figure 29-1 for load conditions.
DO31
DO32
TABLE 29-21: I/O TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
No.
Symbol
DO31
TIOR
DO32
TIOF
Characteristics(2)
Port Output Rise Time
Port Output Fall Time
Min.
Typical(1)
Max.
Units
Conditions
—
5
15
nsec
VDD < 2.5V
—
5
10
nsec
VDD > 2.5V
—
5
15
nsec
VDD < 2.5V
—
5
10
nsec
VDD > 2.5V
DI35
TINP
INTx Pin High or Low Time
10
—
—
nsec
—
DI40
TRBP
CNx High or Low Time (input)
2
—
—
TSYSCLK
—
Note 1:
2:
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.
This parameter is characterized, but not tested in manufacturing.
© 2010 Microchip Technology Inc.
DS61143G-page 165
PIC32MX3XX/4XX
FIGURE 29-4:
POWER-ON RESET TIMING CHARACTERISTICS
Internal Voltage Regulator Enabled
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
VDD
VPOR
(TSYSDLY)
SY02
Power Up Sequence
(Note 2)
CPU starts fetching code
SY00
(TPU)
(Note 1)
Internal Voltage Regulator Enabled
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)
VDD
VPOR
(TSYSDLY)
SY02
Power Up Sequence
(Note 2)
SY00
(TPU)
(Note 1)
CPU starts fetching code
SY10
(TOST)
External VDDCORE Provided
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
VDD
VDDCORE
VPOR
(TSYSDLY)
SY02
Power Up Sequence
(Note 3)
SY01
(TPWRT)
(Note 1)
CPU starts fetching code
Note 1: The Power-up period will be extended if the power-up sequence completes before the device
exits from BOR (VDD < VDDMIN).
2: Includes interval voltage regulator stabilization delay.
3: Power-up Timer (PWRT); only active when the internal voltage regulator is disabled
DS61143G-page 166
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 29-5:
EXTERNAL RESET TIMING CHARACTERISTICS
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
MCLR
TMCLR
(SY20)
BOR
TBOR
(SY30)
(TSYSDLY)
SY02
Reset Sequence
CPU starts fetching code
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)
(TSYSDLY)
SY02
Reset Sequence
CPU starts fetching code
TOST
(SY10)
TABLE 29-22: RESETS TIMING
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
SY00
TPU
Power-up Period
Internal Voltage Regulator Enabled
—
400
600
μs
-40°C to +85°C
SY01
TPWRT
Power-up Period
External VDDCORE Applied
(Power-Up-Timer Active)
48
64
80
ms
-40°C to +85°C
SY02
TSYSDLY System Delay Period:
Time required to reload Device
Configuration Fuses plus SYSCLK
delay before first instruction is
fetched.
—
1 μs
+
—
—
-40°C to +85°C
TMCLR
MCLR Pulse Width (low)
—
2
—
μs
-40°C to +85°C
BOR Pulse Width (low)
—
1
—
μs
-40°C to +85°C
SY20
SY30
Note 1:
2:
TBOR
8 SYSCLK
cycles
These parameters are characterized, but not tested in manufacturing.
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.
© 2010 Microchip Technology Inc.
DS61143G-page 167
PIC32MX3XX/4XX
FIGURE 29-6:
TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS
TxCK
Tx11
Tx10
Tx15
Tx20
OS60
TMRx
Note: Refer to Figure 29-1 for load conditions.
TABLE 29-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
TA10
TA11
TA15
TTXH
TTXL
TTXP
Characteristics(2)
TxCK
High Time
TxCK
Low Time
Min.
[(12.5 nsec or 1TPB)/N]
+ 25 nsec
—
—
nsec Must also meet
parameter TA15.
Asynchronous,
with prescaler
10
—
—
nsec
Synchronous,
with prescaler
[(12.5 nsec or 1TPB)/N]
+ 25 nsec
—
—
nsec Must also meet
parameter TA15.
Asynchronous,
with prescaler
10
—
—
nsec
—
[(Greater of 25 nsec or
2TPB)/N]
+ 30 nsec
—
—
nsec
VDD > 2.7V
[(Greater of 25 nsec or
2TPB)/N]
+ 50 nsec
—
—
nsec
VDD < 2.7V
20
—
—
nsec
VDD > 2.7V
(Note 3)
50
—
—
nsec
VDD < 2.7V
(Note 3)
—
100
kHz
—
1
TPB
—
TxCK
Synchronous,
Input Period with prescaler
OS60
FT1
SOSC1/T1CK Oscillator
Input Frequency Range
(oscillator enabled by
setting TCS bit
(T1CON<1>))
32
TA20
TCKEXT-
Delay from External TxCK
Clock Edge to Timer
Increment
—
Note 1:
2:
3:
Conditions
Synchronous,
with prescaler
Asynchronous,
with prescaler
MRL
Typical Max. Units
Timer1 is a Type A.
This parameter is characterized, but not tested in manufacturing.
N = prescale value (1, 8, 64, 256)
DS61143G-page 168
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Max.
Units
Conditions
Must also meet N = prescale
value
parameter
(1, 2, 4, 8, 16,
TB15.
Must also meet 32, 64, 256)
TB10
TTXH
TxCK
High Time
Synchronous,
with prescaler
[(12.5 nsec or 1TPB)/N]
+ 25 nsec
—
nsec
TB11
TTXL
TxCK
Low Time
Synchronous,
with prescaler
[(12.5 nsec or 1TPB)/N]
+ 25 nsec
—
nsec
TxCK
Synchronous, [(Greater of 25 nsec or 2
Input Period with prescaler
TPB)/N]
+ 30 nsec
—
nsec
VDD > 2.7V
[(Greater of 25 nsec or 2
TPB)/N]
+ 50 nsec
—
nsec
VDD < 2.7V
—
1
TPB
TB15
TB20
Note 1:
TTXP
TCKEXT- Delay from External TxCK
MRL
Clock Edge to Timer
Increment
parameter
TB15.
—
—
These parameters are characterized, but not tested in manufacturing.
FIGURE 29-7:
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS
ICx
IC10
IC11
IC15
Note: Refer to Figure 29-1 for load conditions.
TABLE 29-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS
AC CHARACTERISTICS
Param.
Symbol
No.
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
Characteristics(1)
Min.
Max.
Units
Conditions
IC10
TCCL
ICx Input Low Time
[(12.5 nsec or 1TPB)/N]
+ 25 nsec
—
nsec
Must also
meet
parameter
IC15.
IC11
TCCH
ICx Input High Time
[(12.5 nsec or 1TPB)/N]
+ 25 nsec
—
nsec
Must also
meet
parameter
IC15.
IC15
TCCP
ICx Input Period
[(25 nsec or 2TPB)/N]
+ 50 nsec
—
nsec
Note 1:
These parameters are characterized, but not tested in manufacturing.
© 2010 Microchip Technology Inc.
N = prescale
value (1, 4, 16)
—
DS61143G-page 169
PIC32MX3XX/4XX
FIGURE 29-8:
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS
OCx
(Output Compare
or PWM Mode)
OC10
OC11
Note: Refer to Figure 29-1 for load conditions.
TABLE 29-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
OC10
TCCF
OCx Output Fall Time
—
—
—
nsec
See parameter DO32.
OC11
TCCR
OCx Output Rise Time
—
—
—
nsec
See parameter DO31.
Note 1:
2:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
FIGURE 29-9:
OC/PWM MODULE TIMING CHARACTERISTICS
OC20
OCFA/OCFB
OC15
OCx
Note: Refer to Figure 29-1 for load conditions.
TABLE 29-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param
No.
Symbol
Characteristics(1)
Min
Typical(2)
Max
Units
Conditions
OC15
TFD
Fault Input to PWM I/O Change
—
—
25
nsec
—
OC20
TFLT
Fault Input Pulse Width
50
—
—
nsec
—
Note 1:
2:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
DS61143G-page 170
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 29-10:
SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS
SCKx
(CKP = 0)
SP11
SP10
SP21
SP20
SP20
SP21
SCKx
(CKP = 1)
SP35
MSb
SDOx
Bit 14 - - - - - -1
SP31
SDIx
MSb In
LSb
SP30
LSb In
Bit 14 - - - -1
SP40 SP41
Note: Refer to Figure 29-1 for load conditions.
TABLE 29-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics(1)
Min.
Typical(2) Max.
Units
Conditions
SP10
TSCL
SCKx Output Low Time
(Note 3)
TSCK/2
—
—
nsec
—
SP11
TSCH
SCKx Output High Time
(Note 3)
TSCK/2
—
—
nsec
—
SP20
TSCF
SCKx Output Fall Time
(Note 4)
—
—
—
nsec
See parameter DO32.
SP21
TSCR
SCKx Output Rise Time
(Note 4)
—
—
—
nsec
See parameter DO31.
SP30
TDOF
SDOx Data Output Fall Time
(Note 4)
—
—
—
nsec
See parameter DO32.
SP31
TDOR
SDOx Data Output Rise Time
(Note 4)
—
—
—
nsec
See parameter DO31.
SP35
TSCH2DOV, SDOx Data Output Valid after
TSCL2DOV SCKx Edge
—
—
15
nsec
VDD > 2.7V
—
—
20
nsec
VDD < 2.7V
SP40
TDIV2SCH,
TDIV2SCL
Setup Time of SDIx Data Input
to SCKx Edge
10
—
—
nsec
—
SP41
TSCH2DIL,
TSCL2DIL
Hold Time of SDIx Data Input
to SCKx Edge
10
—
—
nsec
—
Note 1:
2:
3:
4:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
The minimum clock period for SCKx is 40 nsec. Therefore, the clock generated in Master mode must not
violate this specification.
Assumes 50 pF load on all SPIx pins.
© 2010 Microchip Technology Inc.
DS61143G-page 171
PIC32MX3XX/4XX
FIGURE 29-11:
SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS
SP36
SCKX
(CKP = 0)
SP11
SCKX
(CKP = 1)
SP10
SP21
SP20
SP20
SP21
SP35
Bit 14 - - - - - -1
MSb
SDOX
LSb
SP30,SP31
SDIX
MSb In
SP40
Bit 14 - - - -1
LSb In
SP41
Note: Refer to Figure 29-1 for load conditions.
TABLE 29-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°Cfor Industrial
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
SP10
TSCL
SCKx Output Low Time
(Note 3)
TSCK/2
—
—
nsec
—
SP11
TSCH
SCKx Output High Time
(Note 3)
TSCK/2
—
—
nsec
—
SP20
TSCF
SCKx Output Fall Time
(Note 4)
—
—
—
nsec
See parameter DO32.
SP21
TSCR
SCKx Output Rise Time
(Note 4)
—
—
—
nsec
See parameter DO31.
SP30
TDOF
SDOx Data Output Fall Time
(Note 4)
—
—
—
nsec
See parameter DO32.
SP31
TDOR
SDOx Data Output Rise Time
(Note 4)
—
—
—
nsec
See parameter DO31.
SP35
TSCH2DOV, SDOx Data Output Valid after
TSCL2DOV SCKx Edge
—
—
15
nsec
VDD > 2.7V
—
—
20
nsec
VDD < 2.7V
SP36
TDOV2SC, SDOx Data Output Setup to
TDOV2SCL First SCKx Edge
15
—
—
nsec
—
SP40
TDIV2SCH, Setup Time of SDIx Data Input
TDIV2SCL to SCKx Edge
15
—
—
nsec
VDD > 2.7V
20
—
—
nsec
VDD < 2.7V
Note 1:
2:
3:
4:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
The minimum clock period for SCKx is 40 nsec. Therefore, the clock generated in Master mode must not
violate this specification.
Assumes 50 pF load on all SPIx pins.
DS61143G-page 172
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°Cfor Industrial
AC CHARACTERISTICS
Param.
No.
SP41
Symbol
TSCH2DIL,
TSCL2DIL
Note 1:
2:
3:
4:
Characteristics(1)
Hold Time of SDIx Data Input
to SCKx Edge
Min.
Typical(2)
Max.
Units
Conditions
15
—
—
nsec
VDD > 2.7V
20
—
—
nsec
VDD < 2.7V
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
The minimum clock period for SCKx is 40 nsec. Therefore, the clock generated in Master mode must not
violate this specification.
Assumes 50 pF load on all SPIx pins.
FIGURE 29-12:
SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS
SSX
SP52
SP50
SCKX
(CKP = 0)
SP71
SP70
SP73
SP72
SP72
SP73
SCKX
(CKP = 1)
SP35
MSb
SDOX
Bit 14 - - - - - -1
LSb
SP51
SP30,SP31
SDIX
MSb In
SP40
Bit 14 - - - -1
LSb In
SP41
Note: Refer to Figure 29-1 for load conditions.
© 2010 Microchip Technology Inc.
DS61143G-page 173
PIC32MX3XX/4XX
TABLE 29-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
SP70
TSCL
SCKx Input Low Time
(Note 3)
TSCK/2
—
—
nsec
—
SP71
TSCH
SCKx Input High Time
(Note 3)
TSCK/2
—
—
nsec
—
SP72
TSCF
SCKx Input Fall Time
—
—
—
nsec
See parameter DO32.
SP73
TSCR
SCKx Input Rise Time
—
—
—
nsec
See parameter DO31.
SP30
TDOF
SDOx Data Output Fall Time
(Note 4)
—
—
—
nsec
See parameter DO32.
SP31
TDOR
SDOx Data Output Rise Time
(Note 4)
—
—
—
nsec
See parameter DO31.
SP35
TSCH2DOV, SDOx Data Output Valid after
TSCL2DOV SCKx Edge
—
—
15
nsec
VDD > 2.7V
—
—
20
nsec
VDD < 2.7V
SP40
TDIV2SCH, Setup Time of SDIx Data Input
TDIV2SCL to SCKx Edge
10
—
—
nsec
—
SP41
TSCH2DIL,
TSCL2DIL
10
—
—
nsec
—
SP50
TSSL2SCH, SSx ↓ to SCKx ↑ or SCKx Input
TSSL2SCL
175
—
—
nsec
—
SP51
TSSH2DOZ SSx ↑ to SDOx Output
High-Impedance
(Note 3)
5
—
25
nsec
—
SP52
TSCH2SSH SSx after SCKx Edge
TSCL2SSH
TSCK + 20
—
—
nsec
—
Note 1:
2:
3:
4:
Hold Time of SDIx Data Input
to SCKx Edge
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
The minimum clock period for SCKx is 40 nsec.
Assumes 50 pF load on all SPIx pins.
DS61143G-page 174
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 29-13:
SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS
SP60
SSx
SP52
SP50
SCKx
(CKP = 0)
SP71
SP70
SP73
SP72
SP72
SP73
SCKx
(CKP = 1)
SP35
MSb
SDOx
Bit 14 - - - - - -1
LSb
SP30,SP31
SDIx
SDI
MSb In
SP40
SP51
Bit 14 - - - -1
LSb In
SP41
Note: Refer to Figure 29-1 for load conditions.
TABLE 29-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
SP70
TSCL
SCKx Input Low Time
(Note 3)
TSCK/2
—
—
nsec
—
SP71
TSCH
SCKx Input High Time
(Note 3)
TSCK/2
—
—
nsec
—
SP72
TSCF
SCKx Input Fall Time
—
5
10
nsec
—
SP73
TSCR
SCKx Input Rise Time
—
5
10
nsec
—
SP30
TDOF
SDOx Data Output Fall Time
(Note 4)
—
—
—
nsec
See parameter
DO32.
SP31
TDOR
SDOx Data Output Rise Time
(Note 4)
—
—
—
nsec
See parameter
DO31.
SP35
TSCH2DOV, SDOx Data Output Valid after
TSCL2DOV SCKx Edge
—
—
20
nsec
VDD > 2.7V
—
—
30
nsec
VDD < 2.7V
10
—
—
nsec
—
SP40
TDIV2SCH, Setup Time of SDIx Data Input
TDIV2SCL to SCKx Edge
Note 1:
2:
3:
4:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
The minimum clock period for SCKx is 40 nsec.
Assumes 50 pF load on all SPIx pins.
© 2010 Microchip Technology Inc.
DS61143G-page 175
PIC32MX3XX/4XX
TABLE 29-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
No.
Characteristics(1)
Symbol
Hold Time of SDIx Data Input
to SCKx Edge
Min.
Typical(2)
Max.
Units
Conditions
10
—
—
nsec
—
175
—
—
nsec
—
SP41
TSCH2DIL,
TSCL2DIL
SP50
TSSL2SCH, SSx ↓ to SCKx ↓ or SCKx ↑
TSSL2SCL Input
SP51
TSSH2DOZ SSx ↑ to SDOX Output
High-Impedance
(Note 4)
5
—
25
nsec
—
SP52
TSCH2SSH SSx ↑ after SCKx Edge
TSCL2SSH
TSCK + 20
—
—
nsec
—
SP60
TSSL2DOV SDOx Data Output Valid after
SSx Edge
—
—
25
nsec
—
Note 1:
2:
3:
4:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
The minimum clock period for SCKx is 40 nsec.
Assumes 50 pF load on all SPIx pins.
FIGURE 29-14:
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)
SCLx
IM31
IM34
IM30
IM33
SDAx
Stop
Condition
Start
Condition
Note: Refer to Figure 29-1 for load conditions.
FIGURE 29-15:
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)
IM20
IM21
IM11
IM10
SCLx
IM11
IM26
IM10
IM25
IM33
SDAx
In
IM40
IM40
IM45
SDAx
Out
Note: Refer to Figure 29-1 for load conditions.
DS61143G-page 176
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
IM10
IM11
IM20
Min.(1)
Max.
Units
Conditions
TLO:SCL Clock Low Time 100 kHz mode
TPB * (BRG + 2)
—
μs
—
400 kHz mode
TPB * (BRG + 2)
—
μs
—
1 MHz mode
(Note 2)
TPB * (BRG + 2)
—
μs
—
Clock High Time 100 kHz mode
TPB * (BRG + 2)
—
μs
—
400 kHz mode
TPB * (BRG + 2)
—
μs
—
1 MHz mode
(Note 2)
TPB * (BRG + 2)
—
μs
—
—
300
nsec
20 + 0.1 CB
300
nsec
—
100
nsec
—
1000
nsec
20 + 0.1 CB
300
nsec
—
300
nsec
100 kHz mode
250
—
nsec
400 kHz mode
100
—
nsec
1 MHz mode
(Note 2)
100
—
nsec
THI:SCL
TF:SCL
Characteristics
SDAx and SCLx 100 kHz mode
Fall Time
400 kHz mode
1 MHz mode
(Note 2)
IM21
TR:SCL
SDAx and SCLx 100 kHz mode
Rise Time
400 kHz mode
1 MHz mode
(Note 2)
IM25
IM26
IM30
IM31
IM33
IM34
TSU:DAT Data Input
Setup Time
THD:DAT Data Input
Hold Time
TSU:STA
Start Condition
Setup Time
THD:STA Start Condition
Hold Time
TSU:STO Stop Condition
Setup Time
THD:STO Stop Condition
Hold Time
Note 1:
2:
100 kHz mode
0
—
μs
400 kHz mode
0
0.9
μs
1 MHz mode
(Note 2)
0
0.3
μs
100 kHz mode
TPB * (BRG + 2)
—
μs
400 kHz mode
TPB * (BRG + 2)
—
μs
1 MHz mode
(Note 2)
TPB * (BRG + 2)
—
μs
100 kHz mode
TPB * (BRG + 2)
—
μs
400 kHz mode
TPB * (BRG + 2)
—
μs
1 MHz mode
(Note 2)
TPB * (BRG + 2)
—
μs
100 kHz mode
TPB * (BRG + 2)
—
μs
400 kHz mode
TPB * (BRG + 2)
—
μs
1 MHz mode
(Note 2)
TPB * (BRG + 2)
—
μs
100 kHz mode
TPB * (BRG + 2)
—
nsec
400 kHz mode
TPB *
(BRG + 2)
—
nsec
1 MHz mode
(Note 2)
TPB * (BRG + 2)
—
nsec
CB is specified to be
from 10 to 400 pF.
CB is specified to be
from 10 to 400 pF.
—
—
Only relevant for
Repeated Start
condition.
After this period, the
first clock pulse is
generated.
—
—
BRG is the value of the I2C™ Baud Rate Generator.
Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
© 2010 Microchip Technology Inc.
DS61143G-page 177
PIC32MX3XX/4XX
TABLE 29-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
IM40
TAA:SCL
IM45
Output Valid
from Clock
TBF:SDA Bus Free Time
IM50
CB
Note 1:
2:
Min.(1)
Max.
Units
Conditions
100 kHz mode
—
3500
nsec
—
400 kHz mode
—
1000
nsec
—
1 MHz mode
(Note 2)
—
350
nsec
—
Characteristics
100 kHz mode
4.7
—
μs
400 kHz mode
1.3
—
μs
1 MHz mode
(Note 2)
0.5
—
μs
The amount of time the
bus must be free
before a new
transmission can start.
—
400
pF
—
Bus Capacitive Loading
2C™
Baud Rate Generator.
BRG is the value of the I
Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
FIGURE 29-16:
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)
SCLx
IS34
IS31
IS30
IS33
SDAx
Stop
Condition
Start
Condition
Note: Refer to Figure 29-1 for load conditions.
FIGURE 29-17:
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)
IS20
IS21
IS11
IS10
SCLx
IS30
IS26
IS31
IS25
IS33
SDAx
In
IS40
IS40
IS45
SDAx
Out
Note: Refer to Figure 29-1 for load conditions.
DS61143G-page 178
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
No.
IS10
IS11
IS20
Symbol
TLO:SCL
THI:SCL
TF:SCL
Characteristics
Clock Low Time
Clock High Time
SDAx and SCLx
Fall Time
Min.
Max.
Units
100 kHz mode
4.7
—
μs
PBCLK must operate at a
minimum of 800 KHz.
400 kHz mode
1.3
—
μs
PBCLK must operate at a
minimum of 3.2 MHz.
1 MHz mode
(Note 1)
0.5
—
μs
100 kHz mode
4.0
—
μs
PBCLK must operate at a
minimum of 800 KHz.
400 kHz mode
0.6
—
μs
PBCLK must operate at a
minimum of 3.2 MHz.
1 MHz mode
(Note 1)
0.5
—
μs
100 kHz mode
—
300
nsec
400 kHz mode
20 + 0.1 CB
300
nsec
—
100
nsec
100 kHz mode
—
1000
nsec
400 kHz mode
20 + 0.1 CB
300
nsec
—
300
nsec
100 kHz mode
250
—
nsec
400 kHz mode
100
—
nsec
1 MHz mode
(Note 1)
100
—
nsec
100 kHz mode
0
—
nsec
400 kHz mode
0
0.9
μs
1 MHz mode
(Note 1)
0
0.3
μs
100 kHz mode
4700
—
μs
400 kHz mode
600
—
μs
1 MHz mode
(Note 1)
250
—
μs
100 kHz mode
4000
—
μs
400 kHz mode
600
—
μs
1 MHz mode
(Note 1)
250
—
μs
100 kHz mode
4000
—
μs
400 kHz mode
600
—
μs
1 MHz mode
(Note 1)
600
—
μs
1 MHz mode
(Note 1)
IS21
TR:SCL
SDAx and SCLx
Rise Time
1 MHz mode
(Note 1)
IS25
IS26
IS30
IS31
IS33
Note 1:
TSU:DAT
THD:DAT
TSU:STA
THD:STA
TSU:STO
Data Input
Setup Time
Data Input
Hold Time
Start Condition
Setup Time
Start Condition
Hold Time
Stop Condition
Setup Time
Conditions
—
—
CB is specified to be from
10 to 400 pF.
CB is specified to be from
10 to 400 pF.
—
—
Only relevant for Repeated
Start condition.
After this period, the first
clock pulse is generated.
—
Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
© 2010 Microchip Technology Inc.
DS61143G-page 179
PIC32MX3XX/4XX
TABLE 29-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
No.
IS34
IS40
Symbol
THD:STO
TAA:SCL
Characteristics
Stop Condition
Hold Time
Min.
IS50
Note 1:
TBF:SDA
4000
—
nsec
400 kHz mode
600
—
nsec
1 MHz mode
(Note 1)
250
Output Valid from 100 kHz mode
Clock
400 kHz mode
CB
Bus Free Time
Units
100 kHz mode
3500
nsec
0
1000
nsec
0
350
nsec
100 kHz mode
4.7
—
μs
400 kHz mode
1.3
—
μs
1 MHz mode
(Note 1)
0.5
—
μs
—
400
pF
Bus Capacitive Loading
Conditions
—
nsec
0
1 MHz mode
(Note 1)
IS45
Max.
—
The amount of time the bus
must be free before a new
transmission can start.
—
Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
TABLE 29-34: ADC MODULE SPECIFICATIONS
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics
Standard Operating Conditions: 2.5V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
Min.
Typical
Max.
Units
Conditions
Greater of
VDD – 0.3
or 2.5
—
Lesser of
VDD + 0.3
or 3.6
V
VSS
—
VSS + 0.3
V
AVDD
V
(Note 1)
Device Supply
AD01
AD02
AVDD
AVSS
Module VDD Supply
Module VSS Supply
—
—
Reference Inputs
AD05
VREFH
Reference Voltage High
AVSS + 2.0
—
2.5
—
3.6
V
VREFH = AVDD (Note 3)
AD06
VREFL
Reference Voltage Low
AVSS
—
VREFH –
2.0
V
(Note 1)
AD07
VREF
Absolute Reference
Voltage
(VREFH – VREFL)
2.0
—
AVDD
V
(Note 3)
AD08
IREF
Current Drain
—
250
—
400
3
μA
μA
ADC operating
ADC off
VREFL
—
VREFH
V
—
AD05a
Analog Input
AD12
Note 1:
2:
3:
4:
VINH-VINL Full-Scale Input Span
These parameters are not characterized or tested in manufacturing.
With no missing codes.
These parameters are characterized, but not tested in manufacturing.
Characterized with 1 kHz sinewave.
DS61143G-page 180
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-34: ADC MODULE SPECIFICATIONS (CONTINUED)
AC CHARACTERISTICS
Param.
No.
AD17
Symbol
Characteristics
Standard Operating Conditions: 2.5V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
Min.
Typical
Max.
Units
Conditions
VINL
Absolute VINL Input
Voltage
AVSS – 0.3
—
AVDD/2
V
—
VIN
Absolute Input Voltage
AVSS – 0.3
—
AVDD +
0.3
V
—
Leakage Current
—
±0.001
±0.610
μA
VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
Source Impedance = 10KΩ
Recommended
Impedance of Analog
Voltage Source
—
—
5K
Ω
(Note 1)
RIN
ADC Accuracy – Measurements with External VREF+/VREFAD20c Nr
Resolution
AD21c INL
Integral Nonlinearity
—
10 data bits
—
<±1
LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
bits
—
AD22c DNL
Differential Nonlinearity
—
—
<±1
LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
(Note 2)
AD23c GERR
Gain Error
—
—
<±1
LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
AD24n EOFF
Offset Error
—
—
<±1
LSb VINL = AVSS = 0V,
AVDD = 3.3V
AD25c —
Monotonicity
—
—
—
—
Guaranteed
bits
(Note 3)
ADC Accuracy – Measurements with Internal VREF+/VREFAD20d Nr
Resolution
AD21d INL
Integral Nonlinearity
—
—
<±1
LSb VINL = AVSS = 0V,
AVDD = 2.5V to 3.6V
(Note 3)
AD22d DNL
Differential Nonlinearity
—
—
<±1
LSb VINL = AVSS = 0V,
AVDD = 2.5V to 3.6V
(Notes 2,3)
AD23d GERR
Gain Error
—
—
<±4
LSb VINL = AVSS = 0V,
AVDD = 2.5V to 3.6V
(Note 3)
AD24d EOFF
Offset Error
—
—
<±2
LSb VINL = AVSS = 0V,
AVDD = 2.5V to 3.6V
(Note 3)
AD25d
Monotonicity
—
—
—
—
Guaranteed
—
10 data bits
Dynamic Performance
AD31b
SINAD
Signal to Noise and
Distortion
55
58.5
—
dB
(Notes 3,4)
AD34b
ENOB
Effective Number of Bits
9.0
9.5
—
bits
(Notes 3,4)
Note 1:
2:
3:
4:
These parameters are not characterized or tested in manufacturing.
With no missing codes.
These parameters are characterized, but not tested in manufacturing.
Characterized with 1 kHz sinewave.
© 2010 Microchip Technology Inc.
DS61143G-page 181
PIC32MX3XX/4XX
TABLE 29-35: 10-BIT CONVERSION RATE PARAMETERS
PIC32MX 10-bit A/D Converter Conversion Rates (Note 2)
ADC Speed
1 MIPS to 400
ksps
(Note 1)
TAD
Sampling
RS Max
Minimum Time Min
65 ns
132 ns
500Ω
VDD
Temperature
3.0V to
3.6V
-40°C to
+85°C
ADC Channels Configuration
VREF- VREF+
CHX
ANx
Up to 400 ksps
200 ns
200 ns
5.0 kΩ
2.5V to
3.6V
SHA
ADC
-40°C to
+85°C
VREF- VREF+
or
or
AVSS AVDD
CHX
ANx
SHA
ADC
ANx or VREF-
Up to 300 ksps
200 ns
200 ns
5.0 kΩ
2.5V to
3.6V
-40°C to
+85°C
VREF- VREF+
or
or
AVSS AVDD
CHX
ANx
SHA
ADC
ANx or VREF-
Note 1:
2:
External VREF- and VREF+ pins must be used for correct operation.
These parameters are characterized, but not tested in manufacturing.
DS61143G-page 182
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-36: A/D CONVERSION TIMING REQUIREMENTS
Standard Operating Conditions: 2.5V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics
Min.
Typical(1)
Max.
Units
Conditions
Clock Parameters
AD50
TAD
A/D Clock Period (Note 2)
65
—
—
nsec
See Table 29-35.
AD51
TRC
A/D Internal RC Oscillator Period
—
250
—
nsec
(Note 3)
Conversion Rate
AD55
TCONV
Conversion Time
—
12 TAD
—
—
—
AD56
FCNV
Throughput Rate
(Sampling Speed)
—
—
1000
KSPS
AVDD = 3.0V to 3.6V
—
—
400
KSPS
AVDD = 2.5V to 3.6V
Sample Time
1
—
31
TAD
TSAMP must be ≥ 132
nsec.
—
1.0 TAD
—
—
Auto-Convert Trigger
(SSRC<2:0> = 111)
not selected.
AD57
TSAMP
Timing Parameters
AD60
TPCS
Conversion Start from Sample
Trigger(3)
AD61
TPSS
Sample Start from Setting
Sample (SAMP) bit
0.5 TAD
—
1.5 TAD
—
—
AD62
TCSS
Conversion Completion to
Sample Start (ASAM = 1)
(Note 3)
—
0.5 TAD
—
—
—
AD63
TDPU
Time to Stabilize Analog Stage
from A/D OFF to A/D ON
(Note 3)
—
—
2
μs
—
Note 1:
2:
3:
These parameters are characterized, but not tested in manufacturing.
Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity
performance, especially at elevated temperatures.
Characterized by design but not tested.
© 2010 Microchip Technology Inc.
DS61143G-page 183
PIC32MX3XX/4XX
FIGURE 29-18:
A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)
AD50
ADCLK
Instruction
Execution Set SAMP
Clear SAMP
SAMP
ch0_dischrg
ch0_samp
ch1_dischrg
ch1_samp
eoc
AD61
AD60
AD55
TSAMP
AD55
CONV
ADxIF
Buffer(0)
Buffer(1)
1
2
3
4
5
6
7
8
5
6
7
8
1 – Software sets ADxCON. SAMP to start sampling.
2 – Sampling starts after discharge period. TSAMP is described in the “PIC32MX Family Reference Manual” (DS61132).
3 – Software clears ADxCON. SAMP to start conversion.
4 – Sampling ends, conversion sequence starts.
5 – Convert bit 9.
6 – Convert bit 8.
7 – Convert bit 0.
8 – One TAD for end of conversion.
DS61143G-page 184
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 29-19:
A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)
AD50
ADCLK
Instruction
Execution
Set ADON
SAMP
ch0_dischrg
ch0_samp
ch1_dischrg
ch1_samp
eoc
TSAMP
AD55
TSAMP
AD55
TCONV
CONV
ADxIF
Buffer(0)
Buffer(1)
1
2
3
4
5
6
7
3
4
5
6
8
3
4
1 – Software sets ADxCON. ADON to start AD operation.
5 – Convert bit 0.
2 – Sampling starts after discharge period.
TSAMP is described in the “PIC32MX
Family Reference Manual” (DS61132).
6 – One TAD for end of conversion.
3 – Convert bit 9.
8 – Sample for time specified by SAMC<4:0>.
7 – Begin conversion of next channel.
4 – Convert bit 8.
© 2010 Microchip Technology Inc.
DS61143G-page 185
PIC32MX3XX/4XX
FIGURE 29-20:
PARALLEL SLAVE PORT TIMING
CS
PS5
RD
PS6
WR
PS4
PS7
PMD<7:0>
PS1
PS3
PS2
TABLE 29-37: PARALLEL SLAVE PORT REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for
Industrial
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics(1)
Min.
Typical
Max.
Units
Conditions
20
—
—
nsec
—
PS1
TdtV2wrH Data In Valid before WR or CS Inactive
(setup time)
PS2
TwrH2dtI
WR or CS Inactive to Data –
In Invalid (hold time)
40
—
—
nsec
—
PS3
TrdL2dtV
RD and CS Active to Data –
Out Valid
—
—
60
nsec
—
PS4
TrdH2dtI
RD Active or CS Inactive to Data –
Out Invalid
0
—
10
nsec
—
PS5
Tcs
CS Active Time
TPB + 40
—
—
nsec
—
PS6
TWR
WR Active Time
TPB + 25
—
—
nsec
—
PS7
TRD
RD Active Time
TPB + 25
—
—
nsec
—
Note 1:
These parameters are characterized, but not tested in manufacturing.
DS61143G-page 186
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
FIGURE 29-21:
PARALLEL MASTER PORT READ TIMING DIAGRAM
TPB
TPB
TPB
TPB
TPB
TPB
TPB
TPB
PB Clock
PM4
Address
PMA<13:18>
PM6
PMD<7:0>
Data
Data
Address<7:0>
Address<7:0>
PM2
PM7
PM3
PMRD
PM5
PMWR
PM1
PMALL/PMALH
PMCS<2:1>
TABLE 29-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typical
Max.
Units
Conditions
PM1
TLAT
PMALL/PMALH Pulse Width
—
1 TPB
—
—
—
PM2
TADSU
Address Out Valid to PMALL/PMALH
Invalid (address setup time)
—
2 TPB
—
—
—
PM3
TADHOLD PMALL/PMALH Invalid to Address Out
Invalid (address hold time)
—
1 TPB
—
—
—
PM4
TAHOLD
PMRD Inactive to Address Out Invalid
(address hold time)
5
—
—
nsec
—
PM5
TRD
PMRD Pulse Width
—
1 TPB
—
—
—
PM6
TDSU
PMRD or PMENB Active to Data In
Valid (data setup time)
15
—
—
nsec
—
PM7
TDHOLD
PMRD or PMENB Inactive to Data In
Invalid (data hold time)
—
80
—
nsec
—
Note 1:
These parameters are characterized, but not tested in manufacturing.
© 2010 Microchip Technology Inc.
DS61143G-page 187
PIC32MX3XX/4XX
FIGURE 29-22:
PARALLEL MASTER PORT WRITE TIMING DIAGRAM
TPB
TPB
TPB
TPB
TPB
TPB
TPB
TPB
PB Clock
Address
PMA<13:18>
PM2 + PM3
Address<7:0>
PMD<7:0>
Data
PM12
PM13
PMRD
PM11
PMWR
PM1
PMALL/PMALH
PMCS<2:1>
TABLE 29-39: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typical
Max.
Units
Conditions
PM11
TWR
PMWR Pulse Width
—
1 TPB
—
—
—
PM12
TDVSU
Data Out Valid before PMWR or
PMENB goes Inactive (data setup time)
—
2 TPB
—
—
—
PM13
TDVHOLD PMWR or PMEMB Invalid to Data Out
Invalid (data hold time)
—
1 TPB
—
—
—
Note 1:
These parameters are characterized, but not tested in manufacturing.
DS61143G-page 188
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
TABLE 29-40: OTG ELECTRICAL SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typ
Max.
Units
Conditions
3.0
—
3.6
V
Voltage on bus must
be in this range for
proper USB operation.
USB313 VUSB
USB Voltage
USB315 VILUSB
Input Low Voltage for USB Buffer
—
—
0.8
V
—
USB316 VIHUSB
Input High Voltage for USB Buffer
2.0
—
—
V
—
USB318 VDIFS
Differential Input Sensitivity
—
—
0.2
V
—
USB319 VCM
Differential Common Mode Range
0.8
—
2.5
V
The difference
between D+ and Dmust exceed this value
while VCM is met.
USB320 ZOUT
Driver Output Impedance
28.0
—
44.0
Ω
—
USB321 VOL
Voltage Output Low
0.0
—
0.3
V
1.5 kΩ load connected
to 3.6V.
USB322 VOH
Voltage Output High
2.8
—
3.6
V
1.5 kΩ load connected
to ground.
Note 1:
These parameters are characterized, but not tested in manufacturing.
FIGURE 29-23:
EJTAG TIMING CHARACTERISTICS
TTCKeye
TTCKhigh
TTCKlow
Trf
TCK
Trf
TMS
TDI
TTsetup TThold
Trf
Trf
TDO
TRST*
TTRST*low
Trf
© 2010 Microchip Technology Inc.
TTDOout
TTDOzstate
Defined
Undefined
DS61143G-page 189
PIC32MX3XX/4XX
TABLE 29-41: EJTAG TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
AC CHARACTERISTICS
Param.
No.
Symbol
Description(1)
Min.
Max.
Units
Conditions
EJ1
TTCKCYC
TCK Cycle Time
25
—
nsec
—
EJ2
TTCKHIGH
TCK High Time
10
—
nsec
—
EJ3
TTCKLOW
TCK Low Time
10
—
nsec
—
EJ4
TTSETUP
TAP Signals Setup Time Before
Rising TCK
5
—
nsec
—
EJ5
TTHOLD
TAP Signals Hold Time After
Rising TCK
3
—
nsec
—
EJ6
TTDOOUT
TDO Output Delay Time from
Falling TCK
—
5
nsec
—
EJ7
TTDOZSTATE TDO 3-State Delay Time from
Falling TCK
—
5
nsec
—
EJ8
TTRSTLOW
TRST Low Time
25
—
nsec
—
EJ9
TRF
TAP Signals Rise/Fall Time, All
Input and Output
—
—
nsec
—
Note 1:
These parameters are characterized, but not tested in manufacturing.
DS61143G-page 190
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
30.0
PACKAGING INFORMATION
30.1
Package Marking Information
64-Lead TQFP (10x10x1 mm)
PIC32MX360F
512H-80I/PT
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
e3
0510017
100-Lead TQFP (12x12x1 mm)
XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN
64-Lead QFN (9x9x0.9 mm)
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
Legend: XX...X
Y
YY
WW
NNN
*
Note:
Example
PIC32MX360F
256L-80I/PT
e3
0510017
Example
PIC32MX360F
512H-80I/MR
e3
0510017
121-Lead XBGA (10x10x1.1 mm)
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
Example
Example
PIC32MX460F
512L-80I/BG
e3
0510017
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3)
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
© 2010 Microchip Technology Inc.
DS61143G-page 191
PIC32MX3XX/4XX
30.2
Package Details
The following sections give the technical details of the packages.
!"#$%
&
' (
3&'!&"&
4#*!(
!!&
4
%&&#&
&&
255***'
'5
4
D
D1
E
e
E1
N
b
NOTE 1
123
NOTE 2
α
A
φ
c
A2
β
A1
L
L1
6&!
'!7'&!
8"')%7#!
'
77..
8
8
89
:
;
7#&
9 <&
=
/1+
=
##44!!
/
/
&#%%
/
=
/
3&7&
7
/
;
/
3&
&
7
.3
3&
9 ?#&
.
>
1+
/>
9 7&
1+
##4?#&
.
1+
##47&
1+
>
7#4!!
=
7#?#&
)
#%&
>
>
>
#%&1&&'
>
>
>
(
!"#$%&"' ()"&'"!&)&#*&&&#
+'%!&!
&,!-' '!!#.#&"#'#%!
&"!!#%!
&"!!!&$#/''
!#
'!#&
.0/
1+2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&
"
!!
* +@/1
DS61143G-page 192
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
!"#$%
&
' (
3&'!&"&
4#*!(
!!&
4
%&&#&
&&
255***'
'5
4
© 2010 Microchip Technology Inc.
DS61143G-page 193
PIC32MX3XX/4XX
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS61143G-page 194
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
© 2010 Microchip Technology Inc.
DS61143G-page 195
PIC32MX3XX/4XX
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS61143G-page 196
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
## !"#$%
&
' (
3&'!&"&
4#*!(
!!&
4
%&&#&
&&
255***'
'5
4
D
D1
e
E
E1
N
b
NOTE 1
1 23
NOTE 2
α
c
A
φ
L
β
A1
6&!
'!7'&!
8"')%7#!
'
A2
L1
77..
8
8
89
:
7#&
9 <&
=
1+
=
##44!!
/
/
&#%%
/
=
/
3&7&
7
/
;
/
3&
&
7
.3
3&
9 ?#&
.
>
1+
/>
9 7&
1+
##4?#&
.
1+
##47&
1+
>
7#4!!
=
7#?#&
)
@
#%&
>
>
>
#%&1&&'
>
>
>
(
!"#$%&"' ()"&'"!&)&#*&&&#
+'%!&!
&,!-' '!!#.#&"#'#%!
&"!!#%!
&"!!!&$#/''
!#
'!#&
.0/
1+2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&
"
!!
* +1
© 2010 Microchip Technology Inc.
DS61143G-page 197
PIC32MX3XX/4XX
## !"#$%
&
' (
3&'!&"&
4#*!(
!!&
4
%&&#&
&&
255***'
'5
4
DS61143G-page 198
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
© 2010 Microchip Technology Inc.
DS61143G-page 199
PIC32MX3XX/4XX
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS61143G-page 200
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
APPENDIX A: REVISION HISTORY
Revision F (June 2009)
Revision E (July 2008)
This revision includes minor typographical and
formatting changes throughout the data sheet text.
• Updated the PIC32MX340F128H features in
Table 1 to include 4 programmable DMA
channels.
Global changes include:
• Changed all instances of OSCI to OSC1 and
OSCO to OSC2
• Changed all instances of VDDCORE and
VDDCORE/VCAP to VCAP/VDDCORE
• Deleted registers in most sections, refer to the
related section of the “PIC32MX Family
Reference Manual” (DS61132).
The other changes are referenced by their respective
section in the following table.
TABLE A-1:
MAJOR SECTION UPDATES
Section Name
“High-Performance, General
Purpose and USB 32-bit Flash
Microcontrollers”
Update Description
Added a “Packages” column to Table 1 and Table 2.
Corrected all pin diagrams to update the following pin names.
• Changed PGC1/EMUC1 to PGEC1
• Changed PGD1/EMUD1 to PGED1
• Changed PGC2/EMUC2 to PGEC2
• Changed PGD2/EMUD2 to PGED2
Shaded appropriate pins in each diagram to indicate which pins are 5V tolerant.
Added 64-Lead QFN package pin diagrams, one for General Purpose and one
for USB.
Section 1.0 “Device Overview”
Reconstructed Figure 1-1 to include Timers, ADC and RTCC in the block
diagram.
Section 2.0 “Guidelines for
Getting Started with 32-bit
Microcontrollers”
Added a new section to the data sheet that provides the following information:
• Basic Connection Requirements
• Capacitors
• Master Clear Pin
• ICSP™ Pins
• External Oscillator Pins
• Configuration of Analog and Digital Pins
• Unused I/Os
Section 4.0 “Memory
Organization”
Updated the memory maps, Figure 4-1 through Figure 4-6.
Section 7.0 “Interrupt
Controller”
Removed the “Address” column from Table 7-1.
Section 12.0 “I/O Ports”
Added a second paragraph in Section 12.1.3 “Analog Inputs” to clarify that all
pins that share ANx functions are analog by default, because the AD1PCFG
register has a default value of 0x0000.
© 2010 Microchip Technology Inc.
All summary peripheral register maps were relocated to Section 4.0 “Memory
Organization”.
DS61143G-page 201
PIC32MX3XX/4XX
TABLE A-1:
MAJOR SECTION UPDATES (CONTINUED)
Section Name
Update Description
Section 26.0 “Special Features” Modified bit names and locations in Register 26-5 “DEVID: Device and
Revision ID Register”.
Replaced “TSTARTUP” with “TPU”, and “64-ms nominal delay” with “TPWRT”, in
Section 26.3.1 “On-Chip Regulator and POR”.
The information that appeared in the Watchdog Timer and the Programming and
Diagnostics sections of 61143E version of this data sheet has been incorporated
into the Special Features section:
• Section 26.2 “Watchdog Timer (WDT)”
• Section 26.4 “Programming and Diagnostics”
Section 29.0 “Electrical
Characteristics”
Added the 64-Lead QFN package to Table 29-3.
Updated data in Table 29-5.
Updated data in Table 29-7.
Updated data in Table 29-4, Table 29-5, Table 29-7 and Table 29-8.
Updated data in Table 29-10.
Added OS42 parameter to Table 29-17.
Replaced Table 29-23.
Replaced Table 29-24.
Replaced Table 29-25.
Updated Table 29-36.
Section 30.0 “Packaging
Information”
Added 64-Lead QFN package marking information to Section 30.1 “Package
Marking Information”.
Added the 64-Lead QFN (MR) package drawing and land pattern to
Section 30.2 “Package Details”.
“Product Identification System” Added the MR package designator for the 64-Lead (9x9x0.9) QFN.
DS61143G-page 202
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
Revision G (April 2010)
The revision includes the following global update:
• Added Note 2 to the shaded table that appears at
the beginning of each chapter. This new note
provides information regarding the availability of
registers and their associated bits.
TABLE A-2:
This revision also includes minor typographical and
formatting changes throughout the data sheet text.
Major updates are referenced by their respective
section in the following table.
MAJOR SECTION UPDATES
Section Name
Update Description
“High-Performance, General Purpose Updated the crystal oscillator range to 3 MHz to 25 MHz (see Peripheral
and USB 32-bit Flash
Features:)
Microcontrollers”
Added the 121-pin Ball Grid Array (XBGA) pin diagram.
Updated Table 1: “PIC32MX General Purpose – Features” and Table 2:
“PIC32MX USB – Features”
Added the following tables:
- Table 3: “Pin Names: PIC32MX320F128L, PIC32MX340F128L,
and PIC32MX360F128L, and PIC32MX360F512L Devices”,
- Table 4: “Pin Names: PIC32MX440F128L, PIC32MX460F256L
and PIC32MX460F512L Devices”
Updated the following pins as 5V tolerant:
- 64-pin QFN (USB): Pin 34 (VBUS), Pin 36 (D-/RG3) and Pin 37
(D+/RG2)
- 64-pin TQFP (USB): Pin 34 (Vbus), Pin 36 (D-/RG3), Pin 37
(D+/RG2) and Pin 42 (IC1/RTCC/INT1/RD8)
- 100-pin TQFP (USB): Pin 54 (VBUS), Pin 56 (D-/RG3) and Pin 57
(D+/RG2)
Section 1.0 “Device Overview”
Updated the Pinout I/O Descriptions table to include the device pin
numbers (see Table 1-1)
Section 2.0 “Guidelines for Getting
Started with 32-bit Microcontrollers”
Updated the Ohm value for the low-ESR capacitor from less than 5 to less
than 1 (see Section 2.3.1 “Internal Regulator Mode”).
Labeled the capacitor on the VCAP/VDDCORE pin as CEFC in Figure 2-1.
Changed 10 µF capacitor to CEFC capacitor in Section 2.3 “Capacitor on
Internal Voltage Regulator (VCAP/VDDCORE)”.
Section 4.0 “Memory Organization”
Updated all register map tables to include the “All Resets” column.
Separated the PORT register maps into individual tables (see Table 4-21
through Table 4-34).
In addition, formatting changes were made to improve readability.
Section 12.0 “I/O Ports”
Updated the second paragraph of Section 12.1.2 “Digital Inputs” and
removed Table 12-1.
Section 22.0 “10-bit Analog-to-Digital
Converter (ADC)”
Updated the ADC Conversion Clock Period Block Diagram (see Figure 222).
Section 26.0 “Special Features”
Extensive updates were made to Section 26.2 “Watchdog Timer (WDT)”
and Section 26.3 “On-Chip Voltage Regulator”.
© 2010 Microchip Technology Inc.
DS61143G-page 203
PIC32MX3XX/4XX
TABLE A-2:
MAJOR SECTION UPDATES (CONTINUED)
Section Name
Section 29.0 “Electrical
Characteristics”
Update Description
Updated the Absolute Maximum Ratings and added Note 3.
Added Thermal Packaging Characteristics for the 121-pin XBGA package
(see Table 29-3).
Updated the conditions for parameters DC20, DC21, DC22 and DC23 in
Table 29-5.
Updated the comments for parameter D321 (CEFC) in Table 29-14.
Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics,
changing SP52 to SP35 between the MSb and Bit 14 on SDOx (see
Figure 29-13).
Section 30.0 “Packaging Information” Added the 121-pin XBGA package marking information and package
details.
“Product Identification System”
Added the definition for BG (121-lead 10x10x1.1 mm, XBGA).
Added the definition for Speed.
DS61143G-page 204
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
INDEX
A
M
AC Characteristics ............................................................ 162
Internal RC Accuracy ................................................ 164
AC Electrical Specifications
Parallel Master Port Read Requirements ................. 187
Parallel Master Port Write Requirements.................. 188
Parallel Slave Port Requirements ............................. 186
Assembler
MPASM Assembler................................................... 150
MPLAB ASM30 Assembler, Linker, Librarian ................... 150
MPLAB ICD 3 In-Circuit Debugger System ...................... 151
MPLAB Integrated Development Environment Software.. 149
MPLAB PM3 Device Programmer .................................... 152
MPLAB REAL ICE In-Circuit Emulator System ................ 151
MPLINK Object Linker/MPLIB Object Librarian ................ 150
B
Block Diagrams
A/D Module ............................................................... 123
Comparator I/O Operating Modes............................. 125
Comparator Voltage Reference ................................ 127
Connections for On-Chip Voltage Regulator............. 139
Input Capture ............................................................ 107
JTAG Compliant Application Showing
Daisy-Chaining of Components ........................ 140
Output Compare Module........................................... 109
Reset System.............................................................. 87
RTCC ........................................................................ 121
Type B Timer ................................................ 35, 95, 105
UART ........................................................................ 115
WDT.......................................................................... 138
Brown-out Reset (BOR)
and On-Chip Voltage Regulator................................ 139
C
C Compilers
Hi-Tech C.................................................................. 150
MPLAB C .................................................................. 150
Comparator
Operation .................................................................. 126
Comparator Voltage Reference
Configuring................................................................ 128
CPU Module.................................................................. 31, 35
D
DC Characteristics ............................................................ 154
I/O Pin Input Specifications....................................... 158
I/O Pin Output Specifications .................................... 159
Idle Current (IIDLE) .................................................... 156
Operating Current (IDD)............................................. 155
Power-Down Current (IPD) ........................................ 157
Program Memory ...................................................... 159
Temperature and Voltage Specifications .................. 154
Demonstration/Development Boards, Evaluation Kits,
and Starter Kits ......................................................... 152
Development Support ....................................................... 149
E
Electrical Characteristics................................................... 153
AC ............................................................................. 162
Errata .................................................................................. 19
F
Flash Program Memory ...................................................... 85
RTSP Operation.......................................................... 85
I
I/O Ports .................................................................... 101, 115
Parallel I/O (PIO)....................................................... 102
© 2010 Microchip Technology Inc.
P
Packaging ......................................................................... 191
Details....................................................................... 192
Marking..................................................................... 191
PIC32 Family USB Interface Diagram .............................. 100
PICkit 2 Development Programmer/Debugger and
PICkit 2 Debug Express ........................................... 152
PICkit 3 In-Circuit Debugger/Programmer and
PICkit 3 Debug Express ........................................... 151
Pinout I/O Descriptions (table)............................................ 22
Power-on Reset (POR)
and On-Chip Voltage Regulator ............................... 139
S
Serial Peripheral Interface (SPI) ... 87, 97, 111, 119, 121, 130
Software Simulator (MPLAB SIM) .................................... 151
Special Features............................................................... 131
T
Timer1 Module.............................................. 89, 95, 103, 105
Timing Diagrams
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0,
ASAM = 0, SSRC = 000) .................................. 184
I2Cx Bus Data (Master Mode) .................................. 176
I2Cx Bus Data (Slave Mode) .................................... 178
I2Cx Bus Start/Stop Bits (Master Mode)................... 176
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 178
Input Capture (CAPx) ............................................... 169
OC/PWM .................................................................. 170
Output Compare (OCx) ............................................ 170
Parallel Master Port Write................................. 187, 188
Parallel Slave Port .................................................... 186
SPIx Master Mode (CKE = 0) ................................... 171
SPIx Master Mode (CKE = 1) ................................... 172
SPIx Slave Mode (CKE = 0) ..................................... 173
SPIx Slave Mode (CKE = 1) ..................................... 175
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock .............. 168
Transmission (8-bit or 9-bit Data) ............................. 116
UART Reception with Receive Overrun ................... 117
Timing Requirements
CLKO and I/O ........................................................... 165
Timing Specifications
I2Cx Bus Data Requirements (Master Mode)........... 176
I2Cx Bus Data Requirements (Slave Mode)............. 178
Output Compare Requirements................................ 170
Simple OC/PWM Mode Requirements ..................... 170
SPIx Master Mode (CKE = 0) Requirements............ 171
SPIx Master Mode (CKE = 1) Requirements............ 172
SPIx Slave Mode (CKE = 1) Requirements.............. 175
V
VDDCORE/VCAP Pin ........................................................... 139
Voltage Reference Specifications..................................... 160
Voltage Regulator (On-Chip) ............................................ 139
DS61143G-page 205
PIC32MX3XX/4XX
W
Watchdog Timer
Operation .................................................................. 138
WWW, On-Line Support...................................................... 19
DS61143G-page 206
© 2010 Microchip Technology Inc.
PIC32MX3XX/4XX
Product Identification System
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PIC32 MX 3XX F 512 H T - 80 I / PT - XXX
Examples:
PIC32MX320F032H-40I/PT:
General purpose PIC32MX,
32 KB program memory,
64-pin, Industrial temperature,
TQFP package.
Microchip Brand
Architecture
Product Groups
Flash Memory Family
Program Memory Size (KB)
Pin Count
Tape and Reel Flag (if applicable)
Speed
PIC32MX360F256L-80I/PT:
General purpose PIC32MX,
256 KB program memory,
100-pin, Industrial temperature,
TQFP package.
Temperature Range
Package
Pattern
Flash Memory Family
Architecture
MX = 32-bit RISC MCU core
Product Groups
3XX = General purpose microcontroller family
Flash Memory Family
F
= Flash program memory
Program Memory Size
32
64
128
256
512
= 32K
= 64K
= 128K
= 256K
= 512K
Speed
40 = 40 MHz
80 = 80 MHz
Pin Count
H
L
= 64-pin
= 100-pin
Temperature Range
I
= -40°C to +85°C (Industrial)
Package
PT
PT
MR
BG
= 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack)
= 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack)
= 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat)
= 121-Lead (10x10x1.1 mm) XBGA (Plastic Thin Profile Ball Grid Array)
Pattern
Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise)
ES = Engineering Sample
4XX = USB
© 2010 Microchip Technology Inc.
DS61143G-page 207
WORLDWIDE SALES AND SERVICE
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
01/05/10
DS61143G-page 208
© 2010 Microchip Technology Inc.