IRF IRG4PF50W

PD - 91710
IRG4PF50W
INSULATED GATE BIPOLAR TRANSISTOR
Features
C
• Optimized for use in Welding and Switch-Mode
Power Supply applications
• Industry benchmark switching losses improve
efficiency of all power supply topologies
• 50% reduction of Eoff parameter
• Low IGBT conduction losses
• Latest technology IGBT design offers tighter
parameter distribution coupled with exceptional
reliability
VCES = 900V
VCE(on) typ. = 2.25V
G
@VGE = 15V, IC = 28A
E
n-channel
Benefits
• Lower switching losses allow more cost-effective
operation and hence efficient replacement of largerdie MOSFETs up to 100kHz
• Of particular benefit in single-ended converters and
Power Supplies 150W and higher
• Reduction in critical Eoff parameter due to minimal
minority-carrier recombination coupled with low onstate losses allow maximum flexibility in device
application
TO-247AC
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current ➀
Clamped Inductive Load Current ➁
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ➂
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
900
51
28
204
204
± 20
186
200
78
-55 to + 150
V
A
V
mJ
W
°C
300 (0.063 in. (1.6mm from case )
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
0.24
–––
6 (0.21)
0.64
–––
40
–––
Units
°C/W
g (oz)
1
4/15/98
IRG4PF50W
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
900 –––
Emitter-to-Collector Breakdown Voltage ➃ 18 –––
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ––– 0.295
––– 2.25
VCE(ON)
Collector-to-Emitter Saturation Voltage
––– 2.74
––– 2.12
VGE(th)
Gate Threshold Voltage
3.0 –––
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ––– -13
gfe
Forward Transconductance ➄
26
39
–––
–––
ICES
Zero Gate Voltage Collector Current
––– –––
––– –––
IGES
Gate-to-Emitter Leakage Current
––– –––
V(BR)CES
V(BR)ECS
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
–––
V
VGE = 0V, IC = 1.0A
––– V/°C VGE = 0V, IC = 3.5mA
2.7
IC = 28A
VGE = 15V
–––
IC = 60A
See Fig.2, 5
V
–––
IC = 28A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 1.0mA
–––
S
VCE ≥ 15V, IC = 28A
500
VGE = 0V, VCE = 900V
µA
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
5.0
mA VGE = 0V, VCE = 900V, TJ = 150°C
±100
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
160
19
53
29
26
110
150
0.19
1.06
1.25
28
26
280
90
3.45
13
3300
200
45
Max. Units
Conditions
240
IC = 28A
29
nC VCC = 400V
See Fig. 8
80
VGE = 15V
–––
–––
TJ = 25°C
ns
170
IC = 28A, VCC = 720V
220
VGE = 15V, RG = 5.0Ω
–––
Energy losses include "tail"
–––
mJ See Fig. 10, 11, 13, 14
1.7
–––
TJ = 150°C,
–––
IC = 28A, VCC = 720V
ns
–––
VGE = 15V, RG = 5.0Ω
–––
Energy losses include "tail"
–––
mJ See Fig. 13, 14
–––
nH Measured 5mm from package
–––
VGE = 0V
–––
pF
VCC = 30V
See Fig. 7
–––
ƒ = 1.0MHz
Notes:
 Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0Ω,
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
… Pulse width 5.0µs, single shot.
(See fig. 13a)
ƒ Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4PF50W
60
For both:
50
Load Current ( A )
Triangular wave:
Duty cycle: 50%
TJ = 125˚C
Tsink= 90˚C
Gate drive as specified
Power Dissipation = 40W
Clamp voltage:
80% of rated
40
Square wave:
30
60% of rated
voltage
20
10
Ideal diodes
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
I C , Collector-to-Emitter Current (A)
TJ = 25 °C
I C , Collector-to-Emitter Current (A)
1000
1000
100
100
TJ = 150 °C
10
V GE = 15V
20µs PULSE WIDTH
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
TJ = 150 °C
TJ = 25 °C
10
V CC = 50V
5µs PULSE WIDTH
1
5
6
7
8
9
10
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PF50W
3.0
V CE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
60
50
40
30
20
10
0
25
50
75
100
125
150
VGE = 15V
80 us PULSE WIDTH
IC = 56 A
2.5
IC = 28 A
2.0
IC = 14 A
1.5
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
1
Thermal Response (Z thJC)
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PF50W
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
5000
Cies
4000
3000
2000
Coes
1000
Cres
20
VGE , Gate-to-Emitter Voltage (V)
6000
16
12
8
4
0
0
1
10
0
100
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
4.0
100
Total Switching Losses (mJ)
3.0
2.0
1.0
10
20
30
40
50
RG , Gate Resistance ( Ω )
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
80
120
160
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 720V
V GE = 15V
TJ = 25 ° C
I C = 28A
0
40
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
VCC = 400V
I C = 28A
60
5.0 Ω
RG = Ohm
VGE = 15V
VCC = 720V
IC = 56 A
10
IC = 28 A
IC = 14 A
1
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PF50W
Total Switching Losses (mJ)
RG
TJ
VCC
10
VGE
1000
5.0Ω
= Ohm
= 150 ° C
= 720V
= 15V
I C , Collector Current (A)
12
8
6
4
VGE = 20V
T J = 125 oC
100
10
2
SAFE OPERATING AREA
0
0
10
20
30
40
50
I C , Collector Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
60
1
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4PF50W
L
D .U .T.
VC *
50V
RL =
0 - 720V
1 00 0V
720V
4 X [email protected]°C
480µF
960V

‚
* Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax )
* Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor
w ill inc rea se to obta in ra ted Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
D river*
D .U .T.
VC
Fig. 14a - Switching Loss
Test Circuit
50V
1000V
* Driver same type
as D.U.T., VC = 720V

‚
ƒ

‚
9 0%
1 0%
ƒ
VC
90 %
Fig. 14b - Switching Loss
t d (o ff)
10 %
IC 5%
Waveforms
tf
tr
t d (o n )
t=5µ s
E on
E o ff
E ts = ( Eo n +E o ff )
www.irf.com
7
IRG4PF50W
Case Outline and Dimensions — TO-247AC
3 .6 5 (.1 4 3 )
3 .5 5 (.1 4 0 )
0 .2 5 (.0 1 0 ) M D B M
1 5 .9 0 (.6 2 6 )
1 5 .3 0 (.6 0 2 )
-B-
-A5 .5 0 (.2 1 7)
2 0 .3 0 (.8 0 0 )
1 9 .7 0 (.7 7 5 )
2X
1
2
-D-
5 .3 0 ( .2 0 9 )
4 .7 0 ( .1 8 5 )
2 .5 0 (.0 8 9 )
1 .5 0 (.0 5 9 )
4
5 .5 0 (.2 17 )
4 .5 0 (.1 77 )
LEAD
1234-
3
-C-
*
1 4 .8 0 (.5 8 3 )
1 4 .2 0 (.5 5 9 )
2 .4 0 ( .0 9 4 )
2 .0 0 ( .0 7 9 )
2X
5 .4 5 (.2 1 5 )
2X
4 .3 0 (.1 7 0 )
3 .7 0 (.1 4 5 )
3X
1 .4 0 (.0 5 6 )
1 .0 0 (.0 3 9 )
0 .2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 )
3 .0 0 (.1 1 8 )
N O TE S :
1 D IM E N S IO N S & T O L E R A N C IN G
P E R A N S I Y 14 .5 M , 1 9 8 2 .
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 D IM E N S IO N S A R E S H O W N
M ILL IM E T E R S (IN C H E S ).
4 C O N F O R M S T O JE D E C O U T L IN E
T O -2 4 7 A C .
*
A S S IG N M E N T S
GATE
COLLE CTO R
E M IT T E R
COLLE CTO R
L O N G E R L E A D E D (2 0m m )
V E R S IO N A V A IL A B LE (T O -24 7 A D )
T O O R D E R A D D "-E " S U F F IX
T O P A R T N U M B ER
0 .8 0 (.0 3 1 )
0 .4 0 (.0 1 6 )
2 .6 0 ( .1 0 2 )
2 .2 0 ( .0 8 7 )
3X
C A S
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)
D im e n s ion s in M illim e te rs a n d (In c h es )
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: 171 (K&H Bldg.) 30-4 Nishi-ikebukuro 3-chome, Toshima-ku, Tokyo Japan Tel: 81 33 983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 16907 Tel: 65 221 8371
Data and specifications subject to change without notice.
4/98
8
www.irf.com