POWEREX CM1000DUC-34SA

CM1000DUC-34SA
Mega Power Dual IGBT
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272
www.pwrx.com
1000 Amperes/1700 Volts
A
D
P
(8 PLACES)
U
N
G
H H
L
S
C2E1
C2
C1
G2
E1
E2
G1
W
X J
K
F
BB
Y C B
Z
CC
F
J
E2
C1
U
V
H H H H H H
G
G
C2E1
G2
Di2
E2 (Es2)
E2
Tr1
T
E1 (Es1)
Di1
C1
L
R (9 PLACES)
C1 (Cs1)
Tr2
AA
M
LABEL
C2 (Cs2)
E
Tolerance Otherwise Specified (mm)
Division of Dimension Tolerance
0.5 to 3
±0.2
over
3 to 6
±0.3
over
6 to 30
±0.5
over 30 to 120
±0.8
over 120 to 400
±1.2
G1
Outline Drawing and Circuit Diagram
Dimensions
Inches
A
5.91
Millimeters
Dimensions
Inches
Millimeters
150.0
M
0.075±0.008
1.9±0.2
B
5.10
129.5
N
0.47
12.0
C
1.67±0.01
42.5±0.25
P
0.26
6.5
D
5.41±0.01
137.5±0.25
R
M6 Metric
M6
E
6.54
166.0
S
0.08
2.0
F
2.91±0.01
74.0±0.25
T
0.99
25.1
G
1.65
42.0
U
0.62
15.7
Description:
Powerex Mega Power Dual (MPD)
Modules are designed for use in
switching applications. Each
module consists of two IGBT
Transistors having a reverseconnected super-fast recovery
free-wheel diode. All components
and interconnects are isolated
from the heat sinking baseplate,
offering simplified system assembly
and thermal management.
Features:
£ Low Drive Power
£ Low VCE(sat)
£ Discrete Super-Fast Recovery
Free-Wheel Diode
£ Isolated Baseplate for Easy
Heatsinking
£ RoHS Compliant
Applications:
£ High Power DC Power Supply
£ Large DC Motor Drives
£ Utility Interface Inverters
Ordering Information:
Example: Select the complete
module number you desire from
the table - i.e. CM1000DUC-34SA
is a 1700V (VCES), 1000 Ampere
Dual IGBTMOD Power
Module.
H
0.55
14.0
V
0.71
18.0
J
1.50±0.01
38.0±0.25
W
0.75
19.0
0.16
4.0
X
0.43
11.0
Y
0.83
21.0
Z
0.41
10.5
Type
Current Rating
Amperes
VCES
Volts (x 50)
AA
0.22
5.5
CM
1000
34
K
L
1.36 +0.04/-0.02 34.6 +1.0/-0.5
Housing Type (J.S.T. MFG. CO. LTD)
BB = VHR-2N
CC = VHR-5N
03/13 Rev. 3
1
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com
CM1000DUC-34SA
Mega Power Dual IGBT
1000 Amperes/1700 Volts
Absolute Maximum Ratings, Tj = 25°C unless otherwise specified
Characteristics
SymbolRatingUnits
Collector-Emitter Voltage (VGE = 0V)
VCES 1700Volts
Gate-Emitter Voltage (VCE = 0V)
VGES ±20Volts
Collector Current (DC, TC = 125°C)*2,*4IC
Collector Current (Pulse,
Repetitive)*3I
1000Amperes
CRM
2000Amperes
Total Power Dissipation (TC = 25°C)*2,*4Ptot 10,000Watts
Emitter Current*2 Emitter Current (Pulse, Repetitive)*3 Isolation Voltage (Terminals to Baseplate, RMS, f = 60Hz, AC 1 minute)
1000Amperes
IERM*1
2000Amperes
Visol 4000Volts
Maximum Junction Temperature
Tj(max)175 °C
TC (max)125 °C
°C
Tstg
-40 to +125
°C
111.8
-40 to +150
98.9
0
Storage Temperature
Tj(op)
51.0
Operating Junction Temperature
38.2
Maximum Case Temperature
*1 Represent ratings and characteristics of the anti-parallel, emitter-to-collector clamp diode.
*2 Junction temperature (Tj) should not increase beyond maximum junction
temperature (Tj(max)) rating.
*3 Pulse width and repetition rate should be such that device junction temperature (Tj)
does not exceed Tj(max) rating.
*4 Case temperature (TC) and heatsink temperature (Ts) is measured on the surface
(mounting side) of the baseplate and the heatsink side just under the chips.
Refer to the figure to the right for chip location.
The heatsink thermal resistance should be measured just under the chips.
IE*1
119.3
Tr2 Di2
Di1 Tr1
106.2
Tr2 Di2
Di1 Tr1
93.2
Tr2 Di2
Di1 Tr1
77.8
Tr2 Di2
Di1 Tr1
64.7
Tr2 Di2
Di1 Tr1
51.7
Tr2 Di2
Di1 Tr1
36.3
Tr2 Di2
Di1 Tr1
23.2
Tr2 Di2
Di1 Tr1
10.2
Tr2 Di2
Di1 Tr1
0
LABEL SIDE
Tr1, Tr2: IGBT, Di1, Di2: FWDi
Each mark points to the center position of each chip.
2
03/13 Rev. 3
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com
CM1000DUC-34SA
Mega Power Dual IGBT
1000 Amperes/1700 Volts
Electrical Characteristics, Tj = 25°C unless otherwise specified
Characteristics
Collector-Emitter Cutoff Current
Symbol
ICES
Test Conditions
VCE = VCES, VGE = 0V
Min.
Typ.
Max.
Units
—
—
1.0
mA
Gate-Emitter Leakage Current
IGES
VGE = VGES, VCE = 0V
—
—
10
µA
Gate-Emitter Threshold Voltage
VGE(th)
IC = 100mA, VCE = 10V
5.4
6.0
6.6
Volts
Collector-Emitter Saturation Voltage
VCE(sat)
IC = 1000A, VGE = 15V, Tj = 25°C*5
—
1.9
2.4
Volts
(Terminal = Chip) IC = 1000A, VGE = 15V, Tj = 125°C*5
—
2.1
—
Volts
IC = 1000A, VGE = 15V, Tj =
Input Capacitance
Cies
Output Capacitance
Coes
Reverse Transfer Capacitance
Cres
Gate Charge
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
Emitter-Collector Voltage
QG
150°C*5
VCE = 10V, VGE = 0V
VCC = 1000V, IC = 1000A, VGE = 15V
td(on)
—
2.15
—
Volts
—
—
260
nF
—
—
27
nF
—
—
5
nF
—
4700
—
nC
—
—
900
ns
tr
VCC = 1000V, IC = 1000A, VGE = ±15V,
—
—
350
ns
td(off)
RG = 2.0Ω, Inductive Load
—
—
1250
ns
—
—
400
ns
IE = 1000A, VGE = 0V, Tj = 25°C*5
—
4.0
5.2
Volts
(Terminal = Chip) IE = 1000A, VGE = 0V, Tj = 125°C*5
—
2.8
—
Volts
IE = 1000A, VGE = 0V, Tj = 150°C*5
—
2.6
—
Volts
tf
VEC*1
*1
VCC = 1000V, IE = 900A, VGE = ±15V
—
—
400
ns
RG = 2.0Ω, Inductive Load
—
270
—
µC
Reverse Recovery Time
trr
Reverse Recovery Charge
Qrr*1
Turn-on Switching Energy per Pulse
Eon
VCC = 1000V, IC = IE = 1000A,
—
239
—
mJ
Turn-off Switching Energy per Pulse
Eoff
VGE = ±15V, RG = 2.0Ω, Tj = 150°C,
—
269
—
mJ
Reverse Recovery Energy per Pulse
Err*1
Inductive Load
—
130
—
mJ
RCC' + EE'
Main Terminals-Chip,
—
0.286
—
mΩ
—
0.56
—
Ω
Internal Lead Resistance
Per Switch,TC = 25°C*4
111.8
98.9
51.0
*1 Represent ratings and characteristics of the anti-parallel, emitter-to-collector clamp diode.
*4 Case temperature (TC) and heatsink temperature (Ts) is measured on the surface
(mounting side) of the baseplate and the heatsink side just under the chips.
Refer to the figure to the right for chip location.
The heatsink thermal resistance should be measured just under the chips.
*5 Pulse width and repetition rate should be such as to cause negligible temperature rise.
Per Switch
38.2
rg
0
Internal Gate Resistance
119.3
Tr2 Di2
Di1 Tr1
106.2
Tr2 Di2
Di1 Tr1
93.2
Tr2 Di2
Di1 Tr1
77.8
Tr2 Di2
Di1 Tr1
64.7
Tr2 Di2
Di1 Tr1
51.7
Tr2 Di2
Di1 Tr1
36.3
Tr2 Di2
Di1 Tr1
23.2
Tr2 Di2
Di1 Tr1
10.2
Tr2 Di2
Di1 Tr1
0
LABEL SIDE
Tr1, Tr2: IGBT, Di1, Di2: FWDi
Each mark points to the center position of each chip.
03/13 Rev. 3
3
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com
CM1000DUC-34SA
Mega Power Dual IGBT
1000 Amperes/1700 Volts
Electrical Characteristics, Tj = 25°C unless otherwise specified (continued)
Thermal Resistance Characteristics
Thermal Resistance, Junction to Case*4
Rth(j-c)Q
Per IGBT
—
—
15
K/kW
Thermal Resistance, Junction to Case*4
Rth(j-c)D
Per Diode
—
—
24
K/kW
Rth(c-f)
Thermal Grease Applied
—
6
—
K/kW
Case to Heatsink
(Per 1 Module)*6
Contact Thermal Resistance,
Mechanical Characteristics
Mounting Torque
Creepage Distance
Mt
Main Terminals, M6 Screw
22
27
31
in-lb
Ms
Mounting to Heatsink, M6 Screw
22
27
31
in-lb
Terminal to Terminal
24
—
—
mm
Terminal to Baseplate
33
—
—
mm
ds
Clearance
da
Weight
m
Flatness of Baseplate
ec
Terminal to Terminal
14
—
—
mm
Terminal to Baseplate
33
—
—
mm
—
1450
—
Grams
On Centerline X, Y*7
-50
—
+100
µm
Recommended Operating Conditons, Ta = 25°C
1200
Volts
15.0
16.5
Volts
External Gate Resistance
RG
Per Switch
2.0
—
6.0
Ω
*4 Case temperature (TC) and heatsink temperature (Ts) is measured on the surface
(mounting side) of the baseplate and the heatsink side just under the chips.
Refer to the figure to the right for chip location.
The heatsink thermal resistance should be measured just under the chips.
*6 Typical value is measured by using thermally conductive grease of λ = 0.9 [W/(m • K)].
*7 Baseplate (mounting side) flatness measurement points (X, Y) are shown in the figure below.
– CONCAVE
+ CONVEX
39 mm
39 mm
Y1
Y2
X
BOTTOM
BOTTOM
– CONCAVE
111.8
1000
13.5
98.9
—
Applied Across G1-Es1/G2-Es2
51.0
Applied Across C1-E2
VGE(on)
38.2
VCC
Gate-Emitter Drive Voltage
0
(DC) Supply Voltage
119.3
Tr2 Di2
Di1 Tr1
106.2
Tr2 Di2
Di1 Tr1
93.2
Tr2 Di2
Di1 Tr1
77.8
Tr2 Di2
Di1 Tr1
64.7
Tr2 Di2
Di1 Tr1
51.7
Tr2 Di2
Di1 Tr1
36.3
Tr2 Di2
Di1 Tr1
23.2
Tr2 Di2
Di1 Tr1
10.2
Tr2 Di2
Di1 Tr1
0
LABEL SIDE
BOTTOM
+ CONVEX
LABEL SIDE
Tr1, Tr2: IGBT, Di1, Di2: FWDi
Each mark points to the center position of each chip.
4
03/13 Rev. 3
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com
CM1000DUC-34SA
Mega Power Dual IGBT
1000 Amperes/1700 Volts
COLLECTOR-EMITTER
SATURATION VOLTAGE CHARACTERISTICS
(CHIP - TYPICAL)
OUTPUT CHARACTERISTICS
(CHIP - TYPICAL)
4.5
1500
12
1000
11
10
500
9
0
2
4
6
8
2.5
2.0
1.5
1.0
0.5
1000
1500
IC = 1000A
4
2
0
2000
IC = 600A
6
8
10
12
14
16
18
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(CHIP - TYPICAL)
CAPACITANCE VS. VCE
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VGE = 15V
Tj = 25°C
Tj = 125°C
Tj = 150°C
0
1
2
3
4
5
Cies
101
Coes
Cres
100
VGE = 0V
Tj = 25°C
10-1
10-1
6
td(off)
102
SWITCHING TIME, (ns)
102
100
101
103
tf
td(on)
102
tr
101
VCC = 1000V
VGE = ±15V
RG = 2.0Ω
Tj = 125°C
Inductive Load
100
101
102
102
103
EMITTER-COLLECTOR VOLTAGE, VEC, (VOLTS)
COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS)
COLLECTOR CURRENT, IC, (AMPERES)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
SWITCHING TIME VS.
GATE RESISTANCE
(TYPICAL)
SWITCHING TIME VS.
GATE RESISTANCE
(TYPICAL)
104
td(off)
103
SWITCHING TIME, (ns)
tf
td(on)
102
tr
VCC = 1000V
VGE = ±15V
RG = 2.0Ω
Tj = 150°C
Inductive Load
100
101
104
VCC = 1000V
VGE = ±15V
IC = 1000A
Tj = 125°C
Inductive Load
td(off)
td(on)
102
tf
VCC = 1000V
VGE = ±15V
IC = 1000A
Tj = 150°C
Inductive Load
102
103
101
10-1
td(off)
103
td(on)
tf
tr
tr
COLLECTOR CURRENT, IC, (AMPERES)
03/13 Rev. 3
103
20
104
103
104
SWITCHING TIME, (ns)
500
IC = 2000A
6
GATE-EMITTER VOLTAGE, VGE, (VOLTS)
103
101
0
8
COLLECTOR CURRENT, IC, (AMPERES)
CAPACITANCE, Cies, Coes, Cres, (nF)
EMITTER CURRENT, IE, (AMPERES)
3.0
Tj = 25°C
COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS)
104
101
3.5
0
10
10
VGE = 15V
Tj = 25°C
Tj = 125°C
Tj = 150°C
4.0
SWITCHING TIME, (ns)
COLLECTOR CURRENT, IC, (AMPERES)
15
13.5
COLLECTOR-EMITTER
SATURATION VOLTAGE, VCE(sat), (VOLTS)
Tj = 25°C
VGE = 20V
COLLECTOR-EMITTER
SATURATION VOLTAGE, VCE(sat), (VOLTS)
2000
0
COLLECTOR-EMITTER
SATURATION VOLTAGE CHARACTERISTICS
(CHIP - TYPICAL)
100
EXTERNAL GATE RESISTANCE, RG, (Ω)
101
102
100
101
EXTERNAL GATE RESISTANCE, RG, (Ω)
5
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com
CM1000DUC-34SA
Mega Power Dual IGBT
1000 Amperes/1700 Volts
VCC = 1000V
VGE = ±15V
RG = 2.0Ω
Tj = 125°C
Inductive Load
Irr
trr
101
101
102
VCC = 1000V
VGE = ±15V
RG = 2.0Ω
Tj = 150°C
Inductive Load
Irr
trr
101
101
103
102
4000
6000
HALF-BRIDGE SWITCHING
CHARACTERISTICS (TYPICAL)
HALF-BRIDGE SWITCHING
CHARACTERISTICS (TYPICAL)
103
102
103
Eon
Eoff
Err
101
101
102
100
10-1
102
10-2
Eon
Eoff
Err
GATE RESISTANCE, RG, (Ω)
103
101
10-3
10-3
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(MAXIMUM)
10-2
10-1
100
8000
VCC = 1000V
VGE = ±15V
IC/IE = 1000A
Tj = 125°C
102
101
10-1
Eon
Eoff
Err
100
101
GATE RESISTANCE, RG, (Ω)
COLLECTOR CURRENT, IC, (AMPERES)
EMITTER CURRENT, IE, (AMPERES)
VCC = 1000V
VGE = ±15V
IC/IE = 1000A
Tj = 150°C
100
103
VCC = 1000V
VGE = ±15V
RG = 2.0Ω
Tj = 150°C
102
NORMALIZED TRANSIENT THERMAL IMPEDANCE, Zth(j-c')
Zth = Rth • (NORMALIZED VALUE)
SWITCHING ENERGY, Eon, Eoff, (mJ)
REVERSE RECIVERY ENERGY, Err, (mJ)
2000
0
HALF-BRIDGE SWITCHING
CHARACTERISTICS (TYPICAL)
COLLECTOR CURRENT, IC, (AMPERES)
EMITTER CURRENT, IE, (AMPERES)
6
5
GATE CHARGE, QG, (nC)
Eon
Eoff
Err
101
10-1
10
EMITTER CURRENT, IE, (AMPERES)
101
101
103
15
0
103
IC = 1000A
VCC = 1000V
Tj = 25°C
EMITTER CURRENT, IE, (AMPERES)
VCC = 1000V
VGE = ±15V
RG = 2.0Ω
Tj = 125°C
102
102
GATE CHARGE VS. VGE
20
SWITCHING ENERGY, Eon, Eoff, (mJ)
REVERSE RECIVERY ENERGY, Err, (mJ)
SWITCHING ENERGY, Eon, Eoff, (mJ)
REVERSE RECIVERY ENERGY, Err, (mJ)
103
REVERSE RECOVERY, Irr (A), trr (ns)
102
103
SWITCHING ENERGY, Eon, Eoff, (mJ)
REVERSE RECIVERY ENERGY, Err, (mJ)
REVERSE RECOVERY, Irr (A), trr (ns)
103
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
GATE-EMITTER VOLTAGE, VGE, (VOLTS)
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
101
10-1
Single Pulse
TC = 25°C
Per Unit Base =
Rth(j-c) =
15 K/kW
(IGBT)
Rth(j-c) =
24 K/kW
(FWDi)
10-2
10-5
10-4
10-3
10-3
TIME, (s)
03/13 Rev. 3