ETC HPND-4038

Beam Lead PIN Diodes for
Phased Arrays and Switches
Technical Data
HPND-4028
HPND-4038
690 (27)
650 (26)
Features
• Low Capacitance
0.025 pF Maximum at 1 MHz
Guaranteed Min./Max.
• Fast Switching
2.0 nsec
330 (13)
260 (10)
220 (9)
180 (7)
180 (7)
160 (6)
• Low Resistance at Low Bias
1.5 Ω at IF = 10 mA (Typical)
110 (4.5)
90 (3.5)
• Rugged Construction
Typical 10 Gram Lead Pull
280 (11)
240 (9)
• Silicon Nitride Passivation
12 (0.47)
8 (0.32)
Description
The HPND-4028 and 4038 beam
lead PIN diodes are designed for
low capacitance, low resistance,
and fast switching at microwave
frequencies. These characteristics
are achieved at low bias levels for
minimal power consumption.
Advanced processing techniques
ensure uniform and consistent
electrical performance, allowing
guaranteed capacitance windows.
This translates to improved
performance in phased array
applications.
60 (2.4)
40 (1.6)
DIMENSIONS IN µM (1/1000 INCH)
Outline 83
Maximum Ratings
Operating Temperature ....................................................... -65°C to +150°C
Storage Temperature ........................................................... -65°C to +200°C
Power Dissipation at TCASE = 25°C ................................................. 250 mW
(Derate linearly to zero at 150°C.)
Minimum Lead Strength ................................... 4 grams pull on either lead
per MIL-S-19500, LTPD = 20
Applications
Rugged construction and strong
beams ensure high assembly
yields while nitride passivation
and polyimide coating ensure
reliability.
These beam lead PIN diodes are
designed for use in stripline,
coplanar waveguide, or microstrip circuits. Applications
include phase shifting and
switching. The guaranteed
capacitance windows ensure
uniform performance in phased
array radar. The low capacitance
makes them ideal for circuits
requiring high isolation in the
series configuration. These
devices have been fully characterized and S-parameters have
been provided.
2
Electrical Specifications at TA = 25°C
Part
Number
HPND-
Capacitance
(pF)
Series
Resistance
RS (Ω)
Breakdown
Voltage
VBR (V)
Reverse
Current
IR (nA)
Forward
Voltage
VF (V)
Carrier
Lifetime
τ (ns)
Reverse
Recovery
trr (ns)
Series
Resistance
RS (Ω)
Min.
Max.
Typ.
Max.
Min.
Max.
Max.
Typ.
Typ.
Typ.
4028
0.025
0.045
2.3
3.0
60
100
1.1
36
2.6
2.0
4038
0.045
0.065
1.5
2.0
60
100
1.1
45
2.4
1.0
VR = 30 V
f = 1 MHz
Test
Conditions
IF = 10 mA
f = 100 MHz
VR = VBR VR = 50 V
Measure
IR ≤ 10 mA
IF = 20 mA
IF = 10 mA *IF = 10 mA
IF = 50 mA
IF = 5 mA
f = 100 MHz
IR = 6 mA
VR = 10 V
90% recovery
Typical Parameters
0.12
26
40
35
30
25
20
15
10
5
0
22
1 mA
5 mA
10 mA
1
10 18 20
0.75
0.60
0.45
0.30
0.15
0
10
–30V
6
0V
2
1 mA
5 mA
10 mA
1
10 20
FREQUENCY (GHz)
0.06
HPND-4038
0.04
HPND-4028
0.02
0
0
6
4
Vn = 10V
30
1000
10
RF RESISTANCE (OHMS)
FORWARD CURRENT (mA)
8
20
Figure 3. Typical Capacitance vs.
Reverse Voltage (at 1 MHz).
100
10
10
REVERSE VOLTAGE (V)
Figure 2. Typical Isolation and
Insertion Loss, HPND-4038.
12
2
0.08
FREQUENCY (GHz)
Figure 1. Typical Isolation and
Insertion Loss, HPND-4028.
REVERSE RECOVERY TIME (nsec)
0.5
0.4
0.3
0.2
0.1
0
100
INSERTION LOSS (dB)
0V
ISOLATION (dB)
–30V
14
CAPACITANCE (pF)
0.10
18
INSERTION LOSS (dB)
ISOLATION (dB)
30
1
0.1
0.01
100
10
HPND-4028
HPND-4038
1.0
Vn = 20V
0
0.001
0
5
10
15
FORWARD CURRENT (mA)
Figure 4. Typical Reverse Recovery
Time vs. Forward Current (Series
Configuration). HPND-4028, HPND4038.
0
0.2
0.4
0.6
0.8
FORWARD VOLTAGE (V)
Figure 5. Typical Forward
Characteristics.
1.0
0.1
0.01
0.10
1.0
10
100
IF – FORWARD BIAS CURRENT (mA)
Figure 6. Typical RF Resistance vs.
Forward Bias Current (at 100 MHz).
3
Typical S-Parameters (in series configuration) at ZO = 50 Ω, 25°C
HPND-4028
IF = 1 mA
Freq.
(MHz)
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
S11 /S22
Mag.
Ang.
0.046
0.048
0.052
0.058
0.063
0.069
0.075
0.081
0.087
0.092
0.097
0.103
0.107
0.112
0.119
0.123
0.129
0.139
7
20
29
36
42
46
48
50
51
52
53
52
51
51
51
51
49
48
IF = 5 mA
dB
S21 /S12
Mag.
Ang.
-0.38
-0.40
-0.40
-0.40
-0.40
-0.40
-0.40
-0.40
-0.40
-0.40
-0.40
-0.40
-0.40
-0.42
-0.42
-0.44
-0.44
-0.46
0.958
0.956
0.957
0.957
0.956
0.956
0.956
0.955
0.956
0.956
0.956
0.956
0.957
0.954
0.953
0.952
0.952
0.950
-1
-2
-4
-5
-6
-7
-8
-9
-11
-12
-13
-14
-15
-17
-18
-19
-20
-22
S11 /S22
Mag.
Ang.
0.031
0.036
0.041
0.049
0.057
0.064
0.070
0.077
0.084
0.089
0.095
0.101
0.106
0.110
0.117
0.122
0.130
0.139
17
33
43
49
54
57
60
60
61
61
61
60
59
59
58
57
56
55
IF = 10 mA
dB
S21 /S12
Mag.
Ang.
-0.24
-0.26
-0.26
-0.26
-0.26
-0.26
-0.26
-0.28
-0.28
-0.28
-0.26
-0.26
-0.26
-0.30
-0.28
-0.28
-0.30
-0.32
0.973
0.971
0.972
0.971
0.971
0.971
0.971
0.970
0.970
0.970
0.971
0.971
0.971
0.968
0.969
0.969
0.967
0.965
-1
-2
-4
-5
-6
-7
-8
-9
-11
-12
-13
-14
-15
-17
-18
-19
-20
-21
S11 /S22
Mag.
Ang.
0.027
0.033
0.040
0.047
0.055
0.063
0.070
0.076
0.083
0.089
0.095
0.101
0.105
0.111
0.117
0.123
0.129
0.140
19
37
47
53
58
60
62
63
63
63
63
62
62
61
60
60
57
56
dB
S21 /S12
Mag. Ang.
-0.20
-0.22
-0.22
-0.22
-0.22
-0.24
-0.22
-0.24
-0.24
-0.24
-0.22
-0.22
-0.22
-0.24
-0.26
-0.26
-0.26
-0.28
0.978
0.975
0.975
0.975
0.975
0.974
0.975
0.974
0.974
0.974
0.975
0.975
0.975
0.973
0.972
0.972
0.971
0.970
-1
-2
-4
-5
-6
-7
-8
-9
-11
-12
-13
-14
-15
-17
-18
-19
-20
-22
HPND-4028
VR = 0 V
Freq.
(MHz)
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
S11 /S22
Mag. Ang.
0.997
0.988
0.974
0.958
0.940
0.921
0.898
0.879
0.857
0.836
0.816
0.795
0.778
0.761
0.744
0.733
0.720
0.709
-4
-7
-11
-14
-17
-21
-24
-26
-29
-32
-35
-37
-40
-42
-44
-46
-48
-50
VR = 10 V
dB
S21 /S12
Mag.
Ang.
-27.54
-21.74
-18.36
-16.10
-14.48
-13.20
-12.16
-11.36
-10.64
-10.12
-9.54
-9.10
-8.86
-8.44
-8.34
-8.04
-7.94
-8.00
0.042
0.082
0.121
0.157
0.189
0.219
0.247
0.271
0.294
0.312
0.334
0.351
0.361
0.379
0.383
0.397
0.401
0.399
86
79
74
69
64
70
56
52
48
46
42
40
37
33
31
28
26
24
S11 /S22
Mag. Ang.
0.999
0.997
0.994
0.991
0.986
0.979
0.972
0.965
0.954
0.942
0.931
0.917
0.904
0.892
0.876
0.867
0.855
0.846
-3
-6
-8
-10
-13
-16
-19
-21
-24
-27
-30
-33
-36
-38
-41
-43
-45
-47
dB
-33.16
-27.34
-23.62
-21.12
-19.26
-17.66
-16.26
-15.20
-14.20
-13.44
-12.58
-11.84
-11.44
-10.80
-10.56
-10.12
-9.96
-9.94
VR = 30 V
S21 /S12
Mag. Ang.
0.022
0.043
0.066
0.088
0.109
0.131
0.054
0.174
0.195
0.213
0.235
0.256
0.268
0.289
0.297
0.312
0.318
0.319
91
86
83
81
78
75
72
70
67
65
61
59
56
52
50
46
44
42
S11 /S22
Mag.
Ang.
1.000
0.998
0.996
0.992
0.987
0.982
0.976
0.970
0.960
0.950
0.937
0.926
0.913
0.903
0.888
0.881
0.869
0.861
-2
-5
-7
-10
-13
-15
-18
-21
-23
-26
-29
-32
-34
-37
-39
-42
-44
-46
dB
-33.98
-28.18
-24.44
-21.94
-20.10
-18.42
-17.08
-15.92
-14.96
-14.20
-13.32
-12.62
-12.20
-11.52
-11.26
-10.80
-10.64
-10.64
S21 /S12
Mag. Ang.
0.020
0.039
0.060
0.080
0.099
0.120
0.140
0.160
0.179
0.195
0.216
0.234
0.246
0.266
0.274
0.289
0.294
0.294
91
86
84
82
79
76
73
71
68
66
62
60
57
54
52
48
46
44
4
Typical S-Parameters (in series configuration) at ZO = 50 Ω, 25°C (cont.)
HPND-4038
IF = 1 mA
Freq.
(MHz)
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
S11 /S22
Mag.
Ang.
0.028
0.032
0.037
0.045
0.052
0.060
0.067
0.073
0.081
0.087
0.092
0.099
0.104
0.110
0.118
0.123
0.132
0.141
15
34
47
55
61
65
67
69
70
71
71
70
70
69
67
66
64
62
IF = 5 mA
dB
S21 /S12
Mag.
Ang.
-0.22
-0.24
-0.22
-0.22
-0.24
-0.24
-0.24
-0.24
-0.24
-0.24
-0.22
-0.24
-0.22
-0.26
-0.24
-0.24
-0.26
-0.26
0.976
0.974
0.975
0.975
0.974
0.974
0.974
0.974
0.973
0.974
0.975
0.974
0.975
0.972
0.973
0.973
0.972
0.972
-1
-2
-3
-5
-6
-7
-8
-9
-10
-11
-12
-14
-15
-16
-17
-18
-19
-20
S11 /S22
Mag.
Ang.
0.019
0.026
0.034
0.042
0.051
0.059
0.067
0.074
0.081
0.088
0.094
0.100
0.106
0.112
0.119
0.125
0.133
0.143
28
50
61
67
72
74
76
76
77
77
77
76
75
74
72
71
68
66
IF = 10 mA
dB
S21 /S12
Mag.
Ang.
-0.12
-0.16
-0.14
-0.14
-0.16
-0.16
-0.16
-0.16
-0.16
-0.16
-0.16
-0.16
-0.14
-0.16
-0.16
-0.16
-0.16
-0.18
0.987
0.984
0.985
0.985
0.984
0.984
0.984
0.983
0.984
0.982
0.984
0.984
0.985
0.982
0.983
0.982
0.982
0.980
-1
-2
-3
-5
-6
-7
-8
-9
-10
-11
-12
-14
-15
-16
-17
-18
-19
-20
S11 /S22
Mag.
Ang.
0.017
0.024
0.033
0.042
0.051
0.059
0.067
0.073
0.081
0.089
0.094
0.101
0.107
0.113
0.120
0.126
0.133
0.143
35
56
66
70
75
77
78
78
78
79
79
77
76
75
73
72
69
67
dB
S21 /S12
Mag. Ang.
-0.10
-0.14
-0.12
-0.12
-0.14
-0.14
-0.12
-0.14
-0.14
-0.14
-0.14
-0.14
-0.12
-0.16
-0.14
-0.16
-0.16
-0.16
0.989
0.986
0.988
0.987
0.986
0.986
0.987
0.986
0.986
0.986
0.986
0.986
0.987
0.984
0.985
0.984
0.984
0.983
-1
-2
-4
-5
-6
-7
-8
-9
-10
-11
-12
-14
-15
-16
-17
-18
-19
-20
HPND-4038
VR = 0 V
Freq.
(MHz)
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
S11 /S22
Mag.
Ang.
0.993
0.976
0.953
0.923
0.890
0.857
0.822
0.790
0.757
0.727
0.697
0.668
0.643
0.620
0.599
0.584
0.570
0.556
-5
-10
-15
-19
-23
-27
-31
-34
-38
-41
-44
-46
-49
-51
-53
-55
-57
-59
VR = 10 V
dB
S21 /S12
Mag.
Ang.
-23.10
-17.28
-14.04
-11.88
-10.36
-9.20
-8.28
-7.58
-7.00
-6.54
-6.10
-5.74
-5.56
-5.22
-5.16
-4.90
-4.80
-4.84
0.070
0.137
0.199
0.255
0.304
0.347
0.386
0.418
0.447
0.471
0.496
0.517
0.528
0.549
0.553
0.569
0.576
0.574
83
76
70
64
58
53
49
45
41
38
34
32
29
26
24
21
19
17
S11 /S22
Mag.
Ang.
0.998
0.995
0.990
0.982
0.973
0.962
0.947
0.933
0.915
0.897
0.877
0.854
0.834
0.813
0.793
0.778
0.762
0.747
-3
-7
-10
-13
-16
-20
-23
-27
-30
-34
-37
-41
-44
-47
-50
-53
-55
-58
dB
-28.88
-22.86
-19.26
-16.78
-14.90
-13.40
-12.08
-11.06
-10.12
-9.40
-8.62
-8.00
-7.60
-7.04
-6.82
-6.42
-6.22
-6.18
VR = 30 V
S21 /S12
Mag. Ang.
0.036
0.072
0.109
0.145
0.180
0.214
0.249
0.280
0.312
0.339
0.371
0.399
0.417
0.445
0.457
0.478
0.489
0.491
89
84
81
78
74
71
68
65
61
58
54
52
49
45
43
39
37
35
S11 /S22
Mag. Ang.
0.999
0.996
0.992
0.986
0.977
0.968
0.956
0.945
0.928
0.912
0.892
0.874
0.854
0.839
0.818
0.805
0.790
0.776
-3
-6
-9
-12
-15
-19
-22
-25
-29
-32
-35
-38
-42
-45
-48
-50
-53
-55
dB
-29.90
-23.76
-20.18
-17.74
-15.88
-14.30
-12.96
-11.92
-10.94
-10.22
-9.44
-8.76
-8.34
-7.76
-7.50
-7.10
-6.88
-6.86
S21 /S12
Mag. Ang.
0.032
0.065
0.098
0.130
0.161
0.193
0.225
0.254
0.284
0.309
0.338
0.365
0.383
0.410
0.422
0.442
0.453
0.454
90
85
82
79
75
73
69
66
63
61
57
54
51
48
45
42
40
37
5
Bonding and Handling
Procedures for Beam
Lead Diodes
1. Storage
Under normal circumstances,
storage of beam lead diodes in
Agilent supplied waffle/gel packs
is sufficient. In particularly dusty
or chemically hazardous environments, storage in an inert atmosphere desiccator is advised.
2. Handling
In order to avoid damage to beam
lead devices, particular care must
be exercised during inspection,
testing, and assembly. Although
the beam lead diode is designed to
have exceptional lead strength, its
small size and delicate nature
requires that special handling
techniques be observed so that
the devices will not be mechanically or electrically damaged. A
vacuum pickup is recommended
for picking up beam lead devices,
particularly larger ones, e.g.,
quads. Care must be exercised to
assure that the vacuum opening of
the needle is sufficiently small to
avoid passage of the device
through the opening. A #27 tip is
recommended for picking up
single beam lead devices. A 20X
magnification is needed for
precise positioning of the tip on
the device. Where a vacuum
pickup is not used, a sharpened
wooden Q-tip dipped in isopropyl
alcohol is very commonly used to
handle beam lead devices.
3. Cleaning
For organic contamination use a
warm rinse of trichloroethane, or
its locally approved equivalent,
followed by a cold rinse in acetone and methanol. Dry under
infrared heat lamp for 5–10
minutes on clean filter paper.
Freon degreaser, or its locally
approved equivalent, may replace
trichloroethane for light organic
contamination.
• Ultrasonic cleaning is not
recommended.
• Acid solvents should not be
used.
4. Bonding
Thermocompression: See
Application Note 979 “The Handling and Bonding of Beam Lead
Devices Made Easy”. This method
is good for hard substrates only.
Wobble: This method picks up
the device, places it on the
substrate and forms a thermocompression bond all in one
operation. This is described in the
latest version of MIL-STD-883,
Method 2017, and is intended for
hard substrates only.
Resistance Welding or
Parallel-GAP Welding: To make
welding on soft substrates easier,
a low pressure welding head is
recommended. Suitable equipment is available from HUGHES,
Industrial Products Division in
Carlsbad, CA.
away from the substrate during
the bonding process due to the
deformation of the beam by the
bonding tool. This effect is
beneficial as it provides stress
relief for the diode during thermal
cycling of the substrate. The
coefficient of expansion of some
substrate materials, specifically
soft substrates, is such that some
bugging is essential if the circuit is
to be operated over wide temperature extremes.
Thick metal clad ground planes
restrict the thermal expansion of
the dielectric substrates in the X-Y
axis. The expansion of the dielectric will then be mainly in the Z
axis, which does not affect the
beam lead device. An alternate
solution to the problem of dielectric ground plane expansion is to
heat the substrate to the maximum required operating temperature during the beam lead attachment. Thus, the substrate is at
maximum expansion when the
device is bonded. Subsequent
cooling of the substrate will cause
bugging, similar to bugging in
thermocompression bonding or
epoxy bonding. Other methods of
bugging are preforming the leads
during assembly or prestressing
the substrate.
Epoxy: With solvent free, low
resistivity epoxies (available from
ABLESTIK and improvements in
dispensing equipment, the quality
of epoxy bonds is sufficient for
many applications.
5. Lead Stress
In the process of bonding a beam
lead diode, a certain amount of
“bugging” occurs. The term
bugging refers to the chip lifting
O
5
www.semiconductor.agilent.com
Data subject to change.
Copyright © 1999 Agilent Technologies
Obsoletes 5965-8878E
5967-6157E (11/99)