RENESAS HA1630S01LP

HA1630S01/02/03 Series
Ultra-Small Low Voltage Operation CMOS Single Operational
Amplifier
REJ03D0798-0100
Rev.1.00
Mar 10, 2006
Description
The HA1630S01/02/03 are single CMOS Operational Amplifiers realizing low voltage operation, low input offset
voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can achieve full
swing output voltage capability extending to either supply. Available in an ultra-small CMPAK-5 package that
occupies only 1/8 the area of the SOP-8 package.
Features
• Low power and single supply operation
• Low input offset voltage
• Low supply current
• Maximum output voltage
• Low input bias current
VDD = 1.8 to 5.5 V
VIO = 4.0 mV Max
IDD = 15 µA Typ (HA1630S01)
IDD = 50 µA Typ (HA1630S02)
IDD = 100 µA Typ (HA1630S03)
VOH = 2.9 V Min (at VDD = 3.0 V)
IIB = 1 pA Typ
Ordering Information
Type No.
Package Name
Package Code
HA1630S01CM
HA1630S01LP
CMPAK-5
MPAK-5
PTSP0005ZC-A
PLSP0005ZB-A
HA1630S02CM
HA1630S02LP
CMPAK-5
MPAK-5
PTSP0005ZC-A
PLSP0005ZB-A
HA1630S03CM
HA1630S03LP
CMPAK-5
MPAK-5
PTSP0005ZC-A
PLSP0005ZB-A
Rev.1.00 Mar 10, 2006 page 1 of 23
HA1630S01/02/03 Series
Pin Arrangement
VDD
5
VOUT
4
+ −
1
2
3
VIN(+) VSS VIN(–)
Equivalent Circuit
VDD
VIN(–)
VIN(+)
VSS
Rev.1.00 Mar 10, 2006 page 2 of 23
VOUT
HA1630S01/02/03 Series
Absolute Maximum Ratings
(Ta = 25°C)
Items
Supply voltage
Symbol
Ratings
7
Unit
V
VDD
Differential input voltage
Input voltage
VIN(diff)
VIN
–VDD to +VDD
–0.3 to +VDD
V
V
Power dissipation
Operating temp. Range
PT
Topr
200
–40 to +85
mW
°C
Storage temp. Range
Tstg
–55 to +125
Note: 1. Do not apply Input Voltage exceeding VDD or 7 V.
°C
Note
1
Electrical Characteristics
(VDD = 3.0 V, Ta = 25°C)
Min
Typ
Max
Unit
Input offset voltage
Input offset current
Items
VIO
IIO
—
—
—
(1.0)
4.0
—
mV
pA
Vin = 1.5 V
Vin = 1.5 V
Input bias current
Output high voltage
IIB
VOH
—
2.9
(1.0)
—
—
—
pA
V
Vin = 1.5 V
RL = 1 MΩ
Output source current
IO SOURCE
6
25
12
50
—
—
µA
VOH = 2.5 V (HA1630S01)
VOH = 2.5 V (HA1630S02)
Output low voltage
VOL
50
—
100
—
—
0.1
Output sink current
IO SINK
—
—
(0.8)
(1.0)
—
—
Common mode input voltage
range
VCM
—
–0.1 to 2.1
(1.2)
—
—
—
Slew rate
SR
—
—
(0.125)
(0.50)
—
—
Voltage gain
AV
—
60
(1.00)
100
—
—
Gain bandwidth product
BW
—
—
(200)
(680)
—
—
Power supply rejection ratio
PSRR
—
60
(1200)
80
—
—
dB
Common mode rejection ratio
Supply current
CMRR
IDD
60
—
80
15
—
30
dB
µA
—
—
50
100
100
200
Note:
Symbol
1. ( ) : Design specification
Rev.1.00 Mar 10, 2006 page 3 of 23
V
mA
Test Condition
VOH = 2.5 V (HA1630S03)
RL = 1 MΩ
VOL = 0.5 V (HA1630S01)
VOL = 0.5 V (HA1630S02)
VOL = 0.5 V (HA1630S03)
V
V/µs
CL = 20 pF (HA1630S01)
CL = 20 pF (HA1630S02)
CL = 20 pF (HA1630S03)
dB
kHz
CL = 20 pF (HA1630S01)
CL = 20 pF (HA1630S02)
CL = 20 pF (HA1630S03)
RL = ∞ (HA1630S01)
RL = ∞ (HA1630S02)
RL = ∞ (HA1630S03)
HA1630S01/02/03 Series
Table of Graphs
Electrical Characteristics
HA1630S01
Figure
HA1630S02
Figure
HA1630S03
Figure
Test
Circuit
Supply current
IDD
vs Supply voltage
vs Ambient temperature
1-1
1-2
2-1
2-2
3-1
3-2
2
Output high voltage
VOH
vs Output source current
vs Supply voltage
1-3
1-4
2-3
2-4
3-3
3-4
4
Output source current
Output low voltage
IO SOURCE
VOL
vs Ambient temperature
vs Output sink current
1-5
1-6
2-5
2-6
3-5
3-6
6
5
Output sink current
Input offset voltage
IO SINK
VIO
vs Ambient temperature
Distribution
1-7
1-8
2-7
2-8
3-7
3-8
6
1
vs Supply voltage
vs Ambient temperature
1-9
1-10
2-9
2-10
3-9
3-10
Common mode input
voltage range
Power supply rejection
ratio
VCM
vs Ambient temperature
1-11
2-11
3-11
7
PSRR
vs Frequency
1-12
2-12
3-12
1
Common mode rejection
ratio
Voltage gain & phase
angle
CMRR
vs Frequency
1-13
2-13
3-13
7
AV
vs Frequency
1-14
2-14
3-14
10
Input bias current
IIB
vs Ambient temperature
vs Input voltage
1-15
1-16
2-15
2-16
3-15
3-16
3
Slew Rate (rising)
Slew Rate (falling)
SRr
SRf
vs Ambient temperature
vs Ambient temperature
1-17
1-18
2-17
2-18
3-17
3-18
9
Large signal transient
response
Small signal transient
response
1-19
2-19
3-19
1-20
2-20
3-20
vs. Output voltage p-p
vs. Output voltage p-p
—
—
2-21
2-22
3-21
3-22
vs Frequency
1-21
2-23
3-23
vs Frequency
1-22
2-24
3-24
Slew rate
Total harmonic distortion +
noise
(0 dB)
(40 dB)
Maximum p-p output
voltage
Voltage noise density
Rev.1.00 Mar 10, 2006 page 4 of 23
8
HA1630S01/02/03 Series
Main Characteristics (HA1630S01)
Figure 1-1. HA1630S01
Supply Current vs. Supply Voltage
Figure 1-2. HA1630S01
Supply Current vs. Ambient Temperature
25
Ta = 25°C
Supply Current IDD (µA)
Supply Current IDD (µA)
25
20
15
10
5
0
0
1
2
3
4
5
Supply Voltage VDD (V)
20
VDD = 5.0 V
VDD = 3.0 V
15
10
VDD = 1.8 V
5
0
−40
6
6
VDD = 5.0 V
5
4
VDD = 3.0 V
3
2
VDD = 1.8 V
1
Ta = 25°C
0
0
Output Source Current
IOSOURCE (µA)
40
30
VDD = 5.0 V
VDD = 3.0 V
10
VDD = 1.8 V
0
−40
−20
6
Ta = 25°C
R L = 1 MΩ
5
RL = 510 kΩ
4
3
2
1
5
10
15
Output Source Current IOSOURCE (µA)
Figure 1-5. HA1630S01
Output Source Current vs. Ambient Temperature
50
20
100
Figure 1-4. HA1630S01
Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
Output High Voltage VOH (V)
Figure 1-3. HA1630S01
Output High Voltage vs. Output Source Current
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 5 of 23
100
1
2
3
4
5
Supply Voltage VDD (V)
6
HA1630S01/02/03 Series
Figure 1-7. HA1630S01
Output Sink Current vs. Ambient Temperature
2.0
2.0
VDD = 5.0 V
1.5
Output Sink Current
IOSINK (mA)
Output Low Voltage VOL (V)
Figure 1-6. HA1630S01
Output Low Voltage vs. Output Sink Current
VDD = 3.0 V
VDD = 1.8 V
1.0
0.5
0
0
0.2
0.4
0.6
0.8
Output Sink Current IOSINK (mA)
1.5
VDD = 5.0 V
VDD = 3.0 V
1.0
VDD = 1.8 V
0.5
0
−40
1.0
Percentage (%)
40
Ta = 25°C
VDD = 3.0 V
30
20
10
0
−4
−3 −2 −1
0
1
2
3
Input Offset Voltage VIO (mV)
4
4
Ta = 25°C
VIN = 0.5 V
3
2
1
0
−1
−2
−3
−4
1
2
3
2
Common Mode
Input Voltage VCM (V)
Input Offset Voltage VIO (mV)
6
3.0
4
VDD = 1.8 V, VIN = 0.9 V
1
0
VDD = 3.0 V, VIN = 1.5 V
VDD = 5.0 V, VIN = 2.5 V
−2
−3
−4
−40
3
4
5
Supply Voltage VDD (V)
Figure 1-11. HA1630S01
Common Mode Input Voltage vs.
Ambient Temperature
Figure 1-10. HA1630S01
Input Offset Voltage vs. Ambient Temperature
−1
100
Figure 1-9. HA1630S01
Input Offset Voltage vs. Supply Voltage
Input Offset Voltage VIO (mV)
Figure 1-8. HA1630S01
Input Offset Voltage Distribution
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 6 of 23
100
2.0
1.0
VDD = 3.0 V
0
−1.0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
HA1630S01/02/03 Series
Power Supply Rejection Ratio
PSRR (dB)
Figure 1-12. HA1630S01
Power Supply Rejection Ratio vs. Frequency
120
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
100
80
60
40
20
0
10
100
1k
10k
100k
1M
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 1-13. HA1630S01
Common Mode Rejection Ratio vs. Frequency
120
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
100
80
60
40
20
0
10
100
1k
10k
100k
1M
Frequency f (Hz)
Figure 1-14. HA1630S01
Open Loop Voltage Gain and Phase Angle vs. Frequency
80
225
Ta = 25°C
VDD = 3.0 V 180
RL = 1 MΩ
CL = 20 pF 135
Open Loop Voltage Gain
60
40
20
90
Phase Angle
45
0
Phase Margin: 50 deg
−20
−40
10
0
−45
100
1k
10k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 7 of 23
100k
−90
1M
Phase Angle (deg)
Open Loop Voltage Gain
AVOL (dB)
100
HA1630S01/02/03 Series
200
VDD = 3.0 V
100
0
−100
−200
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Figure 1-16. HA1630S01
Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
Input Bias Current IIB (pA)
Figure 1-15. HA1630S01
Input Bias Current vs. Ambient Temperature
200
100
0
−100
−200
100
0.5
1.0
1.5
2.0
Input Voltage VIN (V)
2.5
3.0
0.20
Slew Rate SRf (V/µs)
0.20
Slew Rate SRr (V/µs)
0
Figure 1-18. HA1630S01
Slew Rate (falling) vs. Ambient Temperature
Figure 1-17. HA1630S01
Slew Rate (rising) vs. Ambient Temperature
VDD = 5.0 V
VDD = 3.0 V
0.15
VDD = 1.8 V
0.10
0.05
−40
Ta = 25°C
VDD = 3.0 V
−20
0
20
40
60
80
100
VDD = 5.0 V
VDD = 3.0 V
0.15
0.10
0.05
−40
VDD = 1.8 V
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
Figure 1-19. HA1630S01
Large Signal Transient Response
Figure 1-20. HA1630S01
Small Signal Transient Response
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Rev.1.00 Mar 10, 2006 page 8 of 23
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
HA1630S01/02/03 Series
Output Voltage Vout p-p (V)
Figure 1-21. HA1630S01
Voltage Output p-p vs. Frequency
3.5
3.0
2.5
2.0
Ta = 25°C
VDD = 3.0 V
Gain = 40 dB, Vp-p = 0.03 V
Gain = 20 dB, Vp-p = 0.3 V
Gain = 0 dB, Vp-p = 2.5 V
1.5
1.0
0.5
0
100
1k
10k
Frequency f (Hz)
100k
Figure 1-22. HA1630S01
Voltage Noise Density vs. Frequency
Voltage Noise Density (nV/√Hz)
200
100
0
100
10k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 9 of 23
1M
HA1630S01/02/03 Series
Main Characteristics (HA1630S02)
Figure 2-1. HA1630S02
Supply Current vs. Supply Voltage
100
Ta = 25°C
Supply Current IDD (µA)
Supply Current IDD (µA)
100
Figure 2-2. HA1630S02
Supply Current vs. Ambient Temperature
80
60
40
20
0
1
2
3
4
5
Supply Voltage VDD (V)
80
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
60
40
20
0
−40
6
5
VDD = 5.0 V
Ta = 25°C
4
3
VDD = 3.0 V
2
VDD = 1.8 V
1
0
6
Ta = 25°C
VDD = 3.0 V
5
4
RL = 1 MΩ
RL = 120 kΩ
3
2
1
0
10
20
30
40
50
60
Output Source Current IOSOURCE (µA)
Figure 2-5. HA1630S02
Output Source Current vs. Ambient Temperature
100
Output Source Current
IOSOURCE (µA)
100
Figure 2-4. HA1630S02
Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
Output High Voltage VOH (V)
Figure 2-3. HA1630S02
Output High Voltage vs. Output Source Current
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
80
60
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
40
20
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 10 of 23
100
1
2
3
4
5
Supply Voltage VDD (V)
6
HA1630S01/02/03 Series
Figure 2-7. HA1630S02
Output Sink Current vs. Ambient Temperature
2.5
1.5
VDD = 5.0 V
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
1.0
Output Sink Current
IOSINK (mA)
Output Low Voltage VOL (V)
Figure 2-6. HA1630S02
Output Low Voltage vs. Output Sink Current
0.5
0
0
0.5
1.0
Output Sink Current IOSINK (mA)
VDD = 3.0 V
2.0
VDD = 1.8 V
1.5
1.0
0.5
0
−40
1.5
Percentage (%)
40
Ta = 25°C
VDD = 3.0 V
30
20
10
0
−4
−3 −2 −1
0
1
2
3
Input Offset Voltage VIO (mV)
4
4
Ta = 25°C
VIN = 0.5 V
3
2
1
0
−1
−2
−3
−4
1
2
VDD = 3.0 V, VIN = 1.5 V
2
VDD = 5.0 V, VIN = 2.5 V
1
0
−1
−2
−3
−4
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 11 of 23
6
3.0
VDD = 1.8 V, VIN = 0.9 V
Common Mode
Input Voltage VCM (V)
Input Offset Voltage VIO (mV)
3
3
4
5
Supply Voltage VDD (V)
Figure 2-11. HA1630S02
Common Mode Input Voltage vs.
Ambient Temperature
Figure 2-10. HA1630S02
Input Offset Voltage vs. Ambient Temperature
4
100
Figure 2-9. HA1630S02
Input Offset Voltage vs. Supply Voltage
Input Offset Voltage VIO (mV)
Figure 2-8. HA1630S02
Input Offset Voltage Distribution
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
2.0
VDD = 3.0 V
1.0
0
−1.0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
HA1630S01/02/03 Series
Power Supply Rejection Ratio
PSRR (dB)
Figure 2-12. HA1630S02
Power Supply Rejection Ratio vs. Frequency
120
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
100
80
60
40
20
0
10
100
1k
10k
100k
1M
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 2-13. HA1630S02
Common Mode Rejection Ratio vs. Frequency
120
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
100
80
60
40
20
0
10
100
1k
10k
100k
1M
Frequency f (Hz)
Figure 2-14. HA1630S02
Open Loop Voltage Gain and Phase Angle vs. Frequency
225
80
Ta = 25°C
VDD = 3.0 V 180
RL = 1 MΩ
CL = 20 pF 135
Open Loop Voltage Gain
60
40
90
Phase Angle
20
45
0
0
Phase Margin: 50 deg
−20
−40
10
−45
100
1k
10k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 12 of 23
100k
1M
−90
10M
Phase Angle (deg)
Open Loop Voltage Gain
AVOL (dB)
100
HA1630S01/02/03 Series
200
VDD = 3.0 V
100
0
−100
−200
0
25
50
75
Ambient Temperature Ta (°C)
Figure 2-16. HA1630S02
Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
Input Bias Current IIB (pA)
Figure 2-15. HA1630S02
Input Bias Current vs. Ambient Temperature
200
100
0
−100
−200
100
Figure 2-17. HA1630S02
Slew Rate (rising) vs. Ambient Temperature
0.5
1.0
1.5
2.0
Input Voltage VIN (V)
2.5
3.0
0.8
VDD = 5.0 V
VDD = 5.0 V
0.7
Slew Rate SRf (V/µs)
Slew Rate SRr (V/µs)
0
Figure 2-18. HA1630S02
Slew Rate (falling) vs. Ambient Temperature
0.8
VDD = 3.0 V
VDD = 1.8 V
0.6
0.5
0.4
0.3
−40
Ta = 25°C
VDD = 3.0 V
−20
0
20
40
60
80
100
0.7
VDD = 3.0 V
VDD = 1.8 V
0.6
0.5
0.4
0.3
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
Figure 2-19. HA1630S02
Large Signal Transient Response
Figure 2-20. HA1630S02
Small Signal Transient Response
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Rev.1.00 Mar 10, 2006 page 13 of 23
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
HA1630S01/02/03 Series
Figure 2-21. HA1630S02
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
10
VDD = 3.0 V
Ta = 25°C
Gain = 0 dB
1
T.H.D. + Noise (%)
T.H.D. + Noise (%)
10
Figure 2-22. HA1630S02
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
0.1
f = 10 kHz
f = 1 kHz
0.01
f = 100 Hz
0.001
f = 1 kHz
0.1
f = 100 Hz
0.01 V = 3.0 V
DD
0.001
0
0.5
1.0
1.5
2.0
2.5
3.0
f = 10 kHz
1
Ta = 25°C
Gain = 40 dB
0
Output Voltage Vout p-p (V)
0.5
1.0
1.5
2.0
2.5
Output Voltage Vout p-p (V)
Voltage Output Vout p-p (V)
Figure 2-23. HA1630S02
Voltage Output p-p vs. Frequency
3.5
Ta = 25°C
VDD = 3.0 V
Gain = 40 dB, Vp-p = 0.03 V
3.0
2.5
2.0
Gain = 20 dB, Vp-p = 0.3 V
Gain = 0 dB, Vp-p = 2.5 V
1.5
1.0
0.5
0
100
1k
10k
Frequency f (Hz)
100k
Figure 2-24. HA1630S02
Voltage Noise Density vs. Frequency
Voltage Noise Density (nV/√Hz)
200
100
0
100
10k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 14 of 23
1M
3.0
HA1630S01/02/03 Series
Main Characteristics (HA1630S03)
Figure 3-1. HA1630S03
Supply Current vs. Supply Voltage
200
Ta = 25°C
Supply Current IDD (µA)
Supply Current IDD (µA)
200
Figure 3-2. HA1630S03
Supply Current vs. Ambient Temperature
150
100
50
0
1
2
3
4
5
Supply Voltage VDD (V)
VDD = 5.0 V
150
VDD = 3.0 V
100
VDD = 1.8 V
50
0
−40
6
6
Ta = 25°C
5 VDD = 5.5 V
4
3
VDD = 3.0 V
2
VDD = 1.8 V
1
0
6
Ta = 25°C
5
RL = 1 MΩ
RL = 51 kΩ
4
3
2
1
0
50
100
150
Output Source Current IOSOURCE (µA)
Figure 3-5. HA1630S03
Output Source Current vs. Ambient Temperature
200
Output Source Current
IOSOURCE (µA)
110
Figure 3-4. HA1630S03
Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
Output High Voltage VOH (V)
Figure 3-3. HA1630S03
Output High Voltage vs. Output Source Current
−15
10
35
60
85
Ambient Temperature Ta (°C)
VDD = 5.0 V
VDD = 3.0 V
150
VDD = 1.8 V
100
50
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 15 of 23
100
1
2
3
4
5
Supply Voltage VDD (V)
6
HA1630S01/02/03 Series
Figure 3-7. HA1630S03
Output Sink Current vs. Ambient Temperature
2.5
1.5
VDD = 5.0 V
Output Sink Current
IOSINK (mA)
Output Low Voltage VOL (V)
Figure 3-6. HA1630S03
Output Low Voltage vs. Output Sink Current
VDD = 3.0 V
1.0
VDD = 1.8 V
0.5
0
0
0.5
1.0
Output Sink Current IOSINK (mA)
2.0
VDD = 5.0 V
VDD = 3.0 V
1.5
1.0
VDD = 1.8 V
0.5
0
−40
1.5
Figure 3-8. HA1630S03
Input Offset Voltage Distribution
Input Offset Voltage VIO (mV)
Percentage (%)
Ta = 25°C
VDD = 3.0 V
30
20
10
−4
−3 −2 −1
0
1
2
3
Input Offset Voltage VIO (mV)
4
4
Ta = 25°C
VIN = 0.5 V
3
2
1
0
−1
−2
−3
−4
1
2
6
3.0
4
3
Common Mode
Input Voltage VCM (V)
Input Offset Voltage VIO (mV)
3
4
5
Supply Voltage VDD (V)
Figure 3-11. HA1630S03
Common Mode Input Voltage vs.
Ambient Temperature
Figure 3-10. HA1630S03
Input Offset Voltage vs. Ambient Temperature
VDD = 1.8 V, VIN = 0.9 V
2
1
0
−1
VDD = 3.0 V, VIN = 1.5 V
−2
VDD = 5.0 V, VIN = 2.5 V
−3
−4
−40
100
Figure 3-9. HA1630S03
Input Offset Voltage vs. Supply Voltage
40
0
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 16 of 23
100
2.0
VDD = 3.0 V
1.0
0
−1.0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
HA1630S01/02/03 Series
Power Supply Rejection Ratio
PSRR (dB)
Figure 3-12. HA1630S03
Power Supply Rejection Ratio vs. Frequency
120
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
100
80
60
40
20
0
10
100
1k
10k
100k
1M
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 3-13. HA1630S03
Common Mode Rejection Ratio vs. Frequency
120
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
100
80
60
40
20
0
10
100
1k
10k
100k
1M
Frequency f (Hz)
Figure 3-14. HA1630S03
Open Loop Voltage Gain and Phase Angle vs. Frequency
225
Ta = 25°C
VDD = 3.0 V 180
RL = 1 MΩ
CL = 20 pF 135
Open Loop Voltage Gain
80
60
40
20
90
Phase Angle
45
0
0
Phase Margin: 50 deg
−20
−40
10
−45
100
1k
10k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 17 of 23
100k
1M
−90
10M
Phase Angle (deg)
Open Loop Voltage Gain
AVOL (dB)
100
HA1630S01/02/03 Series
200
VDD = 3.0 V
100
0
−100
−200
0
Figure 3-16. HA1630S03
Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
Input Bias Current IIB (pA)
Figure 3-15. HA1630S03
Input Bias Current vs. Ambient Temperature
25
50
75
Ambient Temperature Ta (°C)
200
100
0
−100
−200
100
Ta = 25°C
VDD = 3.0 V
0
1.5
1.5
Slew Rate SRf (V/µs)
Slew Rate SRr (V/µs)
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
0.9
0.6
0.3
0
−50
−25
0
25
50
75
100
1.0
1.5
2.0
Input Voltage VIN (V)
2.5
1.2
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
0.9
0.6
0.3
0
−50
−25
0
25
50
75
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
Figure 3-19. HA1630S03
Large Signal Transient Response
Figure 3-20. HA1630S03
Small Signal Transient Response
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Rev.1.00 Mar 10, 2006 page 18 of 23
3.0
Figure 3-18. HA1630S03
Slew Rate (falling) vs. Ambient Temperature
Figure 3-17. HA1630S03
Slew Rate (rising) vs. Ambient Temperature
1.2
0.5
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
HA1630S01/02/03 Series
Figure 3-21. HA1630S03
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
10
VDD = 3.0 V
Ta = 25°C
Gain = 0 dB
1
T.H.D. + Noise (%)
T.H.D. + Noise (%)
10
Figure 3-22. HA1630S03
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
0.1
f = 10 kHz
0.01
f = 100 Hz
f = 1 kHz
0.001
1
f = 10 kHz
f = 1 kHz
0.1
f = 100 Hz
0.01 V = 3.0 V
DD
Ta = 25°C
Gain = 40 dB
0.001
0
0.5
1.0
1.5
2.0
2.5
3.0
0
Output Voltage Vout p-p (V)
0.5
1.0
1.5
2.0
2.5
Output Voltage Vout p-p (V)
Voltage Output Vout p-p (V)
Figure 3-23. HA1630S03
Voltage Output p-p vs. Frequency
3.5
Ta = 25°C
VDD = 3.0 V
Gain = 40 dB, Vp-p = 0.03 V
3.0
2.5
2.0
Gain = 20 dB, Vp-p = 0.3 V
Gain = 0 dB, Vp-p = 2.5 V
1.5
1.0
0.5
0
100
1k
10k
Frequency f (Hz)
100k
1M
Figure 3-24. HA1630S03
Voltage Noise Density vs. Frequency
Voltage Noise Density (nV/√Hz)
200
100
0
100
10k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 19 of 23
3.0
HA1630S01/02/03 Series
Test Circuits
1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO
VIO
VDD
VIO = VO −
RF
RS
2
×
RS
R S + RF
PSRR
−
+
VO
RS
VDD
VDD
PSRR = −20log
2
VO1 − VO2
VDD1 − VDD2
×
RS
RS + RF
Measure VO corresponding to VDD1 = 1.8 V and VDD2 = 5.5 V
2. Supply Current, IDD
3. Input Bias Current, IIB
VDD
VDD
A
−
+
−
+
VDD
VDD
2
2
4. Output High Voltage, VOH
VOH
VDD
RL = 1 MΩ
VIN1 = VDD / 2 − 0.05 V
VIN2 = VDD / 2 + 0.05 V
−
+
VIN1
VIN2
VO
RL
5. Output Low Voltage, VOL
VOL
VDD
RL = 1 MΩ
VIN1 = VDD / 2 + 0.05 V
VIN2 = VDD / 2 − 0.05 V
−
+
VIN1
VIN2
Rev.1.00 Mar 10, 2006 page 20 of 23
RL
VO
A
HA1630S01/02/03 Series
6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK
VDD
IOSOURCE
VO = VDD − 0.5 V
VIN1 = VDD / 2 − 0.05 V
VIN2 = VDD / 2 + 0.05 V
−
+
VIN1
A
IOSINK
VIN2
VO = + 0.5 V
VIN1 = VDD / 2 + 0.05 V
VIN2 = VDD / 2 − 0.05 V
VO
7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR
VDD
CMRR
RF
RS
RS
VO1 − VO2
CMRR = −20log
−
+
VIN1 − VIN2
VO
RF
×
RS
RS + RF
Measure VO corresponding to VIN1 = 0 V and VIN2 = 2.1 V
VDD
VIN
2
8. Total Harmonic Distortion, THD
VDD
RF
Gain Variable
RS
THD
VDD
Gain Variable
1 + RF / RS = 100
freq = 100 Hz, 1 kHz, 10 kHz
Gain = +1
−
+
−
+
VO
VIN
VO
VIN
VSS
VSS
9. Slew Rate, SR
10. Gain, AV & Phase, GBW
VDD
VDD
RF
RS
−
+
−
+
VO
1 MΩ
20 pF
VSS
Rev.1.00 Mar 10, 2006 page 21 of 23
VO
1 MΩ
RS
VSS
20 pF
HA1630S01/02/03 Series
Package Dimensions
JEITA Package Code
SC-74A
Package Name
MPAK-5
RENESAS Code
PLSP0005ZB-A
Previous Code
MPAK-5 / MPAK-5V
MASS[Typ.]
0.015g
D
A
e
Q
E
HE
LP
L
A
c
Reference Dimension in Millimeters
Symbol
Min
Nom Max
L1
A3
A
x M S
b
A
e
A2
A
e1
A1
y S
S
b
b1
I1
c1
c
b2
A-A Section
JEITA Package Code
Pattern of terminal position areas
RENESAS Code
SC-88A
Previous Code
PTSP0005ZC-A
D
CMPAK-5 / CMPAK-5V
A
A1
A2
A3
b
b1
c
c1
D
E
e
HE
L
L1
LP
x
y
b2
e1
I1
Q
1.0
0
1.0
0.35
0.1
2.8
1.5
2.5
0.3
0.1
0.2
1.1
0.25
0.42
0.4
0.13
0.11
2.95
1.6
0.95
2.8
1.3
0.1
1.2
0.5
0.15
3.1
1.8
3.0
0.7
0.5
0.6
0.05
0.05
0.55
2.15
0.85
0.3
MASS[Typ.]
0.006g
A
e
Q
c
E
HE
LP
L
A
A
x M
L1
S
Reference
Symbol
A3
b
A
A
A1
A2
A3
b
b1
c
c1
D
E
e
e
A2
A
A1
y S
S
e1
b
b1
c1
l1
c
b2
A-A Section
Rev.1.00 Mar 10, 2006 page 22 of 23
Pattern of terminal position areas
HE
L
L1
LP
x
y
Dimension in Millimeters
Min
0.8
0
0.8
0.15
0.1
1.8
1.15
1.8
0.3
0.1
0.2
Nom
0.9
0.25
0.22
0.2
0.13
0.11
2.0
1.25
0.65
2.1
b2
e1
1.5
l1
Q
0.25
Max
1.1
0.1
1.0
0.3
0.15
2.2
1.35
2.4
0.7
0.5
0.6
0.05
0.05
0.35
0.9
HA1630S01/02/03 Series
Taping & Reel Specification
[Taping]
Package Code
MPAK-5
CMPAK-5
W
8
8
P
4
4
Ao
3.3
2.25
Bo
3.3
2.45
Ko
1.5
1.1
E
1.75
1.75
F
3.5
3.5
D1
1.05
1.05
Maximum Storage No.
3,000 pcs/reel
3,000 pcs/reel
4.0
φ 1.5
Unit: mm
E
2.0
Cover
tape
B0
W
F
A0
D1
P
Tape withdraw direction
[Ordering Information]
Ordering Unit
3,000 pcs
9.0
Mark Indication
Index band
Marking
1
B
= Contorol code
(  or blank)
Rev.1.00 Mar 10, 2006 page 23 of 23
1A
: HA1630S01
1B
: HA1630S02
1C
: HA1630S03
φ178 ± 2
2.0 ± 0.5
W2
9
9
4 ± 0.5
W1
11.4
11.4
0°
Tape width
8
8
12
[Reel]
Package
MPAK-5
CMPAK-5
11.4
φ13 ± 0.5
K0
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product
information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510
© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon .6.0