TRIQUINT AH420-EG

AH420
4W High Linearity InGaP HBT Amplifier
Product Features
Functional Diagram
Product Description
• 400 – 2700 MHz
The AH420 is a high dynamic range amplifier in a low-cost
surface mount package. The InGaP/GaAs HBT is able to
achieve high performance with -49 dBc ACLR and +35.7
dBm of compressed 1dB power, operating off of a single
+5V supply. It is housed in a lead-free/green/RoHScompliant 4x5mm DFN package. All devices are 100% RF
and DC tested.
• +35.7 dBm P1dB
• -49 dBc ACLR @ 26 dBm
• 14 dB Gain @ 2140 MHz
• 800 mA Quiescent Current
• +5 V Single Supply
The AH420 is targeted for use as a final stage amplifier in
wireless infrastructure repeaters or as driver stages for high
• Lead-free/green/RoHS-compliant power amplifiers where high performance is required. In
addition, the amplifier can be used for a wide variety of
12-pin 4x5mm DFN Package
other applications within the 400 to 2700 MHz frequency
band. By operating off of a single +5V rail, other higher
voltage rails are not necessarily needed thus saving system
Applications
costs. The amplifier also has the flexibility to operate at
• Final stage amplifiers for Repeaters higher voltage levels to achieve higher compression if
needed by the system.
Function
RFIN
RFOUT
IREF
VBIAS
NC
• MTTF > 100 Years
Pin No.
3,4,5,6
7,8,9,10
12
1
2,11
• High Power Amplifiers
• Mobile Infrastructure
• LTE / WCDMA / EDGE / CDMA
Specifications
Parameter
Operational Bandwidth
Test Frequency
Output Channel Power
Gain
Input Return Loss
Output Return Loss
ACPR (2)
Output P1dB
Output IP3 (4)
Quiescent Collector Current (3)
Iref
Vcc, Vbias
Typical Performance
Units Min
MHz
MHz
dBm
dB
dB
dB
dBc
dBm
dBm
mA
mA
V
Typ
400
13
710
2140
+26
14
12
7.4
-49
+35.7
+50
800
20
+5
Max
Parameter
2700
Frequency
Channel Power
Gain
Input Return Loss
Output Return Loss
ACPR (2)
Output P1dB
Noise Figure
Output IP3 (4)
Quiescent Collector Current (3)
Iref
Vcc, Vbias
16
900
1. Test conditions unless otherwise noted: 25ºC, +5V Vsupply, 2140 MHz, in tuned application circuit.
2. W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW
3. This corresponds to the quiescent current under small-signal conditions into pins 6, 7, and 8 when
the current setting resistor, R4 connected to the Iref pin, is at 82 Ω.
4. OIP3 is measured with two tones at out an output power of +27 dBm/tone separated by 1 MHz.
The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.
Units
MHz
dBm
dB
dB
dB
dBc
dBm
dB
dBm
mA
mA
V
Typical
940
+27
16
14
6.4
-46.5
+35.2
6.6
+50
1960
+27
14.1
19
7
-48
+35.6
5.3
+49
800
20
+5
2140
+26
14
12
7.4
-49
+35.7
5.6
+50
5. The amplifier has been tested for ruggedness to be capable of handling:
10:1 VSWR @ 5Vcc, 2140MHz, +35.2dBm CW Pout, 25 °C
10:1 VSWR @ 5Vcc, 940MHz, +28.5dBm IS-95A Pout, 25 °C
10:1 VSWR @ 5Vcc, 2140MHz, +26.5dBm WCDMA Pout, 25 °C
Absolute Maximum Ratings
Parameter
Rating
Storage Temperature
Vcc, Vbias
RF Input Power, CW, 50 Ω, T=25°C
Reference Current, Iref
Dissipated Power, Pmax
Max Junction Temperature, TJ
-65 to +150 °C
+14 V
Input P9dB
170 mA
7W
Thermal Resistance, ΘJC
10.6 °C / W
For 106 hours MTTF
158 °C
Operation of this device above any of these parameters may cause permanent damage.
Ordering Information
Part No.
Description
AH420-EG
AH420-EPCB900
AH420-EPCB1960
AH420-EPCB2140
4W High Linearity InGaP HBT Amplifier
920-960 MHz Evaluation Board
1930-1990 MHz Evaluation Board
2110-2170 MHz Evaluation Board
Standard T/R size = 500 pieces on a 7” reel.
Specifications and information are subject to change without notice.
TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 1 of 8 Aug 2009
AH420
4W High Linearity InGaP HBT Amplifier
Baseplate Configuration
Vcc
GND
Vpd
GND
Application Circuit PC Board Layout
Circuit Board Material: 0.014” GETEK, single layer, 1 oz copper, εr = 4.2,
Microstrip line details: width = .030”, marker spacing = .050”
Notes:
1.
Please note that for reliable operation, the evaluation board will have to be mounted to a
much larger heat sink during operation and in laboratory environments to dissipate the
power consumed by the device. The use of a convection fan is also recommended in
laboratory environments.
2.
The area around the module underneath the PCB should not contain any soldermask in
order to maintain good RF grounding.
Specifications and information are subject to change without notice.
TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 2 of 8 Aug 2009
AH420
4W High Linearity InGaP HBT Amplifier
Typical Device Data
S-Parameters (VCC= +5 V, ICC = 800 mA, 25 °C, unmatched 50 ohm system)
Swp Max
6GHz
0
2.
2.
0
6
0.
0.8
1.0
S22
S(2,2)
AH420_EG
Swp Max
6GHz
6
0.
0.8
1.0
S11
S(1,1)
AH420_EG
Gain / Maximum Stable Gain
60
0.
4
0.
4
40
0
3.
0
3.
0
4.
0
4.
5.0
5.0
0.2
10.0
5.0
4.0
3.0
2.0
1.0
0.8
0.6
0.4
0.2
10.0
0
10.0
5.0
4.0
3.0
2.0
1.0
0.8
0.6
0.4
0
0.2
10.0
0
-10.0
-5.
0
-4
.0
-
0
2.
Swp Min
0.01GHz
-1.0
-0
.6
-
Swp Min
0.01GHz
-1.0
-0.8
.4
-0.8
-0
0
2.
.4
-0
.6
Frequency (GHz)
.0
6
-3
4
.0
-0
2
-3
-40
0
2
-0.
-4
.0
DB(|S(2,1)|)
AH420_EG
0
DB(GMax())
AH420_EG
-5.
2
-0.
-20
-10.0
Gain (dB)
0.2
20
Notes:
The gain for the unmatched device in 50 ohm system is shown as the trace in black color. For a tuned circuit for a particular frequency, it is expected that
actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the red line.
S-Parameters (VCC = +5 V, ICQ = 800 mA, 25 °C, unmatched 50 ohm system, calibrated to device leads)
Freq (MHz)
10
50
100
300
500
700
900
1100
1300
1500
1700
1900
2100
2300
2500
2700
2900
3100
3300
3500
3700
3900
4100
4300
S11 (dB)
S11 (deg)
S21 (dB)
S21 (deg)
S12 (dB)
S12 (deg)
S22 (dB)
S22 (deg)
-1.22
-0.44
-0.31
-0.28
-0.30
-0.40
-0.43
-0.50
-0.59
-0.74
-0.98
-1.40
-2.04
-2.78
-2.88
-2.04
-1.32
-0.95
-0.78
-0.69
-0.63
-0.61
-0.58
-0.54
-176.79
-177.23
-178.77
179.40
178.17
176.72
175.77
173.96
171.86
169.75
167.20
164.19
161.94
163.47
169.61
171.93
169.73
167.05
164.66
162.98
161.89
161.39
161.33
161.51
29.97
24.42
19.17
10.27
6.16
3.74
2.09
0.99
0.42
0.16
0.25
0.63
1.22
1.53
0.74
-1.59
-4.55
-7.58
-10.52
-13.08
-15.60
-17.79
-19.66
-21.87
155.67
117.15
103.73
90.61
84.91
79.16
74.69
69.01
62.55
55.48
46.05
34.50
18.13
-4.61
-32.66
-58.88
-77.51
-90.68
-100.04
-106.66
-112.19
-116.53
-121.50
-124.38
-52.77
-45.04
-44.01
-43.22
-43.10
-43.48
-41.72
-41.21
-40.35
-39.33
-38.86
-38.13
-36.71
-35.70
-36.03
-37.72
-39.74
-41.31
-42.50
-43.74
-42.73
-43.74
-43.35
-42.62
64.11
32.25
11.29
5.32
-0.42
36.07
5.11
-1.08
-4.63
-10.41
-20.47
-34.84
-51.74
-78.76
-114.19
-145.67
-179.01
163.85
141.73
129.82
112.53
105.15
107.61
97.03
-1.61
-1.05
-1.16
-0.94
-0.93
-1.02
-1.07
-1.11
-1.15
-1.21
-1.24
-1.24
-1.19
-0.95
-0.62
-0.52
-0.55
-0.68
-0.80
-0.87
-0.90
-0.92
-0.92
-0.97
-39.70
-122.90
-150.31
-169.59
-174.28
-177.33
-177.23
-178.10
-178.55
-179.14
-179.88
179.85
179.15
178.06
175.59
171.28
168.08
165.55
164.25
162.92
162.24
161.57
161.67
162.11
Device S-parameters are available for download off of the website at: http://www.tqs.com
Specifications and information are subject to change without notice
TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 3 of 8 Aug 2009
AH420
4W High Linearity InGaP HBT Amplifier
920-960 MHz Reference Design (AH420-EPCB900)
W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW
Typical W-CDMA Performance at 25°C
Frequency (MHz)
Channel Power
Power Gain
Input Return Loss
Output Return Loss
ACPR
P1dB
Output IP3
920
940
960 Units
+27 +27 +27 dBm
15.9
16
16.1
dB
17
14
11
dB
5.3
6.4
8.0
dB
-47 -46.5 -46.5 dBc
+35.2 +35.2 +35.2 dBm
At 27dBm/tone, 1MHz spacing
+51
+50
+49
dBm
Noise Figure
6.5
6.6
800
+5
6.7
dB
mA
V
Quiescent Current, Icq
Vpd, Vcc
C7
C8
C22
FB1
R3
D1
C5
C3
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd and Vcc or damage will occur to D1.
3.
Components shown on the silkscreen but not on the schematic are not used.
4.
Vpd used for device power down (low=RF off)
5.
The edge of C13 is placed at 75mil from AH420 RFout pin. (3.9 o @ 940 MHz)
6.
The edge of C15 is placed 145mil from the edge of C13. (7.5 o @ 940 MHz)
7. The edge of C14 is placed at 150mil from AH420 Rfin pin. (7.7 o @ 940 MHz)
8.
The edge of C17 is placed against the edge of C14.
9.
0 Ω jumpers can be replaced with copper trace in target application.
R4
R2
C6
L1
C4
C2
C14
C12
C15
R1
C13
C17
C1
T=25°C
f=940 MHz
T=25°C
0
55
-5
16
15
50
OIP3 (dBm)
S11, S22 (dB)
17
Gain (dB)
OIP3 vs. Output Power/Tone vs. Temperature
Return Loss
Gain vs. Frequency
18
-10
45
-15
40
-20
S11
14
0.90
0.92
0.94
0.96
0.98
0.92
Frequency (GHz)
T=25°C
0.96
20
0.98
-40°C
+85°C
22
24
26
Output Power (dBm)
28
30
P1dB vs. Frequency vs. Temperature
T=25°C
52
W-CDMA 3GPP Test Model 1+64 DPCH
PAR = 10.2 dB @ 0.01% Probability
3.84 MHz BW
-40
0.94
Frequency (GHz)
OIP3 vs. Output Power/Tone vs. Frequency
ACPR vs. Output Average Power vs. Frequency
-35
+25°C
S22
35
-25
0.90
37
50
OIP3 (dBm)
ACPR (dBc)
-50
-55
P1dB (dBm)
36
-45
48
46
35
34
44
-60
920 MHz
940 MHz
960 MHz
920 MHz
-65
+25°C
960 MHz
16
17
18
19
20
21
22
Output Power (dBm)
23
24
25
24
Current vs Output Average Power vs. Frequency
26
27
28
Output Power (dBm)
29
30
T=25°C
8
1050
NF (dB)
950
6
5
900
920 MHz
940 MHz
25
26
27
28
Output Power (dBm)
29
30
950
960
15
10
5
920 MHz
4
0.90
+85°C
T=25°C
960 MHz
850
24
940
Frequency (MHz)
20
7
1000
930
-40°C
Efficiency vs Output Average Power vs. Frequency
Noise Figure vs. Frequency
T=25°C
1100
25
33
920
Collector Efficiency (%)
15
Collector Current (mA)
940 MHz
42
940 MHz
960 MHz
0
0.92
0.94
0.96
0.98
24
Frequency (GHz)
25
26
27
28
Output Power (dBm)
29
30
Specifications and information are subject to change without notice
TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 4 of 8 Aug 2009
AH420
4W High Linearity InGaP HBT Amplifier
1930-1990 MHz Reference Design (AH420-EPCB1960)
W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW
Typical W-CDMA Performance at 25°C
Frequency (MHz)
Channel Power
Power Gain
Input Return Loss
Output Return Loss
ACLR
P1dB
Output IP3
1930 1960 1990
+27 +27 +27
13.4 14.1 14.1
13
19
11
4.7
7
12
-49
-48
-47
+35.6 +35.6 +35.6
At 27dBm/tone, 1MHz spacing
Noise Figure
Quiescent Current, Icq
Vpd, Vcc
Units
dBm
dB
dB
dB
dBc
dBm
+49
+49
+49
dBm
5.6
5.3
800
+5
5.3
dB
mA
V
C7
C8
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd and Vcc or damage will occur to D1.
3.
Components shown on the silkscreen but not on the schematic are not used.
4.
Vpd used for device power down (low=RF off)
5.
The edge of C13 is placed at 75mil from AH420 RFout pin. (8.0 o @ 1960 MHz)
6.
The edge of C15 is placed 50mil from the edge of C13. (5.3 o @ 1960 MHz)
7. The edge of C16 is placed 345mil from the edge of C15. (37 o @ 1960 MHz)
8.
The edge of C14 is placed at 160mil from AH420 Rfin pin. (17.2 o @ 1960 MHz)
9.
The edge of C17 is placed 95mil from the edge of C14. (10.2 o @ 1960 MHz)
10. 0 Ω jumpers can be replaced with copper trace in target application.
FB1
R3
D1
C5
C3
C9
C10
R4
R2
C11
C4
L1
C6
C2
C14
C12
C16
C15
C13
R1
C17
C1
T=25°C
T=25°C
0
14
-40
12
ACLR (dBc)
13
-10
-15
-20
11
1.94
1.96
Frequency (GHz)
1.98
2.00
-25
1.92
Collector Current (mA)
-50
S22
1930 MHz
1960 MHz
1990 MHz
-60
1.94
1.96
Frequency (GHz)
1.98
2.00
24
25
26
27
Output Power (dBm)
28
29
Noise Figure vs. Frequency
Current vs Output Average Power vs. Frequency
T=25°C
T=25°C
1050
-45
-55
S11
10
1.92
T=25°C
-35
-5
S11, S22 (dB)
Gain (dB)
ACLR vs. Output Average Power vs. Frequency
Return Loss
Gain vs. Frequency
15
8
1000
NF (dB)
7
950
900
6
5
850
1930 MHz
1960 MHz
1990 MHz
800
24
25
26
27
Output Power (dBm)
28
29
4
1.90
1.92
1.94
1.96
1.98
2.00
Frequency (GHz)
Specifications and information are subject to change without notice
TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 5 of 8 Aug 2009
AH420
4W High Linearity InGaP HBT Amplifier
2010-2025 MHz Application Circuit Performance Plots
TD-SCDMA 3 Carrier, PAR = 10 dB @ 0.01% Probability, 1.28 MHz BW
Typical TD-SCDMA Performance at 25°C
Frequency (MHz) 2010 2015 2025 Units
Power Gain
14.9 15
14.8
dB
Input Return Loss
14
13
12
dB
Output Return Loss 11
12
13
dB
mA
Quiescent Current, Icq
800
V
Vpd
+5
V
Vcc
+5
C7
C8
FB1
R3
D1
C5
C3
C9
C10
R4
R2
C11
C4
L1
C6
C2
C14
C12
C16
C15
C13
R1
C17
C1
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Components shown on the silkscreen but not on the schematic are not used.
3.
The edge of C13 is placed at 75mil from AH420 RFout pin. (8.3 o @ 2015 MHz)
4.
The edge of C15 is placed 50mil from the edge of C13. (5.5 o @ 2015 MHz)
5. The edge of C16 is placed 345mil from the edge of C15. (38 o @ 2015 MHz)
6.
The edge of C14 is placed at 160mil from AH420 RFin pin. (17.6 o @ 2015 MHz)
7.
The edge of C17 is placed 95mil from the edge of C14. (10.5 o @ 2015 MHz)
Gain vs Frequency
T=25°C
S11, S22 (dB)
-5
14
13
12
-10
-15
-20
S21
11
2.00
2.01
2.02
Frequency (GHz)
2.03
S11
2.04
-25
2.00
15
10
5
2010 MHz
S22
2015 MHz
2025 MHz
0
2.01
2.02
Frequency (GHz)
2.03
Current vs Output Average Power vs. Frequency
2.04
20
21
22
23
24
25
Output Power (dBm)
26
27
28
ACLR vs. Output Average Power vs. Frequency
T=25°C
1000
T=25°C
20
Collector Efficiency (%)
0
15
Gain (dB)
Efficiency vs Output Average Power vs. Frequency
Return Loss
T=25°C
16
T=25°C
-40
-44
950
-46
ACLR (dBc)
Collector Current (mA)
-42
-48
900
-50
-52
-54
850
-56
2010 MHz
2015 MHz
-58
2025 MHz
800
2010 MHz
2015 MHz
2025 MHz
-60
20
21
22
23
24
25
26
Output Power (dBm)
27
28
19
20
21
22
23
Output Power (dBm)
24
25
Specifications and information are subject to change without notice
TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 6 of 8 Aug 2009
AH420
4W High Linearity InGaP HBT Amplifier
2110-2170 MHz Reference Design (AH420-EPCB2140)
W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW
Typical W-CDMA Performance at 25°C
Frequency (GHz)
Channel Power
Power Gain
Input Return Loss
Output Return Loss
ACLR
P1dB
Output IP3
2110 2140 2170 Units
+26 +26 +26 dBm
13.3
14
14
dB
14
12
10
dB
5
7.4
9
dB
-50
-49
-50
dBc
+35.8 +35.7 +35.2 dBm
At 27dBm/tone, 1MHz spacing
+49
+50
+50
dBm
5.8
5.6
800
+5
5.5
dB
mA
V
Noise Figure
Quiescent Current, Icq
Vpd, Vcc
C7
C8
FB1
R3
D1
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd and Vcc or damage will occur to D1.
3.
Components shown on the silkscreen but not on the schematic are not used.
4.
Vpd used for device power down (low=RF off)
5.
The edge of C13 is placed at 65mil from AH420 RFout pin. (7.6 o @ 2140 MHz)
6.
The edge of C15 is placed 60mil from the edge of C13. (7.0 o @ 2140 MHz)
7. The edge of C16 is placed 340mil from the edge of C15. (39.9 o @ 2140 MHz)
8. The edge of C14 is placed at 155mil from AH420 RFin pin. (18.2 o @ 2140 MHz)
9.
The edge of C17 is placed 205mil from the edge of C14. (24.0 o @ 2140 MHz)
10. 0 Ω jumpers can be replaced with copper trace in target application.
C5
C3
R4
R2
C20
C21
C22
C6
L1
C4
C2
C15
C16
C14
C13
R1
C17
C1
C12
T=25°C
T=25°C
0
14
-40
12
11
ACLR (dBc)
13
-10
-15
S11
2.12
2.14
2.16
2.18
-25
2.10
2.20
ACLR vs. Output Average Power vs. Temperature
2.12
2.14
2.16
Frequency (GHz)
2.18
-50
-55
2.20
50
50
45
25
26
Output Power (dBm)
P1dB vs. Frequency vs. Temperature
2110 MHz
2170 MHz
+25°C
24
26
28
Output Power / tone (dBm)
30
20
Collector Current (mA)
35
+25°C
-40°C
2.14
2.16
Frequency (GHz)
NF (dB)
900
28
30
2.18
2.20
T=25°C
6
5
2110 MHz
2.20
24
26
Output Power (dBm)
850
+85°C
2.18
+85°C
7
950
2140 MHz
2170 MHz
800
2.12
22
8
1000
36
-40°C
Noise Figure vs. Frequency
T=25°C
1050
37
34
2.10
22
Current vs Output Average Power vs. Frequency
38
29
35
20
28
28
40
+85°C
27
2170 MHz
45
35
24
2140 MHz
26
27
Output Power (dBm)
f=2140 MHz
55
2140 MHz
-65
25
OIP3 vs. Output Power/Tone vs. Temperature
55
40
-60
23
24
OIP3 (dBm)
OIP3 (dBm)
ACLR (dBc)
-45
P1dB (dBm)
2110 MHz
S22
OIP3 vs. Output Power / tone vs. Frequency
-40
-40°C
-50
-60
Frequency (GHz)
+25°C
-45
-55
-20
10
2.10
T=25°C
-35
-5
S11, S22 (dB)
Gain (dB)
ACLR vs. Output Average Power vs. Frequency
Return Loss
Gain vs. Frequency
15
24
25
26
27
Output Power (dBm)
28
29
4
2.10
2.12
2.14
2.16
Frequency (GHz)
Specifications and information are subject to change without notice
TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 7 of 8 Aug 2009
AH420
4W High Linearity InGaP HBT Amplifier
Mechanical Information
This package is lead-free/green/RoHS-compliant. The plating material on the backside metallization is Matte Tin. It is compatible with both
lead-free (maximum 260 °C reflow temperature) and lead (maximum 245 °C reflow temperature) soldering processes.
Outline Drawing
Product Marking
The AH420 will be marked with an “AH420G”
designator with a lot code marked below the
part designator. The “Y” represents the last
digit of the year the part was manufactured, the
“XXX” is an auto-generated number, and “Z”
refers to a wafer number in a lot batch.
AH420G
YXXX-Z
Tape and reel specifications for this part are
located on the website in the “Application
Notes” section.
ESD / MSL Information
Mounting Configuration / Land Pattern
ESD Rating:
Value:
Test:
Standard:
Class 1A
Passes 250V to <500V
Human Body Model (HBM)
JEDEC Standard JESD22-A114
ESD Rating:
Value:
Test:
Standard:
Class IV
Passes ≥ 1000V min.
Charged Device Model (CDM)
JEDEC Standard JESD22-C101
MSL Rating: Level 3 at +260 °C convection reflow
Standard:
JEDEC Standard J-STD-020
Functional Pin Layout
Notes:
1. A heatsink underneath the area of the PCB for the mounted device is recommended for proper thermal
operation. Damage to the device can occur without the use of one.
2. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80
/ .0135”) diameter drill and have a final plated thru diameter of .25 mm (.010”).
3. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal
performance.
4. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground /
thermal via region contacts the heatsink.
5. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
6. RF trace width depends upon the PC board material and construction.
7. Use 1 oz. Copper minimum.
8. All dimensions are in millimeters
Pin
1
2, 11
3, 4, 5, 6
7, 8, 9, 10
12
Function
VBIAS
No Connect
RF Input
VCC / RF Output
IREF
Specifications and information are subject to change without notice
TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 8 of 8 Aug 2009