ICHAUS IC-DIEVALDI1D

iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 1/15
FEATURES
APPLICATIONS
♦ Dual channel switches, configurable for high-side, low-side
and push-pull operation
♦ Switches are current limited
♦ Push-pull operation with tristate function
♦ Output current of up to 100 mA per channel
♦ Parallel connection of both channels possible
♦ Channel 1 can be inverted (antivalent output)
♦ Wide supply voltage range of 9 to 30 V
♦ Sensor parameterisation via a feedback channel (up to 30 V)
♦ Switching converters and regulators for 3.3/5 V voltage
generation
♦ Error detection with hysteresis with excessive temperature,
overload and low voltage
♦ Driver shutdown in the event of error
♦ Error messaging via two open-collector outputs
♦ Sensor interface for light barriers
and proximity switches, for
example
PACKAGES
QFN24 4 mm x 4 mm
BLOCK DIAGRAM
LVH
CVH
1 uF
..50 mA
RSET
22 uH
8.2 kΩ
VH
VHL
ISET
VBR
VCC
VCC3
VCC
Undervoltage
Overtemp.
NOVL
BIAS
NUVD
Overload
VCC3
VBO
HS1
INV1
QP1
CHANN. 1
IN1
Filter and
Control Logic
QCFG1
QN1
1 nF
LS1
LINE
HS2
QP2
CHANN. 2
IN2
Filter and
Control Logic
QCFG2
QN2
1 nF
LS2
VN
OEN
GND
VBR
CFO
CFI
=1
VN
CFP
Copyright © 2008 iC-Haus
http://www.ichaus.com
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 2/15
DESCRIPTION
iC-DI is a monolithic interface iC with two independent switching channels which enables digital
sensors to drive peripheral elements, such as programmable logic controllers (PLC) and relays, for example.
The switches can be operated as push-pull, highside or low-side switches using inputs QCFG1 and
QCFG2 (open, high and low) and are enabled or disabled via input OEN. They are designed to cope with
high driver currents of 100 mA (RSET = 8.2 kΩ), are
current limited and also short-circuit-proof in that they
shut down should excessive temperature or an overload occur. The output current limit can be set via an
external resistor at ISET.
The protective overload feature is included here as
an integrator so that capacitive loads with low repeat
rates can be switched without the protective circuitry
cutting in. In the event of excessive temperature an
error message is generated immediately.
Errors are signalled by two open-collector outputs:
NOVL (for excessive temperature and overloads) and
NUVD (for low voltage at VBR or voltages VCC and
VCC3, generated internally). The output switches
are shut down with all types of error.
To avoid errors occurring when the device is switched
on the outputs remain at high impedance for ca.
50 ms after the low voltage threshold has been exceeded.
Sensor interface iC-DI has an integrated switching
converter which generates voltages VCC (5 V) and
VCC3 (3.3 V) with the aid of two back-end seriesregulators. If only a low current is required inductor
LVH may be omitted; the series regulators are then
powered directly by VBR.
Input INV1 permits the input signal at channel 1 (IN1)
to be inverted.
The connected sensor can be parameterised using
the feedback channel with a high volt input (CFI →
CFO).
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 3/15
PACKAGES QFN24 4 mm x 4 mm to JEDEC Standard
PIN CONFIGURATION QFN24 4 mm x 4 mm
24
23
22
21
20
19
1
18
2
17
16
3
DI
code...
...
4
5
15
14
13
6
7
8
9
10
11
12
PIN FUNCTIONS
No. Name Function
1 ISET Reference Current for current limitation
of driver outputs
2 INV1 Inverting Input Channel 1
3 IN1
Input Channel 1
PIN FUNCTIONS
No. Name Function
4 QCFG1 Configuration Input Channel 1
5 QCFG2 Configuration Input Channel 2
6 IN2
Input Channel 2
7 OEN
Output Enable Input
8 NOVL Overload Error Output
9 NUVD Undervoltage Error Output
10 CFO
Output Feedback Channel
11 CFP
Configuration Input Feedback Channel
12 CFI
Input Feedback Channel
13 QP2
Output High Side Switch Channel 2
14 QN2
Output Low Side Switch Channel 2
15 VN
Reference Voltage Low Side Switch
16 QN1
Output Low Side Switch Channel 1
17 QP1
Output High Side Switch Channel 1
18 VBO
Reference Voltage High Side Switch
19 VBR
Power Supply switching converter and
linear regulators
20 VHL
Inductor Switching Converter
21 VH
Input Linear Regulators
22 VCC
5 V Sensor Supply
23 VCC3 3.3 V Sensor Supply
24 GND
Ground
Pins GND and VN must not be externally connected, otherwise with reverse bias intolerably high current
may flow!
The Thermal Pad is to be connected to a Ground Plane (VN) on the PCB.
Only pin 1 marking on top or bottom defines the package orientation (iC-DI label and coding is subject
to change).
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 4/15
ABSOLUTE MAXIMUM RATINGS
Beyond these values damage may occur; device operation is not guaranteed. Absolute Maximum Ratings are no Operating Conditions.
Integrated circuits with system interfaces, e.g. via cable accessible pins (I/O pins, line drivers) are per principle endangered by injected
interferences, which may compromise the function or durability. The robustness of the devices has to be verified by the user during system
development with regards to applying standards and ensured where necessary by additional protective circuitry. By the manufacturer
suggested protective circuitry is for information only and given without responsibility and has to be verified within the actual system with
respect to actual interferences.
Item Symbol
No.
G001 VBO
G002 I(VBO)
G003 VBR
G004 I(VBR)
G005 V(VH)
G006 I(VH)
G007 V(VHL)
Parameter
Conditions
Unit
Min.
Power Supply at VBO
Referenced to lowest voltage of VN, VBR,
QP1, QN1, QP2, QN2, CFI, VH, VHL
Referenced to highest voltage of VN, VBR,
QP1, QN1, QP2, QN2, CFI, VH, VHL
Current in VBO
Power Supply at VBR
Current in VBR
Voltage at VH
-36
600
mA
36
V
V
600
mA
36
V
-36
-5
Referenced to lowest voltage of VN, VBO,
VBR, QP1, QN1, QP2, QN2, CFI, VH
Referenced to highest voltage of VN, VBO,
VBR, QP1, QN1, QP2, QN2, CFI, VH
V
V
-36
-10
Referenced to lowest voltage of VN, VBO,
VBR, QP1, QN1, QP2, QN2, CFI, VHL
Referenced to highest voltage of VN, VBO,
VBR, QP1, QN1, QP2, QN2, CFI, VHL
Current in VH
Voltage at VHL
36
-10
Referenced to lowest voltage of VN, VBO,
QP1, QN1, QP2, QN2, CFI, VH, VHL
Referenced to highest voltage of VN, VBO,
QP1, QN1, QP2, QN2, CFI, VH, VHL
Max.
V
70
mA
36
V
-36
V
G008 I(VHL)
G009 V(VN)
Current in VHL
-150
5
mA
Voltage at GND vs. VN
VN < VBO
VN > VBO (reverse bias)
-1
-27
3
3
V
V
G010 I(VN)
Current in VN
VN < VBO
VN > VBO (reverse bias)
-500
-10
500
10
mA
mA
G011 I(GND)
Current in GND
-300
300
mA
G012 V()
Voltage at VCC, VCC3
-0.3
7
V
G013 I()
G014 V()
Current in VCC, VCC3
-50
10
mA
36
V
Voltage at QP1, QN1, QP2, QN2
G015 I()
Current in QP1, QP2
G016 I()
G017 V(CFI)
Current in QN1, QN2
Voltage at CFI
G018 I(CFI)
Current in CFI
G019 V()
Referenced to lowest voltage of VN, VBO,
VBR, QP1, QN1, QP2, QN2, CFI, VH, VHL
Referenced to highest voltage of VN, VBO,
VBR, QP1, QN1, QP2, QN2, CFI, VH, VHL;
VN < VBO, VBO < 29 V
VN < VBO, VBO > 29 V
VN > VBO (reverse bias)
-7
-36
-36
V
V
V
-400
Referenced to lowest voltage of VN, VBO,
VBR, QP1, QN1, QP2, QN2, CFI, VH, VHL
Referenced to highest voltage of VN, VBO,
VBR, QP1, QN1, QP2, QN2, CFI, VH, VHL
mA
400
mA
36
V
-36
V
-4
4
mA
Voltage at INV1, QCFG1, QCFG2, IN1,
IN2, OEN, CFP
-0.3
7
V
G020 I()
Current in INV1, QCFG1, QCFG2, IN1,
IN2, OEN, CFP
-4
4
mA
G021 V()
Voltage at NOVL, NUVD, CFO
-0.3
7
V
G022 I()
Current in NOVL, NUVD, CFO
-5
20
mA
G023 V(ISET)
Voltage at ISET
-0.3
7
V
G024 I(ISET)
Current in ISET
-4
4
mA
G025 Vd()
ESD Susceptibility at all pins
0.6
kV
G026 Tj
Operating Junction Temperature
-40
150
°C
HBM, 100 pF discharged through 1.5 kΩ
All voltages are referenced to ground unless otherwise stated.
All currents into the device pins are positive; all currents out of the device pins are negative.
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 5/15
ABSOLUTE MAXIMUM RATINGS (cont’d)
Item
No.
Symbol
G027 Ts
Parameter
Conditions
Storage Temperature Range
Unit
Min.
Max.
-40
150
°C
THERMAL DATA
Operating Conditions:
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 kΩ ±1%, unless otherwise stated
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
T01
Ta
Operating Ambient Temperature Range
(extended range on request)
T02
Rthja
Thermal Resistance Chip/Ambient
Typ.
-40
Surface mounted, thermal pad soldered to
ca. 2 cm² heat sink
All voltages are referenced to ground unless otherwise stated.
All currents into the device pins are positive; all currents out of the device pins are negative.
30
Max.
85
°C
40
K/W
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 6/15
ELECTRICAL CHARACTERISTICS
Operating Conditions:
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 kΩ ±1%, unless otherwise stated
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Typ.
9
24
Max.
Total Device
001
VBO
Permissible Supply Voltage
Referenced to VN
002
I(VBO)
Supply Current in VBO
No load, I(QP1) = I(QP2) = 0, HSx switched on
003
VBR
Permissible Supply Voltage
004
I(VBR)
Supply Current in VBR
VH connected to VBR, no load,
I(VCC) = I(VCC3) = 0, V(OEN) = hi
005
Vc()hi
Clamp Voltage hi at VBO, VBR
vs. VN
I() = 10 mA
006
Vc()lo
Clamp Voltage lo at VBO, VBR
vs. VN
I() = -10 mA
007
Vc()hi
Clamp Voltage hi at QN1, QN2
vs. VN
I() = 1 mA, VBO and VBR > VN
008
Vc()lo
Clamp Voltage lo at QP1, QP2
vs. VN
009
Vc(CFI)hi
010
Vc(CFI)lo
011
9
24
30
V
0.3
mA
30
V
6
mA
36
V
-36
V
36
39
V
I() = -1 mA, VBO and VBR > VN
-9
-6
V
Clamp Voltage hi at CFI vs. VN
I() = 1 mA
36
Clamp Voltage lo at CFI vs. VN
I() = -1 mA
Vc(VN)hi
Clamp Voltage hi at VN vs. lowest voltage of QP1, QN1, QP2,
QN1, CFI
I() = 1 mA
36
012
Vc()hi
Clamp Voltage hi at VH, VHL
I() = 1 mA
36
013
Vc()lo
Clamp Voltage lo at VH, VHL
I() = -1 mA
014
Vc()hi
Clamp Voltage hi at VCC, VCC3, I() = 1 mA
ISET, INV1, IN1, IN2, QCFG1,
QCFG2, OEN, CFO, CFP, NOVL,
NUVD
015
Vc()lo
Clamp Voltage lo at VCC, VCC3, I() = -1 mA
ISET, INV1, IN1, IN2, QCFG1,
QCFG2, OEN, CFO, CFP, NOVL,
NUVD
016
tpio
Propagation Delay
IN1 → QP1, QN1
IN2 → QP2, QN2
017
R(GND)off Resistance of GND switch
VBO < VN (reverse bias)
018
R(GND)on Resistance of GND switch
VBO > VN; V(GND) < VN + 0.6V
V
-36
V
V
-36
7
-0.5
V
11
µs
10
kΩ
Low-Side Switch QN1, QN2; V(QCFG1) = V(QCFG2) = 0 V
101 Vs()lo
Saturation Voltage lo at QN1,
RSET = 5.1 kΩ;
I() = 100 mA
QN2 vs. VN
I() = 50 mA
I() = 10 mA
100
V
V
2.4
RSET = 8.2 kΩ, V() = 1.4 V...VBO
V
125
20
Ω
1.5
1
0.3
V
V
V
160
mA
102
Isc()lo
Short-Circuit Current lo in QN1,
QN2
103
Vol()on
Overload Detection Threshold on QN1, QN2 lo → hi; referenced to GND
1.55
2.1
V
104
Vol()off
Overload Detection Threshold off QN1, QN2 hi → lo; referenced to GND
1.5
1.8
V
105
Vol()hys
Overload Detection Threshold
Hysteresis
Vol()hys = Vol()on − Vol()off
106
llk()
Leakage Current at QN1, QN2
OEN = lo;
V(QN1, QN2) = VBO...VBO + 6 V
V(QN1, QN2) = 0...VBO
V(QN1, QN2) = -6...0 V
0.1
V
0
0
-500
107
SR()
Slew Rate (switch off → on)
VBO = 30 V, Cl = 2.2 nF
108
Imax()
Maximum Current in QN1, QN2
V(ISET) = 0 V, QNx > 3 V
195
109
Ir()
Reverse Current in QN1, QN2
QNx activated; V(QNx) = -6 V
-10
300
50
50
0
µA
µA
µA
45
V/µs
450
mA
mA
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 7/15
ELECTRICAL CHARACTERISTICS
Operating Conditions:
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 kΩ ±1%, unless otherwise stated
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
High-Side Switch QP1, QP2; V(QCFG1) = V(QCFG2) = 5 V
201 Vs()hi
Saturation Voltage hi vs. VBO
RSET = 5.1 kΩ;
I() = -100 mA
I() = -50 mA
I() = -10 mA
Typ.
Max.
-1.2
-0.7
-0.3
V
V
V
202
Isc()hi
Short-Circuit Current hi
RSET = 8.2 kΩ, V() = 0...VBO − 1.5 V
-160
-100
mA
203
Vol()on
Overload Detection Threshold on QP1, QP2 hi → lo; referenced to VBO
-2.1
-1.5
V
204
Vol()off
Overload Detection Threshold off QP1, QP2 lo → hi; referenced to VBO
-1.8
-1.4
V
205
Vol()hys
Overload Detection Threshold
Hysteresis
Vol()hys = Vol()off − Vol()on
206
llk()
Leakage Current at QP1, QP2
OEN = lo;
V(QP1, QP2) = -6...0 V
V(QP1, QP2) = 0 V...VBO
V(QP1, QP2) > VBO...VBO + 6 V
207
SR()
Slew Rate (switch off → on)
VBO = 30 V, Cl = 2.2 nF
208
Imax()
Maximum Current in QP1, QP2
V(ISET) = 0 V, VBO − QPx > 4 V
209
Ir()
Reverse Current in QP1, QP2
QPx activated; V(QPx) = VBO...VBO + 6 V
-125
0.1
V
-500
-40
0
-630
-450
0
0
500
µA
µA
µA
40
V/µs
-350
mA
1
mA
Short-Circuit/Overload Monitor
301
toldly
Time to Overload Message
(NOVL 1 → 0, switch tri-state)
Permanent overload (see Fig. 1)
302
tolcl
Time to Overload Message Reset No overload (see Fig. 2)
(NOVL 0 → 1, switch active)
126
180
280
µs
35
50
80
ms
V
VBR Voltage Monitor
401
VBRon
Turn-On Threshold VBR
Referenced to GND
8
9
402
VBRoff
Turn-Off Threshold VBR
Decreasing voltage VBR
7.3
8.5
403
VBRhys
Hysteresis
VBRhys = VBRon − VBRoff
200
404
tuvdly
Time to Undervoltage Message
(NUVD 1 → 0, switch tri-state)
Permanent undervoltage at VBR, VCC or
VCC3
15
405
tuvcl
Time to Undervoltage Message
Reset (NUVD 0 → 1, switch active)
No undervoltage at VBR, VCC and VCC3 (see
Fig. 1)
35
500
50
V
mV
100
µs
80
ms
155
°C
80
ms
2
V
Temperature Monitor
501
Toff
Overtemperature Shutdown
(NOVL 1 → 0, switch tri-state)
Increasing temperature Tj
130
502
ton
Overtemperature Shutdown Reset Delay
(NOVL 0 → 1, switch active)
Temperature Tj < Toff
35
50
Inputs IN1, IN2, INV1, QCFG1, QCFG2, OEN
601
Vt()hi
Input Threshold Voltage hi at IN1,
IN2, INV1, OEN
602
Vt()lo
Input Threshold Voltage lo at IN1,
IN2, INV1, OEN
603
Vt()hys
Hysteresis at IN1, IN2, INV1,
OEN
Vt()hys = Vt()hi − Vt()lo
300
604
Ipd()
Pull-Down Current at IN1, IN2,
INV1
V() = 0.4 V...Vt()lo
V() > Vt()hi
30
10
605
Ipd(OEN)
Pull-Down Current at OEN
V(OEN) > 0.4 V
1
606
Vahi()
Input Threshold hi at QCFG1,
QCFG2 (V() > Va()hi ⇒ QN1,
QN2 tri-state)
Referenced to VCC3 (see Fig. 3)
52
607
Vahi()hys
Hysteresis hi at QCFG1, QCFG2 Referenced to VCC3 (see Fig. 3)
(V() < Vahi() − Vahi()hys ⇒ QN1,
QN2 active)
3
0.8
V
500
64
mV
168
40
µA
µA
6
µA
69
%
7
%
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 8/15
ELECTRICAL CHARACTERISTICS
Operating Conditions:
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 kΩ ±1%, unless otherwise stated
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Typ.
Max.
29
34
%
7
%
608
Valo()
Input Threshold lo at QCFG1,
QCFG2 (V() < Va()lo ⇒ QP1,
QP2 tri-state)
Referenced to VCC3 (see Fig. 3)
24
609
Valo()hys
Hysteresis lo at QCFG1, QCFG2 Referenced to VCC3 (see Fig. 3)
(V() > Valo() + Valo()hys ⇒ QN1,
QN2 active)
3
610
Vpp()
Open Circuit Voltage at QCFG1, Referenced to VCC3
QCFG2
42
46.5
51
%
611
Ri()
Internal Resistance at QCFG1,
QCFG2
40
85
190
kΩ
612
tsup
Permissible Spurious Pulse
Width at IN1, IN2, INV1, OEN
No activity triggered
2.2
µs
613
ttrig
Required Pulse Width at IN1,
IN2, INV1, OEN
Activity triggered
614
tsup
Permissible Spurious Pulse
Width at QCFG1, QCFG2
No activity triggered
615
ttrig
Required Pulse Width at QCFG1, Activity triggered
QCFG2
7
µs
4.5
14
µs
µs
Error Output NOVL, NUVD
701
Vs()lo
Saturation Voltage lo
I() = 1.0 mA
702
Isc()lo
Short Circuit Current lo
V() = 0.4 V...VCC
703
Ilk()
Leakage Current
V() = 0 V...VCC, no error
0.4
V
1.2
25
mA
-10
10
µA
Feedback Channel CFI to CFO
801
Vt1(CFI)hi Input Threshold 1 hi at CFI
VBR < 18 V
59
66
74
%VBR
802
Vt1(CFI)lo Input Threshold 1 lo at CFI
VBR < 18 V
44
50
56
%VBR
803
Vt2(CFI)hi Input Threshold 2 hi at CFI
VBR > 18 V
10.5
11.3
12
V
804
Vt2(CFI)lo Input Threshold 2 lo at CFI
VBR > 18 V
8
9
10.5
V
805
Vt()hys
Hysteresis at CFI
Vt(CFI)hys = Vt(CFI)hi − Vt(CFI)lo
1
806
Ipu(CFI)
Pull-Up Current at CFI
CFP = hi, V(CFI) = 0...VBR − 3 V,
V(CFI) > Vt(CFI)lo
-300
-40
µA
807
Ipd(CFI)
Pull-Down Current at CFI
CFP = lo, V(CFI) = 3 V...VBR,
V(CFI) < Vt(CFI)lo
40
300
µA
808
tpcf
Propagation Delay CFI → CFO
V(CFO) = 10 ↔ 90%VCC
2.4
11
µs
809
Vs()lo
Saturation Voltage lo at CFO
I(CFO) = 1.2 mA
810
Isc()lo
Short Circuit Current lo in CFO
V(CFO) = 0.4 V...VCC
811
Ilk()
Leakage Current at CFO
V(CFO) = 0 V...VCC, CFO inaktive
812
Vt()hi
Input Threshold Voltage hi at
CFP
813
Vt()lo
Input Threshold Voltage lo at
CFP
814
815
Vt()hys
Hysteresis at CFP
Vt(CFP)hys = Vt(CFP)hi − Vt(CFP)lo
300
Ipd(CFP)
Pull-Down Current at CFP
V(CFP) = 0.4 V...Vt(CFP)lo
V(CFP) > Vt(CFP)hi
30
10
816
tsup
Permissible Spurious Pulse
Width at CFI
No activity triggered
817
ttrig
Required Pulse Width at CFI
Activity triggered
818
tsup
Permissible Spurious Pulse
Width at CFP
No activity triggered
819
ttrig
Required Pulse Width at CFP
Activity triggered
14
µs
820
Ipd(CFI)+
llk(QPx)
Pull-Down Current at CFI plus
leakage current at QPx
CFP = lo, V(CFI) = 3 V...VBR, OEN = lo
20
µA
LVH = 22 µH, Ri(LVH) < 1.1 Ω, CVH = 1 µF;
I(VH) = 0...50 mA
6.4
V
0.4
V
1.2
25
mA
-10
10
µA
2
V
0.8
V
500
mV
168
40
µA
µA
2.2
µs
7
µs
4.5
µs
Switching Regulator VHL, VH
901
VHn
Nominal Voltage at VH
7.7
V
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 9/15
ELECTRICAL CHARACTERISTICS
Operating Conditions:
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 kΩ ±1%, unless otherwise stated
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
902
Ia(VHL)
max. DC Cut-Off Current from
VHL
903
Va(VH)
Cut-Off Voltage at VH
904
905
Va()hys
Hysteresis at VH
Vs(VHL)
Saturation Voltage at VHL vs.
VBR
906
Vf(VHL)
Typ.
Max.
-200
Va(VH) > VHn
mA
6.5
7.3
7.7
V
10
25
150
mV
I(VHL) = -50 mA
I(VHL) = -150 mA
1.1
3.0
V
V
Forward Voltage of Fly-Back
Diode
Vf() = V(GND) − V(VHL);
I(VHL) = -50 mA
I(VHL) = -150 mA
1.5
2.9
V
V
VHL = lo, V(VHL) = V(VH)
20
µA
907
Ilk(VHL)
Leakage Current at VHL
908
ηVH
Efficiency of VH-switching regula- I(VH) = 50 mA, Ri(LVH) < 1.1 Ω,
tor
V(VBR) = 12...30 V
-20
70
%
Series Regulator VCC
A01
VCCn
Nominal Voltage at VCC
A02
CVCC
Required Capacitor at VCC vs.
GND
I(VCC) = -50...0 mA, VH = VHn
4.75
5
A03
RiCVCC
Maximum Permissible Internal
Resisitance of capacitor at VCC
A04
VCCon
VCC Monitor Threshold hi
A05
VCCoff
VCC Monitor Threshold lo
Decreasing Voltage at VCC
A06
VCChys
Hysteresis
VCChys = VCCon − VCCoff
50
150
3.1
3.3
5.25
150
V
nF
1
Ω
90
99
%VCCn
83
95
%VCCn
mV
Series Regulator VCC3
B01
VCC3n
Nominal Voltage at VCC3
B02
CVCC3
Required Capacitor at VCC3 vs.
GND
B03
RiCVCC3
Maximum Permissible Internal
Resisitance of capacitor at VCC3
B04
VCC3on
VCC3 Monitor Threshold hi
B05
VCC3off
VCC3 Monitor Threshold lo
B06
VCC3hys
Hysteresis
Oscillator
C01 fos
I(VCC3) = -50...0 mA, VH = VHn
3.5
150
V
nF
1
Ω
90
98
%
VCC3n
Decreasing Voltage at VCC3
83
95
%
VCC3n
VCC3hys = VCC3on − VCC3off
50
150
1.2
1.5
2
Tj = 27 °C
Oscillator Frequency
mV
2.75
2.3
MHz
MHz
Reference and Bias
D01 V(ISET)
Voltage at ISET
Tj = 27 °C
1.16
1.22
1.28
V
D02 I(ISET)
Current in ISET
V(ISET) = 0 V, Tj = 27 °C
-1.1
-0.65
-0.25
mA
D03 rIbeg
Transmission Ratio for driver
output current limitation
Imax(QP1) = Imax(QP2) = Imax(QN1) =
Imax(QN2) = I(ISET) ∗ rIbeg,
RSET = 5.1...20 kΩ
800
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 10/15
DESCRIPTION OF FUNCTIONS
Overload detection
To protect the device against excessive power dissipation due to high currents the switches are clocked if an
overload occurs. If a short circuit is detected, i.e. if the
voltage at the switch output overshoots or undershoots
Overload Detection Threshold off (cf. Electrical Characteristics Nos. 104 and 204), the switches are shut
down for a typical 50 ms (cf. Electrical Characteristics
No. 302) and the current flow thus interrupted.
VBR
NUVD
NOVL
OEN
tion. This integrator is an 8-bit counter which is updated together with the oscillator clock. If an overload
is detected on one channel the counter is raised by 1;
an overload on both channels increases the counter
value by 2. If no overload is apparent the counter is
reduced by 1 every 10 clock pulses. Provided that the
time during which excessive current flows does not exceed the value stipulated by Electrical Characteristics
No. 301, a maximum duty cycle – without deactivation of the switches – of 1:10 results if one channel
is overloaded; if both channels signal an overload this
changes to 1:5. Only when these ratios are exceeded
can the counter achieve its maximum value, this then
generating an error message at NOVL and deactivating the switches.
Qyx
tuvcl
toldly
tolcl
Figure 1: Permanent short circuit
The level of power dissipation is dependent on the
current and the time during which this current flows.
A current which fails to trigger the overload detection is not critical; high current can also be tolerated
for a short period and with low repeat rates. This is
particularly important when switching capacitive loads
(charge/discharge currents).
VBR
Configuring the switches
The various functions of the switches are determined
by pins QCFG1 and QCFG2. A voltage at the QCFG
pins which is lower than Va()lo deactivates the relevant
high-side switches; with a voltage higher than Va()hi
the relevant low-side switches are deactivated. Both
high-side and low-side switches are activated in the
open-circuit voltage range (pin open).
Valo()hys
QNx active
QPx active
Vahi()hys
NUVD
NOVL
OEN
INx
Valo()
Qyx
Vahi()
V(QCNFx)
Off
Integrator
tuvcl
tolcl
Figure 2: Overload
So that this is possible a shared back-end integrator
follows the switches for the purpose of overload detec-
Figure 3: Levels at QCFG1/QCFG2 and switch activation
Pull-up and pull-down currents
The pull-down currents at pins IN1, IN2, INV1 and
CFP are two-stage with switching thresholds Vt()hi and
Vt()lo (cf. Electrical Characteristics Nos. 604 and 815).
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 11/15
Function tables
CHANNEL 2
IN2 QCFG2 OEN QN2 QP2
X
X
L
off
off
L
Z
H
on
off
H
Z
H
off
on
L
H
H
off
off
H
H
H
off
on
L
L
H
off
off
H
L
H
on
off
CHANNEL 1
IN1 QCFG1 INV OEN QN1 QP1
X
X
X
L
off
off
L
Z
L
H
on
off
Z
L
H
off
on
H
L
Z
H
H
off
on
H
Z
H
H
on
off
L
H
L
H
off
off
H
H
L
H
off
on
L
H
H
H
off
on
H
H
H
H
off
off
L
L
L
H
off
off
H
L
L
H
on
off
L
L
H
H
on
off
H
L
H
H
off
off
Table 2: Function table Channel 2
Table 1: Function table Channel 1
Table 3: Function table Feedback Channel
FEEDBACK CHANNEL
CFI CFP
CFO
H
H
Z
H
L
L
L
H
L
L
L
Z
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 12/15
APPLICATION NOTES
Figure 4 shows recommended protective circuitry
against reverse bias and transients on the transmission line; suggested values as follows:
CQx:
CVB:
CVBO:
22 nF
1 µF
100 nF
LVH
1uF
..50mA VH
RCFI:
RQxx:
RVB:
50 Ω
5Ω
> 20 Ω
RSET
22uH
VHL
ISET
VCC
VBR
VCC3
CVCC3
VCC3
VCC
VBR
Undervoltage
NOVL
BIAS
NUVD
RVB
Overtemp.
Overload
VCC3
VBO
CHANN. 1
PRG1
IN1
HS1
UB
QP1 RQP1
CVBO
Q1
QN1
RQN1
LS1
POL1
DVBO
VCC3
CQ1
PRG2
CHANN. 2
CVCC
General purpose diode,
high reverse voltage
Pins GND and VN must not be externally connected, otherwise with reverse bias intolerably
high current may flow!
DQx, DVBO: High speed diodes (eg. BAS16)
CVH
DVN:
IN2
HS2
DQ1
QP2 RQP2
Q2
QN2
RQN2
LS2
DQ2
VN
OEN
M
DVN
VN>VBO
GND
VBR
CFO
=1
CFI
RCFI
VN
CFP
Figure 4: Recommended external protective circuitry for differential push-pull operation
CFI
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 13/15
DEMO BOARD
iC-DL comes with a demo board for test purposes. Figures 5 and 6 show both the schematic and the component
side of the demo board.
VH
VCC
VCC
D6
RD
R3
1k
D5
RD
U1
C6
100nF
iC-DI
22 VCC
C5
100nF
23 VCC3
R2
1k
NUVD
NUVD
4 PRG1
IN1
3 IN1
INV1
INV1
2 INV1
PRG2
PRG2
5 PRG2
IN2
6 IN2
OEN
OEN
7 OEN
CFO
CFO
10 CFO
CFP
CFP
11 CFP
ISET
R4
8.2k
GND
1 ISET
20
VHL
DCDC
CONVERTER
TEMP
LOAD
C3
1uF
QP2 13
QN2 14
VN 15
=1
C1
100nF
VB
BAS16_02L
D1
R5
QP1
4.7
QN1
VQ1
R6
C7
22nF
4.7
R7
QP2
4.7
QN2
C8
22nF
4.7
C9
4.7nF
CFI_I
R9
VQ1
BAS16_02L
D2
VQ2
R8
VNI
VBR
VN
CFI 12
VQ2
BAS16_02L
D3
CFI
CFI
1k
BIAS
GND
24
VB
22
VBO 18
QN1 16
CHANNEL2
C2
100nF
VNI
QP1 17
CHANNEL1
R1
VBR
VBR 19
UVolt
8 NOVL
NOVL
PRG1
IN2
VHL
21
VH
9 NUVD
NOVL
IN1
VHL
22uH
VCC3
VCC3
PRG1
L1
VH
C4
1uF
VNI
EPAD
GND
Figure 5: Schematic of the demo board
Figure 6: Demo board (component side)
D4
BYS10-45
VN
VN
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 14/15
This specification is for a newly developed product. iC-Haus therefore reserves the right to change or update, without notice, any information contained herein,
design and specification; and to discontinue or limit production or distribution of any product versions. Please contact iC-Haus to ascertain the current data.
Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions
in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of
merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which
information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or
areas of applications of the product.
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical
applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of
use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued
annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in
Hanover (Hannover-Messe).
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations
of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can
be put to.
iC-DI
DUAL SENSOR INTERFACE
Rev C2, Page 15/15
ORDERING INFORMATION
Type
Package
Order Designation
iC-DI
QFN24 4 x 4 mm²
Evaluation Board
iC-DI QFN24
iC-DI EVAL DI1D
For technical support, information about prices and terms of delivery please contact:
iC-Haus GmbH
Am Kuemmerling 18
D-55294 Bodenheim
GERMANY
Tel.: +49 (61 35) 92 92-0
Fax: +49 (61 35) 92 92-192
Web: http://www.ichaus.com
E-Mail: [email protected]
Appointed local distributors: http://www.ichaus.de/support_distributors.php